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Most of the work on randomized query optimization has relied heavily on 
the use of transformations rules for the generation of execution plans. Re
cently, however, we gave evidence that for the problem of choosing a join 
evaluation order, generating alternatives uniformly at random from the space 
yields solutions comparable to those obtained with transformation-intensive 
methods, and requires generating fewer candidate plans. 

This paper presents a thorough empirical study of the impact of catalogs 
and join methods on the relative performance of transformation-free and 
transformation-based randomized optimization. Basically, our previous re
sults remain valid for a wide variety of catalogs and relational profiles. But 
in contrast with the problem of selecting a join order, selecting join algorithms,. 

lf!J,,1 

( e. g. hash, merge, nested-loops) seems better handled by transformations' 
than random picking. 

We then propose a two-phase approach that combines the speed of random 
picking with the quality of solutions of transformation-based optimization, 
and verify experimentally its superiority over the other algorithms, in all the 
search spaces considered. 

1 INTRODUCTION 

A major task of relational query optimizers is to select a suitable join evalua
tion order for which the estimated evaluation cost is minimum [Ull82, CP85, 
KRB85]. For small queries, exhaustive search is often feasible, but the number 

1 To Cor Baayen, at the occasion of his retirement and as a tribute to his choice in 1985 
to establish a Database Research group. His visionary goal to improve scientific cooperation 
is exemplified by the co-author Cesar Galindo-Legaria, one of the few ERCIM fellows. 
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of join orders increases very fast as the nun1ber of relations grow. Heuris
tics and/ or probabilistic algorithms are then a viable alternative. Research on 
probabilistic algorithms has focused on Simulated Annealing (SA) and Iterative 
Improvement (II), and their variations [IW87, SG88, Swa89b, Swa89a, IK90, 
IK91, LVZ93]. Those optimization algorithms rely heavily on transformation 
rules to generate alternative join evaluation orders. The transformation rules 
are usually based on algebraic properties of the join eval uatio11 orders, like 
commutativity and associativity, arid they impose a particular topology on the 
search space -namely, evaluation plans are adjacent if they differ by a single 
application of a transformation rule. But the effect of a given topology on 
the behavior of search algorithms remains difficult to quantify. This prompted 
us to examine a transformation free (TF) optirnization scheme that generates 
plans uniformly at random and keeps the best solution generated [GLPK94]. 
Our finding was that transforn1ations tend to improve solutions ''slowly,'' and 
the TF scheme converges faster and finds plans comparable to those found by 
transformation based opti111izers. 

The study in [GLPK94] was based on a calibrated cost model for the DBS3 
system [ACV91] -a main n1en1ory database whose cost n1odel accounts for 
CPU only- and considered execution plans with only hash-joins. In this paper 
we extend our previous experin1ents to assess the stability of the pher1omenon 
observed. We use the same I/O-domi11ated cost model used at the University of 
Wisconsin in their randomized optin1ization work [IK90, Kan91]. We examine 
the impact of indices, changes on the statistical profiles of the catalogs, and 
the use of different join algorithms. 

For the problem of selecting a join-order, the size of the space is exponential 
in the number of relations (see [GLPK95] for the exact size). When, in addition, 
a join algorithm is selected ( n - 1 m-ary decisions for a query on n relations 
with m algorithms available), the resulting search space is the product of two 
expone11tially large spaces. So, including tl1e selection of join algorithms has 
a different effect on the problem than changing the cost model or the catalog 
profiles. In fact, our current experin1ents show a qualitative difference in the 
relative performar1ce of optimization algorithms when different join algorithms 
are allowed. The ''high proportion'' of good sol11tions in the space of evaluation 
orders is for the most part preserved on different catalogs and cost models, but 
it decreases in the product space of evaluatior1 orders with method selection. At 
the same time, the transformations used in this product space seem particularly 
appropriate and lead to good solutions. 

We then study a two-phase approach similar to those of [IK90, LVZ93], using 
TF in the first phase a11d then transformations. The behavior of this algorithm 
combines the fast converge of random picking with the high quality of solutions 
of transformation-based search, and it is superior to the other algorithms in 
all the spaces we considered. From the behavior of this hybrid algorithm, it 
appears that the neighborhood structure around a given plan, from the point 
of view of the transfor1nation-induced topology, depends mostly 011 the cost of 
such plan. That is, a transfor1nation-based search behaves roughly the same 
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way when started on any two randomly-selected plans of the same cost. 

Road map. This paper is organized as follows. In Section 2 we give definitions, 
details on the cost model, and the three basic search algorithms. The test bed 
for the experiments is described in Section 3. Section 4 describes experiments 
with various catalogs, and Section 5 examines multiple join algorithms. Finally, 
Section 6 contains experimental results on hybrid algorithm. Conclusions are 
given in Section 7. 

2 DEFINITIONS 

This section defines the search space, the basic probabilistic search algorithms 
used on that space, and the performance measure used for comparing the al
gorithms. 

2.1 Search Space 
Query evaluation plans. We represent a query by means of a query graph. 
Nodes of such graph are labeled by relation names, and edges are labeled by 
predicates. An edge labeled p exists between the nodes of two relations, say Ri, 
Rj, if predicate p references attributes of Ri, Rj. The r·esult of a query graph 
G == (V, E) is defined as a Cartesian product followed by relational selection: 
<J"p1 A···/\pn(R1 x ··· x Rrn), where {p1,--·,Pn} are the labels of edges E and 
{ R1, ... , R11i} are the labels of nodes V. 

Query evaluation plans ( QEPs) are used to evaluate queries, instead of the 
straight definition of product followed by selection given above. A QEP is an 
operator tree whose inner nodes are labeled by a join operator and whose leaves 
are labeled by relations. The result of a QEP is computed bottom-up in the 
usual way. QEPs include annotations on the join-algorithm to use -e. g. nested 
loops, hash, merge, etc.- wher1 several are available. 

Not every binary tree on tl1e relations of the query is an appropriate QEP, 
because some may require the use of Cartesian products. We restrict the search 
space to those QEPs that do not require products, called valid in [SG88]. Some 
systems restrict the topology of QEPs further, so that each join operates on 
at least one base relation. Such restriction leads to the space of linear QEPs. 
We do not impose such restriction here, so we work on the more general bushy 
space. 

Tree transformations. The transformations used to generate new QEPs, where 
applicable, are the following [IK90, IK91]: Commutativity, A txl B < > B 1><1 A; 
associativity, (A l><l B) l><l C < > A rx1 (B 1><1 C); left join exchange, (A 1><1 B) IXl 

C < > ( A l><l C) lXl B; right join exchange, A t><J ( B 1><1 C) < , B LX1 ( A t><1 C) and 
join method selection, A txlmethodi B ' ) A txl.,,iethodj B. 
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PROCED E II() { 
minS = infinite; // with cost(infinite) = infinite 
WHILE not (stopping_condition) DO { 

S = random state; 
WHILE not (local_minima(S)) DO { 

S' = ra.ndom state in neighbors (S); 
if cost(S') < cost(S) THEN S = S';} 

IF cost(S)<cost(minS) then minS = S;} 
return(minS);} 

FIGURE 1. Iterative Improvement 

2.2 Search Algorithms 
We experiment with three basic search algorithms, the transforn1ation-based 
Iterative Improvement and Simulated Annealing, and a transformation free 
algorithm. We summarize them here for completeness. More details on the 
transformation-based optimizers can be f·ound in a number of references, ir1-
cluding (KCV82, NSS86, SG88, IK90, LVZ93]. 

Iterative Improvement (II) performs a large number of local optimizations. 
A local optimization starts at a random QEP, called the current QEP. By 
applying a randomly selected transformation rule to the current QEP a new 
one is generated. If this is cheaper then it is accepted as current QEP, otherwise 
it is rejected. A local optimization stops when a local minimurn has been 
reached. The II algorithm stops as soon as a predefined number of plans has 
been generated. The plan found with the lowest cost is returned as the result. 
Figure 1 shows the pseudo-code of the II algorithm. 

To detect a local minimum the neighbors are not searched exhaustively but 
a r-local minimum is used [Kan91], i.e. a plan is a local minimum if none of r 
randomly selected neighbors has a lower cost. Since the plans are selected at 
random, and repetitions are possible, a r-local minin1um is not guaranteed to 
test all neighbors. In the experiments r is set to the number of neighbors of a 
node. 

Simulated Annealing (SA). Sometimes the II algorithm fails to find good plans 
because it gets stuck in high cost local minima. SA attempts to solve this prob
lem by also accepting new QEPs with a higher cost, with some probability. The 
SA algorithm starts at a random QEP and randomly generates next QEPs. The 
probability of accepting QEPs with higher cost decreases as time progresses. 
When a predefined number of plans has been generated or a ''stable condition'' 
has been reached the SA algorith1n stops. 
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PROCEDURE SA(){ 

S = SO; 
T = TO; 
minS = S; 
WHILE not(frozen) DO { 

WHILE not (equilibri11m) DO { 
S' = random state in neighbors(S); 
deltaC = cost(C') - cost(S); 
IF (deltaC <=O) THEN S = S'; 
IF (deltaC > 0) THEN S = S' with probability e-(-deltaC/T); 
IF cost(S)<cost(minS) THEN minS = S;} 

T = reduce(T);} 
return(minS)} 

FIGURE 2. Simulated Annealing 

Figure 2 shows the pseudo-code of the SA algorithm. The frozen and equi
librium conditions used in our experiments are those given in [Kan91]. 

If time is infinite both transformation based search algorithms will find the 
global minimum, but in practice the resource available for optimization are 
limited and must be used as efficiently as possible. 

Transformation Free (TF). To remove the reliance on transformation rules, 
and a potentially slow quality improvement, the TF algorithm was investigated 
in detail in [GLPK94]. This algorithm generates QEPs uniformly at random, 
and keeps track of the one with the lowest cost. The algorithm terminates 
after it has generated a predefined number of QEPs. The QEP with the lowest 
cost is returned as preferred plan for execution. Like II and SA, if TF is given 
infinite time it will find the global minimum. But unlike SA and II, if time is 
finite TFs performance only depends on the cost distribution over the search 
space and not on the topology imposed on the space by the transformation 
rules. Figure 3 shows the pseudo-code of the TF algorithm. Note that the 
random states are chosen uniformly from the space. See [GLPK95) for details 
on how this is achieved. 

2.3 Performance Measure 

The behaviour of an optimization strategy can be represented by a function 
mapping the number n of plans explored to the estimated cost of the best plan 
found. For a given algorithm A, we call this cost the solution after n, and 
denote it by s:. Formally, using U: as the set of the first n plans visited by 
A, the solution after n is: 
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PROCEDURE TF(){ 
minS = random state; 
WHILE not(stop_condition) DO { 

S = random state; 
IF cost(S)<cost(minS) THEN minS = S;} 

return(minS)} 

FIGURE 3. Transformation Free 

For transformation-base algorithm, every valid plan generated by the al
gorithm is counted as explored, even if it is not accepted by the algorithm 
( e. g. because its cost is higher than the current plan in II). 

Since the algorithms are probabilistic, U,:; is a random subset of size n from 
the search space, and therefore S{; is a randorr1 variable. Based on this, we 
measure the success of tl1ese algorithms using the n1ean and standard devi
ation of the solution. As n increases, the n1ean of s:; should approach the 
minimun1 cost in the search space; while at the sar11e tin1e tl1e standard devia
tion of s: approaches zero. The second condition ensures that the algorithm, 
though probabilistic, behaves i11 a stable way. Although the nun1ber of pla11s 
explored does not account for all the resources required by an algorithm, we use 
this solution after n as an implementation-independent measure of algorithm 
performance. 

3 TESTBED 

To assess the stability of the TF search algorithm we conducted a large number 
of experiments with the I/0-based cost model of [Ka1191} and queries and 
catalogs that were also used in our· earlier work with the D BS3 cost model 
[ACV91]. 

The new cost model is used exhaustive to study the impact of the catalogs 
and the available join methods on the perfor1nance of TF, II, and SA. The 
queries used in the experin1ents a1~e randon1ly generated and acyclic. They 
range form 4 to 20 joins and all join predicates are equality joins. These 
queries were optimized for three catalogs with different variance in attribute 
values and relation size. The queries and catalogs used in (IK91] constitute our 
starting point and in the sequel of this paper these catalogs will be referred to 
as the original catalogs. 

3.1 Cost Model 
The cost model called CM2 in [Kan91] is the basis for our experiments. This 
cost model assumes a disk-based database system. Since the cost of evaluating 
a QEP is domi11ated by the I/ 0, the n11111ber of pages tl1at are read or written 
during the evaluation of a QEP is used as cost n1etric. A large buffer is assumed 
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Catalog Cardinality Percentage of unique values in attribute 
catalog 1 1000 [0.9,1.0] 
catalog 2 [1000, 100000] [0.9,1.0] 
catalog 3 [1000, 100000] (0.1,1.0] 

FIGURE 4. Sizes and selectivities of the original catalogs 

in the cost model. The major difference with the DBS3 cost model used in our 
previous work, is that the DBS3 model assumes a main memory database 
system, in which the CPU cost is the predominant factor. 

The CM2 cost model is able to handle three join algorithms, namely nested
loop, merge-scan and hash-join. The cost functions for the nested-loops algo
rithm are page-level nested-loops join and index-scan nested-loop. The cost of 
the cheapest alternative is returned as cost for a nested-loop join. The cost of 
the merge-scan join consist of sorting the inputs, if they are not already sorted, 
and by merging the two i11put streams. The hash-join also has two alternatives 
of which the one with the cheapest cost is returned. These two alternatives are 
simple hash-join and hybrid hash-join. In the co1nputation of the cost for the 
hash-join it is assumed that the hash table is build on the smallest input. 

When an index is available for a join attribute it can be used to reduce 
the loading cost. The usual assumption is made that the attribute values are 
uniformly distributed and that the columns values are independent. 

3.2 Factors Considered 

The factors considered in our study are the following: 

• Catalog variance ( the difference in relation size and join selectivity). 

• Relation sizes ( original catalogs or enlarged catalogs). 

• Indices (present or not). 

• Join algorithms (nested-loop, hash-join, n1erge-scan). 

The catalogs used are randomly generated fro111 a profile that specifies an 
allowed range for relation sizes and uniqueness of attributes. Figure 4 gives the 
profiles for the three types of catalogs used. For example, a catalog of type 2 
( or simply catalog 2) uses relation sizes ranging from 1,000 to 100,000 tuples 
and the uniqueness of the attrib11te values range from 90% to 100%. This 
percentage of unique values is used for the computation of the join selectivity 
in the cost estimation. The ranges are chosen such that the variance in catalog 
1 is small, and it is increased in catalogs 2 and 3. 

The enlarged catalogs are constructed by 1nultiplying tl1e relation sizes in the 
original catalog (Figure 4) by a hundred. These enlarged catalogs were used to 
study the impact of the large I/O buffer in the cost model and possible non
linear behaviour of the cost functions. For both the original and the enlarged 
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catalogs we used two variants; one with many indices and one without indices. 
They are used to check the hypothesis that indices have a strong effect on the 
shape of the search space and, therefore, affect the performance of the search 
algorithms. 

In the experiments discussed in Section 4 there is only one join method 
available for a single QEP. So all of join operators in a QEP are either nested
loop, merge-scan or hash-join. Section 5 and 6 describe experiment1s in which 
the plans considered combine different join algorithn1s. 

3.3 Performance Characteristics 

These graphs showing our results present the average of solutions found by the 
various algorithms after exploring a given number of plans. As is usual in the 
work on this subject, the y-axis is a linear measure of scaled cost, with a scaled 
cost of 1 for the cheapest individual plan found by any algorithm, in the given 
search space. 

These graphs have some properties useful for the comparison of search algo
rithms. A general description of the graph of TF and II is as follows. Up to 
a crossover point the TF algorithm generates better plans, and after that the 
II algorithm finds better plans. This crossover point marks the solution that is 
found by both algorithms after exploring the san1e number of plans. 

After exploring a many plans, the cost of solutions found by probabilistic 
algorithms improves very slowly. We could say that at some point the optimizer 
becomes stable and call the quality of the plan at that point the final cost. The 
difference in final cost is used to compare algorithms. 

Another important characteristic of the graph is the cost range. If the dif
ference between the best solution and the worst solution in the search space is 
small, the optimization has a relatively smaller impact on the execution time 
of the query. If, on the other hand, the cost range is large, the optin1izer can 
produce a dramatic improvement on query performance. 

These three aspects --crossover point, final cost ( difjerence) and cost range
of a performance graph are helpful in analysing the performance of the search 
strategies. In Figure 5 these aspects are marked in a skeleton performance 
graph. 

4 EFFECT OF VARIANCE, INDICES, AND RELATION SIZES 

This section discusses the experiments done to determine the circumstances 
for which the random generation of plans is comparable to the transformation 
based approach. The sequel of this section describes the behaviour of TF, II 
and SA for various catalogs and join methods. All graphs shown are averages 
over a large number of runs. 

4.1 Catalogs with Indices 
The original catalogs with indices are used for our first experi1nent. As 111er1-
tioned in Section 3 the optimizers only consider QEPs in which all join algo-
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Scaled cost 

- __ c_os_t range 
◄~: 

Crossing point 

Final cost Final cost diff ere nee 

Sa,nple size 

FIGURE 5. Skeleton performance graph 

rithms are either nested-loop, merge-scan or hash-join. 
We observed that as the catalogs changed, from low variance to high variance, 

the cost range of the graphs increased and the crossover point shifts to the left. 
The final cost of the II and TF algorithm are similar for catalogs 2 and 3. Only 
for the low-variance catalog 1 the II algorithm is consistently better. For the 
high-variance catalogs the relative performance TF algorithm is best. Figure 
6 illustrates shows the results for a query of 20 joins when only hash-joins are 
considered (the results for nested-loops and merge-join are similar). 

To our surprise the QEPs with only nested-loops join were the cl1eapest in 
absolute cost. A closer examination of the QEPs generated showed that the 
large buffer size, relative to the size of the relations involved, caused this effect. 
Most of the processing can be done such that the inputs to the join operator 
fit in the buffer, so the nested loops algorithm does not require any reloads. 
Due to the overhead cost of the other two algorithms they resulted in more 
expensive QEPs. 

4. 2 Catalogs without Indices 
We drop all indices in the next, rou11d of experiments, to test the assumption 
that indices reduce the cost range and make the search space smoother. That 
is, the cost difference with neighbors becomes smaller. 

Surprisingly, for the experiments conducted, the performance difference be
tween search algorithms in spaces with indices or without is small. But an 
interesting change can be observed for the high variance catalogs in Figure 7. 
Compared to the indexed catalogs the crossover points shifted slightly to the 
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FIG URE 7. Space of hash QEPs for the original catalogs without indices 

right for all join methods and the quality of the plans at the cr·ossover points 
is better. The cost range of the graphs and the final costs are similar to those 
of the indexed catalogs. 

Our experiments, then, lead to the conclusions that altl1ough indices have a 
noticeable impact on optimization performance, it is relatively s1nall compared 
to the impact of the catalog variances or variance in join selectivity. 

4.3 La1IJe Catalogs with Indices 
To examine the impact of the large buffer on the pe1~for1nance of the search 
algorithms, we enlarged the relation sizes of the original c~atalogs. For these 
big relations the QEPs with only hash-joins were consiste11tly cheaper than 
QEPs with only merge scar1 or nested loop. This search space of QEPs, with 
only hash joins, also showed the biggest change in perfor1nance. For catalog 2 
TF finds plans 111uch faster than II and also the distance between the grapl1s has 
grown in comparison to the origi11al catalog 2. Fo1~ catalog 3 the TF algorithm 
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FIGURE 8. Space of hash QEPs for enlarged catalogs with indices 

improves faster before the crossover point, but this crossover point has a high 
cost. 

With the enlarged catalogs both the cost and the difference between final 
costs has grown. To make the performance graphs of the search algorithms 
visible, the scale of the y-axis was enlarged by a factor of ten. In Figure 8 
the performance graphs of the search algorithms are given for the tree catalogs 
whe11 only hash-joins are used. 

We also ran experiments for enlarged catalogs without indices. The results 
are basically the same as those prese11ted for the spaces with indices, so they 
are not shown here. 

5 EFFECT OF MULTIPLE JOIN ALGORITHMS 

We now consider the use of multiple join algorithms in QEPs. To deal with 
this case in transformation based strategies, a rule is added that changes the 
algorithm at a specific join operator. Such addition leads to a dra1natic growth 
of the search space. If m join algorithms are consider·ed and the QEPs joins n 
relations, each QEP in the original search space is mapped to mri-I QEPs with 
join selection. This big search space seems to contain cl1eaper QEPs -,e. g. a 
hash-join whose inputs are sorted ca11 be replaced by a merge-scan- but it 
also introduces many QEPs with higher cost. Important for the performance 
of all three search algorithms is how the cost distribution changes, and for 
transformation based optirnizers also the modified <~onnectivity of the search 
space. 

Uniformly random generation of elements from the enlarged space is easy 
-modulo the uniform generation of evaluation orders. Simply select indepen
dently and uniformly a join algorithm for each join in the QEP. 

Figure 9 shows the performance graphs for the three search n1ethods using 
all join algorithms. For refe1·e11ce, we also show the result of II and TF on the 
restricted space of plans that use hasl1-joir1s only. The effect of the enlarged 
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space is clear from this graph. Initially, both TF and II progress about as 
quickly in the space restricted to hash-joins as in the more general space. But 
then TF becomes stable in more costly solutions when it has to select a join 
algorithm, while II finds better solutions when selecting a join algorithm. 

We can conclude that the reduced percentage of good plans in the bigger 
space has a negative effect on the performance of the TF algorithm. However, 
the topology imposed by the change-join-algorithm transforn1ations seems par
ticularly appropriate for a transformation-based search. 

In the following section we show experiments in which random generation 
and the use of transforn1ation rules are mixed. Ideally these methods should 
incorporate the good behaviour of both the TF and II algorithm, fast conver
gence and good final plans. 

6 HYBRID ALGORITHMS 

Considering all experiments performed, an improvement of transformation 
based optimizers seems feasible by balancing the generation of random plans 
with the application of transformations. Other multi-phase optimization 
schemes have been proposed in [Kan91, LVZ93], but they still rely mainly 
on transformations to generate alternatives. 

It is reasonable to consider starting the search by generating a predefined 
nun1ber of plans (TF-phase), followed by one tra11sformation-based local opti
mization. During this local optimization phase no new random starting points 
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PROCED E SII(n) { 
minS =infinite;// with cost(infinite) = infinite 
WHILE not (stopping_condition) DO { 

S = random state 
FOR i = 1 TO n - 1 DO { 

S' = random state; 
IF cost(S') < cost(S) THEN S = S';} 

WHILE not (local_minima(S)) DO { 
S' = random state in neighbors(S); 
IF cost(S') < cost(S) THEN S = S';} 

IF cost(S)<cost(minS) then minS = S;} 
return(minS);} 

FIGURE 10. Set-Based Iterative Improvement 

are generated. A genercllization of this idea is what we call the Set-based Iter·
ative Improvement (SIIn) algorithm. This hybrid algorithm is an II algorithm 
that uses the best plan of a ra11(lo111ly generated set as starting state for a local 
optimization. The n 1·epresents the size of the randon1ly generated start set. 
Figure 10 shows the pseudo-code of the algorithm. 

Figure 11 shows the performance of SII100 , as well as TF and II for the space 
of join ordering, when using the enlarged catalog 3. The graph of the S11100 

algorithm reflects the behaviour of both the TF and II algorithm. It converges 
as fast as the TF graph in the first part of the graph and then picks up the 
behaviour of the II algorithm, resulting in very good quality plans. Figure 11 
is typical for the behaviour of the SII algorithm. 

Figure 12 shows the performance of S11100 on the space of join ordering plus 
join-algorithm selection, also in combination with enlarged catalog 3. Although 
the TF algorithm has a weak performance for this search space, the S11100 

algorithrn maintains its good behaviour. 

7 CONCLUSIONS 

In this paper we examined the impact of several factors on the performance of 
probabilistic query optimization algorithms, in particular the relative behavior 
of random picking of solutions with respect to transforn1ation-based search. 
The results of rar1dom picking give a direct indication of the proportion of 
good solution in the search space, while tl1e transformation-based search also 
depends on the topology in1posed by the specific set of trar1sformations used. 

Our experiments show that the results obtained in [GLPK94] for a main
memory database remain valid, for the most part, when the I/0-based 
cost model of [IK90, Kan91] is used instead. A transformatio11-free algo
rithm finds good plans faster than a transformation-based approach, but the 
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transformation-based search finds the best plans in the end. This happens 
because the ratio of good plans is substantial and the topology imposed by as
sociativity /con1mutativity /exchange transfor1nations does not seem to aid the 
search significantly, especially at the beginning of the process. We observed 
that the presence of indices does not reshape the search space, and affects only 
marginally the performance of all the search methods. 

We then studied the effect of selecting a join algorith1n, in addition to a join 
evaluation order. In this case the search space becomes the product of two ex
ponentially large spaces, and its properties turn out to be qualitatively different 
from those of selection of a join order evaluation alone. The proportion of good 
plans decreases in this con1bined space, and at the same tin1e the topology 
induced by the change-algorithm rule seems to favor the transformation-based 
search. 

Finally, we described and tested a two-phase optimization approach that 
starts with randorn picking to generate good plans quickly, and then applies 
transformations for further refinement. The result is a combination of the best 
of both search strategies: fast co11vergence to solutions of very high quality. 
We believe this hybrid approach is basically the best alternative in a purely 
stochastic search ---i. e. one tl1at does 11ot consider heuristics- probably with 
an additional Simulated Annealing phase at the end as suggested in (IK90]. 

There are related issues that remain to be addressed. The first is how to 
incorporate heuristics in a robust n1anner. In our view, the use of heuristics 
in randomized search must be that of ''rigging the odds'' in favor of the better 
plans. We are in the process of formulati11g the necessary framework. Also, 
the two specific spaces identified in this paper on which the transformation
based and trar1sformation-free sche111es behave sigr1ificantly differently provide 
a test case for the study of when and how are tra11sformatior1s advantageous 
for optimization. 
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