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During the last six years, by his spoken and written words in support of ERCIM 
1 2 3 4 , Prof. Baayen has stimulated cooperation between fellow researchers at 
European sister institutes. Baayen's words were not just pie in the sky. Already 
in 1988, financial and logistic support became available for mutual working vis­
its of ERCIM researchers. Based on earlier contacts, the authors could soon 
take advantage of these newly created ERCIM opportunities. Without encoun­
tering any red-tape, the authors could start joint ERCIM work in the field of 
computational fluid dynamics. This led to several papers in the international 
scientific literature. This contribution gives a survey of some of this research, 
which is described in more detail in two SIAM articles5 6 . It is our tribute to 
Prof. Baayen's inspiring role as the first ERCIM president. 

1 P.C. Baayen, A. Bensoussan, G. Seegmiiller, Europear1 computer science market, CWI 
GMD INRIA Newsletter, 1, p. 1, 1989. 

2 P.C. Baayen, ERCIM's joint action programme is taking shape, CWI GMD INRIA 
Newsletter, 3, p. 1, 1990. 

3 P.C. Baayen, Strengthening ERCIM, ERCIM News, 11, p. 2, 1992. 
4 P.C. Baayen, Editorial, ERCIM News, 15, p. 1, 1993. 
5 M.-H. Lallemand and B. Koren, Iterative defect correction and multigrid accelerated 

explicit time stepping schemes for the steady Euler equations, SIAM Journal on Scientific 
Computing, 14, p. 953-970, 1993. 

6 J.-A. Desideri and P.W. Hemker, Analysis of the convergence of iterative implicit and 
defect correction algorithms for hyperbolic problems, SIAM Journal on Scientific Computing 
(to appear, Jan. 1995). 
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2 ITERATIVE DEFECT CORRECTION AND MULTIGRID ACCELERATED EX-

PLICIT TIME STEPPING FOR THE STEADY EULER EQUATIONS 

Convergence results are presented for a new pseudo-unsteady solution method 
for higher-order accurate upwind discretisations of the steady Euler equations. 
Comparisons are made with an existing pseudo-unsteady solution method. 
Both methods make use of nonlinear multigrid for acceleration and nested 
iteration for the fine-grid initialisation. The new method uses iterative defect 
correction (ItDeC). This section is based on the paper [9]. 

2.1 Equations 

The equations considered are the steady, two-dimensional, compressible Euler 
equations · 

where 
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Assuming a perfect gas, the total energy e satisfies: e = 
The ratio of specific heats ~ is assumed to be constant. 

1 E. + ! (u 2 + v2). 
,-1 p 2 

2. 2 Spatial discretisation 

The computational grid is obtained by a hybrid finite element - finite volume 
partition. A (possibly unstructured) finite-element triangularisation is used 
as the basic partition. A cell-centered finite-volume partition is derived from 
the finite-element partition by connecting the centers of the triangle sides in 
the manner illustrated in Figure 1.1. The finite-volume grid gives us the easy 
possibility of grouping together the nodes associated with contiguous finite 
volumes. If we take unions of control volumes this results in a new coarser 
mesh. Repetition of this operation gives coarser and coarser meshes. For 
details about the coarsening process (multilevel gridding) we refer to [8]. 

On the finest grid, for all finite volumes Ci, i == 1, 2, ... , N, we consider the 
integral form 

(F(W)nx + G(W)ny) ds = 0, i = 1, 2, ... , N, (2.3) 
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FIGURE 2.1. Finite volume ci 

with nx and ny the x- and y-component of the outward unit r1ormal on the 
volume boundary fJCi. For the Euler equations, because of their rotational 
invariance, (1.3) may be rewritten as 

T- 1 (nx,ny)F(T(nx,ny)W)ds = 0, 
aci 

where T(nx, ny) is the rotation matrix 

1 
0 
0 
0 

0 0 0 
nx ny 0 

-ny nx 0 
0 0 1 

i = 1,2, ... ,N, (2.4) 

• (2.5) 

For simplicity, we assume the flux to be constant across each bi-segn1ent 8Cij of 
the boundary 8Ci, where 8Cii = 8Ci n 8Ci is the comn1on boundary between 
the neighbouring volurr1es Ci and Ci (Figure 1.2a). Hence, 8Ci = UoCiJ, j == 
1, 2, ... , ni, with ni the number of neighbouring volumes CJ· (In the example 
of Figure 1.1: ni == 5.) Since we have assumed that the flux is constant along 

-
8Cij, it is equal to the flux across the straight segment 8Cii connecting the two 
extreme points of fJCij (Figure 1.2b). If we introduce the outward unit normal 

'Tlij = ((nx)ij, (ny)ij)T along each acij, j = 1, 2, ... , ni, with the assumption 
of a constant flux, the contour integral (1.4) can be rewritten as the sum 

i = 1, 2, ... , N, (2.6) 
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a. Bi-seg111ent 8Ci; b. Straight seg1n ent 8Cii 

FIGURE 2.2. Segments in between finite volumes Ci and Cj 

-
where Tij = T((nx)ij, (ny)ij), where Wij is some value of W depending on for -
instance Wi and Wi, and where lij is the length of the segment 8Cij. 

Crucial in (1.6) is the way in which the cell-face flux F(Tij Wii) is evaluated. 
For this we use an upwind scheme which follows the Godunov principle [3], -
which assumes that the constant flux vector along each segment 8Cii is de-
termined only by a uniformly constant left and right cell-face state (Wilj and 
Wij). The lD Riemann problem which then arises at each cell face is solved in 
an approximate way. With this, (1.6) can be further rewritten as 

i:::: 1,2, ... ,N, (2.7) 

where <I> denotes the approximate Riemann solver. Several approximate Rie­
mann solvers exist. In the present paper we apply that of Osher and Solomon 
[11]. 

The flux evaluation, and so the space discretisation, may be either first­
or higher-order accurate. First-order accuracy is obtained in the standard 
way; at each finite-volume wall, the left and right cell-face state which have 
to be inserted in the numerical flux function are taken equal to those in the 
corresponding adjacent volumes: 

(2.8) 

Whereas the first-order accurate discretisation is applied at all levels, the 
higher-order discretisation is applied at the finest grid only; using the finite­
element partition existing there. Higher-order accuracy is obtained with a 
MUSCL-approach [10]. Here, Wfj and W[j are derived from linear interpola­
tions. On each volume Ci around the triangle-vertex i an approximate gradient, 

-
denoted by (v"W)i, is derived by integrating the gradient of the linear inter-
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. Existing solution met.hod 
To solve t,he steady discretise(i systen1 ( l. 7)'t we co1,1sidE~r thtl: ua,t,ea.<iy, serr1i­
di,screte syste1r1 of or(.iinary differential ec11.1at,i<ltts 

(2.11) 

The natural cl1oice for R;, is 

,, li 

-1 ... ' ,,.. l ~ l - (2.12) 
< 11 

J= ... 

where Ai is the area of finite voll1rr1e C,,,. 
As a11 upwinci analogue to Ja111esor1's ce11t,ral :t11et.}10,d (.,Ja111esc)r1 1983), in [8] 

an explicit four-stage Rur1ge-Kt1t,ta (RK4-) scl1t~n1e is a1>J>lieci for t,ht~ ten1poral 
integration of (l.ll}-(1.12). 'I~he b-er1£~fit,s of the upwir1d ar1,1lc)gut~ are evider1t: 
better shock capturi11g., gres.t,er rob11str1ess ar1<i r1c> tux1i11g <>f explic~it,ly adcic~ 
artificial viscosity. Sin1ilarly, just i\S ir1 [6], in [8] r11ultigricl is tipplie<i f<)r accel­
erating the solutio11 prot7ess. Furtl1err11c>re, j11st a.,.,~ ir1 [6J, t.i111e a<:<.~11rac~y is 11ot 
pt1rsued and c>ptin1al Ru11gE~-Kutt,a cc>t?ffic~ie11t,s are ap1>li1:~(i to get gc><)d st,at>il­
ity a..c; well a..~ gc►od s,m0<>tl1i11g prop<.~rties. It. see1·ns that. tl1t~ S<)l11tion r1,1et,l1oci 
prese1.1ted i11 [8J is already con1pet.it,ive with JameS<.)r1's 111etl1{J(i, witt1out the 
introducti,on <>f a further ac.~celerati{)Il techniqt1e suc~l1 as for exar11ple resi<iual 

• averaging. 
It is of i11terest t.l1at, t,he u1>w·i:r·1d ar1alc>gue allclws a. f11rther effi(;ier1t~y i1nprove­

n1er1t t)y expl{>it,ati()r1 <.>f the direct, avvd.ilallility of t.l1e c~orrt~por1cli11g first-order 
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upwind discretisation, with its better stability and smoothing properties. Since 
a first-order central discretisation is not readily available, a standard central 
method does not easily allow this improvement. 

2.4 Improved solution method 

Compared with the existing solution method, the new solution method only 
uses a more extensive right-hand side in the explicit time-stepping scheme. The 
extension consists of two first-order upwind defects, one which is evaluated at 
each stage of the multistage scheme, and another which is kept frozen during 
a fixed number of Vt RK4-tin1e-steps (vt > 1) and which compensates for the 
other first-order defect by its opposite sign. Further - which is important - the 
higher-order defect is kept frozen as well during lit RK4-steps .. The four-stage 
time-stepping scheme is given in Table 1. In here, v is the time-step number, 
k the stage number, Dt.ti the local time step and ak the k-th Runge-Kutta 
coefficient. In the existing higher-order method the right-hand side Rr,k-t is 

(2.13) 

with (Wilj)v,k-I and (W[j)v,k-l higher-order accurate. So nothing is kept frozen 
in the existing method's right-hand side. For the improved method we take 

l ni 

Ri:,k-1 = - T--1 ;r.,.(,.:;;· .T,v!-',k-1 ,.:;;_ -w~,k-1)-
i A. _ ij '¼' .1. i1 ., i , .1. i1 1 

'I, • 1 J= 

(2.14) 

where only (Wfj )0,0 and (Wij )0 ,0 are higher-order accurate. The frozen first­

order cell-face states (Wio,o and WJ'0
) and the frozen higher-order cell-face 

states ((Wfi)o,o and (W[;) 0 ,0 ) are updated in an additional outer iteration, a 

TABLE 1. Explicit RK4-scheme 

W o,4 == wo,o . == 1 2 N 
i : i ' i ' , ... , 

for v from 1 to Vt do 
W v,O ·= wv-1,4 ,; = 1 2 N 

i . i ' l, ' , ••• , 

for k from 1 to 4 do . 
W ~,k · w:--, 0 + At· Ri:,k-l . == 1 2 N 

i .== i ~ i Cl'.k i ' 'l ' ' .•. ' 

enddo 
enddo 

274 



defect correction iteration. For general information on defect correction pro­
cesses we refer to [1]. For explanation and analysis of the present defect cor­
rection iteration we refer to [9]. Here, we directly proceed with an illustration 
of the performance of the present new method. 

2. 5 Numerical results 

Ir1 [9], by analysis we found that the new higher-order method has better stabil­
ity and smoothing properties than the existing higher-order method. In order to 
verify these predicted better stability and convergence properties, we compute 
the standard transonic channel flow from [12] with the two-dimensional Eu­
ler equations. Three finest grids are considered: a 161-vertices grid, an about 
twice as fii1e 585-vertices grid and an about four times as fine 2225-vertices 
grid. (See [8] for more grid details.) The corresponding soiution schedules 
applied are a 4-, 5- and 6-levels schedule (L == 4, 5, 6), respectively, all with 
llpre = Vpost = 1, \/l. (For the definition of symbols we refer to [9].) 

In Figure 1.3a we present various convergence histories as obtained for L = 
4, 5, 6, respectively. The convergence results presented are: 

• those of the first-order discretised Euler equations solved by means of the 
nonlinear multigrid iteratior1 (dotted lines), 

• those of higher-order discretised Euler equations solved by means of the 
existing higher-order method ( dashed lines), and 

• those of higher-order discretised Euler equations solved by means of the 
improved higher-order method ( solid lines). 

In all three graphs in Figure 1.3a, the residual considered is the L2-norm of the 
error in the conservation of mass over all the finest-grid cells. Further, in all 
three graphs, the number of cycles indicated along the horizontal axis is: 

• the number of FAS-cycles in case of both the first-order method and the 
existing higher-order method, and 

• the number of ItDeC-cycles in case of the new higher-order method. 

Note that with the new higher-order method, for llFAS == 2, 5, 10 the number 
of inner FAS-cycles is respectively 2, 5 and 10 times larger than the number of 
indicated ItDeC-cycles. (Only for VFAS = 1, the number of FAS-cycles equals 
the number of I tDeC-cycles.) All convergence histories start at the end of the 
FMG-stage ([9]). In agreement with the theoretical results presented in [9], for 
all four values of VFAS (so also for VFAS == 1), the new method does indeed give a 
better convergence than the existing higher-order method. For decreasing mesh 
width, the convergence of the new higher-order method becon1es even relatively 
better than that of the first-order method. (For all four values of VFAS under 
consideration, the corresponding convergence histories in Figure 1.3a show a 
better grid-independency than those of the multigrid method applied to the 
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first-order discretised equations.) This better performance is probably due to 
the predicted better smoothing in the new method. 

As for the actual order of accuracy, if we took the converged higher-order 
accurate solution obtained on the 2225-vertices grid as the reference solution, 
we measured local orders of accuracy in the range O(h1·4 ), O(h2 ·3 ) for the 
solutions on the coarser grids (the 585-vertices grid and the 161-vertices grid). 
The global order of accuracy appears to be almost O(h2 ). 

Finally, the important question still remains which of the various higher-order 
methods is the most efficient. To answer this question, we give the higher-order 
efficiency histories in Figure 1.3b. (The indicated computing times have been 
obtained on a Sequent.) Since the sizes of the three grids considered are related 
to each other by approximately a factor 4, we have related the scales along the 
horizontal axes accordingly. Concerning the relative efficiency of the improved 
higher-order method, for the four values of VFAS considered, it appears that for 
all three grids the best efficiency is obtained with VFAS == 1 (just as in [7], for 
the schedule with only a single FAS-cycle per ItDeC-cycle.) Further it appears 
- and this is important - that the improved method with VF~A.s == 1 is also 
more efficient tha11 the existing higher-order method. Due to the better grid­
independency of the improved method, this relatively better efficiency becomes 
even increasingly better with decreasing mesh width. 

2. 6 Conclusions 

Fully implicit solution methods for higher-order discretised equations may 
strongly benefit from iterative defect correction when these systems of dis­
cretised equations are not easily invertible, which often is the case with higher­
order accurate discretisations. Fully explicit solution methods may also profit 
from iterative defect correction. Here the profits are faster convergence and 
higher efficiency. The defect correction method appears to lead to greater sta­
bility (and hence to greater robustness) than the existing (standard) explicit 
method. Compared to the existing explicit method it possesses remarkably 
good smoothing properties, in fact even better than the first-order method. 
Last but not least its convergence rate appears to be grid-independent. For 
upwind discretisations, the 'price' which has to be paid for using defect cor­
rection iteration - a slightly more complex algorithm - is negligible, because of 
the direct availability of an appropriate approximate operator: the first-order 
upwind operator. 

3 CONVERGENCE BEHAVIOUR OF DEFECT CORREC'I"'ION FOR HYPERBOLIC 

EQUATIONS 

This section is based on the paper [2]. The nonlinear multigrid 1nethod is effi­
cient for the solution of the compressible Navier-Stokes equations with a large 
Reynolds number, or for the Euler equations [5, 7]. The relaxation procedure 
being the workhorse of the multigrid method, the existence of a relaxation rou­
tine suited for fast reduction of the high frequency error components in the 
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solution of the discrete equations is essential for this success [5]. A good relax­
ation routine is found in point- or line-wise nonlinear (collective) Gauss-Seidel 
relaxation, assumed that we solve the first order accurate discrete equations. 

For the second order discretisation the relaxation procedures are significantly 
less efficient. This is the reason why an additional iteration procedure is in­
troduced as an outer loop: iterative defect correction (ItDeC [1]). The second 
order accurate approximation is now compl1ted by the iteration 

Nl (qh1
)) = 0, 

Nl(qhi+l)) Nl(qhi)) - N~(qhi)), i == 1,2,···. 

(3.1) 
(3.2) 

Here Nl and Nl denote the first and second order (nonlinear) discrete op­
erators. Only systems for first order accurate discrete equations are solved, 
but the fixed point of the iteration is the solution of the second order discrete 
system 

(3.3) 

For the approximate solution of each iterate qhi+I), i = 0, 1, · • •, a small number 
of multigrid iteration steps ( and in many cases only a single step) is sufficient. 

It is a classical result that, under easily satisfied conditions, the second iterate 
q~2

) is already second order accurate [4, Sect.14.2.2]. This result describes 
the convergence behaviour for the low-frequency difference between the first 
a.nd second order discrete approximations. It explains why the convergence 
is fast for smooth solutions and fine grids. However, for the Navier-Stokes 
equations with high Reynolds number and for the Euler equations, sharp layers 
or discontinuities may exist in the solution. Therefore, it is of interest to study 
the total convergence behaviour for defect correction. 

3.1 Linear model problem 

In this contribution we restrict ourselves to the Euler equations. These equa­
tions form a hyperbolic system of conservation laws. To analyze the conver­
gence for these equations, ,ve first study the linear model problem in two di-

• mens1ons 
a oq fJq 

= 0. (3.4) 

Although we are mainly interested in the steady state, we consider here the 
time-dependent problem in order to introduce a 'flow direction' so that inflow 
and outflow boundaries can be identified. The vector ( a, b) T determines the 
flow direction, and with a > 0 the flow is in the positive x-direction. 

For the first order discretisation, the simple upwind scheme is used. This 
scheme is described by its stencil 

0 
-a a+ b 0 • (3.5) 

-b 
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For the second order discretisation, various alternatives are available. Obvious 
possibilities are the second order upwind scheme and the central scheme, with 
the stencils 

0 
0 b -

2 
£2U rv 3(a+b) £2C rv a 2a 0 0 and a 0 a - - -h 2 2 . ' h 2 2 • 

2b b -2 
b -
2 

(3.6) 
The corresponding linear operators are denoted by L~, L~c and L'fiu, for the 
first order and the second order central and upwind scheme respectively. By 
linear comlJination of L~c and L~u a scale of second order schemes is obtained, 
the so-called K-schemes 

1 - ~ L2U 
2 h . (3.7) 

Here KE [-1, 1] is a free parameter that determines the particular scheme; K == 0 
corresponds with Fromm's scheme. Being interested in the convergence of 
ItDeC, we study the amplification operator of the error, 

• 

(3.8) 

3 .. 2 One-dimensional analysis 

We first study the operator Mf: in the one-dimensional case. Then, without 
loss of generality, we have 

Lii rv [-1, 1, O] , and (3.9) 

(3.10) 

For an infinite, regular grid with mesh width h, eigenfunctions for these opera­
tors are Uw, WE [-1r / h, 1r / h], where Uw (j h) == eiwhj. Corresponding eigenvalues 
of the operator Mh are 

M~(w) = i sin(wh/2) cos(wh/2) + 11, sin2 (wh/2). (3.11) 

This shows that the eigenvalues are located in the complex plane on an ellipse 
with axes xE[O, K], yE(-1/2, 1/2]. From {3.11) we see that the upper bound for 
the convergence factor is 

0 -- ... 

sup IMh (w)I = sup K-2 t2 + t(l - t). 
wE[-1r/h,1r/h] tE[0,1)] 

Thus, as upper bounds we find 

1 1 
sup IMh(w)I = ---;====:::;: 

wE[-1r/h,1r/h] 2 ✓1 - ~2 

.. ---
for ,._,2 < 1/2, (3.12) 
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and 
sup IM~(w)I = IKI for 1/2 < ,-;,2 < 1. (3.13) 

wE[-1r/h,1r/h] 

These expressions describe the convergence if no boundaries are present in 
the domain. To obtain an impression of the influence of the inflow Dirichlet 
boundary, we consider grid functions on a uniform partition { Xi = ih; i 
0, 1, 2, ... } of the half-line [O, oo) and we restrict ourselves to error components 
that vanish for large Xi· The operators L}" and L~,.._ are again described by (3.9), 
(3.10), except for the first two equations in the system, that are determined by 
the boundary discretisation. 

The eigenfunctions U>-. of MJ: a11d the corresponding eigenvalues,.\ satisfy the 
relation L~"" U>-. = (1 - --\) L~ U>.., and from (3.10) it follows that U>.. has the form 

• • 

U>-.(jh) ==Ao+ A 1µ{ + A 2 µ~, where µ 1 and µ 2 are roots of the equation 

1-

2 
= 0. 

A straightforward computation [2] shows 

K, ± i✓l - K 2 cos 0 
== 

2 ' 
0 ¥= 0 mod(1r). (3.14) 

This shows that all eigenvalues are located on a line segment in the complex 
plane at a distance K,/2 from the imaginary axis and that all eigenvalues satisfy 

I--\I < ½-
In the case K == ±1, we still have p = max I.XI = 1/2, but the eigenvalues 

coalesce and the eigenvectors are no longer independent. Consequently, in the 
operator decompositio11 Jordan blocks J arise. In the one-dimensional case, on 
a finite interval, the size of these blocks is N - 1, where N is the number of 
mesh points. Then the convergence behaviour after n iterations of ItDeC is 
described by Tn == IIJnlloo, where 

pn 

er; pn n • 

Jrt with e;i 11.-J 

' 
• p . 

• • • J • • • 
• • • 

~jt pn 

It follows that Tn > maxj=0,1,2, ... ,N l<;;I, and hence 

• it is possible that T > I if n < N; 

• r n ~ nN - 1 pn for n > oo, and hence the asymptotic convergence rate of 
-

the iteration is p log lnl; 

• the sequence { Tv }v<n is guaranteed to be decreasing only for n > N /(1--
p). In our case p = 0.5. This implies that the iteration may show no 
convergence for the first 2N iteration steps. 
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These phenomena are seen in practice indeed, as is shown in Figure 3.2.a-d. 
If"' =/= ±1 but 1 < IK,I < ½ 2, the convergence during the first 2N iteration 

steps is dominated by the behaviour as described by the Fourier analysis ( 3.13), 
i.e. a convergence rate of IK-1 is seen. For all "'E[-1, +1] the convergence rate 
has the lower bound p = 1/2. 

In summary, for the one-dimensional problem we distinguish different phases 
in the convergence of the iterated defect correction. In most cases we first 
observe an impulsive start, where all components corresponding with small 
eigenvalues are damped. For the regular schemes (i.e. !Kl different from 1) 
soon an asymptotic rate of 1/2 is obtained. For the (near) pathological cases 
(i.e. l"'I close to 1), after the impulsive start, we distinguish first a Fourier ( or 
pseudo-convection) phase for about 2N iterations, in which the convergence is 
described by the Fourier analysis. After 2N iterations the asymptotic rate 1 /2 
is found. In the truly degenerate cases ( t,:;I = 1) we recognise a Fourier (pseudo­
convection) phase, where the error does not decrease for 2N iterations, and a 
logarithmic asymptotic rate due to the large Jordan block in the eigenvalue 
decomposition. 

3. 3 Two-dimensional analysis 

In principle, the Fourier analysis for the two-dimensional difference operators 
(3.5,3.6) is completely analogous to the one-dimensional case. With the Fourier 
modes defined by uw(hj) = ei(wihiji+w2 h 2 j 2 ), where the subscripts refer to the 
x- and the y-directions respectively, we find 

• 

and 

2iae-iwihi/2 S1(Cf + i81C1 + (1- t,:;)Sr) + 
2ibe-iw2 h 2 /

2 S2(C? + iS2C2 + (1 "')S~) , 

(3.15) 

(3.16) 

where S1 == sin(w1 h1/2), S2 = sin(w2h2/2), C1 cos(w1h1/2) and C2 
cos(w2h2/2). 

As the amplification factor we find 

g(w) 

(a1 s~ (l-(l-K)St)-f:~2S~ (1-(1-K)S~) )2 +(1-K)2 (a1 ~rC1 +a2S~C2 ) 2 

(a1Sr+a2S~) 2 +(a1S1C1 +a2S2C2) 2 • 

(3.17) 
This expression can be used to determine the convergence rate for the separate 
modes on an infinite domain. It shows that, for a given K,, we c-an never expect a 
better convergence rate in the two-dimensional case than in the one-dimensional 
case. 

For the analysis of the two-dimensional case on a finite domain, we refer to [2]. 
Essentially, the results for two space dimensions can be seen as a perturbation 
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of the results for one dimension. Analogous to the one-dimensional domain, the 
location of the eigenvalues is shown in Figure 3.1. We now find the eigenvalues 
not on a line segment in the complex plane, but in a cloud near that line 
segment. The real part of the eigenvalues is generally larger than is the case 
in one dimension ( for the same ;;, ) . This means that the cloud is shifted to the 
right of the corresponding line segment. For the case of large "' ( K, ~ + 1), the 
cloud is larger than for small K ( K ~ -1). 

For different values of K and for different values of N the location of the 
eigenvalues in the complex plane is shown in Figure 3.1. In this figure the ratio 
a/b is 2/3. 

In Figure 3.2 the convergence behaviour is shown for the model problem on 
a 40 x 40-mesh. For K < 0 the cloud of eigenvalues is still contained in the 
circle lzl < 0.5, so p(Mh) < 0.5 if K < 0. However, for O < ;;, < 1 we find 
possibly p(Mh) > 0.5, and for large "" we have lim"' ·•+I limh-o p(Mh) = l. 
This explains why a convergence rate p(MJ;) > 0.5 is found for "' = 1/3 in 
Figure 3.2.e whereas p(Mh) = 0.5 for K = 0 (Figure 3.2.e). For more details 
we refer to [2]. 

3.4 Euler equations 

A similar behaviour, depending on K, as for the linear model problem, is 
found for the nonlinear Euler equations. In Figure 3.3 we show the conver­
gence behaviour for a problem that describes subsonic flow around a standard 
NACA0012 airfoil. This is a smooth flow where the problem is described by a 
complex nonlinear system of equations and the domain is not simply connected. 
The mesh is 20x32 and results are shown for different values of K,. We see that 
the iteration doesn't converge for K, = 1, as it doesn't for ;;, = -1 (not shown). 
We obtain slow convergence for K. == 0.8 and K == -0.8. Good convergence 
with a rate of approximately 0.5 per iteration step is obtained for "" = 1/3, 0 
and -1/3. Probably the asymptotic rate cannot be observed because rounding 
error accuracy is obtained after approximately 40 iterations. For K == 1/3 and 
;;, = -1/3 we see that after an initial phase with p ~ 0.5, we obtain another 
phase with a slightly slower convergence rate. Such effect is not (yet) seen for 
K, = 0. 

The first order discrete equations are solved by a nonlinear multigrid method 
[5]. It employs a nonlinear symmetric point-Gauss-Seidel relaxation as a 
smoother and a nested sequence of Galerkin discretisations for the coarse grid 
corrections. Experience has shown that a small number of iteration cycles of 
this multigrid method solves the discrete system to a high degree of accuracy. 
In the experiments shown, 3 FAS V-cycles were applied for each single de­
fect correction step. It was shown by experiments that the same results were 
obtained for multigrid iteration with 2 through 5 FAS V-cycles. All initial es­
timates were obtained by interpolation from a first order accurate solution on 
a coarser grid. 

For this flow subsonic flow around the airfoil K == I gives an almost diverging 
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l,n 
eigenvalues 

1/2 

Re 

One-dimensional 

Two-dimensional , K, = -0.9 

Two-dimensional , "'= -1/3 

Two-dimensional , K = 1/3 

Two-dimensional , K = 0.9 

Two-dimensional , K- = -1 

-• • t 
•• • :..+-+-+----+-----! 

Two-dimensional , K- == -2/3 

Two-dimensional , Ii, = 2/3 

Two-dimensional , K- = 0.99 

FIGURE 3.1. Location of the eigenvalues of the amplification matrix Mf:' in 
the complex plane, relatively to the circle of radius 1 /2, for the one and the 
two-dimensional model problem. Except for the first 1-dim. figure, the mesh is 
10 x 10 and the ratio a/b = 2/3. 
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FIGURE 3.2. Convergence of ItDeC for the one- or two-dimensional linear test 
problem. 
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FIGURE 3.3. Subsonic Flow over a NACA0012 Airfoil 
Convergence of the defect-correction method, on a 20 x 32 mesh. 

Mach number at infinity, M 00 = 0.63, and the angle of attack a== 2.0°. 
The dashed line corresponds to a convergence rate 1/2. 
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process arid K = 0 .. 8 and "" = -0.8 shows bad convergence. The asyn1n1etry 
in the convergence behaviour with respect, t,o K, > 0 (worse) and K < 0 (better 
convergence) might be understood by the location of the eiger1values in the 
complex plane {as shown in Figure 3.1:). There we see that more eigenvalues are 
located i11 the neighbourhood of the origir1 for K < 0 than for K > 0. This may 
be of greater importance for the nonlinear equations, where the correspor1ding 
eigenvectors are excited again a11d again, than for the linear problems, where 
the effect of tl1ese eigenvalues is no longer seen after a suffic~ient nu1nber of 
iterations. 
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