Actions on the Hilbert cube

To Cor Baayen, at the occasion of his retirement.

Jan van Mill

Faculteit Wiskunde en Informatica, Vrije Universiteit
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
(email: vanmill@cs.vu.nl)

We provide a negative answer to Problem 933 in the “Open Problems in Topology Book”.

Key words & phrases: Lie group, action, conjugate

AMS Subject Classification: 57N50

1 Introduction

Let Q denote the Hilbert cube $\prod_{i=1}^{\infty} [-1,1]$. In the “Open Problems in Topology Book”, West [2] asks the following (Problem #933):

Let the compact Lie group G act semifreely on Q in two ways such that their fixed point sets are identical. If the orbit spaces are ANR’s, are the actions conjugate?

The aim of this note is to present a counterexample to this problem. For all undefined notions we refer to [1].

2 The Example

Let G be a group and let $\pi: G \times X \to X$ be an action from G on X. Define $\text{Fix}(G) = \{x \in X : (\forall g \in G)(\pi(g, x) = x)\}$. It is clear that $\text{Fix}(G)$ is a closed subset of X: it is called the fixed-point set of G. The action π is called semifree if it is free off $\text{Fix}(G)$, i.e., if $x \in X \setminus \text{Fix}(G)$ and $\pi(g, x) = x$ for some $g \in G$ then g is the identity element of G. The space of orbits of the action π will be denoted by X/G. Let I denote the interval $[0,1]$.

433
Let G denote the compact Lie group $T \times Z_2$, where T denotes the circle group. We identify Z_2 and the subgroup $\{-1, 1\}$ of T. In addition, D denotes $\{z \in C : |z| \leq 1\}$. We let G act on $D \times D$ in the obvious way:

$$((g, \epsilon), (x, y)) \mapsto (g \cdot x, \epsilon \cdot y) \quad (g \in T, \epsilon \in \{-1, 1\}, x, y \in D),$$

where \cdot means complex multiplication. Observe that this action is semifree, and that its fixed-point set contains the point $(0, 0)$ only. Also, observe that $(D \times D)/G \cong I \times D$.

Lemma 2.1 Let H denote either G or T. There is a semifree action of H on $Q \times I$ having $Q \times \{0\}$ as its fixed-point set. Moreover, $(Q \times I)/G$ and Q are homeomorphic.

Proof. We will only prove the lemma for G since the proof for T is entirely similar. We first let G act on $X = D \times D \times Q$ as follows:

$$((g, \epsilon), (x, y, z)) \mapsto (g \cdot x, \epsilon \cdot y, z) \quad (g \in T, \epsilon \in \{-1, 1\}, x, y \in D, z \in Q).$$

This action is semifree and its fixed-point set is equal to $\{(0, 0)\} \times Q$. Also observe that $X/G \cong I \times D \times Q$.

We now let G act coordinatewise on the infinite product X^∞. This action is again semifree, having the diagonal Δ of $\{(0, 0)\} \times Q$ in X^∞ as its fixed-point set. Also, X^∞/G is homeomorphic to $(I \times D \times Q)^\infty \cong Q$. Since Δ projects onto a proper subset of X in every coordinate direction of X^∞, it is a Z-set. Since $X^\infty \cong Q$ there consequently is a homeomorphism of pairs $(X^\infty, \Delta) \rightarrow (Q \times I, Q \times \{0\})$. We are done.

We will now describe two actions of G on $Q \times [-1, 1]$. By Lemma 2.1 there is a semifree action $\alpha_r : T \times Q \times I \rightarrow Q \times I$ having $Q \times \{0\}$ as its fixed-point set, while moreover $Q \times I/G \cong Q$. We let T act on $Q \times [-1, 0]$ as follows:

$$(z, (q, t)) \mapsto (\tilde{q}, s) \quad \text{iff} \quad \alpha_r(z, (q, -t)) = (\tilde{q}, -s).$$

We will denote this action by α_l. So $\alpha = \alpha_l \cup \alpha_r$ is an action of T onto $Q \times [-1, 1]$, having $Q \times \{0\}$ as its fixed-point set. Now define $\tilde{\alpha} : G \times (Q \times [-1, 1]) \rightarrow Q \times [-1, 1]$ as follows:

$$\tilde{\alpha}((z, \epsilon), (q, t)) = \begin{cases} \alpha(z, (q, t)), & (\epsilon = 1), \\ \alpha(z, (q, -t)), & (\epsilon = -1). \end{cases}$$

Then $\tilde{\alpha}$ is a semifree action of G onto $Q \times [-1, 1]$ having $Q \times \{0\}$ as its fixed-point set, while moreover $(Q \times [-1, 1])/\tilde{\alpha} \cong Q$. Observe the following triviality.

Lemma 2.2 If $A \subseteq Q \times [-1, 1]$ is $\tilde{\alpha}$-invariant such that A is not contained in $Q \times \{0\}$, then A intersects $Q \times (0, 1]$ as well as $Q \times [-1, 0)$.

434
We will now describe the second action on \(Q \times [-1,1] \). By Lemma 2.1 there is a semifree action \(\beta_r: G \times Q \times I \to Q \times I \) having \(Q \times \{0\} \) as its fixed point set, while moreover \(Q \times I/G \approx Q \). Construct \(\beta_l \) from \(\beta_r \) in the same way we constructed \(\alpha_l \) from \(\alpha_r \). Then \(\beta = \beta_l \cup \beta_r \) is a semifree action from \(G \) onto \(Q \times [-1,1] \) having \(Q \times \{0\} \) as its fixed-point set. Moreover, \((Q \times I)/\beta \) is the union of two Hilbert cubes, meeting in a third Hilbert cube, hence is an AR. (It can be shown that \((Q \times I)/\beta \approx Q_s \)).

Now assume that the two axioms \(\alpha \) and \(\beta \) are conjugate. Let \(\tau: Q \times [-1,1] \to Q \times [-1,1] \) be a homeomorphism such that for every \(g \in G \), \(\beta(g) = \tau^{-1} \circ \alpha(g) \circ \tau \). Then \(\tau(Q \times \{0,1\}) \) is a connected \(\alpha \)-invariant subset of \(Q \times [-1,1] \) which misses \(Q \times \{0\} \). This contradicts Lemma 2.2.

References
