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The low level components of a new raster graphics architecture developed at 
the CWI have proven to have novel uses in image reconstruction. The display 
hardware can be regarded as a very fast (llns per operation) Difference 
Engine that works in two-dimensions. The speed is partly achieved by the 
use of custom VLSI components for the most primitive operations and this 
permits the video rate reconstruction of images and other signals compressed 
by encoding them on various polynomial bases. A wavelet-based image­
encoding is described which, when used in conjunction with the Difference 
Engine allows us to reconstruct an image in real-time without the need 
to set each pixel explicitly. The image is compressed using a quadratic 
spline-wavelet transform; when reconstructing, an image-adaptive instruction 
generator attempts to produce the minimal instruction stream to give a good 
reproduction. The wavelet coefficients are used to decide which regions of 
the detail images should be retained in the multi-resolution analysis (MRA). 
A decision is made for each scanline as to whether it is more economical, 
in terms of rendering time, to use the •truncated MRA' or to set the pixels 
directly. The above approach provides a significant gain over standard image 
reconstruction/rendering schemes. 

1 INTRODUCTION 

A radical reappraisal of the three-dimensional (3-D) interactive raster graphics 
pipeline has resulted in an experimental architecture for a graphics workstation 
which is currently being evaluated at the CWI. Some of the novel uses of parts 
of the hardware were not foreseen when the research project was initiated. 

Principal features of the design for the new raster graphics architecture are: 

1. Emphasis on real-time interactive shaded 3-D graphics. 
2. Object space methods rather than image space methods are used where 

possible. 
3. A voids the use of a frame buffer. 
4. Uses custom VLSI only at the lowest, most primitive, levels where com­

mercial products are unlikely to suffice in the near term. 
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It was these design decisions that lead to a nurnbe1· of interesting consequences 
that have made parts of tl1e architecture en1ir1ently s11ited to a a far wider range 
of problems in con1puter graphics and in1age processing. The initial top-down 
design produced an architecture for raster grapl1ics (only). The bottom-up de­
sign that followed concentrated on extracti11g the lowest commor1 denominator 
of pri1nitive operations for synthesizir1g pixels -······ a language for manipulating 
related pixels. This vocabulary can be used for expressing other facts about 
images. For example, the custo111 VLSI development that was a 111ajor part 
of the project produced what is esser1tially a very fast Difference Engine ( to 
borrow a tern1 from the 19th century history of co1nputatio11). Tl1is engine can 
compute forward differences in parallel over tl1e whole width of a typical image, 
taking about llns per operatio11 (90 Mhz clock) indeper1de11tly of the length 
of the forward difference spans. It was recognized tl1at this feature would be 
useful for image reconstruction as well. 

Studies have shown that for i1nage reconstruct,io11 tl1e wavelet transform [3] 
offers a better compression/fidelity tradeoff tl1an the Discrete Cosine Trans­
form (DCT)[4]. The complexit,y of the blocked DCT is of the sarr1e order 
as that of an (unblocked) fast wavelet transforn1 - cor1sequently, blocking is 
not required and blocking artifacts are no longer a problerr1. Furthermore, 
the multi-resolution structure of the transforn~ allows for resolution-dependent 
coding techniques. 

The 'standard' approach to image synthesis, after sucl1 transforrr1 coding, 
is to perforn1 an inverse transform, thus producing the data required for each 
pixel. However, by requiring that our i111age be expressible on a suitably de­
fined (quadratic) spline basis, arid 11sing the properties of tl1e Difference Engine, 
it is possible to regenerate tl1e image, progressively, if this is desired, fron1 a 
subset of the full MRA, by exa111ining the transform coefficients which under­
lie the analysis. This syr1thesis procedure allows one to reduce the number 
of instructions required to render an i1nage, when compared with the direct 
approach. 

2 THE WAVELET TRANSFORM 

A wavelet, \Jl(x,y), is an L2 (lR.2 ) function which satisfies 

\J!(x,y)dxdy = 0 (1) 

This condition ensures that the wavelet is localized i11 both time and frequency 
and exhibits a measure of oscillation - hence the name. The discrete {dyadic) 
wavelet transform, (Wwl)(j; i, l) of an L2 (1R2 ) function, I(x, y), with respect to 
the wavelet \JI is defined as 

(Wwl)(j; i, l) == <wj;i,l, I), i,j, l E Z (2) 

where (,) denotes the L2 inner product and Wj;·i,l(x, y) = 2J'lf(2x - i, 2y - l). 
For non-orthogonal wavelets, tl1ere is a correspo11ding dual wavelet, 
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satisfies the relationship 

-
(Wk;i,p, Wt;j,q) == {;klDij8pq· (3) 

It can be shown that the functions { w j ;i,l; j, k, l E Z} span the space L 2 (R.2 ) 

[3]. Hence, any function, I(x, y), in this space can be written as a linear 
combination of such scaled and translated wavelets: 

J ( X, Y) == · · · + g _ 1 ( X, Y) + go ( X, Y) + 91 ( X, Y) + · · · (4) 

where 
9J(x, y) = (5) 

i,l 

Because of the bi-orthogonality relation, Equation (3), one may write dj;il -
(I, Wj;i,l), i,j, l E z. 

3 MULTI-RESOLUTION ANALYSIS 

The concept of a Multi-Resolution Analysis (MRA) is already fan1iliar to those 
who have dealt with pyramidal image decompositions; it serves to forn1alize 
such a decomposition. Firstly, one must define the term ''resolutior1''. The in­
tuitive ir1terpretation, viz., that it serves to quantify the amount of permissable 
variation in a region, is formalized. Hence, a high resolution image has a large 
amount of detail in a region, whereas a low resolution in1age is much smoother 
over this sa1ne region. One may further quantify this concept with a staten1ent 
such as: ''a kth resolution image contains k x k samples per ur1it square''. The 
idea here is that we can capture more detail if we are able to sample at a higher 
rate. 

To develop the theory of such an analysis, we fi1·st consider the case of one 
dimensional signals. 

Our signal, f ( x), must be an elernents of the space L2 (JR.), that is, it must 
contain finite energy. We seek a decomposition of this signal which will re­
veal its structure on different 'resolution' levels. Such an analysis can provide 
invaluable information about the relative importa11ce of variations in the signal. 

Each of these multi-resolution approximations resides in a space which con­
tains all possible approximations at that resolution of every £ 2 (JR.) function. 
These spaces are denoted \0; the parameter j indicates the resolution level: 

• 

the ''resolution'' of the jth level is given by r = 21 . Thus, level O has r = l. 
By convention, this is the input level. 

Just as the wavelet spaces1 Wj are spanned by the scaled translates of a 
single kernel function, 1jJ, we seek a single functior1, </J, the so-called scaling 
function, which will span the spaces ½ in the same way. If this is the case, 
then we may define a Multi-Resolution Analysis of L 2 (~)- Since we desire that 
this a11alysis be complete, the MRA must encode the detail that is sacrificed 

1 Wj = closL2 span { 'lf'jk : k E Z}; the operation of CLOSure essentially adds all the limit 
points to a space, thus 'closing' it up. 

407 



when we go fron1 a higher to a lower resolution. This detail is stored in the 
con1plementary wavelet spaces, Wj. We have the following relationship for any 
resolution level j 

(6) 

This states that the higher resolution approximation may be resynthesized from 
the next lower approximation by addi11g the detail that we sacrificed to achieve 
that lower approximation. One can deduce the following properties: 

1. · · · C V_1 C Vo C V1 C · · ·; 

2. cloSL2 uj Vj =L2 (R); 

3. ni ½ = {O}; 

4. ½+1 = Yj+Wj, j E Z; 
5. f(x) E Vj -< > f(2x) E Vj+1, j E Z. 

For a more detailed discussion and alter11ative formulation of these properties, 
see [1]. 

The space Wj is the the orthogonal complement of the space ½ in ½+1-
The spaces Wj are spanned by 'l/Jj,i (x) = 2j l 21.jJ(2j x - i), where 1.p(x) is a 1-D 
wavelet, satisfying the 1-D analogue of Equation ( 1). The spaces ½ are spanned 
by scaled and translated versior1s of a so-called scaling function, </>( x). The ap­
proximation spaces ½ contains the jth resolution approximation, /j(x), of the 
input function, f (x ), while the detail spaces, l¥j, contain the information lost 
when going from a (j + 1 )th level approximation to the jth level approximatio11. 

A common 1nethod used to generate a 2-D MRA, is to take the tensor product 
of the corresponding 1-D multi-resolution analysis with itself [3]. This provides 
one with three wavelets, w[P](x, y), p = l, 2, 3 and a scaling function, <P(x, y), 
all of which are separable 2-D functions: 

W[l](x,y) 

w[2] (x, y) 
w[3](x,y) 

<P(x,y) 

<p( X )1/J(y) 
'lf;(x )cp(y) 
'lf;(x)1j;(y) 

<fa(x )<fa(y) 

(7) 

(8) 

(9) 

(10) 

These wavelets are essentially orientated, resolution-dependent band-pass fil­
ters; the scaling function may be viewed as a low-pass filter. The detail spaces, 
spanned by each wavelet type, thus contain difference information with a spe­
cific orientation only: vertical, horizontal and diagonal. 

The multi-resolution pyramid goes off to infinity in both directions. How­
ever, realisable signals are band-limited. Thus, we truncate the representation, 
discarding all higher level information, by 'projecting' our input function into 
a space which has sufficient detail to represent the sampled signal - Vo by 
convention. Similarly, since signals do not always contain arbitrarily low fre­
quencies, it may be unnecessary to decompose one's signal beyond a certain 
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level. Thus, one has a Jth level multi-resolution decomposition 

I(x, y) Io(x, y) 

9-i(x,y) + · · · + 9-J(x,y) + f_J(x,y) 
-J 3 

'1,J ' ' 
l=-1 i,j p=l 

.__, C-J;ij <P-J;i,j ( X, Y). (11) 
• • 

t,J 

The wa,relet transform is also trur1cated; the Jth level discrete wavelet trans­
form provides the set of coefficie11ts 

(12) 

where the detail coefficients are obtained as follows 

d (,T,[P] J) · · '77 
[Pll;i,j = 'J:.'l;i,j' 'i,J E /LJ. 

(13) 

Formally, the approximation co<~fficients are given by 

~ 
C[;i,j == ('Pl;i,j,I), i,j E z (14) 

~ 
where <I>(x, y) is the dual scaling Junction. The approximation coefficients, Cz;i,j, 

encode the present in the lower levels of the multi-resolution pyramid. 

Semi-Orthogonal Cardinal Spline MRA 

The space of cardinal splines of order m, Srn, contains all those functions 
expressible as a weighted sum of mth order cardinal B-splines, Nm(x): 

The values of N 1n(x) may be found using the following identity: 

Nm(x) == 

where 

x m-x 

m m-
- 1). 

1 

Nm-1(x-t)dt, m>2, 
0 

1 if X E (0, 1); 
0 otherwise. 

(15) 

(16) 

(17) 

(18) 

The cardi11al B-splines are thus generated by repeatedly convolving the unit 
box with itself. Figure 1 shows some of these functions. 

Cardinal B-splines satisfy the following identity, which enables one to com­
pute their values without resorting to integral forn1ulations: 
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FIG URE 1. Splir1e scalir1g functions. The cardir1al spline scali11g functions are generated 
by repeatedly convolving Nl(x) with itself. 

The spline-based MRA i11troduced in [5, 6] has .L'/\f,-,i (a;) as its scaling function. 
The corresponding mth order spline wavelet, 'l/'rri(x), l1as support on the in­

terval (0, 2m-1]. This wavelet is semi-orthogonal, meanir1g that it is orthogonal 
to scaled versions of it.self, but not to translates on the sarr1e resolution level. 
These functions satisfy the following two-scale relationships 

'fYt 

Nrri (x) PkNrri(2x k ), (19) 
k-0 
31r1.-2 

1Prri(x) QkNrri (2x k) (20) 
k=O 

The values of these sequences, for· the quadratic case, can be fo11nd in [5]. 

4 CALCULA'1"'ION OF THE WAVELET C;OEFFICIENTS 

Before one can use the MRA, a 1neans must be fo11nd t,o cor11p11te tl1e coefficients 
of the wavelet transforn1. To this end we use the filteri11g scheme proposed in 
[7]. In the context of this work, this gives us the following set of separable 
convolutional equations for computing the detail and approxi1r1ation coefficients 
( from the approximation coefficients of the previous level): 

(21) 
rn n 

(22) 
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FIGURE 2. A quadratic spline wavelet. 

(23) 
rri n 

brn-2kb1i-2lCj;rnn • __,, (24) 
m n 

To reconstruct the approximation coefficients (from those lower down in the 
analysis), one has the fallowing reconstr·uction relation: 

Cj;km = I:z :z=t Pk-2lPrri-2t Cj-1 ;lt + 
Lz Lt Pk-2zQ,,1i-2td[1]j-l;lt + 
Ll Lt qk-2lP1ri-2td[2]j-l;lt + 
Ll Lt Qk-2lQm-2td[3]j-l;lt· 

The { ak} and {bk} sequences can be found in [8]. 

Calculation of { co;i,j} 

(25) 

In order that we can use the filtering scl1eme above, one must first generate 
the initial set of approximation coefficients, { co;ij} - which are the basis coef­
ficients of the B-spline representation of the input image. If one just wants to 
achieve compression, the image samples may be used as the initial coefficient 
values. If, however, one wishes to evaluate the MRA, then these values 1nust 
be properly computed. 

We use quasi-interpolation [9] to obtain these c:oefficient,s. Q11asi-interpolation 
is a local interpolation scheme, in whicl1 the amount of· dat.a used to determine 
the approximating quasi-interpolant ca11 be limited. 111 this work a 3x3 convo-
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lution mask ( k = l, below) was used to determine tl1e required coefficients: 

(26) 

This sequence is computed as 

{(Akl)(i)} = (8 - m + · · · + (-l)k zn * · · · * ~) * J0 (i), i E Z2
, (27) 

v' 

k t.i1nes 

where 8 = 8i,j ;o == 1 if i, j == 0, and O otherwise and 

<P(O, 0) - 1 for i,j == O; 
<P(i,j) for i,j =/= 0. 

(28) 

Because the B-splines must be centred [9], <P(x, y) = N3(x + 3/2)N3(y + 3/2), 
and the coefficient values actually represent the shifted image Io(x + 3/2, y + 
3/2). It is important to ren1ember this shift when evaluati11g image functions 
in the MRA. 

5 QUANTIZATION 

We used vector quantization to compress the wavelet encoded image. The ap­
proach of [10] was t1sed: the various wavelet sub-bands were sub-divided into 
2x2 or 4x4 blocks ( as determined by the desired compression ratio) arid these 
blocks were quantized with the pr·eviously trained codebooks to yield 8-bit 
indices (thus perrnitting 256 reproduction levels per sub-band). The LBG al­
gorithm with a minimu1n mea11-squared error n1easure was used [11]. The code­
book was trained with a collection of disparate i1nages, so as not to introduce 
any kind of image bias; the test images were not in the training sequence. As 
is done elsewhere, for example [10, 12], the entropy of the coefficient seque11ce 
is used as a measure of compression i.e., we assume that the quantization is 
followed by a perfect entropy coding. 

6 THE DIFFERENCE ENGINE 

The Difference Engine is the fi11al component in the rendering pipeline of a 
new display architecture developed at CWI [13]. This display processor has 
the ability to interpolate an arbitrary length polynon1ial span with a single 
instruction, i11 time pr·oportional to the degree of the poly11omial. The forward 
difference interpolatory logic is implemented as a systolic array -- each new 
cycle produces the complete set of difference values for the specified span. An 
nth degree polynomial span may be specified by a startir1g point, a set of n 
forward differences and the width of the span. The pth order forward difference 
of I(x) is 

(29) 

where 
(~ol)(x) = I(x). (30) 
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Once the required differences are computed, using the simple recursive scheme 
presented above, the poly11omial values at u11iformly spaced intervals (Z, in this 
case) may be obtained by using the followi11g sirnple update rule 

(31) 

ft)I~ consecutive values of x. The l 111s cyc:le tirr1e of this proc:essor n1ea11s that one 
can perforn1 these calculations with sufficie11t speed to ensure pixel production 
at tl1e display refresh rate. 

The proposed architecture does riot en1ploy a fra1nebuffer. Instead, the image 
is represented as a list of primitives and the object,s selected from this list are 
converted into Difference Engine i11structions by custornized hardware, at a 
sufficient 1·ate to provide real-time video display. The complexity of the image 
determines the size of the list and consequently the number of instructions 
which are produced. 

There are two important points which should be noted: 

• the Difference Engi11e can interpolate arbitrary order polynomials, in tin1e 
proportional to tl1e degree ( currently n + 2 cycles for a polynomial of 
degree n - 1). 

• the Difference Engine provides a scanline accumulator. 

The Difference Engine can interpolate polynomial spans accurately up to a 
length dependent on the degree of the polynomial - currently about 4096 
pixels for a quadratic and 512 pixels for a cubic. This limit poses no problems, 
since the image data can be segmented into several spans if the need arises, 
which is unlikely if one uses the quadrat,ic scheme. 

The existence of an intensity accumulator is essential if one wishes to use the 
Difference Engine for multi-resolution image sy11thesis, since one then needs to 
accumulate several levels of detail for each scanline. 

7 MULTI-RESOLUTION lM_A.GE SYNTHESIS 

The various images in the quadratic cardinal spline MRA satisfy certain very 
stringent conditions: 

• They are elements of C 1 (JR2 ) 

• The approxima,tion images consist of quadratic patches, with support on 

• Tl1e detail images also have this property, but over squares half the size 
on the resolution level j. 

These conditions are a consequence of the tensor product used to generate 
the MRA and the properties possessed by the prototype 1-D MRA. Thus, the 
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image data along a scanline (on each level) is con1posed of adjacent quadratic 
segments of the same length. It is a simple matter to compute the differences 
for any such polynomial ( using the shifted image fu11ctions), a11d to con1 pose the 
Difference Engine instructions which will interpolate the polyno1nial scanline 
data. 

If used without care, multi-resolution sy11thesis can be far n1ore expensive 
(in terms of Difference Engine instructio11 cycles) tl1ar1 just setting each pixel 
directly, since many instructions rnust be issued to accu111ulate all the detail 
information for each scanline. If however, only 'busy' regions of the detail 
images are added back to the approximation image, this 'trur1cated1 MRA can 
provide significant gains over direct reconstruction (i.e., IWT and setting each 
pixel directly). Wavelet compression should maintain only the n1ost important 
coefficients viz. those which will e11sure good reconstruction fidelity. These 
retained coefficients can be used as an indication of 'busy' image areas, and 
the bases which they weight can be used to build the truncated MRA. We 
determine the extents of these bases which intersect the current scar1line -· this 
information is recorded and used to determine whether it is n1ore economical 
(in terms of Difference Engir1e instructior1 cycles required) to si111ply set the 
pixels in the current scanline or to render tl1e truncated lv1RA. If the latter 
option is selected, the function evaluations are done a11d the tiers of det,ail are 
accumulated on top of the approximation signal. If it is less economical ( as 
will be the case in highly detailed regions), the scanline pixels are set directly. 

Due to the continuity constraints, arid the architecture of the chip, we need 
only issue 011e quadratic interpolatio11 instruction to interpolate the entire ap­
proximation scanline: only the second order differences need be changed as we 
cross each new span bou11dary. These can be co1r1 pu ted and set before the in­
terpolation instruction is issued, by using a low cost set-difference instruction. 
A similar strategy can be used for detail scanlir1e segments consisting of several 
adjacent spans. 

To improve performance, neighbourir1g quadratic spans are merged if their 
differences are the same; this reduces the nurnber of instruc:tions required to 
interpolate a multi-span segrnent. However, since this kind of redundancy is 
only likely to occur in the approximation i1nage, 1nerging is riot applied to 
detail scanline segments. Furthern1ore, for reasons of efficiency, the merging 
procedure is not applied prior to deciding what kind of synthesis method to 
employ. Doing so would require additional calculatior1s which would be wasted 
if direct synthesis were used. 

8 RESULTS 

8.1 Wavelet Compression 
It was apparent that the fidelity of the reco11structed images left something to 
be desired, even at modest bit-I'ates ( arour1d 1 bpp) _,_ Figure 4. There are 
a number of reasons for this lack of perforrnance, in particular, the use of a 
MMSE distortion 111etric, whicl1 takes no account of edge inforn1.atio11 and does 
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FIGURE 4. Typical VQ compression result - 0.82 bpp. 

not guarantee simultaneous minimization of reconstruction error a11d transform 
domain quantization error (since Parseval's identity does not hold in a sen1i­
orthogonal framework). Simple thresholding tests revealed that MMSE VQ was 
not exploiting the redundancy provided by the wavelet transform effectively. 

8.2 Image Synthesis 
The results given below are based on a three level wavelet decomposition in 
which, rather than applying VQ, the wavelet coefficients were thresholded and 
those retained were used in the MR synthesis calculations. This was done to 

• 

decouple the compression implementation from the synthesis algorithms, since 
the former retained too many (unrepresentative) coefficients to illustrate tl1e 
concepts referred to earlier. The thresholding used is adapted to orientation 
and resolution level and forms part of the new compression scheme we are 
investigating. To enable us to quantify the gains produced by MR synthesis, we 
introduce the Gain Factor (GF) - the ratio of the instruction cycles required 
to render the image directly to the number of cycles required if adaptation is 
used. The GF is always > 1.0. 
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Table 1 summarizes the results of this preliminary work. Observe that two 
sets of data are given: the first uses the current cycle costs for the relevant 
instruction2 while the second uses the cycle costs which will be used in subse­
quent, in1plementations of the Difference E11gine. 

Cycles Lenna House Sugar bowl 
Setddi 2 0 4 62 
EvalO 1 100 95 33 
Evall 3 0 0.5 0.2 
Eval3 5 0 0.5 4.8 

GF - 1.23 1.63 3.43 
MR - No Yes Yes 

Cycles Lenna House Sugar bowl 
Setddi 1 1.4 7.6 65.7 
EvalO 1 97.5 87.0 13.9 
Evall 1 1.0 4.7 14.7 
Eval3 3 0.1 0.7 5.7 

GF - 1.22 1.57 3.86 
MR - Yes Yes Yes 

TABLE 1. Synthesis Results. The first four rows of each table give the percentages 
each of the instruction types contribt1ted to the final rendering cost. The final row indicates 
whether multi-resolution synthesis was invoked or not. The same threshold was employed 
with all images. The second table gives the figures when the proposed lower cost instructions 
are used. 

There are several thi11gs w l1ich were evident from our experiments. Firstly, 
the smoothness of an irr1age is directly related to the gains obtainable when 
using MR synthesis: the 1nore texture the i1nage possess, the less likely MR 
synthesis is to yield any benefit, unless the texture is highly localised. In the 
latter case, the non-textured scar1lines can still be rendered more cheaply. Sec­
ondly, image detail is expensive to render, because a) it is present on multiple 
levels of the MRA and b) the quadratic spans are srnaller and consequently 
more instructions are required to interpolate a scanline. This is the motivation 
for truncating the MRA. 

Images which are themselves composed of splines (such as the Phong shaded 
images in [13], of which 'Sugarbowl' is an example) will experience greater 
gains than other (smooth) images. However, the extent of this reduction will 
depend on the size of the spline patches of which the image is composed and 
for most images these are fairly small. The Difference Engine is ideally suited 

2 The interpolation instructions are of the form 'evaln', where n is the order of the poly­
nomial to be interpolated; 'evalO' switches off accumulatio11 of subsequent pixel values at 
the given location, otherwise acting like an 'evall' - since it is cheaper, it is used for direct 
reconstruction. The 'setddi' instruction can be used to set the second difference at a specified 
point; subsequent interpolations, passing through t,his point, will uses this value rather than 
the one they had been propagating. 
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to rendering such images. 
The images 'Sugarbowl' and 'House' were both able to derive varying degrees 

of benefit from MR synthesis, since there were regions in which the intensity 
data varied slowly. 'Lenna' contains a lot of texture; but with lower instruction 
costs, it becomes economical to use the MRA on some scanlines. In highly uni­
form or smooth images, span merging on the approximation level can become 
significant, boosting rendering efficiency substantially. An extreme example of 
tl1is would be an object on a uniform background; the background would only 
be present in the approximation image and could be generated very quickly 
and efficiently. 

For highly textured images, when we are forced to chose direct reconstruc­
tion, we c; tn still gain by merging neighbouring pixels; this saves one having 
to set eacl1 pixel individually. Since pixels are usually correlated, even the 
most chaotic of images may benefit (albeit marginally) from such merging. In 
the examples given above, Lenna experienced a GF of 1.23 from such pixel 
merging: all neighbouring pixels along a scanline which are within one gray 
scale of the first pixel considered are approximated by this initial value, and 
a zero-degree polynomial (evalO) of the appropriate length is emitted. When 
using MR synthesis, smooth images can yield very large gains (a GF of > 3 
for non-trivial images like Sugarbowl). The nature of the smoothness plays an 
important role in determining the magnitude of these gains i.e., is the image 
actually a spline, or just smoothish? True spline images can be approximated 
with fewer resolution levels and coefficients. 

Although not explicitly indicated in the tables above, the level of the decom­
position has a very definite affect on the rendering gains one can achieve. If 
the number of levels is too low, then one gains nothing in rendering time, since 
short pixel spans (less than the order of the polynomial) must be set directly. 
If, on the other hand, the number of levels is too high, then too much infor­
mation must be accumulated from the detail tiers and the rendering efficiency 
drops. A three level decomposition appears to be optimal. 

The Difference Engine is able to produce low resolution approximation im­
ages very efficiently, since the spline patches are then quite large (the 3rd level 
approximation of Lenna can be rendered in a quarter of the time required to 
render the full image, using the old instruction costs). Progressive transmission 
is possible if the receiver is equipped with a screen buffer in which incoming 
information can be accumulated. 

9 CONCLUSION & FUTURE WORK 

Although the implementation of the qt1a.ntization algorithm was inadequate, 
the compression potential of the spline WT can be exploited by a better algo­
rithm. Smooth images can be rendered more rapidly using MR synthesis than 
by direct reconstruction. Even heavily textured images can be rendered more 
efficiently if zero-degree pixel merging is applied to exploit pixel correlation. 

A better quantization system is currently under development. Work can be 
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done to improve the usability of the Difference Engine w.r.t. MR synthesis 
- the Difference Engine was not specifically designed to render this kind of 
structure. One of the modifications that can be n1ade, is the addition of a 
screen-wide accumulator which the Difference Engine can access to enable ef­
ficient rendering of progressively transmitted images. Work can also be done 
to improve the simple efficiency measures used - the emphasis here was on 
rendering performance, which assumes that the MR data can be produced at 
an adequate rate. All the required information can be computed using paral­
lelised FFT hardware - so on the face of it, this assumption is a reasonable 
one. Nonetheless, one may desire a different measure of efficiency. 
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