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Parallel linear system solvers for Runge-Kutta methods* 

P. J. van der Houwen and J. J. B. de Swart 

CW!, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands 

If the nonlinear systems arising in implicit Runge-Kutta methods like the Radau IIA 
methods are iterated by (modified) Newton, then we have to solve linear systems whose 
matrix of coefficients is of the form I - A@ hJ with A the Runge-Kutta matrix and J an 
approximation to the Jacobian of the righthand side function of the system of differential 
equations. For larger systems of differential equations, the solution of these linear systems 
by a direct linear solver is very costly, mainly because of the LU-decompositions. We try 
to reduce these costs by solving the linear systems by a second (inner) iteration process. 
This inner iteration process is such that each inner iteration again requires the solution of 
a linear system. However, the matrix of coefficients in these new linear systems is of the 
form I - B @ hJ where B is similar to a diagonal matrix with positive diagonal entries. 
Hence, after performing a similarity transformation, the linear systems are decoupled into 
s subsystems, so that the costs of the LU-decomposition are reduced to the costs of s LU
decompositions of dimension d. Since these LU-decompositions can be computed in parallel, 
the effective LU-costs on a parallel computer system are reduced by a factor s3 . It will be 
shown that matrices B can be constructed such that the inner iterations converge whenever 
A and J have their eigenvalues in the positive and nonpositive halfplane, respectively. The 
theoretical results will be illustrated by a few numerical examples. A parallel implementation 
on the four-processor Cray-C98/4256 shows a speed-up ranging from at least 2.4 until at 
least 3.1 with respect to RADAU5 applied in one-processor mode. 

Keywords: numerical analysis, convergence of iteration methods, Runge-Kutta methods, 
parallelism. 

AMS subject classification: G.1.7. 

1. Introduction 

Suppose that we integrate the IVP 

dy dt = f(y), y(to) = Yo, (1.1) 

by an implicit step-by-step method. In general, this requires in each step the solution 
of a nonlinear system of the form 

R(Y n) = 0, R(Y) := Y - h(A © I)F(Y) - W n-1, (1.2) 
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where A denotes an s-by-s matrix (assumed to be nondefective), I is the d-by-d 
identity matrix, W n- l contains information from preceding steps, h is the stepsize 
tn - tn-l. and 0 denotes the Kronecker product. It will always be assumed that A is 
nondefective and has its eigenvalues in the positive halfplane. The 8 components Y ni 

of the 8d-dimensional solution vector Y n represent 8 numerical approximations to the 
s exact solution vectors y(tn-I +Cih); here, c = (Ci) denotes the abscissa vector whose 
components Ci are assumed distinct. Furthermore, for any vector Y n = (Y ni), F(Y n) 

contains the derivative values (f(Y ni)). In the following, we shall use the notation 
I for any identity matrix. However, its order will always be clear from the context. 
The solution Y n of (1.2) will be called the stage vector, Yn the step point value, 8 the 
number of stages, and A the Runge-Kutta matrix. 

Usually, the nonlinear system (1.2) is solved by modified Newton iteration. This 
leads to linear systems whose matrix of coefficients is of the form I - A 0 hJ with 
J an approximation to the Jacobian of the righthand side function f. The solution 
of these systems may be extremely costly. For example, if a direct solver is used, 
then in general the LU-decomposition requires (2/3)s3d3 arithmetic operations which 
is considerable, even for moderate values of d (say d ~ 10). Moreover, there is only a 
limited intrinsic parallelism in building the LU-decomposition of the matrix I -A@h]. 

I. I. Reduction of computational costs 

We briefly survey various approaches to reduce the computational costs associated 
with the solution of the Newton systems using parallel computer systems. Firstly, one 
may look for special methods in which A is a triangular matrix with positive diagonal 
entries like the DIRK type methods. Then, confining our considerations to the costs 
of the LU-decomposition, we see that the effective LU-costs on 8 processors reduce 
to (2/3)d3 operations, a factor 83 less than those needed for the Newton process. 
However, these DIRK type methods also have disadvantages. In the case of one-step 
DIRKs available in the literature, the step point order is at most 4 and they have a 
relatively low stage order which may be a disadvantage in certain classes of stiff IVPs. 
Higher step point orders and stage orders can be obtained in the class of multistep RK 
methods (cf. Burrage and Chipman [3]), but they have the disadvantage of quite large 
abscissae values Ci (much larger than 1). 

More sophisticated than the DIRK methods are methods characterized by matrices 
A with only positive eigenvalues such as the one-step RK methods of Nsz>rsett [16], 
Burrage [1] and Orel [17]. By performing a similarity transformation (or Butcher 
transformation [5]), the linear systems can be decoupled into s subsystems of dimension 
d. Again, the effective LU-costs reduce by a factor 83, and moreover, the stage order 
and step point order are much higher than for DIRK methods. However, a possible 
disadvantage of these methods is the lack of superconvergence at the step points. 

Finally, one may choose the classical RK methods possessing both a high stage 
order and a high step point order, but also one or more complex eigenvalues. Again, ap
plying a similarity transformation, the Newton system is transformed to block-diagonal 
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form with (real) diagonal blocks, each block corresponding to an eigenvalue of A. If 
an eigenvalue is real, then the associated diagonal block is of order d, otherwise it 
has order 2d. The LU-costs of these blocks are reduced to (2/3)d3 and (16/3)d3 op
erations, so that effectively the LU-costs are (16/3)d3 operations, irrespective of the 
value of s (the code RADAU5 of Hairer and Wanner [7] uses such a transformation). 

1.2. Iterative solution of the linear systems 

Instead of using direct solution methods, one may also look for iterative linear 
solvers, such as GMRES or preconditioned GMRES (see, e.g., Burrage [2] where 
further references are given). 

In this paper, we shall follow an approach that is a mixture of an iterative and a 
direct approach. It allows A to have complex eigenvalues (in the positive halfplane), 
so that the superconvergent RK methods like the Radau IIA methods are included. The 
linear systems arising in the modified Newton method are solved by an iterative method 
(the inner iteration process), which needs itself LU-decompositions of matrices, but 
these matrices are only of dimension d. In fact, the linear systems to be solved have a 
matrix of coefficients of the form I - B 0 hJ where B is similar to a diagonal matrix 
with positive diagonal entries. Hence, after performing a similarity transformation, the 
effective LU-costs are (2/3)d3 operations like the methods of Burrage and OreL We 
shall refer to this inner iteration process by PILSRK (Parallel Iterative Linear System 
solver for RK methods). The combination of the modified Newton and the PILSRK 
method will be called the Newton-PILSRK method. 

There are several options for choosing the matrix B. The most simple approach 
chooses B = D where D is a diagonal matrix (with positive entries), so that the sd
dimensional system can directly be split into s uncoupled subsystems of dimension d 
which can be solved concurrently. In fact, we can employ the same matrices D as used 
in the Parallel Diagonal-implicitly Iterated RK methods (PDIRK methods) analysed in 
[10]. The PDIRK method is also an iterative method, but unlike the PILSRK method 
it is a nonlinear system solver and directly iterates on the nonlinear system (1.2). 
Using results derived by Lioen [13] for PDIRK matrices, it can be shown that for 
the first eight Radau IIA correctors, the PILSRK methods are A-convergent, that is, 
it converges if J has its eigenvalues in the nonpositive halfplane. Furthermore, these 
PDIRK matrices have the property that the stiff components are removed from the 
iteration error within s iterations. However, a disadvantage of the PDIRK matrices 
is the poor convergence (or even divergence) of the PILSRK method in the first few 
iterations which is worse as the number of stages of the underlying RK corrector 
increases. Such a convergence behaviour is highly undesirable if we want to apply 
step-parallel iteration, where the iteration process is already started at the next step 
point tn+I before the iterates at tn have converged. A poor initial convergence implies 
that no accurate predictor value is available for starting the iteration process at tn+I · 
A substantial improvement in the initial phase of the convergence of the PILSRK 
method is obtained by employing the matrices L used in the Parallel Triangular-
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implicitly Iterated RK methods (PTIRK methods) constructed in [11] (like the PDIRK 
methods, the PTIRK methods are nonlinear system solvers). The PTIRK matrices L 
are defined by the lower triangular factor of the Crout decomposition LU of the RK 
matrix A. By virtue of results obtained by Hoffmann and De Swart [8], it can be 
shown that for all RK correctors that are based on collocation with positive, distinct 
abscissae, the matrix L has positive diagonal entries and that the PILSRK method 
is A-convergent. Furthermore, like the PDIRK matrices, the PTIRK matrices have 
the property that the stiff components are removed from the iteration error within 
s iterations. After performing a similarity transformation, the effective LU-costs are 
reduced by a factor s3. A preliminary parallel implementation of the Newton-PILSRK 
method based on the one-step 4-stage Radau IIA formula and using the PTIRK matrix 
showed on the four-processor Cray-C98/4256 speed-up factors ranging from at least 
2.4 until at least 3.1 with respect to RADAU5 in one-processor mode (cf. [11]). 

1.3. Outline of the paper 

The aim of the present paper is to find matrices B that are still more effective 
than the PTIRK matrices L. Our starting point is the representation B = QTQ- 1 with 
T a lower triangular matrix with positive diagonal entries and with Q a nonsingular 
transformation matrix such that Q- 1 AQ is lower block-triangular. It will be shown 
that matrices T and Q exist such that: 

(i) B is nondefective and has positive eigenvalues, 

(ii) the PILSRK method is A-convergent whenever A has its eigenvalues in the pos
itive halfplane, 

(iii) the stiff components are removed from the iteration error in the second iteration, 

(iv) the spectral radius of the iteration-error-amplification matrix is minimized in the 
left halfplane. 

The difficult part is the construction of matrices Q such that the iteration-error
amplification matrix has a sufficiently small norm. In this paper, we construct trans
formation matrices so that Q- 1 AQ is block-diagonal (in a forthcoming paper, we shall 
deal with alternative families of transformation matrices). For the 4-stage and 8-stage 
Radau IIA correctors, matrices Q will be constructed such that the Euclidean norm of 
powers of the iteration-error-amplification matrix are satisfactorily small. 

As soon as T and Q, and hence B, are obtained, we can compute the diagonalizing 
similarity transformation, to obtain a highly parallel linear system solver. 

In this paper, we have restricted our analysis of the Newton-PILSRK method to 
the case where (1.2) represents the class of one-step Radau IIA methods, that is, A is 
the Radau IIA matrix and W n-1 := (E 0 J)Y n-1 with E = (0, ... , 0, e), e being 
an s-dimensional vector with unit entries. These methods are of particular interest 
because of their high step point order p = 2s - 1 and high stage order q = s, their stiff 
accuracy and their excellent stability properties. The Newton-PILSRK methods were 
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applied to a few problems taken from the literature. The results show a considerable 
improvement of the convergence in the first few outer iterations. Recalling that a 
parallel implementation of the Newton-PILSRK method using the PTIRK matrices 
already shows a speed-up factor of at least 2.4 with respect to RADAU5, we expect 
that using the new matrices B = QTQ-1 will yield a further speed-up. The parallel 
implementation of the new methods will be subject of future research. 

Finally, we remark that it may well be that the class of multistep RK methods 
of Radau type (cf. Hairer and Wanner [7, p. 293]) is a better choice for the corrector 
equation (1.2) than the one-step Radau methods. For nonstiff IVPs, Burrage and 
Suhartanto [4] have investigated the use of parallel iteration methods for such correctors 
and they report promising results. This indicates that applying the PILSRK approach 
of this paper to the Newton systems arising in multistep Radau methods may lead to 
quite effective parallel IVP methods. 

2. The parallel iterative linear system solver 

Consider the modified Newton iteration scheme for solving the corrector equation 
(1.2): 

(I - A 0 hJ)(Y0l - y0-ll) = -R(Y0-1>), j = 1, 2, ... , m, (2.1) 

where J = a f I oy is evaluated at tn- i. y(O) is the initial iterate to be provided by 
some predictor formula, and where y<m) is adopted as the solution Y n of the corrector 
equation ( 1.2). Each iteration with (2.1) requires the solution of an sd-dirnensional 
linear system for the Newton correction y0l - y0-1>. As already observed, direct 
solution of this Newton system can be extremely costly and transformation to block
diagonal form reduces computational costs considerably. In order to achieve a still 
greater reduction of the computational complexity we follow an alternative approach 
by applying an iterative linear solver to the Newton systems in (2.1). This solver again 
requires the solution of linear systems, but these systems are only of dimension d. It 
is tuned to the RK structure of the systems in (2.1) and possesses a lot of intrinsic 
parallelism. This Parallel Iterative Linear System solver for RK methods (PILSRK 
method) is defined by 

(I - B ® hJ)(Y(j,ll) - yU.11- 1>) = -(I - A® hJ)Y(j,ll-l) + c0-l), 

c<J-l) := (J - A® hJ)y0-l) - R(Y0-ll), 
(2.2) 

v = 1, 2, ... , r, 

where y0.0) = y<J-l,r) and where y<m,r) is accepted as the solution Y n of the 
corrector equation (1.2). The matrix B is assumed to be nondefective and to have 
positive eigenvalues. Note that c<J-l) does not depend on V, so that the application 
of the inner iteration process requires only one evaluation of the function R. The 
processes (2.1) and (2.2) may be considered as the outer and inner iteration processes. 
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In order to construct a suitable matrix B, we observe that the condition on the 
spectrum of B implies that we can write B = QTQ- 1 with Q an arbitrary real, 
nonsingular matrix and T a lower triangular matrix with positive diagonal entries. 
Hence, by performing the transformation 

we obtain 

v = 1,2, ... , r, (2.3) 

- -0m · ) where A= Q-1 AQ and Y ' = (Q- 1 @ J)y0-I. If for a given j, the transformed 
· · y-(j,v) Y-(j,oo) h h N · d fi d mner iterates converge to a vector , t en t e ewton iterate e ne by 
(2.1) can be obtained from y0) = (Q@ J)Y(j,oo>_ Given the matrix A, the PILSRK 
method (2.3) is completely defined by the matrix pair (T, Q) and will be denoted by 
PILSRK(T, Q). The representation (2.3) will be the starting point for the construction 
of the matrix B. 

Before discussing the computational costs of the actual implementation of the 
Newton-PILSRK method {(2.1),(2.3)}, we should specify the matrix B. This will 
be the subject of section 3. Details on the computational complexity can be found in 
section 4.2. 

Remark 2.1. In the first Newton iterations, it seems a waste to perform many inner 
iterations with the PILSRK method, because there is no point in computing a very 
accurate approximation to y0l, as long as y0l is itself a poor approximation to Y n· 

Likewise, in later outer iterations, we expect that only a few inner iterations suffice 
to solve y0) from (2.1). In the extreme case, only one inner iteration is performed 
in each outer iteration. In such an iteration strategy, the Newton-PILSRK iteration 
method { (2.1), (2.2)} simplifies to 

(I -B 0 hJ)(Y0) - y0-l)) = -R(Y0-l)), j = 1,2, ... ,m. (2.4) 

However, this process may converge very slowly in the first few outer iterations, and 
it is recommended, either to use highly accurate predictor formulas for yCO) or to 
introduce a dynamic iteration strategy so that when necessary, sufficiently many inner 
iterations in the first few outer iterations are performed. 

Notice also that the iterative method obtained from (2.1) by using a splitting of 
A into B and A - B is identical with the iteration method (2.4 ). 
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3. Construction of the matrix B 

Given the matrix A, the PILSRK method (2.2) is completely determined by the 
matrix B = QTQ- 1• In the construction of B, the region of convergence and the 
averaged amplification factors for the iteration errors play a central role. 

3.1. Convergence region of the PILSRK method 

In order to analyse the region of convergence for the PILSRK method, we con
sider the error recursion 

y(j.v) _ y(j) = M(Y(j,v-l) - y0)), M :=(I - B@hJ)- 1 (<A-B)@hJ). (3.1) 

We have convergence if the powers Mv of the amplification matrix M tend to zero 
as v --+ oo, that is, if the spectral radius p(M) of M is less than 1. The eigenvalues 
of M are given by the eigenvalues of the matrix 

Z(z) := z(l - zB)- 1(A - B), z := h).., (3.2) 

where ).. runs through the eigenvalues of J. We call r := {z: p(Z(z)) < 1} the region 
of convergence of the PILSRK method. Thus, the method converges if the eigenvalues 
of hJ lie in r. If r contains the whole nonpositive halfplane, then the method will be 
called A-convergent. 

We shall call Z(z) the amplification matrix at the point z and p(Z(z)) the (as
ymptotic) amplification factor at z. The maximum of p(Z(z)) in the left halfplane 
Re(z) ~ 0 will be denoted by p. 

In [10] and [11] where the PDIRK and PTIRK methods were analysed, it turned 
out that strong damping of the stiff error components, that is, small amplification 
factors for error components corresponding to eigenvectors of J with eigenvalues >. 
of large magnitude, is crucial for a fast overall convergence. This leads us to require 
the matrix B to be such that p(Z(oo)) = p(l - B-1 A) vanishes. If we succeed in 
finding such matrices B, then Z 8 (oo) = 0, so that within s iterations, the components 
corresponding to [>..[ = oo are removed from the iteration error (this can be verified 
by considering the Schur decomposition of Z 8 (oo)). 

As an example, let Q = I and let T be a diagonal matrix D, so that B = D. 
Lioen [13] showed that for the s-stage Radau IIA correctors with s ~ 8, it is possible 
to construct diagonal matrices D satisfying p(I - D-1 A)= 0 such that the generated 
PILSRK(D,I) method is A-convergent. These matrices are also used in the PDIRK 
methods studied in [10], and will therefore be called PDIRK matrices. 

The next theorem defines a family of PILSRK(T, Q) methods automatically sat
isfying the condition p(I - B-1 A)= 0. 

Theorem 3.1. Let Q be an arbitrary, nonsingular matrix and let B = QTQ- 1, where 
T is the lower triangular factor in the Crout-decomposition of A:= Q- 1 AQ. Then, 
the asymptotic amplification factor vanishes at infinity. 
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Proof. Let TU represent the Crout-decomposition of A. Then 

Q-1z(oo)Q = I-Q- 1B-1AQ =I -r-1.A =I - u 
is strictly upper triangular. Hence, {J(.Q- 1 Z(oo)Q) = p(Z(oo)) = 0. D 

The matrix B in the PILSRK methods characterized by this theorem does not 
necessarily have positive eigenvalues and hence, does not automatically generate A
convergent methods. This requires special transformation matrices Q. Let us again 
consider the case where Q = I. Then, B equals the lower triangular factor in the 
Crout-decomposition of A, that is, B equals the PTIRK matrix L derived in [11]. In 
[8], Hoffmann and De Swart were able to prove that the PTIRK matrix L possesses 
positive diagonal entries for all collocation-based RK correctors with positive, distinct 
abscissas, so that B has positive eigenvalues as required. Furthermore, numerical 
computations in [11] showed the A-convergence for a large number of RK correctors 
based on Gaussian quadrature formulas. 

The aim of this paper is to derive A-convergent methods with p(I - B-1 A)= 0 
for more general pairs (T, Q) than the PTIRK pair (L,l), and to find pairs (T, Q) 
such that we can a priori prove both the positiveness of the eigenvalues of B and the 
A-convergence of the generated iteration method. 

Let us choose Q such that A := Q- 1 AQ = (Akl) is a (real) u-by-u lower 
block-triangular matrix, of which the diagonal blocks Akk _are either one-by-one or 
two-by-two matrices. If ~k is a real eigenvalue of A, then Akk = ~k. and if ~k ± i1Jk 
is a complex eigenvalue pair of A, then 

- (ak Akk= 
Ck 

(3.3) 

where ak and Ck are free parameters. In the following, K will denote the set of integers 
with the property that 1Jk f. 0 whenever k EK. 

A natural choice for T now is 

Tu 0 0 0 

Az1 T22 0 0 
T ·-.-

0 

if k EK, 
(3.4a) 

otherwise, 
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where Uk, vk and Wk are free parameters with Uk and wk assumed to be positive. 

T~eorem 3.2. Let A have its eigenvalues in the positive halfplane, let A:= Q-1 AQ = 
(Aki) be lower block-triangular, let the diagonal blocks be defined by (3.3) and let 
T = T(1) be defined by (3.4a) with 

(3.4b) 

where / is a positive parameter. Then, for all ak and Ck the following assertions hold: 

(i) The asymptotic amplification factor vanishes at infinity. 

(ii) B has positive eigenvalues and if "Y f. 1 it is nondefective. 

(iii) The PILSRK(T(/), Q) method is A-convergent with 

p = max { ll - 21('Y2 + l)- 1~ka;; 1 I: k EK}. 

Proof. Let 

Z(z) := Q-1 Z(z)Q = z(l - zT)-1(A - T), z := h>.. (3.5) 

If T is of the form (3.4~, then the value of p(Z(z)) = p(Z(z)) equals the maximum 
of the spectral radius p(Zkk(z)) of the diagonal blocks 

- l -
Zkk := z(l - zTkk)- (Akk -Tkk) (3.6) 

of Z. Here, Zkk vanishes if the underlying eigenvalue of A is real. Hence, in order 
to achieve p(Z(oo)) = 0, we choose the Tkk with k EK such that the spectral radius 
of the corresponding diagonal blocks Zkk(z) vanishes at infinit~ 

We derive from (3.3) and (3.6) that the eigenvalues (k of Zkk satisfy the charac
teristic equation 

(3.7) 

It is easily verified that (k = ~(z) vanishes at infinity if Uk, Vk and Wk are defined 
according to (3.4b). Hence, p(Zkk(z)) vanishes at infinity which proves part (i) of the 
theorem. 

Since the eigenvalues of Bare given by (uk, wk) fork EK and by ~k fork~ K, 
and because we assumed / > 0, (3.4b) also implies that B has positive eigenvalues 
and if / # 1 it is nondefective, proving part (ii). 

The characteristic equation (3.7) is solved by 

(k = 0, (3.8) 
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so that p(Z(z)) equals the maximum of the values i(k(z)I. Since (k(z) is regular in left 
half plane (provided that Uk and Wk are positive), its maximum in the left halfplane 
Re(z) ~ 0, to be denoted by Pk. is assumed on the imaginary axis. It is easily verified 
that 

(z- (. )) lr (' )I l~k - Uk - wkllYI p kk 1y = <,k 1y = ---;========== Jo + u1y2)(1 + w~y2) 
(3.9) 

assumes an absolute maximum at y = Yo := (ukwk)-112 and that the maximum value 
Pk of p(Zkk(iy)) is given by 

Pk= 11 - ~k(Uk + Wk)-11=11-21(',,2+1)-1eka;;11. 
which is less than 1 whenever 1ek > 0. This proves part (iii) of the theorem. 0 

The asymptotic amplification factor p is minimized for "Y = 1 and assumes the 
minimal value p = max { 1 - eka k 1: k E K}. However, then the matrices Tkk 
are defective (because Uk = wk). Hence, T cannot be diagonalized, and although 
the effective LU-costs are still reduced by a factor s, the Newton-PILSRK(T(l), Q) 
method should be considered as a a-processor method, rather than an s-processor 
method. Fortunately, the asymptotic amplification factor varies slowly with 1. so that 
we can remove the defectness of Tat the cost of a slight increase of p. For example, 
for the method defined by (3.4) we find for "Y = 7 /8, 

- {1 112t -1. k K} p - max - ffi'>kak . E , (3.10) 

which is only slightly larger than the minimal value. For a detailed discussion of 
the computational complexity of an implementation of the Newton-PILSRK(T(1), Q) 
method, we refer to section 4.2. 

Remark 3.1. When faced with the problem of choosing a matrix T such that the 
eigenvalues of the matrix Z(z) ~e of small magnitude, it is tem_pting to minimize the 
magnitude of the matrix factor A - T occurring in the matrix Z(z) defined by (3.5). 
Since 

A-T=diag(A11 -Tu, ... ,Auu -Tuu), 

and because for given ak. the magnitude of the entry bk = -ci; 1 (a~ - ~kak +al) 
can be made as small as we want, we are led to zero the other three entries of 
Akk - Tkk by setting Uk = ak. Vk = Ck and Wk = ~k - ak. This still leaves ak as 
a free parameter which can be used to minimize bk for given Ck. to obtain ak = fa 
and bk = -rt~c;; 1 • However, substitution of the parameters Uk, vk, Wk, ak and 
bk into the characteristic equation (3.7) reveals that the nonzero eigenvalue is given 
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Table 1 
Values of Pk for Radau IIA methods. 

Iteration k s=2 s=3 s=4 s=6 s=8 

PILSRK(D, J) 0.26 0.40 0.52 0.72 0.90 
PILSRK(L, J) 0.18 0.37 0.51 0.70 0.86 
PILSRK(T(7 /8), Q) 0.19 0.35 0.45 0.57 0.64 

2 0.06 0.21 0.33 
3 0.03 0.12 
4 0.02 

by (k = (~k - a~)z2(1 - z~k)-2 , which assumes the extreme value -(rJkf/;1)2 at 
infinity. Thus, we have no A-convergence when A has eigenvalues whose imaginary 
part exceeds its real part. Since many RK methods based on Gaussian quadrature 
do have imag~ary parts that exceed the real parts, the approach of minimizing the 
magnitude of A - T is the wrong way to go. 

Remark 3.2. The family of matrices T defined by (3.4) contains the special case where 
T is defined by the lower triangular factor in the Crout-decomposition of A:= Q-1 AQ 
(see theorem 3.1): 

(3.11) 
otherwise. 

This expression is also obtained from (3.4) by setting / = aka-;;1. 

We conclude this section with listing values of Pk for a few Radau IIA correctors 
and for the iteration strategy PILSRK(T(7 /8), Q) defined by theorem 3.2. In addi
tion, we list the values of p for PILSRK(D, J) with the PDIRK matrix D and for 
PILSRK(L, I) with the PTIRK matrix L. The figures in table 1 show that on the basis 
of the asymptotic amplification factors, the PILSRK(T(7 /8), Q) approach is superior 
to PILSRK(D, J) and PILSRK(L, J). 

3.2. Averaged amplification factors 

Because the matrix Min (3.1) is not expected to be a normal matrix, the asymp
totic amplification factor p discussed in the preceding section only gives an indication 
of the speed of convergence after a quite large number of iterations and does not give 
insight into the convergence behaviour in the initial phase of the iteration process. In 
fact, for large v we have the estimate l!Mvll ~ K-(8) [p(M)]v, where S represents the 
eigensystem of M, K-(S) := llSll llS-1 II is the condition number of S, and where we 
assumed that M has eigenvalues of multiplicity 1 (cf. Varga [19]). In order to analyse 
the convergence rate in the first few iterations, one may use the pseudo-eigenvalue 
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analysis of Trefethen (see, e.g., [18)). Alternatively, we may resort to a well-known 
theorem of von Neumann. We shall follow the latter approach. 

Let the logarithmic matrix norm µ[S] associated with the Euclidean norm be 
defined by µ[S] = (1/2)>.max(S + SH), where 3H is the complex transposed of Sand 
Amax ( ·) denotes the algebraically largest eigenvalue. Then, we have 

Theorem 3.3. If µ[J] ~ 0, then llMvll ~ max{ llZv(z)ll: Re(z) ~ O}. 

Proof The proof is based on a generalization of a theorem of von Neumann. Von 
Neumann's theorem states that, given a matrix J and a rational function R of z 
which has a bounded maximum norm llRlloo in the left halfplane, then llRCJ)ll ~ 
llRll 00, provided that µ[J] ~ 0 (see, e.g., [7, p.179)). A matrix-valued version of 
von Neumann's theorem, applying to the case where R(z) is a matrix with entries 
that are rational functions of z, was proved by Nevanlinna [15] (see also [7, p. 356)). 
Since Mv can be considered as a matrix-valued function of J (see (3.1)), we apply 
the matrix-valued version of von Neumann's theorem with R(z) := Mv(z), where 

MV(z) = [(I - B ® zl)-I (<A - B) ® zI)t = zv(z) ®I, z = h>.. 

This leads to the assertion of the theorem. 

(3.12) 

0 

This theorem motivates us to define the local averaged amplification factor at 
the point z = h).. and the global averaged amplification factor by 

(3.13a) 

Note that pM(z) approximates the asymptotic amplification factor p(Z(z)) as v-+ oo. 
Since in the left halfplane pM(z) assumes its maximum on the imaginary axis, we may 
restrict our considerations to the imaginary axis, so that p<v> := max{pM(iy): y:;;:: 0}. 

Theorem 3.3 indicates that we may expect faster convergence as p<v> is smaller. 
However, for small numbers of iterations (say v ~ 5), p<v> will give a rather conserv
ative estimate of the speed of convergence, because in some sense it is a "worst case" 
estimate. In order to get insight into the amplification of individual error components, 
one may use the local amplification factor pM(z). Let us consider error components of 
the form a® v, where a is an s-dimensional vector and v is an eigenvector of J with 
eigenvalue >.. By observing that Mv(a ® v) = (Zv(h)..) ® l)(a ® v), it follows that 
pM(h)..) characterizes the averaged convergence of the error component corresponding 
with h>. and that only for larger values of v, when the error component with maximal 
pM(h)..) has become dominant, p<v) yields a quantitative estimate of the averaged con
vergence rate. In the first few iterations, when all error components play their part, 
the L2 norm of the local amplification factor p<v>(z) provides more realistic estimates 
than the L 00 norm. This suggests to define a second global amplification factor: 

( roo ) 1/2 
O'(v) := Jo [p<v>(iy)]2 dy (3.13b) 
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We did not succeed in finding an approach which really minimizes p(v). However, by 
considering the estimate 

(3.14) 

we see that p(v)(z) ~ (1>:(Q)llZv(z)ll)1/v, which suggests the separate minimization of 
the factors r;,(Q) and llZ11(z)ll- We distinguish two approaches. In the first approach, 
we choose Q orthogonal, so that r;,(Q) = 1. This can be achieved by defining A:= 
Q- 1 AQ by the real Schur decomposition of A, leading to ak = ~k and Ck= -rJk (see, 
e.g., [6]). In [14a], this case is elaborated. In the present paper, we analyse a second 
approach wh~re first llZ11(z)ll is minimized and then r;,(Q). We shall do this for the 
case where A is block-diagonal. 

3.3. The block-diagonal case 

In the remainder of this section, we shall analyse the case where A:= Q- 1 AQ 
is block-diagonal and we shall use the still free parameters ak and ck for reducing 
the ma~itude of llZv(z)ll- However, we first justify our choice of a block-diagonal 
matrix A by considering the damping of the stiff error components. The following 
theorem presents a result on the amplification of the stiff iteration errors. 

Theorem 3.4. Let the conditions of theorem 3.2 be satisfied and let A := Q-1 AQ 
be block-diagonal. Then, the averaged amplification factor p(v)(z) = O(z(l-v)/v) as 
z -+ oo and the averaged global amplification factor a<11) is finite if v > 2. 

Proof For z -+ oo, it follows from (3.2) that 

Z(z) =(I - z- 1B-1f 1 (I - B-1 A) = Z(oo) + z- 1 B-1 Z(oo) + O(z-2), 

Z(oo)=I-B- 1A 

(B may be assumed to be nonsingular because it is required to have positive eigen
values). More generally, we have that 

00 

zv(z) = L (Z(oo)reil[v/i]O(zl-i), 
i=I 

where for any real x, ceil[x] denotes the first integer greater than or equal to x. We first 
show that all integer powers of Z(oo) greater _!.han 1 vanish. Since zv = QZ11Q- 1, 

we have to show that all integer powers of Z(oo) greater than 1 vanish. Because 
Q- 1 AQ i~ block-diagonal, it follows fro!?- (3.4) that T is block-diagonal and from 
Q.5) that Z(z) is block-diagonal. Hence, Z(oo) is block-diagonal with diagonal blocks 
Z~k(oo). Since by virtue of theorem 3.2, these blocks have a zero spectral radius, 
(Zkk(oo))ll vanishes for v ~ 2 (t~is can easily be verified by considering their Schur 
decompositions). Consequently, zv(oo) itself, and hence zv(oo), vanishes for v ~ 2. 
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From the expansion of zv(z) we now immediately obtain zv(z) = O(z1-v) as z -+ oo. 
Substitution into (3.13) yields the result of the theorem. D 

From this theorem it follows that the stiff error components may be considered 
as being removed from the iteration error within two (inner) iterations. 

If we only know that Z(oo) has a zero spectral radius, as in the case of the 
PDIRK and PTIRK matrices D and L, then zv(oo) vanishes for v ~ s. Hence, 
by virtue of (3.14) it is seen that for v ~ s we have zv(z) = O(zl-ceil[v/(s-l)l) as 
z -+ oo, so that p(v)(z) = O(z(l-ceil[v/(s-l)])/v) as z -+ oo and CT(v) is finite only 
if 2(1 - ceil[v/(s - 1)])/v is le~s than -1, i.e., if s ~ 2. Thus, by virtue of the 
block-diagonality of the matrix A, the PILSRK(T, Q) has a much better stiff initial 
convergence than the PILSRK(D, I) and PILSRK(L, I) methods. 

3.3.1. Reduction of llZv(z)ll in the left halfplane 
We derive an estimate for the maximum norm of llZv(z)ll in the left halfplane 

by using the inequality (3.14). Since _A:= Q- 1 AQ is block-diagonal, zv(z) is also 
block-diagonal with diagonal blocks ZJ:k(z) given by 

- z 
Zkk(Z) = ------

(1 - UkZ)(I - WkZ) 

( 
(ak - Uk)(I - WkZ) 

x (ak - Uk)VkZ +(ck - Vk)(I - UkZ) 

bk(l - WkZ) ) 

bkVkZ + (2.;k - ak - Wk)(l - UkZ) . 

(3.15) 

Here, the parameters Uk, Vk and Wk satisfy (3.4b). We first minimize the magnitude 
of llZJ;;'k(z)ll- Note that this can be done independently of Q. Having found zkk. we 
determine Q by minimizing 1>,(Q). The representation (3.15) suggests setting ak =Uk 
and ck = vk. to obtain fork EK 

(3.16) 

Note that setting ak =Uk in (3.4b) implies ck = Vk· 

Theorem 3.5. Let the conditions of theorem 3.4 be satisfied, let ak = /ak. lckl ~ 
,-1(1+12 )ak. Then, with respect to the maximum norm, the averaged amplification 
factor satisfies pM ~ ["'(Q)] 1fv p, where p = max{ll -21(12 +1)- 1faa; 11: k EK}. 
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Proof. Let, for any matrix M (z) depending on the complex variable z, 111M111 denote 
the maximum norm of the function !IM(z)ll in the left halfplane, where II · II denotes 
the maximum matrix norm. It is easily seen that 

11IZI11 = max { 12/~k -12ak - O'.k I· 12/~k -12ak - ak I: k EK}. (3.17) 
( l + ')'2)ak /Ck 

By choosing lckl ~ ,- 1(1 +12 )ak, we find that lllZl!I equals the asymptotic amplifi
cation factor pas given in theorem 3.2. Hence, lllZvlll ~ lllZlllv = pv. Obviously, 
we can never have strict inequality, so that we conclude that 111zv111 = pv. Finally, 
it follows from (3.14) that lllZvll I ~ K(Q)l!IZvlll = K(Q)pv. Thus, the averaged 
amplification factor pM is bounded by [K;(Q)] 11v p. This completes the proof of the 
theorem. 0 

We remark that for v -+ oo, we have the estimate p(v) ~ pmax{[K(S(z))] 11v: 
Re(z) ~ O}, where S(z) represents the eigensystem of Z(z) and where we assumed 
that Z(z) has distinct eigenvalues. The advantage of the estimate in theorem 3.5 is 
that it holds for all v. 

3.3.2. The transformation matrix Q 
In this subsection, we assume that the PILSRK method satisfies the conditions 

of theorem 3.5. In order to obtain small amplification factors (p(v), a(v)) as defined 
by (3.13), we shall use the freedom left in choosing the transformation matrix Q. We 
specify our approach for the case where all eigenvalues ~k ± irtk of A are complex 
('T/k # 0), so that a= s/2. Then, the column vectors % of Q are defined by 

(q2k-I • q2k) = (f3kxk + DkYk, -8kxk + f3kYk)Qk, k = 1, ... , s/2, (3.18) 

where f3k and Ok are free parameters and xk±iyk represent the normalized eigenvectors 
of A corresponding with ~k ± irtk such that the first component of Yk vanishes. Here, 
Qk is a transformation matrix satisfying (cf. (3.3)) 

A- - Q-1 ( ~k kk - k 
-'T!k 

_ ( /ak 
Akk := , 

l+y
--'Y-ak 

It can be verified that the matrix 

1 
Qk = -_,.-------

1( /20'.k - 2/~k + O'.k) 

( 
(1+12)7/k 

x (1 + 1 2)C'Yak - (k) 

(3.19a) 

(3.19b) 
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Table 2 
Global amplification factors p<v> for PILSRK methods. 

4-stage Radau IlA corrector 8-stage Radau IIA corrector 
v PILSRK(D,J) PILSRK(L,J) PILSRK(T,Q) PILSRK(D, J) PILSRK(L, J) PILSRK(T, Q) 

1 3.60 0.59 1.95 19.83 1.03 3.51 
2 2.48 0.54 0.98 11.52 0.94 1.88 
3 1.64 0.53 0.76 7.74 0.91 1.30 
4 1.16 0.53 0.66 5.55 0.90 1.19 
5 0.96 0.52 0.61 4.08 0.89 1.09 

9 0.72 0.51 0.53 1.86 0.88 0.87 
10 0.69 0.51 0.52 1.72 0.88 0.85 
11 0.67 0.51 0.51 1.61 0.88 0.83 

00 0.52 0.51 0.45 0.90 0.86 0.64 

satisfies (3.19a). By means of (3.18) and (3.19) it is easily verified that we do obtain 
the matrix A= Q-1 AQ. The advantage of this approach is that the resulting matrix 
Q has real entries. 

For a given value of 'Y· the equations (3.19) and (3.20) determine a family of 
transformation matrices Q with free parameters vectors f3 = (f3k), 8 = (8k) and 
c =(ck), where 

By a numerical search, we found in the case of the 4-stage and 8-stage Radau IIA 
correctors for 'Y = 7 /8 the values (3.20) yielding a sequence of satisfactory small 
amplification factors p<v) (see table 2): 

s =4: 

s = 8: 
f3 = (5, -4), 8 = (-1, -5), a = ~(ai. a2). c = - 1N a, 
,B = (-0.9, -2, -2, 1.1), 8 = (1.1,0.3, 0.3, -1.9), (3.20) 

C --illa - 56 . 

Table 2 also lists amplification factors p<v) for the PILSRK(L,l) and PILSRK(D,J) 
methods. This table clearly shows that in terms of p<11>-values, the PILSRK(T, Q) 
methods are superior to the PILSRK(D, I) method. With respect to PILSRK(L, I), the 
pCvLvalues of PILSRK(T, Q) are smaller only for large numbers of inner iterations. In 
fact, they become less than those associated with PILSRK(L, I) only if 11 is greater than 
about 10. However, in terms of the aM-values, the PILSRK(T, Q) methods are also 
superior to the PILSRK(L, I) method for small numbers of inner iterations, because 
in the case of PILSRK(T, Q), a(v) becomes finite for v > 2, whereas PILSRK(L, I) 
has infinite a(v)-values for all v. 
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4. The Newton-PILSRK iteration process 

In actual application of the Newton-PILSRK iteration process {(2.1), (2.2)}, the 
inner iteration process will not always be iterated to convergence, so that the Newton 
iterates are only approximately computed. This will affect the convergence and stability 
behaviour and the computational costs of the integration method. 

4.1. Overall convergence and stability 

The overall convergence of the Newton-PILSRK process is determined by the 
total number of inner iterations summed over all outer iterations in one step, that is, 
the effective amplification factors associated with the total iteration error y0.v) - Y n 

are approximately given by p<i) and cr<i\ where i denotes the total number of inner 
iterations needed to compute y0.v>, i.e., i = (j - l)r + v, and where r denotes the 
number of inner iterations per outer iteration. In order to see this, we define 

y0.0) := y0-I,r>_ G(f:.) := F(Y + t:.) - F(Y) - (I® J)t:., 

N :=(I -A 0 hJ)- 1(A 0 I). (4.1) 

By a simple manipulation we find that 

y0.v) - Y n = Mv (Y(j-1,r) - Y n) + h{I - Mr)NG(Y(j-1,r) - Y n), 
j = 1, ... ,m, (4.2) 

where M is defined in (3.1). Ignoring second-order terms, we may set G(y0-l,r) -

Y n) = 0, to obtain 

y0.v) - Y n =Mi (Y(O,r) - Y n), i := (j - l)r + v. (4.3) 

From this relation, we see that in a first approximation, the convergence behav
iour of the Newton-PILSRK iteration process is approximately characterized by the 
amplification factors. As a consequence, table 2 applies if we replace v by i. 

A second feature of the overall performance of the integration method is its 
stability if the Newton iterates are not exactly computed. This aspect has been dis
cussed in [12), where the number of iterations needed to achieve sufficient stability 
was computed. The values of mr for which the method becomes and remains L
stable depend on the predictor used. For the extrapolation (EPL) predictor defined 
by y(O) = (P ® I)Y n-l· where P is such that yCO) has maximal order q = s - 1, 
and the four-stage and eight-stage Radau IIA corrector, these stable mr-values are 
listed in table 3. In the case of the four-stage corrector, the stable mr-values are 
acceptable for all three iteration strategies, but for the eight-stage corrector, only the 
Newton-PILSRK(T, Q) method possesses an acceptable stable mr-value. 

Summarizing, we conclude that with respect to the Newton-PILSRK(D, I)-based 
integration method, the Newton-PILSRK(T, Q) method always generates an integra
tion method that has a superior convergence and stability behaviour. With respect to 
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the Newton-PILSRK(L, I)-based integration method, we conclude that the Newton
PILSRK(T, Q) method: 

(i) damps the stiff error components much stronger for i < s (theorem 3.4), 

(ii) has a better overall convergence for larger values of i (table 2, with v replaced 
by i), 

(iii) is much more stable for the 8-stage corrector (table 3). 

4.2. Computational costs 

In an actual implementation of the linear solver (2.2), we diagonalize (2.2) by a 
transformation y0.11) = (8 ® J)X0·11) to obtain 

(1 - s-1es 0 hJ) (x0·11> - x0·11- 1>) 
=-(I - 3-1 AS® hJ)X(j,v-I) + (8-1 ® I)c<i-I>, (4.4) 

where the matrix s-1 B8 is diagonal. For the PILSRK(L, J) and PILSRK(T('Y =/= 
1 ), Q) methods, the matrices 3-1 B S and S corresponding to the 4-stage and 8-stage 
Radau IIA correctors are given in the appendix to this paper. In this appendix, we also 
give a computer-program type description of the Newton-PILSRK iteration process 
{ (2.1), (2.2), ( 4.4)} and a specification of the computational costs of the most important 
steps of the algorithm. Here, we present in table 4 the total costs per step for s-stage 
correctors where s is even. In this table, C f and CJ denote the average costs of one 
component off and its Jacobian J, respectively. 

Table 3 
Stable values of mr for 'Y = 7 /8. 

Iteration method s = 4 s = 8 

PILSRK(D, J) 7 > 61 
PILSRK(L, J) 4 > 43 
PILSRK(T, Q) 5 14 

Table 4 
Total computational costs per step. 

Method 1 processor 

PILSRK(L, I) sd (id2 +~CJ+ d + 2s) 

& +4mrsd2 (1 +fa) 
PILSRK(T(7 ;i6 l),Q) +msd(s +CJ - 2d) 

sd 0d2+ ~CJ +d+2s) 
PILSRK(T(l),Q) +5mrsd2 (1 + ~) 

+ msd(2s + C I - 2d) 

~ s processors 

2d(~d2+~cJ+d+2s) 
+8mrd2 (1 +fa) 
+ 2md(2s + C f - 2d) 

d0d2+~cJ+2d+4s) 
+ 10mrd2 (1 + ~) 
+ 2md(2s + C I - 2d) 

s processors 

d 0d2 +~CJ+ d+2s) 

+4mrd2 (1 + fcl) 
+md(s + C1 -2d) 

d0d2+~CJ+d+2s) 
+8mrd2 (1 +id) 
+md(2s + Ct - 2d) 
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The following conclusions can be drawn: 

(i) Newton-PILSRK(L,J) and Newton-PILSRK(T( /' #- 1 ), Q) are equally expen
sive; 

(ii) If mr is fixed and d > s + ( 1/2)C1, then the costs are minimized for r = 1; 

(iii) Newton-PILSRK(L, J) and Newton-PILSRK(T( /' #- 1 ), Q) are to be preferred 
on s processors, whereas Newton-PILSRK(T(/' = 1), Q) is to be preferred on 
one or on O' processors. 

5. Numerical illustration 

In this section, we compare the new Newton-PILSRK(T(7 /8), Q) method with 
the Newton-PILSRK(L, J) method. In our experiments, we use the EPL predictor de
fined in the preceding section and either the 4-stage or the 8-stage Radau IIA corrector 
with constant stepsizes. We integrated three test problems taken from the CWI test 
set [14]. In these problems, the initial condition was adapted such that the integration 
starts outside the transient phase. The first test problem is provided by a problem 
of Schafer (called the HIRES problem in [7, p. 157]). It consists of 8 mildly stiff 
nonlinear equations on the interval [5, 305]. The second test example is the Pollution 
problem of Verwer [20]. The ODE system consists of 20 highly stiff nonlinear ODEs 
on the interval [5, 60], originating from an air pollution model. Our third test problem, 
the Ring Modulator originating from circuit analysis, is a highly stiff system of 15 
equations on the interval [O, 10-3], and is due to Horneber [9]. 

The tables of results present the minimal number of correct digits cd of the 
components of y at the end point of the integration interval (i.e., at the end point, 
the absolute errors are written as lo-cd). Negative cd-values are indicated with *· 
Tables 5-7 lead us to the following conclusions: 

(i) For fixed values of m ? 3, the Newton-PILSRK methods always converge and 
usually find the Newton iterate with high accuracy within two inner iterations (in 
the case of the 4-stage corrector, we even have convergence form? 1). 

(ii) Comparing results for fixed values of mr reveals that r = 1 is usually prefer
able (however, in an actual implementation, m and r should both be determined 
dynamically, see also remark 2.1). 

(iii) For r ~ 2 the Newton-PILSRK(T, Q) method is more robust than Newton
PILSRK(L, I), particularly for the eight-stage corrector, and approximates the 
Newton iterate usually much better (the better cd-values produced by Newton
PILSRK(L, I) in the Pollution problem for r = 2 and m = 3, 4 is due to 
"overshoot" and does not mean that Newton-PILSRK(L, J) produces a better 
approximation to the corrector solution). The divergent behaviour is due to the 
development of instabilities for small values of mr (see table 3). 



Table 5 
...... 
-..] 

°' Newton-PILSRK applied to HIRES with h = 15. 

4-stage Radau IIA corrector 8-stage Radau IIA corrector 

Solver r m= 1 m=2 m=3 m=4 m= 10 m=20 m= 1 m=2 m=3 m=4 m=lO m=20 
PILSRK(L, I) 1 * 3.0 4.8 5.1 7.3 7.9 * * * * 8.2 9.9 
PILSRK(T, Q) * 4.5 4.9 5.3 7.7 7.9 * * * * 9.3 10.8 '.l:l 
PILSRK(L, I) 2 * 4.3 4.9 5.3 8.1 7.9 * * * * 9.2 10. l ~ 

PILSRK(T, Q) 3.9 4.4 4.9 5.4 8.2 7.9 * * 5.5 7.0 9.3 10.8 ~ 
;::: 

PILSRK(L, I) 10 3.8 4.4 4.9 5.4 8.2 7.9 * * 5.6 7.0 9.4 10.3 ~ 
PILSRK(T, Q) 3.8 4.4 4.9 5.4 8.2 7.9 * * 5.6 7.0 9.3 10.8 .... 

~ 
:::: 

" Table 6 "' i' 

Newton-PILSRK applied to Pollution problem with h = 11. ~ 
~ 

4-stage Radau IIA corrector 8-stage Radau IIA corrector so 
Solver r m= 1 m=2 m=3 m=4 m=lO m=20 m= 1 m=2 m=3 m=4 m=lO m=20 ~ 
PILSRK(L, 1) 1 2.0 3.7 6.3 7.0 10.9 10.9 * * * * 10.3 10.3 "" ~ 
PILSRK(T, Q) 1.1 5.3 6.9 7.3 10.9 10.9 * * * 6.7 12.0 12.6 :t 
PILSRK(L, 1) 2 4.6 5.7 7.5 8.5 10.9 10.9 * * * 8.0 10.3 10.7 ' '1:1 
PILSRK(T, Q) 4.9 5.7 6.7 7.9 10.9 10.9 * 2.9 6.6 7.8 12.6 12.3 I'> 

PILSRK(L, 1) 10 4.6 5.7 6.8 7.9 10.9 10.9 * 4.8 6.7 7.8 11.0 10.9 ~ 
11;" 

PILSRK(T, Q) 4.6 5.7 6.8 7.9 10.9 10.9 * 4.8 6.7 7.8 12.5 12.5 ..... 
? 
"' !:) .... 

Table 7 ~ 
Newton-PILSRK applied to the Ring Modulator with h = 1.25 x 10-1 . "' (;;" 

;; 
4-stage Radau IIA corrector 8-stage Radau IIA corrector "' c 

Solver r m= 1 m=2 m=3 m=4 m=lO m=20 m= 1 m=2 m=3 m=4 m=lO m=20 ~ 
PILSRK(L, 1) 1 * 5.7 7.8 8.5 10.2 10.2 * * * * 8.6 9.1 ;:i 

PILSRK(T, Q) * 7.3 8.4 9.7 10.2 10.2 * * * 10.5 10.8 11.1 
PILSRK(L, I) 2 5.5 7.5 8.7 10.2 10.2 10.2 * * * 8.9 9.4 9.3 
PILSRK(T, Q) 5.7 7.4 8.8 10.0 10.2 10.2 * 8.5 10.4 10.9 10.5 11.3 
PILSRK(L, 1) 10 5.8 7.4 8.8 9.9 10.2 10.2 * 8.5 9.0 8.9 9.0 9.2 
PILSRK(T, Q) 5.8 7.4 8.8 9.9 10.2 10.2 * 8.5 10.4 11.1 11.3 10.6 
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Finally, we remark that for the relatively difficult Ring modulator problem, a 
parallel implementation of the Newton-PILSRK(L, I) method on the four-processor 
Cray-C98/4256 shows a speed-up ranging from at least 2.4 until at least 3.1 with respect 
to RADAU5 in one-processor mode (cf. [11]). Since Newton-PILSRK(T('Y f. 1), Q) 
is equally expensive as Newton-PILSRK(L, I), the same speed-ups are expected for 
Newton-PILSRK(T('Y f. 1), Q). 

Appendix A. Costs of PILSRK 

In this appendix we specify the costs of the implementations of PILSRK(L, I) 
and PILSRK(T(')'),Q). In both methods the iterates satisfy the recursion 

(I - s-1 BS 0 hJ) (X<i,v) - x0,v-l)) 

= -(I - s-1 AS® hJ) (X<i,v-I) - x<i-1)) 

-x(j-l) + h(s-1A ® I)F(Y(j-l)) + (E ® l)Xn-1· 

Here, Xn-1 = (S-1 ® l)Yn-t. X<i,O) = X<i-1), x<D) = cs-1 ® I)P(Yn-d, 
X0) = X<i,r), Yn = (S 0 l)X<m), PO denotes the predictor operator, m the 
number of outer iterations and r the number of inner iterations. For PILSRK(L,l) 
and PILSRK(T('Y f. l),Q), the matrix s-1 BS is diagonal, for PILSRK(T(l),Q), it is 
block diagonal, with 2 x 2 lower triangular blocks containing identical diagonal entries. 

We implemented this recursion as in table 8. Here, N is the number of inte
gration steps. The Jacobian is assumed to be updated every time step. Notice that 
for PILSRK(L,l) and PILSRK(T('Y f. l),Q) the matrix s-1 BS is diagonal, so that 

Table 8 

Yo = (e ©!)yo, Xo = (s-1 ® l)Yo 
for n = 1,2, .. . ,N 

(sl) LU= I - diag(s-1 BS) ® hJ 

(s2) 

(ol) 
(o2) 
(o3) 

(il) 
(i2) 
(i3) 

(o4) 

y<Ol = P(Yn-1) 
x<O) = (s-1 © J)Y(O) 

for j = 1, 2, ... , m 

end 

R = x0-iJ - h(S-1 A® I)F(Y<i-1>) - (E ® l)Xn-1 
x~i.1 > = x~j-1) -(LU)-:-1-Ri • • • 
x~j.l) = x~-l) - (LU)-:- 1(R- - b·. 1hJX~j,l)) 

i 1. t i i~i- i-1 

for v = 2,3, .. . ,r 
H =(I - s-1 AS® hJ)(X0.v-1> - x0-1>) - R 
X~i.v> = xtv-tJ -(LU)"i1Hi 
X~1·"> = Xf·11 - 1> - (LU)i1(Hi - bi,i-1hJX~~~>) 

end 
x(j) = x<j,r) 

y0> = (S ® l)X<i> 

Yn = y<m>, Xn = x<ml 
end 

(for i odd) 
(for i even) 

(for i odd) 
(for i even) 
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Table 9 
PILSRK(L,J) & PILSRK(T(7 # l),Q). 

Computation Costs (flops) 
on 1 processor on a processors on s processors 

(sl) sd2(~d + * CJ + 1) 2d2(~d +*CJ+ 1) d2(jd+ ~CJ+ 1) 

(s2) 2s2d 4sd 2sd 
(ol) sd(2s + C1) 2d(2s + C1) d(2s + C1) 
(o2) (ys) 2sd2 4d2 2d2 

(il) 2sd(d+ s) 4d(d+ s) 2d(d+ s) 
(i2) (ys) 2sd2 4d2 2d2 

(o4) s2d 4sd 2sd 

Total per time step sd(jd2 +1 CJ+ d + 2s) 2d(jd2 +1 CJ+ d + 2s) d(~d2 + ~ CJ+ d + 2s) 
+sdm(2d+ 3s+ C1 +2dm(2d+ 4s + C1 +dm(2d+4s + C1 
+(r-1)(4d+2s)) +(r-1)(4d+2s)) +(r-1)(4d+2s)) 

Table 10 
PILSRK(T(l), Q). 

Computation Costs (flops) 
on 1 processor on a processors on s processors 

(sl) sd2(~d + ~ CJ+ 1) 2d2(~d +*CJ+ 1) d2(~d+ *CJ+ I) 

(s2) 2s2d 4sd 2sd 
(ol) sd(2s + C1) 2d(2s + C1) d(2s + C1) 
(o2) sd2 2d2 2d2 

(o3) 2sd2 4d2 4d2 

(il) 2sd(d + s) 4d(d+ s) 2d(d+ s) 
(i2) sd2 2d2 2d2 

(i3) 2sd2 4d2 4d2 

(o4) 2s2d 4sd 2sd 

Total per time step sd(~d2+1 CJ+ d+2s) 2d(~d2+1 CJ+d+2s) d(~d2 + ~ CJ+ d + 2s) 
+sdm(3d+4s+ C1 + 2dm(3d + 4s + G 1 +dm(6d+ 4s + C1 
+ (r - 1)(5d + 2s)) + (r - 1)(5d + 2s)) +(r -1)(8d+ 2s)) 

one can omit (o3) and (i3) for this case, if one performs (o2) and (i2) for all i. For 
PILSRK(T(l),Q) we only need u processors to perform the LU-decompositions in 
parallel, where u is the number of complex conjugated eigenvalue pairs. Here we 
assume that s is even, so u = s /2. 

Tables 9 and 10 list the costs of the most important steps of this algorithm. As 
before, d is the dimension of the problem. The average costs of one component of the 
right-hand-side function f and one entry of its Jacobian J are denoted by C1 and CJ, 
respectively. The Jacobian is assumed to be full. In the first column the computation 
that has to be performed is listed. The second column gives the number of floating 
point operations required for this computation if only one processor is available. The 
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sequential costs of the compuation on a and s processors can be found in the third and 
fourth column, respectively. For reasons of simplicity, we did not exploit the lower 
triangular form of the matrix S in PILSRK(L,J), nor the block diagonal form of the 
matrix s-1 AS in PILSRK(T(')'), Q). 

Appendix B. Method parameters 

In this appendix we specify the method parameters of the PILSRK(L,J) and 
PILSRK(T(7 /8),Q) methods for s = 4 and s = 8. We list the matrices s-1 BS and S, 
which are needed for the implementation of formula (4.4). As additional information 
we provide B, the matrix that approximates A. 

PILSRK(L,J) 

diag(s- 1ss) = (0.1130 0.2905 0.3083 0.1176)' 

( I.~ 0 0 

OJ S= -1.3205 1.0000 0 0 

2.1594 -27.2263 1.0000 0 ' 

-119.8988 -66.8265 2.3158 1.0000 

(0.1130 0 0 

OJ 0.2344 0.2905 0 0 
B= 0 . 0.2167 0.4834 0.3083 

0.2205 0.4668 0.4414 0.1176 

I s = 81 

diag(S-1BS) = (0.0288 0.0865 0.1345 0.1624 0.1654 0.1427 0.0976 0.0308), 

1.0000 0 0 0 0 0 0 0 

-1.0694 1.0000 0 0 0 0 0 0 

1.0486 -3.2354 1.0000 0 0 0 0 0 

S= 
-1.0718 7.7636 -8.1101 1.0000 0 0 0 0 

l.1852 -19.0240 62.0182 -88.1175 1.0000 0 0 0 

-1.4887 62.7656 -0.1720e4 -0.1141e4 11.3694 1.0000 0 0 

2.4708 -908.4889 -0.9526e4 -0.4070e4 39.2573 4.7028 1.0000 0 

-88.2154 -2.0073e3 -1.5590e4 -0.6097e4 58.3751 7.4699 2.0027 1.0000 

' 
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0.0288 0 0 0 0 0 0 0 

0.0617 0.0865 0 0 0 0 0 0 

0.0553 0.1553 0.1345 0 0 0 0 0 

B= 
0.0583 0.1424 0.2261 0.1624 0 0 0 0 

0.0567 0.1483 0.2106 0.2619 0.1654 0 0 0 

0.0575 0.1454 0.2171 0.2471 0.2572 0.1427 0 0 

0.0571 0.1467 0.2144 0.2522 0.2460 0.2124 0.0976 0 

0.0573 0.1463 0.2151 0.2510 0.2483 0.2073 0.1338 0.0308 

PILSRK{T(7 /8),Q) 

Js=4J 

diag(S-1BS) = (0.1521 0.1986 0.1737 0.2269)' 

( 2.9526 0.3159 1.5325 0.0076) 
S= -7.2663 -0.8756 -1.0553 -0.3113 

3.4202 0.9493 -10.7997 -2.1349 ' 

34.8970 4.3753 -42.9039 -5.8960 

B~ ( 
0.1096 -0.0430 0.0268 -0.~0l 
0.2085 0.3064 -0.0671 0.0211 . 
0.2484 0.0823 0.2573 -0.0142 

0.2596 -0.0515 0.4219 0.0780 

I s = 81 

diag(s-1 BS) = (0.0679 0.0886 0.0768 0.1003 0.0823 0.1074 0.0849 0.1109), 

0.1430 0.0149 0.0051 -0.0013 -0.0208 -0.0029 0.0180 -0.0001 

-0.2667 -0.0284 -0.0306 -0.0006 0.0195 0.0034 -0.0182 -0.0002 

0.4848 0.0540 0.0915 0.0083 -0.0050 -0.0010 0.0205 -0.0008 

8= 
-0.8881 -0.1065 -0.0372 -0.0099 0.0975 0.0101 -0.0112 -0.0072 

1.1326 0.1628 -0.9048 -0.0996 0.2347 -0.0050 -0.1102 -0.0522 ' 
1.6603 0.1105 -0.2681 0.0933 -1.0125 -0.2481 -1.3834 -0.2826 

-5.9025 -0.7539 7.6108 1.0254 -7.3467 -1.0128 -6.3367 -0.8981 

-8.9828 -0.9978 14.1609 1.6360 -14.1886 -1.6730 -12.2810 -1.4897 
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0.0507 -0.0264 -0.0147 -0.0077 0.0061 -0.0034 0.0022 -0.0008 

0.0295 0.0856 0.0153 0.0162 -0.0104 0.0059 -0.0037 0.0014 

0.0513 0.1372 0.0952 -0.0314 0.0170 -0.0096 0.0059 -0.0022 

B= 
0.1601 0.0455 0.0662 0.1458 -0.0342 0.0201 -0.0127 0.0048 

0.2072 0.0253 0.0569 0.0462 0.1460 -0.0312 0.0131 -0.0034 

0.2495 -0.0151 0.0590 0.0185 0.1461 0.0202 0.0634 -0.0262 

0.2568 -0.0281 0.0923 -0.0159 0.0405 0.0418 0.2095 -0.0688 

0.2653 -0.0325 0.0873 -0.0924 0.1092 0.0499 0.2190 -0.0340 
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