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1 Introduction 

In the peri()d 1984-1992, one of my research goals was to establish the existence 
of certain (non-abelian) finite subgroups of exceptional Lie groups. My main 
collaborators on this topic were R.L. Griess, Jr. and D.B. Wales. 

Some of these embeddings could be done entirely by theoretic arguments 
and hand calculations. For the others, the best we could do was to reduce the 
problem to a form suitable for the computer to finish off the computations. 
I would like to sketch t,he nature of such computations using a few simple 
examples, thereby illustrating tlte improved possibilities of polynomial system 
solving. 

Also, I will sketch roughly how, very recently, Serre has shown that the 
reduction techniques we developed can be pushed so far that at least the most 
spectacular of the existence proofs can also be done without recourse to a 
computer. 

I will write about one more issue, as it represents some of the interactions 
between mathematics and computer science that Cor Baayen enjoys seeing. 
It is the use of rewriting techniques in group theory, in much the same way 
they are used in Buchberger's Grabner basis approach to polynomials-the 
technique that lies at the heart of the present polynomial system solvers. 

Before going into some of these details, I will present an elementary intro­
duction into group representations. The quaternion group (of order 8) and 
the icosahedral group ( of order 120) will be used to illustrate the ideas. The 
rotation group of the latter is the nonabelian finite simple group of smallest or­
der. This may explain a bit why it is a gateway to understanding finite simple 
groups. 

2 The quaternion group 

Let G be a finite group. A classical group theoretic question is to determine all 
possible realisations of G as a group of matrices. To be more precise, one would 
like to know all possible morphisms p : G > G L(V) from G into the group 
GL(V) of all linear transformations of a vector space V over a fixed field k. 

' 

*Written for Cor Baayen in gratitude for his role in my professional life. 
t1nspired by the 100 year old [K] and the introduction to [BCN]. 
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Such a morphisn1 is called a linear representatio11 of G ( over k). If n = dim V, 
then p is said to be n-dimensional. 

In fact, we are only interested in represer1t,ations up to eqt1ivalence; we recall 
that a representation p' : G ► G L( V') over k equivalent to p if there is a linear 
invertible map A : V ► V' such that p(g) = A - 1 p' (g) A for all g E G. 

Another rest1~iction we make here is the field: we shall only look at represen­
tations in characteristic O here. In fact, we shall take k == C for the tirne being, 
in which case we speak of· con1plex representations. Consider represe11tatior1s 
of the quaternion group 

Q = {±1,±i,±j,±k} 

with multiplication determined by 

i2 = j2 = k2 = -1 and •• 
lJ = ji =k 

( and the fact that -1 is a central elernent of order 2). 
It makes sense to restrict to irreducible representations, i.e., those that have 

no ''subrepresentations'' but for the zero-din·1ensional and the full vector space 
V. Every complex represe11tation can be decomposed as a su1n of irreducible 
representatio11s. 

There always is the trivial representatior1, sending every elernent to the 1 x 1 
matrix ( 1). But Q can also be represented as a group of 1 x 1 n1atrices by the 
morphism 

± 1 1 ➔ 1, ± i 1 , 1, ±j 1 > -1, ± k 1 > -1. 

The trivial representation and this one are not the only 1-dimensional repre­
sentations. There are two more l-dimensio11al representations. ( one sending 
±j to 1, the other sending ±k to 1, instead of ±i). None of these provides 
a faithful {that is, injective) represe11tation. But the following 2-dirriensional 
represe11tation is faithful: 

±l 1 ➔ ± 1 0 
0 1 ' 

±i, >± 
• 
i 0 
0 

• 
-i 

0 1 0 i 
±j 1 

> ± -1 0 ' ±k ' ' ± i O . 

How do we find such a representation? Suppose Q has a 2-dimensional 
faithful representation p. Then, from the fact that p must be irreducible (sums 
of I-dimensional representations are riot faithful!), we know that p(l) is the 
identity matrix J2 , a11d, sin1ilarly, that p(-1) == -12. Furthermore, p(j), being 
an element squaring to -/2 , can be chosen, up to conjugacy, to be 

p(j) = 0 1 
-1 0 • 

• 

Now all we need to find is p(i), because the morphism law p(xy) == p(x)p(y) 
will then determine the images of all remaining elements. Write 

p(i) == 
a b 
C d ' 
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for certain a, b, c, d E C. Working out that p(i)2 = -12 and that (p(i)p(j) )2 = 
-12 yields a set of equations in these four variables. Solving these equations 
readily leads to the conclusion that, for any a, b E C with a2 + b2 == -1, the 
morphism Pa,b given by 

±l 1 ➔ ± 

• 

±j I > ± 

1 0 
0 1 

0 1 
-1 0 

' 

' 

is a 2-dimensional representation of Q. 

±i I > ± a 
b 

±k I > ± 

b 
-a 

-b a 
a b 

The choice a = i, b = 0 gives the representation p mentioned before. Any 
representation Pa,b is conjugate to p; if b #- 0, then the matrix 

A= i - t s 
s i - t 

where t = i - s(a + i)/b, conjugates p to Pa,b· 
The four 1-dimensional represent,ations and the 2-dimensional one are all we 

need to build up the full set of linear representations of· Q over the field C. 
Up to conjugacy, these are the only irreducible representations. The theory 
on which this assertion is based is known as character theory. A consequence 
of this beautiful theory is that the sum of all squares of the dimensions of 
the distinct (non-conjugate) irreducible representations equals the order of the 
group. Here, this amour1ts to 

It is of interest for the study of representations over finite fields to know 
minimal extension fields k over the rationals such that the represented group 
embeds in a version of GL(V) defined over k. A look at p for the quaternion 
group shows that the 2-dimensional representation is realised over Q(i). But if 
we take a= 3, b = 2 -2, then Pa,b(Q) is realised over the field Q( -2) and 
clearly no conjugate of p can be realised over Q. This indicates that there is no 
minimal extension field of Q attached to the class of representations in G L( V) 
containing p. Later we shall see that this seeming lack of a unique minimal 
''splitting field'' for Q is due to the restricted notion of representation handled 
here. 

3 The group of the icosahedron 
The isometry group of the icosahedror1 ( the usual Platonic solid in 3-dimensional 
Euclidean space) can be abstractly defined as the group W generated by the 3 
elements x, y and z subject to the relations 

x2 == y2 = z2 = I, 
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(xy)3 === (yz) 5 == (xz) 2 = 1. 

Such a definition by means of generators X = { x, y, z} and relators Y 
{x2 , y 2 , z 2 , (xy) 3 , (yz) 5 , (xz)2 }, often succinctly written as 

w = (X I Y), 

is called a presentation by generators and relations. 
The abstract presentation of the icosahedral group can be understood by 

looking at the classical icosahedron. Cut the surface of the icosahedron into 
domains by means of the hyperplanes that are the mirrors of reflections pre­
serving the icosahedron. By doing so, and selecting one of the 120 domains, 
we can identify the three generators x, y, z with the reflections whose mirror 
hyperplanes bound the selected domain of the icosahedron. 

• 

Surprisingly enough, we can go the other way around: by constructing the 
most general graph whose vertices are (transitively) permuted by the elements 
of the group W, we find the icosahedral graph. Let us perform this construc­
tion in some more detail. Start with a ver·tex, and label it with the trivial 
element of the group. We make three neighbours of 1, labeled x, y, z (the three 
generators of the group W). We also label tl1e edges {l, x }, {1, y }, {1, z} with 
the respective labels x, y, z. The graph under construction must allow for an 
action ( on the left) of the generators as a group of automorphisms. It will be 
most convenient to think of the graph under construction as one whose edges 
are labeled with x, y, z. 

Since the three generators are elements of order 2 ( see the first line of relations 
for W), we can think of view each of them as a permutation interchanging the 
vertices of an edge on 1 ,vhose label coincides with its name. The vertex of 
that edge distinct from 1 will then be labelled with that na1ne as well. But the 
picture is still far from being complete: it has not yet been described to which 
node y maps the vertex x. Left multiplication by y, being an automorphism 
of the graph, must send the edge { 1, x} labeled x to the edge { y, yx}, labeled 
x. Thus, we find a new vertex yx, connected to y with an edge labeled x. 
Leaving alone z for a while, we continue this way, joining yxy to yx with and 
edge labeled y, joining yxyx to yxy with an edge labeled x. Then we reach 
yxyxy, which is joined to yxyx with an edge labeled y. The relation (xy) 3 = 1 
( on the second line of relations for W) and the fact that x and y are their own 
inverses (being of order 2), tell us that the element yxyxy coincides with x. 
Moreover, the edge {yxyxy,yxyx} can be rewritten as {x,xy}. Thus, we have 
found a circuit of length 6, with nodes 1, y, yx, yxy = xyx, xy, x whose edges 
are alternatingly labeled y and x. This circuit is, all by itself, a graph on which 
the group with presentation (x, y I x2 = y2 = (xy) 3 == 1) acts (regularly) as 
a group of automorphisms. Thus, we have found a realisation for this group. 
Apparently it has order 6 ( the number of vertices) and is isomorphic to the 
symmetric group on 3 letters (which can be seen by verifying that the group is 
fully determined by its permutation behaviour on the three edges labeled x). 

Returning to W, we can throw in z and continue in much the same way. 
Cor Baayen is encouraged to try this. If the edges labeled x, y, z are drawn a.s 
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dotted lines, ordinary lines, fattened lines, respectively, the result is as depicted 
in Figure 1. 

• • •• 
• • 

• • • • • • • 
• • • • . . 

' . 
• • • • • • • • • • • . ' ' . . 

' . . • • • ' . . . . ' . . ' 
• • • • • . ' •• 

• • • • • • 
• • • • • • 

• 

• 

• • • 
• • • • ' •• • 

• 
• • 

• • • • • • . . 
• • • . ' • • • • • 

• 
• • 

• • 
• 

• • 

• • 
• 

• 

• • 

• :' . ...___-!, ' • • • , . . . . ' . . 
• • ' . ' . 

• • • • . . ' ' 
I • • T 

_. : 
• • • 

. . 
• • • • 
' ' ' . • • • • • 

• • 
' ' 

• • • 

• 
• 

• :· .: 
' ' • • 

. . . . : 
• • • • • 

' ' • ' : . . : 
• 

' • ' • • 
• • • • 
' ' • • • ' • • • : : 

' ' ' • ' • 
' ' . . ' • • • • ' . 

·. ' 
... .... 

• • • • 
' ' • • 

• • • • . ' . ' ;,-----..._' • • 
• 
• • • 

' 
' • 

•• r--.._, _____ ,,,.... 

' '. • • . ' . ' • • 
• • . ' 
• • 
' . . ' 
' ' ' . . ' 

• • • 
• 

• 
• 
• • • 

• 

• 
' 

• 

• 

• 

• • 
• 

• 

• • 

• 
• 

• 

• 
• 
' 

• 

• • 

• 

• 
• 

• 

• • 

• • 
• 

• • • • 
• • • 

• • • • • • • • 
• • • • 

• 

• 

• • 
' 

• 
• • 

• 
• 

' 
• • 

• 

' • .. . . . . . 
• • 

• 

• 

• 
• 
• 
• 

• 
• 

• • 

• • • • • • 
• • • • 
• • • . . . ' 
• • • 

• • •• 
• • • 

• 
• • • • • • 

• • • ' . . . . 
• • • • • • • • • • 

• 
• 

. . . . . .. 

• 
••• 

• • • 

• 

. . . .. - . . .. 
- __...._ ......... 

. . . . . . . . 

• • . . . 

••• . .. . . . 

• • 
• 

- . ~ . 
' .. 

• 

• ••• 

• • • • 

• • 
• • • • 

• 
• • • 

• • 

• . . 

• • 
• 

• • 
• 

, . . . . . . . . 

• • 
• • 

• • 
•• 

• 
. . . • 

• • • 

"--. . ...,,:.. ', 
• • 

• 
• 

• 
• 

• • • 

• • 
• • 

• • • • • . . . . . . 
• • • • • • • • • • • . . • . ' 

• • • • • • • • • 

• • • • • 
• • • • . . . . . . . . • • • . ' 

• • . . 
• • . ' 
• • 

• •• ' ' 

• • • • • 

• 

• 
• 
• 
• 
• . 
• • • 

' . . ' 

• • 
• • 
• • • • • • . ' ' . 

' ' 
' ' ' . 
' ' 
• • ' • • ' .. . . 

' ...._,,,,.-- .. • • • 
• < • l 

• • • • • • • • • • ' . • 

• • • . ' . . . ' • • ' . . • • • ' . • • • • ' . . • • • • • 
• • • • • • 
• • : . . : 
• • 
• • 
' • • • ' . • • • ' . 

• 

• ' . . ' 
' ' ' : 
' . 
' 

: ' --- _,,,..:· · . .. -- ,. 
' ' • 
• 

' ' ' • • • • • • • 

• • 
' . • • 

• • 
• • ' . ' . 

' . . ' ' . . ' ' ' . . ' . 
• • • ' . 

• • • ' . • • • • 
' ' . • • • • • • . ' . 

' . 
• • • 
~ : ·. 
• • ' • • 

' 

__......__....l.. ' . 
' . . : . 

• 

. ,. ----.~ 
• • •• 

• • 
• • • • • • • 

• • . . 
• • • • • • • • • 

• 

• • • • • 
•• 

• 

• • 

•• 

• 

• • • 

• 
• • 

• 

• • . ' 
' ' 

' 

' • 
• 

' . . • • 
• • • • • • • • 

' . 
' . 
• • 
' ' ' . • • 

' : . 
' . 

• • 
• • • • • • ' . • • . ' ' . ' . • • ' . • • 

• • • • • 
• • • • • • 

• • • • 

• 

Figure 1. The Cayley graph of the icosahedral group 

The number of vertices is 120, which is the order of the group W. In fact, 
the vertices of the graph can be identified with the elements of the group. In 
order to do so, select a vertex (which may be taken to be the starting point 
of the construction procedure that we just described) and identify it with the 
trivial element 1 of W. Next, associate any other vertex v with the element of 
W that can be found as follows: select a path from v to 1, and write down the 
consecutive labels of the edges of a path from 1 to v. This produces a word 
expressing v as a product of the generators x, y, z of W. 

So far, we have obtained a very geometric description of the abstractly de­
fined icosahedral group. The reader may wonder how much of a miracle just 
happened. In general, that is, for arbitrary presentations by generators and 
relations, the technique we have carried out a special ''icosahedral'' case of, 
is known as the Todd-Coxeter coset enumeration method. The construction 
of the graph will not always be as straightforward as in the above example. 
The reason is that collapses of a more drastic nature than the identification of 
yxyxy witl1 x above may occur. It usually happens that a whole collection of 
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new vertices has to be created before a collapse is found to occur. In fact, pre­
sentations by generators and relations of the trivial group are known which only 
produce the graph on a single vertex after an enormous intermediate growth 
of (temporary) vertices. 

An even bigger problem is that, especially when nothing is known a priori 
about the presentation of the group, termination is not even guaranteed. The 
single positive (but very powerful) result regarding coset enumeration is that, 
due to a result of Mendelssohn, cf. [Suz], it terminates if the resulting group 
is finite. (There is no a priori indicator known though as to how long it might 
take before termination takes place.) 

The more general coset enumeration takes as input not only a group specified 
by generators and relations, but also a subgroup. The resulting vertices of 
the graph will then correspo11d to the cosets of the subgroup. Once a coset 
enumeration has been completed, a permutation representation for the group 
results. The upshot, for finite groups G, is great in that many good algorithms 
exist for determination of the structure of a permutation group ( certainly when 
compared to the algorithms available for groups presented by generators and 
relations). 

4 How to find 3-dimensional representations 

In this section, we show how using Grabner basis methods, one can find 3-
dimensional real ( or complex) representations for the icosahedral group W. 
The co11struction will be similar to the one for the 2-dimensional quaternion 
group. Only this time the computations are done by use of a computer algebra 
package ( for finding a Grobner basis). 

Thus, suppose </J : W > GL(R3 ) is a 3-dimensional representation of W. 
We assume that x and z are mapped to distinct elements in GL(R3 ). Observe 
that, without loss of generality, we are in one of the following cases: 

I. <j)(x) = 

II. </>(x) = 

-1 0 0 
0 1 0 
0 0 1 

-1 
0 
0 

0 0 
-1 0 
0 1 

and </>(z) = 

and </>( z) == 

1 0 
0 1 
0 0 

1 
0 
0 

0 
0 

-1 

0 
-1 
0 

· or 
' 

0 
0 
-1 

• 

Since, for every representation c/>, there is also a representation 1/J of W with 
'lj)(u) = -</J(u) for u equal to x, y and z, we 011ly have to consider representations 
cp as in I. Let us do so. Then </>(u) is a reflection for u equal to x, y or z. 

In order to extend cp we need to find a matrix </>(y) = (Yi,j )·1::;i,j::;3• 

Since cp(y) is a reflection, its trace is 1. This gives us the following linear 
equation for the entries of y: 

Y1,1 + Y2,2 + Y3,3 = 1. 
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Similarly, as cp(xy) is a real element of order 3 (it cannot be of order 1 
because tf>(x) and cp(z) are distinct), its trace must be 1. This gives another 
linear equation for the entries of y, namely 

-y1,1 + Y2,2 + Y3,3 = 0. 

The following is a Maple programn1e that creates the equations for the coeffi­
cients of cp(y) that follow from the relations between the elements x, y and z 
of W: 

with(linalg): 

#The three matrices we start out with: 

x := matrix(3,3,[[-1,0,0],[0,1,0], [0,0,1]]); 
z := matrix(3,3,[[1,0,0], [0,1,0] ,[0,0,-1]]); 
y := matrix(3,3,[[y11,y12,y13] ,[y21,y22,y23] ,[y31,y32,y33]]); 

#putting the 11nknorn in a list: 

vars := [y11,y12,y21,y13,y31,y22,y23,y32,y33]; 

# Create the identity matrix of dimension n: 

id.mat := proc(n) 
local ans,i,j; 
ans := matrix(n,n); 
for i ton do for j ton do ans[i,j] := O; 
if i=j then ans[i,j] := 1 fi od od: 
evalm(ans) 
end; 

#use it to construct the 3-dimensional identity matrix: 

idm := idmat(3); 

# Given a matrix, derive the equations 
# for its coefficients to be zero. 

mkeq := proc(a) 
local i,j,ans-w-; 

ans-w := {}; 
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for i to rowdim(a) 
do 

od; 
answ 

for j to coldim(a) 
do 
answ := answ union {a[i,j]} 
od 

end; 

# The relations for x, y and z imply the following equations: 

y2 := evalm(evalm(y-2) - idm); 
eqy := mkeq(y2); 

xyx := evalm( x y x); 
yxy:= evalm( y x y); 
eqxy := mkeq(evalm(xyx - yxy)); 

yzyzy := evalm( y z y z y); 
zyzyz := evalm( z y z y z); 
eqyz := mkeq (evalm(yzyzy -zyzyz)); 

#loading the Groebner basis package: 

with(grobner); 

# the linear equations coming from the traces are 

lineqs := {trace(evalm(y) ) -1, trace(evalm(x y) )}; 

#Wedo the Groebner basis computation in 3 steps. 
# After each step one can simplify the equations by hand! 

gby := 

gbxy : = 
gbxyz := 

gbasis(eqy 
gbasis(eqxy 
gbasis(eqyz 

11nion lineqs , vars, plex) ; 
11nion convert (gby, set) , vars, plex) ; 
11nion convert (gbxy, set), vars, plex) ; 

The Grabner basis found by the computer algebra package has the following 
form: 
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{2Y11 - 1, Y12 + 4y32Y13Y33 + 2y13Y32, 

2y23Y31 + Y21 + 4y31 Y23y33, 2y13Y31 + Y33 - 1, 

2y22 + 2y33 - 1,4y23Y32 - 1, -1 + 4y~3 - 2y33} 

From the ''upper-triangular'' structure of the Grabner basis, the general 
sl·1ape of a solution up to algebraic conjugacy is readily seen to be 

1 -
2 

<f>(y) == 

• 

Y31 Y32 

with Y31, y32 both nonzero. In fact conjugation by suitable diagonal matrices 
shows that all solutions lead to equivalent representations ( up to algebraic 
conjugacy, so in fact to two classes of representations). 

By the way, using the same computer algebra package, checks can be easily 
carried out to verify that the solution q;(y) indeed gives a linear representation. 

In a subsequent section, we shall show that a 3-dimensional representation 
can easily be written down directly by applying the theory of Coxeter groups 
to W. 

5 Representations in algebraic groups 

As we have seen, faithful representations for a finite group G are embeddings 
of Gin a group of the form GL(n,k). This point of view raises the question 
whether we can determine all embeddings of such a group G in other linear 
algebraic groups. Algebraic groups can be viewed as subgroups of GL(·n, k) 
stabilizing certain forms. For instance, the so-called symplectic groups are 
subgroups of even-dimensional linear groups stabilizing a non-degenerate bilin­
ear alternating form. The crucial point is that such subgroups are algebraic 
subvarieties of G L( n, k) as they are zeros of the polynomial equations obtained 
by writing out for the entries of a matrix in G L( n, k) what it means to stabilize 
such a form ( or more forms). 

For the classical (infinite) series of algebraic groups, this viewpoint gives 
little news with respect to the usual representation theory, so naturally the 
attention is led to tl1e exceptional types E6, E1, Es, F4, G2. By use of the 
normal subgroup structure of a finite group, the problem can be reduced to 
three problems, the most salient of which concerns the study of embeddings 
of finite nonabelian simple groups in complex algebraic groups. Systematic 
searches for such embeddings received an impetus by Kostant's conjecture, 
formulated in 1983. It asserts that every simple complex algebraic group G(C) 
with a Coxeter number h such that 2h + 1 is a prime power, has a subgroup 
isomorphic to £(2, 2h + 1). Here, L(2, q), for q a prime power, stands for 

255 



the group of functions ( so-called fractional lir1ear transformations) of the form 
z 1 > az + b/(cz + d) defined on the projective line of order q. 

For G ( C) of classical type, Kostant 's conjecture is readily checked using 
ordinary representation theory arid the Frobenius-Schur index. For G( C) of 
exceptional type the table below and the knowledge that h == 6, 12, 12, 18, 30 
for the five respective exceptional types give an affirn1ative case-by-case answer. 

A quick overview of the state of the art is supplied by Table 1 . 
• 

Table 1. 
Nonabelian simple 6rou JS L a central extension of which embeds 

in a comp ex ~ie group of exceptional type Xn 

G2 Alts, Alt6, L(2, 7), L(2, 8), L(2, 13), U(3, 3) 
F4 Alt1, Altg, Alt9, L(2, 25), L(2, 27), 

L(3, 3), 3 D4 (2), U(4, 2), 0(7, 2), o+(8, 2) 
E5 Altio, Alt11 , L(2, 11), L(2, 17), L(2, 19), 

L(3, 4), U(4, 3), 2 F4(2)', M11, J2 

E1 Alt 12, Alt 13, L(2, 29)?, £(2, 37), U(3, 8), M12 

Es Alt14, Alt 15, Alt16, Alt 11, L(2, 16), L(2, 31), £(2, 41)?, 
£(2,32)7, L(2,49)7, L(2,61), £(3,5), Sp(4,5), G2 (3), Sz(8)? 

There are two meanings to be attached to this table: 

Theorem. Let L be a finite sirr1ple group and let G be a simple algebraic 
group of exceptional type Xn. 

(i) If L occurs on a line correspor1ding to Xn in Table 1, then a central 
extension of it embeds in G(C), with a possible exception for the five 
groups marked with a ''?''. 

(ii) If Xn is as in some line of Table 1 and L appears neither in the line 
corresponding to Xn nor in a line above it, then no central extension of 
L embeds in G(C). 

Here, to simplify the presentation, 

a. we have deliberately neglected questions of conjugacy classes of embed­
dings, and 

b. we have not specified the particular nonsplit central extensions of the 
simple groups involved. 

• 

During my years at CWI, I spent considerable time and effort realising some 
of the embeddings appearing in this table. 

Ad a. An example where the conjugacy class question is more subtle than 
suggested by the table is provided by £(2, 13). By [CW93], it is isomorphic to 
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a subgroup of F4 (C) whose normalizer is a finite maximal closed Lie subgroup 
of F4(C), whereas Table 1 only hints at the existence of embeddings via a 
closed Lie subgroup of F4(C) of type G2. 

Ad b. For instance, the simple group L(2, 37) listed err1beds into a group of 
type E1 but not in a group of type E 8 because each embedding in an adjoint 
group of type E 7 lifts to an embedding of SL(2, 37) into the universal covering 
group 2 · E 7 (C). Of cours~, the double cover SL(2, 37) of L(2, 37) embeds in 
the universal Lie group of type E 7 , whence in a Lie group of type Es. 

Another warning concerning Table 1 is perhaps in order: The main theorems 
in [CW92] and [CoG] only concern subgroups not contained in closed Lie sub­
groups of positive dimension whereas Table 1 lists all finite simple subgroups 
( whether in a closed Lie subgroup of positive dimension or not). 

i. The choice of central extensions of simple groups rather than j list simple 
groups is important because they are the ones needed for the generalized 
Fitting subgroup. 

ii. The table does not account for all groups that are involved in Es ( C). For 
instance, no central extension of L(5, 2) is embeddable in Es(C), but a 
nonsplit extension 2{ 5+io} · L(5, 2) does embed ( cf. [A]). 

iii. The group L(2, 29) appears in a Lie group of type B 7 , whence in one of 
type Es. So, if the question whether a central cover of L(2, 29) embeds 
in E7 (C) has a negative answer, the group should appear at the bottom 
line of Table 1. 

iv. Unlike the GL(n,-) case, knowledge of the classes of the individual ele­
ments of an embedded group L does not suffice to determine the conju­
gacy class of L in G. This has been observed by Borovik for the alternat­
ing group Alt6 in E8 (C). The problem of how many conjugacy classes 
of embeddings of L exist only has a partial solution. See [Gr] for the full 
solution concerning G2. 

v. The groups £(2, 41), L(2, 49) and Sz(8) do not appear as possible sub­
groups of E 8 (C) in [CoG]; the arguments ruling them out given there are 
erroneous. 

vi. Another error in [loc. cit.] concerns the character given for L(2, 31). The 
restriction of the adjoint character for E8 (C) to the subgroup isomorphic 
to L(2, 31) constructed by Serre (see below) has a different character. 

One of the more spectacular results is the embedding of L( 2, 61) in E 8 ( C), 
the biggest of all five exceptional Lie groups. Using more refined versions of 
the techniques described in §§2, 3, Griess, Lisser and I have been able to prove 
that the suggested embedding exists and is unique up to conjugacy. In this 
case, the algebraic group can be seen as the subgroup of G £(248, C) stabilizing 
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a particular alternating trilinear form. Because our computations ran out of 
hand, we did all computations over a finite field (Z/1831) and argued that, if 
G embeds in a modular form of E8 over Z/1831, it would also embed in Es(C). 
A key point in this argument was that G has order prime to 1831. This made 
it possible to deduce that any extension of G by a normal (profinite) subgroup 
of order a power of 1831, would split, that is, actually contain a subgroup 
isomorphic to G. 

Very recently, Serre ([Se]) realised that this condition is not always needed. 
He started from a reasonable well-known embedding of £(2,61) in E 8 {61). 
Then, the lifting technique gives a subgroup L of E8 (C) that has a normal 
profinite 61-subgroup N with quotient isomorphic to L(2, 61 ). The important 
step is to show that, as an extension of £(2, 61) by N, the group L splits. For 
the £(2, 61) case, Serre needed a rather intricate argument; in.the same sweep 
he also dealt with some other cases, like the embedding of L(2, 31) in Es(C), 
where the argument is rather succinct. 

The algebraic group setting is also the right one for reconsidering the minimal 
splitting field question raised at the end of §3. Recall that, for the quaternion 
group, there is no unique minimal field realising an embedding in GL(2, k). 
However, if we look at representations somewhat differently, it turns out that 
there does exist a minimal field for each conjugacy class of representations. To 
this end, we need to allow for all k-forms of GL(V), that is all algebraic groups 
whose complex points form the group GL(2, C). 

In the above quaternion case, we have the following Q-form of GL(2, C): 

H ( k) = { a + ;3i + 1' j + 8k I a, ;3, 1', 8 E k, a 2 + (32 + 1'2 + 82 =f. 0}. 

This set forms a group, the basis elements of which multiply as the elements 
in Q. In particular, Q is a subgroup of H(Q). To see that it is a Q-form of 
GL(2, C), consider the injective morphism H(Q) ► GL(2, Q(i)): 

a+/3i 
-')' + 8i 

1' + 8i 
a - j3i · 

When extended to Q(i), and so certainly, when extended to C, this maps 
becomes an isomorphism. 

Thus, we have obtained a unique minimal field k, namely Q, for which there 
exists a k-form of GL(V) containing Q. This illustrates a result due to Springer 
[Spr] that for each group morphism p: G ► H(C) from G to an algebraic group 
H(·), there is a minimal field extension k of Q such that G embeds into a k-form 
of H. 

Coming back to this problem for the subgroup L(2, 61), the minimal splitting 
field is probably Q ( 61); but, to the best of my knowledge, this has not yet 
been established. The next question is then, if k is the minimal splitting field, 
which k-form is it that the subgroup embeds in? The various Q( 61)-forms of 
E 8 (C) are known by Cernousov's work (there are 9). 
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Together with Tiep ([CT]), I have found the minimal splitting fields for 
some other remarkable subgroups of the exceptional algebraic groups, namely 
the Jordan subgroups. 

6 The reflection representation 

As promised earlier, we now come to another way of constructing a 3-dimensional 
representation for the icosahedral group W. Tits has shown that, for the so­
called Coxeter groups, one can always find a faithful ''reflection representation.'' 
The icosahedral group is a Coxeter group, whose reflection representation is 
equivalent to the one found above. 

We shall describe the construction of the reflection representation of the 
icosahedral group, thereby following the general construction fo~ Coxeter groups. 
Put a= ( 2 + ( 3 and T == ( + ( 4 , where ( == e21ri/5 • 

Starting point is a 3-dimensional space V ( one dimension for each generator 
of W), supplied with the symmetric bilinear form given by the following matrix: 

2 
-1 
0 

-1 0 
2 

2 
• 

Note that, if the rows and columns are labeled with x, y and z, respectively, 
the off-diagonal entries are -2 cos( 1r / m), where m is the order of the product 
of the generators corresponding to row and to column. (This hints toward the 
general case for those who know what a Coxeter group is.) Denote the bilinear 
form by ( •, •). It is positive-definite, so the 3-dimensional space, supplied with 
this form is Euclidean. Now, for a E V with (a, a) = 2, the reflection with 
''root'' a is given by 

Sa : W ► ► W - ( W, a )a. 

The reflection representation is determined by the images of x, y, z. These im­
ages will be the reflections Sa for a the standard basis vectors: o: == e1, e2, e3. 
These roots are called the fundamental roots of W. Thus, we obtain the fol­
lowing matrices: 

X == 

y= 

z == 

-1 0 0 
1 1 0 
0 0 1 

1 1 0 
0 -1 0 
0 -a 1 

1 0 0 
0 1 -er 
0 0 -1 

' 

' 

• 

By what we have seen above, this representation must be equivalent to one 
of the two (algebraically conjugate ones) constructed using Grobner bases in 
§5. 
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Using the faithfulness of the reflection representation, it is easy to derive that 
the icosahedral group W is finite and to find a permutation representation. For 
instance, consider the set <I> of all roots of reflections in W. This set can be 
built up from the fundamental roots. Up to sig11s, they are: 

(1,0,0) (0,1,0) (0,0,1) 
(1, 1,0) (0, 1, a) (0, a, 1) 

(1, 1, a) (0, a, (T) ( a, a, 1) 
(1, T 2a, a) ( o-, o-, a-) (1, T 2a, r 2a) 

( a, r 2a, a) ( a, T 2o-, T 2a) ( a, 2a, T 2u) 

Thus, we have a set <I> of 2 x 15 = 30 roots. Clearly, if a E et>, ther1 also 
-a= saa E 4>. If the 15 pairs ±a are numbered according to their occurrence, 
the generators x, y and z induce the following permutations: 

X == (2, 4)(5, 7)(6, 9)(8, 11)(10, 13)(12, 14), 

y == (1,4)(3,6)(5,8)(7, 10)(11, 13)(14, 15), 

z == (2, 5)( 4, 7)(6, 8)(9, 11)(10, 12)(13, 14). 

The kernel of this permutation representation is readily seen to be {±12}­
Since only a finite number of roots are being permuted, and the reflection 
representation of W is faithful, we see again that W is finite. 

A remarkable property, true of arbitrary Coxeter groups, is that one of ±a 
has all coefficients with respect to the fundamental root basis non-negative. 
These roots are called the positive roots. The set of all positive roots is denoted 
by cp+, so that 4> == q,+ U q,-, where cp- = -q>+. In Figure 2 we have pictured 
q>+ and the way it is built up using the generators x, y, z, with the same 
conventions as for Figure 1 regarding the edges. The dashed line at the bottom 
indicates where the action of the generators crosses over to negative roots. 

7 Presentation by generators and relations 
We now go back to presentations of groups by means of generators and relations. 
For the icosahedral group W we have already given such a presentation: W = 
(X I Y), with X = {x,y,z} and 

y = { x2' y2' z2' ( xy) 3' ( y z) 5' ( x z) 2}. 

Of course, for a given group, such a presentation is far from unique. 
Computations using the presentation of a group by generators a11d relations 

are based on the idea that it is easy to present a free group over a given alphabet 
X. Or maybe, even simpler, start with the free monoid X* over X. This is the 
set of all strings ( also called words) we can form with the symbols ( also called 
letters) from X. Such a monoid has the great advantage that every element 
corresponds to a unique expression for it. 
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(1, 1,--0') 

(1,0,0) 

• 
• • 
• 
• 
' • 

• • 
.. ., ........... • • • • • 

(-o-,-20',-t-20') 
• • • 
• 
• • • 

• • ~"-~- ...... - • • • 

(--O,-'t-20',-'C-20') 

• • • • • • • • • • • 

(1,-t-20,-1:-20') 

• •• • • • • 

(1,1,0) 

• • 

• • • 

• • 

• • •• • • 

• • • 
• • • 

• • • 
• • • 

• • • 

• • • 
• • • • 

• • • • • 
• • 

•• 

• • • 

(0,--0',-0) 

• • • • • • • • 
•• • • • 

• • • • 

(0,1,0) 

• • 

• • • 

(--O,-'t-20,-<J) 

• • 

• • • 

•• • 

(-0-,--0,-0') 

• 
• • • • 

(0,1,--o) 

(-o,-o-, l) 

• • 
• • • • • • • • 

• 

(0,--o,1) 

• • • 

(0,0,1) 
• 
• • • • • • • 

• 
• ---------------~------------------- ------------------- --------------------
' • 
• • 

Figure 2. The positive roots with action of W 

This phenomenon is no longer true of the free group on X. We can define it 
as a quotient of the free monoid on 

A XU X -1 { -1 -1 -1} = == x,x ,y,y ,z,z 

with respect to the relations 

yy-1 = y-Iy = l 

zz- 1 == z- 1 z == 1. 

Although now it is no longer true that every element of the free group on X 
corresponds to a unique word in A*, we still have a very good way of handling 
this: the group elements correspond bijectively to the reduced words in the 
monoid, i.e., those with no occurrences of 

xx- 1 x- 1x yy- 1 y- 1 y zz- 1 z-1 z 
' ' ' ' ' . 
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The icosahedral group W is obtained as a quotient by dividing out with 
respect to the normal subgroup generated by the relators 

x2' y2' z2' ( xy) 3' ( y z) 5' ( x z) 2. 

r-• __.. 

The question now arises how to find a set of words W in A* such that every -
element of W corresponds to a unique element of W. Another way of saying 
this is that we want to find a section a of the natural map </J: A* > W. The -
set W is then the image of a. Yet another way of expressi11g the wish for 
unique representatives in A* of elements of W is more algorithmic: for each 
element w E A*, we want to be able to find a ''canonical'' element in the fibre 
c/J-l(c:p(w)). 

A very successful approach is based on rewriting techniques. It uses a total 
well-ordering on A*. More precisely, a well-founded total ordering < is called 
a reduction ordering if 

V l, r, m 1, m2 E A* 

m1 < m2 => lm1 r < lm2r 

and 1 = min A*. We need a reduction ordering < on A*. There are plenty such 
orderings, but we will content ourselves with the total degree lexicographic one, 
that is the one where v < w if either the length of v ( as a string of symbols from 
A) is less than the length of w, or these lengths are equal and v comes prior to 
win the usual lexicographic ordering (where x < y < z < x-1 < y- 1 < z- 1 ). 

Thus, 
1 < x < y < z < XX < xy < xz < yx < yy < ... 

The canonical element for an arbitrary m E A* can then be taken to be 

min cp- 1</>(m). 

Now the purpose is to rewrite an arbitrary word m E A* to the canonical word 
min cp- 1 cp( m) by stepwise finding smaller representatives of </>( m). First of all, 
for involutions such as the generators in X for W, we may rid ourselves of 
inverses by use of the rewriting rules 

x-1 => x, y-1 => Y, z-1 => z. 

For W with the above presentation, the obvious rewriting rules 

XX ⇒ l, yy ⇒ I, zz => l, 

zx =} xz, 

yxy =} xyx, 

zyzyz => yzyzy. 

do not suffice. For instance, (xyz) 10 cannot be reduced to the trivial element; 
but, for instance, writing out the permutation of the roots corresponding to xyz 
(by use of the permutations given for x, y and z in §6), we find cycles of length 
5 only, so the fifth power is in the kernel of the permutation representation, 
whence (xyz) 10 == 1. 
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8 A rewriting system for the icosahedral group 

Recent techniques for Coxeter groups have given insight in how to produce 
a proper set of rewriting rules. By ''proper'' we mean what is usually called 
''confluent''; it has the effect that each input word can be successfully rewritten 
to the corresponding canor1ical word by use of the rewriting rules. Rather than 
presenting the rewriting rules explicitly, we give an algorithm for rewriting 
a11 input word w E X*, where X == { x, y, z} to the corresponding canonical 

,,.. ..,,., 

element in W. The present treatment comes from [BH], with a variation due 
to DuCloux and Casselman. 

Consider the set 4)+ of 15 positive roots of W again. The algorithm works 
with induc·tion. Let us assume that, for w = r 1 · · · rk-lrk · · · rq, where ri E X 
for i == 1, ... , q, we have already established that r 1 · · · r k- I. is in canonical 
form. 

Then, for i = k - 1, k - 2, ... we consider the action of ri · · · rk-l on the 
fundamental root a E IT== { e1, e2 , e3} corresponding to rk. That is, we subse­
quently compute rk-1a, rk-2rk_ 1a, and so on, until we reach a fundamental 
root again. 

Say this happens the first time for i E { 1, ... , k - 1} and fundamental root 
/3: 

Write s == s13. Then, since s 9 , = 9s1 9- 1 for any --y E <I> and g E GL(R3 ), we 
have 

If the right hand side represents a (lexicographically) smaller word, we substi­
tute it for riri+l · · · rk-Irk and continue determining the canonical word for 
the first part r 1 · · · ri-1s of w. Otherwise, we leave things as they are ... ex­
cept that we do not want to move to negative roots. This can only happen, if 
a fundamental root ej occurs to which the corresponding reflection is applied 
(sending it to -ej ). This remarkable property is clearly visible from Figure 2, 
where only three edges make a root sink through the bottom line. 

For further details, it is useful to write ar for the positive root corresponding 
to a reflection r of W. Recall II = { e 1 , e2 , e3 }. Here is a full description of the 
canonical word algorithm: 

At initialization: w == [r1 , ... , r q] E X*, representing w = r 1 · · · r q E W; and 
an index k := 1. 

At termination: w is the canonical word for w. 

Invariants: w E W will be fixed throughout, and w will always be an expres­
sion for w. The first part of length k - 1 of w is in canonical form. 

while k < f(w) do 
i : = k - l; a : = O:'r k ; 

while i > 0 do 
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case a E <p-: 

w := [r1, ... , ri-1, ri+2, ... , rq]; 
k := k - 1; i := i - 1; 

case a E IT: 
if [ r i, r i + 1 , ... , r k] > [ s a , r i, ... , r· k- 1] 
then w := [sa, r3 , ... , Tk-1]; 
fi; 
k :== i; i :== k -1; 

otherwise: i : = i - 1 · 
' od; 

k:==k+l; 
od 

For given i and k, the root a== ri · - · rk-lark is being considered. In case a E 
41>-, we must have i == k 1; a fundamental root is reached by its corresponding 
reflection, we have ri == ri+I == rk and we can reduce length. 

If a positive fundamental root a == riri+l · · · rk-1a 1.k is hit, then we have 
seen above that the new expression generated by the algorithm represents the 
same element of W. 

It may seem to be a computational difficulty that th.e root system is needed. 
But, in fact, the full action, in terms of images of roots under fundamental 
reflections, has already been stored in Figure 2. The roots there are pictured 
with respect to ''depth'': the number of fundamental reflections needed to turn 
them into negative roots: the fundamental roots have depth 1, the next layer 
up consists of (1, 1, 0), 0, 1, -a) and (0, -a, 1) (of depth 2), a11d so on, until we 
reach the unique one of depth 7: (-a, -2a, -r - 2cr). 

A new rewriting rule that we obtain by applying the algorithm to the left 
hand side is zyzyxz => yzyzyx. Cor Baayen is encouraged to try and prove that 
(xyz) 10 = 1 using the algorithm. (Hint: the rewriting rule (yxz) 5 => (xzy) 5 is 
crucial.) 

We have seen that the positive root syste1n, with its ''depth'' structure, and, 
above all, its W-action, is an excellent automaton for the ''icosahedral'' word 
problem. For a finite group like W, it may not be much of a surprise that 
we can find a solution to the word problem. The surprise however is that the 
technique described works for all Coxeter groups, including the infinite ones, 
once a little variation has been made that we shall now describe. 

If we take W to be an arbitrary Coxeter group, the same algorithm may work 
again, but then the set of all positive roots may be infinite and so cannot be fully 
constructed in advance. The merit of Brink and Howlett is that they showed 
that in that case one can ''truncate'' the root system, and work with a finite part 
only. It runs as follows: define, for a and (3 positive roots, a >- /3 if ( a, {3) > 1 
and a - /3 has non-negative coefficients (when written as a linear combination 
of fundamental roots). We then say that a dominates /3. The domination 
relation is a partial ordering with ( and this is the non-trivial result:) finitely 
many 1ninimal roots. The ''automaton'' can then be restricted to the minimal 
roots, and a single additional element, denoted by*, replacing all non-minimal 
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elements. Whenever a minimal root is mapped onto a non-minimal root, the 
acceptance state* is reached: this means that the word that is being rewritten 
is canonical (in the inner loop of the above algorithm), so that one can move 
up to the next value of k, without having to process the word any further to 
the left, lowering the parameter i). 

9 Synthesis of Todd-Coxeter and Buchberger 

It is well known that Buchberger's Grabner basis algorithn1 can be seen as a 
particular case of the Knuth-Bendix procedure, in which confluent rewriting 
is guaranteed due to the successful completion i11 the context of polynomial 
algebras. More and more, I am convinced that the classical Todd-Coxeter coset 
enumeration procedure can also be seen as such. In particular, the success here 
is guaranteed by Mendelssohn's result described in §3. This is a line of research 
that I have only recently started to pursue, and I will only vaguely indicate 
what I have in mind. 

Given a monoid M and a field k, we can define the monoid algebra k(M) (if 
M is a group, this comes down to the group algebra). 

We study quotients of k(M) with repect to ideals J. Again a reduction 
ordering < on M is useful. Not every monoid affords a reduction ordering, but 
the most important examples, the free monoid and the free abelian monoid (in 
which case M is a polynomial algebra!) on a finite alphabet do. 

For 
f == f mm E k(M), 

11iEM 

with J17,, E k (finitely many nonzero), we set 

lt(f) == max{m E M I frn # 0}. 

Moreover, for any subset X of k(M), set: 

M(X) == {lt(f) I f E X} and O(X) == M \ M(X). 

Theorem. Let M be a monoid with a reduction ordering<, and suppose I is 
an ideal in k(M). Then the following statements hold. 

(i) k(M) == I ffi k · 0(1). 

(ii) k(M) / I rv k · 0(1) as vector spaces over k. 

(iii) V f E k(M) 3!g E k · O(I) : f - g E J. 

In this setting, we write g := Can(f, l), and refer to it as the canonical 
element corresponding to f. Observe that 

-
Can(f, I) == Can(g, I) {::} f - g E l; 

A subset G of I is called a Grobner basis if (M(G)) == M(J), where (N), for a 
subset of M, denotes the semigroup ideal generated by N in M. 

This approach can be found in [M]. 
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Proposition. Let M be fi.nitely generated (Noetherian) and supplied with a 
reduction ordering. For each ideal I of k{M), there is a unique subset B of I 
satisfying: 

(i) M(B) is a minimal generating set of M(I); 

(ii) the coefficient of lt(b) in b is 1 for each b E B; 

(iii) b = lt(b) - Can(lt(b), I) for each b E B. 

This set G is the so-called reduced Grobner basis of/. The polynomial case 
occurs for M == Nn. Then the already classical Buchberger algorithm finds a 
Grobner basis for M == N 11

• 

Thus, quotients of polynomial rings can be determined algorithmically. But 
this is inconceivable for the general case, since the word problem for groups is 
known to be unsolvable. 

To see the connection with group presentations, start with a finitely presented 
group G == < X I Y). Take M to be the free monoid generated by A == X U x- 1 

and total degree lexicographic ordering < such that x < y- 1 for all x, y E X. 
Now let I be the ideal of all v - w E k(M) with v, w E M such that vw- 1 E Y. 
Here, we assume that xx-1 and x- 1x are relators (i.e., belong to Y). Then 
k(M) / I is the group algebra of G over k. The set O(J) of the above theorem 
coincides with the collection G of words in A* which are minimal in the inverse 
image under A* , G of an element in G. 

It is a very useful fact that binomials are transformed into binomials under 
all operations involved in the Knuth-Bendix procedure, and also under the 
transformations obtained from a translation of the Todd-Coxeter enumeration 
to this setting. If a Grabner basis is found for the ideal J, then, by the above 
proposition, and the ''binomial invariance,'' a solution to the word problem for 
G has been found. 

Let us return once more to the icosahedral group W. The algorithm of 
§8 uses only finitely many rewriting rules; tl1ey can be read off from Figure 
2. A simple example is [y, x, y] ⇒ [x, y, x], which corresponds to the element 
yxy - xyx E k(A). The collection of all rules thus obtained, together with 
x - x- 1 , xx - l, y-y-1 , yy - l, z - z- 1 , zz - I will lead to a Grabner basis for 
the ideal I, thus presenting a model to compute with the group algebra k[W] 
in terms of kO(I). 

As remarked at the end of §8, such results are (at least theoretically) no 
surprise for finite groups like W ( although the automaton is efficient). But, 
due to the results of Brink and Howlett, we have similar Grobner bases for 
arbitrary (infinite) Coxeter groups. 
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