
Prehistory of the ASF+SDF System 1980-1984

Dedicated to Cor Baayen

Jan Heering and Paul Klint

1 MONOLINGUAL BEGINNING

Our work on programming environn1ents started in 1980 with the design of a
dedicated environment for the Sum1ner programming language [1], an object
oriented language with class definitions. Rather than a dedicated Sumrr1er en
vironment, the general concept of a monolingual environment emerged [2]. In
such an environment, a single language is used in different modes. More specifi
cally, we investigated the requirements an integrated command/programming/
debugging language would have to satisfy. Since Summer had not been designed
with this particular purpose in mind, it is not surprising that a monolingual
environment for Summer would have involved a revision of the language. This
may have been one of the reasons we never ''instantiated'' the monolingual
concept for Summer, but there were other, more important, ones:

• At that time Leo Geurts, Lambert Meertens, and other members of the
Afdeling Informatica were developing the B language system (later re
named to ABC), which had a monolingual character in the sense that the
command and programming modes of the system were integrated. The
development of a monolingual environment for a suitably revised version
of Summer would have been a major effort without obvious additional
benefits.

• We started to realize that a monolingual environment would be a closed
world whose facilities could not be easily borrowed or reused by other lan
guages. Since every application has its own la11guage (however small), we
decided it would be much more efficient to develop a generic multilingual
environment. Its design was started in 1982.

2 A PROGRAMMING ENVIRONMENT BASED ON LANGUAGE DEFINITIONS

The idea was to base the generic environment on language definitions. These
would consist of a combined syntax/prettyprinting section and two additional
sections for static and dynamic semantics. The generic environment would sup
port the interactive development of language definitions and their compilation
to language specific subenvironments. It would view language definitions as
libraries of language constructs from which individual constructs could be bor
rowed or reused to facilitate the construction of new definitions. A language

341

11eeclir1g a11. if-stat,E~rr1f~r1t:, fc>r i11st,ii11<'El, W<>t1lcl J)I'<>l>,1l>ly l)e .al)lt') t;c> l:><)r1·0\v a, st1it
able 011e t·r()Ill itr1c>tl1E~r lar1g11,:1ge fc)r wl1ic·r1 ,1. c_lE,fi11itic)t1 ,:i.lrt~::tdy (-~xist,~cl i11 tht~
svstE~r11 . . ,

We ll<l(i sc>rr1<~ <:~XIlerier1c::e with lc:t11gl1a,g,·· clt1 fir1it,ic)11s. lli1rt (:>f' t.l1e se111ftr1t,ic·s <lf
S11111r11(lf l1ad l:>ee11 dt~scril)<~cl ir1 it f<>r·111cl.lis111 <'<l11sist ir1g <>f. I3N F"'-likt~ r11les wit,l1
er11l)t:-{i{lt~cl vitri<ll)l(~s t,o irvl1ic~l1 st').111:t11t.i<'. <1.c·t.i<>11s writ.t,f-.11 i11 S11111r11t:~r· it,s('.llf Wt~re
at.titche<i [3]. Ft1rt,l1(-~r1r1ore, c;e1·t, F~l<)r·ij11 a11cl Gt~t~r·t R()lf l1}1cl w1·it,t.e11 l"l(;f.=N,
a11 L L(1) J)arse1· g<~11eratc)r [.'.1}. (_)11(• <>f t,l1e t,l1i11gs f:>(~ t~N t,cll1gl1t. 11s \\r,1.~ tltc1t
111<)lciir1g g1·an111·1ars t<> fit t:l1<:1 I . .il.,(1) I'(;~st.rit~t ic>11 Wc:LS 110 f1111. 1.,l1is infi11t~r1c~ecl
Clt1r early clecisior1 t.() allow gt)r1eral c:clr1text,-fr<'<~ sy11t.;.1x i11 l::tr1g11:1g<~ ciefi11it.ior1s.
~A..loysius Ta11 desigr1e<l a VLSI-algclrith1·r1 t,<> r·('<l11ce t,l-1<~ l)arsi11g t,i111e in tl1e
general cor1t,ext,-fr·ee case tc1 a11 ac:<::t~pt,al)ll~ V(l,111<1, [5}. 1"r1is was lor1g l)•(~fore t,l1e
sy11tax defir1ition forn1tilisn1 SDF a11d li:t.Zy· /ir1crt~r11er1tal JJarst:}r gt~nl~1·at,ic>n.

I11 tl1e n1ear1t,ir11E~, Her1k KroezE~ l1ad <:~xr>eri1r1entetl \Vit,11 a (_~0111l)i11ed sy11-
tax/prettypri11t,i11g lang1.1c1,ge f(>r use ir1 thE~ first sc~<~t,ic)r1 (>f lang1.1,1ge clefir1itior1s
[6]. It turr1ed <)t1t, ho\vever, t;l1at, BNr~ rl1les wit1l1 ir1t,t~grat,t:~cl prE~t,ty1)ri11t instruc
tio11s \Vere ur1readablE.~, a11d tl1is re111,1,i11e<.l a prol>lt~1r1.

Alth<.)11gl1 tl1e ge11eric: e11\rir<)1·1111e11t we l1cL<i i11 111ir1ci <)r.Jvi<.>usly tlf!(~clt~<i cl l)l1ilt.
i11 se111antic.:s defi11itio11 forrr1ctlis111 (\\re clici 11clt; .)let, k11()W \\1 l1ic·l1 c>rlt~), it/ ,vot1lci
be possirJle to use any la11g11age for wl1ic:l1 ;:t clefi11itic)11 had be(~n c<)11structeci
as a ser11a1-1tic~s defi11itior1 for1r1alis111 in t.l1t.~ syst,e111. Tl1e <~c·>1~rl~spondir1g towers
of language interr>reters w<.1t1lc:i l)e very ineffic~ient, s<> t,l1<::y W<)1.1ld have to be
flat,tened l)y t,l1e re1110,ral e_1f ir1t:ern1eclic1t,e lctYt'rs. This \Vt~ pla11r1ed t,<) d<) by
partial e11aluation.

This systerr1 con<~ept, ,vas discussecl witl1 \Vir11 Bol111·1, rv1,tr·leen Si11t, and
Arth11r Veer1 at Sc~veral Data !-""low Club r11eet,ir1gs i11 1982. It. W&'; subsec1uer1tly
presented at t,he Colloquiu111 Pr·ogra1nrnet~r<)n1gt~vir1ger1 i11 t,l·1e f<tll of t,l1c1t, year
[7, 8] and at, t,l1e NGI-SION Syrr1posi111r1 i11 .. A111stt~rda111 i11 ~'1arcl1 1983.

3 ALGEBRAIC:1 SPEC~IFIC~ArfION

The main decisio11 fa<;i11g llS wa.." wl1t\.t sen1ant,i<"'S definitic)Il 1r1t:~t,l1<)d t,o use. Tl1e
irnportance of partial evalt1at.ior1 i11 tl1e syst.e111 suggested a fur1ctior1al method
without side-effec~ts. Althougl1 de11otatior1al ser11a11t,i<'.S wc)uld l1ave been a natu
ral choic:e, the closest, we <~ame to it Vvras wl1e11 we cor1sidt~recl a statically scoped
versior1 of Lisp as ,1 sen1a11tics definition for1nalis111.

Among the papers 011 partia.l evall1ati<:)n we stutiit~d wert~ se,reral by Valt~nt,i11
Turcl1in, which useci the (st,ring) rewrit,e r11le language Refal, a11d we start,ed
discussing rewrite rules witl1 .. Jan Bergst,ra. He t.al1gl1t us tl1e relation between
(term} rewrite rules and algebraic s~cificatio11s. The fac~t that modl1larization
was a11 in1portant t,opic in the algebraic specific~atior1 co1r1rr1ur1ity was attractive
t,o us ir1 view of the mod11lar const,ruc~tion c)f language definitio11s tl1e generic
environmer1t had to support.

Although tht~ algel)raic semantics of progran1111ir1g languages was not a well
deve,loped s11bject, Jan Bergstra and Jan Willen1 KloJ) were working on proces.<;

342

algebra (the algebraic semantics of processes) and we somehow suspected that
algebraic specifications would be suitable for describing the static and dynamic
semantics of languages in the generic environment. We never considered using
different formalisms for static and dynamic semantics since we did not see a
clear distinction between them. In this we were perhaps influenced by the
monolingual concept discussed in Section 1. At a later stage, we started by not
making a distinction between lexical and context-free syntax descriptio11 in the
syntax definition formalism SDF, but this proved ur1tenable.

After a joint excursion into object-oriented algebraic specification [9], we set
out to give an algebraic definition of the toy language PICO. Since we did not
yet have a well-developed algebraic specification formalism, it was designed
simultaneously. This became ASF. The syntax definition formalism SDF did
not yet exist either, so the PICO definition included an algebraically specified
syntax of PICO and a parser.

The proper modularization of the PICO defir1ition turned out to be a major
problem whose solution involved the repeated redesign of the n1odule construc
tion operators of ASF. The modularization finally adopted was very reasonable,
but it did not pern1it the reuse of individual PICO constructs i11 other language
definitions. In this respect we did not achieve one of our original goals and this
is still an open problern.

In the meantirr1e, partial evaluation had not been forgotten. Although its
algebraic semantics had not been studied in detail, it had been clear from the
outset that algebraic specification and term rewriting were excellent frame
works for partial evaluation. As it turned out, partial evaluation involves the
notion of w-completeness of algebraic specifications. Son1ewhat ironically, the
idea to allow any language for which a definition had been constructed as a
semantics definition formalism in tl1e system, which had been the main reason
for studying partial evaluation, was gradually abandoned with the advent of
algebraic specifications. Anyway, we finished both the PICO definition [10]
and the partial evaluation paper [11] virtually at the time the GIPE project
started in January 1985. At that time the implementation of ASF consisted •
of a parser, a type checker, and a Structure Diagram generator, all of them
written in Summer using the PGEN parser generator mentioned before. Term
rewriting had not yet been in1plen1ented.

4 TOWARDS THE ESPRIT /GIPE PROJECT

In July 1983 Paul Klint had visited INRIA Rocquencourt where he had fa
miliarized himself with several generic environments [12]. One of them was
the Mentor system which had been developed in the seventies by Veronique
Donzeau-Gouge, Gerard Huet, Gilles Kahn, Bernard Lang, and others at IN
RIA [13]. In fact, Mentor was rather similar to what we had in mind for the
syntactic part of the generic environment. Furthermore, its extensio11 towards
semantics had just begun with the development of the Typol language (14, 15],
bringing INRIA's work even closer to ours.

343

f

Typol was based on Plotkin's Structural Operational Semantics, but it may
be interesting to note that earlier experin1ents had been done with Formal,
a11 Ada-like specification la11guage specially designed for writing denotational
semantics definitions of programming languages. For1nol specifications were
considered too low-level, however, and denotational sen1antics was abandoned.

Paul's visit did not irnmediately lead to further c~o-operation wit,h INRIA,
but in the spring of 1984 Gilles Kahn proposed to sub1nit a joint ESPRIT
proposal 011 tl1e Ger1eration of Ir1teractive Programming Environn1ents. For
INRIA, it would be basically an exte11sion of Mentor with semantics facili
ties. For us, it would be a continuation of our work on a generic environment
based on algebraic language definitions. The ensuing proposal (part of which
was later published [16]) was accepted by the European Communities and the
GIPE project started in January 1985 with the software companies BSO (The
Netherlands) and SEMA-METRA (France) as industrial partners. When it
ended 5 years later, GIPE II took over for another 4 years [17].

REFERENCES

1. P. Klint, From Spring to S·ummer, Ph.D. Thesis, TH Eindhoven, 1982.
Published as LNCS, Vol. 205, 1985.

2. J. Heering and P. Klint, Towards monolingual programming environments,
Report IW 185/81, Mathematisch Centrum, An1sterdam, December 1981.
Published in ACM Transactions on Programming Languages and Systems,
7 (1985), pp. 183-213.

3. P. Klint, Formal language definitions can be made practical, Report IW
159/81, Mathe1natisch Centrun1, Amsterda1n, 1981. Published in J.W. de
Bakker and J.C. van Vliet (Eds.), Algorithmic Languages, North-Holland,
1981, pp. 115-132, and in [1, Chapter 4).

4. G. Florijn and G. Rolf, PGEN-A general purpose parser generator, Report
IW 157 /81, Mathematisch Centrum, A1nsterdam, 1981.

5. H.D.A. Tan, VLSI-algoritmen voor herkenning van context-vrije talen in
lineaire tijd, Report IN 24/83, Mathematisch Centrum, Amsterdan1, June
1983 (VLSI algorithms for the recognition of cor1text-free languages in linear
time·-in Dutch). See also: A. Nijholt, Overview of parallel parsing strate
gies, in M. Tomita (Ed.), Current Issues in Parsirig Technology, Kluwer
Academic, 1991, Section 14.4.2.

6. H. Kroeze, Een taalonafbankelijke benadering van prettyprinten, Report IN
21/82, Mathematisch Centrum, Amsterdam, December 1982 (A language
independent approach to prettyprinting-in Dutch).

7. J_ Heering, Taaldefinities als kern voor een programmeeromgeving, in Collo
quium Programmeeromgevingen, MC Syllabus 30, Mathematisch Centrum,
Amsterdam, 1983, pp. 69-81 (A programming environment based on lan
guage definitions-in Dutch).

8. P. Klint, Partiele evaluatie als implementatiemethode voor een program
meeromgeving, in Colloquium Programmeeromge1.;ingen, MC Syllabus 30,

344

Mathematisch Centrum, Amsterdam, 1983, pp. 83-100 (Partial evaluation
as an implementation method for a programming environment-in Dutch).

9. J.A. Bergstra, J. Heering, and J.W. Klop, Object-oriented algebraic speci
fication: proposal for a notation and 12 examples, Report CS-R8411, CWI,
Amsterdam, June 1984.

10. J .A. Bergstra, J. Heering, and P. Klint, Algebraic definition of a simple pro
gramming language, Report CS-R8504, CWI, Amsterdam, February 1985.
Published in J .A. Bergstra, J. Heering, and P. Klint (Eds.), Algebraic Spec
ification, ACM Press Frontier Series, 1989, Chapter 2.

11. J. Heering, Partial evaluation and w-completeness of algebraic specifica
tions, Report CS-R8501, CWI, Amsterdam, January 1985. Published in
Theort'tical Computer Science, 43 (1986), 149-167.

12. P. Kli11t, A survey of th1~ee language-independent programming environ
ments, Report IW 240/83, Mathematisch Centrum, Amsterdam, 1983.

13. V. Donzeau-Gouge, G. Huet, G. Kahn, and B. Lang, Programming envi
ronments based on structured editors: the Mentor experience, INRIA Re
search Report No. 26, 1980. Published in D.R. Barstow, H.E. Shrobe, and
E. Sandewall (Eds.), Interactive Programming Environments, McGraw-Hill,
1984, pp. 128-140.

14. Th. Despeyroux and V. Donzeau-Gouge, Typol: Introduction de
specifications semantiques clans Mentor, INRIA Research Report, 1983 (Ty
po!: Introduction of semantics specifications in Mentor·-in French).

15. Th. Despeyroux, Executable specification of static semantics, INRIA Re
search Report No. 295, 1984. Published in G. Kahn, D.B. MacQueen, and
G. Plotkin (Eds.), Semantics of Data Types, LNCS Vol. 173, Springer, 1984,
pp. 215-233.

16. J. Heering, G. Kahn, P. Klint, and B. Lang, Generation of interactive pro
gramming environments, in The Commission of the European Communities
(Eds.), ESPRIT '85: Status Report of Continuing Work, Part I, Elsevier
Science Publishers, 1986, pp. 467-477.

17. J. Heering and P. Klint, Work done at CWI/UvA-Final report, in: Sixth
Review Report ESPRIT Project 2177 (GIPE II), January 1994 .

•

345

