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This paper proposes a natural term language, investigates some of its prop
erties, and discusses some of the advantages of natural term logic (NTL) as 
a medium for natural language semantics over its rivals and ancestors. 

1 INTRODUCTION 

In 1989 Cor Baayen was the prime mover behind the decision to start long-term 
work on the logic of natural language at CWI. Work in this area had found 
an occasional refuge at the centre before, witness Janssen [13], but the seed of 
a full scale research group in 'Logic and Language' was sown in the Autumn 
of 1989. Right now, five years later, the group consists of five researchers (six 
if we count a distinguished longtime guest), all but one supported by external 
funds. Fortunately for the rest of CWI we anticipate that this rate of growth 
will not be sustained in the future. 

The main focus of current CWI research in 'Logic and Language' is on con
nections between programming language semantics and natural language se
mantics and on the design and analysis of suitable representation languages for 
natural language meaning. The connection with programming is explained by 
the fact that natural language 1·epresentation should account for incrementality 
of processing, i.e., for the fact that we tend to understand each natural language 
utterance in the context of our understanding of what we have heard before. 
The semantics of a natural language text T consisting of T1 followed by T2 will 
specify that T1 sets up a context which is passed on as input to T2 , and that 
the meaning of T can be described as an increment of the meaning of T1 . This 
has a straightforward parallel in the analysis of computation: the semantics of 
a computer program P consisting of two parts P 1 and P2, in that order, will 
specify that the result of the computation to which P 1 refers is passed on as 
input to P2 , and that the output of P 2 for this input is the final output of P. 

The paper starts with listing some desiderata for natural language represen
tation, and then makes a new proposal for an incremental language for meaning 
representation. 
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2 WHAT MAKES AN NL REPRESENTATION LANGUAGE 'NATURAL'? 

If we assume that the meaning of ( descriptive uses of) language should re
veal itself in the conclusions we can draw from the truth of natural language 
utterances, the following requiren1ent is possibly the most important: 

Suitability of Representation for Reasoning The representation language 
should come with a sound and complete calculus for reasor1ing, and prefer
ably with decidable and efficient sol1nd reasoning systems for useful frag
ments of it. 

First order logic meets this requirement quite well, as we know. iv1ore esoteric 
higher order representation languages such as Montague's (18] Intensional Logic 
and its derivatives score lower in this dimension, as it is not always obvious 
how such logics should be axiomatized in the first place. 

Another natural requirement on NL representation is the fallowing: 

Structural Similarity of Representation The structure of the logical rep
resentation language should bear a reasonable amount of similarity to 
that of the 'source' natural language. 

At first sight, first order predicate logic does not meet this requiren1ent at 
all. Consider (1), with its first order represe11tation (2) (disregarding tense for 
simplicity). In the logical translation the subject-predicate structure of the 
natural language source seems to have got lost. 

I A man walked in. 

2 :3x(Mx J\ Wx). 

But here the appearance of the representation is misleading. If one thinks of 
the representation as the result of combining, by functional application, the 
meaning of the subject, >..P · :3x(M x I\ Px), with that of the predicate, >..y · Wy, 
then the structure of the source text reveals itself in the meaning representation 
of (1) before lambda reduction: 

3 (>..P · 3x(Mx J\ Px))(\y · Wy). 

Still, the end result (2) of normalizing (3) does not have the same subject
predicate structure as the original. A representatior1 where noun phrases reveal 
themselves in normal form as terms would satisfy the requirement better. 

In the representation of the meaning of a very simple natural language ex
ample like (4), an extension of (1), we want to capture the fact that the first 
sentence of the example makes an indefinite reference to a man, while the 
second sentence picks up the :reference to that same individual. 

4 A man walked in. He looked happy. 

The reason why ordinary first order predicate logic is letting us down here, is 
that we also want our representation language to satisfy the following principle 
of incremental representation ( already hinted at in the introduction above): 
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Incrementality of Representation The representation of a text T consist
ing of a subtext T1 followed by a subtext T2 should be an increment of 
the representation of T1 . 

This principle is closely connected to, although not identical with, the principle 
of compositional interpretation which is the rnain preoccupation of Janssen's 
[13] investigations in Montague grammar. 

In ordinary predicate logic, the natural representation of the first sentence of 
( 4) is (2). This is not a suitable basis to construct a representation of the whole 
text ( 4). A natural representation of the pronoun he would use the variable 
x, but this choice runs into the problem that the scope of :3x in (2) has been 
closed off. 

The theory of discourse representation proposed in Kamp [14] tried to rem
edy this problem by assuming that every indefinite description gives rise to a 
so-called discourse marker, which can be picked up later on by an anaphoric 
link ( anaphora is the standard linguistic name for the co11nection between the 
pronoun he and its antecedent a man in example ( 4)). Discourse representa
tions d la Kamp essentially consist of sets or lists of discourse markers followed 
by lists of conditions. A discourse representation for the first sentence of ( 4) is 
given in (5) 

5 {x}, {Mx, Wx}. 

In an analysis a la Kamp, the representation for the second sentence of the 
example can introduce a new marker y for he, and specify that the markers are 
to be linked: 

6 {y}, {y = x, Hy}. 

The representation of the complete example text ( 4) is the result of an obvious 
process of 'merging' the two representations: 

7 {x,y},{Mx,Wx,y=x,Hy}. 

Later on, Groenendijk and Stokhof [8] observed that the essence of Kamp's 
proposal is already captured by a very simple modification of ordinary predicate 
logic. Replace Tarski 's truth definition for first order logic by a dynamic variant 
which interprets a first order formula as a two-place relation on the set of 
variable assignments. The meaning of <p is then given as s[cp]s', where s denotes 
the input assignment and s' the output assignment. All semantic clauses are 
tests, in the sense of imperative programming ( where a test which gets memory 
state s as input indicates success by returning s as output and failure by giving 
no output at all), with the exception of :3x, which has the clause s[:3x]s' iff s' = 
s(xld), for some arbitrary din the domain of the model under consideration. 

If the predicate logical meaning of the first part of ( 1) is read dynamically in 
the manner indicated, and the pronoun in the second part of (1) is translated 
with the same variable, then in the end result this 'dangling' variable turns out 
to be bound after all, due to the continuing dynamic effect of the 'existential 
switch': 
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8 :3x(Mx I\ Wx) I\ Hx. 

It is clear that the requirement of incremental representation leads in a nat
ural way to a representation language with a dynamic semantics, and we can 
expect such representation languages to be similar to programming languages 
in interesting ways. For ir1stance, it turned out that the dynamic version of 
predicate logic can be analysed with the standard tools from the study of im
perative programming, such as Hoare logic (Van Eijck and De Vries (4]). Also, 
it became clear that dynamic predicate logic and its derivatives suffer frorn the 
problem of destructive assignment (see Dekker [1], Vermeulen [24] and Visser 
[25] for discussion and for possible remedies): because 3x has been effectively 
replaced by the assignment statement x :=?, an existential quantification de
stroys the old value of its variable, with the result that anaphoric reference to 
that value by means of the variable ( or a pronoun which has that variable as 
its translation) becomes impossible. The present proposal adds one more item 

• 

to the long list of possible solutions for this problem. 

3 THE BASIC IDEA 

The basic idea of this paper is to design a language with complex 'indefinite' 
terms, with a dynamic semantics based on term valuations rather than variable 
assignments. This representation language is structurally more similar to natu
ral language than languages which adopt the term structure of predicate logic, 
it caters for the needs of incremental representation by its dynamic nature, 
and it also looks like a promising tool for reasoning, due to its link to Hilbert 's 
epsilon calculus [9]. An earlier application of epsilon logic to the concerns of 
natural language representation is Meyer Viol [16]. 

The Natural Term Logic (NTL) to be defined in the next section is intended 
to achieve several goals at once: 

• to give an account of the dynamics of left to right processing by means of 
a relational semantics ( an idea from dynamic predicate logic [8], update 
logic [23], and similar proposals) 

• to use intensional choice functions from epsilon logic [9) and instantial 
logic [6, 17] for the representation of indefinites, 

• to account for the existential and universal quantifier in term of choices 
( friendly for existentials, unfriendly for universals), thus incorporating a 
key idea from Game Theoretical Semantics [11], 

• to link pronouns to descriptions of their antecedents ( the key idea of the 
so-called e-type analysis of pronouns proposed by Evans [5]), 

• to treat universal and existential NPs as terms (one half of this idea 
incorporated in file change semantics and DRT; the full idea plays a 
role in traditional syllogistics and natural logic (Purdy [19], Sanchez [21], 
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Sommers [22]) and was all but killed off by Frege's Begriffsschrift analysis 
of quantification [7]). 

4 SEMANTICS OF NATURAL TERM LOGIC 

We start with the non-logical vocabulary of a predicate logical language L. 
This consists of a set 

C = {Co, C1, C2, · · ·} 

of names ( or individual constants), for each n > 0 a set 

P n == { Pf:, Pf, Pf, ... } 

of n-place predicate constants and for each n > 0 a set 

fn == {J[;, ff, f2, · · ·} 

of n-place function constants. 
It is also useful to have ..L for absurdity, = for identity, and - for predicate 

negation. The further logical vocabulary we add to this consists of parentheses, 
the E term operator (borrowed from Hilbert and Bernays [9]), the colon :, an 
infinitely denumerable set V of individual variables, the sequential composition 
connective ; and the connective ⇒ for dynamic implication. 

Terms and formulas are defined by mutual recursion, as follows (assume 
C E C' V E V' f E rn ' p E pn): 

terms t ::= c Iv I ft1 · · ·tn I (Ev: cp). 
-

formulas 'P ::= .l I Pt1 ·•·tn I Pt1 ···tn I t1 = t2 I (tp1;<.p2) I (cp1 ==> 'P2). 

The translation in this language of Example (4) becomes: 

9 W(Ex: Mx); H(Ex: Mx). 

Note that in this translation the reference to the previously mentioned individ
ual a man gets picked up by just repeating the term which was used to refer 
to that individual in the first place: the translation of he is the same as that 
of its antecedent. 

An occurrence of v is bound in 'P if v occurs inside a subformula 7/J of the 
form ( EV : 7/J), otherwise it is free in r.p. I will write <p ( v1 , ... , Vn) to indicate that 
the free variables of <p are among v1 , ... , Vn. Just as in standard predicate logic 
one has to take some care with substitution. If one wants to substitute t for 
free occurrences of v in 'P, one should check that t is free for v in t..p, i.e., that no 
free variable inside t is in danger of becoming bound in the result. Substituting 
( EX : Pxy) for x in R( EY : Sxy )x, would run into this problem, for instance. 
The problem can always be remedied by switching to an alphabetic variant. 
In the example case, the result would be R(cz : S(cx : Pxy)z)(€x : Pxy). 
I will use t..p(t/v) for the result of substituting t for all free occurrences of v 
in r.p, with a switch to an alphabetic variant if the need arises. The result 
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of simultaneous substitution of t 1 , ... , t.n for free occurrences of V1, ... , , Vn, 
respectively, in c.p, with renaming of bound variables as the need arises, will be 
written as rp(t1/v1, ... , tn/ Vn)-

Let M = (dom(M), int(Af)) be a first order model for the vocabulary of L. 
I will use cM, f M, pM as shorthand for int(M)(c!), int(M)(f) and int(M)(P), 
respectively. 

Let A be the set of variab~ assignments for L in M, i.e., let A be the set 
of functions dom(M) v. We will use a, a' for rnembers of A, and a( vld) for the 
assignment a' with a'(t) = t for t -=I 1, and a' (t) = d fort == v. 

Let T be the set of terms of L. We consider the set of partial functions 

dom(Af)[AxT] 

as total functions in 
B = (do1n(M) U {i})AxT_ 

For T' C T and s E B, let s r T' be the function s' E B given by: 

s' (a, t) = s(a, t) if t E T', and s' (a, t) =i otherwise. 

Define dam ( s) as: 
{ (a, t) EA x TI s(a, t) #i}-

The relation < on B is defined as s < s' iff s' r dom(s) = s r dom(s ). 
The set S C B of states for L in M is the set of those s E B satisfying the 

following: 

• s(a,v) == a(v), 

• S ( a, C) == CM, 

• s(a, cv : c.p) = 

where [rp]~ a is 
' 

JM (s(a, t1), ... , s(a, tri)) 
if s(a, t1) #i, ... , s(a, tri) #T, 

1 otherwise. 

d for some d E [<p]~,a if [rp]~,a # 0, 
i otherwise. 

{ d E dom(M) I s, a( vld) [<.p] }, 
with s, a( vjd) [c.p] given by the following clauses ( where we assume s, s', s'' E S 
and a EA): 

s, a[<.p] iff :3s' with s < s' and s, a['P]s', 
s, a [ _L] s' iff never, 
s,a[Pt1 ·••tn]s' iff s < s1,s'(a,t1) #T,- .. ,s'(a,tn) #i, 

( s' (a, t 1 ) , . . . , s' (a, tn)) E pM , 

s, a[t1 = t2]s 1 

s, a[rp1; tp2] s' 
s, a[rpr ⇒ tp2]s1 

iff s < s', s'(a, t1) #i, ... , s'(a, tn) #T, 
(s'(a, t1), ... , s'(a, tn)) (/. pM, 

iff s < s', s'(a, t1) i=i, s'(a, t2) i=i, s'(a, t1) = s'(a, t2), 
iff ::Is'' with s, a[<p 1]s'' and s'', a[<p2]s1

, 

iff s == s' and Vs'' with s,a[rp1]s'' it holds that s'',a[<p2]-
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5 ADEQUACY OF THE SEMANTIC DEFINITION 

Note that the definition of the state set S for L in M is phrased in terms of S 
itself, a potentially dangerous situation. The next proposition shows that for 
every M for L, the set of states for L in A1 is non-empty. 

PROPOSITION 1 If S is the set of states for L in M, then S /:- 0. 

Proof: The proof uses a variation on a standard Skolem expansion argument 
(see e.g. Hodges [12]). 

Start out with the following language L0 : 

ter1ns t ::= c I v I ft1 · · · tn. 
-

formulas ({) ::= J_ I Pt1 · · · tn I Pt1 · · · tn I t1 = t2 I ('Pt; 'P2) I ( 'PI => 'P2) · 

Let To be the set of terms of Lo. Surely, states for Lo exist, for a state for Lo 
is just a mapping from assignments to classical first order term valuations. Let 
S0 be the set of states for Lo. Note that ['P]~,a is well-defined for r..p E Lo. 

Next, expand the language in layers. Assume Tk, the set of terms for layer 
k, and Lk, the set of formulas for layer k, are given. Then Tk+I and Lk+l are 
given by the following clauses: 

terms t ::== c Iv I ft1 · · · tn I (Ev: <p) with (f) E Lk, 

for1nulas (f) ::=-'- I Pt1 · · · tn I Pt1 · · · tn I t1 = t2 I (<pi; (f)2) I (<p1 =;,- 'P2) 
with t E Tk+I· 

We may assume that Sk, the set of states for Lk, is non-empty. Also, we may 
assume that [ <.p] ~ a is well-defined for <.p E L k, s E S k. , 

Take some member Sk E Sk and use it to construct a members of Sk+I as 
follows. 

• if t E Tk, then s(a, t) := sk(a, t), 

• if t E Tk+l -Tk, then t has the form (Ev: cp), with <.p E Lk, and we set 
d for some d E [cp]~k ,a if ['P]~k ,a -/= 0 
i otherwise. s( a, EV : 'P) :== 

Obviously, this can always be done, so we have shown that Sk+I # 0, and 
moroever, that every s k E S k can be extended to an s k+ 1 E S k+ 1. Also, if 
s E Sk+I, ['P]~ a will be well-defined for 'P E Lk+l · , 

The full language L is ur=O L k' the full set of terms T is U%°_o Tk. The set 
of states S for L in M is given by: 

{s E BI sf Tk E sk,o < k < oo}. 

As each Sk is non-empty and each sk E Sk has an extension Bk+l E Sk+1, this 
proves that S f= 0. ■ 
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6 TRUTH, VALIDITY AND ENTAILMENT 

The following definitions of truth, validity and entailme11t round off the pre
sentation of the semantics of L. 

DEFINITION 1 (TRUTH) r.p is true in L-model M if 3s E S, 3a E A with s, a[r.p], 
where S is the set of states for L in M and A == dom(.i\1) v. 

Here are some examples of first order equivalents of NTL formulas to illustrate 
the definition (where F denotes NTL truth, and l=c the classical first order 
notion of truth). 

• M I= B(cx: Ax) iff M Fe 3x(Ax I\ Bx) 

• M p= R(Ex: Ax)(Ex: Bx) iff M l=c 3x3y(Ax I\ By I\ Rxy). 

• M p= R(Ex: Ax)(t:x: Ax) iff M Fe 3x(Ax /\ Rxx). 
-

• M p= R(Ex: Ax)(tx: Ax) iff M Fe 3x(Ax /\ ,Rxx). 

• M p= A(Ex: Ax) ⇒ B(Ex: Ax) iff M Fe Vx(Ax > Bx). 

DEFINITION 2 (VALIDITY) r.p is valid if r.p is true in every L-model M. 

Here is an example validity (with F <p for 'r.p is valid'): 

p A(Ex: Bx) ⇒ B(Ex: Ax). 

DEFINITION 3 (ENTAILMENT) r.p entails 'l/; if the truth of '-P in L-model M en
tails the truth of r.p; 'l/; in L-model M. 

This may sound slightly non-standard. The reason for looking at the conclusion 
'in the context of the premise' is of course that the conclusion may contain 
translations of pronouns that find an antecedent in the premise. 

Here is an example entailment (with F for the entailment relation): 

(P(cx: Ax)=> P(f.x: Bx)); (P(cx: Bx)=> P(t:x: Cx)) 
p= P(cx: Ax)=> P(tx: Cx). 

The term language L is a dynamic variant of Hilbert and Bernays' epsilon logic 
( see [9]). The dynamic epsilon terms are meant to represent the process of 
referring indefinitely to individual entities (by means of indefinite descriptions) 
in natural language. 

Moreover, it is an intensional version, for two formulas r.p and 'l/; which are 
logically equivalent (i.e., which entail one another) can give rise to different 
'epsilon choices' in the sense that for some state s, s(Ev : r.p) # s(tv : 1/;). In 
extensional epsilon logic (cf. Leisenring [15)) this situation cannot occur. For 
our purposes the intensionality of choice is indispensable, for we want to be 
able to use logically equivalent indefinite descriptions for indefinite reference to 
different individuals. 
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Some extra notation is useful for that. Note that according to the semantic 
clauses, ( _L_ ==> 1-) is valid. Let ( EV : <p )n abbreviate the following: 

(€V: (cp; ((l_ => l_); ((_L_ =} 1-); .. . )))) 

n times 

Then we can use ( EX : Ax )o, ( ex : Ax) 1 , ( EX : Ax )2 , and so on, to translate 
different occurrences of an indefinite description in a text. 

10 A beer for her, a beer for him, and an orange juice for me. 

In ordering a round of drinks for three, as in (10), a repetetion of the same 
indefinite (lescription should not entail that the same glass is to be shared by 
two of your friends, so the translation should use ( ex : Bx )0 and ( EX : Bx) 1 , 

for the two different glasses of beer. 

7 AN UPDATE FORMULATION OF THE SEMANTICS 

If IC S, where S is the state set for Lin son1e given M, let J[cp] be the set of 
states given by: 

{ s E S I :3s' E 13a E A : s', a [ <p] s}. 

We can use this notion to define a global index elimination procedure for NTL. 
An index for L is a pair (M, /), where M is a model for L and I C S, I -=I 0, 
with S the state set for L in M. 

If U is a set of indices, then define: 

U cpl = { (M, I[cp]) I (M, /) E U and I[cp] # 0}. 

Let W be the class of all pairs (M, S), with M a model for L and S the full 
state set for L in M. Then <p is valid iff (Wl<pl)o equals the class of all models 
for L; here ( )0 denotes the operation of taking the first projection. 

Let U be the power set of the class of all indices for L. A natural information 
ordering on U can now be given in terms of the local ordering < on states for 
a given model, which we first extend to state sets, as follows: 

I < J iff for all s E J there is an s' E J with s' < s. 

Next, we set, for U1 , U2 E U: 

U1 < U2 iff for all (M, J) E U2 there is a I < J with (M, /) E U1. 

This distinction between a global and a local perspective on the semantics 
should be compared to a similar distinction made for dynamic modal predicate 
logic, in Van Eijck and Cepparello [3]. The distinction is the key to extending 
the present proposal with epistemic operators such as maybe, an extension 
which is beyond the scope of the present paper, however. 
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8 SOME EXAMPLE MEANING REPRESENTA1"'IONS 

We will now illustrate the potential of the language by a brief discussion of 
examples, some of them famous from the literature. 

11 Some farmer owns a donkey. He beats it. 

Natural translation: 

12 O(tx: Fx)(Ey: Dy); B(cx: Fx)(Ey: Dy). 

This does have the expected meaning, for it is equivalent to the following first 
order sentence: 

13 :3x:3y(Fx I\ Dy I\ Oxy I\ Bxy). 

The advantage of the NTL version is the fact that the translation of the second 
part is an increment of that of the first. 

14 If a farmer owns a donkey, he beats it. 

The translation of this key motivating exan1ple for Discourse Representation 
Theory: 

15 O(cx: Fx)(ty: Dy) ⇒ B(tx: Fx)(cy: Dy). 

The first order equivalent of this: 

16 Vx\/y((Fx A Dy I\ Oxy) > Bxy). 

This example derives its fame from the fact that its first order translation is 
so hard to get in a compositional way. The NTL version does not face such a 
problem. 

1 7 Every farmer who owns a donkey beats it. 

To treat the example it is useful to have a notation of universal terrns. Let 
P( ... ( TV : cp) ... ) be shorthand for: 

( cV : r.p = €V : cp) => p ( ... ( EV : r.p) •.. ) . 

Then ( 17) gets as natural translation: 

18 B(rx: Fx; Ox(ty: Dy))(ty: Dy). 

This is shorthand for: 

19 
(ex: Fx; Ox(Ey: Dy))= (Ex: Fx; Ox(Ey: Dy)) 
=> B(tx: Fx; Ox(ey: Dy))(Ey: Dy), 

which has the same first order equivalent as ( 15). 

20 Every farmer owns a donkey. He beats it (regularly}. 
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The discourse representation literature [14] claims that the example is ill
formed, a nice illustration of the fact that linguistic observation, like all obser
vation in science, is biased by theory. Unlike discourse representation theory, 
which cannot handle it, we can afford to assume that this example is linguisti
cally acceptable. Here is the translation: 

21 0 ( TX : F x) ( ty : Dy); B ( TX : F x) ( cy : Dy) . 

Its first order equivalent: 

22 \/x(Fx > 3y(Dy I\ Oxy)) I\ \/x(Fx , 3y(Dy I\ Bxy)). 

If this isn't close enough, we can relax our regime of pronoun translation which 
says that pronouns are to be translated by repetition of the term translation 
of their antecedent. 

23 O(Tx: Fx)(Ey: Dy). 

In fact, from· the truth of (23) we get that in every setting the term ( TX : Fx) 
can be replaced salva veritatis by (Tx: Fx; Ox(t:y: Dy)). Using this as pronoun 
translation ·we get: 

24 O(Tx: Fx)(t:y: Dy); B(Tx: Fx; Ox(Ey: Dy))(Ey: Dy). 

The first order equivalent of (24): 

25 \/x(Fx > 3y(Dy I\ Oxy)) I\ Vx(Fx > \/y((Dy I\ Oxy) > Bxy)). 

26 Every farmer owns a donkey. Some farmer beats it. 

Like the previous example, this one is beyond the scope of most current seman
tic theories. Outside of the mainstream of natural language semantics, Game 
Theoretical Semantics [10] does sketch an account, however. NTL now incor
porates this treatment in standard dynamic semantics. Here is a translation: 

27 O(Tx: Fx)(cy: Dy);B(cx: Fx)(ty: Dy). 

Its first order equivalent: 

28 \/x(Fx > 3y(Dy I\ Oxy)) /\ :3x(Fx /\ 3y(Dy /\ Bxy)). 

Again, if this isn't close enough, we can relax the pronoun translation regime 
and observe that the truth of the first half of (27) guarantees that we can 
replace the term (ex: Fx) by (tx: Fx I\ Ox(f.y: Dy)) without changing truth 
conditions. This gives the following alternative translation: 

29 O(rx: Fx)(Ey: Dy); B(tx: Fx;Ox(cy: Dy))(cy: Dy), 

with first order equivalent: 

30 Vx(Fx > 3y(Dy I\ Oxy)) /\ :3x(Fx /\ ~y(Dy /\ Oxy /\ Bxy)). 

Of course, all first order equivalents in this section were given ad hoe. In the 
next section the issue of reasoning about and in NTL will be addressed in a 
more systematic way. 
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9 ASSERTION REASONING FOR NATURAL TER!\1 LOGIC 

One approach to developing a calculus for a dynamic logic is by using assertions, 
in the style of Hoare logic or quantified dynamic logic. The statements from 
the dynamic language to be analyzed then become modalities, and we interpret 
(c.p)X as: there is some states' reachable from the current states witl1 s, a[<p]s' 
and X holds at s', and its dual [c.p]X as: for all states s' reachable from the 
current states with s,a[<p]s', X holds at s'. 

Here are some axioms for an assertion calculus along these lines ( we use X as 
metavariable over assertion statements, and T as abbreviation of some abitrary 
tautology). 

A 1 (c.p1;'P2)X ~ > (c.p1)(c.p2)X. 

A 2 ('P1 => t.p2}X < > (X /\ [c.pi](cp2}T). 

A 3 ( P (. . . ( €V : c.p) ••• ) ) X < > :3x ( ( cp} T /\ ( P ( ... x ... ) ) X ( v / ( EV : <p))) . 

A 4 [ P ( ... ( €V : 'P) •.. ) ] X < > \ix ( ( c.p) T > [ P ( ... x ... ) ] X ( v / ( £V : 'P))) . 

A 5 ( Pt 1 ••• tn) X ~ ➔ ( Pt 1 ... tn I\ X). 

Condition on A-5: none of the ti is of the form ( cv : r.p). 

A 6 [ Pt 1 • • • tn] X < > ( Pt I · · · tn ➔ X) . 

Condition on A-6: none of the ti is of the form ( cv : r.p). 
Further discussion of these axioms is beyond the present scope (see Van Eijck 

[2] for a similar calculus for dynamic predicate logic). 
Instead, we confine ourselves to illustrating their use by means of the follow-

ing example. 

(O(tx: Fx)(€Y: Dy)=> B(€x : Fx)(€y: Dy))T 
< > [O(tx: Fx)(Ey: Dy)](B(tx: Fx)(ty: Dy))T 
< > Vx( (Fx) T ➔ [Ox( tY : Dy)] (Bx(€Y : Dy)) T) 
< > Vx(Fx > [Ox(€y: Dy)](Bx(€Y: Dy))T) 
< > Vx(Fx > Vy( (Dy) T , [Oxx] (Bxy) T)) 
< > Vx(Fx > Vy(Dy ➔ [Oxy] {Bxy) T)) 
< ➔ V x ( F x > Vy ( Dy > ( Oxy > B xy))). 

10 NATURAL DEDUCTION FOR NATURAL TERM LOGIC 

A different approach to reasoning with term logic is given by the following 
example rules from a natural deduction calculus with ordered premises. 

r.p; 'ljJ 
Al-

A2 

<p 

<p; 'lf;(cv: x/v) 
'lp ( £V : (X I\ 'P) / V) 
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Condition on A-2: cp should not contain occurrences of epsilon terms. An 
example application of the second rule is: 

W(cx: Mx); H(ex: Mx) 

H(cx: Mx /\ Wx) 

These rules are for purposes of illustration only. Axiom A-2 needs a more com
plex formulation to deal with cases where the first member cp of the sequence 
cp; 1/J contains more than one epsilon term. 

Further work on natural deduction for NTL should establish a connection 
with natural deduction for standard epsilon logic (see Meyer Viol [17] for a 
treatment). 

' 

11 CONCLUSION AND FURTHER DIRECTIONS 

We have sketched a representation for natural language meaning which treats 
indefinite descriptions as terms. An obvious first extension is definite descrip
tions, for which standard logic has a term treatment using the t term operator 
(see e.g. Reichenbach [20] for an illuminating discussion). Further extensions 
of the representation language t.hat seem interesting are epistemic modalities 
and, in a different direction, plural terms. 
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