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1. Introduction

This paper deals with the adventures of the expansion theorem for median
graphs [Mu 78, Mu 80b]. It was the first theorem I ever proved (on a walk
during the Fifth Hungarian Combinatorial Conference in Keszthély, Hungary, I
was ‘struck’ by the 1idea ultimately leading to this theorem), and it was the
starting point for my Ph. D. thesis written under the inspiring guidance of
Cor Baayen. Median graphs existed already in the literature [Av 61, Ne 71],
but they were independently introduced by LEX SCHIIVER and me [MS 79] in the
context of a problem in finite topology posed by JAN vaN ML [vM 77] early
1976. All three of us were at that time Ph. D. students of Cor Baayen.

Loosely speaking the i1dea of expansion is the following. Let G be covered
by a number of subgraphs, which two by two intersect in the same subgraph G,
of G. Now we take disjoint copies of the covering subgraphs and join the
respective copies of Gy in these subgraphs by new edges.

By imposing conditions on the covering subgraphs and on how to insert the
new edges we get specific instances of expansion. Some types of expansion may
not be sensible to study, but others seem to be quite promising in producing
interesting problems and results. In [Mu 90] a ‘masterplan’ was formulated

for studying various expansion problems.

To show how fruitful this approach can be, we discuss a number of results
on median graphs. These all have elegant and straightforward proofs using a
specific instance of expansion, by which median graphs can be characterized.

A median graph is a graph such that, for any triple of vertices uw,v,w, there

exists a unique vertex minimizing the sum of the distances to u, v and w.

2. Median graphs and expansion

In this section, we will give some results and introduce terminology
found in [Mu 78, Mu 80b, Mu 90, MMR 94]. All graphs considered in this paper
will be finite, and we use the standard notation G=(V,E) to denote a graph

with vertex set V and edge set L. We will often simply write only G and leave
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V and E understood. Also, we will not distinguish between a subset W of V and
the subgraph induced by W. In a connected graph, the distance d(x,y) between
two vertices x and vy is the length of a shortest x,y—path, or an
x,y — geodesic. The star of our show is the median graph G: a connected graph
such that for every three vertices x,y,z, of G, there is a unique vertex w on
a geodesic between each pair of x,y,z. This vertex w is called the median of

the triple x,y,z. The interval Dbetween the vertices x and y is the set

I(x,y) of all vertices on x,y-geodesics, i.e.,
I(x,y) ={weV:d(x,w)+d(w,y) = d(x,y)}.

The interval function I of a graph G was extensively studied in [Mu 80b]. It
is an easy observation that a graph G is a median graph if and only if
1I(x,y) n I{y,z)|=1 for all vertices x,y,z of G. Median graphs were first
studied in 1961 by Avann [Av 61], and independently introduced by NEBEsKy [Ne
711 and MuLbpeEr and ScHRIJVER [MS 79]. Trees are the simplest examples of
median graphs. Another prime example is the n-cube 0, Recall that @, has
{0,1}" as vertex set, and two vertices are adjacent whenever they differ 1In
exactly one place. Tor three vertices x=xX5...X,,Y=Y1Y2---Yn 2 =2123.-.Zq
of O, the median w=ww,...w, of x,y,z is determined by the majority rule:
w;=&§ if & occurs at least twice among X;,Y¥;,Z;, for i=1,...,n. Other
examples of median graphs are the grids and the covering graphs of
distributive lattices. It is also an easy observation that median graphs are
bipartite, for if xg...XpXg41---X2xXo is a shortest cycle of odd length, then
Xo, Xk, Xke; Would have x, and xi,, as two distinct medians. The smallest
bipartite graph that is not a median graph is Kj;3: the profile consisting of
three independent vertices has two medians.

A set W of vertices of a graph G is convex if I(x,y)cW for every x,y,eW,
and a convex subgraph of G is a subgraph induced by a convex set of vertices
of G. Clearly, a convex subgraph of a connected graph is also connected.
Moreover, the intersection of convex sets (subgraphs) 1s convex. The convex
hull Con(U) of a set of vertices U is the intersection of all the convex sets
containing U. It was proved in [Mu 80b] that intervals in median graphs are
convex, so that Con({x,y})=1I(x,y). Also, in median graphs, convex sets can be
viewed in another useful way through the notion of a gate. For Wcl and xeV,
the vertex zelW is a gate for x in W if zel(x,w) for all weW. Note that a
vertex x has at most one gate in any set W, and if x has a gate z in W, then
z is the unique necarest vertex to x in W. The set W is gated if every vertex

has a gate in W and a gated subgraph is a subgraph induced by a gated set. It
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1s not difficult to see that in any graph, a gated set is convex and that in
a median graph a set is gated if and only if it is convex. (This last fact
follows immediately from results in [Mu 80b].)

Recall that for two graphs G,=(V,E,) and G,=(V,,F,), the union G,UG, is
the graph with vertex set V,uV, and edge set E,UFE,, and the intersection
GyNnG, is the graph with vertex set VNV, and edge set E\NE,. We write G;NG, =@
(#£0) when V,nV,=0(#0). A proper cover of G consists of two convex subgraphs
G, and G, of G such that G=G,UG, ,G;NnG, #0. Every graph G admits the trivial
proper cover G, ,G, with G;=G,=G. On the other hand a cycle does not have a
proper cover with two proper subgraphs.

We are now able to give the definition of the operation which will help
yield a characterization of median graphs. Let G'=(V',L") be properly covered
by the convex subgraphs G;"=(V,,E,") and G, =V, ,E;,’) and set G, =G,'NG,.
For :1=1,2, let (; be an isomorphic copy of G,, and let A; be an isomorphism
from G;’ onto G,. We set Gg;=A[Gy] and Auw')=wu;, for %' in G,. The
expansion of G with respect to the proper cover G, G, is the graph G
obtained from the disjoint union of G; and G, by inserting an edge between u,
in Gy, and u, In G,y for each u' in G,'. Denote the set of edges between Gy,
and G,, by F,,. This is illustrated in Figure 1. We say that A; lifts G;° up
to G;. For any subgraph H of G we abuse the notation and write AfH'] for
MN[H NG;']. So A; lifts the part of H' lying in G;" up to G;.

This type of expansion was called a ”convex expansion” in [Mu 78], [Mu
80b], and a “convex Cartesian expansion” in [Mu90] for a more general
setting. We are now able to state the following fundamental result on median
graphs first proved in [Mu 78] and [Mu 80b]. This result is the basis of a

recent O(lV}zloglVl) algorithm for recognizing median graphs found in [JS].

Theorem 1. A graph G is a median graph if and only if G can be obtained by

successive expansions from the one vertex graph K.

Using this theorem, trees can be obtained from K,; by restrictng the
expansions to those of the following type: G, is always the whole graph G and
G, is a single vertex. Expansio with respect to such a cover amounts to
adding a new vertex adjacent to the one in G,. The mn-cubes can be obtained
from K, by wusing only trivial proper covers. Note that K,; can not be
obtained from a smaller graph by expansion with respect to a proper cover.

In order to make full use of Theorem 1 and to develop additional

techniques, we give a very brief sketch of the proof. Along the way we

introduce some extra terminology.
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The basic ideas used for the proof of Theorem 1 are the following. Take
an arbitrary edge w,v, in a median graph G. Let G; be the subgraph of G
induced by all vertices nearer to v, than to wv,, and let G, be the subgraph
induced by all vertices nearer to wv, than wv;. Since G 1Is bipartite, it
follows that G,, G, partition G. We call such a partition a split. Let Fy; be
the set of edges between G, and G,, and let G;,, be the subgraph induced by
the endvertices in G; of the edges in F,,, for i=1,2. Then one proceeds to

prove the following facts (not necessarily in this order):

(1) F,, is a matching as well asa cutset (minimal disconnecting edge—set).

(ii)  The subgraphs G,,G,,G,4,Ga are convex subgraphs of G.

(iii) The obvious mapping of G,, onto G, defined by the edges iIn Fi(u;>u,,
for any edge w,u, in F |, with u; in Gy, for 1=1,2) is an isomorphism.

(iv) For every edge wu, of Fy, with wu; in Gy (i=1,2), the subgraph G
consists of all the vertices of G nearer to u; than to wu,;, so that u,

is the gate in G, for u, A similar statement holds for G,.

Now the contraction G' of G with respect to the split G),G, is obtained
from G by contracting the edges of F;,. To illustrate this in Figure 1, move
from right to left. Clearly expansion and contraction are inverse operations.
The contraction map k, of G onto G', associated with F,, is thus defined by
K| Gi:’\:l’ for i=1.2. Finally one shows that G' is a median graph and so, by
induction on the number of vertices, Theorem 1 is proved.

We present another feature of median graphs that helps in getting the
right mental picture of how to operate with them in the rest of the paper. A
cutset coloring of a connected graph is a proper colouring of the edges
(adjacent edges have different colours) such that each colour class 1s a
cutset (a minimal disconnecting edge set). Of course, most graphs wil not
have a cutset colouring, whereas even cycles of length at least six have more
than one. if we want to cutset colour the edges of a graph, then 1n an
induced 4-cycle wxyzw, opposite edges most have the same colour. So, w, z are
on one side and x, y on the other side of the cutset colour of wx, and thus
yz gets the same colour as wx. We call this the 4-cycle property of cutset
colourings. It follows from (i), (ii) and (iii) that In any cutset colouring
of the median graph G, the set F,, must be a colour class. Using induction on

the number of colours gives the next corollary [Mu 78, Mu 80b].

Corollary 2. A median graph is uniquely cutset colourable up to the labeling

of the colours.
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For a split G,,G,, we call the set F,, a colour, and G, and G, the
colourhalves of F,;. Thus it follows that any colour in the cutset colouring
of the median graph G defines a split into two convex colourhalves, as in the
case of F,, with all the properties listed above. Hence the 4-cycle property,
one can determine the colour class of an arbitrary edge xy. This colour class
splits G into the convex subgraph of all vertices nearer to x than to y and
the convex subgraph of all vertices nearer to y than to x, etc. There is yet
another important feature of median graphs that we need in the sequel, and
which follows from (the proof of) Theorem 1 [Mu 80b]. If we consider any two
colours in the cutset colouring of the median graph G , and we contract them
In any order, then we get the same median graph G". Hence we can apply the
corresponding expansions to obtain G from G in any order. This means that
in obtaining G from a median graph H by a succession of expansions, we can
apply these expansions in any order. This is easily seen in the case for
trees: every expansion corresponds to an edge in the tree, and it does not
matter in what order we introduce the edges in forming the tree.

The basic technique that will be used in proofs found in the next section
1s as follows: One or more contractions on the median graph G are performed
to obtain a smaller median graph G, on which we apply the appropriate
induction hypothesis. Then we perform the corresponding expansions in reverse
order on G' so that we regain G. During this process, a vertex x of G is
contracted to a unique vertex x' in G'. When we recover G from G’ by
expansions, then x' is lifted up in each expansion to the appropriate
colourhalf until we regain x. The sequences of vertices and expansions that
we obtain in this way from x' up to x is called the history of x (with
respect to the expansions involved). Similarly, if #=(x;,...,x) is a
sequence of vertices of G, a profile for short, then m is contracted to a
profile #'=(x,...,xx) on G, where x; is the contraction of x; for
t=1,...,k. We thus define the history of 7 in the obvious way. If x' is a
vertex of (' and we lift x' up to a vertex x in an expansion of G’, then we
call x a descendant of x'. Hence if we know which lifts are applied on x' in
the expansions to regain G from G’, then we know the history of all the
descendants of x'.

Having now introduced the basic techniques and results on median graphs,

we will use them frequently without specific mention in the sequel.

In a sense median graphs are the appropriate common generalization of
trees and hypercubes. This as well as many other results on median graphs

suggest the following ‘meta’conjecture.
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Metaconjecture. Any ‘reasonable’ property shared by trees and hypercubes 1is
shared by all median graphs.

In the rest of the paper, we use the standard notation developed above: G

is a median graph with split G;, G, with colour F, contraction G’etcetera.

3. Median sets

Let ¢ be a connected graph. A oprofile on G i1s W is a vertex sequence
= (vy,Vsp,...,0;) in G. Note that multiple occurrences in m are allowed. The

length k of the profile is denoted by |n|. A profile is even or odd depending

on whether k is even or odd. The (stmultaneous) distance D(u,m) of a vertex u

to 7 is defined by

k
D(u,m) = } d(u,v;).

t =1

A median of m is a vertex x minimizing the distance D(x,7), and the
median set M(m) of m consists of the medians of w. Since G is assumed to be
connected, a median set is always non—empty. The median set of two vertices
u,v is the interval I(w,v). In general not much is known about the structure
of median sets, but not so for median graphs. Clearly here every triple of
vertices has a unique median. For longer profiles the situation is equally
plain. After one has made the effort to develop the expansion technique, on
can sit down in the armchair and let the expansions do the work. In [MMR 94]
the expansion technique is exploited in its full richness to study median
sets in median graphs. We present here the main results and prove one Lemma
to give an idea how one could proceed to prove the theorems.

If # is a profile in a median graph G with split G;, G,, then let m; be
the subprofile of m consisting of all elements of m in G;. For each subset W
of V, we set W'=x[lW] and x'=n(x). Note that if for some u' in G, both %, and
u, are elements of W, them «' is in W and |W'|<|W|. If 7 is a profile on
G, then we have mi=kx(m;) and m;=X(7}), where & and A; are applied

componentwise.
Lemma 3. With the above notation, if w is a profile in the median graph G

with |m| > |m,|, then M(x') is contained in Gj;, and M(w) is contained in Gy,
and M(w')=M(m)', and |M(m)| = |M(7")].
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Proof. Let w' Dbe a vertex in G,-G; and let x' be the gate of w' in G;. Then

we have
D(w',my) = D(x',m)+ |m|d(x’,w').
The triangle inequality for d yields

D(uw',ymy) 2 D(x',m) = |ma|d(x,w').

Hence we have

D(w’, ") D(w',my) + D(w', )

> D(x',7')+d(x',w')(|my|-|m3|)
> D(x',7").
So M(m') lies in Gj.

Now choose a vertex w in G, and a vertex v in G; with v' in M(n'). Then we

have
D(v,m) = D(v',7")+|m,],
D(waﬂ') == D(w‘,vr’)+|7r,l,

whence D(w,n)>D(v,m). So M(n) lies in G,. Finally, for each vertex v in G, we

have
D(v,m) = D(v,7)+ |m,],
so that M(m) =M(x'). Since M(m) lies in G,, it follows that |M(w)| = |M(=x")|. O
Using this Lemma, we can relate M(m) to the median set of n' in G'.
Theorem 4. If m is a profile in a median graph G with |m|>|m,|, then
M(m) = A[M(m')]. Furthermore, if 7w 1s odd, then |[M(w)|=1. If =« is even,
then M(m) 1S an interval, and if Imy] = |75, then

M(m) = A[M(7)] U A[M(7")]

Using expansions, we can also relate M(mw) to the median sets of its

vertex—deleted subprofiles.
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Theorem 5. Let 7m=(v,,v,,...,7) a profile in a median graph G with
k>1. If =n is odd, then AM(m) = rgM(vr-—-—v,-), and if mw™ is even, then
M(r) = Con( Qﬂl(nm*vi)).

For proofs the reader is referred to [MMR 94].

4. Dynamic search

In [CGS 87] and [CGS 89] CHunG, GrRAHAM and SAKs considered the following
intriguing problem and proved some important results.

Let G=(V,E) be a connected graph, where on each vertex some piece of
information is located. A retriever is located at some vertex u of G, his
position. A quest for a piece of information comes in the form of a quest for

the vertex where this information is located. The retriever has two options:

(i) to retrieve from u the information at v», which costs d(u,v);

(ii) to move from u to some vertex v, which also costs d(u,v).

If the retriever is at an initial position p,, then his goal 1is, given a

sequence of quests (0=¢,q5-..,¢, to find a sequence of positions

P =p,,p,.-.,P, such that the following distance sum is minimized:

(*) Y, d(Pi-q,Pi) +2(Pi,qi)-

1=l

We can read this sum as follows: being at p;,, the retriever first moves to
p; and then retrieves g;, for 1=1,...,n.

With each quest sequence Q and each position sequence P we can associate
a caterpillar R(P,Q) consisting of P, Q and a p;,,p;,—geodesic and a p;,q;—
geodesic, for i=1,...,n. Note that in R(P,Q) we may have multiple occurrences
of vertices as well as edges. The p; ,,p,—geodesics with 1=1,...,n form the
spine of the caterpillar, the p;,¢;—geodesics are the legs (note that
mathematics is capable of creating new Dbiological species). The length ¢&(P,Q)
of the caterpillar R(P,Q) is the sum of the lengths of all geodesics involved
in constructing the caterpillar, and thus ¢£(P,Q) equals sum (*) above. In
these terms, given a quest sequence @ and initial position p, we want to find
a shortest caterpillar R(P,Q).

If the retriever being at the initial position knows all the quests in

quest sequence @, then he can alvays find a shortest caterpillar R(P,Q)
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minimizing his total costs. How to find P is another story. But if he has
only partial knowledge at some position p;;, he can only optimize p; with
respect to, say, the next Xk quests ¢;,Qii1,---,Gisk-1- When finally all
quests have come in and he has completed his caterpillar R(P,Q), then it is
generally not the shortest possible caterpillar.

If at any position p;, we have only foreknowledge of the next two quests
g; and g¢;,, then the best thing we can do is choosing a median point of
Pi-1,9i,9i+1 @as our next position p;. This is the median strategy. In
[CGS 87]) the problem was posed and settled on which graphs the median
strategy, with always foreknowledge of the next two quests at each position,
will prodice a shortest caterpillar for each initial position p, and each

quest sequence (, cf. [Wr 87].

Theorem 6. Let G be a connected graph. The median strategy with foreknowledge
of the next two quests at each position produces a shortest caterpillar for
each initial position p, and each quest sequence Q if and only if G is a

median graph.

If the median strategy is optimal, then CHuNG, GRAHAM and SAks proceed in
the following way. Assume that there are vertices u,v,w having two distinct
median points. Choose such a triple with d(u,v)+d(v,w)+d(w,u) as small as
possible. Now, with initial position u, by choosing quest sequences of length
at most 6 of the type u,u,v,w,q,¢g and varying ¢, a contradiction can be
derived. For full details of this proof the reader is referred to [CGS 87].
To prove the converse they make use of BANDELT'S theorem [Ba 84] that the
median graphs are precisely the retracts of hypercubes (see the next
subsection). Here we give an alternative proof for the ‘if part’ using our

expansion approach.

Proof of the °‘if part’ of Theorem 6. We use induction on the number of
expansions, so let F.G,,G,,G',7'\W' etcetera be as above. Let P be the
position sequence obtained via the median strategy with respect to initial
position p, and quest sequence . Note that, because of unicity of medians, P
i1s uniquely determined.

Assume that there 1s a position sequence T with €(7,0)<¢(P,Q). Note that
P’ 1s the position sequence obtained via the median strategy in G’ with
respect to p, and Q. By induction hypothesis, we know that
&(T,Q")2¢(P',Q"). Note that, for any caterpillar R(S,Q0) in G, it follows

from the expansion procedure that
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£(5,0) = €(5,Q")+a(5,0Q),

where «(S,Q) is the number of edges from F lying on R(S,Q).
Without loss of generality we may assume that pg, lies in G,. Put gg=p,.
The spine of R(P,Q) starts in G;. Beginning in p, we walk along the spine of

R(P,Q) and check where the caterpillar crosses the cut F:

- if Py, Qi-1, Qisx lile in G, and g¢; lies in G,, then the crossing is In
the p,,q;~leg and the spine remains in Gy,

-~ if piy, @i, lie in G; and g¢;, ¢;;,; lie in G, then the crossing 1s in
the spine between p;., and p;; now we exchange the roles of G, and G, and

proceed along the spine.

Note that a crossing only occurs if Q crosses F, but not necessarily, for in
the first case above Q crosses F twice and the -caterpillar crosses F only
once. Each caterpillar must cross F at least once in the above situations.
So, for any position sequence S, we have o(5,Q)2>a(P,Q).

Combined with &(7°,Q')=>&(P',Q') we get &T,0)=2¢(P,Q), contradicting our
assumption that R(T,Q) was a shorter caterpillar that R(P,(Q). O

5. Retracts of hypercubes

A retract of a graph G is an isometric subgraph H of G such that there is
a distance decreasing map of G onto H, which restricted to H is the identity.
BANDELT [Ba 84] proved that the median graphs are precisely the retracts of
hypercubes (for further references on retracts see [Ba 84] or [CGS 89]). This
result also can be proved using expansions. We only sketch that here using
the notation introduced above.

We define an extremal colour of a median graph G to be a colour F such
that, say, G,=G, Then G, is an extremal subgraph. In a tree the end vertices
are the extremal subgraphs, and in an n-dimensional hypercube (n—cube, for

short) the (n-1)-subcubes are the extremal subgraphs. Note that the edges on

a geodesic in a median graph all have different colours.

Lemma 7. Let G be a median graph with split G,,G,. Then G; as well as G,

contain an extremal subgraph.

Proof. Assume that G;# G,o. Let x be a vertex mn G;-G, adjacent to a vertex y

in Gy, and let z be the neighbour of y in G, Recall that z is the gate for
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y in G,. Let A be the colour of xy, and let F be the colour of yz (i.e. the
colour between G, and G,). We will show that colour A does not occur in G,.
Note that, if 4 occurs in G,y, then it occurs in G,, as well.

Assume the contrary, and let pg be an edge of A in G, with, say,
d(y,p)+1=d(y,q). Then © and p are on one side of A, so that x and ¢ are on
the other side. Let P=y->z->...»p be a 1y ,p-geodesic. Then there 1is an
x,q—geodesic Q=x->t->...>¢g with ¢ adjacent to z. Then xt and yz have the same
colour, so xt is in F. This implies that x is in G,, contradicting the choice
of x. So the colour A is fully contained in G,, and G,y U G, is on one side
of A and x on the other side.

Repeating this argument, if necessary, we arrive at an extremal subgraph

of G fully contained in &,. Similarly there is an extremal subgraph contained

in G,. O

Using Theorem 3.2.7 from [Mu 80b], we can easily verify that a retract of
a hypercube is a median graph. To prove that each median graph can be

realized as a retract of a hypercube we use induction on the number of

colours.

Let G be a median graph, and let F be an extremal colour with extremal
subgraph G, =G,,. We embed G in an n-cube @ as in Theorem 3. Then F splits Q
into two (n-1)-cubes @O, and @, with G; in Q;, i=1,2. By induction there 1is a
retraction of Q, onto G,. Apply the corresponding retraction on Q,. Then it
maps @, onto a copy H, of G, matched isomorphically via F to G,. This map
preserves G,. Now we only have to map H,-G, into G, in the right way. If u,
in H,—G, has neighbour wu, in G,-G,,, then we map wu; on a neighbour of u,,
which is nearer to G,, than wu,. This is possible whenever we have a distance
decreasing map of G, into itself, which preserves G,, and maps vertices of
G,—G,, on neighbours nearer to Gy

The existence of such a map can again be proved by induction on the
number of colours. We omit the details here.

Actually this is precisely the way how WILKEIT [Wi 86] proved that the

so—called quasi—-median graphs are the retracts of the Cartesian products of
arbitrary complete graphs (see Section 4).

6. Crossing splits

Two splits Gy, G, and H,, H, of a median graph G, or their associated

colours, are said to be crossing if G;nH;# @, for 3,5 = 1,2. Note that,

for a split G,, G, of (, the subgraph G; is extremal if and only if each
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colour occurring in G; crosses F,, (see [Mu 90]). We use this fact in the

following theorem, which has a very simple proof due to the expansion

technique.

Theorem 8. Let G be a median graph. Then G contains n pairwise crossing

splits if and only if G contains an n-cube as an induced subgraph.

Proof. If G contains an n-cube, then the n colours of this cube extend to
pairwise crossing splits in G because of the 4-cycle property.

Assume (G contains m  pairwise crossing splits Glf, GJ; for k=1,...,n.
Without loss of generality, we may assume that G has no other spilts.
Otherwise we could contract these, and the contraction would still contain n
pairwise crossing splits, and the existence of an n-cube iIn contraction
yields an n—cube in any expansion by its history.

Note that now every colourhalf G’: is an extremal subgraph of G, i.e., for
k=1,...,n, colour Ffz yields an  isomorphism  between G’: mGJfo and
d;mc';o. Using induction on the number of colours n in G, we may conclude

that both GII and G"§ are (n-1)—-cubes, so that G is an n—cube. O

7. The hull number of a median graph

The intersection of convex sets in a graph is again convex. This gives
rise to the following definition. Let W be a subset of vertices in a graph
G=(V,E). The convex hull of W, denoted by Con(W), is the smallest convex
subgraph of G containing W (see [Mu 80b], where it was termed the convex
closure). A set S ¢ V generates G if Con(S)=G. In [ES 85] EVERETT and SEIDMAN
introduced the hull number h(G) of a graph G to be the size of a minimum
generating set. Here of course, minimum means that there i1s no generating set
with fewer vertices.

Any two diametrical vertices (vertices at largest distance) generate a
hypercube. So A(Q)=2, for any hypercube Q except K;. In a tree T we need all
end vertices to generate T. By convention an end vertex will be the vertex of
degree zero if T=K,, and a vertex of degree one otherwise. Clearly, h(T) 1is
the number of end vertices in 7.

In this subsection we consider (minimum) generating sets of median
graphs. We say that a set W touches a subgraph H of G if H contains a vertex

of W. The following three results are Bbvious (we use the above notations).
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Lemma 9. If S generates the median graph G and G' is a contraction of G, then

S’ generates G'.
Corollary 10. If ¢’ is a contraction of the median graph G, then A(G) 2 h(G").

Lemma 11. If ,,G, is a split in a median graph G generated by S, then S
touches G; as well as G,.

The main result of this subsection is the following theorem.

Theorem 12. Let S be a set of vertices touching each extremal subgraph of a

median graph G. Then S generates G.

Proof. We use induction on the number of expansions. Let F be an extremal
colour with split G,,G, and G,=G,;;. We may take G, as the contraction of G
with respect to F. Note that every colour in G; occurs in Gy, as well, and
vice versa.

Every extremal colour of ( distinct from F is an extremal colour of G,.
So all extremal subgraphs of G, associated with these colours are touched by
S'. If A is a non-extremal colour in G;, then it is also non-extremal in Gy
as well as In G,.

Assume that B is an extremal colour in G, that is not extremal in G. Then
G,, must be contained in the extremal subgraph of B. Since S touches G, it
follows that S touches G,y, so it touches the extremal subgraph of B in G,
as well. Hence S’ touches all extremal subgraphs of G,.

By induction S° generates G,. Let w;,x,,...,2; be the vertices of S In
G,, and let w,,x,,...,2, Dbe their respective neighbouring gates in Gy. Since
S generates G, it touches G,, say in v. Then w, lies in I(w,,v), etcetera. 50
Con(S) contains w,,X,,...,2,. Therefore Con(S) contains Con(S')=G,, In
particular Con(S) contains G,,. Take any vertex p, in G,y with neighbouring

gate p, in G,. Then [(w,,p,) contains p,. So G, =G, is contained in Con(S) as

well, and we are done. O
The following theorem is an immediate consequence.

Theorem 13. Let (' be a median graph. Then h(G) is equal to the minimum number

of vertices touching all extremal subgraphs of G.
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It is easily scen that one can actually decrease the hull number by
contractions. But what are the contractions that preserve the hull number? In
a tree one can contract all internal edges, thus obtaining a star (a K, ,)
with the same number of end vertices. Contracting any further edge decreases
the hull number. In a hypercube we can contract all colours but one, thus
obtaining the star K,, with the same hull number. By convention we will
consider K, also to be a star.

A star contraction of a median graph G is a star obtained by successive
contractions of G. Let T be a star contraction of G with the maximum possible

number of end vertices. We define 7(G) to be the number of end vertices of

this star T. Then we get the following problem.
Question. For which median graphs G do we have h(G)=71(G)?

8. Quasimedian graphs

Almost all of the above results can be generalized to quasimedian graphs,
which  generalize median graphs. These graphs were introduced and
characterized Dby another expansion procedure in [Mu80b]. For the relevant

theorems on retracts see [CGS 89] and [Wi 86], and for the generalization of

the dynamic search problem, see [CGS 89].
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