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We consider two problems on generalized Bernoulli polynomials B~ ( z). One 
is connected with defining functions instead of polynomials by making the 
degree n of the polynomial a complex variable. In the second problem we 
are concerned with the asymptotic behaviour of B;: ( z) when the degree n 
tends to infinity. 

1. INTRODUCTION 

At present Bernoulli numbers are introduced through generating functions, as 
we shall do below, but historically they arose in connection with the sums of 
the p-th power of the first n - I integers 1 + 2P + · · · ( n - l )P. The Greeks, 
Hindus and Arabs all had rules amounting to 
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Nowadays we write for p = 0, I, 2, ... , n = 1, 2, 3, ... (putting 0° = 1) 
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where the coefficient of the linear term n equals the p-th Bernoulli number. 
In this way the numbers were mentioned (without using their present 

names and notation) by Jakob I. Bernoulli in his posthumous Ars conjectandi 
of 1713. In fact he gave the above general formula, observing that the num
bers also occur in the coefficients of the other powers of n. See the Latin text 
and table of Bernoulli's first ten summae potestatum from his Collected Works. 
Bernoulli actually made a mistake in the coefficient of n 2 in the ninth row, 
which he gave as - ½, but which should read- 2t. Euler also tackled the prob
lem of summing powers and in 1755 he published a proof of the Bernoulli forms 
based on the calculus of finite differences, christening the coefficients of n the 
Bernoulli numbers in honour of Jakob. 

Next we give some general definitions through generating functions. The 
generalized Bernoulli polynomials Bt:(z) are defined for all complex numbers 
z and µ by the expansion 

t µ 

' It! < 21r. (1.1) 

An immediate consequence of this definition is the representation of the gen
eralized Bernoulli polynomials as a Cauchy type integral: 

n! 
B!::(z) = 

21ri 
t 

(1.2) 

where the contour C is a circle with radius less than 21r around the origin. 
There are several reductions for this general definition. 

- Whenµ= 1 we have the Bernoulli polynomials Bn(z). 
- When z = 0 we have the generalized Bernoulli numbers Bt:. 
- When µ == l and z = 0, we have the classical Bernoulli numbers Bn. 

The quantities Bt: ( z) are polynomials of degree n in both µ and z; µ is called the 
order. The classical numbers Bn occur in practically every field of mathemat
ics, in particular in combinatorial theory, finite difference calculus, numerical 
analysis, analytical number theory, and probability theory. For the polynomials 
the same remarks apply, although in several occurrences the polynomials give 
just a convenient method of notation instead of giving insight or possibilities 
to further manipulate analytical expressions. 

In this paper we consider two problems on the generalized Bernoulli poly
nomials B::(z). One is connected with defining functions B 11 (z) where v is a 
complex variable. We derive a functional equation that generalizes the well
known property Bn(l - z) = (-l)nBn(z), and that gives information how th 
interpret B 11 (x) when x < 0. In the second problem we are concerned with 
the asymptotic behaviour of B!:(z) when the degree n tends to infinity. We 
consider this problem in connection with our earlier results for Stirling num
bers and discuss some other results from the literature. Finally we give new 
asymptotic representations. 

• 
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Atque si porro ad altiores gradatim potestates pergere, levique negotio sequentem 
ado1nare latercul111n licet: 
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Quin imo qui legem progressionis inibi attentuis inspexerit, eundem etiam continuare 
poterit absque his ratiociniorum ambabibus: Sumta enim c pro potestatis cujuslibet 
exponente, fit summa omnium nc seu 
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2. BERNOULLI FUNCTIONS 

We consider the problem of generalizing Bn ( z) by making n a complex variable. 
A motivation for this is given by the wish to generalize a fundamental difference 
relation of the Bernoulli numbers: 

Bn(z + 1) = Bn(z) + nzn-l, n = 0, l, 2, ... , (2.1) 

to a relation that also holds when n is replaced by a complex parameter v. A 
further step then is to interpret such a generalization for negative values of z. 
When we now how to interpret another fundamental property: 

(2.2) 

when n is complex and z is negative the problem can completely be solved. 
A second motivation comes from the recent set of papers [4]-[7] by BUTZER 

et al. in which Bernoulli numbers and polynomials ( and related quantities) 
are generalized. It seems that Butzer et al. have overlooked several rather 
old papers (for instance JONQUIERE (1891) and BOHMER (1910)), in which 
generalizations of Bernoulli polynomials are considered. Part of our analysis is 
based on these two classical papers. 

The difference relation ( 2.1) is the heart of difference calculus, the branch 
of mathematics that became so important in solving problems from numerical 
analysis, in particular in solving differential equations. Further information 
on classical difference calculus can be found in JORDAN (1947), NORLUND 

(1924), and MILNE-THOMSON (1933). 
One of the striking occurrences of Bernoulli numbers in special functions 

is the relation 

m == 1, 2, 3, ... , (2.3) 

where ((s) = I:%°-1 , the Riemann zeta function. This relation was given by 
Euler (1735/1739), and Ramanujan used it to define signless Bernoulli numbers 
of arbitrary index s by writing 

(2.4) 

(see BERNDT (1985, pp. 125f, 151f) ), 'signless' meaning that 

In fact, as Berndt (lac. cit. p. 125) remarks, already Euler made a very 
first attempt to introduce (signless) Bernoulli numbers of arbitrary index as 
above. Apparently, he made no significant use of his idea. The relation (2.3) 
gave hope to many mathematicians that it would be possible to find values of 
((2m + 1), and the numbers B; defined in (2.4) might be a convenient starting 
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point for this when relevant new properties of B; could be found. Until now 
this approach to identify ((2m + 1) in terms of simple quantities has not been 
successful. 

In this section we consider a different way of generalizing, by taking another 
explicit representation. When we generalize this by taking n complex we write 
(1.2) in the form 

t µ, dt 
tv+l' 

(2.5) 

where ~z > 0. Because of the algebraic singularity of tv+l at the origin we 
assume now that the contour of integration C runs from -oo, arg t == -1r, 

encircles the origin in positive direction ( that is, anti-clockwise) terminates at 
-oo, now with arg t = +1r. We assume that all zeros of et - 1 ( except t = 0) 
are not enclosed by the contour, and, initially, that the many-valued function 
tv is real for real values of v and t > 0. . 

2.1. Bernoulli functions Bv(z) in the complex plane. 
In this subsection we first consider the analytic continuation of Bv ( z) up to 
the negative z-axis. Originally the branch cut of the many-valued function 
tv in (2.5) runs from O to -oo. However, this choice is by convention. When 
arg z > 0, we may turn the loop C in clockwise direction into the upper half 
plane. In this way we redefine the location of the branch cut in the t-plane. 
Turning around a positive angel 8, we have at one side of the cut arg t = 1r + 8, 
and on the other side argt = -1r + 8. When we take 8 E [O, ½1r), the integral 
remains convergent when we allow arg z ra11ging in the interval (0, 1r). A similar 
method can be used for z in the lower half plane. This gives the analytic 
continuation of Bv(z) defined in (2.5) to the sector I arg zl < 1r, for any complex 
value of v. 

By using (2.5) it follows easily that the basic difference property (2.1) of 
the Bernoulli polynomials remains valid for the Bernoulli functions: 

Bv(z + 1) = Bv(z) + vzv-l, v E <C, I arg zl < 1T. (2.6) 

Also the derivative property 

d = vBv-1(z), v E <C, I argzl < 1r (2.7) 

is easily verified by using (2.1). Observe that the analytic-continuation of Bv(z) 
from the half plane ~z > 0 into the left half of the complex plane also follows 
from (2.6). Also in this way we cannot reach the negative z-axis. 

Next we want to verify how relation (2.2) transforms when n becomes 
a complex parameter. This will give a quite non-trivial property. To obtain 
information on Bv(l-z) we replace z with -z in (2.6). To take into account tl1e 
many-valuedness of the function z11 and the condition I arg zl < 1r, we change 
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in (2.6) z into ze-i1r when z is in the upper half plane ~z > 0 and change z 
into ze+i1r when z is in the lower half plane. The result is when ~z > 0: 

Bv(l - z) = Bv(-z) - ve-i1rv zv-l. 

Combining this with (2.6) and eliminating zv-l we obtain the relation 
• • 

ei1rv Bv(l - z) - Bv(z) == ei1rv Bv(-z) - Bv(l + z), ~z > 0, 

which says that the left-hand side is a periodic function of z with period 1. In 
other words, 

• 

Bv(z) = e"'1rv Bv(l - z) + wt(z), ~z > 0, (2.8) 

where w;;(z) is a 1-periodic function in the upper half plane. In a similar way 
we obtain 

• 

Bv(z) = e-i1rv Bv(l - z) + w~ (z), ~z < 0, (2.9) 

where w~ (z) is a 1-periodic function in the lower half plane. 
The functions w~(z) can be obtained as follows. Consider (2.5) withµ= l 

and ~z > 0. As we did for the analytic continuation we can turn the path of 
integration C into the upper half plane, even across the poles at tk = 21rik, k = 
1, 2, 3, ... , and pick up the residues. Summing the residues, which can be done 
when Ssz > 0, and taking into account the value of the phases oft at both sides 
of the cut when both branches of C pass the poles, we obtain 

3 · 1 · € 2 7rV?, - €- 2 7rV't 
CX) e21rikz r(v + 1) 

k-1 
c e - tv 

(2.10) 
where C runs around the cut, which now occurs in the first quadrant of the 
t-plane. When ½1r < arg z < 1r we can take the cut along the positive t-axis. 
At the upper part of the cut we have arg t = -21r, at the lower side arg t = 0. 
The contour starts at +oo ( at the upper side of the cut) and encircles the origin 
in positive direction. 

In this position of the contour we introduce a new variable of integration 
• 

by writing t = ve-i1r. By using the relation 

and interpreting the new integral in terms of Bv(l-z), we obtain the functional 
equation (2.8) with 

wt(z) = (2.11) 

This relation holds for all values of z in the upper half plane, since all three 
terms in (2.8) are analytic functions with respect to z in this domain; v may 
be any complex number. 
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Repeating the procedure for values of z in the lower half plane, we obtain 
(2.9) with 

00 -27rikz 

w-;;(z) = - (2.12) 
k=l 

a result as in (2.11), with all quantities i replaced by -i. 
We ca.n now define the Bernoulli function Bv ( x) for x < 0. This will 

depend on the way we approach the negative z-axis: from above or from 
below. Taking the average of the two values obtained so, we define 

X < 0. (2.13) 

It easily follows that we have 

00 sin(21rkx - ½v1r) 
' 

(2.14) 
k=I 

where x > 0, ~v > I, the latter condition being needed to guarantee the 
• 

convergence of the infinite series. Again, the series is a I -periodic function 
on the real line. The function Bi ( x) satisfies the following difference property 
(compare this with (2.1)): 

vxv-1 
' 

if X > O; 
(2.15) 

-vlxlv-l cos 1rv, if x < 0, ~v > 1. 

The series in (2.14) is closely connected with the familiar Fourier series for the 
Bernoulli polynomials: 

k=I 

n = 1, 2, 3, ... , x E [O, 1). 

' 

In BUTZER et al. (1992) a quite different approach and result is given 
for defining the value of B 11 (z) for negative values of z. Our approach, which 
leads to (2.14) and (2.15), is based on the crucial functional relations in (2.8) 
and (2.9), with (2.11) and (2.12). These relations are not available in the cited 
reference, and there the difference property (2.15) contains for x < 0 the factor 
cos 1rv - sin 1rv instead of only cos 1rv. In our approach the relation for x < 0 
links up nicely with the original difference relation in (2.1), because in order to 
replace (-l)n we just take the average of e±i1rv. 

2.2. Series in powers of z 
We conclude by giving the Maclaurin series (in powers of z) and an asymptotic 
expansions (in negative powers of z) of B 11 (z). These expansions have received 
little or no attention in the literature. 

565 



The well-known property 

n 

Bn(z) = n-k z (2.16) 

holds for the Bernoulli functions in the form of an asymptotic expansion: 

00 

as Z ➔ 00 (2.17) 

in the sector I arg zl < 7f. This follows by taking in (2.5) µ = l and expanding 

t 00 

Interchanging the order of summation and integration, applying Watson's Lem
ma for loop integrals (see OLVER (1974)), and using Hankel's contour integral 
for the reciprocal gamma function 

1 
r(z) 

1 
21ri 

(where C is the same as in (2.5) ), we obtain (2.17). 
It follows that, when ~v < 0, 

Bv(z) ➔ 0, as z > oo 

in the sector I arg z I < 1r. An application of this yields an interesting relation 
with the generalized zeta function, which is defined by 

00 

((s, t) = (2.18) 
n=O 

and which reduces to the familiar Riemann zetta function when t = 1: ((s) = 
((s, 1). Observe that repeated application of (2.6) gives 

?Jt-1 

(2.19) 
k=O 

When m tends to infinity and ~v < 0 the left-hand side vanishes. It follows 
that 

Bv(z) = -v((l - v, z), z =f 0, -1, -2, .... (2.20) 

By using analytic continuation it follows that this relation holds for all complex 
values of v. The function ((s, t) has a pole at s = 1, with residue 1. Hence, 
the right-hand side of (2.20) is well defined as v > 0. 
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From the expansion 

((s, t) = 

which easily follows by expanding in (2.18) 

' 

l t 1 
+ I n+ 

in powers of (t - 1), and using (2.1), we obtain 

It -II< 1, 

-s 

-v)((k+l- lzl < 1. 

This expansion reduces to the finite (polynomial) representation (2.16) when 
we take the limit v > n (integer). 

Both expansions (2.17) and (2.16) are contained in one integral: 

1 
Bv(z + 1) = ---

r(-v) 21ri .c 
((1- - w)r(w)r(l - V - w)z-w dw, (2.21) 

where Rv < -1 and £ is a vertical in the strip O < Rw < -v. This integral 
follows from the Mellin transform of ((s, t + 1) with respect to t, which reads: 

00 

((s, t + l)tw-l dt = ((s -w)B(w, s - w), ORw < ~s -1, 
0 

where we have used the Beta integral 

00 

tx-i (t + 1)-x-y dt = B(x, y) == r(x)r(y)/r(x + y), ~x, y > 0. 
0 

Upon inverting the Mellin transform we obtain (2.21). 
The expansions (2.17) and (2.16) follow from (2.21) by shifting the contour 

,C to the left, across the poles of the gamma function r( w ), and picking up the 
residues to obtain the Maclaurin expansion (2.16), and shifting to the right 
across the pole of ((1 - v - w at w = -v and the poles of I'(l - v - w) at 
w = k - 11 + 1, k = 0, l, 2, ... , to obtain the asymptotic expansion (2.17). 

3. ASYMPTOTICS OF Bf; 
Our current interest in the asymptotic behaviour of the generalized Bernoulli 
numbers Bt; stems from our earlier research on Stirling numbers, as published 
recently in TEMME ( 1993). Indeed, the quantities Bf: are related with Stirling 
numbers. First we explain this relationship. 
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The Stirling numbers of the first and second kind, respectively denoted by 
si-,n) and S~m), are usually defined through the finite generating functions 

n 

(3.1) 
m=O 

n 

(3.2) 
m=O 

where we give the left-hand side of (3.1) the value 1 if n 0. Similarly, the 
factors on the right-hand side of (3.2) have the value 1 if m 0. This gives 
the 'boundary values' 

S (n) == s(n) == 1 n > 0 n n , , and 

Furthermore it is convenient to agree on 8~m) = sim) = 0 if m > n. 
Several other generating functions are available for Stirling numbers. We 

have 
[ln( X + 1)] 1n 

= m! 

oo n 
s(m)_x_ 

n I' n. 
(3.3) 

nm 

oo n 

S (m)_x_ 
n f • n. 

( ,.,,.. l)m e""' 

m! 
(3.4) 

n-m 

These two equations give the link with the generating functions of the gener
alized Bernoulli numbers given in (1.1). The relations are 

s(m) = 
n 

n
m-

s<m) = 
n 

n s-rn 
n-m· m 

To explain this for the numbers of the first kind, we write 

1 n! s<m) = 
n 21ri m! 

(3.5) 

where C is a small circle around z = 0. Substituting z = ew - I and integrating 
by parts gives an integral that is similar to (1.2). For the Stirling numbers of 
the second kind the relation with the numbers Bf; is quite straightforward. 

When we consider the asymptotic problem for Bf; we take v as the large 
parameter. The parameter µ may have any complex value in the definition 
of Bf:, and the asymptotic behaviour of this number strongly depends on the 
value of µ. In our paper TEMME (1993) we have derived new asymptotic 
approximations of the Stirling numbers of both kinds, which hold when n is 
large and which are uniformly valid for m E [O, n]. Although the Stirling 
numbers are defined for integer values of n, m, the results and methods can 
be interpreted for continuous variables. Considering the relations in (3.5), we 
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Figure 1. Parameter domains (shaded) for which the uni
form asymptotic expansions of the Stirling numbers can be 
used to obtain a first order approximation for Bf:; upper 
area via the Stirling numbers of the first kind, lower part 
via the Stirling numbers of the second kind. 

observe that the uniform asymptotic results of the Stirling numbers numbers 
can be used for the generalized Bernoulli numbers Bf: in the shaded areas of the 
(v, µ)-plane, given in Figure 1. Here vo, µ 0 are large numbers, vo indicating the 
large v-domain [vo, oo) for which the uniform approximations of the Stirling 
numbers can be used for the generalized Bernoulli numbers Bf;. 

. In §3.1 and §3.2 we concentrate on the asymptotic behaviour of Bf; for 
(v, µ) in the non-shaded area in the upper right half plane, that is, v large 
and O < µ < v. In fact our goal is to obtain a uniform approximation in this 
domain, as we obtained for the Stirling numbers in the shaded areas. However, 
the situation here is quite different from the Stirling case, as will be explained 
in §3.2. In §3.3 we consider a problem for Bv(z) in which z is large and v acts 
as a uniformity parameter on the real axis. First we summarize existing results 
from the literature. 

3.1. Norlund's results. 
In NORLUND (1961) results are given for a parameter domain that corresponds 
to the neighbourhood of the diagonal v = µ. In fact, Norlund considered the 
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polynomials B~+P+1 (z), where p and z are fixed complex numbers (fi.xed means 
independent of v). His result is 

n-1 

s=O 

p 
s 

(-1)8 
' 

(3.6) 

as v · · > oo. The coefficients As ( z) are derivatives of the reciprocal gamma 
function: 

d8 1 

The asymptotic expansion (3.6) shows inverse powers of Inv, giving a rather 
slow asymptotic convergence for computations, unless v is very large. When 

the coefficients As ( z) reduce to the coefficients of the Maclaurin expansion 
of 1/r(l - z), which easily follow from those of 1/r(z) (see, for instance, 
ABRAMOWITZ AND STEGUN (1964, page 256)). 

When p = 0, 1, 2, ... , the series in (3.6) reduces to a finite number of terms 
(because the binomial coefficient vanishes when s > p). In particular, when 
p = 0, we have the simple case B~+1 (z) = (z - I)(z - 2) · · · (z - v). That is, 

CX) B~-z (-l)n 
------- ,..,,., 'r(l n) 'l~z+n ' n~O n. - z - v 

which is a well-known result for the ratio of two gamma functions. 
We observe that this expansion is in negative powers of v, because in (3.6) 

the expansion containing inverse powers of Inv completely vanishes. What 
remains was hidden in the CJ-symbol of (3.6) and shows up when p = 0 (quan
tities that are asymptotically negligible with respect to all negative powers of 
ln v occurring in the series and the CJ-term in (3.6)). This is a nice example in 
which 'exponentially small terms' become important when a parameter changes 
a critical value (in this case: when p == 0). 

For fixed values ofµ Norlund gives the expansion 

3.2. Saddle point methods for Bf. 

-1 
ll • 

We now discuss asymptotic properties of the generalized Bernoulli numbers Bf 
in connection with our previous results for the Stirling numbers. Consider (1.2) 
with z = 0 and v =j::. µ, and integrate by parts. It follows that 
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This integral has better convergence properties when we deform the contour C 
into a path that extends to -oo. We write 

µ r(v + 1) 
Bµ = 

11 µ - V 27fi 
(3.7) 

where 
</>( t) = (µ - v) In t - µ In et - 1 . 

In the saddle point method one tries to deform the contour C through one or 
more saddle points of the integrand. To calculate the saddle points we have to 
solve the equation ft <P( t) = 0, which is equivalent to solving 

1 - e-t = 't A, 
µ 

µ ll 
• (3.8) 

The solution t == 0 is not of interest, because the contour C is not allowed to 
pass through the origin. To keep the discussion surveyable we assume that v 
is large and positive, and tl1at µ is a real parameter. 

We can distinguish three µ-domains of interest, which correspond with 
the three domains indicated in Figure 1. 
(i) µ < 0 ⇒ 0 < A< l; in this case (3.7) has a real positive solution; 

( ii) 0 < µ < v => ). < O; in this case ( 3. 7) has no real solutions; 
(iii) µ > v => .A > 1; in this case (3. 7) has a real negative solution. 
We conclude that in the two shaded areas of Figure 1 (both 'Stirling cases') 
there is a real saddle point, and that in the area that has to be done there is no 
real saddle point. It will turn out that in the latter case, that is, when .A < 0, 
equation (3.8) has complex solutions, which occur in complex conjugated pairs, 
and one pair can be used for the saddle point method. 

Equation (3.8) is equivalent to the equation 

w h t 1 1 _1. we = x, w ere w == - 3:, x = -°Ae >-. 

When .A ranges througl1 the interval (-oo, 0) the quantity x ranges through 
the interval (0, +oo). The trivial solutions w = -½ is not of interest. The 
equation wew == x has received quite some attention in the literature. MAPLE, 

the package for symbolic computations, has the solution w(x) as a standard 
function. To give more insight on the location of the complex solutions of this 
equation, we give a few steps in solving the equation for real positive x. 

We write w = u + iv, with u, v real, and see that the equation wew == x is 
equivalent to 

v = -xe-u sin v, u = -v cot v. 

For positive values of x solutions occur in the v-intervals 

( 1r, 21r), ( 31r, 41r), ... 

571 



• 

and; in similar negative v-intervals. When x is small, that is, -A is a large 
positive number, a conjugate pair of saddle points t± has imaginary parts near 
±1r and the real parts satisfy ~t± rv - ln(---\). Because of the convergence of 
the integral:in (3.9) at t == ±oo, the contour C can be deformed into two separate 
c0nj·ugate paths c±, C'- running from -oo to +oo with ~t E (-n, -21r),, and 
c+ from +oo to -oo with, ~t E ( 1r, 21r), such that c± run through. the saddle 
points t±. Locally at t = t± we can approximate <jJ(t) up to the quadratic term 
of its Maclaurin expa.nsion, and we obtain the asymptotic result 

That is 
' 

. µ, xr(v+ 1) 
B rv ----

v 2ri 
(+,-) 

V 2 . 7f i : t~ 

! e½<t>''(t±)(t-t±)2 dt. 
, 

c± 

t+ 

We have for the second derivative of q:,: 
µ - v µet 

<t>''(t) = - + ---t2 (et - 1)2. 

(3.10) 

Evaluating this at the saddle points, using l - ,,\t± = e-t±, stte (3.11), we have 

These quant.ities have negative real parts when -A is a large positive number·. 
The first ap.puoxj,mation g·ivent iir1l (3:. ]0'), can· be su~pl·ied with more terms by 

ll&iag. sta.:odarcl.: techniques of the , : dle point method, bu;t we omit the details 
h<tre. Also, it is possible to repeat the analysis for the generalized Bernoulli 
p0lynomials Bt;(z), and to compare the results with Norlund's results. All 
this is 0utside the scope of the present paper, because the elaborations are 
uather technical and complicated·. Moreover, further investigations a.re needed 
to, d.etermine the range of the parameters for which the expansion• holds. We 
expect that (3.10) will. be uniformly valid. for A = µ/(µ - v) belonging to 
eom.pact sets of the interval (-oo, 0), and v- - ,➔ +oo. When indeed this; is true, 
we €an fill a lairge- part of the u.nshaded area m the first q;uadrant of Figure 1. 

3.3~ Unjw£m: asym.ptotics- for large values oE z 
We return to Bv (z) and consider the pt'obl'em- of obtaining· a,n expansion for 
Tuw-:g~ vabues of z and~ v· .. When v is nxectli the• expansion, irn ~,2'4.17) is, a~plicalhle. 
Tut, thls· sufusection we give two expansions,. one holdi-ng, uniformly with, Fesp.ect 
to. v E (0, oo), and: a similar expansion, hold·in:g uniformly with respect to. v E 
(-oo,, ©},. Th.e approach is b·ased. 0n ewlier W@Fk diseussed in TEM.ME ( 1983·). 

The asymptotic pro·blem· in that paper is to obtain a.n expansion. of the 
integral 

1 (X) 

tA-1 e-z t f (t) dt, z, A > 0, (3.12) 
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that holds uniformly with respect to A E [O, oo). Laplace integrals can be 
expanded by invoking Watson's Lemma (see OLVER (1974) or WONG (1989)): 
expa.nd f at the origin and interchange summation and integration. That is, 

CX) 

00 r(A + n) -n-A 

as z ► oo, ,\ fixed. When,\ is not fixed (say,,\ is depending on z) this becomes 
invalid. It is better to expand at t == "' := A/ z, the saddle point of the dominant 
part t,\e-zt of the integrand. We have 

00 

f(t) == 
n=O n=O 

where 
1 00 

tA-le-z t(t - K,)n dt. 

That is, 
' 

It is quite easy to obtain the recursion: 

and the estimate 

This expansion is, under mild conditions on an ( K,), that is, 
valid with respect to ,\ E [O, oo ). For instance, when f (t) 
coefficients an ( J'IJ) are given by 

00 

(3.14) 

(3.15) 

on f, uni£ ormly 
I/(t + 1), the 

1 

t+I 

(-l)n 
an(t.,) (t - K,)n, an(K,) = ------- (I + K)n+l, 

(3.16) 
n=O 

and we see from (3.15) that, in this case, the terms an(K) Pn(.-X) z-n in the 
expansion of FA(z) given in (3.13) do not lose their asymptotic character when,\ 
runs through the domain [O, oo). This is not a proof of the asymptotic nature 
of the expansion, but an indication that the expansion has some robustness 
with respect to large values of.-\. For a proof we refer to TEMME (1983). 

We can apply this method by writing Bv(z) in the form (3.12). This is 
possible when v is negative. We observe that in that case we can integrate in 
(2.5) along both sides of the negative real axis (using different phases ±1ri of 
t), and obtain 

1 CX) 

t-v- i e - z t f ( t) dt' t 
(3.17) 
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We define K = -v/z and expand f at t = K, as in (3.13). In this case the 
expansion has a different asymptotic character than in the example with f (t) = 
1 / ( t + 1). To explain this, we have in the latter case the lucky situation that 
{ an} constitute an asymptotic scale as K > oo. That is, 

an+1/ an == 0(1/ K) as K ► oo. 

In fact, when this is the case, the expansion in of F>.. ( z) in ( 3.13) has a double 
asymptotic property: it is also valid when .A > oo, uniformly with respect to 
z E [zo, oo), where z0 is a fixed positive number. 

Let us now consider f defined in ( 3.17) for the case of the Bernoulli func
tions. We have, as t ~ oo, 

f ( t) = t l + e -t + e - 2 t + ... 

and 

Hence, for n > 2, the coefficients an ( K) are asymptotically small. The only 
snag is that the coefficients do not constitute an asymptotic scale. 

We conclude with giving a similar expansion for positive values of v. The 
starting point is the contour integral (2.5) 

27ri 

with 
t 
-1 • 

Again, there is a saddle point at t = K := v / z and we obtain 

CX) 00 

f(t) = 
n-0 n=O 

where 
n dt 

21ri 

It is easily verified that 

where the polynomials Pn are given in (3.14), and that 

That's why I call the expansions in (3.13) and (3.18) quite similar. Also, the 
expansion for Bv(z) for positive values of v has the same asymptotic nature 
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as the one for negative values of v given in (3.13). When n > 2 the coeffi
cients bn(K) are exponentially small when K, is large, and do not constitute an 
asymptotic scale. 
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