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1 INTRODUCTION 

1.1. The realizability interpretation of intuitionistic arithmetic was first in­
troduced by S.C.Kleene (1945). It has turned out to be an extremely fruitful 
interpretation, widely applicable to axiomatic systems bases on constructive 
logic, and yielding interesting results such as the consistency of Church's thesis 
with intuitionistic formalisms. Nowadays there is not just a single notion of 
realizability, but a whole family of notions, which of course resemble each other 
in certain respects. 

Here we present a streamlined development of the formalized version of 
Kleene's original notion. We presuppose some (not much) familiarity with 
intuitionistic first-order predicate logic, classical Peano arithmetic, as well as 
elementary recursion theory; for the rest the paper is self-contained. 

For the history of the topic, see (Troelstra 1973, Dragalin 1988). 

1.2. Realizability by numbers introduced by Kleene as a semantics for in­
tuitionistic arithmetic, by defining for arithmetical sentences A a notion ''the 
number n realizes A'', intended to capture some essential aspects of the intu­
itionistic meaning of A. Here n is not a term of the arithmetical formalism, 
but an element of the natural numbers IN. The definition is by induction on 
the complexity of A: 

• n realizes t == s iff t == s holds; 

• n realizes A/\. B iff pon realizes A and p 1n realizes B; 
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• n realizes A V B iff Poll = 0 and p 1ll realizes A or Pon == 
realizes B; 

1 and Pin 

• n realizes A > B iff for all m realizing A, n.m is defined and realizes B; 

• n realizes ,A if for no m, m realizes A; 

• n realizes :3y A iff p 1 n realizes A [y /Pon]. 

• n realizes 'r/y A iff n.m is defined and realizes A[y/m], for all m. 

Here P1 and Po are the inverses of so1ne standard primitive recursive pairing 
function p coding 1N'2 onto IN, and m is the standard term smo (numeral) 
in the language of intuitionistic arithmetic corresponding to m ; • is partial 
recursive function application, i.e. n.m is the result of applying the function 
with code n to m. (Later on we also use m, n, ... for numerals.) The definition 
may be extended to formulas with free variables by stipulating that n realizes 
A if n realizes the universal closure of A. 

Reading ''there is a number realizing A'' as ''A is constructively true'', we 
see that a realizing number provides witnesses for the constructive truth of 
existential quantifiers and disjunctions, and in implications carries this type of 
information from premise to conclusion by means of partial recursive opera­
tors. In short, realizing numbers ''hereditarily'' encode information about the 
realization of existential quantifiers and disjunctions. 

1. 3. Realizability, as an interpretation of ''constructively true'' is reminiscent 
of the well-known Brouwer-Heyting-Kolmogorov explanation (BHK for short) 
of the intuitionistic meaning of the logical connectives. BHK explains ''p proves 
A'' for compound A in terms of the provability of the components of A. For 
prime formulas the notion of proof is supposed to be given. Examples of the 
clauses of BHK are: · 

• p proves A ➔ B iff p is a construction transforming any proof c of A into 
a proof p(c) of B; 

• p proves A I\ B iff p = (Po, P1) and Po proves A, P1 proves B; 

• p proves AV B iff p = (Po, P1) with Po E {O, 1 }, and P1 proves A if Po = 0, 
P1 proves B if Po =I=- 0. 

Realizability corresponds to BHK if (a) we concentrate on (numerical) infor­
mation concerning the realizations of existential quantifiers and the choices for 
disjunctions, and (b) the constructions considered for \/, > are assumed to be 
encoded by (partial) recursive operations. 
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1.4. Realizability gives a classically meaningful definition of intuitionistic 
truth; the set of realizable statements is closed under deduction and must be 
consistent, since 1=0 cannot be realizable. It is to be noted that decidedly 
non-classical principles are realizable, for example 

,Vx[3yTxxy V Vy ,Txxy] 

is easily seen to be realizable. (T is Kleene's T-predicate, which is assumed to 
be available in our language; Txyz is primitive recursive in x, y, z and expresses 
that the algorithm with codex applied to argument y yields a computation with 
code z; U is a primitive recursive function extracting from a computation code 
z the result U z.) For ,A is realizable iff no number realizes A, and realizability 
of Vx[3yTxxy V'vy 1Txxy] requires a total recursive function deciding 3yTxxy, 
which does not exist (more about this below). In this way realizability shows 
how in constructive mathematics principles may be incorporated which cause it 
to diverge from the corresponding classical theory, instead of just being included 
in the classical theory. 

. 

1. 5. Some notational habits adopted in this paper are: dropping of distin-
guishing sub- and superscripts where the context permits; saving on parenthe­
ses, e.g. for a binary predicate R applied to x, y we often write Rxy instead of 
R(x, y) (this habit has just been demonstrated above). The symbol = is used 
for literal identity of expressions modulo renaming of bound variables. ⇒ is 
used as metamathematical consequence relation, and in particular A, E ==> C 
expresses a rule which derives C from premises A, B. FV(A) is the set of free 
variables of expression A. 

2 FORMALIZING REALIZABILITY IN HA 

2.1. In order to exploit realizability proof-theoretically, we have to formalize 
it. Let us first discuss its formalization in ordinary intuitionistic first-order 
arithmetic HA ( ''Heyting's Arithmetic''), based on intuitionistic predicate logic 
with equality, and containing symbols for all primitive recursive functions, with 
their recursion equations as axioms. Induction and successor axioms Sx 
Sy ➔ x = y, Sx -=f. 0 are present as usual. 

x, y, z, ... are numerical variables, S is successor. We use the notation n for 
the term sno; such terms are called numerals. Po, p 1 bind stronger than infix 
binary operations, i.e. p 0 t + s is (p0 t) + s. For primitive recursive predicates 
R, Rt1 ... tn may be treated as a prime formula since the formalism contains a 
symbol for the characteristic function XR-

Now we are ready for a formalized definition of ''x realizes A'' in HA. 

2.2. DEFINITION. By recursion on the complexity of A we define x rn A, x <t. 
FV(A), ''x numerically realizes A'' : 

579 



xrn(t == s) := (t. s) 
xrn(A/\B) : (poxr:nA)A(p1xrnB), 
xrn(A > B): 'vy(yrnA ► 3z(Txyz I\ UzrnB)), 
xrnVyA : 'vy3z(Txyz/\UzrnA), 
xrn3yA : P1XrnA[y/pox]. 

Note that FV(xrnA) c {x} UFV(A). D 

2.3. REMARKS. (i) We have omitted clauses for negation and disjunction, 
since in arithmetic we can take -.A := A > 1 = 0, AV B := 3x((x = 0 , 
A) I\ (x i= 0 ► B)). If we spell out xrn (AV B) on the basis of this definition 
we find: 

xrn (AV B) ~->(pox= 0 ·· ·> (PoP1x)OrnA) /\(pox=/= 0 > (p1p1x)OrnB), 

(ii) The definition of realizability permits slight variations, e.g. for the first 
clause we might have taken 

x rn' ( t = s) : = ( x = t I\ t = s). 

However, it is routine to see that this variant rn'-realizability is equivalent to 
rn-realizability in the following sense: for each formula A there are two partial 
recursive functions c/:> A and 1/; A such that 

I- x rn A > <PA ( x) rn' A 
I- x rn' A ► 1P A ( x) rn A. 

(If in the future we shall call two versions of a realizability notion equivalent, it 
will always be in this or a similar sense.) Similarly, if we treat V as a primitive, 
the clause for x rn (AV B) given above may be simplified to 

which yields an equivalent notion of realizability. 
(iii) In terms of partial recursive function application • and the definedness 

predicate l ( tl means ''t is defined''), we can write more succinctly: 

xrn(A > B) :='v'y(yrnA > X•Yl /\x.yrnB), 
x rn Vy A : 'v'y(x.y! I\ X•Y rn B). 

where tl expresses that t is defined ( cf. next subsection). Of course, the 
partial operation • and the definedness predicate l are not part of the language, 
but expressions containing them may be treated as abbreviations, using the 
following equivalences: 

t1 =t2 < .. ~ 3x(t1 =x/\t2 ==x), 
t1•t2 =x < ► 3yzu(t1 =y/\t2 =z/\Tyzu/\Uu =x), 
tl < ➔ 3z(t = z). 
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(t1, i2 terms containing•, x, y, z, u not free in t 1 , t 2). However, note that the 
logical complexity of A(t), where t is an expression containing•, depends on the 
complexity oft! (On the other hand, tl is always expressible in :E~-form.) For 
n1etamathematical investigations it is therefore more convenient to formalize 
realizability in a conservative extension HA* of HA in which we can treat ''•'' 
as a primitive. Treating t 1 = t2 for partially defined t 1 , t 2 as an abbreviation in 
et rigoorous way is possible, but involves a good deal of lengthy inductions, as 
demonstrated in (Kleene 1969). Since ordinary logic deals with total functions 
only, we first need to extend our logic to the (intuitionistic) logic of partial 
terms LPT, or intuitionistic E+ -logic, in the terminology of Troelstra and van 
Dalen(1988, 2.2.3). LPT first appeared in (Beeson 1981). 

3 lNTUITIONISTIC PREDICATE LOGIC WITH PARTIAL TERMS LPT 

3.1. Variables are supposed to range over the objects of the domain consid­
ered, so always denote; arbitrary terms need not denote, so we need a predicate 
E, expressing definedness; Et reads "'t denotes'' or ''t is defined''. Instead of Et 
we shall write tl, in thE· notation con1monly used in recursion theory. 

If we also have equality in Ol1r logic, and read t == s as ''t and s are both 
defined and equal'', we can express tl as t = t. 

3. 2. The following axiomatization is a convenient (but not canonical) choice 
for arguments proceeding by induction on the lengt.h of formal deductions: 

Ll A > A, 
L2 A, A > B => B, 
L3 A > B, B > C ⇒ A > C, 
L4 A/\ B > A, A I\ B , B, 
L5 A > B, A > C ⇒ A , BA C, 
L6 A > A V B, B > A V B, 
L7 A ) C, B > C ⇒ AV B · ·> C, 
LB A I\ B > C ⇒ A , ( B > C), 
L9 A > (B > C) ⇒ AI\ B ) C., 
LlO ...L > A, 
Lll B >A==> B > vx A (x ~ FV(B)), 
L12 Vx A A tl > A[x/t] (t free for x in A), 
L13 A[x/t] /\ tl > :3x A (t free for x in A), 
L14 A > B ==> =lx A > B (x ~ FV(B)) 

where tl := t = t. For equality ,vc have (F fl1nction symbol, R relation symbol 
of the language): 

EQ V xy ( x == y > y = x), V xy z ( x = y /\ y == z > x z), 
VxiJ(x il /\ Fxl ), Fx = Fy), Vxy(Rx /\ X il > Ry) 

Basic predicates a11d functions of the language are ac,sumed to be strict: 
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Note that this logic reduces to ordinary first-order intuitio11istic logic if all 
functions are total, i.e. 'v'x(f xl), since then tl for all tern1s t. 

For the notion ''equally defined and equal if defined'' introduced by 

we can prove the replacen1ent scl1ema for arbitrary formulas A 

t f°'J s I\ A[x/t] > A[x/s]. 

4 CONSERVATIVENESS OF DEFINED FUNCTIONS 

Relative to the logic of partial terms, the following conservative extension result 
is easily proved. Let r be a theory based on LPT, such that 

r I- A(x,y) I\ A(x,z) ► y = z. 

Then we 1nay introduce a symbol ef>A for a partial function with axiom 

Ax( 4>Al(x, y) ( ) y = </>A (x). 

The conservativeness of this addition can be proved in a straightforward syn­
tactic way; the easiest method, however, uses completeness for Kripke models, 
see Troelstra and van Dalen (1988, 2.7). 

Let f * consist of r and all substitution instances of the axiom schemata 
w.r.t. the extended langl1age, and let 4>(r*) be the result of systematically 
eliminating the function symbol </> A from the element,s of r, and assume c;b(r *) 
to be provable from r, then the conservative extension result still holds in the 
form: ''r* + Ax( 4> A) is conservative over r''. 

This extended result applies to HA* defi11ed below, since eliminating the 
symbol for partial recursive function application from instances of induction 
yields instances of induction in the language of HA. . 

5 FORMALIZING ELEMENTARY RECURSION THEORY IN HA* 

5.1. HA* is the conservative extension of HA, formulated in the intuitionis­
tic logic of partial terms, with a primitive binary partial operation • of partial 
recursive function application. t 1.t2•t3 ... abbreviates( ... ((t1•t2)•i3) ... ) (as­
sociation to the left). 

Note that strictness entails in particular t.t' l > t l I\ t' l for the application 
operation. Of course we have to require totality for the primitive recursive 
functions; it suffices to demand 01, Sxl. In all other case the primitive re­
cursive functions satisfy equations with ==, characterizing them inductively in 
terms of functions introduced before (e.g. x + 0 = x, x +Sy= S(x + y)). By 
induction one can then prove Fx1 •.. Xn l for each primitive recursive function 
symbol F. 
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A formalization of elementary recursion theory in HA* can be given by using 
Kleene's index n1ethod in combination with the tl1eory of elementary inductive 
definitions in arithmetic (Troelstra arid van Dalen 1988, 3.6, 3. 7). The idea 
behind this formalization is the following: one gives an eleme11tary inductive 
definition of the relation fl := { ( n, x, rri) : X•m r--, en}. A11 elernentary inductive 
definition of a predicate PA is given by a predicate A(X, z) in the language of 
HA* extended with an extra predicate variable X, such that A is in a class P 
generated by the following cla11ses: 

• all arithmetical formulas are ir1 P; 

• X t E P for all numerical terms t; 

• P is closed under A., V, 3 and bounded universal quantification \-/x < t 
with x (/. FV(t). 

The predicate PA then satisfies 

\f x ( A (PA, x) > PA ( x), and \f x ( A ( Q, x) > Q x) ) \-/ x (PA ( x) > Qx) , 

for all predicates Q defi11able in HA* extended with PA. Predicates introduced 
by elementary inductive definitio11s are in fact explicitly definable in arithmetic, 
and the principles for PA stated above are provable in arithmetic. 

This leads to a smooth formalization of elementary recursio11 theory; in par­
ticular we obtain the smn-theorem, the recursion tl1eorem (Kleene's fixed-point 
theorem): for some primitive recursive cp 

\fxyz( cp(z, X)•(Y) r-..J Z•(X, y)) 

( where ( il) is some standard encoding of the sequence u), the Kleene normal 
form theorem, etc. Moreover, by the normal forn1 theorem, every partial re­
cursive function is definable by a term of the language of HA*. 

5.2. NOTATION. If t is a term in the language of HA*, then Ax.t is a canon­
ically chosen code number for t as a partial recursive function of x, uni­
formly in the other free variables; by the smn-theorem we may therefore as­
sume Ax.t to be primitive recursive in FV(t) \ {x }. Ax1 ... Xn.t abbreviates 
Ax1 (Ax2 ... (Axn.t) .. . ). D 

We note the following 

5.3. LEMMA. In HA* the E~-formulas of HA are equivalent to prime formulas 
of the form t = t for suitable t, and each formula t == s is equivalent to a E~ -
formula of HA. 
PROOF. Systematically using the equivalences n1entioned above transforms any 
formula t == s of HA* into a :E~-formula of HA. Conversely, let a :E~-formula 
be given; by the 11ormal form results of recursion theory, we can write this in 
the form =lzT(n, (x), z) for a numeral 'ii; this is equivalent to n.(x) == n.(x). □ 

We are now ready to formalize x rn A directly in HA*. 
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6 FORMALIZING rn-REALIZABILITY IN HA* 

6.1. DEFINITION. x rn A is defi11ed by induction on the complexity of A, x f/4 
FV(A). 

x rn P := PI\ xl for P prime, 
xrn(A/\B) : poxrnA/\p1xrnB, 
xrn(A ,B): \ly(yrnA ➔ x.yrnB)/\xl, 

x rn Vy A : Vy(x.y rn A), 
xrn:3yA : P1XrnA[y/pox]. 

We also define a combination of realizability with truth, x rnt A; the clauses 
are the same as for rn, the clause for implication excepted, which now reads: 

xrnt (A > B) := 'v'y(yrntA , xeyrnt B) /\ x! /\ (A ? B). □ 

6.2. REMARKS. (i) t rn A is :3-free (i.e. does not contain :3) for all A. Note 
that, by our definition of V in terms of the other operators, :3-free implies V-free. 

(ii) The clauses ''/\ xl'' have been added for the cases of prime formulas and 
implications, in order to guarantee the truth of part (i) of the following lemma. 

(iii) For negations we have x rn ,A < > \/y(-iy rn A) /\ xl, and x rn 1 ,A < ➔ 
Vy ( ,y rn 1A) /\ x l < ► \1' y, \/ z-, ( z rn A) /\ x l < ► 1 ,:3 z ( z rn A) /\ x l-
The following lemmas are easily proved by induction on A. 

6.3. LEMMA. (Deflnedness of realizing terms; Substitution Property) For R E 
{rn,rnt} 

(i) I- t RA ➔ tl, 

(ii) (xRA)[y/t] = xR(A[y/t]) (x ff. FV(A) UFV(t),y ~ x). 

PROOF. By induction on the complexity of A. Let e.g. t rn :3yA, then p 1t rn A[y/p0 t], 
hence by induction hypothesis p 1 tl, and so by strictness tl. □ 

6.4. LEMMA. HA* r t rnt A ➔ A. 
A similar lemma holds for all combinations of realizability with truth (i.e. 
realizabilities with! in their n1nemonic code) we shall encounter in the sequel; 
we shall not bother to state it explicitly in the future. We can readily prove 
that realizability is sound for HA*: 

7 SOUNDNESS 

7.1. THEORElVI. (Sou11dness theorem) 

HA* I- A ⇒ HA* 1- trnA/\ trntA 
I 
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for a suitable term t with FV(t) C FV(A). 
PROOF. The proof proceeds by induction on the length of derivations; that 
is to say, we have to find realizing terms for the axioms, and for the rules we 
must show how to find a realizing term for the conclusion from realizing terms 
for the premises. We check some cases. 

L5. Assume t rn (A > B), t' rn (A ➔ C), and let x rn A; then p(t.x, t' .x) rn (BA 
C), so Ax.p(t.x, t' •X) rn (A > BI\ C). 

L14. Assume t rn (A ~ B), x tf. FV(B), and let y rn :3x A, ther1 P1Y rn A[x/poy], 
hence t[x/poy]•(P1Y) rnB, so Ay.t[x/PoY]•(P1Y) rn (:3x A - B). 

Of the non-logical axioms, only induction requires attention. Suppose 

x rn ( A [y / 0] /\ 'v' y ( A > A [y /Sy])). 

Then 

poxrnA[y/0], zrnA > (P1X)•Y•ZrnA[y/Sy]. 

So let t be such that 

The existence oft follows either by an application of the recursion theoren1, or is 
immediate if closure under recursion has been built directl)r into the definition 
of recursive function. It is now easy to prove by induction that t realizes 
induction for A. □ 

A statement weaker than soundness is r-- A => r-- =Ix ( x rn A); we might call 
this weak soundness. We can also prove a stronger version of soundness: 

7.2. THEOREM. (Strong Soundness Theorem) For closed A 

HA* I- A ⇒ HA* I- n rn A I\ n rnt A for some numeral n. 

PROOF. Let HA* I- A; from the soundness theorem we find a term t such that 

t rn A, hence tl. 

tl, i.e. t == t is equivalent to a ~~-formula of HA, say :3x(s ==- 0), and HA 
proves only true :E~-formulas, from which we see that t = n must be provable 
in HA* for some numeral n. Similarly for rnt. D 

7.3. REMARK. If one formalizes the proof of the soundness theorem, it is easy 
to see that there are primitive recursive functions 'l/J, cp such that 

where ''Prf'' is the formalized proof-predicate of HA*, r c;7 is the godelnumber 
of expression ~, and Sub(r B 7 , x, r s 7 ) is the godelnumber of B [x / s]. 

In fact, the whole in1plication is provable even in primitive recursive arith­
metic. But the statement expressing a formalized version of the str·ong com­
pleteness theorem: 

585 



Prf(x, r A 7 ) > Prf(q,(x), r'ljJ(x) rnA7 ) 

(A closed, for suitable provably recursive cp, 1./J) is not provable in HA (see 10.6). 
The following lemma will be used in the sequel, but is also interesting in its 

own right: 

7.4. LEMMA. (Self-realizing formulas) For 3-free forn1ulas, ca11onical realizers 
exist, that is to say for each :3-free A we have in HA* 

(i) r- 3x(x rn A) > A, 

(ii) r- A > tA rn A for some term tA with FV(tA) C FV(A). 

(iii) A formula A is provably equivalent to its own realizability, i.e. A < > 

3x(x rn A)), iff A is provably equivalent to an existentially quantifi.ed 
3-free formula. 

(iv) Realizability is idempotent, i.e. 3x(xrn3y(yrnA)) ~ > 3x(xrnA); in 
fact,even 3x(x rn (A < ► :3y(y rn A))) holds. 

PROOF. Take ts-s' :== 0, tA/\B := p(tA, ·tB), t'efxA := Ax.tA, tA •B : Ax.tB 
(x r/. FV(tB)), and prove (i) and (ii) by simultaneous induction on A. (iii) and 
(iv) are immediate corollaries. D 

7. 5. REMARK. An observation of practical usefulness is the following. For 
any definable predicate with cano11ical realizers ( i.e. a predicate A definable 
by an :3-free formula) we obtain an equivalent realizability if we read restricted 
quantifiers \lx(A(x) > ••• ) and 3x(A(x) I\ ... ) as quantifiers VxEA, 3xEA over 
a new domain with realizability clauses copied from nu1nerical quantification, 
• 1.e. 

x rn VyEA.B := VyEA(x•y rn B) I\ xl, 
xrn3yEA.B: p1xrnB[x/pox] /\ A(pox). 

In short, we may simply forget about the canonical realizers. 

8 AXIOMATIZING PROVABLE REALIZABILITY 

• 

8.1. As we have seen already in the introduction, realizability validates more 
than what is provable in HA; in fact, we can formally prove realizability of in 
HA* an intuitionistic version of Church's thesis: 

CTo Vx3y A(x, y) ➔ 3zVx(A(x, Z•X) I\ Z•xl). 

CT0 is certainly not pro11able in HA, since it is in fact refutable in classical 
arithmetic. This version of Church's thesis is in fact a combination of the well­
known version which states ''Each hurr1anly computable function is recursive'' 
and the intuitionistic reading of\lx:3yA(x, y) which states that there is a method 
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for constructing, for each given x, a y such that A(x, y). Such a method 
describes a humanly computable function. 

We now ask ourselves: is there a reasonably sin1ple axiomatization (by a few 
axiom schemata say) of the formulas provably realizable in HA ? The answer 
is yes, the provably realizable forrnulas can be axiomatized by a generalizatio11 
of CTo, namely ''Extended Church's Thesis'': 

ECToVx(Ax ) :3y Bxy) > :3z\lx(Ax > Z•Xl I\ B(x, Z•X)) (A :3-free). 

8.2. LEMMA. Each instance of ECT0 is HA* -realizable. 
PROOF. Suppose 

urn v'x(Ax > 3yBxy) 

Then Vxv(vrnAx > u.x.vrn3yBxy), and since A is 3-free, in particular 
Vx(Ax ➔ U•X•tA rn:3yBxy), so \lx(Ax -, P1(U•X•tA) rnB(x, Po(U•X•tA)). 
Then it is straightforward to see that 

p(Ax.po ( U•X•tA), Axv.p(O, P1 ( U•X•iA))) 

realizes the conclusion. □ 

REMARK. The condition ''A is :3-free'' in ECT0 cannot be dropped: applying 
unrestricted ECT0 to Ax:== :3zTxxz V 13zTxxz, Bxy :== (y == 0 /\ :3zTxxz) V 
(y == 1 /\ ,3zTxxz) yields a contradiction. In fact, this example can be used to 
show that even unrestricted ECT0 ! fails (ECT0 ! is like ECTo except that :3y 
in the premise is replaced by :3!y; :3!y means ''there is a unique y such that''). 

8.3. THEOREM. (Characterization Theorem for rn-realizability) 

(i) HA*+ ECT0 ~A<> :3x(xRA) for R E {rn,rnt}, 

(ii) For closed A, HA* + ECT0 I- A <=> HA* I- fi rn A for some numeral fi. 

PROOF. (i) is proved by a straightforward induction on A. The crucial case 
is A = B > C; then B > C < > (:3x(x rn B) > 3y(y rn C)) (by the induction 
hypothesis) <, v'x(xrnB ·"> :3y(yrnC)) (by pure logic) < > 3zVx(xrnB > 

Z•X rn C) (by ECT0 , since x rn Bis :3-free) = 3z(z rn (B · C)). 
(ii). The direction => follows fron1 the stror1g sot1r1dness theorer11 plus the 

lemma; -<= is an immediate consequence of (i). D 

Curiosity prompts us to ask which formulas are classically provably realiz­
able, i.e. provably realizable i11 first-order Pea110 Aritl1rr1etic PA, which is just 
HA with classical logic. The answer is contained in the following 
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8.4. PROPOSITION. PA I- 3x(xrnA) ~ HA+ M + ECTo I--, ,A, 
where M is Markov's principle: 

M \ix(A V 1A) /\ ,,3x A ► 3x A. 

PROOF. Let PA I- 3x(xrnA), and let B be a 11egative formula (i.e. a formula 
in the /\,V, >-fragment) such that HA+ MI- xrnA < ➔ B(x). Then PA l­
--.1\ix ,(x rnA), and since PA is conservative over HA for negative formulas (in 
consequence of Godel's negative translation), also HA I- ,Vx,B, i.e. HA+ 
MI- -,-,::Jx(xrnA), and thus it follows that HA+M+ECT0 I- ,,A. The 
converse is simpler. D 

9 EXTENSIONS OF HA* 

9.1. For suitable sets r of extra axioms, we may replace HA* in the sound­
ness and characterization theorem by HA* + r. Weak soundness and the 
characterization theorem require for all A E r 

(1) HA* + r I- 3x(x rn A). 

Soundness requires for all A E r 

(2) HA*+ r I- trnA for some term t, 

and Strong Soundness requires (2) and in addition: HA*+ r proves only true 
:E~-formulas. 

9. 2. EXAMPLES 

(a) For r any set of :3-free formulas soundness and the characterization theo­
rem extend. If HA*+ r proves only true ~~-formulas, strong soundness holds. 
The next two examples permit characterization and strong soundness. 

(b) Let --< be a primitive recursive well-ordering of 1N, provably total and 
linear in HA*; for r we take all instances of transfinite induction over --<: 

TI(-<)Vy(v'x-<yA , A[x/y]) -+ 'v'xA. 

( c) r is the set of instances of Markov's principle ( cf. the last proposition in 
8). In fact, in the presence of CT0 , which is valid under realizability, r may be 
replaced by a single axiom: 

Vxy( i ,3zTxyz ➔ 3zTxyz). 

It is also worth noting that in the presence of M, we can use the following 
variant of ECT0 which is equivalent to ECTo: 

ECTb\ix( ,A > 3yBxy) , ::lz'vx( ,A > Z•X! I\ B(x, Z•Y))-
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(d) An extension of another kind is obtained if we enrich the language with 
constants for inductively defined predicates, e.g. the tree predicate Tr. In­
tuitively, Tr is the least set containing the ( code of the) single-node tree (i.e. 
( ) E Tr), and with every recursive sequence of tree codes n•O, n.I, ... , n.m, ... 
in Tr, Tr also contains a code for the infinite tree having the trees with codes 
n.m as immediate subtrees, namely p(l, n). Thus if 

A(X, x) :== (x == 0) V (pox == 1 /\ \im(p1xem E X)) 

we have 

A(Tr,x) > x E Tr, 
\ix(A(>..y.B, x) ➔ B[y/x]) -· > \/x E Tr.B[y/x] 

for all B in the language extended with the new primitive predicate Tr. Then 
we can extend rn-realizability simply by putting 

X rn (t E Tr) := t E Tr. 

Let us check that the soundness theorem extends. A(Tr,x) is equivalent to an 
:3-free formula, so its realizability implies its truth, and x E Tr follows. As to 
the schema, assume 

urn \ix(A(Ay.B, x) > B[y/x]), or 
urn\ix[(x == 0 > B(O)) I\ (pox== 1 /\ \/yB(p1X•Y) __,.; Bx)]. 

So 

Po ( u.o).(O, 0) rn B(O), 
P1(u.x).vrnB(x) if PoX == 1 and vrn(pax = 1 /\ \iyB(p1x.y). 

Assume \fy(e•(P1X•Y) rnB(p1X•Y)), pox== 1. Then 

v == p(O, Ay.e•(P1X•Y)) rn (pox= 1 /\ \/yB(p1X•Y) ). 

Therefore 

if Pox = 1 and Vy( e. (P1 X•Y) rn B (P1 X•Y)) 
then P1(u.x).(O, Ay.e•(P1X•Y)) rnB(x). 

Now we construct by the recursion theorem an e such that 

Po ( u.Q).o if x = 0, 
e.x rv PI ( U•X )•p(O, Ay.e•(P1X•Y)) if PoX = 1, 

undefined otherwise. 

We then prove by induction on Tr that Vx E Tr(e.xrnB(x)). This is straight­
forward. This example is capable of considerable generalization, namely to 
arithmetic e111·iched with constants for predicates introduced by iterated induc­
tive definitions of higher level; see e.g. Buchholz, Feferman, Pohlers and Sieg 
(1981, IV, section 6). 

The examples just mentioned also permit extension of rnt-realizability. 
We end the section with some applications of rn- and rnt-realizability. 
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10 APPLICATIONS 

10.1. PROPOSITION. ( Consister1cy and i11co11sistency results) 

(i) HA* + ECT0 is consistent relative to HA* ( and hence also relative to 
PA). 

(ii) ~,\fx(A V ,A), ,(\Ix , ,B > ,. ,\/xB) are consistent with HA* for certain 
arithmetical A, B. 

(iii) The schema ''Independence of Premise'' 

IP ( ,A > 3zB) ➔ 3z( ,A ► B) 

is not derivable in HA* +CTo +M; in fact, HA* +IP +CTo +M ~ 1 = 0. 

PROOF. (i) Immediate from the characterization theorem. 
(ii) is a corollary of the realizability of CTo: take A = 3yTxxy, B 

3yTxxy V ,3yTxxy. 
(iii) By M, ,. ,3yTxxy , 3zTxxz; apply IP to obtain \fx3z( ,,3yTxxy , 

Txxz), tl1en by CT O there is a total recursive F such that , -,3yTxxy - ► 
T(x,x,Fx), and this would make 3yTxxy recursive in x. □ 
We next give an example of a conservative extension result. 

10.2. DEFINITION. CC(rn) (tl1e rn-Conservative Class) is the class of formulas 
A such that whenever B , C is a subformula of A, then B is 3-free. D 

10.3. LEMMA. For A E CC(rn) we have I- 3x(xrnA) > A. 
PROOF. By induction on the structure of A. Consider the case A= B > C; 
then B is 3-free, so there is a tB such that I- B ➔ tB rnB. Assume B and 
xrn(B > C), then X•tBl I\ X•tBrnC, hence by the induction hypothesis C; 
therefore (x rn (B > C)) > (B > C). □ 
The lemma in combination with the characterization theorem yields 

10.4. PROPOSITION. HA*+ ECT0 is conservative over HA* w.r.t. formulas 
in CC(rn): 

(HA*+ ECT0 ) n CC(rn) = HA* n CC(rn). 

The following proposition follows from rnt-realizability. 

10.5. PROPOSITION. (Derived rules) In HA* 

(i) For sentences ~ A V B =} ~ A or l- B (Disjur1ction property DP), 

(ii) For sentences~ :3xA => I- A[x/n] for some numeral n (Explicit Defin­
ability for Numbers EDN), 

(iii) Extended Church's Rule: for :3-free A 
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ECR 1- \ix(A ; 3yBxy) ==> I- 3z\ix(A > Z•Xl A B(x, Z•X) ). 

PROOF. (i) follows from (ii) (actually, (i) and (ii) are equivalent for systems 
containing a minimum of arithmetic, see Friedman (1975)). As to (ii), let 
1- 3xA, then, by the strong soundness for rnt-realizability, I- m rnt :3xA for 
some numeral m, so I- p 1 m rnt A[x/p0m], and hence I- A[x/p0m]. 

(iii) Assume 1- \ix(A > 3yBxy), then for a suitable t I- t rnt \ix(A > 

3y Bxy), i.e. 

I- \-/x\iz(z rnt A > P1 (t•X•z) rnt B(x, Po(t•X•z) ). 

and therefore 1- \lx(A > B(x,po(t.x.tA)). So we can take z = Ax.p0(t•X•tA)­
□ 

10.6. REMARK. The DP cannot be formalized in any consistent extension of 
HA itself (Myhill (1973), Friedman (1977)). We sketch Myhill's argument (the 
result of Friedman is even stronger). Assume that there is a provably recursive 
function f satisfying 

where Pr(x) := :3yPrf(y, x). So f == {p}, and I- 'tlx:3yTpxy. Let F enumerate 
all primitive recursive functions, i.e. An.F( i, n) is the i-th primitive recursive 
function. Put 

D(n) :== fi•F(n, n) -:/- 0, 

then I- 'rln(Dn V ,Dn) (i.e. Prf(k, rvn(Dn V ,Dn) 7 ) for a specific. k), from 
which we can find a particular primitive recursive An.F ( m, n) such that 1-
Prf ( F ( m, n), r DnV iDn7 ). Then Dm > p.F(m, iii) # 0 , Prf(F(m, iii), r DmV 
---•Dm 7 ) A Pr(r ,Din 7 ), hence •Din follows, since HA* is consistent. If we start 
assuming ,Dm, we similarly obtain a contradiction. 

From this we see that DP cannot be proved in HA* itself; for if DP were 
provable in HA*, then a function f as above would be given by 

f (x) : . p 0 (the least y s.t.(x does not prove a closed disjunction and y = 0) 
or (for some closed r AV B 7 , Prf(x, 'AV B 7 ) A PoY = 0 A Prf(P1Y, r A 7 )) 

or (for some closed r AV B 7
, Prf(x, r AV B 7

) A p 1y == 1 A Prf(P1Y, r B 7 ))). 

This in turn implies that the strong soundness theoren1 is not forrnalizable in 
HA*, since strong soundness for rn-realizability in1mediately i111plies EDN for 
HA* +ECTo. 
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