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Artificial Intelligence and Database research are recognised parents of Data 
Mining research. Statistics is only considered related in as far as it a I lows 
the assessment of the quality of the results of mining. In this expository 
paper it is shown that Statistics can lay legitimite claims of parenthood. 
More in particular, it is shown how Data Mining can be seen naturaly as a 
generalisation of both Projection Pursuit and Cluster Analysis. Subsequently 
it is discussed how this link can help to give Data Mining firm mathematical 
foundations. 

1 INTRODUCTION 

One of the younger branches of Computer Science, called Data Mining or 
Knowledge Discovery, was born out of a, partial, n1erger of Database and Ar­
tificial Intelligence research. 

1.1 What is Data Mining'? 

The goal of Data Mining is to discover information in large databases. Both 
large and small organisations have set up and maintained databases for years, 
often for pure accounting reasons. The mountains of data accumulated this 
way, form potential treasure-troves of strategic information. 

For example, consider an insurance company. From your own car insurance 
policy you can deduce that such a company does not associate the same risk 
with all of its clients. Rather, this risk depends on where you live, your type of 
car, your age, and many other factors. If the insurance company has registred 
all the relevant information of its insurants in databases, it should be able to 
derive precise rules that tell which risk to assign to which client. The derivation 
of such risk-profiles is an example of data mining. 

Many production processes are partly or completely automated. A side effect 
of this automation is that many aspects of the production process, such as the 
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quality of the end product and the parameter settings of the machinery along 
the way, are recorded electronically. The opt.imal paramater settings, those 
that one can be confident of the quality of the end product, are hidden in these 
databases. Data mining intends to facilitate u11earthing this knowledge. 

1.2 The Roots 
Data Mining is based on techniques inherited from both AI and database re­
search. Statistics is used to assess the validity of the results. The roots of Data 
Mining in these three areas is discussed briefly in this subsection. In the last 
part, on Statistics, the goal of this paper is set out. 

1. 2.1 Artificial Intelligence 
The AI parent of Data Mining is without a shadow of doubt Machine Learning. 
One of the aspects of intelligent beings is that they adapt their behaviour to 
their environment. So, it is only natural that early AI researchers developed 
systems that mimicked this behaviour. 

One of the oldest examples of such systems is the Perceptron by Rosenblatt 
[36], a system for pattern recognition. The object of pattern recognition is to 
sort patterns into different classes so that patterns which belong to a class 
share features. If we call the set of all possible feature combinations the feature 
space, Perceptron performes well for those patterns that are linearly separable 
in feature space. Minsky and Pappert showed the limitations of the Perceptron 
if the patterns are not linearly separable in [29]. Neural networks are a way to 
overcome these limitations, see, e.g., [10] for an introduction in this area. 

Neural networks are by far not the only attempt at building learning au­
tomata. In fact, an overview of m,f).chine learning research is far beyond the 
scope of this article, if not beyond the scope of a single book. The interested 
reader is referred to the collection of papers bundeled in (38] and the books 
edited by Michalsky, [27, 28, 23] to get a feeling for the area. The more theo­
retically inclined reader might enjoy [l]. 

The most important development in machine learning for current Data Min­
ing research is the introduction of rule induction systems, [14]. Rule induction 
is similar to neural networks in that it seeks to separate patterns. The ma­
jor difference is that it seperates using descriptions rather than weights in a 
network. The descriptions are expressions in the attributes or features of the 
objects. Hence, the results of rule induction are directly interpretable by human 
beings. 

1.2.2 Databases 
The problems in database research that gave rise to Data Mining are more 
diverse and less well-documented than those in Al. Rather than attempting to 
describe briefly all these seemingly unrelated problem areas, we describe one 
in somewhat more detail. 
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One of the main problems in maintaining large data sets, electronically or 
otherwise, is to keep them error-free. One of the contributions of database 
research towards the resolution of this problem is the notion of integrity con­
straints. The constraints on a database describe which entries in a database 
and which database states are to be considered legal. The more accurate the 
constraints are, the more errors at, say, data entry can be obviated. 

The traditional way to discover constraints is to elicit them from domain 
experts. Thus, inherently, there is the risk that some constraints are missed. 
One way to alleviate this risk is by searching for additional constraints when the 
database is in existence. By confronting the domain experts with constraints 
that are satisfied by the current database state, these missing constraints can 
be identifi0d. Pioneering papers in this area are [30, 2, 3]. 

In theory, a constraint is simply a logical expression. In practice, however, 
database management systems support only the enforcement of a restricted 
set of constraints, such as functional dependencies. In table R attribute A 
functionally determines attribute B, denoted by A > B, if whenever two entries 
share the same A-value they also share the same B-value. 

For this restricted class of constraints, the problem is solved. Efficient algo­
rithms can be found in, e.g., [24]. While Manilla gives precise bounds on the 
sample sizes needed to conclude the constraints with sufficient confidence in 
(21]. 

1. 2. 3 Statistics 

As should be clear from the examples given before, Data Mining is based on in­
ductive inference. In other words generalities, such as rules or laws, are induced 
from a finite number of examples. Such a conclusion is, of course, never logical, 
the logical conclusions can be inferred using deduction. The epistemological 
problems of induction and its conclusions have been discussed by philosophers 
since at least the time of Hume. Some interesting points of view pertaining 
these problems can be found in [12]. 

Since a long time, Statistics is the most successful approach to asssess the 
validity of inductive conclusions. It is therefore to be expected that Statistics 
is used in Data. Mining precisely for this reason. In other words, Statistics is 
related to Data Mining. 

However, Statistics offers more than is currently used. An introductory course 
in Statistics and Probability is sufficient to read almost all the literature on 
Data Mining. Curiously, all Statistics that comes under the name of Exploratory 
Data Analysis is absent in these requirements. 

It is the intention of this paper to show that Statistics is more than related 
to data mining. It could have been, and perhaps should be considered as, one 
of its parents. More in particular it is shown that Data Mining can be seen as 
a natural generalisation of a statistical techniques known as Projection Pursuit 
and Cluster Analysis 

537 



1.3 A Roadmap 
The object of this paper is expository, the reader is neither expected to be a 
statistician nor a data miner. The only new fact in this paper is the surprisingly 
strong link between Exploratory Data Analysis techniques and Data Mining. 

In Section 2, we give a brief review of the classical techniques Regression 
Analysis, Principle Component Analysis and Cluster Analysis. In the next sec­
tion Projection Pursuit is intro-uced and, following Huber [15] it is shown how 
this subsumes the first two techniques of Section 2. 

In the fourth section Data Mining is defined and it is shown how it generalises 
both Projection Pursuit and Cluster Analysis. In Section 5, the contribution 
of AI and databases is discussed in the light of this new viewpoint. 

In the final section of this paper it is discussed how this link might help to 
give data mining firm mathematical underpinnings. Since the discovery of such 
underpinnings needs guidance from experimentation, the architecture of a data 
mine tool is also briefly discussed. 

2 CLASSICAL EXPLORATORY DATA ANALYSIS 

In many laboratory experiments paran1eters can be individually set. Conse­
quently, hypotheses underlying these experiments can be tested with straight­
forward statistical techniques. Not all sciences are so lucky, however. In the 
life sciences and in the social sciences the parameters cannot even be set by 
the scientist. To analyse this kind of data Statistics developed Multivariate 
Analysis. 

Tukey coined the name Exploratory Data Analysis (EDA) [40] for, a subset 
of, these techniques to indicate that the analysis is only part of the work. The 
interpretation of the results, the formulation of hypotheses and their subse­
quent testing are equally important. Since I agree with this observation, I have 
adopted this catchy name. 

In this section three ''classical'' techniques, Regression Analysis, Principle 
Component Analysis, and Cluster Analysis, are briefly reviewed. The motiva­
tion for this section is twofold. In the first place it may serve as a reminder for 
the avarage data miner. In the second place, the power of Projection Pursuit 
is argued in the next section by discussing how it subsumes the first two tech­
niques. Subsequently it is argued that Data Mining subsumes both Projection 
Pursuit and Cluster Analysis. Far more information on EDA can be £011nd in 
standard textbooks such as [40, 25]. 

2.1 Regression Analysis 
Suppose that the insurance company from the introduction has d real valued 
attributes in its clients database. If it assumes that, say, the expected claim 
amount is a function of these variables, it can use Regression to determine this 
function. 

In formal terminology, let (X, Y) be a pair of random variables such that 
X is 1?_,d valued while Y is R valued. The problem is to estimate the response 
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surface 
f(x) = E(YIX = x) 

from n observations (X1 , Y1 ), · · ·, (Xn, Yn) of (X, Y). 
A simple way to fit a function to these n observations is through least squares 

estimation. First a parametric form for f is chosen, e.g., if f is assumed to be 
a linear surface, we have f(x) = I:~1 aiXi + a 0 • Following, the parameters ai 

are estimated by minimising 

n 

i=l 

This can be generalised by assuming Y to be Rk valued rather than R, valued. If 
f is then assumed to be linear we get what is known as multivariate regression. 
A generalised least squares estimation exists for this case. 

Regression analysis is an example of EDA, if only because one can try dif­
ferent parametric forms for f and choose the one that fits best. Of course, the 
number of parameters should be small compared to the number of observations. 
In the terminology of Machine Learning, one should beware of overfitting. 

2.2 Principle Component Analysis 
With Principle Component Analysis (PCA), one hopes to explain most of the 
variability in the data using only the principle components with the highest 
variability. In other words, PCA is a technique to reduce the dimensionality of 
the data. 

Let X be an Rd valued random variable and let X 1 , · · · , Xn be a set of n 
observations of X. In statistical terminology, (X 1 , ... , Xn)T is a data matrix. 
For example, we have a group of n students who all participated in d exami­
nations and Xij denotes the score of student i for examination j. The sample -
mean vector X is simple defined by 

-
In other words, Xi denotes the mean score for examination i. The sample 
covariance matrix is the d x d matrix S with entries 

The covariance matrix S can be written in the form S = G LGT in which G 
is a11 orthogonal matrix and L a diagonal matrix of the eigenvalues of S, with 
Z1 > l2 > · · · > lp > 0. 

The principle component transformation is defined by rotation 
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the columns of W represent uncorelated linear combinations of the variables; 
they are called the principle components. 

The importance of PCA lies in the observation that (l1 + · -· + lk)/(l1 + · · · + 
ld) represents the ''proportion of the total variation'' explained by the first k 
principle components. So, if in our examination example l1/(l1 + · · · +ld) = 0.75 
and its eigenvector is (1, 0, ... , 0), the we can conclude that 75% of the variation 
of the scores of the students is due to the first examination. 

2. 3 Cluster Analysis 

Cluster Analysis (CA) is similar to pattern recognition discussed before. Again 
we try to classify based on similarity. Different from the previous two tech­
niques, CA does not require the data to be real valued. To simplify our brief 
discussion we, however, make this assumption. 

Again, let X be an 'Rd valued random variable and let X = X1, · · ·, Xn be a 
set of n observations of X. A clustering of X is a cover of X by disjoint subsets 
C1 , ... , Ck- The goal is that the observations in the same class are similar while 
observations in different classes are different. 

For example, if the Xi are observations on flowers, recording the length of 
the stem, the number of petals, et cetera, a clustering should put observations 
of flowers of the same kind in the same class. 

Inherent in this statement of the cluster problem is the concept of an opti­
mality criterion which dictates when a desirable partitioning has been found. 
This criterion can be phrased using a quality function. The higher the quality 
of a partitioning, the better it is. 

More in particular, we need a measure of the hornogeneity within a cluster 
and the disparity between clusters. Both measures can very well be based on a 
distance function or metric on Rd. 

For example, in complete linkage one of the restrictions on a class is that 
the distance between two observations may not exceed some threshold valuer. 
In the centroid method, the distance between classes is defined as the distance 
between their centroids. One of the objectives of this method is to maximise 
the distance between classes. 

There are way to many clustering algorithms to attempt even the shallowest 
of surveys here. An old, but very readable survey, can be found in [5]. This brief 
description ends with the observation that clustering by complete enumeration 
is comletely out of the question. 

Briefly, this technique would simply enumerate all possible clusterings, eval­
uate the quality of all of them and report the one(s) with the highest quality. 
This approach is infeasible simply by the sheer number of possible clusterings. 
The number of partitions of n objects in m non-empty subsets is given by 
Stirling's numbers of the second kind: 

1 
m 

m 
• 

j=O J 
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So, since the number of classes is in general not specified, the total number of 
clustering alternatives is given by: 

n 

3 PROJECTION PURSUIT 

Mapping multivariate data into low dimensions for visual inspection is a com­
monly used technique in data analysis; if only because of the uncanning ability 
of humans to discover structure in two-dimensional plots. The discovery of such 
mappings that reveal the salient features of the multidimensional data set is in 
general fa1· from trivial. Projection Pursuit (PP) introduced by Friedman and 
Tukey in [9] is a technique to discover such mappings. 

In a nutshell, PP works as follows. We have a p-dimensional dataset X and we 
examine ''all'', say, two-dimensional projections of X. We are given some quality 
function, called the projection index, with which we calculate the quality of all 
the projections. PP then reports the projection with the highest quality. 

Stated as such, PP sounds like just another EDA technique which might as 
well have been discussed in the previous section. After a brief discussion of 

. PP, however, it is shown, following Huber [15], that PP subsumes many EDA 
techniques. 

3.1 What is Projection Pursuit? 
The simplest mappings from higher to lower dimensions are, linear, projections. 
That is, linear maps A of, say, rank 1 or 2. By definition, PP searches for a 
projection A that maximises a quality function, in this context it is called the 
projection index. _ 

To get more concrete, let X be a 'R.d valued random variable and let X = 
{ X 1 , · · · , Xn} be a set of n observations of X. A 1-dimensional projection A is 
then a 1 x d matrix of rank 1. The quality of A should be determined from the 
data set A(X) = {AX1, · · ·, AXn}-

Many projection indices are possible, an important observation by Huber 
is that the index should measure how far the projection is away from a set 
of data points sampled under a normal distribution. The l1euristic arguments 
underlying this claim are: 

• A multivariate distribution is normal iff all its one-dimensional projec­
tions are normal. Thus, if the least normal one dimensional projection is 
normal, we need not look at any other pro.jection. 

• For 1nost high-dimensional data sets most low-dimensional projections 
are approximately norn1al. 
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A simple projection index in this case is, thus, a x2-test. Another example is 
the sample entropy, i.e., 

,.. 

in which f is the density estimate of the projected points. Friedman and Tukey's 
original index I is the product of two functions s and k, where s measures 
the spread of the data and k describes the ''local density'' of the data after 
projection. 

Defining the index is only part of the work. The question is, of course, how to 
find the projection A that maximizes the index. Friedman and Tukey mention 
that their projection index is sufficiently continuous to allow the use of hill­
climbing algorithms for the maximization. 

A simple form of hill-climbing i,s as follows. First we choose a random p:ro­
jection matrix A = ( a 1 , ... , ad) and compute its quality. Subsequently, we 
construct a set { A 1 , ... , AN} by adding small vectors to A in ''all possible 
directions''. Then we compute the quality of all these projections. The new 
projection A' is that projection from the set { A, A1 , ... , AN} that has maxi­
mal quality. If A = A' we stop, else we iterate. 

This form of hill-climbing will always end in a local maximum. To find a 
global maximum the algorithm should be repeated with different initial pro­
jections. Moreover, in fact the search is not so n1uch for the global maximum 
as well as for a projection that gives the analyst insight in the distribution of 
the data. In other words, we can stop as soon as we find a local maximum that 
satisfies this criterium. 

Besides hill-climbing many more search algorithms exist, we return to this 
topic later in this paper. 

3. 2 Projection Pursuit subsumes classical techniques 

It is straightforward that PP is a generalisation of PCA. For, in PCA we simply 
calculate the eigenvalues and eigenvectors of the covariance matrix and project 
the data orthogonally into the space spanned by the eigenvectors belonging to 
the largest eigenvalues. This projection clearly fits into our description of PP 
above. 

3.2.1 Regression 
The subsumption of Regression by PP is less straightforward than that of PCA 
above. A central role is played by the ''curse of dimensionality'' caused by the 
fact that a high-dimensional space is mostly empty. To give an example let 
d = 20, which is actually low in most data mining examples. Assume that we 
have a large number of points uniformly distributed in a 20-dimensional unit 
ball. Then the radius of a ball containing 5% of the data is (0.05)<0 ·05 > = 0.86. 
So, if we want to pick out small features the sample size has to be gigantic. In 
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other words, for high-dimensional data sets standard Regression is not likely 
to produce good approximations. 

In this case [15], it is often attractive to approximate the response surface 
by a sum of ridge functions: 

tn 

/(x):::::; 
i=l 

In other words, we assume that f can be approximated by the sum of a set 
of R-valued functions, each of which is defined on a I-dimensional projection 
of X. The idea is now to use PP to find the ''optimal projections'' for this 
approximation. More in particular, Friedman and Stuetzle's Projection Pursuit 
Regression process [8] works as follows. Assume we have already determined 
the first m - 1 vectors ai and functions 9i· Let 

m,-1 

r i = Yi - __ 9i ( af x) 
i=l 

be the residuals of this approximation. Choose a unit vector a E Rd and fit a 
smooth function g through the data set formed by the pairs (aT Xi, ri). Calcu­
late the sum of squared residuals relative to this g, 

n 

i=l 

and then minimise this sum over all possible choices for a. The resulting a and 
g are then inserted as the next term in the approximating sun1. This iterative 
procedure stops if the improvement becomes small. 

In a similar sense, PP can be said to subsume density estimation. That is, in 
cases of high-dimensionality Projection Pursuit Density Estimation yields an 
acceptable approximation. 

3.2.2 Clustering 
If stating that PP subsumes Regression was already stretching the limits, stat­
ing that it subsumes Clustering certainly oversteps these limits. However, PP 
can certainly help to detect clusters; one might say that this was the motiva­
tion for developing PP. In fact, Huber presents the following list of as possible 
actions after one has found some interesting projections: 

1. Identify clusters, isolate them and investigate them seperately. 

2. Identify clusters and locate them (i.e., replace them by, say, their center 
and classify points according to membership to a cluster). 

3. Find a parsimonious description (seperate structure from random noise 
in a non parametric fashion). 

Data Mining not only generalises PP, it does generalise Clustering. How it 
achieves this, is discussed in the next section. 
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4 DATA MINING 

For some researchers, Data Mining is simply the application of Machine Learn­
ing techniques to large databases. This point of view, however, is far too broad; 
if only because some techniques simply do not scale up to the massive amounts 
of data available in databases. 

Klosgen and Zytkow define KDD, one of the many aliases of Data Mining, 
in [22] as 

Knowledge Discovery in Databases (KDD) is a major di­
rection in machine discovery dealing with knowledge discovery pro­
cesses in databases. KDD applies to the ready data available in 
all application domains of science and in applied domains of mar­
keting, planning, controlling, etc. Typically, KDD has to deal with 
inconclusive data, noisy data, and sparse data. 

where machine discovery and knowledge discovery process are defined by re­
spectively: 

Machine Discovery is a subfield of Artificial Intelligence which 
develops discovery methods and discovery systems to support knowl­
edge discovery processes. 

Knowledge Discovery Process aims at finding out new knowl­
edge about an application domain. Typically, a discovery process 
consists of many discovery steps, each attempting at the completion 
of a particular discovery task, and accomplished by the application 
of a discovery method. A discovery process emerges iteratively and 
depends o·n the dynamic, result dependent discovery goals. The pro­
cess iterates many times through the same domain, typically based 
on search in various hypotheses spaces. New knowledge is inferred 
from data often with the use of old knowledge. Domain exploration 
and discovery focussing are discovery processes applied in new do­
mains, where old knowledge is not available. 

For the definition of the unfamiliar terms in these definitior1s, the reader is 
referred to [22]. In this paper we use a, slightly, formalised restricted version 
of this general definition. It is not meant as a general introduction to Data 
Mining. Again, this is far beyond the scope of this paper. The interested reader 
is referred to [14, 31, 32]. 

4.1 Descriptions and Quality 
Central in Data Mining is the notion of a description. Recall that a database 
table consists of a schema and a state. A schema is a set of attribute names 
A = {A1 , ... , Ap} together with a set of attribute domains {D1, ... Dp}, such 
that Di is the domain of Ai. A state of the table can be seen as a finite subset 
of D1 x · · · x Dp-
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Usually, databases have more than one table and the tables are subject to 
constraints etcetera, but these nuances are unimportant for our present pur­
poses. In other words, we will equate databases with tables as defined above, 
i.e., a database state db C fin D 1 x · · · x Dp. By DB we will denote the set of 
all possible database states. 

A tuple t is simple an element of a database state, i.e., t E db. Rather than 
using a projection-notation like 1rni (t), t.Ai, or even ti if A is understood, is 
used to denote the value oft for attribute Ai. 

With these conventions, we can define a description language <I> as a first 
order language such that \:/<f> E <I> \:/db \:/t E db it can be decided whether </J 
holds fort in db. Note that usually the attribute names in A will be among the 
non-logical symbols of ~. 

A popular description language is that of set-descriptions, these are descrip­
tions of the form: 

Ai E ¼/\ ... A Ak E vk, where Aj EA I\½ C Dj I\½ is finite. 

The description age E [19, 24] /\ gender == male is an example. Since the ¼ are 
assumed to be finite, this is a first order language in disguise. 

The cover of a description <P, clenoted by ( </>) db, in a database state db is the 
set of all tuples in db that satisfy </>; if db is clear from the context, this subscript 
is often ommited. For example, (age E [19, 24] A gender== male) denotes all 
tuples in the database that describe young men. 

Besides descriptions, a central role is played by quality functions, similar to 
those encountered in EDA. In fact, there are three classes of quality functions 
that are used in Data Mining: 

Class 1 this are quality functions that assign a quality to a single description 
for a given database state. That is, it are functions of type q, x DB > R. 

Class 2 this are quality functions that assign a quality to a finite set of 
descriptions for a given database. That is, they are of type P Jin ( ~) x 
DB > n. 

Class 3 this are quality functions that assign a quality functions that assign 
a quality to a set of descriptions for a given database state based on a 
combination of a Class 1 and a Class 2 quality function. In other words, 
a quality function of this class is specified by three functions: 

1. Q1 : g> X DB ) R; 

2. Q2: PJin(~) x DB > R: 

3. f: Pjiri(R) x R > R; 

and Q3: PJin(<P) x DB ➔ R is defined by Q3 = f({Q1},Q2)-

Given the set of descriptions 4l and the quality function(s), Data Mining is sim­
ply: ''find the (set of) description(s) with the highest quality''. Simple variations 
are of the form: ''give me the n best descriptions'' etcetera. 
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It is now easy to see that both Cluster Analysis and Projection Pursuit are 
examples of Data Mining. 

4.1.1 Cluster Analysis 
Define the description language <I> such that all finite subsets of P(D1 x · · · x 
Dp) can be described. Moreover, define Q1 as a function that measures the 
homogeneity of the clusters, i.e., of the (<Pi), Q2 as a function that measures 
the disparity between the clusters, and define f as a function that combines Q1 

and Q2. The resulting Class 3 quality function and the description language <I> 
together form a specification of the clustering proble1n as defined before. 

4 .1. 2 Projection Pursuit 
This one is even more simple, define <I> such that all and only all projection 
planes can be described. Moreover, define the Class 1 quality function as your 
favourite PP index. The result is PP as a Data Mining problem. 

4 .1. 3 Subsumption 
It is disputable whether Data Mining with Class 3 quality functions is a n1ore 
general problem than Cluster Analysis. However, although the two problems 
may be close in theory, they are widely different in practice. Most often in 
Cluster Analysis, the quality is somehow related to a distance function. In 
Data Mining, however, the quality function is simply part of the specification 
of the kind of information one is interested in. 

The fact that Data Mi11ing with Class 1 quality functions is more general 
than Projection Pursuit is far less disputable. There is at least one paper that 
studies PP on discrete data rather than continues data, [4], but in Data Mining 
one does not fix a11 a priori ''projection dimension'', rather one lets the system 
find the most striking projection. 

The generality of Data Mining does have its price, however. In the first place, 
one has to specify each search task. That is, one has to choose an appropriate 
description language and a reasonable quality function. This specification comes 
at the price of a thorough analysis of the problem. In other words, Data Mining 
is not ''plug and play'' . 

The second down-side lies in the search algorithms. The generality of the 
Data Mining problem implies that it is difficult to use the structure in a problem 
to speed up the search. In other words, the search algorithms should be able 
to cope with a large collection of widely different quality functions which, e.g., 
do not have to depend on a metric as in Cluster Analysis. 

In the next subsection we give an example on the definition of quality func­
tions. In the next section we return to the problem of search algorithms. 

4. 2 Risk Profiles: an example of quality functions 
One of the Dutch insurance companies has asked us to derive risk-profiles from 
their car-insurance databases. A set of risk-profiles is a classification of the 
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insurants such that the insurance company can expect all clients in the same 
class to cause the same claim-amount per year. The relevance of this knowledge 
for the insurance business is obvious. 

As a first approximation, we derive risk-profiles for the probability that some­
one will cause a claim, rather than for the expected claim-amount. In this sec­
tion we briefly explain how these risk-profiles were found; more information 
can be found in [ 39]. 

4.2.1 The Problem 
The assumptions underlying this task are as follows. First, we assume that 
there only a few groups of clients, such that clients in the same group share 
the same probability of causing a claim. Secondly, we assume that these groups 
can be distinguished using only a few, say 80, properties of the clients and 
their cars; moreover, these properties are present in the database as attributes. 
Finaly, we assume that these groups can be distinguished by our description 
language 4>. 

A precise definition of tI> is not important here. It is a sublanguage of the 
language of set-descriptions that satisfies the following properties: 

1. <P should be sparse, this more or less means that ( </>) should be large and 
with attributes such as area and age there should be no gerrymandering; 

2. If ( </>) n (1./J) is large for cp, 'lj; E <P, then </> I\ 'lj; E <P. 

To state our problem in terms of descriptions, define a set { c/>1, ... , <Pk} of 
descriptions to be a disjunctive cover, abbreviated to discovery, if: 

1. 'vi,j E {1, ... , k}: i =f. j > [<Pi/\ <Pk > __L] 

2. [V:=1 <Pi] > T 

The problem can then be restated as: find a discovery { c/> 1 , ... , <Pk} such that 

4.2.2 Analysis of the problem 
A set of clients is called homogeneous if all members have the same probability 
of causing a claim. A description cp is homogeneous, if the set of all clients 
that satisfy ef, is homogeneous. Clearly, the discovery we want to find should be 
homogeneous, i.e., all its descriptions should be homogeneous. 

For a homogeneous description </>, the probability of causing a claim of the 
clients that satisfy r./; can easily be estimated from the database. Since, all tuples 
in ( </>) can be seen as records of trials of the same Bernoulli experiment. The 
outcome of this experiment is 1 ( a success (sic)) if there was an accident and 0 
otherwise. 
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So, using standard probability theory, [7], we can compute the, say 95%, 
confidence interval C lrp for the probability of causing a claim of the clients 
that satisfy </>. 

In fact, we will compute Clrp in this way for all descriptions cp, regardless of 
whether they are homogeneous or not. Since our end-result is a homogeneous 
discovery this does not introduce errors. 

The question is now, how do we decide whether a description is homogeneous 
or not. Intuitively, </J is homogeneous, if all subsets of (<j;) have the same asso­
ciated probability. But this cannot not work, in a vase with with n blue and m 
red marbles one can find subsets with fractions of blue marbles varying from 0 
to 1. 

However, we are not interested in random subsets, but only in subsets that 
can be described by 4> and 4> is assumed to be sparse. Therefore, we define a 
description </> E tI> to be homogeneous1 if: 

In other words, if we call </> I\ 1/J an extension of cp, a description is homogeneous 
if its associated probability cannot be distinguished, with 95% certainty, from 
those of its extensions 

Not ail homogeneous discoveries are answers to our question, because not all 
homogeneous discoveries satisfy the condition that the associated probabilities 
are distinct. Those homogeneous discoveries that do satisfy this condition are 
said to split the database. In other words, a homogeneous discovery { c/>1, ... , </>l} 
splits the database if: 

All such discoveries are potential answers to our question. 

4. 2. 3 Existence and Quality 
If 4l is carefully defined, many homogeneous discoveries will exist. For exan1ple, 
from a list W = [ c/>1, ... , c/>n], c/>i E g. of descriptions we can generate the list 
'1'' = { </>1, 1<fa1 /\ </>2, 1c/>1 /\ 1<fa2 A <f>3, ... , { 1</>1 /\ · · · A •c/Jn)}. w' is potentially a 
homogeneous discovery if it is, W is called a decision list, [35]. 

Whether there exist homogeneous discoveries that split the database depends 
more on the actual database state than on the design of g.. In other words, there 
might be 0, 1 or many. 

If there are 0, we are out of luck. The database simply does not contain 
enough information to partition the clients through risk-profiles. If there are 
many, we seem to be in similar straits because we can assign many different 
risks to the same client. However, the quality of the different discoveries may 
differ considerably. In other words, one might be naturally the best. 

1 A related notion of homogeneity has been introduced independe11tly in [37] 
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A detailed discussion of quality measures on discoveries is outside the scope 
of this paper. One aspect, however, is interesting to note. One reason for having 
many homogeneous discoveries is that many descriptions are homogeneous by 
definition, i.e., all those descriptions which have no extensions in 'P. 

These trivially homogeneous descriptions are in a sense too small to count. 
In other words, a homogeneous description with a large cover is better than one 
with a small cover. Extending this to discoveries, a discovery that partitions 
the database in large subsets is better than one that partitions it into smaller 
subsets. 

Similarly, the better a set of descriptions distinguishes between its compo­
nents, the better it is. To formalise this, define that a homogeneous set of 
descriptions { c/> 1 , ... , </>z} strongly splits the database if its descriptions differ in 
all aspects: 

i =I= j I\ 

\/7/J E <PVi,j E {l, ... ,l}: c/Ji/\'l/J E <P I\ 

c/>j /\ 'l/; E <I> 

Let { </J1, ... , <Pk} and { 'lj;1, ... , 7Pl} be two homogeneous discoveries that strongly 
split the database and such that all (c/>i) and ('l/Ji) are large. Then there is for 
each <Pi at least one 'l/;j such that (r/>i) n ("-Pi)>> 0 and thus (c/>i /\ 'l/Ji) E <I>. But 
since both discoveries strongly split the database, there can be at most one. So, 
( ef>i) ~ ( 1/J j) and C I c/>i ~ C I 't/J J • In other words, in this case there is essentially 
only one way to partition the database in a good way. 

The fact that the discoveries are not unique is simply caused by the fact 
that a set of tuples can have more than one description. For example, it could 
happen that almost all young clients are male and vice versa. In that case the 
descriptions age = young and gender == male are equally good from a theoretical 
point of view. Not necessarily from a practical point of view. For, it is very well 
possible that the description age == young makes sense to a domain expert 
while gender = male does not. Hence, both options should be presented to the 
domain expert. 

4.2.4 The Search 

If a homogeneous discovery exists that splits the database, it must contain a 
homogeneous description with the highest associated probability. This suggests 
a simple algorithm to find such a discovery: 

Make a list of homogeneous descriptions as follows: 
find a </J that has the maximal associated probability. 
remove ( </>) from db and add </> to the list. 
continue with this process until T is homogeneous on the remainder of db; 

Check whether the decision list splits the database. 

In other words, we can use the associated probability of a rule as a measure of 
its quality. 
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5 WHAT COMPUTER SCIENCE OFFERS DATA MINING 

If Data Mining can be considered as a generalisation of more or less standard 
statistical techniques, what has Computer Science to offer? In other words, how 
can Computer Science help to solve the Data Mining problems? In this section 
we discuss how the two Computer Science parents, AI and database technology 
help to solve Data Mining tasks with a reasonable performar1ce. 

5.1 AI: Search Techniques 
Much effort in Machine Learning and in AI in general has been invested in 
efficient and/ or robust search techniques. The range of these often problem 
specific techniques is far too large to discuss in this paper. Rather, we will 
concentrate on one technique, viz., genetic search (11, 26, 18]. To simplify our 
discussion, we start with the assumption that we have a Class 1 quality function. 

Genetic search, like all genetic algorithn1s, is defined in analogy with biologi­
cal evolution, i.e., it is based on the survival of the fittest. It maintains a popu­
lation of proposed solutions (chromosomes) for a given problem. Iteratively, the 
population undergoes a simulated evolution: relative ''good'' solutions produce 
offspring, which subsequently replace the ''worse'' ones. 

Each iteration, called a reproduction cycle, is performed in three steps. During 
the selection step a new population is formed from stochastically best samples 
(with replacement). Then, during the recombination step some of the men1bers 
of the newly selected population are altered. Finally, all such altered individuals 
are evaluated. 

The recombination is based on two operators: mutation and crossover. Muta­
tion introduces random variability into the population, and crossover exchanges 
random pieces of both chromosomes in the hope of propagating partial solu­
tions. Schematically, we have the following algorithm: 

t :== 0 
initialise P(t) 
evaluate P(t) 
while (not termination-conditio11) do 

t:== t+l 

od 

select P(t) from P(t-1) 
recombine P(t) 
evaluate P(t) 

I-Jeqce, for the specification of a. genetic algorithm for a particular problem we 
must have the following five components: 

1. a ''genetic'' representation for potential solutions to the problem, 

2. a way to create an initial population of potential solutions, 
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3. &1 t~valt .. 1at;i<>11 f1111ct.M:>n that play~ t,h,~ 
S<>lt1t,i<>t1s i11 t,,,1~111s <>f tbt~ir ~-'flt.tit~"S"' 't 

5 · v"al ues f,)r \"'&rio1.1s I>a;rar11t~tt'(t:·s t.tiat tl1t~ gtlJlf•t, it.: ~tJ.g,.,rit h111 t1S€"1i ( l)l)J.>t1lati< .. >11 
size:~, I,lf()l>allilit. it~ ()f itpJ:llyirig gt.:t,r•1,~t. ir~ <.)f>t'r itt,(.}rs, t~t,.:~,), 

For our searc~t1 I>r(>l>lt,rr1, the~ itt~rr1s 1., :l, at1<:i ,it t'•a11 t.,e ,:,it~t111t'."<l i"'~ f<>ll(J'\V8. ~rl1t~ 

c~romc.)SOI11t~s arw::~ si111 J>lyT t,lle <:lE~cri i>t i<."Jns ira <>t1r (:les<""r·i 1>t.i<)11 liir1g11,,gt~ ♦ 11 sii,y 
slightly lllodifi,~d.·· p.ir~t.-('1e0 '".'fl·pt;o~ .r\M i\i"")f'it'!i, 1~"'- l')i~l"'~$('"'ll 1,f::l'\I" ~·""•t·-d•,i\i'!!il:>Jl''•P1'r,)+;.,,.no (''1...f' '!i,,l,,.,,,. ~ ~J ~··~-- ' ~ ·'""'" .. 4 .I,~._ , .. -.i>'II. .tl<•'~ \,,aft ... ti.l~-!b,I, h'~~· J ''~"'~~ •.. ,£ 1- \.1:,,,:,, i:, .IP -~J-~~; 

form: · · 

In other words ~.ill ciat-(.i.o:0 ("r1· P·' t;(.''."18 (".Q",re.1(• ""'·11 ',l>tt. r1'' t)11t•·.- t. 1·-..ir~ (''' '1' ..::!,£~P .,Wt',£';,r&l 1 ,' :::::,: I)· !I.. ~ .. ~.-> I "'·;;,.,-:,: ,,, Lt #i., lo,,, j , ,. ,,., Q. (;~ , . , .. ''LI. ''(;;:0, !A.'lt.,. .·Cl-'~~~----t:) [.&\.,-- iw;_. V } ' ',. 1 
• Jf •. 

s1m ply <-~O\>'er t,he att,ri l.)t1t.es 011 wl1i<~l1 c)r1e (i(~>f~r1 "t, s•~lt~·t .. 
The evaluatic.111 fur1(-:ti(>11 is sirni:)ly 01.1r q1.11\li t:)' fur1c~t,ic>11, Tr1(~ g<~Il(~t.ic (lpt~rrit,(:.),rs 

can be defined a..'3 follrJws: 

Crossover Fc:)r tW() ties<-,riptio11s 111 E i111 I\ ... A ,,,i\,, E \t;, t\ll{i 111 t:: l'trt /\ 
· · · /\ A,, E ii"p, (~ll<)Ose t.wo ele111cnt.s i, j E { l, ... , 1,>} a11cl ("<)t1<:~lutie ttie:: 
descript,ions: 

Al E \1'1 /\ ... /\ .,4\i-1 E \,·i- 1 I\ 

Ai E wi "•••A s<41 E ii,1·1 A A1 .+ 1 E i'j-+1 1\ .• • 1\ A,j E i,;;t 

A 1 E Jt\11 ,I\ · · · A Ai - l E H,~i _,. l /\ 

A, E V~ I\ · · · A .. 4.1 E ~, ,'\ A1+ 1 E ll)·-i + 1 ,'\ · · · 1\ .. 41, E l1,"1., 

Mutation For a descri.ption <f;, cl1cx)Se a.11 i E { 1, ... , p} ar1<l a ra11d<:>r11 ~'1ri ~ 
Ds, a11c.l replace Ai E l'v in ef> by ~4i E iv,. 
Alt.er11atively, one n1ight, exect1t,e <>r·1e st.eJ) <>f tht:\ Hill-c·lir11l:>er· aJgc)rit,11111 
as a rr1utation step. 

The good para111eters fc>r the algorithn1 elm harclly be ciefint~i ir1 aclv·a11ce, t:l1t~y 
have to be four1d by experin1er1tatio1,1. It is Wt'!ll-knc>wr1, l1c>wever, tl11tt tlie r>c}p,.. 
ulatior1 size should be relatively large, say ti. few hu11dred, a11d tl1at quite B;OI11e 

iteration steps, again say a fe~· hur1dred, are needed before suc~}l a syst,en1 will 
converge. 

If we c:onsicler (;la...<IB 2 or Cla.~s 3 (tualit,y f11nc~t,it111s we have t,<) deal "'~itl1 
genomes., i.e., sets of descriJ.)t,ions rat,}1t:~r tl1a11 wit,h descri1>t,ioris. 111 pri11<::i1:>lt'", 
this only {":ha11ges the possible ge11et.ic c)pt~rators. For exa.rtlI>lt~, gt11no111es (~.an 
switcl1 c~o1111)lt~te chro1110001rt•es (>r tl1ey <~a11 I)air tl1eir clt,I't)n10&>1nt~s ar1ci con1-
bine these pairs as ab()ve. 111 r1·1utatior1, orie r11igl1t. alst) c~(>nsitier sirr1ply cirt)ppi11g 
chro111osc)111es are (~}1ange <>11e t>f tl1e cl1ror11c)S()II1es "tit;l1 a <·c>rt'lJ)l(~t,«:~ly tlt~w, itrlli­
trar)r, chro111c>so111e. 1"'ll1is freedo111 ()f c~ltc)ic·t~ i1l'.·1i)li(~ tl1at, \Vt~ si1111:>ljl should t,ake 
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a larger collection of operat,ions ""'"ith it Vl'.\ryi11g 1>rc>t)at:»ility <lf l)ei11g ac~tt,1ally 
cl1osen. For n1ore inforrnat,ion a11d otl1t~r J><)Ssil>le <~hc>i<~t~S, ~~ { 14}. 

As explai11ed at tl1e beginr1i11g of t:l1is st1l>st:~:t:,ior1., tl1ert:~ arc~ 1t11ir1y rr1c>re searct1 
algorithrr1s than ge11etic searc~l1. {)n,~ elf tl1t~ ciist,ir1c~t, it.elv1t11ta.ges <>f gt~11et,ic~ se1u-cl1, 
however, is it,s inhere11t parall(~lis1r1. All r£~<·c)rr1l>i11at,i<)11s a11cl all c1u11lit,y t1vall1-

ations can be do11e i11 parallel. Tl1is prc>rr1is.es a ct)r1sitit~ral:>ltl speecl-11p <>f t,ltt? 
process. 

5. 2 Databases: H a1idling massi11e volt1,rnes ,>J data 

Large in Statistics is a different tern1 fron1 large i11 Dat,at:>as(~s. I1·1 statistic:s a 
large sample cor1sists of a few thousanci rt1cc)rds. Large Datar>a..'3es l1ave l111r1-

dreds of thousands if not millio11s of rec~ords. !\1ort~<)Vf~r, tl1e 11t1111l>er of possibly 
relevant attributes in Data Mining c~ount easil)'r tip t,o 50 or 6(). l,Jsir1g sa11·11>les 
to cope with these large volur11es of data n1ear1s ir1v1iriallly a loss of resolutior1 
in our searcl1. It is far easier for a group of 20.()()(} t,o stand <>ut signific~ant.IJ' ir1 
a crowd of a n1illion than it is for a gro11p c.lf 20 to st,ar1cl c)tlt, sigr1ifica11tly i11 a 
Growd of a thousand. 

However, standard database tecl111ology is Il()t t lie answer to tl1e proble1n of 
massive amounts of data either. For, tl1e discovery proc~ess q11eries t.he dat.abase 
severely, since: 

1. dbms's are tu11ed to a variety of uses ir1cl11di11g tra11sactions, 

2. discovery is in principle a read-only proces,s 011 the database; having ac­
cess, during the search, to the ne\\,est dat,a does r10 improve the quality 
of the information significantly, 

3. during the search, old resl1lti car1 ofte11 be reused, 

it is profitable to have a knowledge disc~overy tool witl1 its owr1 data-server, 
geared specially towards discovery. 

Such a data server is a dbms-kernel tailored for data 111ir1ing purposes. That 
is, it contains no transaction n1anagenlent fu11ctionalit)· r1or write protectio11. 
In fact, one ca11 only store new, derived, data, c>ne (~an11ot 11pdate data. 

What it does contain however, are various n1echar1isrns to speed up query 
processing as much as possible. For data 111i11ing causes an avala1lcl1e of queries 
posed to the database as is wit11essed by the descript1io11 of ger1etic search. 

First and foremost, the data server is a parallel systerr1, sin(~e it has been 
proven that parallel systems can ar1swer bursts of queries far 111ore efficier1t,ly 
than mono-processor systems. 

Secondly, it contains a query-optimisat,ion 1r1odule that optirnizes queries 
both statically and dynamically. Static optimisation is rew1·iti11g a qt1ery ir1to 
the lnost efficient form giver1 database characterist.it~s. DyJ1a111ic optin1isation 
:means that the query is processed as efficiently as possible give11 all tl1e otl1er 
queries that are processed concurrently, [41]. 
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Finally, it contains a browsing optimization module. Many queries in a data 
mining search are related. That is, later queries can be executed much more 
efficiently if some previous results are stored temporarily than when they are 
executed against the complete database. The browsing optimization module 
tries to optimize query processing by storing such intermediate results [20]. 

Another aspect of efficient query processing is using the most suited data 
structure. Therefore, the data-server can dynamically adapt its data-layout (in 
main memory) to suit the current search process as much as possible [19]. 

All these techniques are either well-studied in database research or are cur­
rently under vigorous investigation 

6 FOUNJ)ATIONS OF DATA MININC:: THEORY AND EXPERIMENT 

Data Mining becomes a mature tool for the exploratory data analyst only if 
one can trust the results. In other words, Data Mining should be given sound 
mathematical foundations. These foundations comprise two aspects, viz., the 
quality functions and convergence of the search process. 

The primary goal of Data Mining is the discovery of strategic information. 
In other words, the results will be used to predict the, near, future. The quality 
functions should be chosen in such a way that such extrapolations are, at least 
statistically, valid. 

Given a description language, a quality function, and a database state, we get 
a so called fitness landscape; a multi dimensional graph of the quality function 
over the descriptions. The task is to list the descriptions of high quality. 

Most often, the size of the set of descriptions makes an exhaustive search 
over the fitness landscape intractable, as discussed above. Heuristic searches 
are the only viable option. The immediate question is then, of course, how well 
do the results found by heuristic search compare with the, almost hypothetical, 
results of exhaustive search. 

The only way in which a heuristic search can consistently outperform ran­
dom search is by exploiting the shape of the fitness landscape. The shape of 
this landscape is governed by the, perhaps implicit, structure in the set of 
descriptions and the behaviour of the quality function on this structure. 

In other words, to design good search algorithms one should study the struc­
ture of the set of descriptions, e.g., does it form a lattice, is it a topological 
space or even a metrical space? Moreover, one should study the behaviour of 
quality functions on this structure, e.g., are they continuous or monotonic. 

6.1 What Statistics might off er 
Since we have argued that Statistics should be considered as one of the parents 
of Data Mining, it is only natural to ask what Statistics might offer towards 
the resolution of these two foundational problems. 

For the first problem, the quality function, this is rather obvious. If only 
because of the quality functions defined for Projection Pursuit. More in general, 
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if we want statistically valid results, we should use Statistics to test the validity 
of our results. 

For the second problem, the convergence problem, the situation is less clear. 
There are some results on convergence properties for genetic algorithms in a 
framework of stochastic processes (33, 34]. However, these results apply to the 
case of an infinite population size in continuous space. To make this results 
usefull as foundations for Data Mir1ing, they should be extended to finite pop­
ulation sizes in mixed continuous and discrete spaces. 

For a different type of search algorithms, viz., Neural Networks, there are 
more results .. In [10], for example, techniques from Statistical Mechanics are 
used to analyse the behaviour of Neural Networks. Moreover, in [17J, the au­
thors derive the Information Geometry of Boltzmann Machines, a special class 
of Neural Networks, along the lines of [16]. These results still depend on con­
tinuous space, but no longer do they depend on an infinite population size. The 
problem with these results, however, is that it far from clear how Neural Nets 
can be used in a search for descriptions. 

6.2 Data Surveyor: experimental guidance 
The development of the mathematical underpinni11gs of Data Mining cannot 
be the result of theoretical studies alone. Consider, e.g., the quality functions. 
Although different functions may be more or less mathematically equivalent, 
their usablity in practice might differ considerably. Similar remarks are valid for 
the convergence problem. One can make synthetic databases in which known 
results are hidden. By testing the search strategies on such examples, some 
insight in the convergence process may be gained. 

To get the experimental guidance for the theoretical development, a data 
mine tool called Data Surveyor is currently under development at CWI, [13]. 
Currently, it has a two-level architecture consisting of a data server on top of 
which the Surveyor kernel is executed. In the near future, it will be extended 
to a three level architecture. 

The bottom layer will still consist of the data server. The middle layer will 
consist of a set of different search modules. The top layer will be the user­
interface with which the user can formulate data mining tasks and guide the 
search task. The rationale for have several different search modules is twofold. 
First, it is very well posible that different algorithms perform better for different 
data n1ining problems. Second, by using different search algorithms on the same 
real world database states more insight in the convergence properties of the 
various algorithms can be gained. 

Acknowledgements: The author wishes to thank Marcel Holsheirr1er, and 
Johan van den Akker for stimulating discussions and constructive criticism on 
an earlier version of this paper. 
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