Finite graphs in which the point neighbourhoods are the maximal independent sets

A.E. Brouwer

We determine all graphs as in the title.

In $[\mathrm{vdH}]$ certain graphs L_{k} occur. Noticing that they have the property mentioned in the title, I wondered whether they are the only such graphs. This note shows that, essentially, this is indeed the case.

For $k \leq 1$, let L_{k} be the graph with vertex set $\mathbf{Z}_{3 k-1}$ (the integers mod $3 k-1$) and adjacencies $x \sim y$ iff $y-x \in\{1,4,7, \ldots, 3 k-2\}$. (Thus, L_{1} is the complete graph on two vertices, and L_{2} is the pentagon.) The neighbourhood of a vertex x is the set $N(x)=\{y \mid y \sim x\}$. A graph G is called reduced when distinct vertices have distinct neighbourhoods.

ThEOREM 0.1 The finite reduced triangle-free graphs in which each independent set is contained in a point neighbourhood are precisely the graphs L_{k} $(k \geq 1)$.

Proof: First we show that the graphs L_{k} have the stated property. That they are finite, reduced and triangle-free is clear. Now it suffices to show that if S is an independent set contained in $N(x)$, and $S \cup\{y\}$ is independent for some $y, y \nsim x$, then $S \cup\{y\} \subseteq N(z)$ for some z. But $y=x+3 i-1$ or $y=x+3 i$ for some $i(1 \leq i \leq k-1)$, and we can take $z=x+3 i$ or $z=x+3 i-1$, respectively.

Conversely, let the graph G have the stated property. We show that $G \simeq L_{k}$ for some $k \leq 1$. Since \emptyset is independent, G has a vertex, and since a singleton is independent, each vertex has a neighbour, and since two nonadjacent vertices have a common neighbour, G has diameter at most 2 . Clearly, if G is complete, then $G \simeq L_{1}$, so we may assume that G has diameter 2 .

Step 1. Given two nonadjacent vertices x, y, there is a unique vertex $z=$ $\sigma(x ; y)$ such that $y \sim z$ and $N(x) \cap N(z)=N(x) \backslash(N(x) \cap N(y))$

Proof: The set $\{y\} \cup N(x) \backslash(N(x) \cap N(y))$ is independent and hence contained in $N(z)$ for some z. If it is also contained in $N\left(z^{\prime}\right)$, then, since G is reduced, the vertices z and z^{\prime} have distinct neighbourhoods, and we may assume that $z \sim u, z^{\prime} \nsim u$ for some vertex u. But now $\left\{x, u, z^{\prime}\right\}$ is independent and not contained in a point neighbourhood. Contradiction.

Step 2. G is regular of valency k, say. If $k>1$, then there is a pair of nonadjacent vertices with $k-1$ common neighbours.
Proof: Let x, y be nonadjacent. If $|N(y) \backslash N(x)|>1$, then choose $u \in$ $N(y) \backslash N(x), u \neq \sigma(x ; y)$. By the uniqueness part of the previous step, there is a vertex $v \in N(x) \backslash(N(y) \cup N(u))$, so that also $|N(x) \backslash N(y)|>1$. Now $(N(x) \cap N(y)) \cup\{u, v\}$ is independent, and hence contained in $N(z)$ for some z. By downward induction on $|N(x) \cap N(y)|$ it follows that $|N(x)|=|N(y)|$ (since we have either $|N(x)|=|N(x) \cap N(y)|+1=|N(y)|$, or, by induction, $|N(x)|=$ $|N(z)|=|N(y)|)$. Now regularity of G follows since its complementary graph \bar{G} is connected.

Step 3. $G \simeq L_{k}$.
Proof: Let $x_{0} \nsim y_{0}$ and $\left|N\left(x_{0}\right) \cap N\left(y_{0}\right)\right|=k-1$. Define vertices x_{i}, y_{i} $(i \in \mathbf{Z})$ by $y_{i+1}=\sigma\left(x_{i} ; y_{i}\right)$ and $x_{i}=\sigma\left(y_{i} ; x_{i-1}\right)$. Then $\left|N\left(x_{i}\right) \cap N\left(y_{i}\right)\right|=k-1$ and $N\left(x_{i}\right) \cap N\left(y_{i+1}\right)=\left\{x_{i-1}\right\}=\left\{y_{i+2}\right\}$ for all i. By induction on $j(1 \leq j \leq$ $k-1)$ we see that $\left|N\left(x_{0}\right) \cap N\left(x_{3 j}\right)\right|=k-j$, and that $x_{0} \sim x_{1}, x_{4}, \ldots, x_{3 j-2}$ and $x_{3 j} \sim x_{2}, x_{5}, \ldots, x_{3 j-1}$. Indeed, for $j=1$ this is clear, since $x_{0}=y_{3}$. But $x_{3 j}$ and $x_{3 j+3}$ have the same neighbours except for $x_{3 j+1}, x_{3 j+2}$, and x_{0} and $x_{3 j}$ have the same neighbours except for the vertices $x_{3 i+1}, x_{3 i+2}(0 \leq i \leq j-1)$, so $x_{0} \sim x_{3 j+1}$ and similarly $x_{2} \sim x_{3 j+3}$. As long as x_{0} and $x_{3 j}$ have common neighbours, it follows that $x_{0} \neq x_{3 j \pm 1}$. However, x_{0} and $x_{3 k-1}$ have the same neighbours, so $x_{0}=x_{3 k-1}$. If there is a vertex z distinct from all x_{i}, then z is adjacent to either all or none of the x_{i}, contradiction, since G is triangle-free and connected.

This theorem can be generalized by deleting the hypothesis that G is reduced. Now the conclusion becomes that G is a coclique extension of one of the L_{k}. (In particular, if G is regular, that G is a lexicographic product $L_{k, m}:=L_{k}\left[\overline{K_{m}}\right]$.) Probably the finiteness hypothesis can be dropped as well, but the conclusion becomes more complicated, and I have not investigated this further.

The reason that the graphs $L_{k, m}$ occur in [vdH] is that (for $m \geq 3$) they have the maximal possible toughness $t=n / k-1$ for triangle-free regular graphs. (The toughness $t(G)$ of a connected non-complete graph G with vertex set V is by definition $\min |V \backslash X| / \omega(X)$ taken over all subsets X of V such that the number of connected components $\omega(X)$ of X is at least two. Clearly, $t(G) \leq(|V|-2) / 2$. $)$
LEMMA 0.2 Let G be a connected non-complete graph. The toughness of the lexicographic product $G\left[\overline{K_{m}}\right]$ equals $\min |V \backslash X| / w(X)$, where $w(X)$ is the number of singleton components of X plus $1 / m$-th of the number of other components of X, and X runs through the subsets of V with $\omega(X)>1$.

Proposition 0.3 The toughness of $L_{k, m}$ equals $\min \left(2-\frac{1}{k}, 2-\frac{2}{m(k-1)+1}\right)(k \geq$ $1, m \geq 1$).

Proof: By the above lemma, we only have to investigate $G=L_{k}$. Taking $X=N(0)$ shows that $t(G) \leq(3 k-1-k) / k=2-1 / k$. Taking $X=N(0) \cup\{2\}$ shows that $t(G) \leq((3 k-1)-(k-1)) /(k-1+1 / m)=2-2 /(m(k-1)+1)$. Conversely, if $\{x, y\}$ is an edge of G, then $V \backslash(N(x) \cup N(y))$ is complete bipartite or a coclique. Thus, if some subgraph X of G has at least two non-singleton components, then $w(X)=2 / m$ and $|V \backslash X| / w(X) \geq 4 /(2 / m)=2 m \geq 2$ so that X does not determine the toughness. If X has precisely one non-singleton component, say containing the edge $\{0,3 t+1\}$, then the set S of all vertices s such that $\{s\}$ is a component of X is contained in one part of the bipartition on the vertices nonadjacent to both 0 and $3 t+1$; say, $S \subseteq\{3 t+3, \ldots, 3 k-3\}$. Now $|V \backslash X| / w(X) \geq|N(S)| /(|S|+1 / m)$. But when $|S|$ is given, $|N(S)|$ is minimal when S is 'consecutive': $S=\{3 a, 3 a+3, \ldots, 3 a+3 r\}$, and then $|N(S)| /(|S|+1 / m)=(k+r) /(r+1+1 / m)$. This again is minimal when $|S|$ is maximal, i.e., for $t=0$ and $r=k-2$, and then $|N(S)| /(|S|+1 / m)=$ $2-2 /(m(k-1)+1)$. Finally, if X has only singleton components, a similar but easier argument again shows that we get the smallest quotient by taking X a maximal coclique, and then this quotient equals $2-1 / k$.

References

[vdH] Jan van den Heuvel, Degree and Toughness Conditions for Cycles in Graphs, Ph.D. thesis, Techn. Univ. Twente, 1993.

