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1 INTRODUCTION 

Let Q denote the Hilbert cube TI:1 [ 1, l]i· In the ''Open Problems in Topol
ogy Book'', WEST [2] asks the following (Problem #933): 

Let the compact Lie group G act semifreely on Q in two ways such 
that their fixed point sets are identical. If the orbit spaces are 
ANR 's, are the actions conjugate? 

The aim of this note is to present a counterexample to this problem. For all 
undefined notions we refer to [1]. 

2 THE EXAMPLE 

Let G be a group and let 1r: G x X ,. X be an action from G on X. Define 
:Fix( G) = { x E X : (\/g E G)( 1r(g, x) = x) }. It is clear that :Fix( G) is a closed 
subset of X: it is called the fixed-point set of G The action 1r is called semifree 
if it is free off :Fix( G), i.e., if x E X \ Fix( G) and 1r(g, x) = x for some g E G 
then g is the identity element of G. The space of orbits of the action 1r will be 
denoted by X /G. Let lI denote the interval [O, 1]. 

433 



Let G denote the compact Lie group 'f x Zi, where 1r denotes the circle 
group. We identify Z2 and the subgroup {-1, l} of "JI'. In addition, D denotes 
{z EC: lzl < 1}. We let G act on D x Din the obvious way: 

(g' e) , ( X' y) I ', (g . X' e . y) (g E 1f, c E {-1, 1 }, x, y E D), 

where ''·'' means complex multiplication. Observe that this action is semifree, 
and that its fixed-point set contains the point (0, 0) only. Also, observe that 
(D X D)/G ~ I[ X D. 

LEMMA 2.1 Let H denote either G or 'Jr. There is a semifree action of H on 
Q x I[ having Q x {O} as its fixed-point set. Moreover, (Q x TI)/G and Q are 
homeomorphic. 

PROOF. We will only prove the lemma for G since the proof for 1I' is entirely 
similar. We first let G act on X = D x D x Q as follows: 

(g' e) ' { X' y' z) I ► (g . X' e . y' z) (g E 1f, c: E {-1, 1}, x, y E D, z E Q). 

This action is semifree and its fixed-point set is equal to {(0,0)} x Q. Also 
observe that X/G ~]Ix D x Q. 

We now let G act coordinatewise on the infinite product X 00
• This action 

is again semifree, having the diagonal ~ of { (0, 0)} x Q in X(X) as its fixed
point set. Also, X 00 JG is homeomorphic to (I x D x Q) 00 ~ Q. Since 6 
projects onto a proper subset of X in every coordinate direction of X 00

, it 
is a Z-set. Since X 00 ~ Q there consequently is a homeomorphism of pairs 
(X00

, .6) , (Q x TI, Q x {O} ). We are done. 

We will now describe two actions of G on Q x [-1, l]. By Lemma 2.1 there 
is a semifree action ar: 1r x Q x Il ~ Q x TI having Q x {O} as its fixed point set, 
while moreover Q x Il/G ~ Q. We let 1I' act on Q x [-1, O] as follows: 

z, (q, t) 1 > (q, s) iff ar z, (q, -t) = (q, -s). 

We will denote this action by nl. So a == al Uar is an action of 'f onto Q x (-1, 1], 
having Q x {O} as its fixed-point set. Now define a: G x (Q x [-1, l]) · > 

Q x [-1, 1] as follows: 

a (z, c}, (q, t) 
o: z, (q,t) , (e == 1), 
0: Z, ( q, -t) , ( c 1) . 

Then a is a semifree action of G onto Q x [-1, 1] having Q x {O} as its fixed-point 
set, while moreover (Q x [-1, 1])/a ~ Q. Observe the following triviality. 

LEMMA 2.2 If A C Q x [-1, 1] is ii-invariant such that A is not contained in 
Q x {O}, then A intersects Q x (0, l] as well as Q x [-1, 0). 
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We will now describe the second action on Q x [-1, l]. By Lemma 2.1 there 
is a semifree action f3r: G x Q x K , Q x Il having Q x { 0} as its fixed point 
set, while moreover Q x Il/G ~ Q. Construct f3l from f3r in the same way we 
constructed al from ar. Then /3 == /3z U /3r is a semifree action from G onto 
Q x [-1, 1] having Q x {O} as its fixed-point set. Moreover, (Q x IT)//3 is the 
union of two Hilbert cubes, meeting in a third Hilbert cube, hence is an AR. 
(It can be shown that (Q x Il)/ {3 ~ Q.) 

Now assume that the two axions a: and /3 are conjugate. Let T: Q x [-1, 1] > 

Qx [-1, 1] be a homeomorphism such that for every g E G, f3(g) == T- 1 oa(g)oT. 
Then r(Q x (0, 1]) is a connected &-invariant subset of Q x [-1, 1] which misses 
Q x {O}. This contradicts Lemma 2.2. 
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