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1. Introduction

It is a pleasure for me to contribute to this farewell bundle for Cor Baayen.
During his long period of involvement with the Mathematical Centre he has
demonstrated from the beginning a wide interest in all kinds of pure math-
ematics, see his publications and colloquium contributions on many different
topics during the sixties. During his years as a head of the Department of
Pure Mathematics (ZW) he will have been aware that some pure math was
being done within the MC but outside his department. In the late seventies I
joined his department, but quite soon Cor was then called for a higher post:
director of the whole institute. Next the departments of Pure and of Applied
Mathematics joined into the new Department of Analysis, Algebra and Ge-
ometry, headed by Michiel Hazewinkel. In his new position, Cor had to deal
with a much bigger world than just pure math. It included all kinds of applied
math and a very large amount of computer science. Forced by national science
policy and by financial constraints he had to take some unfavorable decisions
concerning the heritage of his old ZW department. Fortunately, on a coun-
trywide scale, he could give pure (or theoretical) mathematics some important
financial injections via the foundation SMC (mathematics research money flow
to the universities), of which he was automatically also a director. In my opin-
ion Cor was a good science manager, showing a real interest in the research
being done in his institute and in the people performing this research.

In this paper I present a brief survey of the active area of Special Functions
associated with Root Systems. The article is intended for a general mathemat-
ical audience. It will not suppose prerequisites on either special functions or
root systems. It will also skip many technical details. Some early developments
in this area took place at the Mathematical Centre during the seventies ([17],
32]), and some recent developments ([30], [18]) as well. During the last ten
vears important break-throughs were made by Heckman and Opdam (Leiden;
Heckman later in Nijmegen) [11], [27], [28], [12]. Abroad, I. G. Macdonald [23],
24], C. F. Dunkl [8] and I. Cherednik [3], [4], [5] greatly contributed to the sub-
ject. A special period at the Stieltjes Institute (physically at the Universities ot
Leiden and Amsterdam) was devoted to this subject in the spring of 1994. The
subject is also an important theme within the four-year country-wide project

“Lie Theory and Special Functions”, which just started and which is sponsored
by SMC.

391



he "‘%%%hgwﬁs of this paper comes ﬁ"mga analvsis on

Sune mm %pw m? dw rete %Eﬁ o5,
| also fo

f unctions, as well ¢
theoretic arguine
apwmé fmwm MIS associate

he .'ﬁémﬁmi Case, E;m HOW as con ﬁ% tures

3essel functions as a sole exception. (For an m% Wmm on
t{t} %; h@ non- p{_}%vumm mé CASe SO {‘2@3 31 f n} Neither will I discuss the recent work

on commuting operators with elliptic functions as coefhcients. An important
aspect of the whole theory, which will not be discussed very much in this
paper, is the connection with completely integrable systems, for instance the
generalized Calogero-Moser systeni.

Special functions associated with root systems have also been developed
in the q-f&w where ¢ 1s a deformation parameter giving back the earlier cas
when ¢ = 1. Motivation and development of the theory in the g-case has been
quite diﬁﬁ%ﬁ%nt from the ¢ = 1 case. Except for the case of Hall polynomials
1221, theory was developed [23], [24], [18] without interpretation in group theory.
But afterwards quantum groups looked very promising as a natural setting for
these polynomials. This had turned out to be true in the one-variable case
1191, and very recently some interpretations of more-variable cases on quantum
groups were found [25], [10].

In any case, a quantum group interpretation for generic values of the pa-
-ameters cannot be expected. But, by Cherednik’s work [3], [4], |5] we know
already another algebraic setting for special functions associated with root sys-
tems: affine and graded Hecke algebras [20]. As shown by work of Opdam |29,
this new algebraic context also allows harmonic analysis.

Y e M

2. The one-variable ca:

e

In this section I will introduce three classical families of special functions, each
depending on a real parameter £k > (, and such that the cases £ = 0 and
k = 1 are iﬁimnentary The three families are connected with each other by
$318 11151 ach of the fmmh% I will discuss generalizations
AT &SSO c::mwd Wlth root systems.

Consider Bessel functions in a non-standard nota-

Ti(r) := Z {{_% Z)f-j'

3=}

(2.1)
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Here we use the notation for shifted factorial:
(@) =ala+1)...(a+j—-1) G=1,2..) (a)o:=1

The function J; is related to the Bessel function J, in standard notation [9,
Ch. VII] by

1

2k=3 T(k + %)

\7’0(37) — 1 Jk-—-%(a")'
4
Note that
Tk(z) = Tr(-z),  Jk(0)=1. (2.2)
The cases £k = 0 and k£ = 1 yield elementary functions:
SIn T
Jo(x) = cos z, Ji(z) = 13: (2.3)

The function z — Jr(Ax) (A € R) is eigenfunction of a differential operator:
— + — --——) Te(Az) = —X° Tp(\z).

It is the unique C°° solution of this differential equation under conditions (2.2).

2.2. Ultraspherical polynomials. Consider ultraspherical or Gegenbauer
polynomials [9, §10.9], i.e. polynomials C* of degree n on R such that

/ CF(cosz) CF (cosx) (sinz)**de =0 (n,m € Z,, n# m).
0

Then the CJ are determined up to a constant factor (in general, we will not

use the standard normalization for Gegenbauer polynomials). For £ = 0,1 we
have:

sin((n + 1)z)

C?(cos z) = const. cos(nz), C'(coszx) = const. —
sin

(2.4)

The function z — CF(cos ) is eigenfunction of a differential operator:

d? d
— + 2 tr — K = - 2k) C* :
(d:cz + 2k cotx d:}:) C>(cos ) n(n + 2k) C;; (cos )

For (ny) being a sequence of positive integers such that ny /N — X\ for some
A >0 as N — oo, we have the limit result

i Cny (cos(z/N))
i

= Jk(Ax).

2.3. ¢-Ultraspherical polynomials. Let 0 < ¢ < 1 and define for any

complex a:
OC

(@5 @)oo 1= H(l — a'qj)'

jm
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The infinite product converges because of the condition on q. We will con-

sider g-ultraspherical polynomials [1] in a non-standard notation. These are
polynomials C*+4 of degree n on R such that

2

T 82‘5:2?;
/ CF4(cosz) C*%(cos x) (k %TQ)-OS de =0 (n,m € Zy, n#m).
0 | (g%€**7; q) o

Then the C*9 are determined up to a constant factor. If we put
Pn(e”) — Cﬁ’q(cos x)

then P, is eigenfunction of a g-difference operator:

. 1 — qkem—%w

Pn(q§ezx) T mi........ "e;gil;

1 — qkefzz':l':

s —_ ; - 3 % L. .,
s Pa(g™}e™) = (¢73" + ¢3"7F) Py ().

Note that the P,, on the left hand side have arguments off the unit circle, while

orthogonality is on the unit circle. The cases k = 0 and £ = 1 are elementary
as in (2.4) (not depending on q):

CY9(cos z) = const. cos(nz), C'4(cosx) = const. ————~ .

With suitable normalization there is the limit relation

li%lil Ck4(cosx) = CF(cos T).
q

The g-ultraspherical polynomials form a subclass of the Askey-Wilson polyno-

mials [2]: a family of orthogonal polynomials depending, apart from g, on four
non-trivial parameters.

2.4. Dunkl operators in one variable. We will now generalize the ele-
mentary formulas

N d o
e = To(Azx) + i x J1(Az) and - e'?T = j\ e (2.5)

(the first formula follows by (2.3)). Dunkl [8] generalized the operator d/dx to
a mixture of a differential and a reflection operator:

£Z

(D™ f)(z) = f'(=) (2.6)

Note that this Dunkl operator sends smooth functions to smooth functions.

Let us define a generalized exponential function in terms of Bessel functions
(2.1) by
Ex(Ax) = Ti(Ax) + iM—--j (Ax) (2.7)
KA\AT ) = JE\AL ) 1 k-+1 . .
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Then it follows immediately from well-known differential recurrence formulas
for Bessel functions that

D¥®) £ (A\x) = iXEx(Ax). (2.8)

Formulas (2.7) and (2.8) generalize the formulas in (2.5). The function x

Ex(Ax) is the unique C'*° function which equals 1 in 0 and which 1s eigenfunction
with eigenvalue i\ of D).

For (D*))? we compute

(D(k))2 f(x) __ f”(ZL‘) i __2_5 f'(:c) _ L f(z) — f(#._?) |

=
T

Thus, on even functions f the square of the Dunkl operator acts as the differ-

ential operator (d/dx)? 4+ 2kxz~! d/dz. In particular, its action on

Ji(Ax) = %(Sk()\a::) + Ex(—Ax))
yields
(D(k))z jk()\aj) = —)\? ._7;;()\.’13)

3. Preliminaries about root systems

3.1. Definition of root system. Let V be a d-dimensional real vector

space with inner product (., .). For a € V\{0} let s, denote the orthogonal
reflection with respect to the hyperplane orthogonal to « (cf. Fig. 1):

A root system in V (see [15]) is a finite subset R of V\{0} which spans V' and
which satisfies for all o, 8 € R the two properties that

s4(3) € R and %ﬁfj c 7.

Clearly, if « € R then —a = s4(a) € R. For convenience, we will restrict
ourselves to the case of a reduced root system, i.e., a root system R such that,
if a,3 € R and o« = ¢ for some ¢ € R, then ¢ = 1. The so-called irreducible
root systems can be classified as four infinite families A,,, B,,, C,, D,, of classical
root systems and five exceptional root systems Go, Fy, Eg, E'7, Eg. Here the
subscript denotes the rank of the root system, i.e. the dimension of V. There
is one infinite family of non-reduced irreducible root systems: of type BC,,.

\  A(0,2)

\ £y

1,1)
Sa(0)
2,0

|

|

I ~R,

| —2 2 \
< e ..

Fig. 1. Reflection s, Fig. 2. Root system A, Fig. 3. Root system Cs
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An example for d = 1 is the set R := {£2} C R (root system of type
Ay, cf. Fig. 2). An example for d = 2 is the set R = R, U (—R,), where
Ry := {(1,-1),(2,0),(1,1),(0,2)} C R* (root system of type Cs, cf. Fig. 3).
In general, when we have a root system R in V then we can write it as a disjoint
union R = R, U(—R,), where R, and — R are separated from each other by
a hyperplane in V through the origin. The choice for R, is not unique. The
elements of R are called roots and the elements of R are called positive roots.

Let GL(V) be the group of invertible linear transformations of V. The
Weyl group W of the root system R is the subgroup of GL(V) which is gener-
ated by the reflections s, (a € R). The group W is finite and it acts on R. It
permutes the possible choices of R, in a simply transitive way.

3.2. Dunkl operators associated with K. Let R be a root system 1n
V. Let k:a — ko: R — [0,00) be a function which is W-invariant, i.e., which
satisfies k,,., = k., for all w € W and all « € R. If R is an irreducible
(reduced) root system then the Weyl group is transitive on all roots of equal
length and there are at most two different root lengths. Thus &k, then assumes
at most two different values. See the above examples: one root length in A;
and two root lengths in 3. The function k is called a multiplicity function.
The reason for this name is that root systems naturally arise in the structure
theory of real semisimple Lie algebras, where roots have an interpretation as
joint eigenvalues of certain operators and the k., then are (integer) multiplicities
of such eigenvalues.

For ¢ € V we will denote by 0; the corresponding directional derivative.
The Dunkl operators (8], [16] associated with the root system R and the multi-

plicity function k are defined as the operators Dék): Co(V)—=C=®V) (&eV)
given by

(DE f)(z) = @ef) @) + 3 haler,g) LEL=IEaD) gy

& Ry <(I, 3:)

This definition is easily seen to be independent of the choice of Ry. In case of
root system A; formula (3.1) reduces for £ := 1 to formula (2.6). Note that the
operator (3.1) consists of a term involving a first order derivative and terms
involving reflection operators, just as we have seen in (2.6). It is an amazing
fact, which can be proved in a rather straightforward way, that the operators

Dék) commute:
(D, D=0 (&neV).

Let D'*) be the algebra generated by the operators Dék) . This is a commutative

algebra. It can be shown that each W-invariant operator D In D(k) | when
restricted in its action to the W-invariant C° functions on V', coincides with a
partial differential operator (so its reflection terms vanish when acting on a W-
invariant function). The joint W-invariant eigenfunctions of the W-invariant
operators in D(*) are called Bessel functions associated with R. In the example
A; things reduce to the one-variable considerations of §2.1 and §2.4. More
generally, one may study the joint eigenfunctions of the full algebra D(*) and one
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may try to do harmonic analysis for these eigenfunctions. A lot of satistactory
results have been obtained, see [16] and the references given there.

3.3. Weight lattice asscociated with R. We still assume a root system
R in V. The weight lattice P of R is defined [15] by

2{\, @) €Z foralla e R}.
(a, a)

P:={\eV |

The subset P, of dominant weights is then given by

2(\, )

P, :={\€ P| (o, o)

>0 foralla€ Ry}

It is easily seen that w(P) = P for w € W, so the Weyl group acts on P.

Moreover, it can be shown that each Weyl group orbit in P has a one-point
intersection with P, :

YA€ P Card(WANPL) = 1.

Thus the dominant weights can be used as a set of representatives for the
W -orbits in P.

Fig. 4. Root system C3 with dominant weights and the set {pue Py | u=< A}

We introduce a partial ordering on P which is induced by the root system:

for \,u € P wesay that p < Xif A\—p =2 g Mmoo for certain nonnegative

integers mo,. For root system C» the concepts of this subsection are illustrated
in Fig. 4.

3.4. Trigonometric polynomials associated with R. Let P be the

weight lattice of a root system R in V. For A € P define the function e
on V by

e*z) := M (z e V).

Note that e* e# = e*T#. Thus the space

A := Span{e” | A € P}
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1s an algebra: the algebra of trigonometric functions on V (with respect to R).

For a function f on V write (wf)(z) := f(w™'x) (w € W, z € V). Then
we? = e?* (w e W, A € P). Put

L)y, <= Z et ()\EP+)
HEW A

Then the functions my are W-invariant and they form a basis of the space AW
of W-invariant elements in A.

Let the dual root lattice ()" be defined by

Q:={ eV |{\u €Z forall ue P}.

This lattice gives rise to a torus
T :=V/(27Q").

Let x — = be the natural mapping of V onto T. Then each function f in A
actually lives on T: f(x) = f(2) for a suitable function f on 7.

In the example A; we have P = Z, P, = {0,1,2,...}, the algebra A is
spanned by the functions z + e™* (n € Z) and the subalgebra A" by the
functions 1 and z +— 2cos(nz) (n =1,2,...). The torus T equals R/(27Z).

4. Jacobi polynomials associated with R

4.1. Definition of Jacobi polynomials for K. Let R be a root system
in V and let k: R — [0,0) be a W-invariant multiplicity function as before.
Define a weight function 6, on T by

Or(x) := H 12 sin((a, z))|%%. (4.1)

CEER.;.

This definition is independent of the choice of Ry. Define an inner product on
the linear space A by

(fr9)k = /;f(f)mék(fﬁ)df (f,g€A). (4.2)

Here dz denotes Lebesgue measure on 1', normalized such that the volume of
T 1s equal to 1.

The Jacobi polynomial P)(\k) (cf. [11]) of “degree” A € P, and of “order”
k is an element of A" of the form

(k) _
Py = § : Ca,u Ty

e by
1= A
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such that ¢y » = 1 and
(P m, ) =0 ifpePyandpZ (4.3)

Instead of (4.3) we can equivalently require that P)(\k) satishes the second
order differential equation

(A4 3" ka cot(3{e, ) 8a) P{V(@) = (A A+ Tocr, kaa) P (2). (4.4)
ac Ry

In the example A; we obtain that P,,.g,k)(:c) = const. C*(cos z), where C¥
is the ultraspherical polynomial of §2.2. The case of the (non-reduced) root

system BC; would have given us, more generally, the classical one-variable
Jacobi polynomials.

4.2. Three problems and their solutions. As soon as the above defini-

tion of Jacobi polynomials associated with R is given, three highly nontrivial
questions can naturally be posed:

1. It follows immediately from the definition that the orthogonality
k
(P, B{F)i =0 (4.5)

holds if 4 2 A or A 3 p. What about (4.5) if A and p are not related in
the partial ordering?

2. Prove the existence of a commutative algebra of differential operators with
d algebraically independent generators, such that the operators in this

algebra have the P)(\k) (A € Py) as joint eigenfunctions. (Note that the
operator in (4.4) can be taken as one of the generators.)

3. Give an explicit expression for (P)(\k), P)(\k))k, or rather for its two factors

<P)(\k):P)(\k)>k‘
k) ~(k
(PSR, P§Myy

and /T 6r(x) dz. (4.6)

In the past few years all these questions have been answered in the positive
sense. Let me give some indications.

e If problem 2 can be solved then the answer to 1 follows readily, cf. [11].

Indeed, we need sufficiently many differential operators having the P)Ek) as
eigenfunctions such that the joint eigenvalues, in their dependence on A,
separate the points of P..

e For certain special choices of k£ the functions P)(\k)j, renormalized such that

Pik) (0) = 1, have an interpretation as spherical functions on compact sym-

metric spaces G/K, cf. [14]. (For instance, in case A; the ultraspherical
1o —
polynomial C2"" ' can be interpreted as spherical function on the (m —1)-

dimensional sphere SO(m)/SO(m —1).) Then problems 1, 2 and the first
half of problem 3 can be solved by using the group theoretic interpretation.
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The orthogonality (4.5) for general A, o follows by Schur’s orthogonality
relations for matrix elements of irreducible unitary representations of G.
The first expression in (4.6) was explicitly computed by Vretare [33] in
terms of Harish-Chandra’s ¢-function related to the spherical functions on
the corresponding non-compact symmetric space. The algebra of differen-
tial operators in problem 2 can be obtained by taking the radial parts of
the G-invariant differential operators on G/ K.

e Lor the classical root systems question 2 could be answered in a positive
way by giving explicit expressions for generators of the algebra, see [17]
for BC> and Aj, and Olshanetsky & Perelomov [26], Sekiguchi [31] and
Debiard [6] for the higher rank cases.

e Heckman and Opdam [11] have given positive answers to 2, and hence to 1,
by use of deep transcendental arguments. This also solved part of Problem
3 (the first expression in (4.6)). In 1982 Macdonald [21] had already given
conjectures for the explicit evaluation of the second expression in (4.6),
which could be proved in a number of special cases.

e Problem 3 for general A\ was solved by Opdam |28] by using so-called shift
operators [27]. The most simple example, for case Ay, of such operators
1s the following pair of differential recurrence relations for Gegenbauer

polynomials:
d
a*; Cﬁ(df) = const. C,::ji(il?),
d )
((1 — g2)"k+3 = © (1 - $2)"’+%) C**1(zx) = const. Cr(x).

By use of these two formulas we can write fjl(Cﬁ (2))2 (1 — z2)k~2 dz as

an explicit constant times fi 1(02“;}(:1:))2 (1 — z2)k*3 dz. Opdam’s shift
operators in general have a similar structure of lowering A and raising k,

or conversely. The case of root system B(5 was already considered in [17],
32].

4.3. Dunkl type operators. Some years after Heckman first solved the
problems 1 and 2 of the previous subsection he discovered a dramatical sim-
plification {12| for proving these results. For a given root system R in V and

a given multiplicity function £ he wrote down a trigonometric variant of the
Dunkl operators (3.1) for £ € V:

(D7 f)(x) == (Bef)(@) + 5 D ka0, &) cot(3(a,z)) (f(z) — f(saz))

ac Ry
(x eV, fe C®(V)). (4.7

)

Now the operators Dék will no longer commute, in general. However, Heck-

man showed that the operators Znewg(D,,(,,k))j (EeV, g :‘O, 1,*2, ...), when
restricted to the W-invariant C'°° functions on V', coincide with differental op-
erators which commute with each other and form a commutative algebra. This
is the algebra looked for in Problem 2 of the previous subsection. The Jacobi
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polynomials P)Ek) are the joint eigenfunctions of the operators in this algebra.
By this approach, Heckman also obtained a quick existence proof for Opdam’s
shift operators.

Next Cherednik [3]| made a slight but significant variation in Heckman’s
Dunkl type operators (4.7). He put

(BEHE) = @N@ + 3 ko (@,8) T—gmargy (@) — Flsaz)
CIER.{.
"“% Z ka <a: I> f(:l’:)
ac Ry

(Here I took the part of the right hand side on the second line from Opdam |13,
p-86]; Cherednik is not very specific about this part of his formula.) Cherednik’s
operators have the nice property that they mutually commute, without the
need of first restricting to W-invariant functions. On the other hand, they do

not share the property wDék) w™l = fog) of Heckman’s operators. Anyhow,
by means of Cherednik’s operators one can draw the same conclusions as by
Heckman’s operators, and in a similar way. Moreover, a structure of graded
Hecke algebra can be associated with Cherednik’s operators.

5. Macdonald polynomials associated with R

5.1. Definition of Macdonald polynomials. Let 0 < ¢ < 1. We keep the
assumptions of §4.1 except that we replace the weight function é; in (4.1) by

2

ei(a,:t:); -
5k (T) 1= H (€5 q)0

ko pilc,z)-
CEER+ (q € ax?Q)OG

Then the Macdonald polynomials P)(\k’Q) were defined by Macdonald [23], [24]

just as the Jacobi polynomials Pﬁk) , but with the inner product in (4.2) replaced
by

()b = /T (2)9@) brg(z)dz (f,g € A).

In the case of root system A; the Macdonald polynomials coincide with the
g-ultraspherical polynomials = +— C%9(cosz). For any root system R, in the

limit for ¢ T 1, the Macdonald polynomial Pﬁk’Q) tends to the corresponding
. . (k)
Jacobi polynomial ;™.

Macdonald gives some explicit g-difterence operators of which the P)Ek’Q)

are eigenfunctions. Although these operators, except for root system A,, (where
they were independently found by Ruijsenaars [30]) do not yet give a full com-

mutative algebra of operators having the P)(\k’Q) as joint eigenfunctions, the
additional parameter ¢ gives enough freedom such that already the eigenvalue
of one such operator separates the elements of P, for generic ¢q, by which a
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positive answer to question 1 in §4.2 can be given for the case of Macdonald
polynomials. Taking limits for ¢ | 1 then yields the same positive answer for
the case of Jacobi polynomials. This is an alternative to Heckman’s approach
via Problem 2. Macdonald also gives conjectured explicit expressions for the

squared norms (P)(\k";’), P)(\kmﬂ:,q'

5.2. Askey-Wilson polynomials for root system B(,,. The author 18]
introduced for the non-reduced root system BC,, a class of polynomials having
two more parameters than Macdonald’s class for BC),,. This extended class
reduces for n = 1 to the Askey-Wilson polynomials [2]. In [18] only one explicit
g-difference operator was given having the BC,,-polynomials as eigenfunctions,
but this was sufficient for establishing orthogonality. Later, van Diejen |[7]
gave explicit expressions for the generators af a full commutative algebra of
operators having the B(C,, polynomials as joint eigenfunctions.

5.3. Cherednik’s approach to Macdonald polynomials. Cherednik [4],
5] succeeded to give positive answers to questions 2 and 3 in §4.2. In the
context of certain representations of affine Hecke algebras he could realize a
commutative algebra of operators which have the Macdonald polynomials as
joint eigenfunctions. In the same context he could realize g-analogues of Op-

dam’s shift operators and next, by the same technique as in Opdam, prove
Macdonald’s conjectures in the g-case.

It is beyond the scope of this short survey to explain Cherednik’s approach
in any detail. In May 1994 I. G. Macdonald delivered some very helptul lectures
in Leiden in order to explain Cherednik’s approach. Let me here only give a tew
indications. Just as a Hecke algebra is a deformation of the group algebra of a
Weyl group, an affine Hecke algebra (cf. [20]) deforms the group algebra ot an
affine Weyl group. If R is an irreducible root system in V' with Weyl group W
then the (extended) affine Weyl! group is the semidirect product W := W x P,
where the dual weight lattice P is defined as P := {A € V | (A\,a) € Z}, an

abelian group under addition. Then W acts as a group of motions on V', with
P acting as a group of translations. The group W also acts on A, with W
acting as before and with the action of P~ still depending on a parameter g.

The affine Hecke algebra H can be defined in terms of generators and
relations which still depend on the values of a W-invariant function a — £, on
R. Corresponding to a choice of R, we can define P,". The embedding ot Py
in H then generates a commutative subalgebra V of H.

For given g we can use the action of W on A in order to define an action
of H on A, by specifying the action for a set of generators of H (Demazure
operators). This action depends on g and the t,. Put t, = g~ F=/2 where
k: R — [0,00) is a multiplicity function. Then Cherednik proves that the

Macdonald polynomaials P)(\k’Q) are the joint eigenfunctions of the W-invariant
elements in the commutative algebra ). This answers question 2 in §4.2.

At the moment it is still an open problem to extend Cherednik’s approach
to the BC,, polynomials. As van Diejen [7] already answered question 2 in §4.2
in a positive way for this case, it would be nice to complement van Diejen’s
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constructive approach with the deep conceptual approach via afiine Hecke al-
gebras.
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