
Tl1e Expa11sion Tl1eorem for Median Graphs 

Henry Marty11 Mulder 
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1. Introduction 

This paper deals witl1 tl1e adve11tures of the expansion theorem for median 

graphs [f'.'u 78, Mu 80b ]. It was the first theorem I ever proved ( on a. walk 

during the Fiftl1 Hungarian Cotnbinatorial Conference in Keszthely, Hungary, I 

was 'struck' by tl1e idea 11ltirnately leadi11g to this theorem), and it was the 

starting poi11t for 111y Pl1. D. tl1esis w1·itte11 u11der tl1e inspiring guidance of 

Cor Baaye11. Media11 g1·a1)l1s existed already in tl1e literature [Av 61, Ne 71], 

but tl1ey we1·e i11depe11de11tly introduced by LEX ScHIJVER and me [MS 79] in the 

context of a proble111 in fi11ite topology posed by JAN VAN MILL [vM 77] early 

1976. All tl11·ee of us were at tl1at tiI11e Pl1. D. students of Cor Baayen. 

Loosely speaking the idea of expansion is the fallowing. Let G be covered 

by a nu1nber of subgrapl1s, wl1icl1 two by two intersect in the sa,r11e subgraph G0 

of G. Now \Ve take disjoi11t copies of the covering subgraphs and join the 

respective copies of G0 i11 tl1ese subgrapl1s by 11e\v edges. 

By u11posi11g conditio11s on the covering subgraphs and on how to insert the 

new edges ,ve get s1)ecific instances of expansion. Some types of expansion may 

not be sensible to study, but otl1ers see111 to be quite promising in producing 

interesting p1·oble111s a11d 1·esults. 111 [Mu 90] a 'masterplan' was formulated 

for studyi11g va1·ious expa11sion problerns. 

To show l1ow fruitful tl1is approacl1 can be, we discuss a nt11nber of results 

on median grapl1s. Tl1ese all l1ave elega11t and straightforward proofs using a 

specific insta11ce of expa11sion, by whicl1 median graphs can be characterized. 

A median gra1)l1 is a graph st1ch tl1at, for any triple of vertices u,11,10, there 

exists a u11iqt1e ve1·tex 111i11i111izi11g the su111 of tl1e dista11ces to u, v and w. 

2. Median grapl1s and expansion 

In tl1is sectio11, we will give so111e results and introduce terminology 

found in [f\1u 78, Mu 80b, Mu 90, MMR 94 ]. All graphs considered in this paper 

will be fi11ite, a.11<1 we use tl1e standard notation G = (V,E) to denote a graph 

with vertex set V a11d edge set E. \Ve will often sitllply write only G and leave 
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V and E u11de1·stood. Also, \Ve will 11ot disti11gt1isl1 betwee11 a subset W of V and 

the subg1·apl1 i11duced by IV. !11 a co1111ected grapl1, tl1e distance d(x,y) between 

two ve1·tices x a11d y is tl1e le11gtl1 of a shortest x,y-path, or an 

x,y- geodesic. Tl1e star of our sl1ow is tl1e median graph G: a connected graph 

such that for every tl1ree vertices x,y,z, of G, there is a unique vertex w on 

a geodesic between eacl1 J)air of x,y,z. Tl1is vertex w is called the median of 

the trit)le x,y,z. Tl1e interval between tl1e vertices x and y is the set 

l(x,y) of all ve1·tices 011 x,y-geoclesics, i.e., 

l(x,y) = {weV:d(x,w)+d(w,y) = d(x,y)}. 

The interval function I of a grapl1 G was extensively studied in [Mu 80b]. It 

is an easy obse1·vatio11 tl1at a grapl1 G is a n1edian graph if and only if 

ll(x,y) n J(y,z) I = 1 for all vertices x,y,z of G. Median graphs were first 

studied i11 1961 by AVANN [Av 61), a11d i11dependently introduced by NEBESKY [Ne 

71] and MULDER and Sc11RIJVER [MS 79]. Trees are the simplest exalnples of 

median gra1)l1s. A11otl1er p1·i111e exai11ple is tl1e n-cube Q11 • Recall that Qn has 

{0,1}" as ve1·tex set, and two ve1·tices are adjacent whenever they differ in 

exactly 011e {)lace. Fo1· tl11·ee vertices x=x1x 2 ••• X 11,Y-YtY2·-·Yn,z Z1Z:i-·-Zn 

of Qn tl1e 111eclian w=w1w2 ••• ·w,i of x,y,z is deter111i11ed by the majority rule: 

wi=6 if 6 occt11·s at least twice a111ong xi,Yi,zi, for i-1, ... ,n. Other 

exan1ples ot· 111eclia11 g1·apl1s a1·e tl1e g1·ids and tl1e covering graphs of 

distributive lattices. It is also a11 easy observation that median graphs a.re 

bipartite, fo1· if x 0 ••• xkxk+t···x2kxo is a sl1ortest cycle of odd length, then 

x 0,xk,xk+i wot1ld l1ave xk and xk+l as two distinct medians. The smallest 

bipartite grapl1 tl1at is 11ot a 111edia11 graph is K2,3 : the profile consisting of 

tl1ree i11de1>encle11t ve1·tices l1as two 111edia11s. 

A set JV of vertices of a g1·aph G is convex if l(x,y)s;W for every x,y, eW, 

and a convex subgraph of G is a subgrapl1 induced by a convex set of vertices 

of G. Clea1·ly, a convex subg1·a1>l1 of a co11nected graph is also connected. 

Moreover, tl1e i11tc1·sectio11 of co11vex sets ( sub graphs) is convex. The con1Jex 

hull Con( U) of a set of vertices U is tl1e i11tersection of all the convex sets 

contai11i11g U. It was proved i11 [Mu 80b] tl1at intervals in median graphs a.re 

convex, so tl1at Con( {x,y}) = J(x,y). Also, i11 111edian graphs., convex sets can be 

viewed i11 a11otl1e1· useful way tl1rougl1 tl1e 11otio11 of a gate. For W~V and xe V, 

the ve1·tex z e IV is a gate for x i11 IV if z e I (x, w) for all we W. Note that a 

vertex x l1as at 111ost 011e gate i11 a11y set iv, and if x has a gate z in W, then 

z is tl1e u11iqt1e 11ea1·est ve1·tex to x i11 JV. Tl1e set W is gated if every vertex 

has a gate i11 JV ct.11<1 a gated subgraplt is a st1bgrapl1 i11duced by a gated set. It 
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is not diffict1l t to see tl1at i11 a11y g1·apl1, a gated set is convex and that in 

a media11 g1·a1)l1 a set is gatecl if a11d 011ly if it is convex. (This last fact 

follows i111111eclicttely f1·0111 results i11 [f\1u 80b ]. ) 

Recall tl1at fo1· two gra1>l1s G1 = (V1,E1) a11d G2 = (V2 ,E2 ), the union G1 uG2 is 

the grapl1 witl1 ve1·tex set V1 uV2 a11d edge set E1uE2, and the intersecti01i 

G1 nG2 is tl1e grapl1 witl1 ve1·tex set V1nV2 a11d edge set E1nE2 • We write G1nG2 = 0 

(;c0) whe11 V1 nV2 =0(:;cO). A proper co·uer of G consists of two convex subgraphs 

G1 a11d G2 of G sucl1 tl1at G = G1 u G2 , C1 n G2 ;c 0. Every graph G ad.Inits the trivial 

proper cover G1 ,G2 with G1 = G2 = G. On the other hand a cycle does not have a 

proper cover witl1 two proper subgrapl1s. 

We are now able to give tl1e definition of the operation which will help 

yield a cl1a1·acte1·izatio11 of 111edia11 grapl1s. Let G' = (V' ,E') be properly covered 

by the co11vex st1bgra1)hs G1
1 = (V1',E1') a11d G2 ' - (V2 ',E2') and set G0 ' G1 'nG2'. 

For i = 1, 2, let c; i be a.11 iso11101·1)l1ic copy of c.·, and let .,\ . 
1 be an isomorphism 

from G-' OiltO G"1· We set Goi = Ai[Go'] a11d ,,\i( u') = ui, for u' • 
Go'· The 1n l 

• of G' wit11 respect to tl1e G1', G2' • the graph G exparision proper cover 1S 

obtained f1·0111 tl1e clisjoi11t unio11 of G1 a11d G2 by inserting an edge between u.1 

in G10 and u2 i11 G20 , for eacl1 u' i11 G0'. De11ote the set of edges between G10 

and G20 by F12• Tl1is is illust1·atecl i11 Figu1·e 1. We say that .,\i lifts Gi' up 

to Gi. For a11y st1bg1·apl1 H' of G' we abuse tl1e notation and write .-\i[H'] for 

.,\i[H' n Gi']. So Ai lifts tl1e part ot· H1 lyir1g in Gi' up to Gi. 

T11is ty1)e ot· ex1>a11sio11 was called a ''co11vex expansion'' in [Mu 78], [Mu 

80b ], a11d a ''co11vex Cartesia11 expa11sion'' in [Mu90] for a more general 

setting. We are 110w able to state tl1e following fundamental result on median 

grapl1s fi1·st proved i11 [Mu 78] a11d [Mu 80b ]. This result is the basis of a 

recent 0( IVl 2loglVI) algoritl1111 fo1· recog11izi11g 1nedian graphs found in [JS]. 

Theorem 1. A gra1)l1 G is a 111edian gra1)l1 if a11d only if G can be obtained by 

successive expa11sio11s fro111 the 011e ve1·tex graph f{1. 

Using tl1is tl1eo1·e111, t1·ees can be obtai11ed from K 1 by restrictng the 

expansio11s to tl1ose of tl1e f ollowi11g type: G1 is always the whole graph G and 

G2 is a si11gle ve1·tex. Expa11sio witl1 respect to such a cover atnounts to 

adding a 11ew ve1·tex adjace11t to tl1e one in G2 • The n-cubes can be obtained 

from /(1 by usi11g 011ly t1·ivial proi)er covers. Note that K2•3 can not be 

obtained f ro111 a s111aller g1·apl1 by expa11sio11 witl1 respect to a proper cover. 

In 01·de1· to 111ake full use of Tl1eore111 1 and to develop additional 

techniqt1es, ,ve give a ve1·y b1·ief sketcl1 of tl1e proof. Along the way we 

introduce s0111e ext1·a ter111i11ology. 
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Tl1e basic i<leas t1secl f 01· tl1e 1)1·oot· of Tl1eo1·e111 1 are tl1e fallowing. Take 

an arbit1·a1·y eclge v 1v2 i11 a 111edia11 grapl1 G. Let G1 be the subgraph of G 

induced by all ve1·tices 11ea1·e1· to v1 tl1a11 to v2 , and let G2 be the subgraph 

induced by all ve1·tices 11ea1·e1· to v 2 tl1a11 v 1. Since G is bipartite, it 

follows tl1at G1, c;2 pa1·titio11 G. We call sucl1 a partition a split. Let F 12 be 

the set of edges betwee11 G1 a11d G2, a11d let Gio be the subgraph induced by 

the endve1·tices i11 Gi of tl1e edges i11 F12 , for i = 1,2. Then one proceeds to 

prove tl1e f ollo,vi11g facts ( 11ot 11ecessa1·ily i11 tl1is order): 

(i) F12 is a 111atcl1i11g as well asa cutset (111i11il11al disconnecting edge-set). 

(ii) Tl1e subg1·apl1s G1,G2 ,G10,G20 are convex subgraphs of G. 

(iii) Tl1e obviot1s 111aJ)pi11g of G10 011to G20 defined by the edges in F12(u1 -+u2 , 

for a11y eclge u 1u 2 i11 F 12 with ui i11 Gio, for i = 1,2) is an isomorphism. 

(iv) For eve1·y eclge ·u1u2 of F12 \Vitl1 u, in Goi (i=l,2), the subgraph G1 

co11sists of all tl1e ve1·tices of G 11ea1·er to u 1 than to u 2, so that u 1 

is tl1e gate i11 G1 for u2 • A si1l1ilar state111ent holds for G2 • 

Now tl1e contraction G' of G witl1 respect to the split G1,G2 is obtained 

from G by co11t1·,1.cti11g tl1e edges of F12• To illustrate tl1is in Figure 1, move 

from rigl1t to left. Clea1·ly expa11sio11 a11d co11t1·action are inverse operations. 

The contraction 11iap K., of G 011to G', associated with f 12 is thus defined by 

x:fG. - ).t1
, fo1· i 1,2. Fi11ally 011e sl1ows tl1at G' is a median graph and so, by 

I 

induction on tl1e 11u111ber of ve1·tices, Tl1eore1n 1 is proved. 

We present a11otl1e1· feature of 1nedian graphs that helps in getting the 

right 1ne11tal picttt1·e of l1ow to ope1·ate with tl1e1n in the rest of the paper. A 

cutset coloring of a co1111ected grapl1 is a proper colouring of the edges 

(adjacent edges l1ave differe11t colou1·s) sucl1 that each colour class is a. 

cutset ( a 111i11i111al disco1111ecti11g edge set). Of course, most graphs will not 

have a cutset colo111·i11g, wl1e1·eas even cycles of lengtl1 at least six have more 

than 011e. if we wa11t to cutset colour tl1e edges of a graph, then in an 

induced 4-cycle ·wxyz·w, 01>posite edges 111ost l1ave tl1e sai11e colour. So, w, z are 

on one side a11<l x, y 011 tl1e otl1er side of tl1e cutset colour of wx, and thus 

yz gets tl1e sa111e colo111· as wx. \Ve call tl1is tl1e 4-cycle property of cutset 

colouri11gs. It follows f1·0111 (i), (ii) and (iii) that in any cutset colouring 

of the 111eclia11 gra1>l1 G, tl1e set F12 111ust be a colour class. Using induction on 

the nu111ber of colours gives tl1e 11ext co1·0Ilary [Mu 78, Mu 80b]. 

Corollary 2. A 111eclia11 g1·a1>l1 is u11iquely cutset colourable up to the labeling 

of tl1e colot11·s. 
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Fo1· a S})lit G1,G2 , we call tl1e set F12 a colour, and G1 and G2 the 

colourlial·ves of F12• Tl1us it follows tl1at any colour in the cutset colouring 

of tl1e 111eclict11 g1·a1)l1 G clet·i11es a split i11to two convex colourhalves, as in the 

case of F12 witl1 all tl1e prope1·ties listed above. Hence the 4-cycle property, 

one can dete1·111i11e tl1e colour class of a11 arbitrary edge xy. This colour class 

splits G i11to tl1e co11vex subg1·apl1 of all vertices nearer to x than to y and 

the co11vex subg1·apl1 of all ve1·tices 11earer to y than to x, etc. There is yet 

anotl1er itll!)o1·ta11t 1·eatu1·e of 111edia11 g1·a1)l1s tl1at we need in the sequel, and 

which fallows f1·0111 ( tl1e p1·oof of) Tl1eo1·e111 1 [Mu 80b ]. If we consider any two 

colours i11 tl1e cutset colou1·i11g of tl1e n1edian graph G , and we contract them 

in any o'·der, tl1en we get tl1e sai11e 111edian graph G''. Hence we can apply the 

correspo11di11g ex1)a11sio11s to obtain G fro111 G'' in any order. This means that 

in obtai11i11g G f1·0111 a 111edia11 grapl1 H by a succession of expansions, we can 

apply tl1ese ex1)a11sio11s i11 a11y 01·der. Tl1is is easily seen in the case for 

trees: every ex1)a11sio11 co1·1·espo11ds to an edge in the tree, and it does not 

matter i11 ,vl1at 01·cle1· we i11trodt1ce tl1e edges i11 for111ing tl1e tree. 

Tl1e basic tecl1r1ique tl1at will be used i11 proofs f ou11d in the next section 

is as f ollo,vs: 011e or 11101·e co11tractio11s on the 1nedian graph G are perf 01·1ned 

to obt<1-i11 c\. s111itllc1· 111eclia11 g1·a1)l1 G', 011 wl1icl1 \Ve aJ)ply tl1e appropriate 

inductio11 l1ypott1esis. rl'l1e11 we pe1·f 01·111 tl1e co1·1·espondi11g expansions in reverse 

order 011 G' so tl1at ,ve 1·egai11 G. Duri11g tl1is process, a vertex x of G is 

contracted to a u11ique ve1·tex x' i11 G'. Wl1e11 we recover G from G' by 

expansio11s, tl1e11 x· is lifted up in each expansion to the appropriate 

colourl1alf u11til ,ve 1·egai11 x. Tl1e seque11ces of vertices and expansions that 

we obtai11 i11 tl1is way f1·0111 x· up to x is called the history of x (with 

respect to tl1e expansions i11volved). Si1nilarly, if 7r= (x1, ••• ,xk) is a 

seque11ce of ve1·tices of G, a profile for short, then 1r is contracted to a 

profile rr' = (xi, ... ,xk) 011 G', wl1ere xi is the contraction of xi, for 

i=l, ... ,k. We tl1us defir1e tl1e history of 1r i11 tl1e obvious way. If x' is a 

vertex of G' and ,ve lift x' up to a vertex x in an expansion of G', then we 

call x a descendant of x'. He11ce if we k11ow wl1icl1 lifts are applied on x' in 

the expa11sio11s to regai11 G f ro111 G', tl1e11 we know the history of all the 

descenda11ts of x·. 

Havi11g 110\v i11trocluced tl1e basic tecl111iques and results on median graphs, 

we will use tl1e111 f1·eqt1e11tly witl1out s1)ecific rnention in the sequel. 

In a se11se 111eclia11 g1·apl1s are tl1e aJ)J>ropriate common generalization of 

trees and l1y1>e1·ct1l>es. Tl1is as well as 111a11y otl1er results on median graphs 

suggest tl1e f ollo,vi11g '111eta'co11jectu1·e. 
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Metaconjecture. A11y ·1·easo11able' p1·ope1·ty sl1a1·ed by trees and hypercubes is 

shared by all 111edia11 g1·a1)l1s. 

I11 tl1e rest of tl1e pa1>er, we tise tl1e sta11da1·d notation developed above: G 

is a. media11 gra1>l1 witl1 split G1, G2 witl1 colour F121 contraction G' etcetera. 

3. Median sets 

Let G be a co1111ected grapl1. A profile on G is W is a vertex sequence 

1r-(v1,v2, ... ,vk) i11 G. Note tl1at 111ultiple occurrences in 1r are allowed. The 

length k of tl1e J)t·ofile is denoted by lrrl. A profile is eve1i or odd depending 

on wl1etl1e1· k is eve11 or odd. Tl1e (simultaneous) distance D( u., 1r) of a vertex u 

to 1r is def i11ed by 

k 

D(·u.,rr) = :E d(u,vi)· 
i =l 

A 11zedian of 1r is a ve1·tex x 111i11i111izi11g tl1e distance D(x, 1r), and the 

median set M(1r) of 1r co11sists of tl1e 111edia11s of n. Since G is assumed to be 

connected, a 111ecliar1 set is al\vays 11011-e1111)ty. Tl1e 1nedian set of two vertices 

u, v is tl1e i11te1·val / ( 'lL, v ). 111 ge11eral 11ot much is known about the structure 

of n1edia11 sets, bttt not so for 111eclia11 g1·aplls. Clearly here every triple of 

vertices l1as a t111ique 111edia11. For lo11ger profiles tl1e situation is equally 

plain. After 011e l1as 111ade tl1e effort to clevelop the expansion technique, on 

can sit clo\v11 i11 tl1e a1·111cl1air a11d let tl1e expansio11s do the work. In [MMR 94] 

the • ex1)a11s1011 tecl111ique • 
IS exploited • 111 its full richness to study median 

sets in 1nedia11 g1·a1ll1s. We prese11t l1ere tl1e 111ain results and prove one Le1rur1a 

to give a11 iclea l1ow 011e cot1ld proceed to prove tl1e tl1eorems. 

If 1r is a prot·ile i11 a 111edia11 grapl1 G with split G1, G2, then let 1ri be 

the subp1·ofile of 1r co11sisti11g of all ele111e11ts of 1r in Gi. For each subset W 

of V, \Ve set JV'-~[IV] ar1d X'=1':(X). Note tl1at if for some u' in Ga, both 1'1 and 

Uz are ele111e11ts of ~v, tl1e111 u' is itl iv· a11d 1w·1 < 1w1. If 
• 

7r 1S 

G, \Ve a11cl and 

compo11e11twise. 

a profile on 

are applied 

Lemma 3. \Vitl1 tl1e above 11otatio11, if 1r is a profile in the median graph G 

with I 1r 1 I > I 1r 2 I , tl1e11 M ( tr') is co11tai11ed i11 Gi 1 and M ( 1r) is contained in G1, 

and M ( 1r') = J.1 ( 1r) ', a11cl I .I\/ ( 1r) I = 11'1 ( 1r') I . 
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Proof. Let w' l)e a ve1·tex i11 Gi-G~ a11d let x' be tl1e gate of w' in Gi. Then 

we have 

D(w',tri) = D(x',rri)+ lrrild(x',w'). 

The tria11gle i11equa.lity for d yields 

D(·u1',1r2) ~ D(x',1r2)- l1r2jd(x',w'). 

Hence we l1ave 

D(·w', 1r') = D( ·w', tri) + D(·w', 1r2) 

So M(1r') lies i11 Gi. 

~ D(x',rr')+d(x',w')( l1ril-l7r2I) 
> D(x', 1r' ). 

Now cl1oose a ve1·tex ·w i11 G2 and a vertex v in G1 with v' in M(1r'). Then we 

have 

whence D(w,1r) > D{v,rr). So M(1r) lies i11 G1• Fi11ally, for each vertex 11 in G, we 

have 

so that M(rr)' = /v/(7r'). Si11ce J\'!(7r) lies i11 G1, it follows tl1at IM(1r)I = IM(7r')(. o 

Usi11g tl1is Le111111a, we ca11 relate M ( 1r) to tl1e n1edian set of 1r' in G'. 

Theorem 4. If • 1>1·of ile • 111edian grapl1 G with l1r1I > ltr2I, then 7r IS a 111 a 

M(tr) = ,,\1(1'/(tr') ]. Ft11·tl1e1·11101·e if • ocld, tl1e11 IM(1r)I = 1. If • 
7r IS 7r 1S even, , 

then ftf (1r) • i11te1·val, a11d if l1r1I = l1r2I, then 1S a11 

M(1r) = ,,\1(J\f(1r')] u .-\2 (/\'/(7T')] 

Usi11g ex1)a11sio11s, we ca11 also relate M( 1r) to the median sets of its 

vertex-deleted st1bp1·ofiles. 
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Tl1eorem 5. Let 7r=(·u1,·v2, ... ,vk) a p1·ofile • 
111 a median 

if 

graph G with 

then • k > 1. If is oclcl, tl1e11 ftl(1r) = () ft1(1r-vi), a11d 1s even, 
I 

ft/(1r) = Co1i( 0ft/(1r-·ui)). 
t 

Fo1· 1)1·oofs tl1e 1·eade1· is 1·efe1·1·ed to (MMR 94]. 

4. Dy11amic searcl1 

111 [CGS 87] a11d [CGS 89] CHUNG, GRAHAM a11d SAKS considered the following 

intrigui11g J)1·oble111 a11<l p1·oved s0111e it11po1·ta11t 1·esults. 

Let G = (V,E) be a co1111ected g1·apl1, wl1e1·e 011 each vertex some piece of 

jnf or111atio11 is located. A 1·etriever is located at s01ne vertex u of G, his 

position. A quest for a piece of i11f or111atio11 co1nes i11 the form of a quest for 

the ve1·tex ,vl1e1·e tl1is i11f 01·111atio11 is located. Tl1e 1·et1·iever has two options: 

( i) to 1·et1·ieve f 1·0111 11, tl1e i11f 01·111ation at v, wl1ich costs d( u, v ); 

(ii) to 11love f1·0111 u to s0111e ve1·tex v, wl1icl1 also costs d(u,v). 

If tl1e 

§equence 

• 
lS 

of <1uests 

,tt a11 initial position Po, 

Q = q1, q2, ... ,q,1 to fi11d 

tl1en 

a 

l1is goal 

sequence 

P = p0,p1, ••• ,p11 sucl1 tl1,1.t tl1e followiJ1g distance su111 is ininimized: 

n 

(*) L d(Pi-1,Pi)+d(pi,qi)· 
i=l 

• • 1s, given a 

of positions 

We ca11 rea(t tl1is st1111 as follows: bei11g at Pi-I, the retriever first moves to 

Pi and tl1e11 1·et1·ieves qi, f 01· i = 1, ... , n. 

Witl1 eacl1 q·uest seq·uence Q a11d eacl1 position sequence P we can associate 

4 caterpillar R(P,Q) co11sisti11g of P, Q a11d a Pi-i,Pi-geodesic and a Pi,q;

geodesic, fo1· i =I, ... , n. Note tl1at i11 R(P,Q) we 1nay have multiple occurrences 

of vertices as well as eclges. Tl1e Pi-i,Pi-geodesics with i=l, ... ,n form the 

spine of tl1e cater1)illa1·, tl1e Pi,qi-geodesics are the legs (note that 

matl1en1atics is ca1)able of c1·eati11g 11ew biological species). The length t(P,Q) 

of the cate1·1)illa1· R(P,Q) is tl1e su111 of tl1e le11gths of all geodesics involved 

in const1·ucti11g tl1e caterpilla1·., and tl1us l(P,Q) equals s1irn (*) above. In 

these ter11ls, give11 a qttest seque11ce Q a11d i11itial position Po we want to find 

a. shortest cate1·1)illa1· R(P,Q). 

If tl1e 1·et1·ieve1· bei11g at tl1e i11itial 

quest seque11ce Q, tl1e11 l1e ca11 al\vays 
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mi11il11izi11g l1is total costs. Ilo\v to fi11d P is a11other story. But if he has 

only pa1·tial k110\vle<lge at so111e })Ositio11 Pi-i, he can only optimize Pi with 

respect to, say, tl1e 11ext k quests qi,qi+t,···,qi+k-t• When finally all 

quests l1ave co111e i11 a11d lie l1as co111pleted l1is caterpillar R(P,Q), then it is 

generally 11ot tl1e sl101·test f)Ossible cater1)illar. 

If at a11y J)Ositio11 Pi-l we l1ave 011ly forek11owledge of the next two quests 

qi a11d qi+t, tl1e11 tl1e best tl1i11g we can do is cl1oosing a median point of 

Pi-t,qi,qi+I as ou1· 11ext positio11 Pi· Tl1is is the median strategy. In 

[CCS 87) tl1e 1)1·oble111 was posed a11d settled on which graphs the median 

strategy, \Vitl1 always fo1·ek11owledge of tl1e next two quests at each position, 

will prod11ce a sl1ortest cate1·pillar f 01· eacl1 initial position Po and each 

quest sequence Q, cf. [\Vr 87]. 

Theorem 6. Let G' be a conr1ectecl g1·apl1. Tl1e 111edian strategy with foreknowledge 

of tJ1e 11ext t\vo quests at eacl1 positio11 produces a shortest caterpillar for 

each initial positio11 Po a11d eacl1 quest sequence Q if and only if G is a 

median gra1)l1. 

If tl1e 111e<lia.11 st1·ategy is 01>ti111al, tl1e11 CHUNG, GRAHAM and SAKS proceed in 

the f ollowi11g WiLY. Assu111e tl1at tl1e1·e a1·e ve1·tices u, v, w l1aving two distinct 

median poi11ts. Cl1oose st1cl1 a t1·i1)le ,vith d(u,v)+d(v,w)+d(w,u) as small as 

possible. No\v, ,vitl1 i11itial positio11 u, by cl1oosi11g quest sequences of length 

at most 6 of tl1e type ·u,u,v,w,q,q a11d varying q, a contradiction can be 

derived. Fo1· full details of tl1is proof tl1e reader is referred to [CGS 87]. 

To prove tl1e co11 verse tl1ey 111ake t1se of BANDEL T's theorem [Ba 84] that the 

median g1·a1)l1s a1·e 1)1·ecisely tl1e retracts of hypercubes (see the next 

subsectio11). l1e1·e we give a11 alte1·11ative p1·oof for the 'if part' using our 

expansio11 a1Jp1·oacl1. 

Proof of the 'if part' of Tl1eorem 6. We use induction on the n11rr1ber of 

expansior1s, so let F,G1,G2 ,G',1r',W' etcetera be as above. Let P be the 

positio11 seque11ce obtai11ed via tl1e 111edian strategy with respect to initial 

positio11 p0 ar1d qt1est seqt1e11ce Q. Note tl1at, because of unicity of medians, P 

is uniquely <lete1·111i11e<l. 

Assu111e tl1at tl1e1·e is a positio11 sec1t1e11ce T witl1 t(T,Q) <l(P,Q). Note that 

P' is tl1e 1>ositio11 seqt1e11ce obtai11ed via the media11 strategy in G' with 

respect to Po a11cl Q'. By i11ductio11 l1ypothesis, we know that 

t(T',Q') '?.l(P',Q'). Note tl1at, fo1· a11y cate1·pillar R(S,Q) in G, it follows 

fron1 tl1e ex1>a11sio11 1)1·oceclt11·e tl1at 

• 
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l ( s·, Q) = t ( S', Q ' ) + a: ( S, Q), 

where a(S,Q) is tl1e 11t1111bc1· of edges f1·0111 F lyi11g on R(S,Q). 

Witl1ot1t loss of ge11e1·ality we 1l1ay assu111e tl1at Po lies in G1. Put q0 = p0 • 

The spine of R(P,Q) starts i11 G1. Begi1111i11g in Po we walk along the spine of 

R(P,Q) a11d cl1eck wl1ere tl1e cate1·1)illar c1·osses tl1e cut F: 

- if Pi-I, qi-I, qi+l lie i11 C1 a11d qi lies i11 G2, tl1en the crossing is in 

the Pi, qi-leg a11d tl1e spi11e re111ai11s in G1, 

- if Pi-t, qi-t, lie i11 G1 a11d qi, qi+l lie i11 G2, then the crossing is in 

the spine betwee11 Pi-I a11d Pi; 110w we excl1a11ge tl1e roles of G1 and G2 and 

proceed alo11g tl1e SJ)i11e. 

Note tl1at a c1·ossirlg 011ly occt1rs if Q c1·osses F, but not necessarily, for · in 

the first case above Q crosses F twice and the caterpillar crosses F only 

once. Eacl1 cate1·1)illar 111ust cross F at least once in the above situations. 

So, for a11y l)Ositio11 seque11ce S, we l1ave cx(S,Q)~a(P,Q). 

Co111bi11ed witl1 l(T',Q' )~l(P',Q') we get t(T,Q)~t(P,Q), contradicting our 

assumptio11 tl1at R(T,Q) \Vas a sl101·ter cater1)illar that R(P,Q). □ 

• 

5. Retracts of 11ypercubes 

A retract of a grapl1 G is a11 iso111etric subgrapl1 H of G such that there is 

a dista11ce decreasi11g 111ap of G 011to H, wl1icl1 restricted to H is the identity. 

BANDEL T [Ba 84] p1·oved tl1at tl1e 111edia11 g1·apl1s are precisely the retracts of 

hypercubes (fo1· ft11·tl1e1· 1·efe1·e11ces 011 ret1·acts see [Ba 84] or (CGS 89]). This 

result also ca11 be p1·oved usi11g expa11sio11s. We only sketch that here using 

the notatio11 i11t1·oclt1ced above. 

We defi11e a11 extrem.al colour of a 111edia11 g1·apl1 G to be a colour F such 

that, say, G1 = c,·0. Tl1e11 G1 is a11 extre11ial sub graph. In a tree the end vertices 

are the ext1·e111a.l subg1·a1)l1s, a11d i11 a11 n-di111ensional hypercube (n-cube, for 

short) tl1e (n-l}-st1bct1bes are tl1e extre111al subgrapl1s. Note that the edges on 

a geodesic i11 a 111e<lia11 gra1)l1 all l1ave cliff e1·ent colours. 

Lemma 7. Let G be a 111edia11 g1·apl1 witl1 split G1 , G2• Then G1 as well as G2 

contain a11 extre111al Sl1bgraJ)l1. 

Proof. Asst1111e tl1at (;1 ;t:G10• Let x be a ve1·tex i11 G1 -G10 adjacent to a vertex y 

in G10, a11d let z be tl1e 11eigl1bot11· of y i11 G20. Recall tl1at z is the gate for 
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y in G2 • Let A be tl1e colou1· of xy, a11<i let F be tl1e colour of yz (i.e. the 

colour bet\vee11 c;1 ar1<l G2 ). \Ve \vill s110,v tl1at colour A does not occur in G2• 

Note tl1at, if ,..\ occL11·s ir1 G10, tl1e11 it occt1rs i11 G20 as well. 

Assu111e tl1e cor1t1·a1·y, a11d let pq be a11 edge of A in G2 with, say, 

d(y,p) + 1 = d(y, q). Tl1e11 u a11<l p are 011 011e side of A, so that x a.nd q a.re on 

the otl1e1· side. Let P = y➔Z➔ .•. ➔P be a y,p-geodesic. Then there is an 

x,q-geodesic Q = X➔ t➔ ...... q witl1 t adjace11t to z. Then xt and yz have the sa,cne 

colour, so xt is i11 F. T11is i1111Jlies tl1at x is i11 G10 contradicting the choice 

of x. So tl1e colou1· A is fully co11tai11ed i11 G1, and G10 u G2 is on one side 

of A and x 011 tl1e otl1er side. 

Repeati11g tl1is argu111e11t, 

of G fully co11tai11ecl i11 G1• 

in G2• 

if 11ecessa1·y, we arrive at an extremal su bgraph 

Si111ila1·ly tl1ere is an extremal subgraph contained 

□ 

Usi11g TI·1eo1·c111 3.2.7 f1·0111 [Mu 80b], we ca11 easily verify that a retract of 

a hy1)erct1be is a 111edia11 grapl1. To prove tl1at each median graph ..... can be 

realized as a ret1·act of a l1yperct1be \Ve use i11duction on the n11rnber of 

colours. 

Let G be a 111ecli,t11 g1·a1>l1, a11cl let F be an extremal colour with extremal 

subgrapl1 (;1 = G10• We e111bed G i11 a11 n-cube Q as i11 Tl1eorem 3. Then F splits Q 

into two (n -1 )- cttl)es Q1 a11d Q2 ,vitl1 Gi in Qi, i = 1,2. By induction there is a 

retractio11 of Q2 011to G2. Al)J)ly tlie co1·1·espo11cli11g retractio11 on Q1. Then it 

maps Q1 011to a COJ>Y //1 of G2 111atcl1ed iso111orphically via F to G2. This map 

preserves G1• No,v ,ve 011ly l1ave to 1nap H1-G1 i11to G2 in the right way. If u 1 

in H1-G1 l1as 11eigl1bot11· u 2 i11 G2-G20 , tl1e11 we n1ap u.1 on a neighbour of u 2 , 

which is 11ea1·er to G20 tl1a11 u 2• Tl1is is possible wl1enever we have a distance 

decreasi11g 111a1) of G2 i11to itself, wl1icl1 preserves G20 and maps vertices of 

G2-G20 011 neighbou1·s 11ea1·er to G20• 

The existe11ce of sucl1 a 111ap ca11 again be proved by induction on the 

n11mber of colou1·s. \Ve 0111it tl1e details l1e1·e. 

Actt1ally tl1is is precisely tl1e way l1ow WILI<EIT [Wi 86) proved that the 

so-called quasi-111eclia11 g1·apl1s a1·e tl1e retracts of the Cartesian products of 

arbitra1·y co1111)lete g1·a1)l1s (see Sectio11 4 ). 

6. . Crossing splits 

Two s1)lits G1, G'2 a11<l H1 , //2 of a 111edian graph G, or their associated 

colours, are saicl to l)e crossing if Gin II i #- 0, for i,j = 1,2. Note that, 

for a SJ)lit G1, G2 of c;, tl1e subg1·a1)l1 G1 is extre1nal if and only if ea.eh 
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colour • occu1·1·111g i11 G 1 c1·osses 

wl1icl1 l1as 

F12 (see [Mu 90)). We use this fact in the 
• 

followi11g 

tech11ique. 

a ve1·y si11lple proof due to the expansion 

• Theorem 8. Let G be a 1l1edia11 g1·apl1. Tl1en G contains n pairwise 

splits if a11d 011ly if G co11tai11s a11 n-cube as a11 i11duced subgraph. 

crossmg 

Proof. If G co11t,ti11s a11 11.-cube, tl1e11 tl1e n colours of tl1is cube extend to 

pairwise c1·ossi11g s1>lits in G because of tl1e 4-cycle property. 

Assw11e G co11tai11s n pairwise crossi11g splits ~' ~ for k=l, ... ,n. 

Without loss of ge11erality, we 1nay assw11e that G has no other spilts. 

Otherwise we cot1lcl co11tract tl1ese, and tl1e contraction would still contain n 

pairwise crossi11g s1)lits, a11d tl1e existe11ce of an n-cube in contraction 

yields a11 n-ct1be i11 a11y expa11sio11 by its l1istory. 

Note tl1at 110,v eve1·y colou1·l1alf ~ is an extre111al subgraph of G, i.e., for 

k = 1, ... ,n, colot1r f":2 yielcls a11 iso1norphism between ~ = ~o and 

~ = ~ 0. Usi11g i11<lt1ctio11 011 tl1e 11u111ber of colours n in G, we may conclude 

that botl1 G7 a11d di are (n-1 )-cubes, so tl1at G is an n-cube. □ 

7. Tl1e l1ull 11u1nber of a media11 grapl1 

Tl1e i11te1·sectio11 ot· co11vex sets i11 a gra1>l1 is again convex. This 

rise to the followi11g defi11ition. Let JV be a subset of vertices in a 

• gives 

graph 

G == (V,E). Tl1e cortvex /1,ull of iv, de11oted by Con(W), is the smallest convex 

subgra1)l1 of G co11tai11i11g JV ( see [Mu 80b ], wl1ere it was termed the convex 

closure). A set S s;;; V generates G if Con(S) = G. In [ES 85] EvERE'1·1· and SEIDMAN 

introduced tl1e l1.·ttll n1t111.ber Ii( G) of a gra1)l1 G to be the size of a mini,num 

generating set. I-le1·e of cou1·se, 111i11i111t1111 111eans tl1at tl1ere is no generating set 

with fewer ve1·tices. 

Any t\\10 <lia111et1·ical ve1·tices (vertices at largest distance) generate a 

hypercube. So /1,(Q) = 2, for a11y l1ypercube Q except K1. In a tree T we need a.ll 

end ve1·tices to ge11e1·ate T. By co11ve11tio11 an e11d vertex will be the vertex of 

degree ze1·0 it· T = I( 1, a11d a ve1·tex of deg1·ee 011e otl1erwise. Clearly, h(T) is 

the nu111be1· of e11cl vertices i11 T. 

111 tl1is st1bsectio11 we co11side1· (111i11i111wn) generating 

graphs. \Ve s,iy tl1a.t a set JV to·ttches a subgra1)l1 H of G if H 

of JV. Tl1e f ollowi11g tl11·ee 1·est1lts a1·e "lSbvious {we use the above 
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Le111ma 9. If S ge11e1·ates tl1e 1lledia11 graJ)ll G ar1d G' is a contraction of G, then 

s· generates G'. 

Corollary 10. If C' is a co11t1·actio11 of tl1e 111edia11 graph G, then h(G) '?.h(G'). 

Lemma 11. If G1,G2 is a s1>lit i11 a 111edian graph G generated by S, then S 

touches G1 as well as G2 • 

The 1nai11 result of tl1is subsectio11 is tl1e follo,vi11g theorem. 

Theorem 12. Let S be a set of vertices toucl1i11g each extremal subgraph of a 

median grapl1 G. Tl1e11 S ge11erates G. 

Proof. We t1se i11clt1ctio11 011 tl1e 11u111be1· of expansions. Let F be an extremal 

colour witl1 split G1,G2 a11d G1 = G10• We 111ay take G2 as the contraction of G 

with respect to F. Note tl1at every colour i11 G1 occurs in G20 as well, and 
• vice versa. 

Every extre111al colot1r of G distinct frorn F is an extremal colour of G2• 

So all ext1·e111al subgra1>l1s of G2 associated witl1 tl1ese colours are touched by 

S'. If A is a 11on-extre111al colour in G1, tl1en it is a.lso non-extremal in G20 

as well as i11 G2• 

Assutne tl1at lJ is a11 ext1·e111al colou1· i11 G2 tl1at is not extremal in G. Then 

G20 n1ust be co11tained i11 tl1e extre111al subgrapl1 of B. Since S touches G1, it 

fallows tl1at S' toucl1es G20, so it toucl1es tl1e extremal sub graph of B in G2 

well. I-Ie11ce S' toucl1es all ext1·e111al subgrapl1s of G2• 

By i11ductio11 S' ge11erates G2. Let w1 ,x 1, ... ,z1 be the vertices of S in 

G1, a11d let ·w2 ,x2 , ••• ,.z2 be tl1ei1· 1·es1)ective 11eigl1bouring gates in G20• Since 

S generates G, it toucl1es G2, say i11 11. Tl1en w2 lies in /(w1, v), etcetera. So 

Con(S) co11tai11s ·w2,x2, ... ,z2 . Tl1e1·efore Con(S) contains Con(S') = G2 , in 

particular Con(S) co11tai11s G20. Take any vertex p2 in G20 with neighbouring 

gate p1 i11 G1• Tl1e11 /(·w1,p2 ) co11ta.i11s p1• So G1 - G10 is contained in C011.(S) as 

well, a11d ,ve a1·e clo11e. D 

The fallowing tl1eore111 is a11 ii11111ecliate consequence. 

Theorem 13. Let c; be a 111edia11 g1·apl1. Tl1e11 h( G) is equal to the minim1111·1 n111r1ber 

of ve1·tices toucl1i11g all extre111al subg1·a1)ll.s of G. 
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It is e,tsily see11 tl1at 011e ca11 actt1ally decrease tl1e hull number by 

co11tractio11s. Bt1t ,vl1at a1·e tl1e co11t1·actio11s tl1at p1·eserve the hull n1.1rnber? In 

a tree 011e ca11 co11t1·,1.ct all i11te1·11al edges, tl1us obtaining a star ( a K1,n) 

with tl1e sa111e 11t11l1be1· of e11d ve1·tices. Co11t1·acting any further edge decreases 

the hull 11u111be1·. 111 a l1ypercube we ca11 co11tract all colours but one, thus 

obtaini11g tl1e sta1· /(1 1 witl1 tl1e sa111e l1ull 11w11ber. By convention we will 
' 

consider I{ 1 also to be a sta1·. 

A star c.ontractio-n of a 111ecli<t11 g1·,1.1)l1 C is a star obtained by successive 

contractio11s of G. Let T be a star co11t1·actio11 of G witl1 the maxim11rn possible 

n11ruber of end ve1·tices. We defi11e r(G) to be the nwnber of end vertices of 

this star T. Tl1en we get tl1e followi11g proble1n. 

Question. Fo1· ,vl1icl1 111edia11 g1·apl1s G do we l1ave h( G) = r( G)? 

8. Quasimedia11 grapl1s 

Almost all of tl1e above results ca11 be ger1eralized to q-uasimedian graphs, 

which ge11e1·alize 111edia11 g1·apl1s. Tl1ese graphs were introduced and 

characterizecl by a11otl1e1· expa11sio11 1>1·oce<lu1·e i11 [Mu80b ]. For the relevant 

theore1ns on 1·et1·acts see (CGS 89] a11d [Wi 86], and for the generalization of 

the dynar11ic sea1·cl1 1>1·oble111, see [CGS 89]. 
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