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The following CWI report proposes a notation for OOAS (Object-Oriented 
Algebraic Specification). It is or1e of four related for111alisn1s in the area of 
algebraic specification tl1at were co11ceived around 1984 at CWI. The other 
ones were ACP (Algebra of Co1nml1nicating Processes), ASF (Algebraic Spec­
ification Forrnalis111), arid BMA (Basic Mod1.1le Algebra). vVhereas tl1ese l1ave 
generated and still generate a significa11t volur11e of research, OOAS was co11-
sidered of minor importance a11d, apart from its use in [1], no further study of 
it was made by CWI researchers. 

In retrospect, this is u11fortunate. Wl1en Banatre et al. [2] independently 
introduced n1ultiset progran1ming, whicl1 in turn led Berry and Boudol [3] to the 
Chemical Abstract Machine (CHAM), the underlying co11cepts and definitions 
turned out to be very close to OOAS. Since then the Fre11ch researchers have 
made subst~ntial progress, a11d the CHAM has beco1ne an i1nportant theoretical 
tool. 

We respectfully dedicate this account of the vagaries of scient,ific work to Cor 
Baayen on the occasion of his retirement as scientific director fron1 CWI. 
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A notation is introduced for expressing the dynamic behaviour of configura­

tions of objects. At each instant of time a configuration is just a multi­
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specified abstract data type. Several examples should convince the reader of 
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1. INTRODUCTION 

This note has the following aim: to propose a notation compatible with the 

well-known notations for aLget~aia data type specification which captures 

the concept of an object. 

The reasons for doing so are many; we list some reasons in arbitrary 

order: 

(a) There is an increasing interest in object-oriented approaches to soft­

ware design. See Cox [4], Jamsa [6], Jonkers [7] for some discussions of 

object-oriented programming. 

(b) The discussion on what constitutes an object and what constitutes a 

value is not yet settled. See Cohen [3] and MacLennan [9] for two very inter­

esting expositions about the nature of objects. 

(c) From the point of view of abstract data types (and their algebraic spe­

cification) it is hard to understand what an object is. The history of the 

subject is confusing indeed. The Simula class is meant as a class of objects. 

Abstract data types in the ADJ tradition are modules of structured values. 

In the survey by Goguen & Meseguer [S] an option to augment data types with 

states is discussed, thus regaining some of the dynamic aspects that were 

somehow lost in the '' initial algebra == abstract data type'' stage. 

(d) we feel that a workable distinction between objects and values can be 

made, taking algebraic abstract data type specifications as a point of de­

parture. 

2. AN ORGANISATION OF NOTIONS 

Let 1: be a (many-) sorted algebraic signature, let A E Alg (I) be an algebra 

of type (signature) E. A is called an abstract data type. For (algebraic) 

specification of abstract data types, we refer to the literature collected 

in Kutzler_ & Lichtenberger [8]. 

The signature Eis a triple $(t), lF(t), C(r) (sorts, functions and 

constants) of 1:. For s E $(I), A is the interpretation of sort s in A. 
s 

An element of A 
s 

data space. (See 

will be called a point. A itself will also be called a 
s 

Figure 1.) A point p e: A may play two roles: 
s 
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(i) p may represent a value, 

(ii) p may represent an object (with a particular state). 

A 

Figure 1 • 

• 

abstract data type 

data spaces corresponding 

to sorts s 1 ,s2 , ... ,si, .• 

points of sort s. (in 
l. 

space A ) 
s. 

1 

A multi-set of objects (i.e. a multi-set of points seen as objects) is called 

a configuration. Configurations exhibit dynamic behaviour. In particular, 

configurations may perform (or allow) transformation steps 

C ---➔ C'. 
R 

Transfo1.tt1ation steps are generated from transformation ruZes. In Section 3 

we will present syntax and semantics of a notation for transforrciation rules. 

Suppose that we know what a rule is for a given signature E. Let T be 

a collection of transfox:rttation rules, A a I:-algebra. Then the pair <A, T> de­

t~1.111ines a configuration transition system. 

If A= T
1

(I,E), i.e. (E,E) is an initial algebra specification of A, 

and T is a collection of transfor,nation rules for I:, then 

<(l:,E),T> 

is an object-oriented aLgebraic specification which specifies a configuration 
• • trans~t~on system. 
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3. TRANSFORMATION RULES 
• 

Info.ttttally, a transfoi:trtation rule is a notation of the following kind: 

configuration before transformation 1 

rule name (parameter list) 
configuration after transformation 

Often it is convenient to divide the parameter list in three parts: one 
• 

part associated with the rule name, the other two parts consisting of input 

values and output values respectively. This suggests the following notation: 

ruZe nam.e (par. List) 

configuration before 
transformation 

configuration after 
transformation 

input values 

output values 

The input values constitute a multi-set of points which are consumed during 

the transfoi:mation and the output values constitute a multi-set of points 

which are produced during the transformation. It is understood that a con­

figuration may be transfo.rttted inside a context (a larger configuration). 

So if c
1
c: c

1 
uc

2 
is a sub-configuration of c

1 
uc2 (where< denotes inclusion 

between multi-sets and U their union}, and 

~ 

R = name (p) 
c• 

1 

+ 
a 

r, 

is an instance of the rule with name name, then c 1uc2 
transfor11tation step. (For a more elaborate explanation, see Section 9.) 

Ex .ple: an instantiation R of the transfor:Ictation rule 
" 

add 
X 

x+y 

used in the example below, is: R = 3 
add 8 

5 
• (Here 3 is short for 

+ + 
(l+l)+l, etc.) In this example p, bare empty, and c 1 = {3}, Ci = {8}. 

Now we have the transfotmation step 

• 

{3} -R-..;;.> {8} 
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and also e.g. for = {7,1}, the step 

{3,7,1} --~► {8,7,1}. 
R 

Such steps ca,1 be composed into transformation sequences; e.g. if R' is the 
7 6 

, we have instantiation: add 
13 

• 

{3,7,1} .R ➔ {8,7,1} ~ R' ► {8,13,1}. 

Here we would like to point out the relation to Plotkin (10], which 

addresses similar issues, where system behaviour is systematically descri­

bed by means of transition relations. 

The following two very simple examples will help to further explain 

the notation. Consider the following specification of the initial algebra A: 

E 

$: N 
ER 

IF:+:NxN+N 
•:NxN + N 

4:: 0 EN 

1£N 
.L £ ER 

x+O=x 

X + (y + 1) = (X + y) + 1 

Now A= T1 (E,E). We will now present two different collections T1 and T2 
of transfo:t111ation rules for configurations over A. 

• 
' 

X 
succ 

X + 1 

add 
X 

x+y 

subtract 
x+ 
X 
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I • 
I 

subtract 
X X + + 1 ---+---
x .l 

If one starts with the initial configuration {O}, then T1 describes the be­

haviour of a single counter with some actions (transfo:r1r1ations) on it; part 
• 

of this behaviour is as in I'igure 2 • 

0 
succ l 

{ 0} ---..--.... --:: 
0 1 

add 1 

Figure 2. 

1 
succ 2 

{ 1 } ~~---.---::· { 2} 
2 1 

subtract -t-
1 

2 2 
subtract ----e 

Further comments on the rules of T1 : 

1 4 
add 

5 

2 3 
subtract-+-

2 1. 

{5} 

(i) If one of the compartments of the 'matrix' is left empty, this means 

that.the empty multi-set~ of values (or objects) is meant. 

{ii) Note the difference between rule T1 ,
2 

and the rule 

add 
X 

x+y 
• 
I 

• 

• • 

in T
112 

we focus on the transforniation of one object, while in the displayed 

rule the fusion of two objects is embodied. 

(iii) The rules T
113 

and T
114 

for subtraction exhibit polymorphism of types: 

in T1 , 3 the multi-set of output values is empty, while in T114 an error 

message is delivered. 

• 
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In the second example the same initial algebra A as above is used. The 

set T 
2 

of transfor11tation rules for configurations over A will describe the 

behaviour of a fixed number n
0 

of counters. The k-th counter (k E {O, .. ,n0 -l}) 

with content x can conveniently be represented (coded) by the natural number 

k+n
0
x. Below, k,e,m vary over {O, ... ,n

0
-l} . 

• 

create(k) 
X 

add(k,e,m) 
m + n

0 
(x + y) 

mult(k,e,m) 

succ(k} 

read (k) 

k +n x 
0 

k +n x 
0 

compare(k) 

X 

e + n y 
0 

k + n
0 

(x + y) 

compare(k) 

skip(k) 

copy(k,e) 

k + n x 
0 

x+y+l 

1 

X 

0 
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Conutten ts : ( i} The rules T and T for compare(k) compare the content a 
2,6 2,7 

of counter k with some given number b; if a ~b the output is O, otherwise l. 

(ii) Note that the copy(k,e) rule can lead to confusion {in the sense that 

two indiscernible objects may arise) if it is applied while an object of 

the fo.c:rct e + n
0

x is present (which can be avoided by first perfu.c:n1ing ski,E? (e) 

or read(€)). 

(iii) The empty configuration,is an adequate initial configuration for this 

system. Clearly T
211

_
9 

offer only limited facilities (subtraction is absent 

etc.). Moreover explicit naming might be a preferable alternative to the 

coding trick, which represents •• counter k with content x'' as k + n
0

x, 

tural number objects are to be maintained. 

4. THE STACK 

if na-

In this section we consider object-oriented specifications of the stack. 

We forntulate four different specifications of the dynamic behaviour of a 

single stack. This raises the following 

Question: is it possibie to express this rich variety of operationai possi­

biLities without the object-oriented approach (i.e. in terms of the originai 

algebraic framework)? 
• 

We will leave this question unanswered. 

E = 

A 

s 
ER 
B 

IF : push: A x S -+ S 

<t: al , ... , an e: A 

1 e: ER 

~e:S 

T e: B 

Fe:B 
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• 

push 
X a 

push(a,.x) 

pop 
push(a,x) 

X a 
• 

.1 

The initial configuration is{~}. At each time the configuration will be a 

singleton. 

push 
X a 

push(a,x) 

push{a,x) 

X 

.1 

top 
push(a,x) 

push(a,x) a 

top 

l. 

As in the previous case{~} should be taken as the initial configuration. 

t 
I 

create 

push 
X a 

push(a,x) 
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I 
push{a,x) 

X a 

pop 

.L 

In the cas•? of T 5 , poI2 is destructive on f'. Hence after .L has been observed 

an empty s~ack must be created again. Care must be taken not to create two 

or more stacks at the same time, because this would lead to non-dete:r::·11tinistic 

effects of pop. 

In the next example T
6 

we replace the create facility by a test on emp­

tiness of the stack. 

push 

empty 

PoP 

pop 

X 

push(a,x) 

push(a,x) 

push(a,x) 

push(a,x} 

a 

a 

F 

T 

a 

l. 

In the case of T
6

, {0} is again an appropriate initial configuration. In or­

der to prevent loss of the stack it is useful to do P2P only after a test on 

emptiness. If the stack is not empty, pop may be safely applied; otherwise 

it should not be applied because in that case the object would be irreversi­

bly destroyed. 
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5. PROCESS A!..tGEBRA WITHOUT COMMUNICATION 

Let (EPA' PA} be the following specification. 

I 
PA 

PA 

$: PR 

IF: + : PR x PR -+ PR 

• : PR X PR + PR 

l l : PR X PR + PR 

lL : PR )C PR + PR 

x+y=y+x 

(x +y) +z • x + (y+z) 

X +x = X 

(x•y)•z = x•(y•z) 

xl1Y = xll_y + yll_ z 

(a·x) lL y : a ·cxllY) 

Al 

A2 

A3 

A4 

AS 

Ml 

M2 

M3 

(x+y}LI_z=xll_z+ylLz M.4 

Here •a• varies over A= {a1 , ... ,a
0
}. We will write 

TI (1:PA, PA) of this specification as Aw(+,•, II , ll) . 
the reduct of A (+, •, 11 , lL ) after forgetting I I and 

w 

the initial algebra 

With A (+,•) we denote 
w 

lL . Let r;~· be 1:PA minus 

II r ll_ and let BPA be Al-5. It can be shown (see Bergstra & Klop [ 2]) that 
+ • 

Aw(+,•) = T
1

(r.P~, BPA). The axiom system PA was introduced in {2] as the 

core axiomatisation of process algebra. 

When we take A ( +, ·) as a data space, and use the a e: A as rule names, 
w 

the following transfoxmation rules (without inputs and outputs) reflect the 

operational semantics of+ (choice, aiternative composition) and •(product, 

sequentiai composition): 

T7.,l-4 

a a+x 
a a a ---+--

X 

198 
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, 

Now consider the configuration 

The behaviour of this configuration corresponds to that of the process 

Thus the forrciation of configurations is represented by the operation ! I of 

PA. It can be concluded that process algebra is more denotational than object­

oriented system specification by means of transfo.c·rt1ation rules. 

6. SETS OF INTEGERS 

Let ! be as rollows: 

$: N 
SN 
B 
ER 

lF: eq: N X N + B 

• ins: N x SN + SN 

del: N x SN + SN 

s: N + N 

F e: B 

0 e: N 

~ e: SN 

.L e: ER 

As (conditional) equational specification of the data space we take: 

E 

I 
I 

• 

eq(O,O) = T 

eq(O,s(x)) = F 

eq ( s (x) , 0) = F 

eq(s(x) ,s(y)) = eq(x,y) 

ins(x,ins(x,X)) = ins(x,X) 

ins{x,ins(y,X)) = ins(y,ins(x,X)) 

del (x,,0) = ,0 

199 

• 



• • 

dellx,insCy,X)) • in■ ly,dellx,X)) 

We will now describe a confiqt1ration t.ransfotm~t.ion gy5tem start.inq frca {.B~ 

as an initial configuration. 

T 
8 i 

I 
,J 

! 
I 

f 
I 

ins X 

ins(a,x) 

del X 

del(a,x.) 

ins(a,x> 

X la 

,, 
get , ------+---

J 1 

, elt 
' --

ins(a,x) 

l 

I 
i 

I 
I 

elt 

empt;r: 

ins (a,x) I T 

del(a,X} 

del (a,x) 

j1 

F 

T 

empty ins(a,X} 

ins(a,x) 

J 

T 
e,1 

TB,2 

T 
8,5 

T8,7 

T8,8 

Remark: note the implicit non-determinism present in T8 , 3 • Namely, by the 

instance 

R = 9:et 
• 

ins (a, ins (b,jll)) 

ins(b,,0} 

we have the step {ins(a,ins(b,~))} R , > { ins (b,~) } . Further, by E we have 
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displayed step can also be transfotmed to { 1.ns (a,~)} 

7. A SIMPLE ED I.TOR 

'Ihis ec.ample has been taken fran Bergstra i~ K J op [ l ] . 

alphabet ot symbols. Consider the following signature: 

F 

Edf 
E 

IF: *: F xF • F 

edobj: F x F + 1;_:df 

t: EEF 

a c F (all a E A) 

J. c E 

OK e: E 

with equations 

X* E = X 

e:*X = X 

(x*y)*z = x*(y*z) 

by t.he inst.ance c.1t· T : 
8,3 

We use the initial algebra T (I ,E} as data space. With edobj(x,y) 
I F F 

we de-

note a text x*y which is being edited with the cursor between x and y. 

The following set of rules T
9 

presents an object-oriented speci.fication 

of an editor. Here it is assumed that there are some means to inspect the 

object being edited; i.e. the fact that the user is watching the string 

being edited, is not explicitly m,odeled by these transfot1nation rules. A 

possibility for modeling this would be to output. x* *y whenever edobj(x,y) -
is fo:rrraed, where ' ' is some new symbol denoting the cursor {by putting -
x* *yin the lower-righthand corner of the appropriate rule). -
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T 
9 

· editor 

left 

left 

delete 

delete 

insert 

edobj(c,x) 

edobj(x:,y) 

edobj(t,y) 

edobj(c,y) 

edobj(x*a,y) 

edobj(x,a*y) 

edobj (x, e:) 

edobj(x,c) 

edobj(x,a*y) 

edobj(x*a,y) 

edobj(x,a*y) 

edobj(x,y) 

edobj(x,e:) 

edobj(X,£) 

edobj(x,y) 

edobj (x*a,y) 

X 

OK 

l 
x*y 

.L ) 

.l 

J. 

a 

(a c A) 

(a £ A) 

(a £: A) 

(a E: A) 

T9 ""> 
I ,,,t;. 

T 9,4,a 

T 
9,6,a 

T 
9,7,a 

T 
9,9,a 

Taking care that at most one edobj is active at any time this will work. 

Note that T
913

_9 constitute the heart of the matter. These rules describe 

the editing activities proper. 

The next step is to describe a storage and retrieval mechanism for files. 

Consider the following signature: 
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I $: rn 
• 

l 

l 

lF: present.: FN )( FD • FD 

absent: FN x FD + FD 

contents: FN x F x 

pair: FN x FD ..., P 

*: F><F+ F 

-
*: FNxFN FN 

eq: FN x FN + B 

FE B 

al, ..... , an e:: F 

bl , ••• , bm t: FN 

E £ F 

-E e: FN 

Variables: x,y,.z E: F 

U,V,WEFN 

X E FD 

...., FD 

(Conditional) equations: 

• 
I 

(X * y) * Z = X * (y * Z) 

X*e.: = X 

E * X = X 

- - --- -
u * (v * w) = (u * v} * w 

-u * c = u 
-E * u = u 

- -eq(bi * x, bi* y) = eq(x,y) 

2()3 

(file directory) 

(ttiCts/files) 

(file na111e5) 

{p.1ir~) 

(introduction of name) 

(deletion of name) 

(constructor of the file directoriei) 

(concatenation on files) 

(concatenation on names) 

(equality test on naaes) 

(true) 

(false) 

(e ■pty structure) 

(alphabet for file) 

(alphabet for names) 

( i E { 1 , .... t m} ) 



I 
I - -

eq( bi * X, bj * y) ( i :F • • • {1, ... ,m}) = F J , l., J £ 

-eq (f, bi* x) = F ( i £ {l, •.. ,m}) 

eq(bi * x, E) - F ( i C {l, ... ,m}) -
contents(u,x,contents(u,y,X)) = contents(u,x,X) 

eq(u,v) = F + contents(u,x,contents(v,y,X)) = 
contents(v,y,contents(u,x,X)) 

present{u,.0) = contents(u,c,~) 

present(u,contents(u,x,X)) = contents(u,x,X) 

eq(u,v) = F + present{u,contents(v,x,X)) = 

contents(v,x,present(u,X)) 

absent(u,.0) = 
absent(u,contents(u,x,X)) = absent(u,X) 

eq(u,v) = F + absent(u,contents(v,x,X)) = 

contents(v,x,absent(u,X}) 

The initial algebra T1 (IFSR' EFSR) is an appropriate data space for the per­

manent environment of the editor. Working in 

we can specify the system as follows (with {,f)} as an initial configuration): 

. introduce 

I 
I 

introduce 

skip 

edit 

absent(u,X) 

contents(u,e:,X) 

present(u,X) 

present(u,X) 

present(u,X) 

absent(u,X) 

absent(u,X} 

absent(u,X) 

contents(u,x,X) 

edobj(E,x),pair(u,X) 
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u 

OK 

u 

.L 

u 

OK 

u 

.l 

u 

OK 



I 
I 

edit 
absent(u,X) 

absent(u,X) 

save 
edobj(x,y), pair(u,X) 

contents (u, x * y, X) 

(plus:) T
913

_
9 

u 

l 

8. A MULTI-OSER ENVIRONMENT FOR THE SIMPLE EDITOR 

We now consider the following organisation: 

aoni tor 1 monitor 2 

central 
node 

' ' 

------- 111onitor k 

At monitor k edit sessions act on an object edobj(k,x,y). A user must log in 

at a te:ttttinal with a user name which should be known to the system (by having 

been introduced at the central node). Each user name is also the index of a 

file in the pe1manent central file directory. This file is updated after 

each edit session. 

As before we start with a signature and a specification for the data 

space. Like in example 7 we proceed in two phases. The central file directory 

is introduced in the second phase. 

First phase. 
' 

I 
I 

F 
Edf 
MN 
AMO 
PMO 
B 
ON 
E 

(files) 
{files being edited) 
(monitor names) 
(active monitor objects) 
(passive monitor objects) 
(booleans) 
(user names) 
(signals) 
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E 

I 

' lF: 

l 

I 
l 
I 

-* : UN x UN + UN 

edobj: M.N ,c F II( F -+ .Edf 

pmo: MN + PMO 

eq : tTN x UN • B 

a 1 , . . . , an e:: P 

i e: UN 

bl, •.. , bm E UN 

l, ••• ,ke:MN 

l. EE 

OK£ E 

Variables: x, y, z c F 

U,V,WE UN 

k E MN 

(X * y) * Z = X * (y * Z) 

e * X = X 

-· - - -
u * (v * w) : (u * v} * w 

-
u * f = u 

-e *' u = u 

eq(l",c) == T 

eq(bi *x, bi *y) =- eq(x,y) 
-

eq( bi * X, 
-bj * y) 

eq ( c, bi* x) = F 

eq ( bi * x, l) =- F 

= F 

(iE{l, ••• ,m}) 

(i,.e j, i,j t {l, ... ,m}) 

(ic {l, .... ,m}} 

(ic {1, ... ,m}) 

As before we work in TI {I:KME' EKME). As initial configuration we assume 

{pmo(l), .... ,pmo{k)}. 

The first system description is T
11

• The transition rules T1114_ 10 describe 
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• 

the actual working of the editor. The other rules will be replaced in the 

second phase. 

• 

login(k) 
pmo(k) 

amo(k,u), edobj(k,E,X) 

login(k) 
amo(k,u) 

amo(k,u) 

k 
amo(k,u), edobj(k,x,y) 

logout { ) 
pmo(k) 

.Fmo(k) 
logout(k) 

pmo(k) 

left(k) 
edobj (k,x * a, y) 

edobj (k,x, a* y) 
• 

left(k) 
edobj(k,e:,x) 

edobj(k,E,x) 

ri9:ht{k) 
edobj (k,x,a * y) 

edobj (k,x * a,y) 

right(k) 
edobj (k,x, E ) 

edobj(k,x,e:) 

delete(k) edobj(k,x,a*y} 

edobj{k,x,y) 

edobj(k,x,E) 
delete(k) 

edobj(k,x,e:) 

edobj(k,x,y) 
insert(k) 

edobj (k,x * a,y) 
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OK 

l. 

x*y 

.l 

.L 

J_ 

.L 

a 

T 
11,5,a 

T 
11,7,a 

T 11,9,a 

T 
11,11,a 



Notice that the monitor objects prevent two or mor@ users from being logged 

in at the same monitor simultaneously. 

In the second phase we add a central file directory for maintain.ing user na­

mes and for the storage and retrieval of each user•s own file. 

We need a. new signature: 

UN 
FO 
B 

I lF: known : UN )( FD + FD 

unknown: UN x FD + FO 

active: UN x FD + FD 

i 

I 
I 

s i lent : UN x F x FD + FD 

eq: UN x UN + B 

<t: TeB 

F £ B 

jJ E FD 

Variables: x,y,z e: F 

• 

u,v,w EUN 

X,Y,ZEFD 

active (u, active (u,X)} = active (u,K) 

active(u, active(v,X)) = a.ctive{v, active(u,X)) 

active(u, silent(u,x,X)) = active(u,X) 

eq(u,v) = F + active(u, silent(v,x,X)) = silent(v,x,active(v,X)) 

silent(u,x, active(u,X)) = silent(u,x,X) 

silent(u,x, silent(u,y,X}) = silent(u,x,X) 

eq(u,v) = F + silent{u,x, silent(v,y,X}) = silent(v,y,silent(u,x,X)} 

known(v,jJ) = silent{v,E,0) 

known(u,active(u,X}) = active(u,X) 
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Now let 

and 

I 

' known(u, silent(u,x,X)) = silent(u,x,X) 

eq(u,v) = F + known(u, active(v,X)) = active(v, known(u,X)) 

eq(u,v) = F • known(u,silent(v,x,X)) = silent(v,x,known(u,x,X)) 

unknown(u,f;) = 1' 

unknown(v, active(u,X)) = unknown(u,X) 

1.1nknown (u, silent (u,x ,X)) = unknown (u,X) 

t.~q(u,v) == F + unknown(u, active(v,X)) = active(v, unknown(u,X)) 

eq(u,v) = F + unknown(u, silent(v,x,X)) = silent(v,x,unknown(u,X)) 

We will work in the data space FD FD 
TI (l:lCME' EKME). 

Con1111ent. Some remarks about EFD 

directoryt•. If z = active(u,X), 

may be in order. Let z be the "current file 

then this expresses that a user with name u 

is active on sorn~ monitor. If z = known (u,X) this expresses that user name u 

is known to z. Similarly if z = unknown(u,X) this expresses that u is not 

known to Z. Finally, Z = silent(u,x,X) expresses the fact that the user with 

name u is not active and that his (her) file is presently containing the 

text x • 

We can now present example T12 : a multi-user environment for the simple 

editor. The system T12 contains T1114_10 (the standard editing operations) 

and in addition the following transfoxmation rules: 

J 
I 

introduce 

introduce 

unknown(u,X) u 

silent(u,E:,X) 

known(u,X) 

known(u,X) j_ 
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r 
I 

! 
l 
! 

I 

omit 

omit 

l99in(k) 
' 

~~~in(k) 
. 

( kn.own (u, X} 

I 
l 

1 
J 

f 

unknown(u,X) 
. . 

unknown{u,X) j _., __ ,,. ___________ ,_-+-----
unknown ( u, X) I i 

l 
l 

j 

pmo(k), silent(u,x,X) I u 
________________ ......... ,__....~---•-·,,~··'"' ,,.,,.,,.--~·_,..,,_,_,_, -~·-.. !-· _,.,, _, -
amo(k,u), edobj (k,t ,x), active (u,X) I OK 

active(u,X) u 

a.ctive(u,X) ..L 

unknown(u,X) u 

unknown(u,X) ..L 

amo (k, v) u 

amo (k, v) ..1. 

~<?2~ut(k) amo(k,u), edobj(k,x,y), x 
pmo ( k) , s i 1 en t ( u , x * y , X ) 

pmo (k) I ,1 

edobj (k,x, y) 1 

qiS,Flaz(kl 
edob j ( k , x , y) x * y 

T 
.12, 3 

Tl2,7 

T 
12,9 

T 
12,l.l 

Remarks. (a) Notice that a user can only be omitted when not active~ An ac­

tive user could logout as if nothing has happened and thereafter his or her 

name would be known to the system again. 

(b) It is entirely feasible to augment this specification with a mechanism 

for passwords or other protection mechanisms. 
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9. S ICAL CONSIDERATIONS 

In Section 3 we have given an infor1r1a.l explanation of the semantics of trans­

fo1:11ta.tion rules. In this section we will elaborate that explanation, in parti­

cular, concerning the mechanism by which the transformation ruies generate 

the t:ransfopmation steps 

C __ _.,.>C' 
R 

where C,C' are configurations, i.e. multisets of objects. 

Let A e: Alg (!:) be a given data space; then we may write a transfox1rtation 

rule, written above as 

+ X 
r(v) Y-

V 
w 

in simplified notation as follows: 

+ 
r(v,v ,w): x 

+ 
Here v = vl, ••• ,vn are t-terms and V,W,X,Y are finite multisets of I:-terms. 

These terms may contain free variables and matching works as usual in term 

rewrite rules. X,Y themselves are not yet configurations of objects in A; 

they become so after dividing out the11tt equality in A. Further, V ,w denote 
• 

multisets of input and output values - properly speaking this is again true 

after dividing out term equality. The vl, ••• ,vn are parameters of the rule 

names. 

Let us introduce a·constant ~ for the empty configuration and an opera­

tor U for the union of configurations. The following axioms are obviously 

valid: 

XUY=YUX 

xu4>=x 
(X U Y) U Z = X U (Y U Z) • 

Note that U is represented in process algebra [2] by II, the merge operator. 

This connection is not quite smooth: there seems to be a difference in level 

of abstraction between process algebra and behavioural specification via 

transfo.trc,ation rules. 

The propagation of transfoxictations through larger configurations is as 

follows: 
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+ 
r(v,V,W): X ----j;,,Y 

+ • 

r (v, V, W) : X u z ., - , > y u z 

Writing l t) for the interpretation of the E -tetna t in the data space A, and 

(XJ = {(tl I t E:X} for the multiset of objects in A denoted by the multiset 

of r-te:r:xns X, we can now state more precisely what a transformation step is: 

.... 
if R = r(v,V,W): XU Z -"-----.>► YUZ is obtained from the instance 

.... 
r(v,V,W): X --~► Y of some transformation rule, then R allows the trana-

formation step of configuration C = (X UZJ to c• =(YU ZE; notation: 

C R · -i> C' • (See Figure 4.) 

Such transfo:tnLation steps can be activated sequentially. In fact, the 

situation is similar to the case of term rt:;;•Writinq modulo some qiven. con­

gruence (apart from the multiset feature}. 

data space A 

.p 
:.__.J 

C 

transformation step R 

• 
• 
• 

~ata space corresponding 
to sort s 1 

In other words, the transfor111ation step C R · > C' where C = {p
1 

,p
2

, •.• } is 

obtained by choosing a particuiar ~ep~esentation of c, e.g. {t
1
,t

2
, ••• } such 

that ( t. J = p. , and applying some transforn1ation rule on it as explained, to 
l 1. 

transfotm this representation into another (of C'). 

In an intuitive sense, such a representation of a configuration C can be 

considered as an aspeat of c. E.g. in the last example {T
12

), known(v,~) • is 

the file directory X = ~ ~evealing as an aspect that it knows user name v 

(usually such a fact would have type boolean, here it is of type file direc-

tory) . And in silent (v ,E,$1) the same X = J?} reveals another aspect .. The trans­

f ox:ntation rules, then, operate on such aspects. 

10. CONCLUDING REMARKS 

We feel that the object-oriented notation explained above captures at least 

a usefol fragment of ''object-oriented thinking''. Clearly we have to pay a 
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price in te.t1ns cf manageability of the transforrriation rules. One can, in 

view of Section 9, add 4> and U, and view the transfor111ation rules as ordi­

nary rewrite rules. From the point of view of algebraic specifications, ad­

ding$, uand, in general,a type of configurations, leads to the problem that 

configurations have no fixed type. Any object can be an element of a confi­

guration. In fact, 4> and U are polymorphic operations and this explains 

their flexibility which is vital for modular and incremental systems design. 

REFERENCES 

[l] BERGSTRA, J.A. & J.W. KLOP, ALgebraisch programmeren, (in Dutch), con­
tained in the lecture notes for the PAO course on software engi­
neering, Centrum voor Wiskunde en Infox:trLatica, Amsterdam 1984. 

[2] BERGSTRA, J.A. & J .. W. KLOP, Process aZ.gebra for> com,nunication and 
rm.ttuaL exclusion, Report IW218/83, Mathematisch Centrum, Amsterdam 
1983. 

[3] COHEN, A.T., Data abstraction, data encapsulation and object-oriented 
programming, Sigplan Notices, Vol.19, No.l (1984). 

[4] cox, B.J., The object-oriented precorrrpiler, Sigplan Notices, Vol.18, 
No.l (1983). 

(5] GOGUEN, J.A. & J. MESEGUER, An initiality primer, to appear in: 
Application of Algebra to Language Definition and Compilation 
(eds.: M. Nivat and J. Reynolds}, North-Holland 1983. 

[6] JAMSA, K.A., Object-oriented design versus structured design, a stu­
dents perspective, Software Engineering notes, Vol.9, No.l (1984) 

[7] JONKERS, H.B.M., On the design of an object-oriented design language, 
paper presented at the Colloquium 'Van Specificatie tot Implemen­
tatie', Centrum voor Wiskunde en Informatica, Amsterdaro 1983 .. 

[8] KUTZLER, B. & F. LICHTENBERGER, Bibliography on abstract data types, 
Springer InfOLtnatik-Fachberichte, No. 68, 1983. 

[ 9] MACLENNAN, B.J., Val.ues and objects in programming languages, Sigplan 
Notices, Vol.17, No.2 (1982}. 

[10] PLOTKIN, G.D., A structural approach to operationai semantics, Report 
Daimi FN-19, Computerscience Dept., Aarhus University, Denmark 1981. 

213 


