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A polling system is a queueing system in which several queues are attended 
by a single server. Spurred by various important applications, the field of 
polling systems is going through a period of feverish activity. The first part 
of this paper surveys some of the main developments. The second part 
generalizes the theory of polling systems to the case in which the customer 
arrival process depends on the position of the server, and to the case in 
which customers travel from queue to queue. 

1 INTRODUCTION 

It has bee11 a great pleasure to write t.l·1is pa1)t:.r 011 thE~ 1r1at.l1er11:it.ic~ctl analysis 
of the si11gle-server pollir1g syst.er11 i11 l1l)t1our of ci t,ruly c.levot,eti serv·er. 111 a 
someti111es alrr1ost, literall)' f)ai11stakir1g \.Vay, Cor Bc1ay·er1 saw to it c:tS direl~t,or 
of SMC that both LAW and C~\VI, a11d also l)otl1 its 111atl1e111ati<~s ,tnd c:0111-
puter scie11ce groups, v\7ere served i11 an equally fair 11·1a1111er. He hcis stror1gly 
stin1ulated researcl1 at t.he ir1t.erface of 1·11athen1atics a11cl <~orr1put.er scie11ce. His 
far-reaching visio11 l1as been crt1cial in realizing the INSP support for CvVI i11 
the eighties, which i11 it.s turn made it possible to build up a researcl1 group 011 

the mathematical analysis of t.l1e perfor1r1ance of t~ornputer syst,e1r1s. 

Consider the followi11g situat,ion. A director of a research i11st.itt1t,e divides 
his att.entio11 c1111ong several activities: scientific, fi11ar1c"ial, persor1nel n1atters, 
represe11tative activit,ies. Suppose t.l1at l1e devot,es l1is e11ergy for a while ( a 
"session') to tasks of a Sl:ientific· 11at,t1re, tl1en swit,ches t,o fir1ar1ce, et,c. During 
a session other r1ew t,asks of the san1e type, as well as of cliff ere11t type, n1ay be 
ger1erated; furtl1errr1ore, a t,fl.Sk n1a)1 l1ave t.o be recor1sidered in future sessio11s 
('feedback'). Tl1e director is i11t,erest,ed i11 t,l1e evol,1tio11 of l1is workload, the 
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numbers of tasks of all types, etc. These quantit,ies (~learly deper1d 011 the way in 
which tl1e offered load fluctuates over time; but tl1e director can also influence 
the process by a judicious choice of the order of l1is activities and of t,he time 
he reserves for a session. The framework i11 which these 111atters ca11 be studied 
is that of si11gle-server queueing models. More precisely, it is the fran1ework of 
polling models. 
A polling model is a queueing n1odel in whicl1 customers (tasks) arrive at a 
set of queues Q 1 , ... , Q N according to s0111e stochastic arrival process, requiring 
son1e stochastic amount of service. A single server B visits t,he queues in a 
fixed order to provide service. We assurne tl1roughout the paper that it is the 
cyclic order Q1, ... .,QN,Q1, ... (cf. Fig. 1). 
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FIGURE I_ Queueing model of a polling syste•n 

When B visits Qi and it is not empty, then B serves custotners in a session at 
Qi according to son1e service discipline. The most common service disciplines 
are: 

• 1-limited: serve just one custo1ner (if at least one is present) 

• exhaustive: serve customers until the queue is empty 

• gated: serve precisely those customers that were already present at the 
start of the session 

When Qi is empty, or the session is completed, then B switches to Qi+l· This 
may require some switchover time, which is represented by a stochastic vari
able. 
The assumptions about the stochastic nature of the arrival process, service 
times and switchover times are introduced to represent the usually inherently 
random nature of customer behaviour, as well as a lack of detailed information. 
Moreover, a probability distribution for, say, service times may also represent 
an aggregate of in itself known, constant but distinct, service times of several 
types of custome1·s. The purpose of the analysis of a polli11g model is to de
tern1ine the performance of ( several variants of) the underlying systen1, a11d 
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eventually to optimize system behaviour. Due to the stochasticity assumptions 
one can at most make probabilistic statements about tl1e main performance 
measures of a polling 1nodel, like workload of the server, numbers of customers 
at the various queues, or their waiting tin1es. 
The analysis and optimization of polling syste1ns has in recent years received an 
enormous amount of attention, and rnuch progress has been made. It has also 
b£•er1 one of the key research topics of the performance analysis group at, CWI; 
cf. the PhD Theses of W.P. Groenendijk [10] and S.C. Borst [1]. Therefore it 
seems appropriate to briefly review the n1ain develop111ents, with some en1pha
sis on contributions from the latter group. This review is presented in Section 
2. In Section 3 we discuss a generalization of the standard polling 111odel, in 
two directi<)ns that so far have receiv<~d hardly any attention: 
(i) The arrival rate of customers at the various queues n1ay depe11d on the po
sition of the server: i11formation on which queue the server is presently visiting, 
and hence on which queue it will visit next, may influence the generation of 
new tasks. 
(ii) Instead of leaving the system, customers may be routed to another ( or the 
same) queue after having received a service. A custo111e1~'s required service time 
at a queue may depend both on that queue a11d on the nu1nber of services it 
has already received. 
We show how, for an important class of service disciplines, these ge11eralizations 
can be analyzed in full detail. Crucial in tl1is analysis is the application of the 
theory of multitype branching processes. 
The above-mentioned features of feedback and customer infor1nation arise quite 
naturally in our director exam pie; in the ren1ainder of this section we mention 
several other applications of polling models. 

Applications of polling models 
Polling models arise in situations in which there are multiple customer classes 
sharing a con1mon resource which is available to only one customer class at a 
time. The oldest polling model in the queueing literature concerns a patrolling 
repairman, who cor1secutively inspects a number of machines to check whether 
a breakdown has occurred and to restore such breakdowns (12]. In this example 
the server is the repairman, the queues are the machines, and the customers 
represent the breakdowns. 
The application that gave polling models their name is a time-sharing com
puter system consisting of a number of tern1inals connected by multidrop lines 
to a central computer. The data transfer from the terminals to the computer 
(and back) is controlled via a 'polling scheme' in which the computer 'polls' 
the terminals, requesting their data, one terminal at a ti1ne. In this example 
the server represents the central computer, the queues are the terminals and 
the customers are the data. 
The interest in polling models was strongly revived by the study of message 
transmission protocols in local area networks. Many communication systems 
provide a broadcast channel which is sl1ared by all connected stations. When 
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two or n1ore stations wish to trans111it sin1ultar1eously, a co11ftict a1·ises. The 
rules for either resolving or preventing s11ch cor1flic:ts a1·e referred to as 'n1ulti
access protocols'. An in1portant conflict-free protocol is the token ring proto
col. In a token ring local area net,vork, several statio11s ( terrni11als, file servers, 
hosts, gateways, etc.) are connected to a c~orn111011 tr·a11sr11ission n1edit1m i11 a 
ring topology. A special bit sequence called the token is passed fro1r1 one statio11 
to the next; a statior1 that 'possesses the t,oke11' is allowed to transmit a 111es
sage. After co111pletion of its transrnissio11 the st,atio11 releases the token, givir1g 
the 11ext statio11 in turr1 an opportu11ity to tra11s111it. Tl1is situation ca11 be 
represented by a polling r11odel with l-lin1ited ser·vice at each queue; tl1e server 
is the token, the queues are the statio11s and tl1e custor11ers are tl1e n1essages. 
Variants of the above-described toke11-passi11g mechanisrn give rise to related 
polling models, with e.g. exhaustive service at the queues. A qt1eueing analysis 
of these polling models yields i11sigl1t into the ( dis )advantages of the various 
access protocols, and allows syste111 designers to 111ake J)erformance predictions. 
We refer the reader to Takagi [18] and Grillo [9] for surveys on pollir1g appli
cations in respectively co1nputer- a11d con1111u11ication 11etworks. 
Other applicatio11 areas of polli11g n1odels i11cl ude: 

• 1·obotics ir1 1nanufacturi11g ( a si11gle 111ac:hine processes several types of 
parts, incurring switchover tin1es for cl1anging tools) 

• traffic signal control ( the g1·eer1 light represents t,he availabilit,y of the 
server for a queue of vel1icles) 

• the operation of elevators ( multiple servers are int.erestir1g l1ere: is it better 
to have a concentr·ation of elevators in a ce11tral area, or should they be 
dispersed over the building?) 

• packet transfer protocols ir1 B-ISDN (in such Broadband Integrated Ser
vices Digital Networks, char1r1el access will be alte1·11ately granted to voice, 
video and data messages, all digitized into 53-byte packets) 

The characteristic feature of all these applicat.io11s is that t,he server is 'moving' 
between queues., implyir1g that tl1e priorities of the q11eues are dynamically 
( e.g., cyclically) changing. This sharply contrasts wit,h classic static priority 
queueing models, where one type of customers always has priority over other 
customer types. 

2 ANALYSIS OF POLLING SYSTEMS 

In this section we briefly review the exact analysis of the standard cyclic polling 
syster11. After a detailed model description we consecutively consider work
loads, waiting times and queue lengths. 

Model description 
We here describe tl1e sta11dard cyclic pollir1g rnodel; in Section 3 we extend t,his 
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model in several ways. Custon1ers arrive at N queues Q 1 , ... , Q N with infi
nite waiting rooms according to N i11depende11t, Poisson processes, with rates 
A1, ... , AN- Customers who arrive at Qi are called type-i custo1ners. Server 
B visits the queues in the cyclic 01·der Q 1 , ... , Q N, Q 1 , . . .. Upon l1is visit to a 
queue, he serves one or more custon1ers (if prese11t,) accordir1g to sorne service 
discipline like I-limited, gated or exhaustive service ( cf. Sectio11 1). Tl1e service 
times of type-'i customers are independent, identically distribut.ed stocl1ast.ic 
variables; their distribution is Bi ( ·), with first mo111ent Pi, second n1on1ent /31 2

) 

and Laplace-Stieltjes 'I'ransfor1n (LST) Pi ( ·). The switcl1over tin1es of B be
tween Qi and Qi+l are independent, identically distributed stochastic variables, 
with first moment si, second 1noment si 2

) and LST ai ( ·). The total switcl1over 
time of B in one cycle has first and second moment s respectively sC 2). We 
assume that the interarrival, service and switchover processes are mutually in
dependent. 
The offered traffic Pi at Qi is defined as Pi :== AiPi, and the total offered 

N 
traffic load is p :== I: Pi· Obviously p < I is a nec~essary co11ditior1 for steady-

i=I 
state distributions of workloads, waiting times a11d quel1e le11gtl1s etc. to exist. 
When all switchover ti1nes are zero, this condition is also sufficient; otherwise 
the situation may be much more complicated, and in particular the service 
disciplines may influence the st,ability condition ( e.g., in l-lin1ited service B is 
forced to spend time switchi11g after each service). See Fricke1· a11d JaYbi [8] for· 
an extensive discussion of these stability isst1es. We assume in the seq11el that 
steady-state distributions of all quantities u11der consideration exist . 

• 

The workload process 
Consider first the case that all switchover times are zero. Then B is always 
working as long as there is at least one custon1er anywhere in the system. 
The amount of work in the system evolves in a way that does not depend on 
the order of service of the queues and within the queues, 01· on the service 
disciplines at the queues; this is the principle of work conser·vation ( cf. Heyman 
and Sobel [13], p. 418). Hence, for any service disciplir1e at the queues of 
the cyclic polling system, the amount of wor·k is distributed as t,he a1not1nt of 
work in the 'corresponding single server queue' witl1 FCFS (F'irst (;01r1e First 
Served) order of service. Since the superpositior1 of· N independent Poisson 
processes is again a Poisson process, that 'correspondi11g single server queue' is 

N 

an M/G/1 queue with arrival rate A:== I: Ai and with service tin1e distribution 
'i=l 

N 
B(·) :== I: (;\i/ A)Bi(·). 

i=l 
Now consider the case that not all switchover tin1es are zero. The principle 
of work conservation is clearly violated. However, it has been shown in [4] 
that a principle of 'Work decomposition holds: the steady-state amount of work 
V tvith in the polling system with switchover times is related to the steady-
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state amount of work V witJ1,o71,t in the 'corresponding polling system' without 
switchover ti1nes (hence in the above-mentio11ed 'corresponding M/G/1 queue') 

• via 
(1) 

where Y is the steady-state amount of work present i11 the system at a11 epoch in 

which B is riot serving; d denotes equalit,y i11 distribution. Moreover, V.u,itll.o·z1,t 

and Y are independent. The distril)ution of V.u,itliout is known from M/G/1 
theory. The distribution of Y can be det;ermined in a r1umber of cases, l:)11t with 
considerable effort. Tl1e n1ea11 EY, on the other h;:1nd, is very easily detern1ined 
for virtually any set of service disciplines at the various q11eues - which t,urns 
out to be most useful for deriving mean waiting times, as we'll see in forn1ula 
(4) below. 

REMARK 2.1 
The proof of ( 1) as presented i11 [4] is based on three concepts wl1ich are sketchily 
indicated below. 
(i) As long as B is servi11g, the amount of work evolves in exactly the sarne 
way as if B would be servir1g acco1·ding to tl1e LCFS (Last Corne First Served) 
rule. 
(ii) Cl1aracteristically for LCFS, a11 a1r1ount of work Y found by a custon1er C 
upon l1is arrival in a switchover period is not served until C l1as been served, 
plus all customers who arrive during G's service (C's offspring), plus all cus
ton1ers who arrive during those services, etc. ( together - ir1cluding himself -
forming C's 'ancestral line'). 
(iii) The tin1e period required to serve the ancestral line of C is distributed as 
the busy period in tl1e above-mentioned 'corresponding M/G/1 queue'. 
Since the principle of work conservation implies that dur·ing such a busy pe
riod the amount of work evolves in the same way, regardless whether service 
is FCFS or LCFS, combi11atio11 of (i), (ii) and (iii) shows that the workload 
V 1.1.,ith is distributed as the superposition of Y and V u;itliout • 

Another proof of (1), communicated to the author by B.T. Doshi, proceeds as 
follows. Assume for simplicity that the densities of the distributions of V 1.1,itfi 

and Y exist; denote them by v(·) ar1d y(· ), and denote their Laplace transforms 
by</>(·) and 11( · ). Equating the downcrossing and upcrossing rates of level x > 0 

• gives: 

X 

v(x) - (1 - p)y(x) = A (1 - B(x - z))v(z)dz. 

0-

Combining this relation with 1,(0) = (1-p)y(O) and taking Laplace transforms 
leads ( with /3( ·) the LST of B ( ·)) to: 

w 
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Hence 

(2) 
w-

which proves the deco111position into two ir1dependent co111ponents: efJ(w) is the 
product of the transform of the distribution of V,uJitho't1.t (a well-k11own M/G/1 
expression) a11d tl1e transform 77(w) of the distribution of Y. See [3] for a 
g<_!neralization of this principle of work decornposition, and for applications to 
variol1S polling models with a non-cyclic visit patt,er11. 

Waiting times 
We restrici ourself here to mean waiting times. Denote the n1ean waiting time 
of type-i c1 1.stomers by EW i, and the n1ean number of waiting type-i customers 
by EXi. These quantities are related via Little's formula: EXi = AiEWi. It 
is easy to relate the mean workload in queueing models with Poissor1 arrivals 
to mean queue lengths, and hence to mean waiting tin1es. Indeed, under mild 
restrictions that are fulfilled in the standard polling model described earlier i11 
this section, we can write (cf. (3]): 

N N 

EV with== (3) 
i=l 

Now take means in (1) and combine the resulting formula with (3). Appli-
N 

I: Ai/3~ 2
) 

cation of Little's formula and EV without 

conservation law [4]: 
i2(l-p) then yields the pseudo-

N 

(4) 
i=l 

Here ( cf. the notation introduced in the model descr·iption) 

EY== 
sC2) s 2 N N 

(5) 
i=l i=l 

with Zii the amount of work left behind at Qi by the departing server. EZii, 
and hence EY, can be explicitly determined for polling models with standard 
service disciplines like I-limited, gated, or exhaustive. EY = 0 for the case 
of zero switchover times, and then (4) reduces to the well-known conserva
tion law [11]. The origin of the term conservation law is that the weighted 

N 
sum ~ PiEWi of the mean waiting times remains the same, regardless of any 

'i=l 
changes in the service disciplines at the various queues. In the case of switchover 
times this weighted sum does change when a service discipline is changed, but 
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only via a - usually simple - change i11 EY. 
N 

The re1narkably simple exact expression for I: PiEW.i has in the past few years 
i=l 

turned out, to be extremely useful for a va1·iety of purposes: testing si11·1ulation 
results, the development of approxin1ations for 111ean waiting tin1es, and the 
optimization of server routing and server visit tin1es. 

Queue lengths 
For the above-described N-queue cyclic polli11g 111odel, with exhaustive service 
at all queues, Eisenberg [7] obtair1s tl1e joi11t queue length PGF (Probability 
Generating Function) at epochs in which Breaches 011e of t,he queues. His solu
tion n1ethod may also be used to handle the case of gated service at all queues. 
Furthermore, he also allows a fixed non-cyclic visit pattern. 111 a series of pub
lications following Eisenberg's paper, an exact queue ler1gtl1 a11alysis has been 
performed for several other N-queue polling n1odels, witl1 exhaustive or gated 
service, or mixtures a11d varia11ts of these service discipli11es; for a11 overview 
we refer to the survey of Takagi [19]. In co11trast, polli11g 111odels with lin1its 
on the number of custon1ers to be served duri11g a session, or 011 the session 
time, have n1ostly defied an exact ar1alysis. The joi11t queue length distribution 
for the 2-queue model witl1 l-lin1ited service at both queues can be obtained 
by transforming the problem into a Rier11an11- or Riemann-Hilbert boundary 
value p_roble1n (see, e.g., [6]), but for· N > 2 it is riot clear· at all how the queue 
length problem can be attacked. 
In an in1portant paper, written at CWI, Resi11g [15] clarifies this sharp separa
tion betweer1 'easy' a11d 'l1a1·d' polling n1odels. He co11siders a class of service 
disciplines witl1 the following property: 

Branching property 
If there are ki custo111ers present at Qi at the start of a visit, then during the 
course of the visit each of these ki custo111ers will effectively be replaced in an 
i.i.d. manner by a random population l1aving son1e PGF hi(z1 , ... , ZN) which 
1nay be any N-dimensional PGF. 

Resing demo11strates that, if the branching property l1olds at all queues, then 
the joint queue length process at successive n1on1ents tl1at B reaches a fixed 
queue, say Q1 , is a Multi-Type Branching Process (MTBP) 'with in1migration'. 
The theory of MTBP now yields stability (:or1ditions as well as an exact ex
pression for the joint queue length PGF. 
The 1-limited service discipline does not have the brar1ching property. The 
gated and exhaustive disciplines, on the other hand, do possess tl1is property, 
with respectively 

N 

(6) 
j=l 
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(note that this is the PGF of the joi11t distributio11 of the nu111bers of arrivals 
at the various queues during one service at Qi), a11d 

(7) 
j:/-i 

where 0i(·) denotes the LST of a busy period i11 an M/G/1 queue with arrival 
rate Ai and service ti1ne distribution Bi ( ·). 
In the next section we shall extend the queue lengt,h resl1lts £01' the polling 
model of the present section, with the branchi11g property at all queues, to 
some more general polli11g models. Therefore we now go into n1ore detail con
cerning the theory of MTBP with imn1igration and tl1e results of Resing [15]. 
Consider a system with N particle types. Let p( i) (j 1 , ... , j .N) denote the prob
ability that a type-i particle 'produces' as offspring jk particles of type k, k = 
l, ... ,N. The offsprir1g PGF ofp(i)(j1, ... ,jN) is denoted by j(i)(z1 , ... ,zN), 
and the mean number of particles of type j produced by one t,ype-i particle is 
denoted by mij. The matrix M = ( mij) plays an essential role in the theory 
of MTBP. !vf is called primitive if there is a11 11 suc11 tl1at all entries of the 
matrix M 11 are strictly positive. The well-known Perron-Frober1i11s theore1n 
implies that a nonnegative prin1itive r11atrix M has a positive real eige11val11e 
Vmax such that I v I< Vrriax for all other eigenvalues v of l\11. 
Not only are particles produced by other particles; new particles can also en
ter the system via immigration ( this corresponds to the arrival of c11stomers 
during a period in which B is not serving). Let q(j1, ... , j N) denote the 
probability that a group of immigrants consists of j k particles of type k, 
k = 1, ... ,-N. Denote its PGF by g(z1 , ... , ZN ), and inductively defir1e the 
functions J n(z1, ... , ZN) by 

f n(z1, ... 'ZN) := (J<1)(fri-1(z1, ... 'ZN )), ... '1(~l\J)(f11-1(z1, ... 'ZN ))). 

Resing cites the following theorem, due to Quine [14]: 

THEOREM 2.1 
Let Zn = (zr), ... , z~)) be an MTBP with imrnigratio11 in each state, with 
offspring PGF J(i) (z1 , ... , ZN), i = 1, ... , N, and immigration PGF g(z1, ... , ZN). 
Let the mean matrix M corresponding to the branchir1g process be primitive 
and its maximal eigenvalue Vrriax < 1. Assume the Markov chai11 Zn is irre
ducible and aperiodic. The stationary distribution 1r(j1 , ... , j N) of the process 
Zn exists iff 

(8) 

When this condition is satisfied, the PGF P(z1 , ... , ZN) of the distribution 
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in the literature, ofte11 via different approaches; tl1e difficult,y with sin1ply let
ting the switchover times tend to zero in a polling 111odel '-vith switcl1over tirnes 
is that the number of visits i11 an idle period tends t.o infinity, leading to de
generate distributions at such visit, epochs. However, the following wc:1y out is 
possible. Let us assun1e that B in an ernpty syst,e1n rests at,, say, Q1 . For this 
situation Resi11g [15] shows, for tl1e class of' polli11g 11·1odels witl·1 the branching 
property, that tl1e joint queue lengtl1 proc:ess at successive n10111ents that B vis
its Q1 is again an MTBP - but now witl1 in1n1igratio11 011ly in stat,e zero. Ir1 [2] 
it is subsequently shown how the identic:al ofl'spri11g PGF's oft.he MTBP's cor
responcling to the polling n1odel with r·espectively witho·ut switc:hover ti111es give 
rise to a strong relation between tl1eir respective joint queue length processes 
( see also [ 1 7] ) . 

3 POLLING SYSTE:rv1S WITH SMART OR PERSISTENT CUST0!\1ERS 

In this section we shall generalize the pollir1g rnodel of Sec~tio11 2 in two di
rections: polli11g 111odels witl1 arr·ival rates tl1at depe11d on tl1e server positio11 
('smart custorners') and pollir1g 111odels with feedbac'.k ar1cl custor11er routing 
('persistent customers'). For each of tl1ese directior1s we outli11e (because of 
space restrictions witl1out detailed proofs) how tl1e model ca11 be analyzed 
completely wher1 the service discipline at eacl1 queue satisfies the bra11chir1g 
property. 

3.1 Smart customers 

In sorne polli11g applications, knowledge abo11t the serve1· position may influ
ence tl1e arrival rates of the custon1er types. In tl1e director's example, the 
knowledge that the director will next turn to person11el 111atters 111ay ge11erate 
son1e new personnel tasks, while the1·e is less hurry in creating tasks of an
other nature. Let us 1nodel this as follows, 1r1aking a few adaptatio11s in the 
model described in the previous sectior1. Tl1e arrival process of custon1ers at 
Qi, wl1en B is at Qj, is Poisson with rate AiJ; the arrival process of ct1ston1e1·s 
at Qi, when B is switching frorr1 QJ to QJ+l, is Poisso11 with rate µij · Wl1er1 
the service discipline at each queue satisfies tl1e branchi11g property, witl1 PGF 
hi(z1 , ... , ZN) at Qi, then it is easy to check that the joi11t queue lengtl1 process 
at successive moments that B visits, say, Q1 is an MTBP with immigration. 
The immigration PGF is given by (cf. (11)): 

N • 
1, 

O"i "-- µki(I • 

i=l k-1 
(14) 

In the case of gated service at Qi the offspring PG F is ( cf. ( 6)): 

N 

(15) 
j=l 
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and in the case of exhaustive service at Qi the offspring PGF is ( cf. (7) ): 

(16) 

The reasoning presented in Remark 2.3 should n1ake it. clear that the present 
model again gives rise to a functional equatior1 of the type (13), iteration of 
which leads to an infinite-product expression for P1(z1, ... ,zN) like (9). Tl1e 
PGF of the joint queue length distribution at tl1e end of a switchover from Q.i 
to Qi+I is simply expressed in the PGF at the beginning of that switchover 
(the end of a visit to Qi), and the latter PGF car1 be expressed in the PGF 
of the joint queue length distribution at the beginning of that visit to Qi by 
substitution of the offspring PGF h-i(-) at the i-th position in the PGF. 

Several interesting special cases deserve further attentio11. E.g., Aij = ApiJ and 
N N 

µij = Aqij with Pij, QiJ > 0 and I: P·ij == I: QiJ == 1 for all j corresponds to a 
·i=l i=l 

fixed total arrival rate A. If the service discipline at each queue is gated (hence 
when B visits Q,i, he will 011ly serve custon1ers that were already present at the 
start of the session), the sn1artest thing for an arriving customer to do is to go 
to the next queue: Ai+l,i = µi+I,i = A, and ,\ij = µ-iJ == 0 for all i I- j + 1. The 
most foolish behaviour, on the other hand, is represented by Ai,i == µi,i == A, 
and Aij = µij = 0 for all j i= i. Tl1e for1ner cl1oice c:learly 1ninin1izes tl1e waiting 
time of each individual arriving customer. Let us now moreover assume that 
Bi ( •) = B ( ·). Then the above choice also 1ninimizes, i11 the sense of stochastic 
ordering, the workload of the server. This may be proven using coupling 1neth
ods; see [5] for the more restricted fully symn1etric case. 
In the case of identical service time distributions and fixed total arrival rate 
A, the work decomposition ( 1) still holds ( check the level crossing argun1ent 
presented in Remark 2.1), and EY can easily be calculated. But if not all ser
vice time distributions are the same, or the total arrival rat,e is not constar1t, 
then the whole work decomposition concept breaks down. Some reflection will 
make it clear that when switchover times are zer·o, even the concept of work 
conservation is destroyed. 

3. 2 Feedback and customer routin_q 
In the director's example, a completed task may have to be reconsidered in 
future sessions. This feature can be incorporated in the model of Section 2 in 
the following way. A newly arriving customer at Qi (Poisson with arrival rate 
>..i) is called a type-(i, 1) customer. After completion of its _service, it moves 

to Qk with probability p~!), becon1ing a type-(k, 2) customer, and it leaves the 

system with probability Pi~). More generally, a type-(·i,j) custon1er denotes a 
customer at Qi who has to be served for the j-th time; after having received 
service, it moves to Q k with probability p~{), and it leaves the system with 
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of the joint queue length distributions at time points in which B leaves Q1 , 

reaches Q2 and leaves Q2 • The PGF of the joint steady-st,ate queue length 
distribution may also be determined from these results, once the service order 
at the queues is specified (e.g., serve type-(i,j+l) before type-(i,j) customers). 

REMARK 3.2 
The case of a single queue with feedback, contained in the present n1odel, is 
also interesting in itself. We can obtain the joint queue length distribution of 
the numbers of customers that are present for the first, ... , L-th time, at tl1e 
time points at which B starts a new session. 

REMARK ::~.3 
Several va1·iants and generalizations car1 also be handled in the framework of 
an MTBP. For example, one can allow zero switchover times between sessior1s, 
obtaining an MTBP with immigration only in state zero. Furthermore, instead 
of assuming Pi~) = 1, we may also assume that Pi{) == Pik and Bij ( ·) = Bi ( ·) 
for all j > L, k = 0, 1, ... , L. The resulting MTBP still has a finite number of 
NL variables. This gene1·alizes the model of Sidi et al. [16] in various ways. 
We may generalize our model eve11 further, while retaining the MTBP structure. 
For example, we can allow 'smart customers' in combination with feedback and 
routing; and we can also allow the possibility that a served customer not just 
feeds back, but branches into several customers: a task of type-( i, j) that has 
been handled by the director may simultaneously give rise to tasks ( k 1 , j + 1) 
and ( k2 , j + 1). While these possibilities may make the job of a director rather 
complicated, they do not fundamentally complicate the analysis of his work
load. 
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