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1 INTRODUCTION 

In a previous paper [4] we discussed an optimality concept for certain parameter 
estimators, when the observed processes are semimartingales under each member of 
a class of probability measures. Estimators were there called optimal if they belong 
to the class of so called admissible estimators and if they have minimum spread. 

In the present paper we pay attention to the question of constructing these optimal 
estimators in the sense that they are obtained by suitable transformations of some 
initial estimators. The latter are assumed to have certain consistency properties, but 
need not be admissible in the sense of [4]. 

This approach essentially dates back to Fisher [6] although a thorough investi­
gation has first been given by LeCam for the iid case in [7] and for estimators based 
on more general likelihood functions in [8]. It is also the basis for the construction of 
iterative estimators, see e.g. (3]. 

Unlike the set up used by these authors, our approach is not likelihood based, but 
extends to a more general context, e.g. regression where usually apart from the 
regression function only moment conditions on the error process are specified. A key 
concept in the description of estimators is formed by certain (asymptotic) represen­
tations that estimators are supposed to fulfil. 

1Centre for Mathematics and Computer Science, Kruislaan 413, to9S SJ Amsterdam. 
2Department of Econometrics, Free University, De Boelelaan 1105, 1081 HV Amsterdam. 
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The present paper is to be considered as a follow up of [4]. Hence, for undefined 
concepts and notation the reader is referred to [4] for further explanatio.n. . 

The rest of the paper is organized as follows. In the next section we briefly review 
parametrizations of the model under consideration and provide some complements 
to the concept of asymptotic weak differentiability. Section 3 contains the main .re~ult 
which states that a particular estimator is optimal in the class of adm1ss1ble 
estimators. 

2 SMOOTH PARAMETRIZATIONS 

2.1 Parametrization 

Assum~ ~hat one has a certain stochastic basis (n, ~. {%'1 h~o· IP), w~ere {!)is a_set ~f 
probability measures and on this a multivariate adapted process X with values m IR • 
which we observe and which is assumed to be a semirnartingale under each PE !Jll. 
Denote by vP the compensator of the jump measure of X under P. Similarly AP is the 
compensator of X under P and by xc,P or Mc,P we denote the continuous martingale 
part of X under P. 

Like in [41 we assume to be given two classes of predictable processes "fll' and .if, 
satisfying certain regularity properties, e.g. if HE Yt' then WE "fll' with W(t,x) = 
H(t)x. Notice that in the general set up of [4] the class of processes if/' is usually 
bigger than the one consisting of the processes W with W(t,x) = H(t)x for HE *'· 
This is trivially the case in a discrete time setting (see [4] for a detailed treatment). 
Moreover we assume the existence of a finite dimensional parametrization of the 
quotient space [IP] of IP under the eq_uivalence relation defined by: P is equivalent ~o 
P' if! H · AP = H · AP' for all HE :It' and W * vP = W * vP' for all WE "#1". That is, 
there exists a map 19 : [!P] ~ ~k, which is bijective onto an open subset e of Rk · 
Under this assumption, which holds throughout the paper, we write H · A11 for 
H · AP and W * v8 for W * 1f if PE !P'6 := ,J-1(fJ). 

2.2 Asymptotic weak differentiability, complements 

Next we turn to smoothness of the previously introduced parametrization. To that 
end we introduce the following notation. The tilde operator for given vis defined for 
each WE "1Y by W = W + (1 - a)+w with a= 1, where in turn the hat operator on 
if" is defined by W(t) = J W(t,x)v({t},dx). When integrals of the type W * v are 
parametrized by f) we will often write w8 and we. 

For HE :If we write H. Mc,B for H. Mc,P if PE IP8. This is in agreement with 
the notation above, since H · Mc,P = H · X - H. AP - Hx * µ + Hx * vP = H · X -
H · A8 - Hx * µ +Hx * v8. For all HE .tf and WE if!" we write M 11 = M 6(H, W) 
for the martingale defined by M 8 = H . M'·8 + W * µ - W * v8• M8 is the martin­
gale, defined by M8 = b.Mc,a + X8 * (µ - 1}) (see definition 2.1 below). 

We assume that (M8) 1 and ( M8) 1 are invertible for t large enough. Let then 
1/Jr = ~(H, W) be any matrix that satisfies the equality 1//{1f.;1 = (M8)-;1 and ef>r = </>~ 
be any matrix that satisfies </>rc/>T = (M/J};1• Similarly we write w:V = ~(O, W) and 
vJ/ = 'iffi(H, 0). 
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We will assume that asymptotic weak differentiability in the sense of [4] holds 
(definition 2.1 below). Since the definition in (4] together with the discussion that 
follows it is ambiguous, we give a slightly different one, which is such that the 

ambiguity is removed. First we define .AP = AP - x* v and H · A6 =H. A8-

Hx* 118• 

DEFINITION 2.1 The compensators A8 and v8 are called asymptotically weakly 
differentiable with rate r/> if there exist b E :J'f, >. E if/' (both possibly depending on fJ) 
such that with ef; satisfying <Pr/>T = (.M8r 1 for all u E !Rm, HE :J'f, WE if/' as t--+ oo 
in all !Pa probabilities: 

(i) (2.l) 

(ii) (2.2) 

with 'ljJH and ,µw as above. 

Although b, >. and Mc in general depend on (), this dependence is often not 
explicitly written in order to avoid some cumbersome notation. Furthermore we 
often, especially in proofs, abbreviate the phrase "in all IP6 probabilities" by "in 
probability". Notice that for two different parameter values B and O' the following 
relation holds. 

M01 (H, W) = M8 (H, W) +H. (A81 - A8) + W * (1101 - 1}) (2.3) 

Therefore we define the process Mr+qi,u by substituting at time tin the right hand side 
of equation (2.3) () + <jJ1u for 61• If we write M8 = M6(H, W) and .M8 = M8(b, ~).like 
above, then definition 2.1 has an equivalent statement. 

PROPOSITION 2.2 Expressions (2.1) and (2.2) in definition 2.1 holdfor all Hand W ifJ 
for all M8 = Ma(H, W) 

1f;1[M:+.p,u - M: + (M6, M8) 1c/iru] --+ 0 in al/ IP8 probabilities (2.4) 

Proof Suppose that equation (2.4) holds for all martingales of the type 
Ma= M8(H, W), then we consider the two distinct cases M8(H, 0) and M8(o, W). 
This leads to equations (2.1) and (2.2) respectively. Conversely, assuming that (2.1) 
and (2.2) hold, we write the process in expression {2.4) by using (2.3) as 

'!jJ1 ('1j;~)- 1 [ 1,b~ [H · A~+;,u - H ·A~ - ~,tl Hd(Mc)br <P1u]] 
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because and are bounded, because for 
(1W)-r1g :5 I. D 

Recall that in definition 2.1 </>1 is any matrix that satisfies the equality 
!fi1ef>f = (Af)~ 1 • Obviously one wants that if asymptotic weak differentiability holds 
for a given {matrix valued) rate function !Ji it also holds for other asymptotically 
equivalent rate functions. For example, in the original definition in [4] we have taken 
the special to be the symmetric positive square root of {Jf} ~ 1 • Then we have that 
this assumption holds for any other such </J under the extra that we have 
definition 2.1 with u replaced with any adapted bounded random process { !.11 }. 

Indeed, then with u1 = rfio/ef>:u we have that = and = since efi0/l/J1 is 
an orthogonal matrix. 

Therefore we need the following assumption. 

ASSUMPTION 2.2 Expressions (2.1) and (2.2) in definition 2.1 hold/or all Hand W 
wiih u replaced by any random variable u1 such that the process {u1} is adapted and 
bounded. In particular all processes involved in (2.l) and (2.2) with u substituted by U.1 

are assumed to be adapted. 

An equivalent formulation of assumption 2.3 is of course that equation (2.4) holds 
with u replaced with u1 for an adapted bounded process {u1}: 

(2.5) 

We mention a sufficient condition for equation (2.5) to hold. Let B > 0 and write 

Z~(B) = sup \tP1 lfM~+q,,u - lvf: + (M8, iJ9)i<f>1u} I (2.6) 
[11jSS' I 

Then equation (2.5) holds if Zf (B) is measurable and lim1 .... 00P(zf (B) > o:) = 0 for 
all positive B and e and for all PE 1?8. See the appendix for a discussion of 
measurability issues connected with ~ (B) and with the substitution of u by a 
random u1. 

Let M 1 and ,Ti,fi be two locally square integrable martingales. We introduce (see 
[51) the correlation process p(M11 M2) as follows. Let </>; be such that tPirPT = (M;) + 
(Moore-Penrose inverse) for i = 1, 2. Then p(M1, M2) = <Pf (Mi, Mz)ef>2. With this 
definition of the correlation process we can rephrase equation (2.4) as 

?Ji1 [M:H,u - M;j + p(M11,,W)u--+ 0 in all !Jl6 probabilities. 

The correlation process will show up again at various places in the sequel. 
It should be noted that the weak derivatives b and .A are by no means unique. 

Suppose we have two other possible candidates for the weak derivatives, call them 
b0 and ).. 0. Correspondingly we have M-06 instead of M6• Let rp0 be such that 
cpo(f>or = (1~t00)- 1 • So we assume that equations (2.l) and (2.1) hold with b, A. and (jJ 
replaced with b0, ..x.0 and qP, or equivalently equation (2.3) with ii08 instead of M8: 

it: 1 [~+~~1.1 - Mf + (M6',,W'08) 1<P?uJ ...... 0 in all P9 probabilities. (2.7) 
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First we claim the following. 

PROPOSITION 2.4 Under assumption 2.3 there is no sequence {tn} in R tending to 
infinity, such that !(4>?,,r14>1.I A l.P~ 1 c,bi,I _. 0 in all IP'8 probabilities. 

Proof Suppose that the contrary holds true. Then for some sequence { tn} we 
have for instance (<P~r 1 </; 1,, __.. 0 in probability. Let u1. = (</{t1<P1,,u for some fixed 
vector u. The sequence {ui,,} is clearly bounded. So we can in~ert this into equations 
(2.4) and (2.7) where we take for M the special choice M 8. Hence we get the 
following two convergence results in probability. Both 

</JT [£J?+<P1,,u - MB + (MB) ,i, u] __.. 0 
ln in In tn ¥'In 

and 

Substraction of the two yields I - p(M8, iif09) 1 (cj;~ t 1 (/Ji. __.. 0. But this cannot 
happen since p(M8,M08 )1.p(M08 ,M0)1• ~I. " " D 

The conclusion is that <P and ef>o are equivalent rate processes. Hence in equation 
(2.6) we can replace the <Po with cp. The nex.t thing we will show is that the martingales 
M9 and fJOB are close in the following sense. 

PROPOSITION 2.4 In all ? 6-probabilities 

(i) if>{ (Me - iJOB) i4>1 _, 0 (2.8) 

(ii) c,b'{ (Me' JV!OB) ,c/;1 __.. I (2.9) 

(iii) p(Me, Moe)p(Moo, fJB)--+ I (2.10) 

Proof Take in equations (2.4) and (2.7) M8 to be equal to M8 - !Vf0e. Substrac­
tion of the two equations yields 

(2.11) 

in probability, where 1f;'{ 'lj;1 = (M8 - .M08) /. The first assertion follows by taking 
squares in equation (2.11). 

Before we prove the other two assertions we introduce the short hand notation 
p = p(M8, M08 ) and R = (q;0r 1ef>. The process in the first assertion can then be 
written as 

According to the first assertion, this process tends to zero in probability, and since 
it is the sum of two nonnegative processes, we obtain that the process I - pR tends to 
zero in probability. But then R'{ R1 tends to I in probability. 
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Before proving the last assertion we rewrite the process in expression (2.8) as 

(R"{ - P:)(Rt - pi)+ I - PrPf 

from which it follows like above that p1pf tends to I in probability. One can similarly 
prove that pf Pt tends to I in probability, because we can replace (2.8) with 
</>~T (M9 - M'J9) 1 4'~ -t 0. 0 

Remark The notation R = (tj;0)-1q, and p = p(M9, Moo) used in the above proof 
will be frequently used in the sequel. 

~ssume that some predictable processes b0 and ~o are given and Af09 = b0 .Mee 
+A.0 * (µ - 118). Assume that the convergence in (2.8) takes place and that assump­
tion 2.3 holds. Then also equation (2. 7) is satisfied: 

PROPOSITION 2.6 Under assumption 2.3 and equation (2.8) also the convergence in 
(2. 7) takes place. 

Proof As in the proof of the previous proposition, we know from equation (2.8) 
that R = (</P)-1</J is such that Rf R1 tends to I in probability. Hence, under assump­
tion 2.3 we may replace tj; in equation (2.4) with q,0• Hence the validity of (2.3) would 
follow from '!/Ji(M, ~9 - M9}1rfa~u ~ 0 in probability. But this is guaranteed by the 
Kunita-Watanabe inequality since (2.8) holds by assumption. D 

The interpretation is that under the assumptions made we can both use (M8, M9} 

and (M9, M06) as a weak derivative of a martingale M8• 

3 IMPROVED ESTIMATORS 

Suppose that we are given an estimator (fl of 8, which is assumed to be an adapted 
process and moreover that is <f> 1~consistent by which we mean that for all 9 E e the 
process <1>-1 (9° - IJ) is !P>8-tight: 

lim limsupP(lt/>;-1(6J - e)\ > K) = 0, for all PE IP9• (3.1) 
K-oo r-.oo 

Notice however, that we don't require (} to be admissible in the sense of [4J. 
Assume that we are also given an estimator Qe of (iJ0)-1 that is consistent in the 

following sense: 

(3.2) 

in all IP8-probabilities. 
Similarly, we consider estimators b0 of b and .\o of 5.8 that are assumed to be 

predictable processes belonging to :le and "IP'" respectively, not depending onj} of 
course, that_are consistent in the sense that if !i1°8 is defined by !Vf08 = M9(b0, A0) = 
b0 • Mc,o + )...O * (µ - v9), then 

(3.3) 
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in a!l 1?8-probabilities. Notice that under the assumptions made, we can replace M8 

in equation (2.4) by fl08 (cf. proposition 2.6). _ 
Since,\ as well as -\8 in general depend one, a typical choice for -\01 is obtained by 

plugging in~- in all places where (}appears in the expression for 5.8• Under fairly 
broad conditions (see the appendix) this yields the process -\0 predictable. A similar 
remark holds for b0• Of course the consistency requirement has to be verified, but it 
often holds under a continuity condition. See the example at the end of this section. 
The next thing we do is the defining of an estimator M of the martingale M8• Mis, 
by the way, not a martingale itself. Recall equation (2.3) and define 

We impose the more stringent condition (2.6) mentioned in the previous section on 
the smoothness of the parametrization. 

We will also need the following assumption on the asymptotic behaviour of all 
martingales of the form M 8 = M 8(H, W) for HE Ye and WE "If". If 'lj;r 'lj; = 
(M8)-1, then 

All the processes 'lj;M8 are 1?8-tight. (3.5) 

We recall from Dzhaparidze & Spreij [4] the definition of an optimal regular 
estimator B of e. It is such that its spread attains the lower bound (M8)-1• Such an 
estimator is characterized ( cf. [4], proposition 7. l.2) by satisfying 

(3.6) 

with r/Jf T/r - o in all 1?8-probabilities. 
Below we will need an auxiliary result on the representation of an optimal 

estimator under the condition that (3.3) or (2.8) holds (which roughly speaking 
implies that we can often replace M8 with M08). It is the content of the following 
proposition. 

PROPOSITION 3.1 Let an estimator B be representable as 

(3.7) 

with r/J~ Tri~ - 0 in all ?8-probabilities. Then B is a regular estimator and optimal in the 
sense that its spread asymptotically equals the lower bound (M8)-1. 

Proof Proving regularity is equivalent to proving the following statement (see 
section 6 in [4]): <P~r (M08 , 'M00 - M8) 1</>1 - 0. Using the notation of the previous 
section, this statement can be written as R, - p'{' -t 0. But we proved this already in 
the previous section (proposition 2.5). 

According to its definition (see [4]) the spread of e is ('M00 f 1 = <Po 4PT = 
<P(RrRr1q,r and the optimal spread is (M8)-1 = r/Jr/Jr, which are asymptoticaJly 
equal since RT R tends to I (see the proof of proposition 2.5). O 
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The main result of the paper is the following. 

THEOREM 3.2 Assume that holds. Define the estimator 81 by 

81 = ~ + Q1.M1. (3.8) 

Then 81 is optimal in the sense that it saiisfies equation (3.7). 

Proof We have to show that defined by 

(3.9) 

is such that if;~T rt~ _. 0 in all P 9-probabilities. The proof is divided into a number of 
steps. 

Step 1 Let ef;0 be such that qi°(i:t>0rT = (if>'I). Define sf) as e.9 = 1))0T[.i\.f -11-1°8+ vJ08)(e? - We claim that sr _, 0 in all :P0-probabilities. So consider for 
p E P8 P(lt:fi > 6)::; P(lefl > s, lud $ B) + P(lu1J > B) with U1 = (iP~r 1 (@? - 8). 
Notice that {u1} is tight since u1 = Rt(1)1r 1(eA1 - B) and R{ R1 _.I. (Here and else­
where in this proof convergence is always to be understood as convergence in all the 
? 8-probabilities). The last probability can be made arbitrarily small by choosing B 
large enough en \.iew of equation (3.1), whereas the former one tends to zero for any 
B in view of (2.6) with H = bo and W == ;o. 

Step 2 Consider the asymptotic behaviour of Q. Clearly not only (3.2) holds, 
but also <fi;1Qdi;T _. l and (4i~)-tQ1 (efP);T _,I. To see the latter, consider 
(.P~r 1Q1 (efi0 );T - I= R1(</>; 1Qdi;r - (R'{ R1r 1)R'{. Call the term in outer parent~­
eses a:h then 0.1 -> 0. Consequently we have 0 ~ R1a,RT R10:'{ RT $ tr (R'{ Rrt · 
0!10:'{ ~ 0. So we can write 

(3.10) 

with 01 -> 0. 

Step 3 Use the result of step 1 to write 

q:iOT rJ° :::: qi°T[(AfM}(e - 0) - ,\7f06j 
_ ,;,OTf(Jvf-OB\tnD ,1...t.. Q,(f) M~oe1 -t.r"' 1 ,o~-01 J. - J 

= $or[ (~f-011) (B° - () + Q( (iPo)-T e:.ti + it?JD - (Af-OB}(a° - 8))) - lvfoe] 

,,,, (tl>o)-1Q(<:ii°rr /1 + (:tiori[J - Q(MM)J(B° _ B) + [(<Por1Q _ <Por1 .~oo. 
(3.11) 

Use again R = ( qP)- 1 efJ and consider the first tenn in expression (3.11). It can then, 
making use of the result in step 2, be written as (l + li)e:0• Hence (I+ <'i 1 )e:~ -1 0. Next 
we consider the second term in expression (3.1 l ). We again use step 2 to write it as 
-6{y>0r 1ceo- e) = -8RrP- 1(ffl -B).Because 61 ..... 0, R"[R, _,I and ff' is assumed 
to be .:p-consistent, we conclude that the whole second term tends to zero. 
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Finally we look at the last term of (3.11). Rewrite it as 6rjP M.09 • Assumption (3.5) 
together with 61 --+ 0 yields this tending to zero. 

This finishes the proof of the theorem. D 

Remark By using similar techniques as in the proof one can also show the 
following statement. 

<f/{[M1 +4>; 1 (~ - B)]--+ 0 in all IP9 probabilities (3.12) 

Remark Inspection of the proof reveals that one can imagine situations where it 
is not needed that o0 is <Pr-consistent. Suppose that one can say a little more about the 
convergence in (2.4), for instance that one can replace in this expression the process <P 

by another process r such that ?,UT[M8+r,u - M8 + (M9, M9)r'1u] is stochastically 
bounded (in all 1?8-probabilities), and such that 1µT[M9+u, - M9 + (M9,M8) 1u1J -4 0 
in probability if r/ 1u1 --+ O in probability. In many cases this implies r-;- 1c,b1 --+ 0 in 
probability, so r1 converges slower to 0 then 4>r· Suppose then that go is such that 
r; 1 ((ff - IJ) --+ 0 in probability. Then the c:8 process in step 1 of the proofof the above 
theorem still tends to zero in probability under the present assumptions. There is 
however a price to pay for allowing slower rates of convergence for B°, which is 
imposing conditions on the behaviour of Q in order to have also the second term in 
(3.11) converging to zero. Clearly, tightness of {81((m-1rr} is what one needs. So, 
under this condition the content of theorem 3.12 remains true. We illustrate this 
remark by the following example. 

Example Consider a counting process N with an intensity process under a 
measure P8 of the form B.ft. Here Bis a positive parameter (to be estimated) and/ 
a known positive Lebesgue-measurable function. We choose 111 to be the set of all 
processes of the form W(t,x) = WrX with w predictable and J~ w;fsds finite for all 
t > 0. Then all martingales M 6 are affine in B, so we may take r1 to be identically 
1. Let now go be any strongly consistent estimator of B such that B~ > 0 and 
h(B'!r)2fsds finite for all t > 0 (no rates of convergence required so far). Choose 
>.0(s,x) = (~.r)- 1 x. Take Q~ 1 = o? J~(B~f2fsds, and assume that limr-ooF1 = oo 
with Fr= oo with F1 = f~J!ds. Then Q,(M.09)--+ 1 in probability and by strong 
consistency of 00 also Q1(M08 ) --+ 1 in probability (even almost surely). An easy 
computation shows that the tightness condition on the convergence of the Q­
process mentioned in the previous remark here comes down to tightness of the 
process F112(B0 - B). Since in this example we can replace c,b with p-112, we have 
nothing gained compared to theorem 3.2 by not imposing a tightness condition on 
the behaviour of 00. However, if we assume a priori that F114(B0 - B) is tight, then 
one can easily check that all the conditions mentioned in the last remark above 
are satisfied and with 

the estimator e = 00 + Q M is optimal according to the reamark above. 
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A Another possibility is to take Ql1 = J~(fJ~)- 1fsds. With the same Mas above the 
e from equation (3.8) can now be represented as the solution of the following 
equation 

(3.13) 

while Q satisfies 

(3.14) 

Equations of this kind are encountered when considering recursive estimators. 
See for instance [l O]. Hence the somewhat unusual expression for M is a conse­
quence of the definition of 0 as solution of the system of stochastic differential 
equations (3.13) and (3.14). As a :final remark we notice the following. Suppose we 
replace in (3.13) and in (3.14) B~ with 81 and we can prove consistency of 8 (see (10] 
for the appropriate techniques). It then follows form the preceding discussion that 
the thus obtained recursive estimator is optimal. 

Example Consider a stationary situation and assume that the observed X is 
the sum of a continuous compensator and a continuous local martingale under 
each of the probability measures involved. Stationarity in this case means that 
under a suitable parametrization we have the following model 

dX1 = a(B)dt + dWf (3.15) 

where W8 is a Wiener process under each P8 and a is a known function, independent 
of time. It is easy to see that in this case b =a in assumption 2.1, assuming that a is 
an (ordinary) differentiable function of B. If a is not vanishing, then it easily follows 
that </;1 = IJ.(9)-1 i-112. Let now rP be a strongly consistent estimator of fJ that is also 
Ji-consistent. We define the predictable process b0 by b? = a( djJ. Orie can then 
show that if a is a continuously differentiable function, the P8 limit for t ~ oo of 
1-1 J~(b~ - a(B))2ds is zero, hence the convergence in (3.3) takes place. By taking 
Q;-1 = a(rf1)2t also (3.2) holds. So according to theorem 3.2 the estimator e defined 
by 

is optimal. 

A MEASURABILITY ISSUES 

In this appendix we set forth conditions under which suprema of random variables 
are measurable and discuss some other measurability issues. We follow the approach 
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given by Pollard in [9], Appendix C, which in turn is based on chapter III of 
Dellacherie and Meyer [I]. 

Let (0, !F, P) be a probability space. Let Rim and RJ be the Borel a-fields on !Rm 
and IR respectively, and let F ®Rim be the product a-algebra on n x IR"'. Then we 
have 

LEMMA A. l Assume that z : n x !Rm -+ IR be measurable. Then the map Z* : n -+ IR 
given by Z*(w) = sup{Z(w, u) : u E !Rm} is measurable w.r.t FP, the completion of !F 
for the probability measure P. 

Proof See Pollard [9], page 197. D 

Suppose now that there is instead of a single measure P a whole family lfl of 
measures P is defined on (n, ji'"), the usual situation in statistical problems. Assume 
that there is a a-finite measure µ that dominates this family, then we have in the 
notation introduced above 

LEMMA A.2 Assume that Z : n x !Rm -+ IR be measurable. The map Z* is measurable 
w.r.t !F if !F is complete for some PEP or forµ. 

The proof is obvious. 
Another commonly used possibility to attack measurability problems for suprema 

is to assume a separability condition for Z. However, similar problems as above 
appear here, since the definition of separability (see [2]) involves sets of measure zero. 
So in the presence of a family of measures it is not directly clear to which of those 
"measure zero" refers. 

Probably the easiest way to get rid of these measurability problems is to assume 
that for each w the map Z(w, ·) is continuous (or piecewise continuous). Then 
suprema are determined by a fixed dense subset of !Rm like the rationals. 

Other measurability problems arise when we replace u in Z(w, u) with a random 
vector, and we want the map w-+ Z(w, u(w)) to be measurable. A sufficient 
condition for this to happen is that Z is jointly measurable in w and u and that 
w--+ u(w) is measurable (cf. LeCam [8], restriction (M2)). 

If we apply this result to the processes in section 2, we get for instance 
adaptiveness of the process in expression (2.5) under the following set of conditions. 

ASSUMPTIONA.3 Ffreach.fixedH E :If, w E "II' andt > Othemapsgivenby (w,B) H 

</>(w,B), (w, fJ) HH · A81 (w), (w, B) H W * vf (w), w i-+u1(w) are jointly ji'" 1~measurable 
with respect to all their arguments. 
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