
Systematic Computations on Mertens' Conjecture and 

Dirichlet's Divisor Problem by Vectorized Sieving 

Dedicated to Cor Baayen, at the occasion of his retirement 
as scientific director of SMC and its CW/ 

Walter M. Lioen 
CW/, P. 0. Box 94079, 1090 GB Amsterdam, The Netherlands 

and 

Jan van de Lune 
Noordermiedweg 31, 9074 LM Hallum, The Netherlands 

In this paper we present two vectorized numerical sieve algorithms for the 
number theoretical functions µ(n) and T(n). These sieve algorithms are gen­
eralizations of Eratosthenes' sieve for finding prime numbers. We show algo­
rithms for fast systematic computations on Mertens' conjecture and Oirich­
let's divisor problem. We have implemented the algorithm for Mertens' con­
jecture on a Cray (90 and performed a systematic computation of extremes 
of M(x)/v'x up to 1013

. We established the bounds -0.513 < M(x)/y'x < 
0.571, valjd for 200 < x < 1013 . 

1 INTRODUCTION 

Eratosthenes' sieve is one of the oldest algorithms in number theory (3rd cen­
tury B.C.). The ultimate sieving device for Eratosthenes' sieve and its gen­
eralizations is a (parallel) vector computer or a massively parallel computer. 
Our generalizations of Eratosthenes' sieve are devised with large (parallel) vec­
tor computers in mind. They are virtually 100 percent vectorizable and they 
become more and more efficient when the amount of memory increases. 

We start by introducing Mertens' conjecture in Section 2. Section 3 is de­
voted to a con1pletely vectorized algorithm for a systematic computation of 
M(x) and analysis of M(x)/ x. In Section 4 we describe Dirichlet's divisor 
problem. The corresponding algorithm is given in Section 5. This algorithm in 
its turn is a generalization of the algorithm described in Section 3. In Section 6 
a selection of the numerical results for M(x)/ x, x == 1, ... , 1013 , is presented. 
Finally, in the last section we give some concluding re1narks. 
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2 MERTENS' CONJECTURE 

The Mobius function µ(n) is defined as follows 

n = 1, 
µ(n) = if n is divisible by a prime square, 

if n is the product of k distinct primes. 

We consider M(x), the first summatory function of µ(n), 

M(x) === 
n<x -

M(x) describes the difference between the number of squarefree positive inte­
gers n < x with an even number of prime factors and those with an odd number 
of prime factors. 

Based on a table of M ( x) for x = 1, ... , 10000 Mertens [11] conjectured that 

IM(x)I < x, X > 1. 

Later, based on more extensive numerical 'evidence', Von Sterneck [17] even 
conjectured that 

1 
X > 200. 

The Mobius function is related to the Riemann zeta function by 

1 
((s) 

oo µ(n) 
n s ' 

n=l 

?R(s) > 1. 

Boundedness of M(x)/ x implies the truth of the Riemann l1ypothesis. How­
ever, the converse does not hold. 

For the history of the function M(x)/ x and the disproves of Von Ster­
neck's conjecture and later Mertens' conjecture-both first theor·etical and later 
effective-we refer to [16]. A comprehensive bibliography may be found in the 
paper by Odlyzko and Te Riele [13] in which they disprove Mertens' conjecture. 

Although it is known that M(x)/x > 0 as x > oo (and even more than 
this), the best known effective asymptotic upper bound on IM(x)I to date [4] 
• 
1S 

1 
X > 617973. 

3 A VECTORIZED ALGORITHM FOR M(x)/ x 
3.1 Eratosthenes' sieve 
Eratosthenes indicated the following method of obtaining all the primes in the 
range 2, ... , N: put all numbers between 2 and N into a 'sieve'; as long as 
the sieve is not empty, select the sn1allest number rernaining in the sieve, and 
strike out all multiples of this prime number. The complexity of both the 
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sieve initialization and the prime number selection is CJ(N). The complexity 
of striking out all multiples of the prime numbers found and therewith the 
complexity of Eratosthenes' sieve is 

• 

-rr( v'ii) N 

i=l Pi 
rv Nloglog 

where 1r(x) denotes the number of prime numbers not exceeding x. Usually, one 
only sieves the odd numbers. Moreover, if N becomes large one has to partition 
the sieve interval. Even for N large, 1013 , say, log log N is fairly small. This 
gives an almost linear complexity O(N). For the sake of completeness: the best 
(sub)linear prime number sieve has complexity O(N/ loglogN), cf. [10, 15]. 

3.2 Sieving µ(n) 
The following algorithm yields the Mobius function µ(n) for n == l, ... , N. 

for n = 1 to N 
µ(n) == 1 

,---

for all p < N 
for all n, p I n 

µ(n) == -p · µ(n) 
for all p < N 

for all n, p2 I n 
µ(n) == 0 

for n = 1 to N 
if lµ(n)I -:f. n then 

µ(n) = -µ(n) 
for n =Ito N 

µ(n) == sign(µ(n)) 

This algorithm starts initializing a sieve array µ with the value l. Besides the 
sieve array we also keep a list of all primes not exceeding N. Next, for all 
prime numbers p not greater than N we 1nultiply µ(n) by -p for every n a 
multiple of p. By 1nultiplying with -p we achieve two things: 1. we multiply 
by p in order to see if we end up having handled all prime factors of n; 2. by 
multiplying with -p instead of p, we keep track of the parity of the number of 
different prime factors of n handled so far. For all prime numbers p not greater 
than N we set µ(n) to O for every n a multiple of p 2 . After this step we 
check whether Jµ(n)I == n holds. If lµ(n)I == n holds, n is squarefree and none 
of its prime factors is greater than N. If jµ ( n) I == n does not hold, we have 
two possibilities: either µ(n) == 0, in which case n is not squarefree, or n is 
squarefree and has exactly one prime divisor p > N. Anyhow, if lµ(n)I == n 
does not hold, we just cha11ge the sign of µ( n), taking ca1·e of the parity for 
this last prime factor, or a no-op if J-L(n) = 0. At this point we have three 
possibilities: 1. µ(n) = 0, if n is not squarefree; 2. µ(n) < 0, if n is the product 
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of an odd number of distinct primes; 3. µ(n) > 0, if n is the product of an even 
number of distinct primes. With the obvious definition of sign, the last loop in 
the algorithm above completes the computation of the Mobius function µ(n) 
for n = 1, ... , N. It is easy to see that the complexity for the above algorithm 
is the same as for Eratosthenes' sieve: O(N log log N). 

As we already mentioned for Eratosthenes' sieve, we have t,o partition the 
sieve interval if N becomes large. The determination of whether a prime hits a 
partition and, if so, the first index it hits, is a non-vectorizable process. In order 
not to loose vector speed one should choose the partition size considerably (10-
100 times, say) larger than the number of sieve primes. In our computations 
N equals 1013 , so the number of sieve primes becomes 1r( N) == 227,647. We 
chose our partition size equal to 107 . 

3.3 Small prime variation • 

Since we want to compute all values of M(x) systematically, we can not halve 
the amount of work by only sieving the odd numbers, as we can for Eratos­
thenes' sieve. For the same reason we can not apply a 'small prime variation' 
as in MPQS [14]. However, it is possible to apply a different kind of small 
prime variation: replace the initialization µ( n) == 1 by a 'block-initialization'. 
Using the small primes 2, 3, 5, 7, 11, say, and also the small prime squares 4, 9, 
we get a pattern-length of 

2 · 3 · 5 · 7 · 11 · 2 · 3 = 13,860. 

Sieving with only these few primes and prime squares requires 

N 
2 

+ 
N 

3 
+ 

N 
5 

+ 

• 

N 
7 

+ 
N 
11 + 

N 
4 

+ 
N 
9 

~ 1.6N 

sieve updates. If we store the initial pattern of length 13,860 and do a periodic 
block initialization of the sieve array with this pattern (instead of the total 
initialization with 1), we get about 1.6N sieve updates, for these small primes 
and prime powers, for free. 

We did not tell the full story by stating that one can not manage sieving only 
the odd numbers. As pointed out by Tijdeman [18] one may use the identity 
µ(n) + µ(2n) == 0, for n odd, together with the identity µ(4n) = 0, to avoid 
the computation of µ(n) for n even. However, for N large, so that we have to 
partition the sieve array to get the job done, this becomes impractical because 
one would have to store some N/4 intermediate µ(n)-values for n even. 

3.4 Vectorizing the partial summation 
Thus far we described a vectorized algorithm for the systematic computation 
of the Mobius function. Eventually, however, we are interested in the extremes 
of M(x)/ x, so that first of all we have to compute the partial sums 

M(x) == X =I, .. . ,N. 
n<x -
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Phrasing this as an algorithn1 one might compute the partial sums as follows. 

M(l) = µ(1) 
for x = 2 to N 

M(x) = µ(x) + M(x - 1) 

The previous loop is a classical example of a non-vectorizable loop because of 
its recursion on M(x - 1). 

Assuming that the array M initially contains the values of µ (we do this 
computation in-place anyhow), and partitioning the array in chunks of lengths, 
1 < s < N we can compute the partial sums using the following algorithm. 

for 11 = 2 to s 
< 

for x = y to N by s 
M(x) = M(x) + M(x -1) 

l= LN/sjs 
for y == s + l to l by s 

for x = y to y + s - 1 
M(x) == M(x) + M(y - 1) 

for x = l + 1 to N 
M(x) == M(x) + M(l) 

Here, the first loop nest solves IN/ s l independent partial summation problems. 
The inner loop of the first loop nest performs the same operation simultaneously 
on all chunks. Because of the increment s, this inner loop is not recursive, 
therefore vectorizable. After executing the first loop nest, the original partial 
summation problem is only solved for the first chunk M(x), x = l, ... , s. The 
second loop nest takes care of the other chunks in turn by adding M(y - 1), 
the end-point-value of the previous chunk, to all values in the current chunk. 
Here, the inner loop is vectorizable, since trivially y - 1 < y, ... , y + s - I. After 
executing the second loop nest, all chunks except for possibly the last one also 
contain the correct values for the original partial summation problem. Finally, 
the last loop handles the last chunk in case s does not evenly divide N. 

Using this algorithm, also the partial summation is vectorizable albeit at the 
price of doing twice as many additions but, at a perfor1nance gain of an order 
of magnitude, because it now readily vectorizes. On a Cray C90 we measured 
a speed-up factor of 5-9 depending on the values of N and s. 

We still have not chosen the chunk size s. In order to perform both loop 
nests at vector speed, s should be chosen such that the iteration counts of the 
respective inner loops (being N /sand s) are not too small. Moreover, s, being 
the increment of the first inner loop, should not be a multiple of the number of 
memory banks. The latter would cause memory bank conflicts resulting in a 
measured performance degradation by a factor 4 in CPU time on a Cray C90. 
Finally, the choice of s also depends on other optimization techniques in the 
actual implementation. 
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Had our prototype not been written using Fortran INTEGERs, we probably 
would have opted for Cray's SCILIB (SCientific LIBrary) routir1e RECPS. Our 
implementation and RECPS perform con1parably. In Section 5 we can not do 
without the partial summation algorithm described above, since there is no 
SCILIB routine with the same functionality for INTEGERs. 

3. 5 Gathering the statistics 
Having a completely vectorized algorithm for the systematic computation of 
M(x) we are still not completely done. One not entirely minor point remains: 
we want to study the local extren1es of M(x)/ _x. Clearly, we do not want 
neither have to,-,compute x for all x. M(x)/ x can only reach a new extreme 
value if M(x) does. Searching for new extremes can only be done at vector 
speed if the number of extremes is small with respect to the number of elements 
we are co11sidering. If in the interval we are investigating Mertens' conjecture 

x < M(x) < x, 1 < x < N, 

holds, it guarantees at most N local maxima and minima. On the other hand, 
if Mertens' conjecture would not hold in the interval we are investigating, we 
would find the smallest argument value x giving a counterexample for Merte11s' 
conjecture. 

We search M ( x) for new extremes in either direction using the highly efficient 
Cray SCILIB routines ISRCHFGT and ISRCHFL T. 

We refrain from describing the actual bookkeeping process, since bookkeeping 
of the extremes gets rather complicated by the sieve partitioning, our search for 
extremes in two directions (positive/negative), and minimization of the printed 
output. 

3.6 Comparison to Neubauer's algorithm and Dress' version 

Te Riele drew our attention to the work of Neubauer [12], who used a similar 
algorithm for computing M(x), x = 1, ... , 108 • Neubauer also had to partition 
his sieve interval. However, he used three sieve arrays. His algorithm [12, p. 2] 
reads as follows: for n = 0, 1, ... 

lOOOn < m < lOOO(n + 1) 

Pflm ⇒ µ(m)=O 

g(m) = _ logpi v(m) = 1 

Neubauer builds up g(m) to check whether there is a prime factor p > N 
and he counts the number of different prime factors in v(m). Neubauer does 
not use multiplications, nor divisions. However, he 111ust take care of precision 
because of the inherently inexact log Pi values. 
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Recently, Dress used a variant of Neubauer's algorithn1 using only two sieve 
arrays ( a andµ in [3, Algorithme 2]) and-at least in the description-a division 
step. 

Our algorithm only uses one sieve array, computing µ(n) in-place. Moreover, 
on current vector computers a vector-multiplication is just as expensive as a 
vector-addition. Because of the overhead involved in partitioning the sieve 
interval, there is a certain trade-off between memory usage and CPU usage. 
Using only one sieve array, and, of course, the unavoidable prime table, it is 
possible to use the available memory as efficient as possible. Moreover, we have 
added a small prime variation. 

4 DIRICHLET'S DIVISOR PROBLEM 

We consider D(x), the first summatory function of T(n), 

D(x) = 
n<x -

where T( n) denotes the number of divisors of n. Dirichlet [2] proved that 

D(x) = xlogx + (2, - l)x + E(x), 

where , is Euler's constant, and E(x) = 0( x). This may be considered 
as a lattice point problem, counting the number of lattice points in the first 
quadrant between the axes and the hyperbola qd == x, including those on the 
hyperbola 

D(x) = 1 == 1. 
q,d 

qdS,x 

Compare FIGURE 1. An unsolved problem in analytic number theory is the 
estimation of the order of the error term E ( x). TABLE 1 shows the historical 
development of Dirichlet's divisor problem. For a more complete table, further 
refe1·ences, and much rnore about lattice point problen1s in ge11eral, we refer 
to [5, 7]. 

5 A VECTORIZED ALGORITHM FOR DIRICHLET'S DIVISOR PROBLEM 

Given the unique prime factorization of n 

k 

n= 

we have the following formula for T(n) 

k 

i=l 
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FIGURE 1. Dirichlet's divisor problem 

Using two sieve arrays instead of one, and exploiting the above mentioned 
formula we can sieve r(n) similarly as µ(n). The following algorithm computes 
the number of divisors function r( n) for n = l, ... , N. 

for n = 1 to N 
I(n) = 1 
T(n) = 1 

,---

for all p < N 
for all n,p I n 

I(n) = p · I(n) 
T(n) = 2 · T(n) 

for e = 2 to L log2 N J 
for all p < e N 

for all n, pe I n 
I(n) = p · I(n) 

T(n) = 
for n = l to N 

if I(n) =I- n then 
r(n) = 2 · r(n) 

e 

We need two sieve arrays because keeping track of a parity as for µ(n) does not 
suffice. In the I-array we multiply all prime factors e11countered during sieving. 
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TABLE 1. The order of the error term in D(x) 

Dirichlet 
Voronoi" 
Van der Corput 
Kolesnik 
Iwaniec & Mozzocl1i [6] 
Van de Lune and Wattel conjecture [9] 
Hardy a.nd Landau 

year 
1849 
1903 
1922 
1969 
1988 
1990 
1915 

E(x) 
O(x172) · 

O(x113 log x) 
O(x33/100) 
O(x(I2/37)+c) 
O(x1 ;22) 

O(x 114 logx) 

This way only a single prime factor p > N can remain which is taken care of 
by the last loop nest. In the r-array we maintain the number of divisors using 
the above mentioned forrr1ula: when sieving with a prime factor we multiply 
r(n) with 2 (since e = 1); sieving with a prime square we divide the current 
value of r( n) by 2 and multiply \Vith 3; when sieving with higher prime powers, 
exponent e, say, we divide by e and multiply with e + 1. 

Similarly as for the µ(n) we can use a small prime variation by creating 
patterns for both the /-array and the r-array. 

The partial summation, and gathering of the statistics can all be performed 
analogous to the procedures for A-1 ( x) / x. 

For an actual in1plementation on the Cray C90 one should use an INTEGER 
r-array, because of the very fast but inexact floating point division (resulting 
e.g. in 3.0 /3.0 #- 1). 

6 NUMERICAL RESULTS FOR M(x)/ x 
We verified the results of Neubauer [12], Cohen & Dress [1], and Dress [3]. 
Furthermore, we established the bounds -0.513 < M(x)/ x < 0.571, valid for 
200 < x < 1013 . See TABLE 2 for some selected values of M(x) and M(x)/ x 
for x = 1, ... , 1013 . 

The computation of Cohen and Dress [1] in 1979 up to 7.8 • 109 took a week 
on a TI980B minicomputer. The computation of Dress [3] up to 1012 in 1992 
took 4000 hours on three Sun SPARCstations 2. 

Our results were all obtained using one processor. A test run up to 1010 of 
our prototype implementation took 32 minutes on a Cray Y-MP. The same run 
of our final implementation took 9 minutes on a Cray C90. The speed-up was 
due to the faster machine and the improved implementation. The verification 
of [3] ( up to 1012 ) took some 17 hours on a Cray 090. Finally, the computation 
up to 1013 took a little less than 200 hours on a Cray C90. 
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TABLE 2. M(x) and A1(x)/ x for some selecteda x < 1013 

X 

30,095,923 
30,919,091 
34,750,986 
61,913,863 
70,497,103 
76,015,339 
90,702,782 
92,418,127 

109,528,655. 
110,103,729 
141,244,329 
152,353,222 
179,545,614 
179,919,749 
216,794,087 
360,718,458 
455,297,339 
456,877,618 
514,440,542. · 
903,087,703 

1,029,223,105 
l,109~331,44 7 
1,228,644,631 
2,218,670,635 
2,586,387,614 
2,597,217,086· 
3,061,169,989 
3,314,385,678 
3,724,183,273 
3,773,166,681 
5,439,294,226 · 
5,439,294,781 
6,600,456,626 
6,631,245,058 
7,544,459,107 
7,660, 6·84, 541 
7,725,038,629b 
7 766 842 813b. 

' ' ' 

M(x) 
M(x) 

X 

-1,448 -0.264 
-2,573 -0.463 

1,420 0.241 1 

2,845 0.362 
-2,574 -0.307 
-3,448 -0.395 

2,846 0.299 
3,290 0.342 

-3,449 -0.330 
-4,610 -0.439 

3,291 0.277 
4,279 0.347 

-4,611 -0.344 
-6,226 -0~464 

4,280 0.291 
6,695 0.353 

-6,227 -0.292 
-8,565 · -0.401 

6;696 0.295 
10,246 0.341 
-8,566 -0.267' 

-15,335 -0.460 
10,247 0.292 
15,182 0.322 · 

-15,336 -0~302· 
-17,334 -0.340 · 

15,183 0.274 
21,777 0.378 · 

-17,335 -0.284 
-25,071 • -0·.408 

21,778 0~295 . 
21,191 o·.295 

-25,072 -0.309 
-31;206. -0.383 

21,792 0.251 
38,317 0.438 · 
43,947 0.500 · 
50 286 . Q;.571' 

' L------J 

X 

9,826,066,363 
15,578,669,387 
18,835,808,417 
19,890,188,718 
22,745,271,553 
38,066,335,279 
48,201,938,615 
48,638,777,062 
56,794,153,135 

101,246,135,617 
106,512,264,731 
108,924,543,546 
148,449,169,741 
217,309,283,735 
295,766,642,409 
297,193,839,495 
325,813,026;298 
330,138,494,149 · 
330,486,258,6il0c 
330,508,686,218c 
400,005,203,086 
661,066,575,037 

1,246,597,697,.210 · 
1;440,355,022,306 · 
1,600,597,184,945 
1,653,435,193,541 
2,008,701,330,005 
2,087,416,003,490 
2,319,251,110,865 
2,343,412,610,499 
3,268;855,616,262 
3,270,926,424,607 
3, 754,810;,967,055. 
4,098,484,·1s1,411 
5,184,088,665,413 
5,197,159,385,733 
6·,202,507, 744,370 
9, 784,334r467,058 

M(x) 

-31,207 
-51,116 

50,287 
60,442 

-51,117 
-81,220 

60,443 
76,946 

-81,221 
-129,332 

76,947 
170,358 · 

-129,333 
-190 936 

' 
170,359 
207,478 

-190~937 
-271,317 
-287 440 

' 
-294,816• 

207,479 · 
331,302_ 

-294,817 
-368,527 

331,303 · 
546,666 

-368,528 
-625,681 

546,667 
594,442 

-625,682 
-635 558 · 

' 594,443 
780,932 · 

-635,559. • 
-689,688· 

780,933 
889,948· 

M(x) 

v1x 
-0.315 
-0.410 

0.366 
0.429 

-0.339 
-0.416 

0.275 
0.349 

· 0.341 
-0.406· · 

0.236 
0~516· 

-0.336 
-0.410 

0.313 
0.381 

-0.335 
-0~472. 
-o~soo . 
-0.513 ·. 

0~328 · 
0~407 

-0.264. 
-0.307 

0.262 
0-.425 

-0~260 · 
-0.433 

0.359 
0·~888·· 

-0 .. 346. 
-0.351 

0•.307. 
0.386': 

-0.279. 
-0.303 

0·.314 
0·.285 • 

a A listed· M(x)-value guarantees the corresponding x to be the smallest argument ,value 
for which M(x) assumes this value. Consecutive M(x)-column-.entries of the sa.me sign guar­
antees absence of new extremal M(x)-values· of the opposite sign in between. A f:uamed 
M(x)/v'x value guarantees the corresponding x to be the smallest argun1ent value greater 
than 200 for which M(x)/ .Jx assumes this value. 

bThis verifies a result of Cohen and Dress [1}. 
r:Tl1is verifies a rest1lt of Dress (3]. 
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7 CONCLUDING REMARKS 

We showed two vectorized algorithms: one for fast systematic computations on 
Mertens' conjecture, and one for fast systematic computations on Dirichlet 's 
divisor problem. In an update of this paper we will extend Section 6 with 
numerical results for Dirichlet's divisor problem. 

The algorithms we described are generalizable to arbitrary arithmetical func­
tions f : N > Z as long as we have a fairly simple relation between-1-f (peq) and 
f(pe- 1q), where e,p, q EN, p prime, p f q. For example T(peq) = e ~ 1T(pe- 1q). 
In particular, we have devised similar algorithms for Gaufl' lattice point prob­
lem and amicable numbers, to name just two [8]. 
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