
Job scheduling on a parallel shared memory bus computer

Dedicated to Cor Baayen, with esteem and admiration

H.J.J. te Riele

Centrum voor Wiskunde en lnformatica, Kruislaan 413,

1098 SJ Amsterdam, The Netherlands.

The advent of vector computers in the beginning of the eighties, and of
parallel computers a few years later has triggered the development of new
algorithms, especially tailored to these new architectures. One of the many
initiatives of Cor Baayen was the stimulation of research activities in this
new field and the provision of the necessary equipment, both at CWI and at
SARA.
In this paper we study a problem which is typical for these new developments,
namely the scheduling of jobs on bus-type parallel computers. The pro
cessing elements of such computers communicate with a common memory
through channels called buses. Usually, there are less buses than processing
elements, so that several processing elements have to share the same bus. It
is a consequence of this restriction, as we show in this paper, that the total
processin_q time of a parallel job may depend on the order of execution of
the communication parts of the different subjobs. Unfortunately, this order
of execution can not, in general, be influenced by the programmer. There
fore, this phenomenon must be accepted as an inherent uncertainty in the
timing and reproducibility of jobs on parallel bus-type computers.

AMS Subject Classification {1991): Primary 69(12; Secondary 69D51

CR Subject Classification {1991): B.4.3, C.1.2

Keywords €3 Phrases: Bus-type parallel computers

1 INTRODUCTION

Consider a parallel bus - type computer with a shared memory having p * b
processing elements (PEs), where bis the number of buses and p is the number
of PEs per bus; see Figure 1.
Apart from the main shared memory, each PE has its own small local mem
ory, called cache. It is important to re-use cache data as much as possible,
in order to minimize transport of data between the cache and the main mem
ory. Processing elements which share the same bus cannot send/receive data

485

PEI PE5 PE25

B PE2 B PE6 B PE26
u u u

';~

s PE3 s PE7 s PE27
1 2 ,, 7

'•!'

PE4 PE8 PE28

MAIN SHARED MEMORY

FIGURE 1. Parallel bus - type shared memory computer, b = 7, p = 4

to/from the main memory simultaneously. CWI has at least. two computers of
this kind, viz., the Cray S-MP (b = 7, p = 4; each PE has a datacache of 8
Kbytes; the size of the shared memory is 256 Mbytes) and the SGI Challenge
(b = 1, p = 4; each PE has two data caches: a primary cache of 16 Kbytes, and
a secondary (slightly slower) cache of 1 Mbytes; the shared memory has a size
of 256 Mbytes).

We make the simplifying assumption that a job for our: parallel.shared mem-
ory bus computer can be split up in S equal subjobs. Not many real-life appli
cation jobs satisfy this condition, but basic building blocks like matrix-vector
multiplication do. Each subjob consists of one part where data are loaded from
the shared memory into the cache, a second part where computations are done
with these dat:a, and a final part where the results are stored frorn the cache into
the shared memory. The times (in seconds) for these three parts are de11oted
by l, c, and s, respectively. Schematically, we will represent a subjob as

I l = 2 1 C == 4 I s=3
'

4 I I I

where t·he lengths of the line segrnents have the ratio l : c : s .. Communication
parts (l and s) are marked hy thick lines.

The total time T of a job depends on b, p, S, l ~ c, and s, so

T == T(b,p, S, l, c, s).

By T(b,p, S, l, c, s) we will denote the minimal time needed to complete the
job. In general, it is easy to give upper and lower bounds for T. For example,

p (l + s) < T(I, p, p, l., e, s) < p (l + s) + c.

The lower bound just counts all the communication· tin1es (neglecting th!i! com
puting times), and for the upper bound we assume that after the last PE has

486·

f\:

f>J:

P4:

l
j 11,,r i 11 l'IJllllt I J I

, s I
K , , .. ii

J b l I 1 • l /!"1··,,, ·1 1 • ") It ·1} 1 •> ~ <.) .. 8<· lf'Ci ll1t~ W l t, Il \ . , "i, ·, • .:.. • ,,;t, . := ,J
•.

-------•- ; 0 f ,,.,,w ,,_,,.....,_,,_, ,,.,._,-....__,_,._,......__,,""""""""""'""'"",_._,,.._,,..,,,.__,_,,,_..,_,__,,,.~.,,.,.; " r,_., .. ,.,,.,,._,,_~ ,, '"·''" , ,,., t " ,.,,,,_,,,..,,,_..---~,., ;, ~•------•-· --W•••W1

Pi: l

P2:

P,:

P,:

___ 1~=1,
'

('
,._I ____ ...;.,I_..,,, to ,,,..,_,_,..,,,_,..,,,.,,.,_....,... __ .,.,,_,._.,,...a -•••>"!<_...,__J

,,
I ,J

t l
• r

Fig11res 2 ar1(i :i illt1strat;t~ ft~•r· t,l1t'l> c~~t..'i.it:" l> :::::: l, 1,1 ~ it, ._', -- •i, l = 2, ,. :._: Li,
s = 1, tl1at, 1"' tl'lll.j' <ieJl("Il<l (>11 tl1<:1 l>r,ier by wl1ic·l1 t.llt:' cliffE=~re11t. f·>I;;:s ext.."<:·t1te

t·1 .. , .. 1·r ("'·(')II'n·1t1r11·c .. a.t·11"g p 11 rts 11· tl·,c~ ,·,··l·1Lv..l,1l..::i ("~f· F..,1.o-11 f•K\ ·} pt'()(''(~cs1·1··1g "'1.t'.l[ll')l'l" f) , .i'\., . , . 1 . . ,, . I. · ,l!l, . ., • 1 ·' ,, S(. '\. ,.1 l. , P . t, \& ... , ""', . . . , .. ~.. <;,: t,,, "'••' {c.; . . J

or1ly start.s \\'·it.t1 st<>rir,1g t,l1e (lrita ir1t;c) t.ltt' sl111re<l 111t-'tll<l1·y :utt~r all t.l1e J)F:s l1avf.~
lo'(t(lt~ tllt~ir d,it.a. 11·1 t.l1e scl1t•(l11.},:. <:>f r"'ig11rt" :1 l)l"(><:t,ssi11g t~l(~Ill(~llt, />1 st,arts V\ritl1
storir1g t.ht" ciat,a ctS S<'.➔()Il <i...5 it l1;1...;; <~<:)1r1plf't,f~c·l it,s <:'t)r·11J)t1t i11g ,t>ftr·t (<tll(l th<~ ll1.1s

c~l1a1111t~l is free). C<lr1.st:x111t~11t.lj1
, wt::, fi11<l 1'"' == 1:3 ar1<i 1" --- l •1, t·(~J>t'<'ti\rely.

Ir1 t.l1is l)~:i~>(~r, wt• sl1all ar1,tl)TZ,(l t.l1t;\ <•;;t...:;.(~ tJ ·.-::::: 1 i11 S,t~l·ti<_>rt 2, cir1c.l r>«ix·tlJ'
geil(~fttliz{:o t.his i11 St."C·ti(:)Il :3. \V(.l {)l'e8(:1Ilt t,ll{"()f(.)IllS V\'lli(·r1 giv•(l t.llt:~ r11i11illlllill

t.iillt~ r1t~t.~<iE~i t,<> ext~<~ute a joll ()11 a l)llS t.yJ .. >e l}c\riillt:,l <:'(>tllI)tltt"'r ~ ur1<.it~r t,h<~
asSllI,llJ)tit)Il t,hrit tl1t~ tc)t,al jol) c·,t11 be split tip irtt,<.> ,t 1111r1tl)t1 r t)f E~<1l1al s11bjobs.
f">rc>ofs Vlv-rill apJ>ear t~lst''\:\r}1ere, l~-.t1t, 11(:> <l<)lll)t. t.l1t:~ re,t<it'.\r will l>t: 1il·>l(~ tc) c~()Itstruc~t

&1111t~ c)f tl1t~111 witl1out, t<.><} rr1l1c·l1 efft>rt.

2 TiiE C'.~ASf: b · 1

\\Tt~ start. by· ;1Ssu111ir1g .'3 -·- JJ, l:t..11c:i give t,l1rt)('\ <~xl.tlllI>lt~s wit.l1 1> == S --- 4~ viz.,
l = 1, l. -- 2., .s =·· 2 (f'"ligur(.' 4), l 2, (' == 2, ·" -- 1 (r"'ligurt'l 5), atl(l l = 1, (.' = .. - 4,
S · · 2 (f'"ligtlft' 6').

""I'll1t~s(~ exc1r111>l(~ s11ggt~st t.l1at i11 so111t~ C'.as.t~s I:(b, JJ~ S, l, <·. ,.,) :--::· 1'(b~ JJ, S, s, c, l)~
i.e., t,l1at tl1t') ti111e 7~ rerr1ai11s fixt~d, if \\1(.\ i11t.E~r(~}1a.11g(:• l a11cl .s. l)f~fir1e

487

I

P1: 1 l 1, c=2 s=2 I I J m

P2: I l I
C

I I
s

I

Pa: I l I
C

I I
s

I

P1: I l I
C

1 I
s I

FIGURE 4; Job schedule witl1 T(l, 4, 4, 1, 2, 2) == 4(l + s) == 12

P1: 1 l-2 c=2 ,s 1, I I ,

P2: l I C I I
s

I

P3: 1 l I
C

I
s

I

P1: I l I . C
I I

s
l

FIGURE 5. Job schedule with T(l, 4, 4, 2, 2, 1) == 4(l + s) == 12

THEOREM 1 Let b == 1 and S = p;
i~ if c < (p - 1)m, then T == p (m + m) == p (l + s);
ii. if c > (p 1)m, then T · m + c + pm.

'

Figures 4 and 5 correspond to Theorem l.i and Figures 2 and 6 correspond to
Theorem I.ii.

The next case we consider is S == k * p for some integer k > 2. In that
case, each processing element will execute k subjobs. One possibility is that
the schedule of Theorem 1 is just repeated k times, so that the total time is:
kp (m + m) if c < (p - l')m, and k(m + c + pm) if c > (p - l)m. However,
it turns out to be more efficient ini general, if a PE continues with t·he loading
part of the next subjob, as soon as the storage part of its previous subjob has
been finished. This concentrates the communication parts of the work done by
one PE, and· therefore gives more freedom to carry out the computing parts in
between them. An example with b = 1, p == 4, k == 2(S == 8), l = 1, c = 4, s = 2
is given in Figure 7. Counting from the end of the job back to the beginning
we find that·

T(l, 4, 8, 1, 4, 2) == 4s + 4(l + s) + c + l = 25

(vs. T = 26 if we repeat the schedule of Theorem l.ii two times). Notice that
if we fix the schedule of t:he load and storage parts, the first computing task

' '

'

P1: 1 l - 1· I 4 s-2 C I J

P2: l C s

P3: I l I
C I I

s
I

P1: I l C
I

s
I

FIGURE 6. Job schedule with T(l, 4, 4, 1, 4, 2) = l + c + 4s = 13

of processing elements P2 , P3 , and P4 could have been scheduled somewhat
later, and the second computing task of all the four PEs could also have been
scheduled somewhat later, without effect on the total computing time T.

P1: L l I C
I

s
I l I C

I I
s

I

P2: I l I
C

I I
8

I l I C
. I I

s
I

P3: I l I
C

I I
s

I l I
C

I t
s

I

P3: I l I C
I - L

s
l l I C

I I
s

I

FIGURE 7. Job schedule with T(l, 4, 2 * 4, 1, 4, 2) == 25 ·-

We have the following

THEOREM 2 Let b = l and S = k * p for some integer k > 2;

ii. if (p - l)m < c < (p - l)m, then T = c + m +pm+ (k l)p (m + m);
iii. if (p- l)m < c < (p- l)(m+m), then T = 2c+m + m + (k- l)p (m+-m);
iv. if (p - l)(m + m) < c, then T == k(c + m + m) + (p - l)(m + m).

Figure 7 corresponds to Theorem 2.ii: we find

T(l, 4, 8, 1, 4, 2) == 4 + 1 + 4.2 + (2 - 1)4(1 + 2) == 25,

so the schedule of Figure 7 yields the minimal time. To further illustrate this
theorem, we consider case iv., and compare its time with that obtained by just
repeating Theorem l.ii k times. We find, assuming that (p - l)(m + m) < c,

T Thm2.iv ==

T Thml.ii

k(c + m + m) + (p - l)(m + m)
k(c+m+pm)

c+m+m
~ > _,

c+m+pm

For example, for p = 4, c = 20, l = l, s = 2 this gives

T Thm2.iv 23k + 9 =
T Thm2.iv 29k

23 , = 0. 793, as k , oo.
29

as k -► oo.

Now we study, for another example, how the total time T depends on c, if the
other parameters are kept fixed. Assume b = I, p == 4, k = 10 (S == 40), m ==
1, m = 2. If we simply repeat Theorem 1 ten times, we find that T = 120 if
c < 3 and T = lOc + 90 if c > 3. Theorem 2 gives the minimum times, with
T = 120 for c < 3, T = c + 117 for 3 < c < 6, T = 2c + 111 for 6 < c < 9, and
T = lOc + 39 for c > 9. This is represented graphically in Figure 8. It follows
that an efficiency-loss of nearly 40% is possible (for c == 9 we have a worst/best
times ratio of 180/129 ~ 1.40).

3 THE GENERAL CASE

For the general case for b we present two theorems. In the next theorem,
we assume that subjobs on different buses update different parts of the main

489

210 -

T(c)

180 -

b = 1, p = 4, S = 40, m = 1, m - 2

Theorem 1
repeated

,

·180
I
I

I

210
I
l

I

I
I
l
i

I

I

I ~ 159
I .•· I .

150 ~

120 .-------.

•
I ••... I

150 •
I I •• •• I

••
I •• • I • I

• • t Theorem 2 I •• • t
> > > •

I I.··. I
••• I •• • • • • •• • I 129 I •••

,· ••..
. •••.• , ••·t12··3 I I

I I I I I

0
> >

6
A • • 0 • • •• • •

--. C. 12 9

FIGURE 8. Total time T(c) obtained with Theorem 1 (drawn line) and Theorem
2 (dotted line)

memory, so they can update the main memory at the same time. Moreover,
we restrict ourselves to the condition of case iv. in Theorem 2.

THEOREM 3 Let (p - l)(m + m) < c, S == k1 pb + k2 with O < k2 < pb, and
k2 = k3b + k4 with O < k4 < b; assume that subjobs on different buses update
different parts of the main memory.

ii. if k2 # 0 and k4 = 0, then T == (k1 + l)(c + m + m) + (k3 - l)(m + m);
iii.if k2 /=, 0 and k4 =I= 0, then T == (k1 + l)(c + m + m) + k3(m + m).

In our final theorem we assume that subjobs on different buses not necessar
ily update different parts of the 1nain me1nory; this means that if one PE is
updating the main memory, all the others can not (neither those connected to
the same bus, nor those connected to other buses).

THEOREM 4 Let S = P*b, so we have precisely one subjob for each PE; assume
that if one PE updates the main memory, the others can not.
i. If c < (p - l)m, then T = pl + pbs;
ii. if c > (p - l)m and l < s, then T = l + c + pbs;
iii. if c > (p - 1)m and l > s, then T l + c + pbs + (p - 1) (l - s).

490

4 CONCLUSION

We have shown that the order of execution of communication parts of subjobs
on a parallel shared memory bus-type computer can influence the total pro
cessing time of a parallel job unfavourably. Since, in general, the programmer
can not influence this order of execution, this phenomenon must be accepted
as an inherent uncertainty in parallel processing. Examples illustrate that an
efficiency-loss of 40% is not uncommon.

491

