Job scheduling on a parallel shared memory bus computer

Dedicated to Cor Baayen, with esteem and admiration

H.J.J. te Riele

Centrum voor Wiskunde en Informatica, Kruislaan 413,
1098 SJ Amsterdam, The Netherlands.

The advent of vector computers in the beginning of the eighties, and of
parallel computers a few years later has triggered the development of new
algorithms, especially tailored to these new architectures. One of the many
initiatives of Cor Baayen was the stimulation of research activities in this
new field and the provision of the necessary equipment, both at CWI and at
SARA.

In this paper we study a problem which is typical for these new developments,
namely the scheduling of jobs on bus-type parallel computers. The pro-
cessing elements of such computers communicate with a common memory
through channels called buses. Usually, there are less buses than processing
elements, so that several processing elements have to share the same bus. It
Is @ consequence of this restriction, as we show in this paper, that the total
processing time of a parallel job may depend on the order of execution of
the communication parts of the different subjobs. Unfortunately, this order
of execution can not, in general, be influenced by the programmer. There-
fore, this phenomenon must be accepted as an inherent uncertainty in the
timing and reproducibility of jobs on parallel bus—type computers.

AMS Subject Classification (1991): Primary 69C12; Secondary 69D51
CR Subject Classification (1991): B.4.3, C.1.2
Keywords € Phrases: Bus—type parallel computers

1 INTRODUCTION

Consider a parallel bus — type computer with a shared memory having p x b
processing elements (PEs), where b is the number of buses and p is the number
ot PEs per bus; see Figure 1.

Apart from the main shared memory, each PE has its own small local mem-
ory, called cache. 1t 1s important to re-use cache data as much as possible,
in order to minimize transport of data between the cache and the main mem-
ory. Processing elements which share the same bus cannot send/receive data

485

PE1 PES5 _ PE25
B PE2 B PE6 Bl PE26
S| pes S|| PpE7 S| PE27
PE4 - PE8 PE28

MAIN SHARED MEMORY

F1GURE 1. Parallel bus - type shared memory computer, b =7, p =4

to/from the main memory simultaneously. CWI has at least two computers of
this kind, viz., the Cray S-MP (b = 7, p = 4; each PE has a data:cache ot 8
Kbytes; the size of the shared memory is 256 Mbytes) and the SGl Challenge
(b =1, p = 4; each PE has two data caches: a primary cache of 16 Kbytes, and
a secondary (slightly slower) cache of 1 Mbytes; the shared memory has a size
of 256 Mbytes).

We make the simplifying assumption that a job for our parallel shared mem-
ory bus computer can be split up in S equal subjobs. Not many real-life appli-
cation jobs satisfy this condition, but basic building blocks like matrix-vector
multiplication do. Each subjob consists of one part where data are loaded from
the shared memory into the cache, a second part where computations are done
with these data, and a final part where the results are stored from the cache into
the shared memory. The times (in seconds) for these three parts are denoted
by I, ¢, and s, respectively. Schematically, we will represent a subjob as

where the lengths of the line segments have the ratio [: ¢ : s. Communication
parts (I and s) are marked by thick lines.
The total time T of a job depends on b, p, S, [, ¢, and s, so

T =T(b,p, 5, 1,c,s).

By T(b,p,S,1,c,s) we will denote the minimal time needed to complete the
job. In general, it is easy to give upper and lower bounds for 71" For example,

p(l +8) S T(lvpapv L, C, 8)_<.. p(l T 3) + C.

The lower bound just counts all the communication times (neglecting the com-
puting times), and for the upper bound we assume that after the last PE has

486

" all the subjobs are carried out simul-

4 B W Rty TR I Tt i T SR S 1 SN S b et T ST T A e U e St R A 0T o AP REGEL T e ey A

Ficure 2. Job schedule wit

A
T L "

Rl 3 r) e G o M i Wl R e R T P St g A 3 el b S AN o TR 2 Eao i, o [gt e B T TR] Ll e T TRt T L T e R T

£
R ot rE S e YR FE S e o e W s B LI P N R A1 TN+ -t Il TR T WP o W p s (ALt b 3

FiGUuRrE 3. Job schedule with T(1.4.4,2. 4, 1) = 14

Figures 2 and 3 illustrate for the case b = 1, p =4, 5 =4, 1 = 2, ¢ = 4,
s = 1, that T mayv depend on the order by which the chﬁweﬁm PL;S execute
their communicating parts. In the schedule of Figure 2, processing element P
only starts with storing the data into the shared memory after all the Pks have
loaded their data. In the schedule of Figure 3 processing element P’y starts with
storing the data as soon as it has completed its computing part (and the bus
channel is free). Consequently, we find T = 13 and T = 14, respectively.

In this paper, we shall analyze the case b = 1 in Section 2, and partly
generalize this in Section 3. We present theorems which give the minimum
times needed to execute a job on a bus-type parallel computer, under the
assumption that the total job can be split up into a number of equal subjobs.
Proofs will appear elsewhere, but no doubt the reader will be able to construct
some of them without too much effort.

2 THE CASE b =1
We start by assuming § = P aned ;gwea three examples with p = S = 4, viz,,

é l,e =2, s =2 (Figure 4), | = = 2, s = 1 (Figure 5), and [= 1, ¢ = 4,
= 2 (Figure 6}

These examples suggest that in some cases T (b, p. S, [, ¢, ,:a) = T(b,p, S, s,c,l),
i.e., that the time T remains fixed, if we interchange [and s. Define

m = min(l, s), and m = max({.s),

then we have the following

FIGURE 4. Job schedule with T(l 4.4,1,2,2) =41+ s) =12

W— y P - e LA P

P:, 1=2 , c¢=2 | s=1, l
Ps: [C

L R

et 4 e

FIGURE 5. Job schedule with 7°(1,4,4,2,2,1) = 4(l 4+ s) = 12

THEOREM 1 Let b=1 and S = p;
. ifc<(p—1)m, thenT =p(m+m) =p(l+s);
ii. ife > (p— 1)m, then T = m + ¢ + pm.

Figures 4 and 5 correspond to Theorem 1.i and Figures 2 and 6 correspond to
Theorem 1.i1.

The next case we consider is S = k x p for some integer £ > 2. In that
case, each processing element will execute k subjobs. One possibility is that
the schedule of Theorem 1 is just repeated k times, so that the total time 1s:
kp(m +m) if c < (p — 1)m, and k(m + ¢+ pm) if ¢ > (p — 1)m. However,
it turns out to be more efficient in: general, if a PE continues with the loading
part of the next subjob, as soon as the storage part of its previous subjob has
been finished. This concentrates the communication parts of the work done by
one PE, and therefore gives more freedom to carry out the computing parts in
between them. An example withb=1,p =4,k =2(S=8),l=1,c=4,5 =2
is given in Figure 7. Counting from the end of the job back to the beginning
we find that

T(1,4,8,1,4,2) =4s+4(l+s)+c+1 =125

(vs. T = 26 if we repeat the schedule of Theorem 1.ii two times). Notice that
if we fix the schedule of the load and storage parts, the first computing task

: ety

FIGURE 6. Job schedule with T(1,4,4,1,4,2)=1l+4+c+ 45 =13

488

of processing elements P,, P3, and P; could have been scheduled somewhat
later, and the second computing task of all the four PEs could also have been
scheduled somewhat later, without effect on the total computing time 7.

- Oo m 0 rrrniiiiiii
Poog by ¢ 8 b€ 5 ‘
Py L4 c LS L c I L5
Ps Ly € LS by e L5

LP3 1, e s 1, e s

FIGURE 7. Job schedule with 7(1,4,2%4,1,4,2) = 25

We have the following

THEOREM 2 Letb=1 and S = k *p for some integer k > 2;

i. ifc<(p—1)m, thenT =kp(m+ ™) ;

. if (p—1)m<c< (p—1)m, then T = c+m+pm + (k — 1)p (m +m);

iii. if (p—)M < c < (p—1)(m+m), then T = 2c+m+m+ (k—1)p (m+m);
iv. if(p—1)(m+m)<c, then T=k(c+m-+m)+ (p—1)(m+).

Figure 7 corresponds to Theorem 2.1i: we find
7(1,4,8,1,4,2)=4+1+4.2+(2—-1)4(1 +2) = 25,

so the schedule of Figure 7 yields the minimal time. To further illustrate this
theorem, we consider case iv., and compare its time with that obtained by just
repeating Theorem 1.ii k times. We find, assuming that (p — 1)(m + ™M) < c,

Trhmziv _ klctm+m+(p-V(m+m) ctm+m
Tt i k(c + m + pm) e+ m+pm

For example, for p =4, ¢ =20, =1, s = 2 this gives

Tow i 23k+9 23
SThmaiv . 29507, 22 _ (703, as k — co.
Trnmor | 20k 29 0% 88 Be

Now we study, for another example, how the total time 71" depends on ¢, if the
other parameters are kept fixed. Assumeb =1, p=4, k=10 (S5 =40), m =
1, m = 2. If we stmply repeat Theorem 1 ten times, we find that T° = 120 if
c < 3and 1" = 10c+ 90 if ¢ > 3. Theorem 2 gives the minimum times, with
T=120for c <3, T =c+117tor3<c<6, T =2c+ 111l for6 < ¢ <9, and

T = 10c + 39 for ¢ > 9. This is represented graphically in Figure 8. It follows

that an efficiency—loss of nearly 40% is possible (for ¢ = 9 we have a worst /best
times ratio of 180/129 =~ 1.40).

3 THE GENERAL CASE

For the general case for b we present two theorems. In the next theorem,
we assume that subjobs on different buses update different parts of the main

489

210 }

» 210
T(c) :
]h
|
Th 1 '
eorem ,
180 - #"180 |
repeated v L
| l l
i l
| :.T 159
150 #150 | o
~ | K4 |
| I |
I Theorem 2 | .« l
| [o |
i‘.'
l ,.ut*"’\' l 129 ‘
120 _ . — _ —d enese® 91194!?****’*?1-123 ’ l
| | i i l
5 e ——— e

FIGURE 8. Total time T'(¢) obtained with Theorem 1 (drawn line) and Theorem
2 (dotted line)

memory, so they can update the main memory at the same time. Moreover,
we restrict ourselves to the condition of case iv. in Theorem 2.

THEOREM 3 Let (p—1)(m+m) < ¢, S = kipb+ ke with 0 < ko < pb, and
ko = ksb + ks with 0 < k4 < b; assume that subjobs on different buses update
different parts of the main memory.

i. Ifks =0, thenT =ki(c+m+m)+ (p—1)(m +m);

ii. if ko £ 0 and kg = 0, then T = (k1 + 1)(c + m + ™) + (k3 — 1)(m + m);
iii.if ke # 0 and kg # 0, then T = (k1 + 1)(c + m +m) + k3(m + ™).

In our final theorem we assume that subjobs on different buses not necessar-
ily update different parts of the main memory; this means that if one PE is
updating the main memory, all the others can not (neither those connected to
the same bus, nor those connected to other buses).

THEOREM 4 Let § = pxb, so we have precisely one subjob for each PE; assume
that if one PFE updates the main memory, the others can not.

1. Ifc < (p—1)m, then T = pl + pbs;

ii. ifc> (p—1)m and ! < s, then I =1 + ¢ + pbs;

ifi.ife> (p—1)m andl > s, then T =1+ c+pbs+ (p — 1)(I — 3).

490

4 (CONCLUSION

We have shown that the order of execution of communication parts ot subjobs
on a parallel shared memory bus—-type computer can influence the total pro-
cessing time of a parallel job unfavourably. Since, in general, the programmer
can not influence this order of execution, this phenomenon must be accepted

as an inherent uncertainty in parallel processing. Examples illustrate that an
efficiency-loss of 40% is not uncommon.

491

