
Premo: An ISO Standard for a Presentation Environment

for Multimedia Objects

To Car Baayen, at the occasion of his retirement

I. Herman, P.J.W. ten Hagen, G. Reynolds
CW/

Department of Interactive Systems

Kruis/aan 413, 1098 SJ Amsterdam, The Netherlands

{ivan ,pa ulh, reynolds }©cwi. nl

PREMO is a major new ISO /IEC standard for graphics and multimedia!
which addresses many of the concerns that have been expressed about exist­
ing graphics standards. In particular, it addresses the issues of configuration,
extension, and interoperation of and between PREMO implementations. This
paper gives an overview of PREMO and highlights its most significant fea­
tures.

1 INTRODUCTION

The Graphical Kernel System GKS[l] was the first standard for computer
graphics published by the International Organisation for Standardisation (ISO).
It was followed by a series of complimentary standards, addressing different ar­
eas of computer graphics. Perhaps the best known of these are PHIGS[2],
PRIGS PLUS[3], and CGM[4]. More recently, GKS[5] has been revised.
These standardised functional specifications have had reasonable success either
via direct implementations or through the influence they have had on the spec­
ification and development of other graphics packages (the most notable of this
second category being the 3D extension of the X Window System, PEX[6, 7],
which is largely based on PRIGS PLUS).

In spite of important differences in their functionality, these standards share
a common architectural approach, which, although not a requirement defined
within the documents, has resulted in implementations that are large mono­
lithic libraries of a set of functions with precisely defined semantics. They
reflect an approach towards graphical software libraries predominant in the
seventies and the eighties. However, these standards have little chance of pro­
viding appropriate responses to the rapid changes in today's technology, and in

347

particular, they fail to fit into the software and hardware system architectures
prevailing on today's systems.

The subcommittee responsible for the development and maintenance of graph­
ics standards (ISO/IEC JTC1/SC24) recognised the need to develop a new
line of graphics standards, along radically different lines from previous meth­
ods. To this end, a new project was started at an SC24 meeting at Chiemsee,
Germany, in October 1992. Subsequent n1eetings (New Orleans, USA, January
1993; Steamboat Springs, USA, Jur1e 1993; Manchester, UK, November 1993;
Amsterdam, The Netherlands, March 1994; Bordeaux, France, June 1994) re­
sulted in a Draft for a new star1dard called PREMO (Presentation Environ­
ment for Multimedia Objects)[8]. This new work was approved by ISO /IEC
JTCl in February 1994, and is now a major ongoing activity in ISO /IEC
JTC1/SC24/WG6.

The term ''Presentation Environment'' is of utmost importance in the spec­
ification of the scope of PREMO. PREMO, as well as the SC24 standards cited
above, aims at providing a standard programming environment in a very gen­
eral sense. The aim is to offer a standardised, hence conceptually portable,
development environment that helps to pro1note portable graphics and mul­
timedia applications. PREMO concentrates on presentation techniques; this is
what primarily differentiates it from other multimedia standardisation projects.

One of the main differences between PREMO and previous standards within
SC24 is the inclusion of multimedia aspects; hence this activity is of importance
for both the multimedia and graphics communities. The purpose of this paper
is to present the motivation behind the development of PREMO, its major
goals, and its relationship to other multimedia standards. An overview of the
architecture of PREMO is given, although much of the detail is still subject to
changes that result from the technical review process within ISO.

2 MOTIVATION

Three requirements have shaped the architecture of PREMO:

• the appearance of new media;

• the need for configurable and extensible graphics packages;

• the requirements of distributed environments.

2.1 Incorporation of Various Media
'

Traditional computer graphics systems and graphics applications have primar­
ily been concerned with what might be called the presentation of synthetic
graphics, i. e., displaying pictorial information, typically on a screen or paper.
The aims of any two presentations may be very different. Two characteristic
examples are:

348

• produce photorealistic images (e.g., in commercial film production, or
high quality animation) using very complex models describing the sur­
rounding reality;

• produce ergonomically sound and easy-to-grasp images of complex com­
puted or measured data (e.g., in scientific visualisation, or medical imag­
ing).

These ai1ns determine different fields of interest within computer science, which
are all referred to under the heading of ''computer graphics'' and which are all
to be addressed by PREMO.

Developments over recent years have, however, resulted in new applications
where sy11t11etic graphics in isolatiori (:annot cope with the requirements. Tech­
nology has made it possible to create systems which use, within the san1e ap­
plication, different presentation techniques that are not necessarily related to
synthetic graphics, e.g., video, still images, and sound. Examples of applica­
tions where video output, sound, etc., and synthetic graphics (e.g., animation)
coexist are numerous and well-known. It is therefore a natural consequence to
have development environments that are enriched with techniques supporting
the display of different n1edia in ,t consistent way, and which allow for tl1e var­
ious media-specific presentation techniques to coexist withi11 the same system.

''Coexistence'' is not enough, though; integration is also necessary. For ex­
ample, an audio display is not necessarily independent from the (synthetically
generated) image being displayed: the viewer's position in the model, or indeed
the model itself when displayed, may influence the attributes of audio presen­
tation. This influence may be very simple (e.g., the volun1e may depend on
the distance from the viewer), but it may also require very complicated sound
processing techniques (e.g., to take the acoustic properties of the room model
into account for sound reflection and absorption). In other words, it should
be possible to describe media objects integrated with geometry and with one
another, and also to describe and control their mutual influence. The complete
integration of various media and their presentation techniques within the same
consistent framework is one of the rnajor goals (and challenges) of PREMO, and
one of the features which will make it very different fron1 earlier SC24 stan­
dards, and indeed, other rnultimedia standards that are either already available
or under development (such as HyTime[9], HyperODA[lO], and MHEG[ll]).

The introduction of r1ew n1edia brings new problems for PREMO that, hith­
erto, have been unknown in earlier SC24 standards. One of the most intricate
issues of some importance is that of synchronisation, e.g., synchronisation of
video and sound presentation. This problem is well-known in the multimedia
community; its integration with the more general demands of a presentation
system will obviously be a challenge.

2.2 Configurable and Extensible Graphics Packages

As mentioned in §1, most traditional ISO graphics packages, as well as the
majority of graphics systems available on the market-place, are defined as

349

monolithic libraries containing large sets of functions with precisely defined
semantics. These libraries are frequently referred to as kernels. The choice of
functionality for a specific kernel reflects the particular application areas which
the kernel tries to address.

Modifying and extending the existing fu11c:tionality of a kernel requires the
definition of additional sets of functio11s. These functions n1ay either add to
or n1odify existing behaviour. However, n1odification of tl1e sta11dard interface
is not allowed, which often mear1s that these new definitions form cornpletely
separate packages on top of the standard with their own sets of well-defined
functions.

This rigidity of current ISO graphics standards is in a sharp contrast with
the extraordinary diversity of the algorithms used in computer graphics, in vi­
sualisation, and in other related application areas. Radically 11ew visualisation
techniques are developed, old and apparently well-established algorithms are
constantly re-visited. This diversity and fervent activity is very well reflected
in the proceedings of the major computer graphics and visualisation confer­
ences worldwide (such as, for exan11)le, the ACM SIGGRAPH, Eurographics,
and Nicograph annual conferences and workshops, IEEE's Visualisation con­
ferences, etc.).

As a consequence, major re11dering techniques, which are almost common­
place in advanced graphics applications, ca11not be integrated into SC24 stan­
dards; the n1ost startling examples being ray-tracing and radiosity. Although
these graphics standards include a rudimentary rr1echanism to add new graphics
primitives, for example in tl1e form of the GDP, (Generalised Drawing Pri1n­
itives), this mecl1anisn1 does not give the full power needed by a number of
applications to add new display algorithn1s and/ or to modify some aspects of
the ones included in tl1e package ir1 use1 .

Note that tl1e i11clusion of different media into a new standard makes this
type of problem more acute. The techniques to achieve integration of media
are extremely disparate, and tl1ey use the results of various fields of computing
technology, like, for example, high quality synthetic graphics, image processing,
speech synthesis, etc. Some of the techniques are also application dependent. It
is almost impossible to define a closed programrr1ing environment which would
satisfactorily encompass all these needs; even if a specification could be finished,
complete implementations would be so con1plex that the entire product would
lag behind curre11t technology.

The usual approach to solve such problems is to use object-oriented tech­
niques. This is also the approach that has been adopted by PREMO. Object­
oriented techniques have already bee11 used for graphics and for multimedia,
and they have proven their values in using inheritance as a tool for extensibil­
ity and user configurability (see, e.g., [12, 13, 14, 15, 16]). Using inheritance,
additional information may be integrated into an existing object of a graph­
ics system, allowing extensive reuse of inherited methods. Referring to the

1 Escapes also offer some possibilities for modifying algorithms in a restricted way, but
such extensions lead away from portability.

350

example above, in a carefully designed object-oriented system it would be pos­
sible to redefine the reflection equations of a ''shader object'' only, and thereby
make full use of the power of the surrounding system with the shading method
adapted for a particular use.

2. 3 Distribution
It is no longer necessary to argue in favour of distributed environments; their
widespread availability has made their use very natural in both acaden1ia and
industry. Some graphics and multimedia applications and tools are notoriously
computationally intensive, and as such are prime candidates to exploit the
advantages offered by a distributed environment.

There have been numerous projects in the past which have tried to use, e.g.,
GKS or PHIGS in a distributed setting; it was never easy. Indeed, the SC24
graphics standards were not particularly well prepared for distribution (see, for
exan1ple, [17, 18, 19]). In contrast, and using the ter111i11ology which has becorne
widespread in the past years, particular PREMO in1pler11entations may offer
multi1nedia or graphics ''services'' 011 a network; }1ence, the PREMO specification
should allow for tl1e straightforward implementat,ion of such services.

Object-oriented technology also provides a framework to describe distribu­
tion in a consistent n1anner. Objects can be considered as closed entities which
provide ''services'' via their methods; from the point of view of the object spec­
ification it is immaterial how an object method is realised: within the same
progra1n, or via calls across a network.

Defining complex object--oriented systems to be used in a distributed envi­
ronment leads to software engineering issues, ,vhose complete solution would
go far beyond the charter (and the experiences) of tl1e PREMO working group.
Instead, the PREMO specification will rr1ake use of t,echniques developed else­
where, both within and outside ISO. Currer1tly, anotl1er ISO working group
(ISO/IEC JTC1/SC21 WG7) is working on what is called the ''Open Dis­
tributed Processing Initiative'' (ODP); PREMO i11tends to rely on the experi­
ences of this working group, and include their result,s into the PREMO document
proper. The goal is to develop a specification which would be corn pliant with
ODP. A liaison agreement has also been set up with the Object Management
Group2 (OMG), whose CORBA specificat,ion(20] has already influenced the
current design of PREMO.

3 GENERAL ARCHITECTURE

Underlying all of PREMO is a concise conceptual framework, comprising a de­
scription technique (not detailed here), an abstract object model used for the
definition of data types and the operations upon them, and the notion of com­
ponents which contain and organise the PREMO functionality needed to address
specific problem areas.

2The Object Management Group is primarily an industrial consortium established to
define a unifying model amongst/from a number of emerging object technologies.

351

3.1 The Conceptual Framework

The conceptual framework addresses three fu11dan1ental areas: an object model,
the activity of objects, and events arid event handling.

3.1.1 Object Model

At the earliest stages of the PREMO project specification it became clear that a
concise framework, i. e., a precise object model, would be needed to ensu1·e
the smooth cooperation arnong objects within PREMO and also to provide
a consistent approach to some of the technical issues raised by rr1ultimedia
programming in general. Such an object model was adopted at an early stage of
the PREMO project. This object 1nodel is traditional, being based on subtyping
and inheritance. The PREMO object model supports both 1nultiple supertypes
and multiple inheritance.

As said earlier (c.f. §2.2), subtyping and inheritance provide the basic mecl1-
anism in PREMO for extensibility and cor1figurability.

In PREMO, a strong emphasis is placed on the ability of objects to be active.
This feature of PREMO stems from the need for synchronisation in n1ultimedia
environments (§2.1). Conceptually, different media (e.g., a video sequence and
a corresponding sound track) may be considered as parallel activities that have
to reach specific milestones at distinct and possibly user definable synchronisa­
tion points. In many cases, specific media types may be directly supported in
hardware. In some cases, using strictly specified synchronisation schemes, the
underlying hardware can take care of synchronisation. However, a general ob­
ject model should offer the capability of describing synchronisation in general
terms as well (see also [14, 15, 16] for similar approaches taken in multimedia
programming systems).

Allowing objects to be active does not contradict the OMG ob.iect model.
However, some details of object requests have to be specified in more precise
terms for PREMO, in contrast with the OMG object model. In PREMO, objects
may define their operatio11s as being synchronous, asynchronous, or sampled.
The intuitive meaning of these notions is:

• If the operation is defined to be synchronous, the caller is suspended until
the callee has serviced the request.

• If the operation is defined to be asynchronous, the caller is not suspended,
and the service requests are queued on the callee's side. No return value
is allowed in this case.

• If the operation is defined to be sampled, the caller is not suspended,
but the service requests are not queued on the callee's side. Instead, the
respective requests will overwrite one another as long as the callee has
not serviced the request.

The unusual feature of this model, compared to traditional message passing
protocols, is the introd11ction of sampled messages. Yet, this feature is not

352

t11111st1,~I i1·1 <~tlt111>t.1t,er g·1·a1>l1i(.~s. (.\,11,,aid,:1 r ti1t• ""''t.,,ll · kr1<1w-11 i(lt~ti <>f s(i1111>lir1g ii
·1 . l . t d . 1 . • ' ' A: l • 1 l". C»glC~lt, lllpl.i, . CVlC~, e.g,, 1(:tt::ator f><.lSlt,l()Il \'1\t1Jt.~8" f\. St'.11()8.fftt,f: C,t:>Jt~·:t, fll(X1e, 1IJlg

(or c.tirtt,ctly ir1t,erfa<~i.11g) a l<><:at,<),r (~tt11 St'fl<i t,l1t>t,1SJI1t1<ls ()f 111,:>t,i,;)1·1 11(:>tific11.ti()t1
rl lf~~ 1'.l,g,£~ t,,·) ~.:\ 1"'£!..#''•£'ll'ltoli'j;r (")1)J0 "'~(·t· an<·l t l·1i..., l•::•t + ,:-,,.r ~• 1;,,1·i J' 11~·t. •"oe::i1·\fi·i·:'l..:~'t~ tl1•le0&'."> t"lf>.li:'l<~ung,,,,.."' ;& ,.l," -i;:n;,l, ,;;,,.%, -~~~ C:"li l. 'l.;:, ... ,,,,& v,,.,.. l, .,'\;,,_ .f\ «•· ' .,. ' i&.-:, . (.~ .- l1"",·-' ,,4,t,.la I II, ~, ' .. ,1i'i- .1.1. .,. , .. - -, _,i:__:iC!'~, ¼.i.'l.,i,;~;;t:('}¥,, \'.. .. -i)

- , ,. '

Us1· 1·1g:. t. 'L\c.:,ll s •i, "ll (·)lLt./Fi 1r·1·t.~O l,~-.. (i:\ f·''!'.) r•1· 11· t.'' ii,., {.1;:,b 104:ii1,I, . '-.,,'1, ;i. £\":.-~:'.%~~ ... IU'A,..., . . V.,
··-~ . ..,, "-·'

Usir1g a<.~tivf' <)l>jt:""Ct.s, syrl<~l1r()t1is,it,i(>t1 itt>f.>t·ia.rs t;() l,~-· tl<) l'Il<)r,1 &Il(i 110 lt~
t.t1(ar1 svrt<"ilI"Oil;S"-l>.t .. 1· lf:)t·' {)·f (~(-")I'('"•t1rl'••,t'lll 1 t I"r("\(>£;;.S~"'"·fi.! ; ,.. ("'(\'l'i('11r•r£)ll'lt ~:~.(·t.;,,,.?, ()l·>J".;w•t.H '1ir·1

. - ~ i-~ .1. Lt.~ ,CJJ; ,_ ,.l ~- , .1.. _ . I.-'-- i. ,,1 .-.f" .. ~.-~.,.11.~. ·i,71111 J-. ~. ~ 9 .- '"·'-'--l . . 't,.ll ; ~.-It. I '.. ,~ ." '-.. i'\, L~ -1-.l • • • •

f'">R.f:~1(,). FI'
1l1is ci()("S rt<-»t n1ea11 t,t11it S\!fl('.llf'()tlisiiti()ll l)t:~(~«)Ill{~ ,~it..~V- \\1}1:it, it, d<>l~~,

..,, 'L'

n1ea11 i.s tiltit, t.hf~ t.t:~1·r·r1in()l<:>~v-, t.l1t~ 1•tist1lts, t.t,,~ 1111lc·l1i11ery~ t~t<·, (>f t,llt~ tl1t~c>r·y l\I1<·l

tht~ i>rtte~ti(~t~ <lf c:()I1c:'.t,1rrt."¼nti t>r(>gr1i111r11ir1g c~it11 I:,<) rt:.t1Sf~-ci ir1 f>itE:1\1(:>. 'I~llt~rt' iir,~
<lt,ht~r· isst.lt~ <,>f sy11t~hr(►t1isat,i()Il tl1JJ.tt, <·l1r1 l>e (~<)r1si<lertJl,<i qt1i.ality ,;f se:r't,ic··t, is..fiu<~s,
"-'?l1ic·l1 go l>tiyor1cl this l>l:t...5i<~ sy11c~l11·<,z1is.r\t,i<)Il IIl(•<it~l. Nt~VE~:rt.ltt~le:"l&..,, the IIl<l<lt~l

prov·i<ic~ a t·le<-tr1 a11d st.rtiightftll"Wt~.rcl fr·a111t'~W<:)rk <lr1 wl1icl1 otlac:""r SU(~l1 fiic~ilit.it~
(~8.I.l bt:: [)llilt.

3.1. 2 Et,ier1ts, b,1,tc:rit J~locit'l

The PRF:Mo fra111ew«.>rk i11cluclt'.\,s t,llt~ nc•tio11 of rt<)Il (.)i·»~jf:\,< .. ts, })rirr1arily ft)r t!ffi-
c ·1·e· Il("'\t' r,f;').o•~ ·s··, ')t1s·. N·' ()Il ····(")1)J. ':l ···t· S' 11-:~' r.t, r·l() f'°'(l 11 l '),S' tc ·ie-fi' .. 'l.11i1lwl'i ("'Il t· l·1,.:i,1·-.1 t t.l""Y c·•t~r1r·1ot .. . · . J Ck (. ..., • ,. . · .· . l. t. (., , i.. l ,~ v '"·· .. 'I.. 1 l- t.,... ~, (,. .. 1. "'\.. 'I.. ., "- J. , . , l " • ,<:-'i · .

take part, ir1 subt1YI>ir1g arlci i11l1<:~r1ti111ce l1ierarcl1i{~s.
Et;1t?r&t., forr11 a sr>ecial c:ategory of flR.E:l\.fO tl<)Il··<>bjet~t. t,yJ>t~, a.nd a1·e t;}1e

llasit~ l)t1ilding bi<Jck for tl1t? f)RE~1C) E~ve11t, n1o<ltll. Event,s a11cl their pr<)I>~igatior1
((iescrit)ed by t}1e ever1t 1r1o<iel) Illay a ft1nciar11e11tal r()le ir.1 t,l1e s31 r1<~l1.r()t1isati<J:11
mecl1a11i~111.

The e,.i·e11t n1<:>del is l)a..'se(l ()Il t,}1rt~ co11<~t~I>ts: t~VE~nt,s, ev*t:11t rt~gist,raticlrl, ar1<:i

event l1itndlir1g. Ar1 t:t.,r!nt ca11 IIl<><it~l ;:1,r1y ac~tio11 t,l1at1 c>c·c~t1rs 11,t a dcfir1ite ti1:r1e.
Eve11t,s are c;rE:~ated by el.1ent .,c)t1,ry:es, ar1d ar(~ <~<)t1s1.1111e(l l>j,r etJt~rit c~lie!nt .. ", l.>·C)t,l1 of
wl1ich artJl ol)jt~<~t.s. A l>I\.~i<~ c~l1ari1.c:teristi(~ of ar1 t~vent. is itjs disti11ct, typ<~, whicl1
is or1e of tl1e <.--}1arac"tt~risti(~S t.l1itt. a <·lii\r1t uses t,-t> i<ier1tifv tl1t:'\ t~V(111ts in wl1ic~t1 it

it)/

is i11terest,(.~i.
Wl1t~rea~ it1 <.>l>ject, cc>r11111i111ic~~1tit1r1, t.l1t'"\ <~,:a,ll<:~r· Sf>E:~cifit:~s tl·1E~ rt.~c·i1)i()11t. t)f ea(:11

operatior1 request, ir1 ever1t <~orr1111l1r1i<·i1tion, evt~r1t.s are riot. 11,dcirt~S~!el to SJ)ecific:
rec~il)it~nt,s. Insteacl, it. is tl1E:' re(~i1)iE.~11t, t,l1at ciE~te1·1r·1ir1(~s whic~l1 evE.~r1t,s it1 "ris}1es
tc> rt:~eive ... ~n obje<~t c·an register ir1t,erest, i11 re<:E~iv·ing spe(·ifi<: ever1t,s produc~txi
l>y tl1e vari<)t1s lJl)jet~t,s. As part. of t.l1e regist:rat,ior1 {-)f<>(~t~ss, it c·lit1 11t c~a.11 sptx:ify
(>r1e of it.s (&.'-j),.11chronous ()r si:t11111lt~<i) 1r1et.h<><is t() rtx~eive t.~vt~11t.s f<.)rwarded by
an Event Handler or>jt-x~t, (defined l)y tllt~ S<)· callE:-:ci l-)1r1c:il:tlllt":;r1t,al Cc>111pot1E~11t,

see §4.1). ProsJ>e<~t,ivE~ t~ver1t, rtx~iJ)i<~11ts SJ)ecify V\7l·1it~l1 eve11ts t,l1f~Y :ire intert~stt~l
in l>y· regist,erir1g C<>11st,ra.i11t, lists wit.l1 a11 Event Handler. E!lrc~h <~t)tlstri:iiint list:
clefi11es tht~ ever1t, 11a1r1t~s ar1<i p,ira1r1t~t<~r va.lues wl1i(~l1 tl1e E:1 \rt;Ilt, r(~<~:ipier1t wisl1es

'

t;o rec;t~ivt~. In t,he IIl<>st c~o1·11111011 <~a..~~, the c:t>r1st,rair1t, list sp~:~<~ifies t,he r1a111e of
ar1 evt~11t ir1 whicl1 tl1e ol)ject is int.t~r·est,ecl. Issui11g a,rl ev(~11t by t,}·1e ever1t, source
111ear1s sending a messi3,ge t,o ::tn Event Handler <>bject, wl·1i<~l1 dispatches tl1E~
event t<) tl1t" ir1tert~St(xl e,rer1t c-,lit.~11t1s.

353

3.2 Components
The object model, the event model, the concept of non-objects, etc., described
in §3.1, give a conceptual framework for all the basic notions in PREMO. Com­
ponents allow for a structuri11g of the PREMO standard in tern1s of the services
provided.

A component in PREMO is a collection of object types and non-object data
types, from which objects and non-objects can be instantiated. Objects within
one component are designed for a close cooperation a11d offer a well-defined set
of functional capabilities for use by other objects external to the component.
A component can offer services as in OMG (see §2.3), i.e._, services usable in
a distributed environrnent, or it may be used as a set of objects directly linked
to an application.

Components may be organised in cornponent inheritance hierarchies. For
exan1ple, in Figure 1, both components B and C inherit from co1nponent A.
This means that object types i11 B and C are subtypes of types defined in A
(see §3.1.1). All PREMO objects are subtypes of a con1mon PREMO supertype,
so this rule enables new types of objects to be defined. As far as subtyping
and/or inherita11ce are concerned, objects withir1 components B and C are all
distinct types: no type in B may be a subtype of a type in C and vice versa.

The rule on component inhe1·itance does not i1nply that objects in different
components have to have a subtyping relatior1ship i11 order to be able to com­
municate with one another. Again referring to Figure 1, B can of course make
use of the services offered by component C. Compone11ts may also specify how
they exploit functionality from other components, with tl1e option of hiding tl1is
from the clier1t. Hence components may become clients of other components'

• services.
Underlying all PREMO con1ponents is a Foundation Component providing

functionality which is necessary for all PREMO con1po11ents. It is rnandatory
that all other PREMO components inherit fron1 this Four1dation Co111pone11t
(described in 1nore details in §4.1).

The rules for components are part of the standard. These rules fo1·m the
basis, in conjunction with the object model, for the properties of configuration,
customisation, extension, and interoperation.

4 COMPONENT STRUCTURE

With the above description of the conceptual framework and the component
model, we now describe the structure of the PREMO standard in more detail.

The initial PREMO standard will:

• define the exact conceptual framework for multimedia presentation, along
the lines described in §3.1, i.e., the object model, the event model, etc.;

• define rules for components, their interrelationsl1ips, inheritance, confor­
n1ance rules, etc.;

354

Component A

I ;
I ; I '

I / / '
/ / I '-

/ / '
I '

I ; I '
I / I '-

Component B,, ,, ' 1
1

'
I

Component C
. I

-~: ► Component Inheritance
- - - - -> Type Inheritance

FIGURE 1. Component inheritance.

• include the specification of the Foundation Component;

• include the specification of some other components, namely:

a component for Multimedia System Services (see §4.2);

a Modelling, Presentation, and Interaction Compor1ent, which will
provide for the basis of components inherently related to modelling,
geometry, traditional computer graphics, etc.

PREMO should, however, be thought of as an evolving standard; new compo­
nents will be added in the future. On the basis of the Modelling, Presentation,
and Interaction Component, components n1ay also be added to ensure appli­
cations using current SC24 standards will continue to work, and be upwards
compatible. Two types of con1ponents are plan11ed: expression of existing SC24
standards as PREMO cornponents, e.g., PRIGS or GKS, or new components,
e.g., a pure audio component, or a component for virtual reality. Although the
exact component hierarchy is not yet finalis~d (June 1994), Figure 2 gives a
view of the expected hierarchy of standardised components.

In the following sections, highlights of some of the components referred to
above are given. The reader should remember, however, that the specification
of these components is still an ongoing activity.

355

•

Foundation

Multimedia System Services
'· "

/ Presentation and Modelling
r·

~ .

.. . .
.

,

•

'

Pure Audio

Virtual Reality
PHIGS PLUS

.....

FIGURE 2. Component hierarchy.

4.1 Foundation Component

The foundation component is a collection of foundatiort objects. Foundation
objects are those which support a fundamental set of services suitable for use
by a wide variety of other components.

It is beyond the scope of this paper to give an exhaustive specification of all
foundation objects defined in the four1dation component; only sorne highlights
are given here. The list of foundation objects includes the following object
types:

• The PREMO Life-cycle Manager object provides object life cycle ser­
vices for PREMO objects. This includes the creation of new objects, de­
struction of object and object references, keeping track of object ref­
erences. The separate management of object life-cycles and associated
object references is essential if a component intends to offer services in a
distributed environment.

In fact, PREMO defines two such life cycle manager objects, whose func­
tionalities are identical, but they manage remote, service objects and local
object respectively. This distinction is necessary to control objects which

356

•

offer services over, e.g, a distributed environment and, alternatively, to
have objects which are to be used in a local setting only.

• Data objects. The semantics associated with a data object define the
construction and modification interface of a particular data object. Ex­
amples are geometric 2D or 3D points, colour, 1natrices, with related
operations and other attributes, video frames, frequency spectra, etc.

• Producer objects provide an encapsulation for defining the processing of
Data objects and the production of refined or transmuted Data objects.
Producer objects may receive Data objects from any number of sources
and <leliver Data objects to a11y number of destinations. Specific subtypes
of ty1)e Producer may place restrictions on the number of sources and des­
tinations of Data objects if necessary. Specific types of Producer object
are characterised by the behaviour made visible through their associated
sets of operations.

• A Porter object is the PREMO foundation object which interconnects to
systems and environments defined outside of PREMO, e.g., files, physical
devices.

• The role of a Controller is to coordinate cooperation among objects. A
Controller object is an autonomous and programmable finite state ma­
chine (FSM). Transitions are triggered by messages sent by other objects.
Actions of the FSM correspond to messages sent to other objects. The
actions of a Controller object may cause messages to be sent to other
Controller objects, thus a hierarchy of Controllers can be defined.

• Event Handler objects provide methods to register interest in certain
events, for dispatching events to the interested objects, manage constraint
lists for events, etc. These objects also play a fundamental role in syn­
chronisation mechanisms.

As an example of how these notions can be used, let us see·how basic, event­
based, synchronisation can be expressed with these objects. Synchronisation
is handled by using synchronisation events that are sent by synchronisation
sources to event handlers. An Event Handler then forwards the event to ob­
jects that have register·ed their interest in these events. The interested objects
could be either objects that are the immediate target in the synchronisation,
or controller objects for more elaborate synchronisation. Figure 3 illustrates a
more complex case: two Event Ha,ndlers take care of two independent clock
events, but, for one of them, the same event may also be ''simulated'' by an­
other object. A separate controller receives these events and, based on its own
internal state, may then dispatch a synchronisation call to two other PREMO

objects.
The combination of Event Handlers and Controllers can also be used for

schemes where actions are scheduled to take place at a certain time. In this

357

,_ . . "

61\rilMltt 1

. ,

. . . .

5')tftC

...... - ...

i

,~tl,._",(', c:1 <·i()<:·k <>t·•j<l<'t (t<) l)f• J)f()\'i<if•<l l)y Jt l1igl1flr· -lt:::,V(:i,1 ('(·.,1r11><·,11t:)rit) c~(lil l>t1 11st~<l
t,<} trigger tl1<" ~:u:·ti(lll at. tl1<.\ rigi1t. t.ittlt'. 'I'l1is ftll<.>WS f<)r tl1t~ 111(~\ftl ge:)ri~~ritl ll()tic>Il
elf tt~IIlJ)(lra,l syr1<:'.hrc>11is1i,t,ic>11.

4. 2 !vf ttltirr,.t-~<ii,i .. S"ystt·11, St1:r·t,it~(:.s

1 .. h . l f l 'l\1 l . 1· s···, s·, . (~1S"S') l fi' i e Pr1 Il'lar,r g(·) 4 () t ''i.at".) ' i 11 t· 1·1111J,."'!Jd'" 1--(~ V -~t t::liJil "'"r'rl -·JJ,1t11:s ,, £) 'tl.jj-.~. ,#~,s ~11 r· '.l>-(~ , ll. .J . ·. (l;.I, , · 1.,.. l . ; S.: '- (',I; l.- J S ,'(_ "-· 'I. V { .;:: ~- ' •.•.. , , ('Ii .a.111.:,((.t.. .. Cia ,... •

01r1111,~r1cie<i J>ri\C·ti<'f::' l)y t.l1t" 11\11\ (Ir1t.t~1·ac~t.ivt"' !\it1lti111(:-<·li1l 1\ss<:)c··is,,tic·)11), is t,o
pr<lvidt" a1.1 ir1f:r,:t..5tr11c~ture fc:)1· l>t1ilcli11g 111t1lt.i1lt<"<iia ('<)rr11>11tir1g pl:1.t,fc»1~1:r1s tl1at,
su PI>()rt i11t1erat~t. i v·e r11 t1l t. i111t:i.<iia ,t1>i1lic· at i (:)r1s (iE::'ttl ir1g wit, 11 .sytl(~/i rc,11 i.st:<i, ti rrie--··

/x1,t;c'.ci, tllt~(:iia i11 it 11f:.t.erc}gt•r1t~)11s clistril>t1tt~:l t'11,1irc)r1111t~r1t. Tt1e t·t111>l1asis is Vf1>ry

1111.1(~}-1 ()Il flistril>tlt,e:~ci. S('%>f"'i<'t:'S fc>r -~l<:>\\t lt.i\rtjl'' Ill(\clict J>l'()t:(•ssi11g~ l\:·tSS <ioes riot

i11c··lucit1> l.111y C'()Il<:·e1)ts f<lr geor11et ry~ rx1<.,(l(llli11g, t:i.t,(·. Ir1st.t~lt(i, it, is t"<)Il(~err1ecl

w·it.11 prol)ler1·:1s likE? tl1t1 clefi11iti<lil l)f al>-str·1:1,c·t. 111t::•<iii-1, <if•vi(·t~s~ rtlS<)ttrc·<~ c·c)nt.rc)l,
t"'t)11r1t:~c·t.io11s ar11()11g vir·t.t1al (it:.,~i<·t~s (i11 tl1(\ f(>rt11 c,f S<)·(:(tllt:~<i st,rE~a1r1s), f~t.(· •

.1.\c:·tivt~ c·c)t)perI1titl11 l.>et.wet~Il tl1t~ IS(:) J:>RI•:wJ<) gr·c.>tlI> E:t11tl Il\:11\ ~1.n<i r€~st1lt,t'l(l
ir1 t,l1e dec·isi<>Il E"'Ilcai>sulftt,E~ l\1SS ,vit,l1ir1 f)I1.El\1C). F"ig11rt., 2 sl1<)WS t1ow NISS
~,ill be i11t,egr11t,t)(l i11t,o f:>It.F~l\40: it will f<>r1r1 lt St:::,p,tra.t,e c~c,1t11><Jr1t:~11t, rt:,lyirrg <)Il
t,l1t., ()l>jt:~<~ts clt~fi11ecl ir1 t.l1t:~ Folllt<ittt,.i(:)11 (;<)111p(lite11t .• 'I"l1t~ liE~sig11 c:>f tl1ese c.>hjf:.ctjs
alretMiy rt"fte<~t.s t,}1~i. req11ire1t1t~r1t,s (lf lviSS. ii\ first i111r.>l(\111t~11t,iit,i(l11 <)f l\iISS will
t>e a,rii,ilt\ble (i11clt~pe11de11tl)r elf PRE?v10) i11 tllf' (~c>l1rse of 1 ~)5, ltil(l tl1e first draft
for ar1 ir1t,egrat,io11 wit.ii PRF:?vf<) will l)tl> aviiilal1lc i11 19!.)ti.

4. ,1!/ P·r"t:st:ntation, 1\tf odt:.llirig, and lritt.~·rv:1.,:~tior1 (~:,:,1ri1x>11er,t

The Prest~ntat:.i<>11, ?\,iodelling, a11d Interac·ti{)ll Cor11por1er1t: (J'l?vfI) ().f PRF~MO
<:or11l>ir1es 111t~lia <~011trol witll 111()<lelli11g and gE·<>Itit~t,ry. Tl1is is ar1 abst.ra(~t
<~(lIIll)011t~11t. f'ro111 whic~l1 C<)nt~rE)te 111<)d(~lling a1·1(i prt~sentati<)Il C()J.llJX)I1er1ts ar,.~

358

•

expected to be derived. Thus, for example, a virtual reality component that
is derived, at least in part, from the Presentation, Modelling, and Interaction
Component, might refine the renderer objects of the PMI component to objects
most appropriate in the virtual reality domain. This component introduces ab­
stractions for such things as modellers, modelling objects and their properties,
scenes, renderers, etc. Objects with geometry may be placed into scenes, and
may subsequently be transformed and visualised. This notion is a general one
and applies equally well to objects that do not have a clear graphical repre­
sentation. For example, an audio object with spatial properties can be located
within a scene and appropriate rendering algorithms can take this into account
to achieve a stereo audio effect. The abstractions defined in this component
will also allow for the inclusior1 of objects with time properties.

The Presentation, Modelling, and Interaction Component of PREMO heavily
relies on an existing reference n1odel, called the Computer Graphics Refer­
ence Model (CGRM)[21], developed within the same ISO group (ISO/IEC
JTC1/SC24) some years ago. In fact, the PMI could be viewed as the adap­
tation of CGRM (which is an abstract framework) to the object oriented en­
vironment defined by PREMO

Based on the Presentation, Modelling, and Interactio11 Component, more
''concrete'' components will be developed. Activities have already started on
the development of a Virtual Reality component, and other possibilities (e.g.,,
pure audio component, solid modelli11g component) are currently explored.

5 A FORMAL APPROACH TO DEVELOPING THE PREMO STANDARD

The graphics standards community have in the past employed formal meth­
ods in only a very limited sense. The semantics of first generation graphics
standards, such as GKS and PHIGS, were described using natural language,
and in some cases this has meant that ambiguities have crept into the specifi­
cations. The PREMO RG plans to address this problem by employing formal
methods at an early stage and to continue this activity throughout PREMO's
development. This task started after the July 1993 PREMO meeting and some
early results are documented in [22, 23]. The intention is to provide a formal
specification of the PREMO object model and some of its components, where
the main emphasis is placed on feeding results back into the standard's devel­
opment. This is essentially a complimentary activity and it is not currently
planned that this should replace the usual natural language description. The
formalism used is based on Z[24] and Object-Z[25].

6 TIMETABLE

The current timetable for the work progress in PREMO is as follows:

Draft International Standard: June 1996
International Standard final text: June 1997

359

•

7 EXPERIMENTAL IMPLEMENTATIONS

In the near future, work will also begin on an experimental implementation
of the PREMO standard. The major emphasis of this work will be to provide
a proof of concepts for the main paradigms and the n1odels advocated by the
PREMO document. The implementation of the object model will require a
major effort; indeed, the requirements of this model go far beyond what is
offered ''by default'' by languages like C++[26]. Fortunately, tools already exist
which will make this activity easier. Tl1e environment developed within the
ESPRIT MADE project[27], prirr1arily its object model implementation[16],
will be used as the basic tools to develop a first, experimental implementation
of PREMO. 3

ACKNOWLEDGEMENTS

Obviously, PREMO is a teamwork project, involving a large number of experts
from a number of industrial and acade1nic institutions involved in ISO /IEC
JTC1/SC24/WG6. Instead of trying to list everybody and thereby incurring
the danger of forgetting and perhaps offending somebody, we prefer to omit
such a long list. We would just like to express our gratitude to all the members
of the ISO /IEC JTC1/SC24/WG6 rapporteur group.

REFERENCES
1. International Organisation for Standardisation, Geneva, Inf or·mation pro­

cessing systems - Computer graphics -- Graphical Kernel System (GKS)
functional description (ISO JS 7942), 1985.

2. International Organisation for Standardisation, Geneva, Information pro­
cessing systems - Computer graphics - Progr·ammer's Hierarchical Inter­
active Graphics System (PHIGS) (ISO IS 9592), 1988.

3. International Organisation for Standardisation, Inf or·mation processing
systems - Computer graphics - Programmer·'s Hierarchical Interactive
Graphics System (PHIGS) - Part 4, Plus Lumiere und Surfaces (PH/GS
PLUS) (ISO DIS 9592-4), 1991.

4. International Organisation for Standardisation, Geneva, Information pro­
cessing systems - Computer graphics - Metafile for the storage and trans­
fer of picture description information (ISO IS 8632}, 1987.

5. International Organization for Standardisation, Geneva, Information pro­
cessing systems - Computer graphics - Graphical Kernel System (GKS)
functional description (ISO/IEC 7942-1:1994), 1994.

6. W. Clifford, J. McConnell, and J. Saltz, ''The development of PEX, '' in
Eurographics'88 Conference Proceedings (D. Duce and P. Jancene, eds.),
(Amsterdam), North-Holland, 1988.

3 Note that elements of the MADE object model, e.g.,, the 11otion of sampled messages,
have already significantly influenced the development of the PREMO object model.

360

7. R. Rost, J. Friedberg, and P. Nishimoto, ''PEX: A network-transparent 3D
graphics system,'' IEEE Computer Graphics &J Applications, vol. 9, pp. 14-
25, 1989.

8. International Organisation for Standardisation, Presentation Environment
for Multimedia Objects (PREMO); ISO/IEC 14478, June 1994.

9. Internation Organisation for Standardisatior1, Information Technology
Hypermedia/Time-based Structuring Language (HyTime), ISO/IEC

10744:1992{E), 1992.
10. International Organisation for Standardisation, Geneva, Information tech­

nology - Open Document Architecture (ODA) and Interchange Format
- Tem,poral relationships and non-linear structures (ISO/IEC DIS 8613-
14: 199~<), 1993.

11. International Organisation for Standardisation, Information Technology -
Coded Representation of Multimedia and Hypermedia Information Objects
(MHEG), ISO/IEC CD 13522 ed., June 1993.

12. P. WiBkirchen and K. Kansy, ''The new grapl1ics standard - object
oriented!," in Advar1,ces in Object-Oriented Graphics I (E. Blake and
P. Wi:Bkirchen, eds.), EurographicSeminar Series, Berlin - Heidelberg -
New York - Tokyo: Springer- Verlag, 1991.

13. M. Kaplan, ''The design of the Dore system,'' in Advances in Object­
Oriented Graphics I (E. Blake and P. Wif3kirchen, eds.), EurographicSemi­
nar Series, Berlin - Heidelberg - New York - Tokyo: Springer-Verlag, 1991.

14. V. de May, C. Breiteneder, L. Dami, S. Gibbs, and D. Tsichritzis, ''Vi­
sual con1position and Multimedia,'' Computer Graphics Forum (Eurograph­
ics '92), vol. 11, no. 3, pp. C9-C21, 1992.

15. V. de May and S. Gibbs, ''A multimedia component kit,'' in Proceedings of
ACM Multimedia'93 (P. Rangan, ed.), (Anaheim, CA), pp. 291-300, ACM
Press, August 1993.

16. F. Arbab, I. Herman, and G. Reynolds, ''An object model for multimedia
programming,'' Computer Graphics Forum (Eurographics '93 Conference Is­
sue), vol. 12, pp. C101-C114, September 1993.

17. I. Herman., T. Tolnay-Knefely, and A. Vincze, ''XGKS - a multitask im­
plementation of GKS," Computers and Graphics, vol. 8, 1984.

18. G. Reynolds, ''A token based graphics system," Computer Graphics Forum,
vol. 5, pp. 139-145, June 1986.

19 .. D. Arnold and M. Hinds, ''On implementing parallel GKS,'' Computer
Graphics Forum, vol. 8, 1989.

20. Object Management Group, The Common Object Request Broker: Archi­
tecture and Specification; OMG Document Number 91.12.1, Revision 1.1,
1992.

21. Internation Organisation for Standardisation, Introduction to the Computer
Graphics Reference Model, 1S0/IEC JTC 1/SC24 N849, 1992.

22. International Organization for Standardisation, Geneva, Report of the
ISO/IEC JTC1/SC24 Special Rapporteur Group on Formal Description
Techniques, 1994.

361

•

23. D. Duce, D. Duke, P. te11 Hagen, and G. Reynolds, ''PREMO - an initial
approach to a formal definition," Computer Graphics Forum (Eurograph­
ics '94 Conference Issue), vol. 13, pp. C393-C406, September 1994.

24. B. Potter, J. Sinclair, and D. Till, An Introduction to Formal Specification
and Z. International Series i11 Computer Science, New York London Toronto
Sydney Tokyo Singapore: Prentice Hall, 1991.

25. R. Duke, P. King, G. Rose, and G. S1nith, ''The Object-Z specification lan­
guage: Version l," Tech. Rep. 91-1, Tl1e University of Quee11slt1nd, Queer1s­
land, Australia, April 1991.

26. B. Stroustrup, The C+ + Prog·rarrirning Language. Reading, Massachl1setts:
Addison-Wesley, second ed., 1991.

27. I. Herman, G. Reynolds, and J. Davy, ''MADE: A multimedia application
development environment," in Proc. of the IEEE International Conference
on Multimedia Computing and Systems, Boston (ICMCS'94) (L. Belady,
S. Stevens, and R. Steinmetz, eds.), (Los Alamitos), IEEE CS Press, 1994 .

362

