
The full non-renameability result; a lost tale

Dedicated to Cor Baayen at the occasion of his retirement from the CWI

Peter van Emde Boas
ILLC, FWI, UvA; Plantage Muidergracht 24, 1018 TV Amsterdam; peter@fwi.uva.nl

supported in part by HCM program COLORET (Complexity, logic and recursion theory, nr.

CHRX-CT93-0415 (DG 12 COMA))

The naming theorem, one of the classical results in Abstract Complexity
Theory states that the entire hierarchy of complexity classes under an ar
bitrary complexity measure can be renamed using an effective measured
transformation by a honest collection of names preserving the extension of
the classes. The non-renameability result which was proven by the author
two decades ago states the opposite to be the case for the hierarchy of
honesty classes: every attempted measured transformation must destroy the
extension of at least one honesty class. However, the published version of
the theorem uses the fact that in the theory partial functions are first class
citizens; a version involving total functions only is proven under restrictions
on the names of the classes. In this note we present the full version of the
theorem; this result was obtained and announced twenty years ago but has
remained unpublished since.

1 INTRODUCTION

Abstract Complexity Theory is a research subject which connects Recursion
theory and Theoretical Computer Science. It finds its origin in the seminal
paper by Manuel Blum [2], was intensively studied during the early seventies,
but it has become obsolete and forgotten by 1980. The subject can be found in
several textbooks from that period, but an almost complete survey will also be
included in the second volume of Odifreddis textbook on recursion theory [6].

At the time I was completing my thesis on this subject [8] under supervi
sion of A. van Wijngaarden and Cor Baayen with Juris Hartmanis serving as
referee, interest in complexity theory already had shifted to the study of the
fundamental complexity classes based on standard comp11tational devices and
to the study of the fundamental questions about the power of nondeterminism
and the relation between time and space which are unsolved until today. Actu
ally I know only of two ph.d. projects which have been completed on Abstract
Complexity Theory since 1974 [1, 3]. So by the end of the seventies the subject

301

had quite well become stable. It was my intent to transform my thesis into a
two-volume textbook on Abstract Complexity Theory which has in fact been
announced for many years and which has been consuming an open slot in the
Mathematical Centre Tract series until this series was replaced by the CWI
tracts series. This book however was never completed.

Some central results from my thesis have been published in two papers [9, 10].
Other results from the research only have appeared in the thesis itself 01· were
never published at all. The oldest of these two papers presents the so-called
non-renameability result. This theorem establishes the most visible distinction
between the structure of the hierarchy of complexity classes and the hierarchy
of honesty classes: whereas according to the naming theorem of Mc Creight
and Meyer [5] the entire collection of complexity classes can be renamed by
means of a measured transformation preserving the extension of all classes, it
is shown that every attempt to rename honesty classes in a similar way must
destroy the extension of at least one class.

The result in the present note is an improvement of the results in [9]; it was
obtained during my residence at Cornell after my ph.d. defense. When the
galley proofs of this paper where send to the printer I inserted a note added
in proof announcing the full version of theorem 7 in that paper. Since the
commercial edition of the thesis (where the promised improvement was stated
to be appearing) was never completed the result only exists as a manuscript.
Evidently after these many years the result might legally have been claimed
by an independent researcher but this has not happened either. I am therefore
grateful to be offered the opportunity to use the invitation to contribute to
this volume dedicated to Cor Baayen to retrieve it from my archives in order
to preserve it for prosperity.

2 PRELIMINARIES

By a function in this paper we mean a partial recursive function from the set
of integers N into itself. Functions which are defined for all arguments are
called total. The symbol P(n) denotes the set of all partial (total) functions.
The set of arguments x for which f (x) is defined is denoted V f. We write
f(x) < oo(J(x) = oo) for x E Vf(x fjVJ).

The inequality f < g means that VJ C Vg and g(x) > J(x) for x E Vg.
Strict inequality J < g means that VJ C Vg and g(x) > f(x) for x E Vg. If
VJ C Vg and g(x) = J(x) for x E Vg the we write g C f. The range of J is
denoted ?Rf.

For finite k the inequalities k < oo and oo < oo are taken to be true whereas
oo < k is false. Beside inequalities on all arguments we also have inequalities

00

holding almost everywhere. If P(x) is some predicate we write V x [P(x)] for
CX)

''P(x) holds for all x except finitely many'' and 3x [P(x)] for ''there exist
infinitely many x such that P(x)''. Using these notations we let f(x) -< g(x)

00

denote V x [J (x) < g(x)]. This later notation can be relativized moreover to a

302

00

subset A C N: we let f(x) -< g(x)(A) denotev' x [x E A > J(x) < g(x)]. We
let µz [P (z)] denote ''the least z such that P (z) '' .

We use a fixed recursive pairing Junction < x, y > with coordinate projec
tion functions 1r1 and 1r2. We have 1r1 (< x, y >) = x, 1r2(< x, y >) == y and
< 1r1 z, 1r2 z > == z. Moreover < x, y > is increasing in both arguments and
consequently < 0, 0 >= 0. We let E (zero) denote the function which is ev
e1·yw here undefined (zero). According to our convention E2 (zero2) denote the
two argument function which is everywhere undefined (zero). Using this pair
ing function we can interpret one-variable functions as being many-variable
functions; an occasional superindex like for example in cp;(x, y) ='Pi(< x, y >)
indicates t lie use of this interpretatio11.

By ('Pi)i we denote a fixed Godel n·umbering of partial recursive functions [7].
The universal function u(i, x) == 'Pi (x) is recursive and there exists a total
functions, called the s-n-m function satisfying cp;(x, y) = 4's(i,x)(y). Using the
interpretation cp; (x, y) ==<pi(< x, y >) many variable functions are included in
our enumeration. The functions 'Pi are also called programs.

We extend the enumer·ation (r..pi)i to a Complexity measure by means of a
sequence of step counting functions (cpi)i; this sequence satisfies the two Blum
axioms: for each i, Ve.pi= V<Pi (1nd the relation 'Pi(x) = y is decidable. Again
we write 'Pf (x, y) for <I>i(< x, y >).

A transformation of programs a is a total recursive function operating on the
indices of programs. In general these transformations are defined intensionally
by implicit invocation of the s-n-m axiom and the universal machine axiom
(possibly in combination with the recursion theorem) by writing a formula like

'Ps(i)(x) <== P(i,x)

where P(i, x) denotes some expression recursive in i and x.
A measured set is a sequence of functions (,i)i such that the predicate

ri(x) = y is decidable. The sequence of run-times (-Pi)i is an example. A
transformation T such that ('Pr(i))i is measured is called a measured transfor
mation of programs.

For a (partial) function t we define:

OCl

Ft = { 'Pil V x [x E Vt ~ 'Pi(x) < t(x)]}

Ct = {Jl:3i[f = 'Pi I\ 9'i E Ft]}

The complexity class of functions Ct contains all functions computed by
programs in the complexity class of programs Ft. Note that in our definition
both Ft and Ct contain partial functions even if the name of the class t is total.

In this definition complexity is measured in terms of the running time of the
machines only. If we take into consideration that larger function values may
require longer running times for being evaluated we arrive at the concept of
honesty. Honesty classes have two-argument functions as names:

303

CX)

GR = { <pi I V x [cpi (x) < oo/\ < x, <pi (x) > E 1J R ~ <I> i (x) < R(x, £Pi (x))]}

HR = {Jl3i[f = 'Pi I\ 1Pi E GR]}

Gn(HR) is called a Honesty class of prograrns (functions). Note that the
condition enforced i11 the definition of GR holds vacuously if 'Pi (x) diverges;
consequently each honesty class contair1s all functions with a finite domain,
whereas it can be shown that no complexity class except for· the trivial class
Ct:. = P contains any such function.

Special honesty classes with single variable names are obtained by considering
honesty bounds R of the form R(x, y) == t(x); the resulting classes are called
weak complexity classes: ptW == GR and er == HR. Note that er and
Ct contai11 the same total functions. An alternative special type of honesty
classes with single variable names is obtained by taking names R of the form
R(x, y) = t(max(x, y)); these classes are called modified horiesty classes in [9].

There exists a close connection between the 11otions of a measured set and
a honesty class. By a well known theorem Mc Creight [4] every measured set
is included in some honesty class with a total na111e; conversely every honesty
class with a total name can be enumerated in such a way tl1at tl1e enumerating
sequence represents a measured set. More formally:

THEOREM 1 (Mc CREIGHT & MEYER) If (,i)i is a measured set the there ex
ists a total function R, such that as a set of functions (,...ti)i C H R ,- moreover an
index for R can be obtained uniformly from an index for the decision predicate
for ,i (x) = y. Conversely, if R is a total function then H R is eriumerated by
some measured set ('Yi)i and indices for both the enumerating sequence and the
decision predicate for ,i(x) = y are obtained uniformly in the index of R.

'

The above theorem has led to the feeling that the two concepts are more or
less equivalent. This is certainly riot the whole truth. The above equivalence
is lost as soon as the name of the honesty class is partial. Moreover, it is not
hard to construct a presentation of a honesty class with a total name such that
this presentation as a sequence is not a measured set.

We now formulate the naming theorem of Mc Creight and Meyer [5] and our
full non-renameability result:

THEOREM 2 (NAMING THEOREM) There exists a measured transformation of
programs a such that for each i the classes F'Pi and Fif'a(i) are equal (and con
sequently C({)i = Cif'u(i> as well}.

THEOREM 3 (NON-RENAMEABILITY THEOREM) For every measured transfor
mation a there exists an index i of a total function such that Hep; n R, =/=
H'P2 n n.

a(i)

This result resembles the results proven in [9]; however if inspected in more
details all the results published in this paper are weaker: in theorem 6 the result

304

claimed reads Hrp~ i=- Hln2 . , i.e., the classes may turn out to be different due
-i .,..- u(t.)

to the presence of partial functions in the classes; in theorem 7 there is shown
a difference on the subclasses of total functions within the honesty classes, but
the result is proven for the modified honesty classes only, i.e. the names are of
a special form.

Expressions describing functions and/ or transformations of programs in this
paper are defined in terms of the hybrid language introduced in my thesis
which combines elements from standard recursion theory and the (by now ar
chaic) programming language ALGOL68. The resulting expressions may have
in general several plausible computatio11al interpretations which may differ with
respect to convergence; the intended computational meaning is uniquely deter
mined according to the guidelines as indicated in [8], section 1. The reader
should keep in mind that according to this intended interpretation inequalities
involving either a step-counting fur1ction or an element of some other mea
sured set are evaluated using the decision predicate instead of a brute-force
evaluation.

3 PROOF OF THE NON-RENAMEABILITY RESUL'"f

The proof of the improved result uses the same technique used in the earlier
results: we obtain a suitable version of the mirror lemma, which shows that a
measured transformation a eventually will ''reflect'' some name cp~ (x, y) with
respect to some suitably large function R(x, y) in the sense that cp; (x, y) is large
compared to R(x, y) if and only if cp; e)(x, y) is small; subsequently we show
that the set of arguments where the re ected name is small supports the graph
of a total diagonal function which is included in the honesty class with the
original name but not in the transformed class. Tl1is diagonal then separates
the original class from its renamed version.

We start with a function R which is sufficiently large in order that there
exists an R-honest odd-valued function which is not zero2-honest. We define
the transformation a by:

<.p;(i,j)(x, y)-<= if even ythen cp3(x, y) + R(x, y) + 1
elif <.p!(i)(x,y) < R(x,y)then<.p;(x,y) + R(x,y) + 1
else O fi

By the recursion theorem there exists a transformation p satisfying

CLAIM 1 (MIRROR LEMMA)

'P!(j) (x, y) = if even y then <pJ(x, y) + R(x, y) + 1
elif 'P;(p(j))(x, y) < R(x, y) then 'PJ(x, y) + R(x, y) + 1
else Ofi

305

We next define (implicitly using the recursion theorem once again) the trans
formation K,:

cp,.,,(j)(n) == ifn == Othenµm[<,0;(p(j))(1r1m,1r2m) < R(1r1m,1r2m)
and odd 1r2 m]
else µm[odd 7f2mand 1r1m > 1r1<,0,.,,(j)(n - 1) and
<p;(p(j)) (1r1 m, 1r2m) < R(1r1 m, 7f2m)] fi

Hence <,O,,;,(j) enumerates pairs < x, y > with x increasing and y odd such that
'-Pa(p(j)) (<)R(x, y). A ''partial inverse'' of r.p,.,,(i) is obtained by the transforma
tion:

<,Of3(j)(x) {::: if 7r1<p,.,,(j)(µn[1r 1<p,.,,(j)(n) > x]) = x
then µn[1r1 'Px:(j) (n)] else false fi

The function 'P/3(j) co1nputes in fact a partial inverse to 1r1 'tQ,,;,(j) • If for some
input x some pair < x, y > is enumerated then tp{3(j) (x) yields the index of this
pair in this enumeration; if no such pair is enumerated but if eventually some
pair < x', y 1 > is enumerated with x' > x the the value is false. Otherwise
<p /3(i) is undefi.11ed.

Finally we define a diagonal transformation 9'lJ(j) by:

'Pb(j)(x) {::: if cp,s(j)(x) = false then24>/3(j)(x)
elif .P7r1 cp,a(j)(x)(x) < R(x,1r2tpr..(j)('P13(j)(x)))

and 'P1ri'Pt3CJ)(x)(x) == 1r2<p,.,,(j)('P{3(j)(x))

then 1r2cpK(j)('P/3(j)(x)) - 1 else 1r2'-PK(j)('P/3(i)(x)) fi

Informally, in order· to evaluate 'Pli(j) (x) one first 1nust evaluate cp/3(i) (x). If this
computation diverges then '-Pb(j) (x) is undefined. If the computation converges
but yields the value false then ot1tput twice the time it has taken to compute
this value false . Otherwise we diagonalize: we know that for some value y a
pair < x, y > is enumerated by 'PK(j), say 'PK(j) (m) =< x, y >. Test whether
.P7r1 rn(x) < R(x,y) and if so whether '-P1r 1 m(x) = y; if both conditions are
satisfied then output y - l and output y otherwise.

Note that this computation diverges when 'P/3(j) (x) diverges, and this will
only happen if no pair < x', y' > with x' > x is enumerated by f./Jr..(j), i.e., when
t.p,.,,(j) is partial. Hence in case 'P,,;,(j) is total then so is 'Pb(j)

CLAIM 2 The sequence ('Pc(j))J is a measured set.

This can be seen as follows.
For a given pair < x, y > it can be decided whether < x, y >E ~'Pr..(j):

if y is even or if c,o;(p(j)) (x, y) > R(x, y) then < x, y > is no candidate for
being enumerated so we can answer ''no''. Otherwise we know that some pair
< x', y' > with x' > x will eventually be enumerated and we can wait and see
whether < x, y > is enumerated by that time.

306

Using this observation we can describe the following decision procedure for
<po(j) (x) = y?

If y is even then test whether 4>f3(j)(x) == y/2 and 'P/3(j)(x) = false; if so the
answer is ''yes''. Otherwise test whether < x, y + I >E ~'PK(j); if not then the
answer is ''no''. If< x, y + I >= 'P,,.,(j)(m) test whether q»1r 11n(x) < R(x, y + 1)
and 'P1r 1 m(x) = y + 1; if so the answer is ''yes'' and otherwise the answer is
''no''.

If y is odd then test directly whether < x, y >E ~'PK(j)· If not the answer
is ''no''. Otherwise let m be the argument such that < x, y >== 'PK(j) (m), and
test whether 4>1r1 rn(x) < R(x, y) and (;?1r 17n(x) = y; if so the answer is ''no'' and
otherwise the answer is ''yes'' .

The corr(\ctness proof for this decision procedure is left to the reader.
Our next claim holds only in the case that <p"-(i) is a total functions, i.e.,

(X) 2
3 x3y[cp a(p(j)) (x, y) < R(x, y)]:

CLAIM 3 If 'PK(j) is total then <po(j) ft. H'P2 . .
O' (p(j))

Consider an index i for 'Pli(j) and a value m with 1r1m == i. Let 'PK(j)(m) ==<
x, y > then we have for this particular argument x:

'Pi(x) = <p6(j)(x) = if m = false then24>/3(j)(x)
elif q>i(x) < R(x, y) and C,Oi(x) == y then y - 1
else y fi

The first condition is evidently false; since the then-part for the second condi
tion is contradictory we conclude that 'Pi(x) = y and q>i(x) > R(x, y); since
also for this pair < x, y > it holds that cp;_(p(j)) (x, y) < R(x, y) this shows that
'Pi violates the honesty condition at < x, y >. From the fact that 'PK(j) is total
we infer that there exist infinitely many violations of this type; since also i was
an arbitrary index for 'Pb(j) this proves our claim.

CLAIM 4 For every pair< x,y > such that cp6(j)(x) = y one has cp;(j)(x,y) >
'PJ (x, y).

For even y this claim is a direct consequence of the definition of p., whereas
for odd y the definition of 6 implies that < x, y > is a pair enumerated by
<.pK-(j) and therefore the condition cp;(p(j)) (x, y) < R(x, y) is satisfied. However,

according to our use of the mirror lemma this means that 'P;(j) (x, y) == R(x, y)+

r.p;(x, y) + 1 > <.pJ(x, y).
The theorem now can be derived using the above claims.
Since ('P6(j))j is a measured set there exists an index io of some total function

If for this index io the function <.p!(jo) is total then <.p~(io) is a total function
in H 2 \ H 2 •

<f'p(jo) 'Po-(p(jo))

307

In the alternative case that <p~(io) is a partial function then for almost all x it

holds that 'P!(jo) (x, y) = 0 for all odd values of y. So the odd-valued functions
in Hcp2 are zero2-honest functions. By the mirror len1ma it follows that for

p(jo)

almost all x one has cp;(P(io)) (x, y) > R(x, y) for all odd values of y. Since
there exists by assumption an odd-valued R-honest function f which is not
zero2-honest, one concludes that f E H'P2 \ H'P2 .

a(p(jo)) p(jo)

Having shown that in both cases the honesty classes are different, the proof
is complete.

4 LOOKING BACKWARDS

With hindsight one may ask why this result is not included in the earlier pre
sentations of the non-renarneability theorem. There is just one additional tech
nique involved in the proof which was not present in the proofs in [9]: the use
of parity. The problem in the earlier proofs is how to obtain ''escape values'' for
the diagonalization, in such a way that the choice for this escape value won't
lead to a violation against the original honesty bound. The earliest proof of the
non-renameability uses the undefined escape value, since this choice will never
violate any honesty condition. The consequence is that the diagonal function
becomes partial.

The question whether the non-renameability result extends to the case that
only the total functions in a honesty class are considered originates with Albert
Meyer. Evidently, considering the simple case of tl1e weak complexity classes
(which are non-renameable if partial functions are considered; see theorem 4
in [9]), will yield no answer since the weak and the strong con1plexity classes
contain the same total functions, and the strong classes can be renamed. Thus
the need for finite escape values arose.

In order that the choice of the escape value· y does not lead to a violation
of a honesty condition at argument x, the pair < x, y > should be located at
a place where the original bound S is large. If the transformed bound S' is
obtained using the 1nirror lemma, then these places can be detected by deciding
whether S' (x, y) is small; however, since existence of such a value y is in general
undecidable finding one may be too hard. Only because of the special structure
of the names for the modified complexity classes this hurdle could be overcome.

Using the parity of they value as a dividing condition our new proof in fact
constructs bounds S and S' where the mirror effect only is enforced on half of
the plane (i.e., for odd values of y only)- The diagonal tries to produce viola
tions against the honesty bound S' (x, y) for odd values of y for which S (x, y)
is large and S'(x, y) is consequently small. The escape value is chosen to be
even. By a standard combining lemma argument the complexity of this diago
nalization can be estimated, and it suffices to choose S(x, y) being sufficiently
large for even y and pairs < x, y > where S should be large.

Ultimately there are two cases; either the diagonalization succeeds and a
member of Hs \ Hs, is obtained or S' becomes so small that some odd-valued

308

member of H s gets excluded. Evidently this idea does not reach far beyond
the original techniques, so the result could have been obtained already in 1973
with the others.

A more interesting question is whether the whole field of Abstract Com
plexity Theory should be looked at at all at this stage i11 the development of
theoretical computer science. The subject disappeared from the battlefields of
theoretical computer science since the axioms of the theory failed to put any
constraint of naturalness on the n1odels; all sort of pathologies were possible,
and any attempt to further constrain the theory by enforcing naturalness con
ditions was doomed to failure [3]. Also the theory failed to provide any insight
in the core problems of the field: the relation between time and space and the
power of nondeterminism.

I claim however that some sort of a positive revival today is possible; the gap
between recursion theory and complexity theory is being narrowed these years,
both because of the nowadays frequent use of recursion theoretical techniques
in structural complexity theory, but also since researchers in recursion theory
once more become interested in complexity issues. So there still might be a
market for the lost textbook on Abstract Complexity Theory.

REFERENCES

1. Bennison, V.L., On the computational complexity of recursively enumerable
sets, ph.d. thesis, Univ. of Chicago, 1976.

2. Blum, M. ,A machine-independent theory of the complexity of recursive func
tions, J. Assoc. Comput. Mach. 14 (1967) 322-336.

3. Lischke, G., Erhaltungssatze in der Theorie der Blumschen Kom
piziertheitsmafie, ph.d. thesis, Fr. Schiller Univ. Jena, 1976.

4. Mc Creight, E.M., Classes of computable functions defined by bounds on
computation, ph.d. thesis, Carnegy Mellon Univ., 1969.

5. Mc Creight, E.M. & Meyer, A., Classes of computable functions defined by
bounds on computation, Proc. SIGACT STOC 1, 1969, 79-88.

6. Odifreddi, P., Classical Recursion Theory, part 1, North-Holland, Studies
in Logic and the Foundations of Mathematics, vol. 125, 1989; part 2, to
appear.

7. Rogers, H., jr., Godel numbering of partial recursive functions, J .S.L. 23
(1958) 331-341.

8. van Emde Boas, P., Abstract Resource Bound Classes, ph.d. thesis, Univ.
of Amsterdam, 1974.

9. van Emde Boas, P., The non-renameability of Honesty Classes, Computing
14 (1975) 183-193.

10. van Emde Boas, P., Some applications of the Mc Creight-Meyer algorithms
in Abstract Complexity Theory, Theor. Computer Science 7 (1978) 79-98.

309

