
Systematic Computations on Mertens' Conjecture and

Dirichlet's Divisor Problem by Vectorized Sieving

Dedicated to Cor Baayen, at the occasion of his retirement
as scientific director of SMC and its CW/

Walter M. Lioen
CW/, P. 0. Box 94079, 1090 GB Amsterdam, The Netherlands

and

Jan van de Lune
Noordermiedweg 31, 9074 LM Hallum, The Netherlands

In this paper we present two vectorized numerical sieve algorithms for the
number theoretical functions µ(n) and T(n). These sieve algorithms are gen­
eralizations of Eratosthenes' sieve for finding prime numbers. We show algo­
rithms for fast systematic computations on Mertens' conjecture and Oirich­
let's divisor problem. We have implemented the algorithm for Mertens' con­
jecture on a Cray (90 and performed a systematic computation of extremes
of M(x)/v'x up to 1013

. We established the bounds -0.513 < M(x)/y'x <
0.571, valjd for 200 < x < 1013 .

1 INTRODUCTION

Eratosthenes' sieve is one of the oldest algorithms in number theory (3rd cen­
tury B.C.). The ultimate sieving device for Eratosthenes' sieve and its gen­
eralizations is a (parallel) vector computer or a massively parallel computer.
Our generalizations of Eratosthenes' sieve are devised with large (parallel) vec­
tor computers in mind. They are virtually 100 percent vectorizable and they
become more and more efficient when the amount of memory increases.

We start by introducing Mertens' conjecture in Section 2. Section 3 is de­
voted to a con1pletely vectorized algorithm for a systematic computation of
M(x) and analysis of M(x)/ x. In Section 4 we describe Dirichlet's divisor
problem. The corresponding algorithm is given in Section 5. This algorithm in
its turn is a generalization of the algorithm described in Section 3. In Section 6
a selection of the numerical results for M(x)/ x, x == 1, ... , 1013 , is presented.
Finally, in the last section we give some concluding re1narks.

421

•

2 MERTENS' CONJECTURE

The Mobius function µ(n) is defined as follows

n = 1,
µ(n) = if n is divisible by a prime square,

if n is the product of k distinct primes.

We consider M(x), the first summatory function of µ(n),

M(x) ===
n<x -

M(x) describes the difference between the number of squarefree positive inte­
gers n < x with an even number of prime factors and those with an odd number
of prime factors.

Based on a table of M (x) for x = 1, ... , 10000 Mertens [11] conjectured that

IM(x)I < x, X > 1.

Later, based on more extensive numerical 'evidence', Von Sterneck [17] even
conjectured that

1
X > 200.

The Mobius function is related to the Riemann zeta function by

1
((s)

oo µ(n)
n s '

n=l

?R(s) > 1.

Boundedness of M(x)/ x implies the truth of the Riemann l1ypothesis. How­
ever, the converse does not hold.

For the history of the function M(x)/ x and the disproves of Von Ster­
neck's conjecture and later Mertens' conjecture-both first theor·etical and later
effective-we refer to [16]. A comprehensive bibliography may be found in the
paper by Odlyzko and Te Riele [13] in which they disprove Mertens' conjecture.

Although it is known that M(x)/x > 0 as x > oo (and even more than
this), the best known effective asymptotic upper bound on IM(x)I to date [4]
•
1S

1
X > 617973.

3 A VECTORIZED ALGORITHM FOR M(x)/ x
3.1 Eratosthenes' sieve
Eratosthenes indicated the following method of obtaining all the primes in the
range 2, ... , N: put all numbers between 2 and N into a 'sieve'; as long as
the sieve is not empty, select the sn1allest number rernaining in the sieve, and
strike out all multiples of this prime number. The complexity of both the

422

sieve initialization and the prime number selection is CJ(N). The complexity
of striking out all multiples of the prime numbers found and therewith the
complexity of Eratosthenes' sieve is

•

-rr(v'ii) N

i=l Pi
rv Nloglog

where 1r(x) denotes the number of prime numbers not exceeding x. Usually, one
only sieves the odd numbers. Moreover, if N becomes large one has to partition
the sieve interval. Even for N large, 1013 , say, log log N is fairly small. This
gives an almost linear complexity O(N). For the sake of completeness: the best
(sub)linear prime number sieve has complexity O(N/ loglogN), cf. [10, 15].

3.2 Sieving µ(n)
The following algorithm yields the Mobius function µ(n) for n == l, ... , N.

for n = 1 to N
µ(n) == 1

,---

for all p < N
for all n, p I n

µ(n) == -p · µ(n)
for all p < N

for all n, p2 I n
µ(n) == 0

for n = 1 to N
if lµ(n)I -:f. n then

µ(n) = -µ(n)
for n =Ito N

µ(n) == sign(µ(n))

This algorithm starts initializing a sieve array µ with the value l. Besides the
sieve array we also keep a list of all primes not exceeding N. Next, for all
prime numbers p not greater than N we 1nultiply µ(n) by -p for every n a
multiple of p. By 1nultiplying with -p we achieve two things: 1. we multiply
by p in order to see if we end up having handled all prime factors of n; 2. by
multiplying with -p instead of p, we keep track of the parity of the number of
different prime factors of n handled so far. For all prime numbers p not greater
than N we set µ(n) to O for every n a multiple of p 2 . After this step we
check whether Jµ(n)I == n holds. If lµ(n)I == n holds, n is squarefree and none
of its prime factors is greater than N. If jµ (n) I == n does not hold, we have
two possibilities: either µ(n) == 0, in which case n is not squarefree, or n is
squarefree and has exactly one prime divisor p > N. Anyhow, if lµ(n)I == n
does not hold, we just cha11ge the sign of µ(n), taking ca1·e of the parity for
this last prime factor, or a no-op if J-L(n) = 0. At this point we have three
possibilities: 1. µ(n) = 0, if n is not squarefree; 2. µ(n) < 0, if n is the product

423

'

of an odd number of distinct primes; 3. µ(n) > 0, if n is the product of an even
number of distinct primes. With the obvious definition of sign, the last loop in
the algorithm above completes the computation of the Mobius function µ(n)
for n = 1, ... , N. It is easy to see that the complexity for the above algorithm
is the same as for Eratosthenes' sieve: O(N log log N).

As we already mentioned for Eratosthenes' sieve, we have t,o partition the
sieve interval if N becomes large. The determination of whether a prime hits a
partition and, if so, the first index it hits, is a non-vectorizable process. In order
not to loose vector speed one should choose the partition size considerably (10-
100 times, say) larger than the number of sieve primes. In our computations
N equals 1013 , so the number of sieve primes becomes 1r(N) == 227,647. We
chose our partition size equal to 107 .

3.3 Small prime variation •

Since we want to compute all values of M(x) systematically, we can not halve
the amount of work by only sieving the odd numbers, as we can for Eratos­
thenes' sieve. For the same reason we can not apply a 'small prime variation'
as in MPQS [14]. However, it is possible to apply a different kind of small
prime variation: replace the initialization µ(n) == 1 by a 'block-initialization'.
Using the small primes 2, 3, 5, 7, 11, say, and also the small prime squares 4, 9,
we get a pattern-length of

2 · 3 · 5 · 7 · 11 · 2 · 3 = 13,860.

Sieving with only these few primes and prime squares requires

N
2

+
N

3
+

N
5

+

•

N
7

+
N
11 +

N
4

+
N
9

~ 1.6N

sieve updates. If we store the initial pattern of length 13,860 and do a periodic
block initialization of the sieve array with this pattern (instead of the total
initialization with 1), we get about 1.6N sieve updates, for these small primes
and prime powers, for free.

We did not tell the full story by stating that one can not manage sieving only
the odd numbers. As pointed out by Tijdeman [18] one may use the identity
µ(n) + µ(2n) == 0, for n odd, together with the identity µ(4n) = 0, to avoid
the computation of µ(n) for n even. However, for N large, so that we have to
partition the sieve array to get the job done, this becomes impractical because
one would have to store some N/4 intermediate µ(n)-values for n even.

3.4 Vectorizing the partial summation
Thus far we described a vectorized algorithm for the systematic computation
of the Mobius function. Eventually, however, we are interested in the extremes
of M(x)/ x, so that first of all we have to compute the partial sums

M(x) == X =I, .. . ,N.
n<x -

424

Phrasing this as an algorithn1 one might compute the partial sums as follows.

M(l) = µ(1)
for x = 2 to N

M(x) = µ(x) + M(x - 1)

The previous loop is a classical example of a non-vectorizable loop because of
its recursion on M(x - 1).

Assuming that the array M initially contains the values of µ (we do this
computation in-place anyhow), and partitioning the array in chunks of lengths,
1 < s < N we can compute the partial sums using the following algorithm.

for 11 = 2 to s
<

for x = y to N by s
M(x) = M(x) + M(x -1)

l= LN/sjs
for y == s + l to l by s

for x = y to y + s - 1
M(x) == M(x) + M(y - 1)

for x = l + 1 to N
M(x) == M(x) + M(l)

Here, the first loop nest solves IN/ s l independent partial summation problems.
The inner loop of the first loop nest performs the same operation simultaneously
on all chunks. Because of the increment s, this inner loop is not recursive,
therefore vectorizable. After executing the first loop nest, the original partial
summation problem is only solved for the first chunk M(x), x = l, ... , s. The
second loop nest takes care of the other chunks in turn by adding M(y - 1),
the end-point-value of the previous chunk, to all values in the current chunk.
Here, the inner loop is vectorizable, since trivially y - 1 < y, ... , y + s - I. After
executing the second loop nest, all chunks except for possibly the last one also
contain the correct values for the original partial summation problem. Finally,
the last loop handles the last chunk in case s does not evenly divide N.

Using this algorithm, also the partial summation is vectorizable albeit at the
price of doing twice as many additions but, at a perfor1nance gain of an order
of magnitude, because it now readily vectorizes. On a Cray C90 we measured
a speed-up factor of 5-9 depending on the values of N and s.

We still have not chosen the chunk size s. In order to perform both loop
nests at vector speed, s should be chosen such that the iteration counts of the
respective inner loops (being N /sand s) are not too small. Moreover, s, being
the increment of the first inner loop, should not be a multiple of the number of
memory banks. The latter would cause memory bank conflicts resulting in a
measured performance degradation by a factor 4 in CPU time on a Cray C90.
Finally, the choice of s also depends on other optimization techniques in the
actual implementation.

425

Had our prototype not been written using Fortran INTEGERs, we probably
would have opted for Cray's SCILIB (SCientific LIBrary) routir1e RECPS. Our
implementation and RECPS perform con1parably. In Section 5 we can not do
without the partial summation algorithm described above, since there is no
SCILIB routine with the same functionality for INTEGERs.

3. 5 Gathering the statistics
Having a completely vectorized algorithm for the systematic computation of
M(x) we are still not completely done. One not entirely minor point remains:
we want to study the local extren1es of M(x)/ _x. Clearly, we do not want
neither have to,-,compute x for all x. M(x)/ x can only reach a new extreme
value if M(x) does. Searching for new extremes can only be done at vector
speed if the number of extremes is small with respect to the number of elements
we are co11sidering. If in the interval we are investigating Mertens' conjecture

x < M(x) < x, 1 < x < N,

holds, it guarantees at most N local maxima and minima. On the other hand,
if Mertens' conjecture would not hold in the interval we are investigating, we
would find the smallest argument value x giving a counterexample for Merte11s'
conjecture.

We search M (x) for new extremes in either direction using the highly efficient
Cray SCILIB routines ISRCHFGT and ISRCHFL T.

We refrain from describing the actual bookkeeping process, since bookkeeping
of the extremes gets rather complicated by the sieve partitioning, our search for
extremes in two directions (positive/negative), and minimization of the printed
output.

3.6 Comparison to Neubauer's algorithm and Dress' version

Te Riele drew our attention to the work of Neubauer [12], who used a similar
algorithm for computing M(x), x = 1, ... , 108 • Neubauer also had to partition
his sieve interval. However, he used three sieve arrays. His algorithm [12, p. 2]
reads as follows: for n = 0, 1, ...

lOOOn < m < lOOO(n + 1)

Pflm ⇒ µ(m)=O

g(m) = _ logpi v(m) = 1

Neubauer builds up g(m) to check whether there is a prime factor p > N
and he counts the number of different prime factors in v(m). Neubauer does
not use multiplications, nor divisions. However, he 111ust take care of precision
because of the inherently inexact log Pi values.

426

Recently, Dress used a variant of Neubauer's algorithn1 using only two sieve
arrays (a andµ in [3, Algorithme 2]) and-at least in the description-a division
step.

Our algorithm only uses one sieve array, computing µ(n) in-place. Moreover,
on current vector computers a vector-multiplication is just as expensive as a
vector-addition. Because of the overhead involved in partitioning the sieve
interval, there is a certain trade-off between memory usage and CPU usage.
Using only one sieve array, and, of course, the unavoidable prime table, it is
possible to use the available memory as efficient as possible. Moreover, we have
added a small prime variation.

4 DIRICHLET'S DIVISOR PROBLEM

We consider D(x), the first summatory function of T(n),

D(x) =
n<x -

where T(n) denotes the number of divisors of n. Dirichlet [2] proved that

D(x) = xlogx + (2, - l)x + E(x),

where , is Euler's constant, and E(x) = 0(x). This may be considered
as a lattice point problem, counting the number of lattice points in the first
quadrant between the axes and the hyperbola qd == x, including those on the
hyperbola

D(x) = 1 == 1.
q,d

qdS,x

Compare FIGURE 1. An unsolved problem in analytic number theory is the
estimation of the order of the error term E (x). TABLE 1 shows the historical
development of Dirichlet's divisor problem. For a more complete table, further
refe1·ences, and much rnore about lattice point problen1s in ge11eral, we refer
to [5, 7].

5 A VECTORIZED ALGORITHM FOR DIRICHLET'S DIVISOR PROBLEM

Given the unique prime factorization of n

k

n=

we have the following formula for T(n)

k

i=l

427

'
'
'

'"· _,.,,, __ - ... -,.~----·-··-·-· ~-·-·····"· , ... ,, .. ·'"'"· --~ ---•- •0,1 •· "'"_... ·•···· -··•·-. , _ .. .

'

I I ,
l I

·j . . ' . ' ,, ' ' .. . ' ' . '' '
I
I I '. !·· ,., ' .. ·1· ·······

!
'

i

d

I I
0

I

q

FIGURE 1. Dirichlet's divisor problem

Using two sieve arrays instead of one, and exploiting the above mentioned
formula we can sieve r(n) similarly as µ(n). The following algorithm computes
the number of divisors function r(n) for n = l, ... , N.

for n = 1 to N
I(n) = 1
T(n) = 1

,---

for all p < N
for all n,p I n

I(n) = p · I(n)
T(n) = 2 · T(n)

for e = 2 to L log2 N J
for all p < e N

for all n, pe I n
I(n) = p · I(n)

T(n) =
for n = l to N

if I(n) =I- n then
r(n) = 2 · r(n)

e

We need two sieve arrays because keeping track of a parity as for µ(n) does not
suffice. In the I-array we multiply all prime factors e11countered during sieving.

428

TABLE 1. The order of the error term in D(x)

Dirichlet
Voronoi"
Van der Corput
Kolesnik
Iwaniec & Mozzocl1i [6]
Van de Lune and Wattel conjecture [9]
Hardy a.nd Landau

year
1849
1903
1922
1969
1988
1990
1915

E(x)
O(x172) ·

O(x113 log x)
O(x33/100)
O(x(I2/37)+c)
O(x1 ;22)

O(x 114 logx)

This way only a single prime factor p > N can remain which is taken care of
by the last loop nest. In the r-array we maintain the number of divisors using
the above mentioned forrr1ula: when sieving with a prime factor we multiply
r(n) with 2 (since e = 1); sieving with a prime square we divide the current
value of r(n) by 2 and multiply \Vith 3; when sieving with higher prime powers,
exponent e, say, we divide by e and multiply with e + 1.

Similarly as for the µ(n) we can use a small prime variation by creating
patterns for both the /-array and the r-array.

The partial summation, and gathering of the statistics can all be performed
analogous to the procedures for A-1 (x) / x.

For an actual in1plementation on the Cray C90 one should use an INTEGER
r-array, because of the very fast but inexact floating point division (resulting
e.g. in 3.0 /3.0 #- 1).

6 NUMERICAL RESULTS FOR M(x)/ x
We verified the results of Neubauer [12], Cohen & Dress [1], and Dress [3].
Furthermore, we established the bounds -0.513 < M(x)/ x < 0.571, valid for
200 < x < 1013 . See TABLE 2 for some selected values of M(x) and M(x)/ x
for x = 1, ... , 1013 .

The computation of Cohen and Dress [1] in 1979 up to 7.8 • 109 took a week
on a TI980B minicomputer. The computation of Dress [3] up to 1012 in 1992
took 4000 hours on three Sun SPARCstations 2.

Our results were all obtained using one processor. A test run up to 1010 of
our prototype implementation took 32 minutes on a Cray Y-MP. The same run
of our final implementation took 9 minutes on a Cray C90. The speed-up was
due to the faster machine and the improved implementation. The verification
of [3] (up to 1012) took some 17 hours on a Cray 090. Finally, the computation
up to 1013 took a little less than 200 hours on a Cray C90.

429

TABLE 2. M(x) and A1(x)/ x for some selecteda x < 1013

X

30,095,923
30,919,091
34,750,986
61,913,863
70,497,103
76,015,339
90,702,782
92,418,127

109,528,655.
110,103,729
141,244,329
152,353,222
179,545,614
179,919,749
216,794,087
360,718,458
455,297,339
456,877,618
514,440,542. ·
903,087,703

1,029,223,105
l,109~331,44 7
1,228,644,631
2,218,670,635
2,586,387,614
2,597,217,086·
3,061,169,989
3,314,385,678
3,724,183,273
3,773,166,681
5,439,294,226 ·
5,439,294,781
6,600,456,626
6,631,245,058
7,544,459,107
7,660, 6·84, 541
7,725,038,629b
7 766 842 813b.

' ' '

M(x)
M(x)

X

-1,448 -0.264
-2,573 -0.463

1,420 0.241 1

2,845 0.362
-2,574 -0.307
-3,448 -0.395

2,846 0.299
3,290 0.342

-3,449 -0.330
-4,610 -0.439

3,291 0.277
4,279 0.347

-4,611 -0.344
-6,226 -0~464

4,280 0.291
6,695 0.353

-6,227 -0.292
-8,565 · -0.401

6;696 0.295
10,246 0.341
-8,566 -0.267'

-15,335 -0.460
10,247 0.292
15,182 0.322 ·

-15,336 -0~302·
-17,334 -0.340 ·

15,183 0.274
21,777 0.378 ·

-17,335 -0.284
-25,071 • -0·.408

21,778 0~295 .
21,191 o·.295

-25,072 -0.309
-31;206. -0.383

21,792 0.251
38,317 0.438 ·
43,947 0.500 ·
50 286 . Q;.571'

' L------J

X

9,826,066,363
15,578,669,387
18,835,808,417
19,890,188,718
22,745,271,553
38,066,335,279
48,201,938,615
48,638,777,062
56,794,153,135

101,246,135,617
106,512,264,731
108,924,543,546
148,449,169,741
217,309,283,735
295,766,642,409
297,193,839,495
325,813,026;298
330,138,494,149 ·
330,486,258,6il0c
330,508,686,218c
400,005,203,086
661,066,575,037

1,246,597,697,.210 ·
1;440,355,022,306 ·
1,600,597,184,945
1,653,435,193,541
2,008,701,330,005
2,087,416,003,490
2,319,251,110,865
2,343,412,610,499
3,268;855,616,262
3,270,926,424,607
3, 754,810;,967,055.
4,098,484,·1s1,411
5,184,088,665,413
5,197,159,385,733
6·,202,507, 744,370
9, 784,334r467,058

M(x)

-31,207
-51,116

50,287
60,442

-51,117
-81,220

60,443
76,946

-81,221
-129,332

76,947
170,358 ·

-129,333
-190 936

'
170,359
207,478

-190~937
-271,317
-287 440

'
-294,816•

207,479 ·
331,302_

-294,817
-368,527

331,303 ·
546,666

-368,528
-625,681

546,667
594,442

-625,682
-635 558 ·

' 594,443
780,932 ·

-635,559. •
-689,688·

780,933
889,948·

M(x)

v1x
-0.315
-0.410

0.366
0.429

-0.339
-0.416

0.275
0.349

· 0.341
-0.406· ·

0.236
0~516·

-0.336
-0.410

0.313
0.381

-0.335
-0~472.
-o~soo .
-0.513 ·.

0~328 ·
0~407

-0.264.
-0.307

0.262
0-.425

-0~260 ·
-0.433

0.359
0·~888··

-0 .. 346.
-0.351

0•.307.
0.386':

-0.279.
-0.303

0·.314
0·.285 •

a A listed· M(x)-value guarantees the corresponding x to be the smallest argument ,value
for which M(x) assumes this value. Consecutive M(x)-column-.entries of the sa.me sign guar­
antees absence of new extremal M(x)-values· of the opposite sign in between. A f:uamed
M(x)/v'x value guarantees the corresponding x to be the smallest argun1ent value greater
than 200 for which M(x)/ .Jx assumes this value.

bThis verifies a result of Cohen and Dress [1}.
r:Tl1is verifies a rest1lt of Dress (3].

430

7 CONCLUDING REMARKS

We showed two vectorized algorithms: one for fast systematic computations on
Mertens' conjecture, and one for fast systematic computations on Dirichlet 's
divisor problem. In an update of this paper we will extend Section 6 with
numerical results for Dirichlet's divisor problem.

The algorithms we described are generalizable to arbitrary arithmetical func­
tions f : N > Z as long as we have a fairly simple relation between-1-f (peq) and
f(pe- 1q), where e,p, q EN, p prime, p f q. For example T(peq) = e ~ 1T(pe- 1q).
In particular, we have devised similar algorithms for Gaufl' lattice point prob­
lem and amicable numbers, to name just two [8].

ACKNOWLEDGEMENTS

This work was sponsored by the Stichting Nationale Computerfaciliteiten
(National Computing Facilities Foundation, NCF) for the use of supercom­
puter facilities, with financial support fro1n tl1e Nederlandse Organisatie
voor Wetenschappelijk Onderzoek (Netherlands Organization for Scientific Re­
search, NWO).

REFERENCES

1. H. Cohen. Arithmetique et informatique. Asterisque, 61:57-61, 1979 .
••

2. G.L. Dirichlet. Uber die Bestimmung der mittleren Werthe in der Zahlen-
theorie. Abhandlungen der Koniglich Preussischen Akademie der· Wis­
senschaften, pages 69-83, 1849.

3. F. Dress. Fonction sommatoire de la fonction de Mobius, 1. Majorations
experimentales. Experiment. Math., 2(2):89-98, 1993.

4. F. Dress and M. El Marraki. Fonction sommatoire de la fonction de Mobius,
2. Majorations asymptotiques elementaires. Experiment. Math., 2(2):99-
112, 1993.

5. F. Fricker. Einfiihrung in die Gitterpunktlehre. Number 73 in LMW /MA.
Birkhauser Verlag, 1982.

6. H. Iwaniec and C.J. Mozzochi. On the divisor and circle problerns. J. Num-
ber Theory, 29(1):60-93, 1988.

7. E. Kratzel. Lattice Points. Nurr1ber 22 in Mathematische Monographien.
VEB Deutscher Verlag der Wissenschaften, 1988.

8. W.M. Lioen and J. van de Lune. Vectorized algorithms for certain arith­
metical functions. Work in progress, 1995.

9. J. van de Lune and E. Wattel. Systematic computations on Dirichlet's
divisor problem. To appear.

10. H.G. Mairson. Some new upper bounds on the generation of pri1ne numbers.
Comm. ACM, 20(9):664-669, September 1977 .

••
11. F. Mertens. Uber eine zahlentheoretische Function. Sitzungsber. Akad.

Wiss. Wien, 106(IIa):761-830, 1897.
12. G. Neubauer. Eine empirische Untersuchung zur Mertenssche11 Funktion.

Numer. Math., 5:1-13, 1963.

431

13. A.M. Odlyzko and H.J .J. te Riele. Disproof of the Mertens conjecture.
J. Reine Angew. Math., 357:138-160, 1985.

14. C. Pomerance, J.W. Smith, and R. Toler. A pipeline architecture for fac­
toring large integers with the quadratic sieve algorithm. SIAM J. Comput.,
17(2):387-403, April 1988.

15. P. Pritchard. Linear prime-number sieves: A family tree. Sci. Comput.
Programming, 9:17-35, 1987.

16. H.J.J. te Riele. On the history of the function M(x)/ x since Stieltjes.
In G. van Dijk, editor, Thomas Jan Stieltjes - Collected Papers, volume 1,
pages 69-79. · Springer-Verlag, 1993.

17. R.D. von Sterneck. Neue empirische Daten iiber die zahlentheoretische
Funktion o-(n). In E.W. Hobson and A.E·.H. Love, editors, Proc. of the
fifth International Congress of Mathematicians (Cambridge·, 22-28 August
1912), volume 1, pages 341-343. Cambridge, 1913.

18. R. Tijdemar1. Private communication, April 2, 1993.

432

