Finite graphs in which the point neighbourhoods are the maximal independent sets

A.E. Brouwer

We determine all graphs as in the title.

In [vdH] certain graphs \(L_k \) occur. Noticing that they have the property mentioned in the title, I wondered whether they are the only such graphs. This note shows that, essentially, this is indeed the case.

For \(k \leq 1 \), let \(L_k \) be the graph with vertex set \(\mathbb{Z}_{3k-1} \) (the integers mod \(3k-1 \)) and adjacencies \(x \sim y \) iff \(y - x \in \{1, 4, 7, \ldots, 3k - 2\} \). (Thus, \(L_1 \) is the complete graph on two vertices, and \(L_2 \) is the pentagon.) The \emph{neighbourhood} of a vertex \(x \) is the set \(N(x) = \{y \mid y \sim x\} \). A graph \(G \) is called \emph{reduced} when distinct vertices have distinct neighbourhoods.

Theorem 0.1. The finite reduced triangle-free graphs in which each independent set is contained in a point neighbourhood are precisely the graphs \(L_k \) (\(k \geq 1 \)).

Proof: First we show that the graphs \(L_k \) have the stated property. That they are finite, reduced and triangle-free is clear. Now it suffices to show that if \(S \) is an independent set contained in \(N(x) \), and \(S \cup \{y\} \) is independent for some \(y, y \neq x \), then \(S \cup \{y\} \subseteq N(z) \) for some \(z \). But if \(y = x + 3i - 1 \) or \(y = x + 3i \) for some \(i \) (\(1 \leq i \leq k - 1 \)), and we can take \(z = x + 3i \) or \(z = x + 3i - 1 \), respectively.

Conversely, let the graph \(G \) have the stated property. We show that \(G \simeq L_k \) for some \(k \leq 1 \). Since \(\emptyset \) is independent, \(G \) has a vertex, and since a singleton is independent, each vertex has a neighbour, and since two nonadjacent vertices have a common neighbour, \(G \) has diameter at most 2. Clearly, if \(G \) is complete, then \(G \simeq L_1 \), so we may assume that \(G \) has diameter 2.

Step 1. Given two nonadjacent vertices \(x, y \), there is a unique vertex \(z = \sigma(x; y) \) such that \(y \sim z \) and \(N(x) \cap N(z) = N(x) \setminus (N(x) \cap N(y)) \).
PROOF: The set \(\{y\} \cup N(x) \setminus (N(x) \cap N(y)) \) is independent and hence contained in \(N(z) \) for some \(z \). If it is also contained in \(N(z') \), then, since \(G \) is reduced, the vertices \(z \) and \(z' \) have distinct neighbourhoods, and we may assume that \(z \sim u, z' \not\sim u \) for some vertex \(u \). But now \(\{x, u, z'\} \) is independent and not contained in a point neighbourhood. Contradiction.

Step 2. \(G \) is regular of valency \(k \), say. If \(k > 1 \), then there is a pair of nonadjacent vertices with \(k-1 \) common neighbours.

PROOF: Let \(x, y \) be nonadjacent. If \(|N(y) \setminus N(x)| > 1 \), then choose \(u \in N(y) \setminus N(x), u \neq \sigma(x; y) \). By the uniqueness part of the previous step, there is a vertex \(v \in N(x) \setminus (N(y) \cup N(u)) \), so that also \(|N(x) \setminus N(y)| > 1 \). Now \((N(x) \cap N(y)) \cup \{u, v\} \) is independent, and hence contained in \(N(z) \) for some \(z \). By downward induction on \(|N(x) \cap N(y)| \) it follows that \(|N(x)| = |N(y)| \) (since we have either \(|N(x)| = |N(y)| + 1 = |N(y)| \)), or, by induction, \(|N(x)| = |N(z)| = |N(y)| \). Now regularity of \(G \) follows since its complementary graph \(\overline{G} \) is connected.

Step 3. \(G \cong L_k \).

PROOF: Let \(x_0 \neq y_0 \) and \(|N(x_0) \cap N(y_0)| = k-1 \). Define vertices \(x_i, y_i \) \((i \in \mathbb{Z}) \) by \(y_{i+1} = \sigma(x_i; y_i) \) and \(x_i = \sigma(y_i; x_{i-1}) \). Then \(|N(x_i) \cap N(y_i)| = k-1 \) and \(N(x_i) \cap N(y_{i+1}) = \{x_{i+1}\} = \{y_{i+2}\} \) for all \(i \). By induction on \(j \) \((1 \leq j \leq k-1) \) we see that \(|N(x_0) \cap N(x_{3j})| = k-j \), and that \(x_0 \sim x_1, x_4, \ldots, x_{3j-2} \) and \(x_{3j} \sim x_2, x_5, \ldots, x_{3j-1} \). Indeed, for \(j = 1 \) this is clear, since \(x_0 = y_3 \). But \(x_{3j} \) and \(x_{3j+3} \) have the same neighbours except for \(x_{3j+1}, x_{3j+2} \), and \(x_0 \) and \(x_{3j} \) have the same neighbours except for the vertices \(x_{3j+1}, x_{3j+2} (0 \leq i \leq j-1) \), so \(x_0 \sim x_{3j+1} \) and similarly \(x_2 \sim x_{3j+3} \). As long as \(x_0 \) and \(x_{3j} \) have common neighbours, it follows that \(x_0 \neq x_{3j+1} \). However, \(x_0 \) and \(x_{3k-1} \) have the same neighbours, so \(x_0 = x_{3k-1} \). If there is a vertex \(z \) distinct from all \(x_i \), then \(z \) is adjacent to either all or none of the \(x_i \), contradiction, since \(G \) is triangle-free and connected. \(\square \)

This theorem can be generalized by deleting the hypothesis that \(G \) is reduced. Now the conclusion becomes that \(G \) is a clique extension of one of the \(L_k \). (In particular, if \(G \) is regular, that \(G \) is a lexicographic product \(L_k[K_m] \).)

Finally the finiteness hypothesis can be dropped as well, but the conclusion becomes more complicated, and I have not investigated this further.

The reason that the graphs \(L_k,m \) occur in \([vdH] \) is that (for \(m \geq 3 \)) they have the maximal possible toughness \(t = n/k - 1 \) for triangle-free regular graphs. (The toughness \(t(G) \) of a connected non-complete graph \(G \) with vertex set \(V \) is by definition \(\min |V \setminus X| / \omega(X) \) taken over all subsets \(X \) of \(V \) such that the number of connected components \(\omega(X) \) of \(X \) is at least two. Clearly, \(t(G) \leq \left(|V| - 2 \right) / 2 \).)

Lemma 0.2 Let \(G \) be a connected non-complete graph. The toughness of the lexicographic product \(G[K_m] \) equals \(\min |V \setminus X| / \omega(X) \), where \(\omega(X) \) is the number of singleton components of \(X \) plus \(1/m \)-th of the number of other components of \(X \), and \(X \) runs through the subsets of \(V \) with \(\omega(X) > 1 \). \(\square \)
Proposition 0.3. The toughness of $L_{k,m}$ equals $\min\left(2 - \frac{1}{k}, 2 - \frac{2}{m(k-1)+1}\right)$ ($k \geq 1, m \geq 1$).

Proof: By the above lemma, we only have to investigate $G = L_k$. Taking $X = N(0)$ shows that $t(G) \leq (3k-1-k)/k = 2 - 1/k$. Taking $X = N(0) \cup \{2\}$ shows that $t(G) \leq ((3k-1) - (k-1))/(k - 1 + 1/m) = 2 - 2/(m(k-1) + 1)$. Conversely, if $\{x, y\}$ is an edge of G, then $V \setminus (N(x) \cup N(y))$ is complete bipartite or a coclique. Thus, if some subgraph X of G has at least two non-singleton components, then $w(X) = 2/m$ and $|V \setminus X|/w(X) \geq 4/(2/m) = 2m \geq 2$ so that X does not determine the toughness. If X has precisely one non-singleton component, say containing the edge $\{0, 3t+1\}$, then the set S of all vertices s such that $\{s\}$ is a component of X is contained in one part of the bipartition on the vertices nonadjacent to both 0 and $3t+1$; say, $S \subseteq \{3t+3, \ldots, 3k-3\}$. Now $|V \setminus X|/w(X) \geq |N(S)|/(|S| + 1/m)$. But when $|S|$ is given, $|N(S)|$ is minimal when S is 'consecutive': $S = \{3a, 3a + 3, \ldots, 3a + 3r\}$, and then $|N(S)|/(|S| + 1/m) = (k + r)/(r + 1 + 1/m)$. This again is minimal when $|S|$ is maximal, i.e., for $t = 0$ and $r = k - 2$, and then $|N(S)|/(|S| + 1/m) = 2 - 2/(m(k-1) + 1)$. Finally, if X has only singleton components, a similar but easier argument again shows that we get the smallest quotient by taking X a maximal coclique, and then this quotient equals $2 - 1/k$. \qed

References