Adaptive Spline-Wavelet Image Encoding and Real-Time
Synthesis on a VLSI Difference Engine for Image
Generation

To Cor Baayen, at the occasion of his retirement
A.A M. Kuijk, P.C. Marais and E.H. Blake

The low level components of a new raster graphics architecture developed at
the CWI have proven to have novel uses in image reconstruction. The display
hardware can be regarded as a very fast (11lns per operation) Difference
Engine that works in two-dimensions. The speed is partly achieved by the
use of custom VLS| components for the most primitive operations and this
permits the video rate reconstruction of images and other signals compressed
by encoding them on various polynomial bases. A wavelet-based image-
encoding 1s described which, when used in conjunction with the Difference
Engine allows us to reconstruct an image in real-time without the need
to set each pixel explicitly. The image is compressed using a quadratic
spline-wavelet transform; when reconstructing, an image-adaptive instruction
generator attempts to produce the minimal instruction stream to give a good
reproduction. The wavelet coefficients are used to decide which regions of
the detail images should be retained in the multi-resolution analysis (MRA).
A decision is made for each scanline as to whether it is more economical,
in terms of rendering time, to use the ‘truncated MRA' or to set the pixels
directly. The above approach provides a significant gain over standard image
reconstruction /rendering schemes.

1 INTRODUCTION

A radical reappraisal of the three-dimensional (3-D) interactive raster graphics
pipeline has resulted in an experimental architecture for a graphics workstation
which is currently being evaluated at the CWI. Some of the novel uses of parts
of the hardware were not foreseen when the research project was initiated.
Principal features of the design for the new raster graphics architecture are:

1. Emphasis on real-time interactive shaded 3-D graphics.

2. Object space methods rather than image space methods are used where
possible.

3. Avoids the use of a frame buffer.

4. Uses custom VLSI only at the lowest, most primitive, levels where com-
mercial products are unlikely to suffice in the near term.
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It was these design decisions that lead to a number of interesting consequences
that have made parts of the architecture eminently suited to a a far wider range
of problems in computer graphics and image processing. The initial top-down
design produced an architecture for raster graphics (only). The bottom-up de-
sign that followed concentrated on extracting the lowest common denominator
of primitive operations for synthesizing pixels — a language for manipulating
related pixels. This vocabulary can be used for expressing other facts about
images. For example, the custom VLSI development that was a major part
of the project produced what is essentially a very fast Difference Engine (to
borrow a term from the 19th century history of computation). This engine can
compute forward differences in parallel over the whole width of a typical image,
taking about 11ns per operation (90 Mhz clock) independently of the length
of the forward difference spans. It was recognized that this feature would be
usetul for image reconstruction as well.

Studies have shown that for image reconstruction the wavelet transform [3]
offers a better compression/fidelity tradeoff than the Discrete Cosine Trans-
form (DCT)[4]. The complexity of the blocked DCT is of the same order
as that of an (unblocked) fast wavelet transform — consequently, blocking is
not required and blocking artifacts are no longer a problem. Furthermore,
the multi-resolution structure of the transform allows for resolution-dependent
coding techniques.

The ‘standard’ approach to image synthesis, after such transform coding,
is to perform an inverse transform, thus producing the data required for each
pixel. However, by requiring that our image be expressible on a suitably de-
fined (quadratic) spline basis, and using the properties of the Difference Engine,
it is possible to regenerate the image, progressively, if this is desired, from a
subset of the full MRA, by examining the transform coeflicients which under-
lie the analysis. This synthesis procedure allows one to reduce the number

of instructions required to render an image, when compared with the direct
approach.

2 THueE WAVELET TRANSFORM
A wavelet, ¥(z,y), is an L?(R?) function which satisfies

/f U(z,y)dzdy = 0 (1)

This condition ensures that the wavelet is localized in both time and frequency
and exhibits a measure of oscillation — hence the name. The discrete (dyadic)
wavelet transform, (WgI)(j;1,1) of an L*(R?) function, I(x,y), with respect to
the wavelet W is defined as

where (,) denotes the L? inner product and ¥, ;(z,y) = 27V (2z — 5, 2y — 1),

For non-orthogonal wavelets, there is a corresponding dual wavelet, ¥, which
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satisfies the relationship

(‘I’k;i,pa {I}l;qu> — ‘5k15ij523<1* (3)

It can be shown that the functions {¥.;;; j,k,] € Z} span the space L*(R?)

3]. Hence, any function, I(z,y), in this space can be written as a linear
combination of such scaled and translated wavelets:

where
gj(z,y) = Zdj;iz‘l’j;i,z(ilf,y), Jj € Z. (5)
2,0

Because of the bi-orthogonality relation, Equation (3), one may write d;,;; =
(Ir: q’j;i,l)a i:jvl € 4.

3 MULTI-RESOLUTION ANALYSIS

The concept of a Multi- Resolution Analysis (MRA) is already familiar to those
who have dealt with pyramidal image decompositions; it serves to formalize
such a decomposition. Firstly, one must define the term “resolution”. The in-
tuitive interpretation, viz., that it serves to quantify the amount of permissable
variation in a region, is formalized. Hence, a high resolution image has a large
amount of detail in a region, whereas a low resolution image is much smoother
over this same region. One may further quantify this concept with a statement
such as: “a kth resolution image contains & x k samples per unit square”. The
idea here is that we can capture more detail if we are able to sample at a higher
rate.

To develop the theory of such an analysis, we first consider the case of one
dimensional signals.

Our signal, f(z), must be an elements of the space L*(R), that is, it must
contain finite energy. We seek a decomposition of this signal which will re-
veal its structure on different ‘resolution’ levels. Such an analysis can provide
invaluable information about the relative importance of variations in the signal.

Each of these multi-resolution approxrimations resides in a space which con-
tains all possible approximations at that resolution of every L?(R) function.
These spaces are denoted Vj; the parameter j indicates the resolution level:
the “resolution” of the jth level is given by r» = 27. Thus, level 0 has r = 1.
By convention, this is the input level.

Just as the wavelet spaces’ W, are spanned by the scaled translates of a
single kernel function, v, we seek a single function, ¢, the so-called scaling
function, which will span the spaces V; in the same way. If this i1s the case,
then we may define a Multi-Resolution Analysis of L*(R). Since we desire that
this analysis be complete, the MRA must encode the detail that is sacrificed

LW, = closp2span{¢jk : k € Z.}: the operation of CLOSure essentially adds all the limit
points to a space, thus ‘closing’ 1t up.
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when we go from a higher to a lower resolution. This detail is stored in the

complementary wavelet spaces, W;. We have the following relationship for any
resolution level 7

Vier = V;+W; (6)

This states that the higher resolution approximation may be resynthesized from
the next lower approximation by adding the detail that we sacrificed to achieve
that lower approximation. One can deduce the following properties:

Voo VgV Ce g

. closy,2 (UJ Vj) :LQ(R)Q

- njVjﬁ{O}?

. fx) eV, &= f(2z) € Viy1, J€ Z.

Ut W W N -

For a more detailed discussion and alternative formulation of these properties,
see [1].

The space W, is the the orthogonal complement of the space V; in V4.
The spaces W; are spanned by v, ;(z) = 2//2¢(2/z — i), where 9(z) is a 1-D
wavelet, satisfying the 1-D analogue of Equation (1). The spaces V; are spanned
by scaled and translated versions of a so-called scaling function, ¢(z). The ap-
proximation spaces V; contains the jth resolution approximation, fi(x), of the
input function, f(z), while the detail spaces, W}, contain the information lost
when going from a (j+ 1)th level approximation to the jth level approximation.

A common method used to generate a 2-D MRA, is to take the tensor product
of the corresponding 1-D multi-resolution analysis with itself {3]. This provides
one with three wavelets, \Il[p](::c,y), p = 1,2,3 and a scaling function, ®(z,y),
all of which are separable 2-D functions:

vi(z,y) = é(x)v(y) (7)
WRl(z,y) = (z)o(y) (8)
WRl(z,y) = o(z)d(y) (9)

®(z,y) = o¢(x)o(y) (10)

These wavelets are essentially orientated, resolution-dependent band-pass fil-
ters: the scaling function may be viewed as a low-pass filter. The detail spaces,

spanned by each wavelet type, thus contain difference information with a spe-
cific orientation only: vertical, horizontal and diagonal.

The multi-resolution pyramid goes off to infinity in both directions. How-
ever, realisable signals are band-limited. Thus, we truncate the representation,
discarding all higher level information, by ‘projecting’ our input function into
a space which has sufficient detail to represent the sampled signal — Vj by
convention. Similarly, since signals do not always contain arbitrarily low fre-
quencies, it may be unnecessary to decompose one’s signal beyond a certain
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level. Thus, one has a Jth level multi-resolution decomposition

I(SE: y) IO(:D? y)
g_1(z,y)+--+g-gylz,y) +1_;(z,y)

—J 3
Z sz[z?]z;ij‘llgi‘],j(xu y) +

ZC--J;ij@-J;z',j(iF:y)- (11)

1,7

It

I

The wavelet transform is also truncated; the Jth level discrete wavelet trans-
form provides the set of coefficients

{{d['P}l;z’j}’ {C_J;ij}, i,j ~ Z,l == ---*1, —-—2, cer J; D = 1,2,3} (12)

where the detail coefficients are obtained as follows
dip)y., ;= (U5 5, 1), 4,5 € Z. (13)

Formally, the approximation coefficients are given by

ags

Cl:i,7 — <q>l;i,j7[>a Z}j e Z (14)

where ®(z, y) is the dual scaling function. The approximation coefficients, ¢, ;,
encode the present in the lower levels of the multi-resolution pyramid.

Semi-Orthogonal Cardinal Spline MRA

The space of cardinal splines of order m, S,,, contains all those functions
expressible as a weighted sum of mth order cardinal B-splines, N,,(x):

f(z) =) cxNm(z —k), fE Sm. (15)
The values of N,,(z) may be found using the following identity:
x m — I
Np(z) = — 1Nm__1(:13) + —— 1Nm......1(ac —1). (16)
1
Np(z) = (Npp—1 * Ny)(z) = / Np—1(x — t)dt, m > 2, (17)
0

where
1 if € |0,1);
0 otherwise.

Ni(2) = xpo1) (&) = { (18)

The cardinal B-splines are thus generated by repeatedly convolving the unit
box with itself. Figure 1 shows some of these functions.

Cardinal B-splines satisfy the following identity, which enables one to com-
pute their values without resorting to integral formulations:
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FIGURE 1. Spline scaling functions. The cardinal spline scaling functions are generated
by repeatedly convolving N1(z) with itself.

The spline-based MRA introduced in {5, 6] has N,,(x) as its scaling function.

The corresponding mth order spline wavelet, v, (x), has support on the in-
terval [0, 2m — 1]. This wavelet is semi-orthogonal, meaning that it is orthogonal
to scaled versions of itself, but not to translates on the same resolution level.
These functions satisfy the following two-scale relationships

Tre

N.m(ZL') — ZpkNm(2r '"""" k), (19)
k=0
3m—2

Um(z) = Z Gk Non (22 — k) (20)
k=0

The values of these sequences, for the quadratic case, can be found in [5].

4 CALCULATION OF THE WAVELET COEFFICIENTS

Before one can use the MR A, a means must be found to compute the coeflicients
of the wavelet transform. To this end we use the filtering scheme proposed in
[7]. In the context of this work, this gives us the following set of separable
convolutional equations for computing the detail and approximation coefficients
(from the approximation coefficients of the previous level):

Cy—1:kl = E E Qo —2kAn ~21Cj:mn (21)

Il

!
d[l]jmlgk‘l — E E a‘??'z—-ka'n.wﬂcj;?'r‘z.?z; (22)
(g

TI
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Quadratic spline wavelet -—

FIGURE 2. A quadratic spline wavelet.

d[z]jml;kl — E E b'rnm—?kanm‘zlcj;mn (23)

Tri n

d[3]jm1;kz — Z Z b?ﬂ-—-—?kbn--—-QZCj;mn- (24)

To reconstruct the approximation coefficients (from those lower down in the
analysis), one has the following reconstruction relation:

Cjskm = Zz Zt Pk—21Pm—2tCj—1:1t T
D12 pk-—-QlQm-—-—Qtd[l]j_l;“ +
D12t Qk--2lp7n-—-2td[2]j_1;lt -
DI ka:?.ZQmWQtd[B]j_l;“- (25)

The {a;} and {bx} sequences can be found in [8].

Calculation of {co.i ;}

In order that we can use the filtering scheme above, one must first generate
the initial set of approximation coefficients, {cg.;; } — which are the basis coet-
ficients of the B-spline representation of the input image. If one just wants to
achieve compression, the image samples may be used as the initial coeflicient
values. If, however, one wishes to evaluate the MRA, then these values must
be properly computed.

We use quasi-interpolation [9] to obtain these coeflicients. Quasi-interpolation
is a local interpolation scheme, in which the amount of data used to determine
the approximating quasi-interpolant can be limited. In this work a 3x3 convo-
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lution mask (kK = 1, below) was used to determine the required coefficients:
cojij = (Med)(4,4), 1,5 € Z, I € L*(R®). (26)
This sequence i1s computed as

{ MDD} =0 —-—m+---+ ()" m*---xm)xI°(3),i € Z?, (27)

k times

where 6 = 6; j.0o =11 1,] =0, and 0 otherwise and

- J 9(0,0)—=1 for i,j =0;
Mij = { (4, ) for i,j % 0. (28)
Because the B-splines must be centred [9], ®(z,y) = Ns(z + 3/2)N3(y + 3/2),
and the coefficient values actually represent the shifted image Io(x + 3/2,y +

3/2). It is important to remember this shift when evaluating image functions
in the MRA.

5 (QUANTIZATION

We used vector quantization to compress the wavelet encoded image. The ap-
proach of |10| was used: the various wavelet sub-bands were sub-divided into
2x2 or 4x4 blocks (as determined by the desired compression ratio) and these
blocks were quantized with the previously trained codebooks to yield 8-bit
indices (thus permitting 256 reproduction levels per sub-band). The LBG al-
gorithm with a minimum mean-squared error measure was used [11]. The code-
book was trained with a collection of disparate images, so as not to introduce
any kind of image bias; the test images were not in the training sequence. As
is done elsewhere, for example {10, 12|, the entropy of the coeflicient sequence

1s used as a measure of compression i.e., we assume that the quantization is
followed by a perfect entropy coding.

6 THE DIFFERENCE ENGINE

The Difference Engine is the final component in the rendering pipeline of a
new display architecture developed at CWI [13]|. This display processor has
the ability to interpolate an arbitrary length polynomial span with a single
instruction, in time proportional to the degree of the polynomial. The forward
difference interpolatory logic is implemented as a systolic array — each new
cycle produces the complete set of difference values for the specified span. An
nth degree polynomial span may be specified by a starting point, a set of n
forward differences and the width of the span. The pth order forward difterence
of I(x) is

(ApI)(z) = (Ap—1I)(z + 1) = (Ap-1])(z), (29)

where

(Bol)(z) = I{z). (30)
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Once the required differences are computed, using the simple recursive scheme
presented above, the polynomial values at uniformly spaced intervals (Z, in this
case) may be obtained by using the following simple update rule

(A D)(z + 1)

|

(ApD)(z) + (Bps1l)(z), p=0,---,n— 1. (31)

for consecutive values of x. The 11ns cycle time of this processor means that one
can perform these calculations with sufficient speed to ensure pixel production
at the display refresh rate.

'T'he proposed architecture does not employ a framebuffer. Instead, the image
1s represented as a list of primitives and the objects selected from this list are
converted into Difterence Engine instructions by customized hardware, at a
sufficient rate to provide real-time video display. The complexity of the image

determines the size of the list and consequently the number of instructions
which are produced.

There are two 1important points which should be noted:

e the Difference Engine can interpolate arbitrary order polynomials, in time

proportional to the degree (currently n + 2 cycles for a polynomial of
degree n — 1).

e the Difterence Engine provides a scanline accumulator.

T'he Difference Engine can interpolate polynomial spans accurately up to a
length dependent on the degree of the polynomial — currently about 4096
pixels for a quadratic and 512 pixels for a cubic. This limit poses no problems.

since the image data can be segmented into several spans if the need arises,
which 1s unlikely if one uses the quadratic scheme.

The existence of an intensity accumulator is essential if one wishes to use the
Difference Engine for multi-resolution image synthesis, since one then needs to
accumulate several levels of detail for each scanline.

7 MULTI-RESOLUTION IMAGE SYNTHESIS

T'he various images 1n the quadratic cardinal spline MRA satisfy certain very
stringent conditions:

e They are elements of C'1(R?)

e T'he approximation images consist of quadratic patches, with support on

27k, 27 (k +1)] % [27k, 2/ (k+1)], k € Z

e The detail images also have this property, but over squares half the size
on the resolution level ;3.

These conditions are a consequence of the tensor product used to generate
the MRA and the properties possessed by the prototype 1-D MRA. Thus, the
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image data along a scanline (on each level) is composed of adjacent quadratic
segments of the same length. It is a simple matter to compute the differences
for any such polynomial (using the shifted image functions), and to compose the
Difference Engine instructions which will interpolate the polynomial scanline
data.

If used without care, multi-resolution synthesis can be far more expensive
(in terms of Difference Engine instruction cycles) than just setting each pixel
directly, since many instructions must be issued to accumulate all the detail
information for each scanline. If however, only ‘busy’ regions of the detail
images are added back to the approximation image, this ‘truncated’ MRA can
provide significant gains over direct reconstruction (i.e., IWT and setting each
pixel directly). Wavelet compression should maintain only the most important
coefficients viz. those which will ensure good reconstruction fidelity. These
retained coefficients can be used as an indication of ‘busy’ image areas, and
the bases which they weight can be used to build the truncated MRA. We
determine the extents of these bases which intersect the current scanline — this
information is recorded and used to determine whether it is more economical
(in terms of Difference Engine instruction cycles required) to simply set the
pixels in the current scanline or to render the truncated MRA. If the latter
option is selected, the function evaluations are done and the tiers of detail are
accumulated on top of the approximation signal. If it is less economical (as
will be the case in highly detailed regions), the scanline pixels are set directly.

Due to the continuity constraints, and the architecture of the chip, we need
only issue one quadratic interpolation instruction to interpolate the entire ap-
proximation scanline: only the second order differences need be changed as we
cross each new span boundary. These can be computed and set before the in-
terpolation instruction is issued, by using a low cost set-difference istruction.
A similar strategy can be used for detail scanline segments consisting of several
adjacent spans.

To improve performance, neighbouring quadratic spans are merged if their
differences are the same; this reduces the number of instructions required to
interpolate a multi-span segment. However, since this kind of redundancy is
only likely to occur in the approximation image, merging is not applied to
detail scanline segments. Furthermore, for reasons of efficiency, the merging
procedure is not applied prior to deciding what kind of synthesis method to

employ. Doing so would require additional calculations which would be wasted
if direct synthesis were used.

8 RESULTS
8.1 Wavelet Compression

It was apparent that the fidelity of the reconstructed images left something to
be desired, even at modest bit-rates (around 1 bpp) — Figure 4. There are
2 number of reasons for this lack of performance, in particular, the use of a
MMSE distortion metric, which takes no account of edge information and does
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FIGURE 4. Typical VQ compression result — 0.82 bpp.

not guarantee simultaneous minimization of reconstruction error and transform
domain quantization error (since Parseval’s identity does not hold in a semi-
orthogonal framework). Simple thresholding tests revealed that MMSE V(Q was
not exploiting the redundancy provided by the wavelet transtorm effectively.

.2 Image Synthesis

The results given below are based on a three level wavelet decomposition in
which, rather than applying VQ, the wavelet coefficients were thresholded and
those retained were used in the MR synthesis calculations. This was done to
decouple the compression implementation from the synthesis algorithms, since
the former retained too many (unrepresentative) coefficients to illustrate the
concepts referred to earlier. The thresholding used is adapted to orientation
and resolution level and forms part of the new compression scheme we are
investigating. To enable us to quantify the gains produced by MR synthesis, we
introduce the Gain Factor (GF) — the ratio of the instruction cycles required

to render the image directly to the number of cycles required if adaptation is
used. The GF 1s always > 1.0.



Table 1 summarizes the results of this preliminary work. Observe that two
sets of data are given: the first uses the current cycle costs for the relevant
instruction® while the second uses the cycle costs which will be used in subse-
quent implementations of the Difterence Engine.

Cycles || Lenna | House | Sugarbowl |

Setddi 2 o | 4 | 62

Eval0 || 1 100 | 9 | 33
| Evall 3 | o [ o5 | 02 |
| Eval3 5 | 0 | 05 4.8 |
| GF - [ 123 | 163 | 343 |
| MR || - No | Yes | Yes |
| Cycles |} Lenna | House | Sugarbowl |
[ Setddi || 1 14 | 76 | 657 |
| Eval0 | 7975 | 87.0 | 139 |
| Evall 1 || 1.0 47 | 147 |
Eval3 || 3 [ 01 | 0.7 57 |
I GF || - || 122 | 1. 3.86 |
MR || - || Yes T Yes |

TABLE 1. Synthesis Results. The first four rows of each table give the percentages
each of the instruction types contributed to the final rendering cost. The final row indicates
whether multi-resolution synthesis was invoked or not. The same threshold was employed

with all images. The second table gives the figures when the proposed lower cost instructions
are used.

There are several things which were evident from our experiments. Firstly,
the smoothness of an image is directly related to the gains obtainable when
using MR synthesis: the more texture the image possess, the less likely MR
synthesis is to yield any benefit, unless the texture is highly localised. In the
latter case, the non-textured scanlines can still be rendered more cheaply. Sec-
ondly, image detail is expensive to render, because a) it is present on multiple
levels of the MRA and b) the quadratic spans are smaller and consequently
more instructions are required to interpolate a scanline. This is the motivation
for truncating the MRA.

Images which are themselves composed of splines (such as the Phong shaded
images in [13], of which ‘Sugarbowl’ is an example) will experience greater
gains than other (smooth) images. However, the extent of this reduction will
depend on the size of the spline patches of which the image is composed and
for most images these are fairly small. The Difference Engine is ideally suited

deeniiimpn i L VR —

2The interpolation instructions are of the form ‘evaln’, where n is the order of the poly-
nomial to be interpolated; ‘evalQ’ switches off accumulation of subsequent pixel values at
the given location, otherwise acting like an ‘evall’ — since it is cheaper, it is used for direct
reconstruction. The ‘setddi’ instruction can be used to set the second difference at a specified

point; subsequent interpolations, passing through this point, will uses this value rather than
the one they had been propagating.
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to rendering such images.

The images ‘Sugarbowl’ and ‘House’ were both able to derive varying degrees
of benefit from MR synthesis, since there were regions in which the intensity
data varied slowly. ‘Lenna’ contains a lot of texture; but with lower instruction
costs, it becomes economical to use the MR A on some scanlines. In highly uni-
form or smooth images, span merging on the approximation level can become
significant, boosting rendering efficiency substantially. An extreme example of
this would be an object on a uniform background; the background would only
be present in the approximation image and could be generated very quickly
and efficiently.

For highly textured images, when we are forced to chose direct reconstruc-
tion, we can still gain by merging neighbouring pixels; this saves one having
to set each pixel individually. Since pixels are usually correlated, even the
most chaotic of images may benefit (albeit marginally) from such merging. In
the examples given above, Lenna experienced a GF of 1.23 trom such pixel
merging: all neighbouring pixels along a scanline which are within one gray
scale of the first pixel considered are approximated by this initial value, and
a zero-degree polynomial (eval0) of the appropriate length is emitted. When
using MR synthesis, smooth images can yield very large gains (a GF of > 3
for non-trivial images like Sugarbowl). The nature of the smoothness plays an
important role in determining the magnitude of these gains i.e., is the 1mage
actually a spline, or just smoothish? True spline images can be approximated
with fewer resolution levels and coeflicients.

Although not explicitly indicated in the tables above, the level of the decom-
position has a very definite affect on the rendering gains one can achieve. It
the number of levels is too low, then one gains nothing in rendering time, since
short pixel spans (less than the order of the polynomial) must be set directly:.
If, on the other hand, the number of levels is too high, then too much infor-
mation must be accumulated from the detail tiers and the rendering efficiency
drops. A three level decomposition appears to be optimal.

The Difterence Engine is able to produce low resolution approximation im-
ages very efficiently, since the spline patches are then quite large (the 3rd level
approximation of Lenna can be rendered in a quarter of the time required to
render the full image, using the old instruction costs). Progressive transmission

1s possible if the receiver is equipped with a screen buffer in which incoming
information can be accumulated.

9 ConNcLusioN & FuTure WORK

Although the implementation of the quantization algorithm was inadequate,
the compression potential of the spline WT can be exploited by a better algo-
rithm. Smooth images can be rendered more rapidly using MR synthesis than
by direct reconstruction. Even heavily textured images can be rendered more
efficiently if zero-degree pixel merging is applied to exploit pixel correlation.
A better quantization system is currently under development. Work can be
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done to improve the usability of the Difference Engine w.r.t. MR synthesis
— the Difference Engine was not specifically designed to render this kind of
structure. One of the modifications that can be made, is the addition of a
screen-wide accumulator which the Difference Engine can access to enable ef-
ficient rendering of progressively transmitted images. Work can also be done
to improve the simple efficiency measures used — the emphasis here was on
rendering performance, which assumes that the MR data can be produced at
an adequate rate. All the required information can be computed using paral-
lelised FFT hardware — so on the face of it, this assumption is a reasonable
one. Nonetheless, one may desire a different measure of efficiency.
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