Finite graphs in which the point neighbourhoods are the maximal independent sets

A.E. Brouwer

We determine all graphs as in the title.

In [vdH] certain graphs L_k occur. Noticing that they have the property mentioned in the title, I wondered whether they are the only such graphs. This note shows that, essentially, this is indeed the case.

For $k \leq 1$, let L_k be the graph with vertex set \mathbf{Z}_{3k-1} (the integers mod (3k-1) and adjacencies $x \sim y$ iff $y - x \in \{1, 4, 7, ..., 3k - 2\}$. (Thus, L_1 is the complete graph on two vertices, and L_2 is the pentagon.) The neighbourhood of a vertex x is the set $N(x) = \{y | y \sim x\}$. A graph G is called *reduced* when distinct vertices have distinct neighbourhoods.

THEOREM 0.1 The finite reduced triangle-free graphs in which each independent set is contained in a point neighbourhood are precisely the graphs L_k $(k \geq 1).$

PROOF: First we show that the graphs L_k have the stated property. That they are finite, reduced and triangle-free is clear. Now it suffices to show that if S is an independent set contained in N(x), and $S \cup \{y\}$ is independent for some $y, y \not\sim x$, then $S \cup \{y\} \subseteq N(z)$ for some z. But y = x + 3i - 1 or y = x + 3ifor some i $(1 \le i \le k-1)$, and we can take z = x + 3i or z = x + 3i - 1, respectively.

Conversely, let the graph G have the stated property. We show that $G \simeq L_k$ for some $k \leq 1$. Since \emptyset is independent, G has a vertex, and since a singleton is independent, each vertex has a neighbour, and since two nonadjacent vertices have a common neighbour, G has diameter at most 2. Clearly, if G is complete, then $G \simeq L_1$, so we may assume that G has diameter 2.

Step 1. Given two nonadjacent vertices x, y, there is a unique vertex z = $\sigma(x; y)$ such that $y \sim z$ and $N(x) \cap N(z) = N(x) \setminus (N(x) \cap N(y))$.

231

PROOF: The set $\{y\} \cup N(x) \setminus (N(x) \cap N(y))$ is independent and hence contained in N(z) for some z. If it is also contained in N(z'), then, since G is reduced, the vertices z and z' have distinct neighbourhoods, and we may assume that $z \sim u, z' \not\sim u$ for some vertex u. But now $\{x, u, z'\}$ is independent and not contained in a point neighbourhood. Contradiction.

Step 2. G is regular of valency k, say. If k > 1, then there is a pair of

nonadjacent vertices with k - 1 common neighbours. PROOF: Let x, y be nonadjacent. If $|N(y) \setminus N(x)| > 1$, then choose $u \in N(y) \setminus N(x)$, $u \neq \sigma(x; y)$. By the uniqueness part of the previous step, there is a vertex $v \in N(x) \setminus (N(y) \cup N(u))$, so that also $|N(x) \setminus N(y)| > 1$. Now $(N(x) \cap N(y)) \cup \{u, v\}$ is independent, and hence contained in N(z) for some z. By downward induction on $|N(x) \cap N(y)|$ it follows that |N(x)| = |N(y)| (since we have either $|N(x)| = |N(x) \cap N(y)| + 1 = |N(y)|$, or, by induction, |N(x)| = |N(z)| = |N(y)|). Now regularity of G follows since its complementary graph \overline{G} is connected.

Step 3. $G \simeq L_k$.

PROOF: Let $x_0 \not\sim y_0$ and $|N(x_0) \cap N(y_0)| = k - 1$. Define vertices x_i, y_i $(i \in \mathbb{Z})$ by $y_{i+1} = \sigma(x_i; y_i)$ and $x_i = \sigma(y_i; x_{i-1})$. Then $|N(x_i) \cap N(y_i)| = k - 1$ and $N(x_i) \cap N(y_{i+1}) = \{x_{i-1}\} = \{y_{i+2}\}$ for all *i*. By induction on j $(1 \leq j \leq k-1)$ we see that $|N(x_0) \cap N(x_{3j})| = k - j$, and that $x_0 \sim x_1, x_4, \dots, x_{3j-2}$ and $x_{3j} \sim x_2, x_5, \dots, x_{3j-1}$. Indeed, for j = 1 this is clear, since $x_0 = y_3$. But x_{3j} and x_{3j+3} have the same neighbours except for x_{3j+1}, x_{3j+2} , and x_0 and x_{3j} have the same neighbours except for the vertices x_{3i+1}, x_{3i+2} $(0 \leq i \leq j - 1)$,

so $x_0 \sim x_{3j+1}$ and similarly $x_2 \sim x_{3j+3}$. As long as x_0 and x_{3j} have common neighbours, it follows that $x_0 \neq x_{3j\pm 1}$. However, x_0 and x_{3k-1} have the same neighbours, so $x_0 = x_{3k-1}$. If there is a vertex z distinct from all x_i , then z is adjacent to either all or none of the x_i , contradiction, since G is triangle-free and connected.

This theorem can be generalized by deleting the hypothesis that G is reduced. Now the conclusion becomes that G is a coclique extension of one of the L_k . (In particular, if G is regular, that G is a lexicographic product $L_{k,m} := L_k[\overline{K_m}]$.) Probably the finiteness hypothesis can be dropped as well, but the conclusion becomes more complicated, and I have not investigated this further.

The reason that the graphs $L_{k,m}$ occur in [vdH] is that (for $m \ge 3$) they have the maximal possible toughness t = n/k - 1 for triangle-free regular graphs. (The toughness t(G) of a connected non-complete graph G with vertex set V is by definition min $|V \setminus X|/\omega(X)$ taken over all subsets X of V such that the number of connected components $\omega(X)$ of X is at least two. Clearly, $t(G) \le (|V| - 2)/2$.)

LEMMA 0.2 Let G be a connected non-complete graph. The toughness of the

lexicographic product $G[\overline{K_m}]$ equals $\min |V \setminus X| / w(X)$, where w(X) is the number of singleton components of X plus 1/m-th of the number of other components of X, and X runs through the subsets of V with $\omega(X) > 1$.

232

PROPOSITION 0.3 The toughness of $L_{k,m}$ equals $\min(2-\frac{1}{k}, 2-\frac{2}{m(k-1)+1})$ $(k \ge 1, m \ge 1).$

PROOF: By the above lemma, we only have to investigate $G = L_k$. Taking X = N(0) shows that $t(G) \le (3k - 1 - k)/k = 2 - 1/k$. Taking $X = N(0) \cup \{2\}$ shows that $t(G) \leq ((3k-1) - (k-1))/(k-1+1/m) = 2 - 2/(m(k-1) + 1)$. Conversely, if $\{x, y\}$ is an edge of G, then $V \setminus (N(x) \cup N(y))$ is complete bipartite or a coclique. Thus, if some subgraph X of G has at least two non-singleton components, then w(X) = 2/m and $|V \setminus X|/w(X) \ge 4/(2/m) = 2m \ge 2$ so that X does not determine the toughness. If X has precisely one non-singleton component, say containing the edge $\{0, 3t + 1\}$, then the set S of all vertices s such that $\{s\}$ is a component of X is contained in one part of the bipartition on the vertices nonadjacent to both 0 and 3t + 1; say, $S \subseteq \{3t + 3, ..., 3k - 3\}$. Now $|V \setminus X|/w(X) \ge |N(S)|/(|S| + 1/m)$. But when |S| is given, |N(S)|is minimal when S is 'consecutive': $S = \{3a, 3a + 3, ..., 3a + 3r\}$, and then |N(S)|/(|S| + 1/m) = (k + r)/(r + 1 + 1/m). This again is minimal when |S|is maximal, i.e., for t = 0 and r = k - 2, and then |N(S)|/(|S| + 1/m) =2 - 2/(m(k-1) + 1). Finally, if X has only singleton components, a similar but easier argument again shows that we get the smallest quotient by taking X a maximal coclique, and then this quotient equals 2 - 1/k.

References

[vdH] Jan van den Heuvel, Degree and Toughness Conditions for Cycles in Graphs, Ph.D. thesis, Techn. Univ. Twente, 1993.

