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As Professor of Mathematics at the Free University, Cor Baayen was an 
inspiring teacher. His lectures were lucid and skilful, and his broad knowledge 
enabled him to exhibit the students unexpected vistas and panoramas through 
several areas in mathematics and theoretical computer science, with topology, 
set theory, discrete mat,hematics, logic, and computability as landmarks. As a 
student you learned that everything is related to everything. 

Another characteristic of Co1· Baayen's lectures was that he always was eager 
to present courses on 'modern' topics in mathematics - modern in the sense of 
not belonging to the standard student curriculum in mathematics ( n1any still 
don't belong to it). Thus we learned about boolean algebras, graphs, modal 
logic, proof theory, recursion theory, computability, etc. At the same time there 
was a strong interest in the historical side of the results discussed. 

The courses of Cor Baayen (and his oral examinations, which generally out
growed to private lessons of at least three hours) being stimulating, he added a 
personal touch by inviting students from their first year at his home, for further 
metamathematical background. He has stimulated the enthusiasm of several 
students for mathematics and for doing research. 

I think it appropriate not to restrict myself in this paper to one area, but 
rather to try to link some of the areas of Cor Baayen's interest, by a ramble 
through topology, discrete mathematics, and algorithmics, with due attention 
to the historical roots and to some connections ,vi th a few of the other interests 
of Cor Baayen. 

1. Roots of topology. It seems that Leibniz was one of the first interested 
in topology, or what he called geo'metria situs. In 1679 he wrote in a letter to 
Christiaan Huygens: 

.. . mais apres tous les progres que j'ay faits en ces matieres, je ne suis 
pas encor content de l'Algebre, en ce qu'elle ne donne ny les plus cour
tes voyes, ny les plus belles constructions de Geometrie. C'est pourquoy 
lorsqu'il s'agit de cela, je croy qu'il nous faut encor une autre analyse 
proprement geometrique ou lineaire qui nous exprime directement situm, 
comme l' Algebre exprime magnitudinem. Et je croy d'en voir le moyen et 
qu'on pourrait representer des figures et mesme des machines et mouve-
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mens en caracteres, comme l' Algebre represente les nombres ou grandeurs: 
et je vous envoye un essay qui me paroist considerable. 

According to Listing, in his Vorstudien zur Topologie of 184 7 [37], this was the 
first idea of a scientific and 'calculatory' elaboration of the modal side of the 
geometry, 

... in welchen von einer Art Algorithmus die Rede ist, womit man die 
Lage raumlicher Gebilde eben so der Analyse unterwerfen miisste, wie es 
hinsichtlich der Grosse mittelst der Algebra geschieht. 

(The essay referred to by Leibniz is following Listing not of 'eigentlich modalen 
Inhalts'.) 

Listing also mentions work by Euler and others on 'die bekannte Aufgabe des 
sogenannten Rosselsprungs', by Vandermonde on the route by which a thread 
should go in order to represent for instance a braid or a garter of the weave of 
a stocking, and by Clausen on the sn1allest number of penstrokes with which a 
given figure can be drawn. 

Listing, a student of Gauss, says that except for this, tl1e modal side of 
geometry has 'to expect its elaboration and development aln1ost completely from 
the future'. As reasons for the fact that since Leibniz not much has been done 
on the topic, Listing mentions the complexity of discovering effective methods 
to reduce spatial intuition to concepts, and the inadequacy of language for 
describing scientifically these, often highly entangled, concepts. 

Listing does not claim that he had performed this hard job, and therefore he 
calls his treatise Vorst1.1.dien zur Topologie, thereby coining the name topology: 

Es mag erlaubt sein, fiir diese Art U ntersuchungen raumlicher Gebilde 
den N amen ''Topologie'' zu gebraucl1en statt der van Leibniz vorgeschla
genen Benennung ''georr1etria situs'', welche an den Begriff des Masses, 
der hier ganz untergeordnet ist, erinnert, ur1d mit de1n bereits fiir eine an
dere Art geometrischer Betrachtungen gebraucl1lich gewordenen Namen 
''geometrie de position'' collidirt. U nter der Topologie soll also die Lehre 
von den modalen Verhaltnissen raumlicher Gebilde verstanden werden, 
oder von den Gesetzen des Zusarnmenhangs, der gegenseitigen Lage und 
der Aufeinanderfolge von Punkten, Linien, Flachen, Korpern und ihren 
Theilen oder ihren Aggregaten i1n Raume, abgesehen von den Mass- und 
Grossenver hfiltnissen. 

Listing discusses how several spatial configurations could be represented by a 
calculus. In particular he focuses on the orientation of objects, and on how 
one can use his observations when looking through the micro- or telescope, 
especially when also mirrors are involved. Moreover, he considers dextro- and 
laevorotation of screws, spri11gs, ropes, spiral staircases, snail's shells, and stalks. 

Listing finds that it is difficult to describe the orientation of objects by 
words, claiming the i11adequacy of the description of dextro- and laevorotatory 
in Linnaeus' Philosophia Botariica (1751): 
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Den Ausdruck caulis vol u bilis namlich erklart Linne so: spirali ter 
ads c end en s per ram u m a 1 i en u m und zwar s i n is t r ors u m ( () s e-
c u n du m so I em vu Igo, e. g. Hum u 1 us, Loni c er a cet.; de x t r or-
s um ()) contra m o tum so 1 is vu I g i e. g. Con v o 1 vu I us, Phase-
o 1 us, cet. Bei der Intorsio wiederholt er diese Bestimmung und stellt sie 
mit den Windungstypen am Cirrhus, an der Corolla und anderen Organen 
zusammen. In einer Anmerkung hierzu gibt nun Linne seine Definition 
von sin is t r ors um und de x t r ors um, welche spater - zum Theil aus 
Anlass des dabei vorgefallenen Druckfehlers - die verschiedensten Ex
egesen erfahren hat. Linne setzt fest: sin is t r ors um ho c est, q u o d 
re s p i c i t d ext r am , s i p o n as T e i p s u m , i n c e n t r o c o n s t i t u-
t um, meridiem adspicere; dextrorsum itaque contrarium, 
und erklart damit, <lass er die nach der rechten Seite eines im Centrum ste
hende Beobachters hervorragenden Blumenblatter als Kennzeichen einer 
links gewundenen Corolla angesehen wissen wolle, und vice versa. Das 
meridiem adspicere ist in der concreten Sprache Linne's nicht sowohl ein 
ii berfl iissiger, als vielmehr ein pragnanter A usdruck fiir die aufrechte Stel-
lung des mitten in der Blume gedachten Beobachters, der das Gesicht r1ach 
einem bestimmten Punkte des Horizonts kehren soll - verst,eht sich, den 
Scheitel nach oben gerichtet. Freilich bleibt bei diesen Erklarungen in 
topologischer Hinsicht manches zt1 erganzen, manches zu fragen iibrig. 

Figure 1 

Studyi11g orientation brings Listing to k11ots. ( A knot is a 
simple closed curve i11 IR3 .) They were considered before 
by Gauss in computing inductance in a system of linked 
circular wires. Listing introduced a (now standard) planar 
representation of crossings, as in Fig11re 14 

Eine Kreuzung dieser Art, wobei sich nach angegebener vVeise in der Pro
jection oder Zeichnung der iiberliegende von dem untenliegenden Faden 
d urch den blossen Anblick leicht unterscheider1 lasst, 11ennen wir eine U e
berkreuzung im Gegensatz zur Durchkreuzung, wo ein \virklicher Durch
schnittspunkt im Raume stattfindet, und die eben gedachte Entfernung 
beider Faden bei K entweder Null ist, oder wenigstens als verschwindend 
betrachtet wird. Zwei Wege konnen demnach, wie beirn gewohnlichen 
Kreuzwege, einander durchkreuzen, oder aber, wie diess in manchen Stadt
en und bei vielen Kreuzungen zwischen Eisenbahnen und anderen Fahr
strassen der Fall ist, einander iiberkreuzen. 

He also introduces a calculus with .,\ (for laeotrop) and 8 (for dexiotrop) in
dicating the corners at the crossing as in Figure 2, claiming that this signing 

Figure 2 

will facilitate an algorithmic discussion ( 'wie sie ihres Ortes 
gefiihrt werden muss') of the equivalence of knots. 

Without proof Listing states that the number of cross
ings in the trefoil knots (Figure 3) cannot be decreased, and 
that the two knots in the figure are not equivalent. 

In particular, Listing was interested in knots in which each face of the pro
jection is 'monotype' - that is, contains either only .,\ or only 8. Such knots are 
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now known as alternating knots - indeed, when 
following the knot one goes alternatingly over and 
under. The type-symbol assigned to such knots is 
for instance 85 + 383 , A 4 + 2A 3 + 2.-\2 , indicating 
that there is 1 8-face with 5 edges, 3 8-faces with 

Figure 3 3 edges each, 1 A-face with 4 crossings, 2 A-faces 
with 3 edges each, and 2 ..X-faces with 2 edges each. 

Clearly, the A.8 type-symbol is an invariant under the trivial operations on 
the diagram: rerouting an edge through the unbounded face, and mirroring 
the diagram, while interchanging 'up' and 'down' at each crossing. However, 

7 

Listing realizes that the A.8 type-symbol 
does not give an invariant for alternat
ing knots - he gives an example of two 
equivalent alternating knots (Figure 4) 
that have different )...8 type-symbols. 

Interesting is that Listing mentions 
Figure 4 

as one of the further applications of to
pology, beside natural sciences and art, also the area of industrial mechanics, 
for which Listing refers to the work of the computer pioneer Charles Babbage 
(4] on representing machine movements by symbols. 

2. Tait and knots. Independently of Listing, P.G. Tait studied knots. He was 
interested in knots because of the 'vortex atom' model invented by his friend, 
the physicist W. Thomson (later Lord Kelvin), like Tait of Scottish origin. 

Tait had a broad scientific interest in mathematics, physics and other dis
ciplines, and published papers and notes on electrodynamics, magnetism, the 
molecular arrangement in crystals, determinants, quaternions, thermodynam
ics, tl1e value of the Edinburgh Degree of M.A., the fecundity and fertility of 
women, earth rotation, comets, fluid dynamics, partial differential equations, 
spectral analysis, thermoelectricity, the retina, the pendulum motion, combina
torics, viscocity, integral calculus, sound and music, the double rair1bow, thun
derstorms, and the pace of a golf ball. 

Studies of curves in the plane led him to investigating the four-colour prob
lem, and he also applied them to knots. In a paper presented to the British 
Association in 1876, Tait [66] observed that the cells of a plane closed curve can 
be coloured black and white so that adjacent cells have different colours. He 
finishes by remarking: 

The development of this subject promises absolutely endless work - but 
work of a very interesting and useful kind - because it is intimately 
connected with the theory of knots, which (especially applied in Sir W. 
Thomson's Theory of Vortex Atoms) is likely s0011 to become an important 
branch of mathematics. 

In the theory of 'vortex atoms' of Thomso11 [72], the internal coherence of atoms 
was assumed to be determined by a knot, or rather a link (a disjoint union of 
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knots), connecting the different indivisible parts of the ato1n, the 'vortex tubes' 
(a theory soon abandoned by Thomson). By classifying knots, Tait hoped to 
shed light on the periodic table of elements. 

In a note communicated to the Royal Society of Edinburgh on 18 Decem
ber 1876, Tait [61] observed that any closed curve in 
the plane gives an alternating knot, just by going al
ternatingly over and under. He conjectures that if 

Figure 5 such an alternating knot is reduced, that is, cannot 
be decomposed as in Figure 5, then it has a minimum number of crossings 
among all knots equivalent to it; that is, 'cannot have the number of crossings 
reduced b. r any possible deformatior1.' As a motivation for considering alternat
ing knots, Tait [65] mentioned that they occur on various sculptured stones and 
in woodcuts of Diirer. 
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''I am indebted to Mr Dallas for a photograph of a 
remarkable engraving by Dur·er, exhibiting a very 

complex but symmetrical linkage, in which this 
alternation is maintained throughout. '' (Tait [65]) 

After having presented 
his subsequent 'Note on the 
Measure of Beknottedness' 
(Tait [62]), Tait's attention 
was draw11 by the physicist 
J.C. Maxwell ( also Scottish) 
to Listi11g's Vorstudien Z'Ur 

Topologie, whicl1 Tait next 
studied witl1 great enthu
siasn1, calling it an 'extre-
111ely valuable, but too brief, 
Essay'. 

It rnade Tait aware of 
the fact that there exist al 
ternati11g knots tl1at are e
quivalent but ca11not be ob
tained frorn each other by 
tr·ivial operations, as they 
have different A8 type-sym
bols. In fact, in [63] he sta
tes that tl1e sole point of 
Listing's paper· which ( as far 
as knots are concerned) was 
thoroughly new to Tait 
'though not unexpected' -
was an operation that Tait 
extracted from Listing's as
sertion that the knots in Fig
ure 4 are equivalent. 

The operation transforms one alternating knot into another. To apply it, one 
needs to decompose the knot into two blocks as in the first picture in Figure 

497 



6. Then one of the blocks is rotated 180°, as indicated in the second picture 
of Figure 6. Later, Tait called this operation ftyping. Note that also the trivial 
operations can be obtained as the result of a series of flypings. 

Figure 6 

The new operation made Tait conclude that the classification of knots is 
much more difficult than Tait initially thought, 

and it is so because the number of really distinct species of each order is 
very much less than I was prepared to find it. 

It made him plan to give up the whole area of knots, as the note ends with: 

And here I am glad to leave it, for at this stage it is entirely out of my 
usual sphere of work, and it has already occupied too much of my time. 

But saying farewell to knots is not that easy, and Tait's abstinence was 
of very short duration. In the same 'Session 1876-77' of the Royal Society of 
Edinburgh he published five more notes on knots a11.d lir1ks, including one on 
'Sevenfold Knottiness' [64]. In this paper, the reduced alternating knots with 
seven crossings are classified. This may be cor1sidered as the root of 'Tait's 
flyping conjecture' ( although in [64] the term 'flyping' is not used yet). 

In his classification, the equivalence of knots is derived by applying only 
flyping (including the trivial operations). On the other hand, Tait seemed to 
have only intuitive means of showing that certain knots are nonequivalent - at 
least, he does not describe in his paper why certain knots are nonequivalent. So 
Tait assumed without proof that equivalence of alternating knots is completely 
determined by flyping. Therefore one may say that Tait conjectured: 

Tait's flyping conjecture. Two reduced alternating knots are equivalent if 
and only if they can be obtained from each other by a series of fiypings. 

Tait was aware of the fact that he did not yet have a way of proving nonequiv-
alence of knots, as in [68] he wrote: 

. . . and thus, though I have grouped together many widely different but 
equivalent forms, I cannot be absolutely certain that all those groups are 
essentially different one from another. 

Tait's big article 'On knots' [65] seems the first in which he uses the term 
ftyping: 
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The deformation process is, in fact, one of fiyping, an excellent word, 
very inadequately represented by the nearest equivalent English phrase 
''turning outside in''. 

Although it seems that he restricted the term for turning a knot completely 
upside down, earlier in the paper the operation of Figure 6 was mentioned: 

. . . this process . . . gets rid of a crossing at one place only by introducing 
it at another. It will be seen later that this process may in certain cases 
be employed to change the scheme of a knot, ... 

Moreover, in a later paper, Tait (67] speaks of 'flyping of individual parts' of 
a knot, thereby indicating that the general operation described above indeed 
should be called fiyping. 

The word 'flype' is old Scottish and means according to The Concise Scots 
Dictionary: 'fold back; turn wholly or partially inside out; tear off (the skin) 
in strips, peel'. A Dictioriary of the Older Scottish Tongue, from the Twelfth 
Century to the End of the Sei1enteenth has as ler11111a: 

Flyp( e, v. [e.rn.E. a11d ME. fiype ( c. 1400), of obsct1re origin; c:11rrent in 
later Sc. and nortl1ern Eng. dialects.] tr·. To fold back; to tt1rn outwards. 
Thare laithlie lyning furthwart flypit,; LYND. Syde Taillis 97. Ane pair of wyd 

slevis of arn1ing flypand bakward; 1561 J,n·i,. War·drobe 128. Su111 flyrand, thair 

phisnomeis thai flyp [v.r. flipe]; MoNTG. Flyt. 510 (T). I used ofte11 to flype up 

the lids of 111y eyes; Row 452. 

The Scottish National Dictionar·y, de.signed partly ori ·r·egional lines and p<ir·tly 
on historical principles, and c:oritaining all the Scottisli 'UJords kno'wn to be in 
use or to have been iri ·use sirice c. 1700 gives a111011g ot,l1e1· tl1e followi11g usage: 

Sc. 1896 Stevenson W. of Herm.iston vi.: 
~'Miss Cl1ristina, if you J)le,1se, Mr. Weir!'' s,tys I, a11cl just fly1>e<l llp rny 
skirt tails . 
• • • 

Sc. 1721 J. Kelly Proverbs 218: 
I will s0011er see you fleip-ey'd, like a Fre11cl1 Cat. A disdai11f11l rejectir1g 
of an unworthy Proposal; spoker1 by bold Mctids t{) tl1e vile offers of young 
Fellows. 

In a discussion of Listing's Vo1·studien, Tait [67] desc~ribes flypi11g as follows: 

When we fiype a glove (as ir1 taking it very wet, or as we skin a l1are), 
we perform an operation wl1ich (not describable in Englisl1 by any shorter 
phrase than ''turning outside in'') char1ges it character from a right-hand 
glove to a left. A pair of trousers or a so-called reversible waterproof coat 
is, after this operation has been transformed, still a pair of trousers or 
a coat, but the legs or arms are interchanged; unless the garments, like 
those of ''Paddius a Corko'', are buttoned behind. 

The processes described by (Peter) Tait and the vocabulary introduced by him 
inspired the physicist (Jack) Maxwell to the following poen1: 
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(CATS) CRADLE SONG 
By a Babe in Knots. 

Peter the Repeater 
Platted round a platter 
Slips of silvered paper 
Basting them with batter. 

Why should a man benighted, 
Beduped, befooled, besotted, 
Call knotful knittings plighted, 
Not knotty but beknotted? 

Flype 'em, slit 'em, twist 'em, 
Lop-looped laps of paper; 
Setting out the system 

It's monstruous, horrid, shocking, 
Beyond the power of thinking, 
Not to know, interlocking 

By the bones of N eper. Is no mere form of linking. 

Clear your coil of kinkings 
Into perfect plaiting, 

But little Jacky Horner, 
Will teach you what is proper, 
So pitch him, in his corner, 
Your silver and your copper. 

Locking loops and linkings 
Interpenetrating. 

Tait [65] also introduced a convenient auxiliary graphical representation of 
knot and link diagrams ( more generally, sets of closed curves) in the plane. 
Colour the faces of a link diagram K black and white, so that adjacent faces 
have different colours, and so that the unbounded face has colour white. Now 
put a point in each of the black faces. If any two black faces f, f' are 

Figure 7 

adja cent to a common crossing, draw a line 
connecting the points in f and f' -· cf. Figure 
7. In this way we obtain a plane graph HK, 
that uniquely determines the projection of the 
link diagram K, at least combinatorially. If 
the link diagram is alternating, we can recon
struct it from HK ( after adopting a convention 
on whether each black face corresponds to a 
dexiotrop or· a laeotrop face of the link). We 

thus obtain an equivalence of combinatorial questions on alternating knots and 
on plane graphs. 

3. Work on Tait's conjectures. Since the work of Listing and Tait, the 
study of knots has come to great flourishing. Work on distinguishing knots by 
polynomial invariants ( including the well-known Jones polynomial), the connec
tions to mathematical physics, and the applications for instance to DNA have 
contributed to that. Especially, the work on polynomials has made it possible 
to prove the nonequivalence of several pairs of knots. 

In this ramble I just want to restrict myself to some of the work done on 
Tait's conjectures. Using the Jones polynomial, Kauffman [27], Murasugi [43], 
and Thistlethwaite [69] were able to show Tait's conjecture that a reduced alter
nating link diagram attains a minimum number of crossings, taken over all (not 
necessarily alternating) links equivalent to it. In particular, any two equivalent 
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reduced alternating links have the same number of crossings. 
A special case of Tait's flyping conjecture was considered in (57]. Call a link 

diagram K well-connected if it does not have a nontrivial cut 
that crosses the diagram in at most four curves only. That is, 
for any decomposition of the diagram as in Figure 8, one of the 

Figure 8 blocks should contain at most one crossing. 
For a well-connected alternating link diagram, flyping clearly loses most of 

its lustre. For well-connected links Tait's flyping conjecture reduces to: 

Theorem 1. Let K and K' be links with well-connected alternating diagrams. 
Then K a1.1,d K' are equivalent if and only if the diagrams arise from each other 
by trivial operations. 

Meantime, Menasco and Thistlethwaite [39] have annol1nced a proof of Tait's 
:flyping conjecture in full generality. 

We sketch some elements of the proofs. Let K and K' be two links, with 
reduced alternating diagrams. We must show that if K and K' are equivalent, 
then their diagrams arise from each other by a series of flypings. In both proofs, 
surfaces are introduced to trace the movements when transforming K' to K. 

Let K be an alternating link, with link diagram having a dextrotrop un
bounded face. Then the compact bordered surface EK is 'the' surface with 
boundary Kand with projection equal to the closure of the union of the laeotrop 
faces. A pictorial impression is given in Figure 9. 
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link K, there will be two surfaces with 
boundary K: first the surface EK asso
ciated with K; second the transformed 
surface r(EK' ), where T : S 3 > S 3 

describes the isotopy bringing K' to K. 
Thus the surface r(EK,) in a way bears 
the 'history' of moving K' to K. 

There are some parameters of comFigure 9 
pact bordered surfaces that remain in

variant under isotopy. First, the Euler characteristic is an invariant. A second 
parameter invariant under isotopy is the twisting number, which is about the 
number of twists one makes when driving on the surface, close to the boundary, 
like on a roller coaster (added up over all boundaries). 

Now one can show that if K is a link with well-connected alternating dia
gram and if Eis any compact bordered surface with boundary Kand with the 
same Euler characteristic and twisting number as :EK, then there is an isotopy 
bringing E to EK. 

This directly gives, for any two equivalent links K and K' with well-connected 
alternating diagrams, that there is an isotopy bringing EK, to :EK. Indeed, for 
this it suffices to show that EK and :EK, have the same Euler characteristic 
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and the same twisting number. This follows directly from earlier results on the 
invariance of the number of black faces and of the 'writhe' of a link (Murasugi 
[ 44], Thistlethwai te (70], [71]). 

Finally, to finish the proof of Theorem 1, one has for links K and K' with 
well-connected alternating diagrams: if there is an isotopy bringing ~K' to }:K, 

then the diagrams arise from each other by trivial operations. This fact is 
proved by showing that if ~K and EK' are isotopic, then the cycle spaces of HK 
and HK, form isomorphic matroids. This is shown by comparing the twisting 
numbers of circuits in 1:K and ~K'. 

Hence, by a theorem of Whitney [76], HK and HK, are the same up to 
trivial operations ( note that these plane graphs are 3-connected by the well
connectedness of the diagrams). This gives that the diagrams are the same 
up to trivial operations, and thus we have Tait's flyping conjecture for well
connected links. 

The proof of the full Tait flyping conjecture as announced by Menasco and 
Thistlethwaite [39] makes a more extensive use of invariants, including polyno
mial invariants, and applies them simultaneaously to the surface :EK and to the 
surface E~ obtained similarly as :EK but with respect to the dextrotrop faces 
( assuming the link diagram being on the 2-sphere). 

4. Reidemeister moves. A basis of representing a knot by its diagram is that 
never more than two points of a knot project to the same point in the plane, 
and if two points have the same projection, it is a crossing. By this one does 
not lose generality. 

Reidemeister [48] observed that this principle can be extended. If one con
siders the isotopic move of a knot, one has a fourth dimension, the time. Then 
one may assume that the move is so that at any fixed moment not more than 
three points of the knot project to the same point in the plane, and if three 
points have the same projection, they pairwise cross. 

Further analysis led Reidemeister to showing that if two links are equivalent, 
then their diagrams can be moved to each other by a series of simple operations, 
called Reidemeister moves: 

(1) type I: replacing 
' 

by "-, and conversely; 

type II: replacing''-'' by .,,,,,,,..........,, and conversely; 

~ 

type II I: replacing " ., : ~ by , ..._>(· 

(In Reidemeister's book Knotentheorie [49], these operations are called 11.1, 0.2, 
and 0.3.) 

It enables to study knot equivalence just by diagrams, and it reduces knot 
equivalence to a combinatorial question. Most of the knot polynomials have been 
shown to be invariant by showing that they are invariant under the Reidemeister 

moves. 
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On the other hand, Reidemeister moves do not imply a finite algorithm to 
test if two given knots are equivalent. There is no upper bound known ( expressed 
in the number of crossings of the knots) for the number of Reidemeister moves to 
be made to transform one knot to another, equivalent, knot. Equivalently, there 
is no upper bound known for the maxin1um number of crossings at intermediate 
diagrams when transforming two equivalent knots to each other by Reidemeister 

Figure 10 

moves. 
Consider next a closed curve in the plane, like in 

Figure 10, assuming that there are only a finite num
ber of double points, each being a crossing of two 
curve parts. It is quite trivial to show that it can 
be unwrapped to a simple closed curve by a series 
of the following operations - which are also called 
Reidemeister moves: 

( 2) type I: replacing Q by 1'·", , and conversely; 
, ·, 

type II: replacing by --.·•····~ · -·. , and conversely; 

' ' type Ill: replacing 1
:._/ 

,•· ' 

. . 

by ,:•<.,. . 

Next it is an easy exercise to show something stronger: in transforming a 
plane closed curve to a simple curve we can restrict the Reiden1eister moves to 
those not increasing the number of crossings. That is, the Reidemeister moves 
of types I and II are only applied from left to right in (2). A similar statement 
holds when transforming a system of plane closed curves to a system of pairwise 
disjoint simple closed curves, except that we should add a Reidemeister move 
of type 0: 

(3) 

(Using the analogy between a system K of plane closed curves and the plane 
graph HK as introduced by Tait (see Figure 7), one can derive from this the 
result of Griinbaum [23] that each plane graph can be obtained from the empty 
graph by a series of the following operations: (i) adding a new vertex, possibly 
connected by a new edge to an existing vertex; (ii) adding a new edge parallel 
to an existing edge; (iii) adding a new vertex in the 'midst' of an existing edge; 
(iv) 'Y ~', that is, replacing a vertex v of degree 3, and the three edges incident 
with v, by a triangle connecting the three vertices adjacent to v; (v) 'Ll Y', that 
is, the operation reverse to (iv).) 

If we have a closed curve Con a compact surface Sit is clear that in general 
one cannot make it simple by Reiden1eister moves. The best one may hope for 
is to reduce the number of crossings to the minimun1 number of crossings taken 
over all closed curves freely homotopic to C. 

That is, define 

(4) mincr(C) := min{ cr(C')IC' freely homotopic to C}. 
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Here er( C') denotes the number of selfcrossings of C', counting multiplicities. 
Two closed curves C, C' : S1 

---4- S are freely homotopic, in notation C rv C 1
, if 

there exists a continuous function 4> : S1 x [O, 1] > S such that 'P(x, 0) = C(x) 
and 'P(x, 1) = C'(x) for each x E S 1 . 

Call C minimally crossing if er( C) == miner( C). Then it is shown in [22] that 
each closed curve C can be transformed to a minimally crossing closed curve by 
Reidemeister moves, without increasing the number of crossings throughout the 
moves. 

This holds more generally for systems of closed curves. To this end define 
for closed curves C and D on S: 

(5) mincr(C,D) :== min{cr(C',D')IC' rv G,D' r-.., D}. 

Here er( C', D') is the number of crossings of C' and D', counting multiplicities. 
A system C1 , ... , Ck of closed curves on S is called minimally crossing if each 
Ci is minimally crossing and if er( Ci, Ci) == miner( Ci, Ci) for all i -/= j. 

Then the following is proved in [22]: 

Theorem 2. Any system of closed curves on a surface can be transformed to a 
minimally crossing system by a series of Reidemeister moves, without increasing 
the number of crossings during the moves. 

(To be precise, one should add some tameness assumptions: the surface should 
be triangulizable, and the system of closed curves should have only a finite 
number of double points, each being a crossing.) 

It is important to note that the main content of Theorem 2 is that one does 
not need to apply any of the operations (2) in the reverse direction - otherwise 
the result would follow quite straightforwardly with the techniques of simplicial 
approximation. 

The idea of the proof is as follows ( for one non trivial closed curve C). First 
it is shown that one may assume that Sis 'hyperbolic', that is, has a hyperbolic 
distance on it. Then C is freely homotopic to a unique shortest closed curve C' 
on S. Consider the following operation. Choose a closed disk .6. on S, convex 
with respect to the hyperbolic distance. Straighten out the intersections of C 
with Ll; that is, replace each intersection I by the shortest curve that has the 
same end points as I. Due to an extension of a theorem of Ringel [50], this can 
be done by applying Reidemeister moves to .6.. 

Now one may show that by choosing a finite number of closed disks 6., 
one can move C arbitrarily close to C'. Then making C minimally crossing 
essentially is reduced to making a closed curve on the annulus or the Mobius 
strip minimally crossing ( depending on whether C is orientation preserving or 
not). This last turns out to boil down to the following auxiliary results on 
permutations. 

Let 1r be a permutation of {1, ... , n}. A crossing pair of 1r is a pair {i,j} 
with (i -j)(1r(i)-1r(j)) < 0. The crossing number (or length (cf. Bourbaki [7])) 
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er( 1r) of 1r is the number of crossing pairs of 1r. 

Let mincr(1r) denote the minimum of cr(1r') taken over all conjugates 1r' of 
1r. So miner( 1r) only depends on the sizes of the orbits of 1r. A permutation is 
minimally crossing if er( 1r) == n1incr( 1r). Similarly, maximally crossing is defined. 

A transposition is any permutation ( k, k + 1) for some k E { 1, ... , n - 1}. 
Since each permutation a is a product of transpositions, it is trivial to say that 
each permutation 1r can be transformed to a minimally crossing permutation by 
a series of operations 

(6) 7r > T7rT, 

where T is ,t transposition. Similarly for maximally crossing. 
What however can be proved more strongly is: 

Lemma. Each permutation 1r of { 1, ... , n} can be transformed to a minimally 
crossing permutation by a series of operations (6), while never increasing the 
number of crossing pairs. A similar statement holds for maximally crossing. 

Geck and Pfeiffer (21] proved the first part of the Lemma more generally for any 
Weyl group (instead of just a permutation group). It is not known if also the 
'maximally crossing' part also holds for Weyl groups. 

5. Curves and circulations on surfaces. One motivation for studying 
Reidemeister moves on surfaces was to derive a homotopic circulation theorem 
for graphs embedded on a surface. Once one has Theorem 2, such a circulation 
theorem can be derived by a number of straightforward arguments based on two 
kinds of duality: duality of graphs on surfaces and linear programming duality 
(Farkas' lemma). 

Again, let S be a surface, and let G = (V, E) be an undirected graph en1-
bedded on S. For any closed curve D on S, let cr(G, D) denote the number 
of intersections of G and D (counting multiplicities). Moreover, mincr(G, D) 
denotes the minimum of er( G, D') where D' ranges over all closed curves freely 
homotopic to D and not intersecting V. 

We first derive the following theorem from Theorem 2, which was proved for 
the projective plane by Lins [36]: 

Theorem 3. Let G = (V, E) be an Eulerian graph embedded on a surface S. 
Then the edges of G can be decomposed into closed curves C1 , ... , Ck such that 
for each closed curve D on S: 

k 

(7) mincr(G,D) = - miner( Ci, D). 
i-1 

Here a graph is Eulerian if each vertex has even degree. ( Connectedness of 
the graph is not assumed.) Moreover, decomposing the edges into C1 , ... , Ck 
means that each edge of G is traversed by exactly one of the Ci. 
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Note that the inequality > in (7) trivially holds, for any decomposition of 
the edges into closed curves C1 , ... , Ck. The content of the theorem is that 
there exists a decomposition attaining equality for each D. 

The idea of the proof is as follows. First, by an easy construction we may 
assume that each vertex v of G has degree at most four. Next, we define the 
straight decomposition of G as the system of closed curves that decomposes the 
edges of Gin such a way that in each vertex of G, opposite edges are traversed 
consecutively. So each vertex of G of degree four represents a (self-)crossing of 
C1,••·,ck. 

Up to some trivial operations, such a decomposition is unique, and con-
versely, it uniquely describes G. So any Reidemeister move applied to 01, ... , Ck 
carries over a modification of G. Hence we can speak of Reidemeister moves 
applied to G. 

(8) 

The following is easy to see: 

if G' arises from G by one Reidemeister move of type III, then 
miner( G', D) = miner( G, D) for each closed curve D. 

Let us call any graph G = (V, E) that is a counterexample to the theorem 
with each vertex having degree at most four and with a minimal number of 
faces, a minimal counterexample. 

(9) 

From ( 8) it directly follows that: 

if G' arises from a minimal counterexample G by one Reidemeister 
move of type III, then G' is a minimal counterexample again. 

Moreover one has: 

(10) if G is a minimal counterexample, then no Reidemeister move of 
type 0, I or II can be applied to G without increasing the number 
of vertices of G. 

For suppose that a Reidemeister move of type II can be applied to G. Then G 
contains "--"' as subconfiguration. Replacing this by >C>< would give a smaller 
counterexample (since the function mincr(G, D) does not change by this oper
ation), contradicting the minimality of G. 

One similarly sees that no Reidemeister move of type O or I can be applied. 
The proof is finished by showing the contradictory statement that the straight 

decomposition C1 , ... , Ck of any minimal counterexample G satisfies (7). 
Choose a closed curve D. By Theorem 2 we can apply Reidemeister moves to 

the system D, C1 , •.. , Ck so as to obtain a minimally crossing system D', C{, ... , C~. 
By (10) we did not apply Reidemeister moves of type 0, I or II to C1, ... , Ck. 

Hence by (8) for the graph G' obtained from the final Cf, ... , 01 we have 
mincr(G', D) = mincr(G, D). So 
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k 

(11) mincr(G, D) = mincr(G', D) < cr(G', D') = 
i=l 

k k 

= .__ mincr(c:,D') = _ mincr(Ci,D). 
i-1 i=I 

This proves Theorem 3. 
Using surface duality one directly obtains from Theorem 3 the next theorem. 

If G is a graph embedded on a surface S and C is a closed curve in G, then 
minlengtha(C) denotes the minimum length of any closed curve C' "'C in G. 
(The length of C' is the number of edges traversed by C', counting multiplicities.) 

Theore1n 4. Let G == (V, E) be a bipartite graph cellularly embedded on a 
compact surface S. Then there exist closed curves D 1 , ... , Dt on S \ V such 
that each edge of G is crossed by exactly one Dj and by this Dj only once and 
such that for each closed curve C: 

t 

(12) minlength0 (C) = 
j=l 

Now with linear programming duality (Farkas' lemma) one derives from 
Theorem 4 the following 'homotopic circulation theorem' - a fractional packing 
theorem for cycles of given homotopies in a graph on a compact surface. 

Let G = (V,E) be a graph embedded on a compact surface S. For any 
closed curve Con G and any edge e of G let trc(e) denote the number of times 
C traverses e. So tr c E ]RE . 

Call a function f : E ---+ R a circulation ( of value 1) if f is a convex 
combination of functions trc. We say that f is freely homotopic to a closed 
curve 0 0 if we can take each C freely homotopic to Co. 

Theorem 5 (homotopic circulation theorem). Let G = (V, E) be an undirected 
graph embedded on a compact surface S and let C 1 , ... , Ck be closed curves on 
S. Then there exist circulations f 1 , ... , f k such that Ji is freely homotopic to 
Ci (i = l, ... , k) and such that I:7=1 fi(e) < 1 for each edge e, if and only if 
for each closed curve D on S \ V one has 

(13) cr(G, D) > 
k 

'---' 
i=l 

mincr(Ci, D). 

We sketch the proof if G is cellularly embedded. Necessity of the condition is 
direct. To show sufficiency, by Farkas' lemma ( cf. [54]) it suffices to show that 
if d E (t and l E + such that Z::eEE trc(e) > di for each i and each closed 

curve C l'"V ci in G, then LeEE l(e) > I:7=1 di. 
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Then one can show that it may be assumed that each di and each l(e) is an 
even integer, and that l(e) > 0 for each e. Replacing each edge e by a path of 
length l(e) makes G into a bipartite graph G'. Applying (13) to each of the Di 
of Theorem 4 gives the required inequality. 

6. Disjoint curves in graphs on surfaces. In the homotopic circulation 
theorem one may wonder when there exists an integer-valued circulation. This 
would correspond to a system of pairwise edge-disjoint cycles C~, ... , Ck in G 
with Ci freely homotopic to Ci. However, the conditions given in the theorem are 
not sufficient to get an integer-valued circulation; and no additional conditions 
are known to ensure the existence of an integer-valued circulation. 

If we want to have vertex-disjoint circuits, such conditions have been given 
in [55], proving a conjecture of L. Lovasz and P.D. Seymour: 

Theorem 6. Let G be an undirected graph embedded on a compact surface S and 
let C1 , ... , Ck be pairwise disjoint simple closed curves on S. Then there exist 
pairwise disjoint simple circuits c~' ... 'ck in G where c; is freely homotopic 
to Ci for i = 1, ... , k, if and only if 

k 

(14) cr(G,D)> 
i=l 

for each closed curve D on S, with strict inequality if D is doubly odd. 

Here a closed curve D is doubly odd if D is the concatenation of two closed 
curves D 1 and D2, with a common beginning(= end) point, which is not on G, 

difficult to see that the condition given in the theorem is necessary. 
The problem solved in Theorem 6 arose during the graph minors project of 

N. Robertson and P.D. Seymour. Principal result of this deep project is a proof 
([53]) of Wagner's conjecture: in any infinite class of graphs there are graphs G 
and H such that His a minor of G. (His a minor of G if H arises from G by 
a series of deletions and contractions of edges.) 

Equivalent to Robertson and Seymour's theorem is that if Q is a class of 
graphs closed under taking minors, then there is a finite collection 1-{ of graphs 
with the property that a graph G belongs to g if and only if G does not have a 
minor H with HE ri. 

We may assume that 1i does not contain two graphs H, H' such that H' is 
a minor of H. Then rt is called the set of forbidden minors of Q. 

The well-known theorem of Kuratow
ski [34] ( or rather, its equivalent formu
lation by Wagner [74]) states that if Q is 
the class of planar graphs, then {Ks, K3,3} 

K5 K3,3 is the set of forbidden minors. 
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A consequence of Robertson and Seymour's theorem is that for any surface 
S there is a finite class of forbidden minors for the class of graphs embeddable 
on S. This was shown before by Archdeacon [2] for the projective plane and by 
Archdeacon and Huneke [3] for compact nonorientable surfaces. 

Very roughly speaking, the proof of Robertson and Seymour of Wagner's 
conjecture is as follows. It can be shown that for any graph G there is a finite 
collection of surfaces such that each graph not containing G as a minor can be 
expressed as a tree-structure of 'pieces' such that each piece can 'almost' be 
drawn on a surface in the collection. Part of the proof next is that any graph 
H embedded on a surface S is a minor of each graph that is embedded densely 
enough on 19 ('enough' depending on H). 

Related to this last statement is the question under which conditions for two 
given graphs G and H embedded on S, His a minor of G on S. That is, when 
can we delete and contract edges of G, while keeping the embedding, so as to 
obtain H (possibly after a homotopic shift of H over S). The case where H 
consists of disjoint loops only is solved in Theoren1 6. 

The more general case of this question where H is an arbitrary graph is not 
solved completely, but can be approached slightly similarly as follows. Let G 
and H be graphs embedded on S. For each edge f of H choose an edge e f of G. 
Now we wish to complete these edges to a minor of G isomorphic to H. By this 
it is meant that one should find for each vertex v of H a tree Tv in G such that 
the Tv are mutually disjoint and such that for each edge f of H, e1 is incident 
with Tv if and only if f is incident with v. Thus contracting each tree Tv to one 
vertex, the edges e1 would give a minor isomorphic to H. 

Now an extension of Theorem 6 (cf. [56]) characterizes under which condi
tions such trees exist, given the homotopy of the trees. It amounts to finding 
disjoint trees T1 , ... , Tk such that each Ti connects a given set ½ of vertices. If 
each ¼ just consists of two vertices, it reduces to a disjoint paths problem. 

7. Menger and Konig. Disjoint paths problems belong to the heart of classi
cal graph theory .. They go back to 1927, when the topologist Karl Menger [40] 
published an article called Zur allgemeinen Kurventheorie i11 which he showed 
a result that now is one of the most fundamental results in graph theory: 

Satz (3. Ist K ein kompakter regular eindimensionaler Raum, welcher 
zwischen den beiden end lichen M engen P und Q n-punktig zusammen

. hangend ist, dann enthalt K n paarweise fremde Bogen, von denen jeder 
einen Punkt von P und einen Punkt von Q verbindet. 

The result can be formulated as a maxin1um-mini1r1um theorem in terms of 
graphs, as follows: 

Menger's theorem. Let G = (V, E) be an undirected graph and let P, Q C V. 
Then the maximum number of pairwise disjoint P - Q paths is equal to the 
minimum cardinality n of any set of vertices that intersects each P - Q path. 
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Here a P - Q path is a path starting in P and ending in Q. Two paths are 
disjoint if they do not have any vertex or edge in con1mon. The result became 
also known as then-chain theorem or then-arc theorem. Knaster [28] observed 
that (by an easy construction) Menger's theorem is equivalent to: 

Menger's theorem (variant). Let G == (V, E) be an undirected graph and let 
s, t E V with st ff. E. Then the maximum number of pairwise internally disjoint 
s - t paths is equal to the minimum cardinality of any subset of V \ { s, t} that 
intersects each s - t path. 

Here an s - t path is a path starting in s and ending in t. Two paths are 
internally disjoint if they do not have a vertex or edge in common, except for 
the end vertices. 

Why was Menger interested in this question? In his article he investigates 
a certain class of topological spaces called 'K urven': a curve is a connected 
compact topological space X with the property that for each x E X and each 
neighbourhood N of x there exists a neighbourhood N' C N of x such that 
bd(N') is totally disconnected. Here bd stands for 'boundary'; a space is totally 
disconnected if each point forms an open set. Notice that each graph, considered 
as a topological space, is a curve in Menger's terminology. 

In particular, Menger was motivated by characterizing a certain furcation 
number of curves. To this end, a curve X is called regular if for each x E X and 
each neighbourhood N of x there exists a neighbourhood N' C N of x such that 
lbd(N') I is finite. The order of a point x E X is equal to the minimum natural 
number n such that for each neighbourhood N of x there exists a neighbourhood 
N' C N of x satisfying lbd(N')I < n. 

According to Menger: 

Eines der wichtigsten Probleme der Kurventheorie ist die Frage nach 
die Beziehungen zwischen der Ordnungszahl eines Punktes der regularen 
Kurve K und der Anzahl der im betreffenden Punkt zusammenstossenden 
und sonst fremden Teilbogen von K. 

In fact, Menger used 'Satz (3' to show that if a point in a regular curve K has 
order n, then there exists a topological n-leg with pas top; that is, K contains 
n arcs P 1 , ... , Pn such that Pin Pj = {p} for all i,j with i =f. j. 

The proof idea is as follows. There exists a series N 1 =, N2 => · -· of open 
neighbourhoods of p such that N 1 n N2 n · · · == {p} and lbd(Ni)I = n for all 
i = 1, 2, ... , and such that 

(15) lbd(N) I > n for each neighbourhood N C Ni. 

This follows quite directly from the definition of order. 
Now Menger showed that we may assume that the space Gi := Ni\ Ni+l 

is a (topological) graph. For each i, let Qi := bd(Ni)- Then (15) gives with 
Menger's theorem that there exist n pairwise disjoint paths Pi,1, ... , Pi,n in G 
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such that each Pi,j runs from Qi to Q,i+I· Properly connecting these paths for 
i = 1, 2, ... we obtain n arcs forming the required n-leg. 

It was however noticed by Konig [30] that Menger gave a lacunary proof of 
'Satz /3'. Menger applies induction on IEI, where Eis the edge set of the graph 
G. Menger first claims that one easily shows that El > n, and that if I EI == n 
then G consists of n disjoint arcs con11ecting P and Q. He states that if IEJ > n 
then there is a vertex s (/.PU Q, or in his words (where the ~Grad' denotes !El): 

Wir nehmen also an, der irreduzibel n-punktig zusammenhangende Raum 
K' besitze den Grad g ( > n). Offen bar enthalt dann K' ein punktformiges 
Stiick s, welches in der Menge P + Q nicht enthalten ist. 

Indeed, as Menger shows, if such a vertex s exists one is done: If s is not 
contained in any set W intersecting each P - Q path such that IWI = n, then 
we can delete s and the edges incident with s without decreasing the minimum 
in the theorem. If s is contained in some set W intersectir1g each P - Q path 
such that IWI == n, then we can split G into two subgraphs G 1 and G 2 that 
intersect in W in such a way that P C G 1 and Q C G 2 . By the induction 
hypothesis, there exist n pairwise disjoint P - W paths in G 1 and n pairwise 
disjoint W - Q paths in G 2 • By pairwise sticking these paths together at W we 
obtain paths as required. 

However, such a vertex s need not exist. It might be that V is the disjoint 
union of P and Q in such a way that each edge connects P and Q. In that case, 
G is a bipartite graph, and what should be shown is that G contains a matching 
(== set of disjoint edges) of size n. This is a nontrivial basis of the proof. 

It is unclear when Menger became aware of the hole. In his reminiscences 
on the origin of then-arc theorem, Menger [42] wrote in 1981: 

In the spring of 1930, I came through Budapest and met there a galaxy of 
Hungarian mathematicians. In particular, I enjoyed making the acquain
tance of Denes Konig, for I greatly admired the work on set theory of 
his father, the late Julius Konig·-to this day one of the most significant 
contributions to the continuum problem-and I had read with interest 
some of Denes papers. Konig told me that he was about to finish a book 
that would include all that was known about graphs. I assured him that 
such a book would fill a great need; and I brought up my n-Arc Theorem 
which, having been published as a lemma in a curve-theoretical paper, 
had not yet come to his attention. Konig was greatly interested, but did 
not believe that the theorem was correct. ''This evening,'' he said to me 
in parting, ''I won't go to sleep before having constructed a counterex
ample.'' When we met the next day he greeted 1ne with the words, ''A 
sleepless night!'' and asked me to sketch my proof for him. He then said 
that he would add to his book a final section devoted to my theorem. This 
he did; and it is largely thanks to Konig's valuable book that the n-Arc 
Theorem has become widely known among graph theorists. 

Denes Konig was a pioneer in graph theory a11d in applyir1g graphs to other 
areas like set theory, 1natrix theory, and topology. He had published in the 
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1910s theorems on perfect matchings and on factorizations of regular bipartite 
graphs in relation to the study of determinants by Frobenius. 

At the meeting of 26 March 1931 of the Eotvos Lorand Matematikai es 
Fizikai Tarsulat (Lorand Eotvos Mathematical and Physical Society) in Bu
dapest, Konig [29] presented a result that formed in fact the induction basis for 
Menger's theorem: 

Paros koriiljarasu graphban az eleket kimerito szogpontok minimalis sza
ma megegyezik a paronkent kozos vegpontot nem tartalmaz6 elek maxi
malis szamaval. 

In other words: 

Konig's theoren1. In a bipartite graph G = (V, E), the maximum size of a 
matching is equal to the minimum number of vertices needed to cover all edges. 

Konig did not mention in his paper that this result provided the missing induc
tion basis in Menger's proof, although he finishes with: 

Megemlftjiik vegiil, hogy eredmenyeink szorosan osszefiiggnek FROBE
NIUSnak determinansokra es MENGERnek graphokra vonatkoz6 nemely 
vizsgalataval. E kapcsolatokra masutt fogunk kiterjeszkedni. 

'Masutt' became Konig [30], where a full proof of Menger's theorem is given, 
with the fallowing footnote: 

Der Beweis von MENGER enthalt eine Lucke, <la es vorausgesetzt wird (8. 
102, Zeile 3-4) daB ''K' ein punktformiges Stuck s enthalt, welches in 
der Menge P + Q nicht enthalten ist'', wahrend es recht wohl moglich 
ist, daB - mit der hier gewiihlten Bezeichnungsweise ausgedriickt 
jeder Knotenpunkt von G zu H1 + H2 gehort. Dieser - keineswegs ein
facher - Fall wurde in unserer Darstellung <lurch den Beweis des Satzes 

•• 

13 erledigt. Die weiteren - hier folgenden - Uberlegungen, die uns 
zum Mengerschen Satz fiihren werden, stimmen in Wesentlichen mit dem 
- sehr kurz gefafiten - Beweis von MENGER iiberein. In Anbetracht 
der Allgemeinheit und Wichtigheit des Mengerschen Satzes wird im Fol
genden auch dieser Teil ganz ausfiihrlich und den Forderungen der rein
kombinatorischen Graphentheorie entsprechend dargestellt. 

[Zusatz bei der Korrektur, 10.V.1933] Herr MENGER hat die Freundlich
keit gehabt - nachdem ich ihm die Korrektur meiner vorliegenden Ar
beit zugeschickt habe - mir mitzuteilen, daB ihm die oben beanstandete 
Lucke seines Beweises schon bekannt war, dafi jedoch sein vor Kurzem 
erschienenes Buch Kurventheorie (Leipzig, 1932) einen vollkommen liic
kenlosen und rein kombinatorischen Beweis des Mengerschen Satzes ( des 
''n-Kettensatzes'') enthalt. Mir blieb dieser Beweis bis jetzt unbekannt. 

This book of Menger [41] was published in 1932, and contains a complete proof of 
Menger's theorem. Menger did not refer to any hole in his proof, but remarked: 
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•• 

Uber den n-Kettensatz fiir Graphen und die im vorangehenden zum Be-
weise verwendete Methode vgl. Menger (Fund. Math. 10, 1927, S. 101 f.). 
Die obige detaillierte Ausarbeitung und Darstellung stammt von Nobeling. 

In his book Theorie der endlichen und unendlichen Graphen, published in 1936, 
Konig [31] calls his theorem ein wichtiger Satz, and he emphasizes the chrono
logical order of the proofs of Menger's theorem and of Konig's theorem (which 
is implied by Menger's theorem): 

Ich habe diesen Satz 1931 ausgesprochen und bewiesen, s. Konig [9 und 
11]. 1932 erschien dann der erste liickenlose Beweis des Mengerschen 
Grapl1ensatzes, von dem in §4 die Rede sein wird und welcher als eine 
VeralJgemeinerung dieses Satzes 13 (falls dieser nur fur endliche Graphen 
formuliert wird) angesehen werden kann. 

8. Disjoint paths and trees. Menger's theorem addresses the problem of 
finding a set of paths with one common beginning vertex and one common end 
vertex. A more general problem is the following disjoint paths problem: 

(16) given: a graph G = (V, E) and k pairs of vertices s1 , t 1 , ... , Sk, tk; 

find: pairwise disjoint paths P1 , ... , Pk where Pi runs from si to 
ti ( i = 1, ... , k). 

This covers four variants of the problem: the graph can be directed or undi
rected, and 'disjoint' can mean: vertex-disjoint or edge-disjoint. 

In 1974, D.E. Knuth (see (26)) showed that the edge-disjoint undirected 
variant, and hence also each of the other variants, is NP-complete - and this is 
even so if we restrict ourselves to planar graphs (Lynch [38]). This destroys ( for 
those believing NP¥:co-NP or NP¥:P) the hope for nice theorems (like Menger's 
theorem) and for fast algorithms for solving this problem. 

On the other hand, Robertson and Seymour [52], as another important re
sult of their graph minors project, proved that for each fixed k, there exists a 
polynomial-time algorithm for the disjoint paths problem for undirected graphs. 
Their algorithm has running time bounded by cklVl 3 , for some constant ck 
heavily depending on k. (It implies that for each fixed graph H there exists a 
polynomial time algorithm to test if a given graph G contains Has a minor.) 

For directed graphs, the situation seems different. In 1980, Fortune, Hopcroft, 
and Wyllie [20] showed the NP-completeness of the vertex-disjoint paths prob
lem for directed graphs, even when restricted to the case k == 2. 

For planar directed graphs however there is a positive result ( [58]): 

Theorem 7. For each fixed k there is a polynomial-time algorithm for the k 
vertex-disjoint paths problem for directed planar graphs. 

This is a result only of interest from the point of view of theoretical complexity: 
the degree of the polynomial bounding the running time of the algorithm is 
quadratic in k. 
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The proof of Theorem 7 is based on representing disjoint paths as 'flows' over 
a free group. Indeed, let a directed planar graph D == (V, A) and s1, t1, ... , sk, tk E 

V be given. Let Gk be the free group with k generators 9I,··•,9k· If I1 = 
( P1 , ... , Pk) is a solution to the disjoint paths problem, let </>rr : A ~ G k be 
defined by, for a E A: </>n (a) := 9i if Pi traverses a ( i == 1, ... , k ), and := 1 if no 
Pi traverses a. 

Let F be the set of faces of D. Call two functions <p, 1/J : A -----' G k homologous 
if there exists a function p : F ---? G k such that for each arc a of D one has: 

(17) 1/J(a) = p(f)- 1cp(a)p(f'), 

where f and f I are the faces at the left hand side and the right hand side of a 
respectively ( with respect to the orientation of the plane and of the arc a). 

This defines an equivalence relation on functions A ~ Gk. We now enu
merate representatives of homology classes of functions A ► G k. Generally 
there are infinitely man1 homology classes, but one can find in polynomial time 
a collection of O(IVl2k +3 ) homology classes of which one can be sure that it 
covers all functions </>rr with IT a solution to the vertex-disjoint paths problem 
( without having these functions explicitly). 

For the representative 1/; of each of these classes one should test if there is 
a path packing function </Jn homologous to 1/;. This can be done in polynomial 
time, by reducing it to the following dual problem. 

Given any directed graph D = (V, A) (not necessarily planar) and any group 
G, call two functions </J, 1/; : A > G cohomologous if there exists a function 
p : V ➔ G such that for each arc a == ( u, w) of D one has: 

(18) 1/J(a) ==p(u)- 1q;,(a)p(w). 

Again this is an equivalence relation. 
Consider the following cohomology feasibility problem: 

(19) given: a directed graph D == (V, A) and functions c/>: A ---+ G and 
H : A ~ P(G); 

find: a function 'l/; cohomologous to et> with 7/J(a) E H(a) for each 
a EA. 

This is in its general form an NP-complete problem: when G = C3 ( the group 
with three elements) and </>(a) = 1 and H(a) == C3 \ {1} for each arc a, the 
problem amounts to the 3-colourability of the vertices of D. However: 

Theorem 8. If G is the free group and each H(a) is hereditary, then the 
co homology feasibility problem is solvable in polynomial time. 

Here a subset Hof the free group is hereditary if for each (reduced) word w'ww'' 
in H, also the word w belongs to H. 

Now the problem of finding a path packing function ef>rr homologous to a 
given function iµ, can be reduced to the cohomology feasibility problem on an 
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extension of the dual graph of D, where each H(a) is equal to {1, g1 , ... , 9k} or 
to { 1, 91, g11 , ... , 9k, gk 1 }. This finishes the outline of the proof of Theorem 7. 

Theorem 7 can be generalized to disjoint trees connecting given sets of ver
tices, and Theorem 8 can be generalized to free partially commutative groups 
- see [59]. Moreover, necessary and sufficient conditions for the existence of a 
solution can be described in terms of cycles in the graaf D. 

9. VLSI-routing. The approach described above for the vertex-disjoint paths 
problem in directed planar graphs is analogous to a method developed for the 
VLSI-routing problem. This problem asks for the routes that wires should make 
on a chip so as to connect certain pairs of pins and so that wires connecting 
different pairs of pins are disjoint. 

As the routes that the wires potentially can make form a graph, the problem 
to be solved can be modeled as a disjoint paths problem. Consider an example of 
such a problem as in Figure 11 - relatively simple, since generally the number 
of pins to be connected is of the order of several thousands. The grey areas are 
'modules' on which the pins are located. Points with the same label should be 
connected. 

Figure 11 

In the example, the graph is a 'grid graph', which is typical in VLSI-design 
since it facilitates the manufacturing of the chip and it ensures a certain min
imum distance between disjoint wires. But even for such graphs the disjoint 
paths problem is NP-complete. 

Now the following two-step approach was proposed by Pinter [46]. First 
choose the homotopies of the wires; for instance like in Figure 12. That is, for 
each i one chooses a curve Ci in the plane connecting the two vertices i, in 
such a way that they are pairwise disjoint, and such that the modules are not 
traversed. 
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Figure 12 

Second, try to find disjoint paths P 1 , ... , Pk in the graph such that Pi is ho
motopic to Ci, in the space obtained from the plane by taking out the rectangles 
forming the modules. In Figure 13 such a solution is given. 

Figure 13 

It was shown by Leiserson and Maley [35] that this second step can be 
performed in polynomial time. So the hard part of the problem is the first step: 
finding the right topology of the layout. 

Cole and Siegel [8] proved a Menger-type cut theorem characterizing the 
existence of a solution in the second step. That is, if there is no solution for the 
disjoint paths problem given the homotopies, there is an 'oversaturated' cut: a 
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curve D connecting two holes in the plane and intersecting the graph less than 
the number of times D necessarily crosses the curves Ci. 

This can be used in a heuristic practical algorithm for the VLSI-routing 
problem: first guess the homotopies of the solution; second try to find disjoint 
paths of the guessed homotopies; if you find them you can stop; if you don't find 
them, the oversaturated cut will indicate a bottleneck in the chosen homotopies; 
amend the bottleneck and repeat. 

Similar results hold if one wants to pack trees instead of paths ( which is 
generally the case at VLSI-design), and the result can be extended to any planar 
graph [56]. As a theoretical consequence one has (by an enumeration argument 
similar to t r1e one used for Theorem 7): 

Theorem 9. For each fixed number of modules, the planar VLSI-routing prob
lem can be solved in polynomial time. 

10. Railway timetabling. The cohomology feasibility problem also shows 
up in the problem of making the timetable for Nederlandse Spoorwegen (Dutch 
Railways), a project currently performed for NS by CWI (Adri Steenbeek and 
me). The Dutch railway system belongs to the busiest in the world, with sev
eral short distance trajectories, while many connections are offered, with short 
transfer time. 

Task is to provide algorithmic means to decide if a given set of conditions on 
the timetable can be satisfied. In particular, the hourly pattern of the timetable 
is considered. The basis of the NS-timetable is a periodic cycle of one hour, so 
that on each line there is a train at least once an hour. 

How can this problem be modeled? First of all, each departure time to be 
determined is represented by a variable Vt. Here t is a train leg that should go 
every hour once. So Vt represents a variable in the cyclic group C60 == Z/ 60Z. 
Similarly, the arrival time is represented by a variable at in C6o• 

In the problem considered by us, a fixed running time was assumed for each 
leg. This implies that if train leg t has a running time of 11 minutes, then 
at - Vt = 11. The waiting period of a train in a station is prescribed by an 
interval. E.g., if t and t' are two consecutive train legs of one hourly train, and 
if it is required that the train stops at the intermediate station for a period of 
at least 2 and at most 5 minutes, then one poses the condition Vt' - at E [2, 5] 
(as interval of C50)-

This gives relations between train legs of one hourly train. To make connec
tions, one has to consider train legs in two different trains. So if one wants to 
make a connection from leg t, arriving in Utrecht say, of one train, to a leg t' 
departing from Utrecht of another train, so that the transfer time is at least 3 
and at most 7 minutes, then one gets the condition Vt' - at E [3, 7]. 

Finally, there is the condition that for safety each two trains on the same 
trajectory should have a timetable distance of at least 3 minutes. That is, if 
train leg t of one train and train leg t' of another train run on the same rail way 

517 



section, then one should pose the condition Vt' - Vt E [3, 57]. 
By representing each variable by a vertex, the problem can be modeled as 

follows. Let D = (V, A) be a directed graph, and for each a E A, let H(a) be 
an interval on C6o• Find a function p: V---+ C60 such that p(w) -p(u) E H(a) 
for each arc a= (u, w) of D. 

This is a special case of the cohomology feasibility problem. Note that (as 
C6o is abelian) one may equivalently find a 'length' function l : A -----+ C60 such 
that l(a) E H(a) for each a EA and such that each undirect,ed circuit in D has 
length 0. (For arcs a in the circuit traversed backward one takes -l (a) for its 
length.) 

It is not difficult to formulate this problem as an integer linear programming 
problem. Indeed, if for any arc a== (u, w), H(a) is equal to the interval [la, ua], 
we can put: 

(20) la < Xw - Xu+ 60ya < Ua, 

where Ya is required to be an integer. Thus we get a system of IAI linear 
inequalities with IVI real variables Xv and IAI integer variables Ya• In fact, if 
there is a solution, there is also one with the Xv being integer as well ( as the x 
variables make a network matrix). 

Now in solving (20), one may choose a spanning tree T in D, and assume 
that Ya = 0 for each arc a in T (cf. Serafini and Ukovich [60]). Alternatively, 
one may consider the problem as follows. 

A circulation is a function f : A ----:. IR such that the 'flow conservation law': 

(21) f(a) = f(a) 

holds for each vertex v of D. Here 8- ( v) and 8+ ( v) denote the sets of arcs 
entering v and leaving v, respectively. 

Let L be the lattice of all integer-valued circulations. Now one can describe 
the problem as one of finding a linear function -I> : L ----:. Z such that there 
exist Za ( for a E A) with the properties that la < Za < Ua for each arc A and 
zT f = 604)(j) for each f E L. 

The existence of such Za can be checked in polynomial time, given the values 
of 4) on a basis of L. Hence, in a searching for a feasible timetable one can branch 
on values of q, on an appropriate basis of L. Given (f>, if there exist Za, one can 
optimize the Za under any linear ( or convex piecewise linear) objective function 
(for instance, passenger waiting time). 

Typically, the problems coming from NS have about 3000 variables with 
about 10,000 constraints. In a straightforward way they can be reduced to 
about 200 variables with about 600 constraints. The above observations turn 
out to require a too heavy framework in order to solve the problem fast in 
practice ( although they are of help in opti1nizing a given solution). 

The package CADANS ( Combinatorisch-Algebrai:sch Dienstregeling-Algorit
me voor de Nederlandse Spoorwegen) that CWI is developing for NS for solving 
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the problem above, is based on a fast constraint propagation technique and fast 
branching heuristics designed by Adri Steenbeek. It gives, within time of the 
order of 1-10 minutes either a solution (i.e., a feasible timetable), or an inclu
sionwise minimal set of constraints that is inf'easible. If CADANS gives the 
latter answer, the user should drop, or relax, at least one of the constraints in 
the minimal set in order to make the constraints feasible. Thus C .. t\DANS can 
be used interactively to support the planner. Alternatively, it can uncover bot
tlenecks in the infrastructure, and indicate where extra infrastructure (viaducts, 
flyovers, four-tracks) should be built in order to make a given set of conditions 
feasible. 

11. Transportation and flow problems. Railway transportation forms 
a classical source of problems studied in operations research. In 1939, Kan
torovich [25] published in Leningrad a monograph called Mathematical Methods 
of Organizing and Planning Production, in which he outlined a new method to 
maximize a linear function under given linear inequality constraints, thus laying 
the fundaments for linear programming. He gave the following application: 

Let there be several points A, B, C, D, E which are connected to one 
8 another by a railroad network. It is possible to make 

D 

the shipments from B to D by the shortest route 
BED, but it is also possible to use other routes as 
well: namely BCD, BAD. Let there also be given a 
schedule of freight shipments; that is, it is necessary 
to ship from A to B a certain number of carloads, 
from D to C a certain number, and so on. The 

problem consists of the following. There is given a maximum capacity 
for each route under the given conditions (it can of course change under 
new methods of operation in transportation). It is necessary to distribute 
the freight flows among the different routes in such a way as to complete 
the necessary shipments with a minimum expenditure of fuel, under the 
condition of minimizing the empty runs of freight cars and taking account 
of the maximum capacities of the routes. As was already shown, this 
problem can also be solved by our methods. 

In 1941, Hitchcock [24] formulated another variant of a transportation prob
lem. Independently, during the Second World War, Koopmans was on the staff 
of the Combined Shipping Adjustment Board (an agency formed by the Allied 
to coordinate the use of their merchant fleets). Influenced by his teacher Tin
bergen ( cf. [73]) he was interested in the topic of ship freights and capacities. 
His task at the Board was the plan11ing of assigning ships to convoys so as to 
accomplish prescribed deliveries, while minimizing empty voyages ( cf. [12]). 
Koopmans found in 1943 a method for the transshipment problem, but due to 
wartime restrictions he published it only after the war (32]. 

Koopmans and Reiter [33] investigated the economic implications of the 
method: 
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For the sake of definiteness we shall speak in terms of the transportation 
of cargoes on ocean-going ships. In considering only shipping we do not 
lose generality of application since ships may be ''translated'' into trucks, 
aircraft, or, in first approximation, trains, and ports into the various sorts 
of terminals. Such translation is possible because all the above examples 
involve particular types of movable transportation equipment. 

The cultural lag of economic thought i11 the application of mathematical 
methods is strikingly illustrated by the fact that linear graphs are making 
their entrance into transportation theory just about a century after they 
were first studied in relation to electrical networks, although organized 
transportation systems are much older than the study of electricity. 

The breakthrough in linear programming came around 1950 when Dantzig 
[10] published the simplex method for the linear programming problem. The 
success of the method was caused by a very simple tableau-form and pivoting 
rule and by the large efficiency in practice. Dantzig also described a direct 
implementation of the simplex method to the transportation problem ([9]). 

In the beginning of the 1950s, T.E. Harris at the RAND Corporation (the 
think tank of the U.S. Air Force in Santa Monica, California) called attention 
for the following special case of the problem considered by Kantorovich: 

Consider a rail network connecting two cities by way of a number of in
termediate cities, where each link of the network has a number assigned 
to it representing its capacity. Assuming a steady state condition, find a 
maximal flow from one given city to the other. 

This question raised a stream of research at RAND. The problem can be for
malized as follows. 

Let be given a directed graph D == (V, A), with two special vertices, a 'source' 
s and a 'sink' or 'terminal' t. Then an s -t flow is a function f : A ---i- --+- such 
that for each vertex v -I s, t the flow conservation law (21) holds. The value of 
f is equal to the net flow leaving s; that is: 

(22) value(!):= f(a) - f (a). 
aE8+ (s) 

It is not difficult to prove that this value is equal to the net flow entering t. 
If moreover a 'capacity' function c : A · ► lR+ is given, one says that f is 

subject to c if f (a) < c( a) for each arc a. 
Now the maximum flow problem can be formulated: 

(23) given: a directed grapl1 D = (V, A), vertices s, t E V, and a 'capac-
ity' function c : A -""7 ~; 

find: a flow f subject to c maximizing value(f ). 

In their basic paper ''Maximal flow through a network'' (published as a 
RAND Report of 19 November 1954), Ford and Fulkerson [17] observed that this 
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is just a linear programming problem, and hence can be solved with Dantzig's 
simplex method. 

Main result of Ford and Fulkerson's paper is the famous max-ftow min-cut 
theorem. To this end, the concept of a cut is defined. Let U is any set with 
s E U and t (/. U. Then 8+ ( U) ( the set of all arcs leaving U) is an s - t cut. The 
capacity of the cut is the sum of all c( a) for a E 8+ ( U). 

It is clear that the capacity of any cut is an upper bound on the maximal 
value of s - t flows. What Ford and Fulkerson [17] showed is: 

Max-flow min-cut theorem. The maximal value of the s - t flows is equal 
to the mini rrial capacity of the s - t C'uts. 

Since ( as follows fron1 an observation of Dantzig [9]) there is an integer-valued 
maximum flow if all capacities are integer, an arc-disjoint version of Menger's 
theorem follows from the max-flow min-cut theorem. 

Alternative proofs of the max-flow mi11-cut theorem were given by Robacker 
[51] and by Elias, Feinstein, and Shannon [14]. In this last paper it is claimed 
that the result was known by workers in comn1unication theory: 

This theorem may appear alrnost obvious on physical grounds and ap
pears to have been accepted without proof for some time by workers in 
communication theory. However, while the fact that this flow cannot be 
exceeded is indeed almost trivial, the fact that it can actually be achieved 
is by no means obvious. We understand that proofs of the theorem have 
been given by Ford and Fulkerson and Fulkerson and Dantzig. The fol
lowing proof is relatively simple, and we believe different in principle. 

The max-flow min-cut theorem being also a combinatorial result, one was 
interested in obtaining combinatorial methods for finding n1aximum flows. First, 
Ford and Fulkerson [17] gave a simple algorithn1 for the maximal flow problem 
in case the graph, added with an extra edge connecting s and t, is planar. 

Next, a heuristic method, the flooding technique, was presented by Boldyreff 
[6] on 3 June 1955 at the New York 1neeting of the Operatio11s Research Society 
of America (RAND Report of 5 August 1955). The method was intuitive, and 
the author did not claim generality: 

.. 

It has been previously assumed that a highly complex railway transporta
tion system, too complicated to be amenable to analysis, can be repre
sented by a much simpler model. This was accomplished by representing 
each complete railway operating division by a point, and by joining pairs 
of such points by arcs (lines) with traffic carrying capacities equal to the 
maximum possible volume of traffic (expressed in some convenient unit, 
such as trains per day) between the corresponding operating divisions. 

In this fashion, a network is obtained consisting of three sets of points -
points of origin, intermediate or junction points, and the terminal points 
( or points of destination) - and a set of arcs of specified traffic carrying 
capacities, joining these point.s to each other. 

521 



Boldyreff's arguments for designing a heuristic procedure are formulated as: 

In the process of searching for the methods of solving this problem the 
following objectives were used as a guide: 

1. That the solution could be obtained quickly, even for cornplex networks. 

2. That the method could be explained easily to personnel without spe
cialized technical training and used by then1 effectively. 

3. That the validity of the solution be subject to easy, direct verification. 

4. That the method would not depend on the use of high-speed computing 
or other specialized equipment. 

Boldyreff 's 'flooding technique' pushes a maxin1um amount of flow greedily 
through the network. If at some vertex a 'bottleneck' arises (i.e., there are 
more trains arriving than can be pushed further through the network), it is 
eliminated by returning the excess trains to the origin. It is empirical, not using 
backtracking, and not leading to an optimum solution in all cases: 

Whenever arbitrary decisions have to be made, ordinary common sense 
is used as a guide. At each step the guiding principle is to move forward 
the maximum possible number of trains, and to maintain the greatest 
flexibility for the remaining network. 

Boldyreff speculates that 'in dealing with the usual railway networks a single 
flooding, followed by removal of bottlenecks, should lead to a maximal flow.' 
He gives as an example of a complex network, a railway transportation system 
with 41 vertices and 85 arcs, for which 'the total time of solving the problem is 
less than thirty minutes.' 

Soon after, Ford and Fulkerson presented in a RAND Report of 29 December 
1955 [18] their 'very simple algorithm' for the maximum flow problem, based 
on finding 'augmenting paths'. The algorithm finds in a finite number of steps 
a maximum flow, if all capacities have rational values. After mentioning the 
maximum flow problem, they remark: 

This is of course a linear programmi11g problem, and hence may be solved 
by Dantzig's simplex algorithm. In fact, the simplex computation for a 
problem of this kind is particularly efficient, since it can be shown that the 
sets of equations one solves in the process are always triangular. However, 
for the flow problem, we shall describe what appears to be a considerably 
more efficient algorithm; it is, moreover, readily learned by a person with 
no special training, and may easily be mechanized for handling large net
works. We believe that problems involving more than 500 nodes and 4,000 
arcs are within reach of present computing machines. 

Ford and Fulkerson's algorithm for the maximum-flow problem formed a 
breakthrough. It has implementations that require only polynomially bounded 
running time, as was shown by Dinits [11] and Edmonds and Karp [13]. In the 
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latter paper, also a polynomial-time algorithm is given for the minimum-cost 
flow problem. It implies a polynomial-time algorithm for the minimum-cost 
circulation problem. 

12. Routing of railway stock. The work on t.he minimum-cost circulation 
problem can be applied to minimizing the railway stock needed to run a sched
ule. NS (Nederlandse Spoorwegen) runs an hourly train service on its route 
Amsterdam - Schiphol Airport - Leyden - The Hague - Rotterdam - Dordrecht 
- Roosendaal - Middelburg - Vlissingen vice versa, with timetable as in Table 1. 

I train numb~r ! 2123 ! 212712131 ~i 2135 f 2139 I 2143 i 2147 I 2~51 I 2155 j 
' 

Amsterdam V 6.48 7.55 8.56 9.56 10.56 11.56 12.56 13.56 
Rotterdam A 7.55 8.58 9.58 10.58 11.58 12.58 13.58 14.58 
Rotterdam V 7.00 8.01 9.02 10.03 11.02 12.03 13.02 14.02 15.02 
Roosendaal A 7.40 8.41 9.41 10.43 11.41 12.41 13.41 14.41 15.41 
Roosendaal V 7.43 8.43 9.43 10.45 11.43 12.43 13.43 14.43 15.43 
Vlissingen A 8.38 9.38 10.38 11.38 12.38 13.38 14.38 15.38 16.38 

I train number ] 2159 I 2163 I 2167 I ~217112175 I 2179 [ 2183 I 2187] 2191 I 
Amsterdam V 14.56 15.56 16.56 17.56 18.56 19.56 20.56 21.56 22.56 
Rotterdam A 15.58 16.58 17.58 18.58 19.58 20.58 21.58 22.58 23.58 
Rotterdam V 16.00 17.01 18.01 19.02 20.02 21.02 22.02 23.02 
Roosendaal A 16.43 17.43 18.42 19.41 20.41 21.41 22.41 23.54 
Roosendaal V 16.45 17.45 18.44 19.43 20.43 21.43 
Vlissingen A 17.40 18.40 19.39 20.38 21.38 22.38 

I train number 121os 12112 1211612120121241212812132] 2136 ! 2140 I 
' 

Vlissingen V 5.30 6.54 7.56 8.56 9.56 10.56 11.56 
Roosendaal A 6.35 7.48 8.50 9.50 10.50 11.50 12.50 
Roosendaal V 5.29 6.43 7.52 8.53 9.53 10.53 11.53 12.53 
Rotterdam A 6.28 7.26 8.32 9.32 10.32 11.32 12.32 13.32 
Rotterdam V 5.31 6.29 7.32 8.35 9.34 10.34 11.34 12.34 13.35 
Amsterdam A 6.39 7.38 8.38 9.40 10.38 11.38 12.38 13.38 14.38 

I : : train number I 214412148 I 2152 j 2156 I 2160 I 2164 I 2168 I 217~:I 21:16:I 

Vlissingen V 12.56 13.56 14.56 15.56 16.56 17.56 18.56 19.55 
Roosendaal A 13.50 14.50 15.50 16.50 17.50 18.50 19.50 20.49 
Roosendaal V 13.53 14.53 15.53 16.53 17.53 18.53 19.53 20.52 21.53 
Rotterdam A 14.32 15.32 16.32 17.33 18.32 19.32 20.32 21.30 22.32 
Rotterdam V 14.35 15.34 16.34 17.35 18.34 19.34 20.35 21.32 22.34 
Amsterdam A 15.38 16.40 17.38 18.38 19.38 20.38 21.38 22.38 23.38 

Table 1: Tin1etable Amsterdam-Vlissingen vice versa 

The trains have more stops, but for our purposes only those given in the table 
are of interest. 

For each of the legs of any scheduled train, Nederlandse Spoorwegen has 
determined an expected number of (second-class) passengers, given in Table 
2. The problem to be solved is: What is the minimum amount of train stock 
necessary to perform the service in such a way that at each leg there are er1ougl1 
seats? 
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For any leg of any train, leaving place X at tin1e t and arriving at place Y 
at time t', we make a directed arc from (X, t) to (Y, t'). For instance, there is 
an arc from (Roosendaal, 7.43) to (Vlissingen, 8.38). 

Moreover, for any place X and any two successive times t, t' at which any 
train leaves or arrives at X, we make an arc from (X, t) to (X, t'). Thus in our 
example there will be arcs, e.g., from (Rotterdam, 8.01) to (Rotterdam, 8.32), 
from (Rotterdam, 8.32) to (Rotterdam, 8.35), from (Vlissingen, 8.38) to (Vlis
singen,8.56), and from (Vlissingen, 8.56) to (Vlissingen, 9.38). 

• 

16 

7 17 

6 
18 

5 lissingen 19 

Roosendaal 20 

Rotterdam 

2 Amsterdam 

l 
24 

Figure 14: The graph D. All arcs are oriented clockwise 

Finally, for each place X there will be an arc from (X, t) to (X, t'), where t 
is the last time of the day at which any train leaves or arrives at X and where 
t' is the first time of tl1e day at which any train leaves or arrives at X. So there 
is an arc from (Roosendaal, 23.54) to (Roosendaal, 5.29). 

We can now describe any possible routing of train stock as a function f : 
A ---+ Z+, where f (a) denotes the following. If a corresponds to a leg, then 
/(a) is the number of units deployed for that leg. If a corresponds to an arc 
from (X, t) to (X, t'), then J(a) is equal to the number of units present at place 
X in the time period t-t' (possibly overnight). 
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First of all, this function is a circulation, t,hat is, the flow conservation law 
(21) holds. Moreover, in order to satisfy the demand and capacity constraints, 
J(a) should satisfy d(a) < f (a) < 5, where d(a) is the minimum number of 
train-units necessary for leg a, based on the lower bound on seats for leg a. 

Now observe that the total number of units needed, is equal to the total 
flow on the 'overnight' arcs. So if we wish to minimize the total number of 
units deployed, we could restrict ourselves to 1ninimizing I:aeAo f (a), where A0 

denotes the set of overnight arcs. ( So I A O I = 4 in the An1sterdam - Vlissingen 
example.) 

It is easy to see that this fully models the problem. Hence determining the 
minimum number of train-units amounts to solving a minimum-cost circulation 
problem, where the cost function is quite trivial: we have cost(a) == 1 if a is an 
overnight arc, and cost(a) == 0 for all other arcs. 

Having this model, we can apply standard min-cost circulation algorithms, 
based on min-cost aug1nenting paths and cycles ( cf. Ford and Fulkerson [19] 
and Ahuja, Magnanti, and Orlin [l]). Implernentatior1 gives solutions of the 
problem (for the above data) in about 0.05 CPUseconds on an SGI R4400. 

Alternatively, the problem can be solved easily with any linear progran1ming 
package, since by the integrality of the input data and by the total unimodularity 
of the underlying matrix the optimum basic solution will have integer values 
only. With the linear programming package CPLEX (version 2.1) the optimum 
solution given in Table 3 was obtained again in about 0.05 CPUseconds (on an 
SGI R4400): 

train number 2123 2127 2131 2135 2139 2143 2147 2151 2155 
Amsterdam-Rotterdam 3 4 3 3 2 2 2 2 
Rotterdam-Roosendaal 1 2 3 3 2 2 2 2 2 
Roosendaal-Vlissingen 3 2 2 2 2 2 2 2 2 

train number 2159 2163 2167 2171 2175 2179 2183 2187 2191 
Amsterdam-Rotterdam 5 5 4 4 2 2 1 2 1 
Rotterdam-Roosendaal 4 5 4 3 2 2 1 1 
Roosendaal-Vlissingen 3 4 3 2 2 1 

I - train ~~mber 121os12112j2116j212oj21241212sj2i32l2136l2140I 
Vlissingen-Roosendaal 1 3 3 3 2 2 2 
Roosendaal-Rotterdam 2 4 4 3 4 2 2 2 
Rotterdam-Amsterdam 1 2 4 4 3 4 3 2 2 

train number 2144 2148 2152 2156 2160 2164 2168 2172 2176 
Vlissingen-Roosendaal 2 2 2 3 2 2 1 4 
Roosendaal-Rotterdam 2 3 2 4 3 1 1 1 1 
Rotterdam-Amsterdam 3 3 4 4 3 2 1 1 1 

Table 3: Minimum circulation with one type of stock 

Required are 22 units, divided during the night over Amsterdam: 4, Rotter
dam: 2, Roosendaal: 8, and Vlissingen: 8. 
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It is quite direct to modify and extend the model. Instead of minimizing 
the number of train-units one can minimize the amount of carriage-kilometers 
that should be made every day, or any linear combination of both quantities. 
In addition, one can put an upper bound on the number of units that can be 
stored at any of the stations. 

Instead of considering one line only, one can more generally consider networks 
of lines that share the same railway stock, including trains that are scheduled 
to be split or combined. (Nederlandse Spoorwegen has trains from The Hague 
and Rotterdam to Leeuwarden and Groningen that are combined to one train 
on the common trajectory between Utrecht and Zwolle.) 

If only one type of unit is employed for that part of the network, each unit 
having the same capacity, the problem can be solved fast even for large networks. 

13. Two types of stock. The problem becomes harder if there are several 
types of trains that can be deployed for the train service. Clearly, if for each 
scheduled train we would prescribe which type of unit should be deployed, the 
problem could be decomposed into separate problems of the type above. But 
if we do not make such a prescription, and if some of the types can be coupled 
together to form a train of mixed composition, we should extend the model to 
a 'multi-commodity circulation' model. 

Let us restrict ourselves to the case Amsterdam-Vlissingen again, where now 
we can deploy two types of two-way train-units, that can be coupled together. 
The two types are type IC3, each unit of which consists of 3 carriages and has 
163 seats, and type IC4, each unit of which consists of 4 carriages and has 218 
seats. 

Again, the demands of the train legs are given in Table 2. The maximum 
number of carriages that can be in any train again is 15. This means that if a 
train consists of x units of type IC3 and y units of type IC4 then 3x + 4y < 15 
should hold. 

It is quite easy to extend the model above to the present case. Again we 
consider the directed graph D = (V, A) as above. At each arc a let f(a) be the 
number of units of type IC3 on the leg corresponding to a and let g(a) similarly 
represent type IC4. So both f : A ~ Z+ and g : A ----; Z+ are circulations, 
that is, satisfy the flow circulation law: 

(24) f (a) == f(a), 
aEc:5-(v) aE6+(v) 

g(a) = _ g(a), 
aE6-(v) aEo+(v) 

for each vertex v. The capacity constraint now is: 

(25) 3j(a) + 4g(a) < 15 

for each arc a representing a leg. The dema11d constraint can be forn1ulated as 
follows: 
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(26) 163f(a) + 218g(a) > p(a), 

for each arc a representing a leg, where p( a) denotes the number of seats required 
(Table 2). Note that in contrary to the case of one type of unit, now we cannot 
speak of a minimum number of units required: now there are two dimensions, 
so that minimum train compositions need not be unique. 

If cost1c3 and cost1c4 represent the cost of purchasing one unit of type IC3 
and of type IC4, respectively, then the problem is to find f and g so as to 

(27) • • • m1n1m1ze 

The classical min-cost circulation algorithms do not apply now. Moreover, 
when solving the problem as a linear programming problem, we lose the pleasant 
phenomenon observed above that we automatically would obtain an optimum 
solution f, g : A ------1' IR with integer values only. 

So the problem is an integer linear programming problem, with 198 integer 
variables. Solving the problem in this form with the integer programming pack
age CPLEX (version 2.1) would give (for the Amsterdan1-Vlissingen example) 
a running time of several hours, which is too long, for instance when one wishes 
to compare several problem data. 

However, there are ways of speeding up the process, by sharpening the con
straints and by exploiting more facilities offered by CPLEX. The conditions (25) 
and (26) can be sharpened in the following way. For each arc a representing a 
leg, the two-dimensional vector (f (a), g( a)) should be an integer vector in the 
polygon 

(28) Pa :== { (x, y)lx > 0, y > 0, 163x + 218y > p(a), 3x + 4y < 15}. 

For instance, the trajectory Rotterdam-Amsterdam of train 2132 gives the poly
gon 

(29) Pa = { (x, y)lx > 0, y > 0, 163x + 218y > 344, 3x + 4y < 15}. 

In a picture: 
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In a sense, the inequalities are too wide. The constraints given in (29) could 
be tightened so as to describe exactly the convex hull of the integer vectors in 
the polygon Pa (the 'integer hull'), as in: 

. 

4 • • 

{ :-,: ,'- .:,;" -.· ': ;; --: ·::::. •-;-. . ' 
;· •, < ~-':-·:_ . , ·,;,_ · ... -: -·-

1 • 
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0 
• 
1 

• • 

• • 

• 

• 
2 3 
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• • • 

• • • 

• • • 

• • 

• 
4 5 6 

Thus for segment Rotterdan1-Amsterdam of train 2132 the constraints in 
(29) can be sharpened to: 

(30) X > 0, y > 0, X + y > 2, X + 2y > 3, y < 3, 3x + 4y < 15. 

Doing this for each of the 99 polygons representing a leg gives a sharper set 
of inequalities, which helps to obtain more easily an integer optimum solution 
from a fractional solution. (This is a weak form of application of the technique 
of polyhedral combinatorics.) Finding all these sharpened inequalities can be 
done in a pre-processing phase, and takes about 0.04 CPUseconds. 

Implementation of these techniques makes that CPLEX gives a solution to 
the Amsterdam-Vlissingen problem in 1.58 CPU seconds - see Table 4. 

train number 2123 2127 2131 2135 2139 2143 2147 2151 2155 

Amsterdam-Rotterdam 0+2 0+3 4+0 0+2 0+2 1+2 0+2 1+1 
Rotterdam-Roosendaal 0+1 0+2 0+2 4+0 0+2 0+2 1+3 0+3 1+1 
Roosendaal-Vlissingen 0+2 0+2 0+2 2+0 0+1 0+1 0+2 0+2 2+0 

I 
Amsterdam-Rotterdam 0+3 2+1 0+3 1+2 0+2 0+1 1+2 0+1 0+1 
Rotterdam-Roosendaal 0+3 2+2 0+3 0+2 1+1 2+0 1+3 1+0 
Roosendaal-Vlissingen 0+2 2+1 0+2 0+2 2+0 0+1 

train nu1nber 2108 2112 2116 2120 2124 2128 2132 2136 2140 

Vlissingen-Roosendaal 1+0 0+3 1+2 0+2 0+2 0+1 1+1 
Roosendaal-Rotterdam 1+2 3+0 0+3 0+2 1+2 0+2 2+1 1+3 
Rotterdam-Amsterdam 0+1 0+2 4+0 0+3 0+3 1+2 0+2 2+0 0+2 

_, 

I - ' 

Vlissingen-Roosendaal 1+1 0+1 0+2 0+2 2+0 0+2 2+0 0+1 
Roosendaal-Rotterdam 0+1 0+3 1+3 0+3 l+l 0+1 2+2 0+1 1+0 
Rotterdam-Amsterdam 1+1 0+3 1+2 0+3 1+1 0+1 0+2 0+1 0+1 

Table 4: Minimum circulation with two types of stock 
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In this table x + y means: x units of type IC3 and y units of type IC4. In 
total, one needs 7 units of type IC3 and 12 units of type IC4, divided during 
the night as in Table 5. 

number of nurnber of total total 
units of units of number of number of 

type 103 type IC4 units • carriages 

Amsterdam 0 2 2 8 
Rotterdam 0 2 2 8 
Roosendaal 3 3 6 21 
Vlissingen 2 5 7 26 

Total 5 12 17 63 

Table 5: Required stock (two types) 

So compared with the solution for one type only, the possibility of having 
two types gives both a decrease in the number of train-units ( 17 instead of 22) 
and in the number of carriages (63 instead of 66). 

Our research for NS in fact has focused on more extended problems that 
require more complicated models and techniques. One requirement is that in 
any train ride Amsterdam-Vlissingen there should be at least one unit that 
makes the whole trip. Moreover, it is required that, at any of the four stations 
given (Amsterdam, Rotterdam, Roosendaal, Vlissingen) one may either couple 
units to or decot1ple units from a train, but not both simultaneously. Moreover, 
one may couple fresh units only to the front of the train, and decouple laid off 
units only from the rear. (One may check that these conditions are not met by 
all trains in the solution given in Table 4.) 

This all causes that the order of the different units in a train does matter, 
and that conditions have a more global impact: the order of tl1e units in a 
certain morning train can still influence the order in some evening train. This 
does not fit directly in the circulation model described above, and requires a 
combinatorial extension. 
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