Introductory note to “Object-Oriented Algebraic
Specification”

Jan Bergstra

Jan Heering
Jan Willem Klop

The following CWI report proposes a notation for OOAS (Object-Oriented
Algebraic Specification). It is one of four related formalisms in the area of
algebraic specification that were conceived around 1984 at CWI. The other
ones were ACP (Algebra of Communicating Processes), ASF (Algebraic Spec-
ification Formalism), and BMA (Basic Module Algebra). Whereas these have
generated and still generate a significant volume of research, OOAS was con-
sidered of minor importance and, apart from its use in |1}, no further study of
it was made by CWI researchers.

In retrospect, this is unfortunate. When Banéatre et al. |2] independently
introduced multiset programming, which in turn led Berry and Boudol {3] to the
Chemical Abstract Machine (CHAM), the underlying concepts and definitions
turned out to be very close to OOAS. Since then the French researchers have
made substantial progress, and the CHAM has become an important theoretical
tool.

We respectfully dedicate this account of the vagaries of scientific work to Cor
Baayen on the occasion of his retirement as scientific director from CWI.

REFERENCES

1. J.C.M. Baeten, J.A. Bergstra, and J.W. Klop, An operational semantics
for process algebra, in: Mathematical Problems in Computation Theory,

Banach Center Publications, Vol. 21, PWN—Polish Scientific Publishers,
Warsaw, 1988, pp. 47-31.

2. J.-P. Banatre, A. Coutant, and D. Le Métayer, A parallel machine for mul-
tiset transformation and its programming style, Future Generations Com-
puter Systems, 4 (1988), pp. 133-144.

3. G. Berry and G. Boudol, The chemical abstract machine, in: Conference

Record of the Seventeenth ACM Symposium on Principles of Programming
Languages (POPL ’90), ACM, 1990, pp. 81-94.

187

OBJECT-ORIENTED ALGEBRAIC SPECIFICATION: PROPOSAL FOR A NOTATION AND 12
EXAMPLES

J.A. BERGSTRA, J. HEERING, J.W. KLOP

Centre for Mathematics and Computer Science, Amsterdam

A notation is introduced for expressing the dynamic behaviour of configura-

tions of objects. At each instant of time a configuration is just a multi-
set of objects which themselves are points (values) from some algebraically

specified abstract data type. Several examples should convince the reader of

the attractive expressive power of our notation.

1980 MATHEMATICS SUBJECT CLASSIFICATION: 68COl1, 68F20.
1982 CR CATEGORIES: F.1.1, F.3.2.

KEY WORDS & PHRASES: object~oriented specification, algebraic specification,

configuration transition system, transformation rule.

NOTE: This report will be submitted for publication elsewhere.

Report CS-R8411

Centre for Mathematics and Computer Scilence

P.0. Box 4079, 1009 AB Amsterdam, The Netherlands

138

1. INTRODUCTION

This note has the following aim: to propose a notation compatible with the
well-known notations for algetraic data type specification which captures
the concept of an object.

The reasons for doing so are many; we list some reasons 1n arbitrary
orader:
(a) There is an increasing interest in object-oriented approaches to soft-
ware design. See Cox [4], Jamsa [6], Jonkers [7] for some discussions of
object—-oriented programming.
(b) The discussion on what constitutes an object and what constitutes a
value is not yvet settled. See Cohen [3] and MacLennan [9] for two very inter-
esting expositions about the nature of objects.
(c) From the point of view of abstract data types (and thelr algebraic spe-
cification) it is hard to understand what an object is. The history of the
subject is confusing indeed. The Simula class is meant as a class of objects.
Abstract data types in the ADJ tradition are modules of structured values.
In the survey by Goguen & Meseguer [5] an option to augment data types with
states is discussed, thus regaining some of the dynamic aspects that were
somehow lost in the "initial algebra = abstract data type" stage.
(d) We feel that a workable distinction between objects and values can be
made, taking algebraic abstract data type specifications as a point of de-

parture.

2. AN ORGANISATION OF NOTIONS

Let ¥ be a (many-)sorted algebraic signature, let A € Alg(I) be an algebra
of type (signature) I. A is called an abstract data type. For (algebraic)
specification of abstract data types, we refer to the literature collected
in Kutzler & Lichtenberger [8].

The signature I 1s a triple $(ZJ, IF(X), C(Z) (sorts, functions and
constants) of L. For se$(I), AS is the 1nterpretation of sort s in A.

An element of As will be called a point. As i1tself will also be called a

data space. (See Figure 1.) A point peA_ may play two roles:

189

(1) p may represent a value,

(11) p may represent an object (with aparticular state).

A abstract data type

A data spaces corresponding
1
to sorts SyrSy0cc-4S s
Py P, P, points of sort s, (1n space AS‘)
1
Figure 1.

A multi-set of objects (i.e. a multi-set of points seen as objects) 1s called
a configuration. Configurations exhibit dynamic behaviour. In particular,

configurations may perform (or allow) transformation steps

C -'T*-}C'.

Transformation steps are generated from transformation rules. In Section 3
we will present syntax and semantics of a notation for transformation rules.
Suppose that we know what a rule is for a given signature I. Let T Dbe
a collection of transformation rules, A a I—-algebra. Then the pair <A,T> de-
termines a configuration transition system.
If A = TI(Z,E), i.e. (£,E) is an initial algebra specification of A,

and T is a collection of transformation rules for I, then

<(z,E),T>

is an object-oriented algebraic specification which specifies a configuration

transition system.

190

3. TRANSFORMATION RULES

Informally, a transformation rule is a notation of the following kind:

4 . . . h
configuration before transformation

rule name (parameter list) | —————
[\configuration after transformation

A

Often it is convenient to divide the parameter list in three parts: one
part associated with the rule name, the other two parts consisting of input

values and output values respectively. This suggests the following notation:

N
(configuration before | input values
rule name (par. Llist) transformat ton
configuration after output values
transformation P

..

The input values constitute a multi-set of points which are consumed during
the transformation and the output values constitute a multi-set of points
which are produced during the transformation. It is understood that a con-
figuration may be transformed inside a context (a larger configuration).

So 1if Cl; ClUCZ is a sub-configuration of ClUC2 (where < denotes inclusion

between multi-sets and U their union), and

is an instance of the rule with name name, then C1UC2 “~Ef€>CiUC2 is a

transformation step. (For a more elaborate explanation, see Section 9.)

Examgle: an instantiation R of the transformation rule

add [E“—m+—1{}
™\

| , 3 5 ,
used in the example below, 1s: R = addE§~+——. (Here 3 is short for

> - un

(1+41)+1, etc.) In this example p, b are empty, and Cl = {3}, Ci = {8}.

Now we have the transformation step

{3} '—'1;{'—;’ {8}

191

and also e.qg. for C2 = {7,1}, the step

{3r7:1} -R—'"';’ {8:7rl}-

Such steps can be composed into transformation sequences; e.g. if R' is the

: : , 7)
instantiation: add [I§+§, we have

.J

{3,7,1} —“E“ﬁ>{8,7,l} *?;r€>{8,l3,l}.

Here we would like to point out the relation to Plotkin [10], which

addresses similar 1issues, where system behaviour 1is systematically descri-

bed by means of transition relations.

The following two very simple examples will help to further explain

the notation. Consider the following specification of the initial algebra A:

_LEER

E ;x-+0 = X

ilx-i- (y+1l) = (x+vy) +1

x*0 = 0

Xx*(y+1l) = x*y + X

Now A = TI(E,E). We will now present two different collections Tl and 'I'2

of transformation rules for configurations over A.
X
C T
r, |euce [Tyt L

X
é—gg-(x+y] 11,2

X +
;{ subtract [;—l—-}—zJ Tl 3

3
¥

192

L]

W

+
subtract [X - } T

If one starts with the initial configuration {0}, then Tl describes the be-

haviour of a single counter with some actions (transformations) on it; part

of this behaviour is as in Figure 2.

) el
sSuce 1 SUCCc >
e —
{1}
‘“““;;;(§¥Z]ﬂﬁa’ subtracti%+;J

subtract[a-zJ

{0} {2} {5}

Figure 2.

Further comments on the rules of Tl:

(1) If one of the compartments of the 'matrix' is left empty, this means
that the empty multi-set @ of values (oxr objects) is meant.

(11) Note the difference between rule Tl 5 and the rule

‘m
o7
o

' R
P B
+

M

w

in Tl 5 we focus on the transformation of one object, while in the displavyed

rule the fusion of two objects is embodied.

(111) The rules 'I‘l 3 and Tl 4 for subtraction exhibit polymorphism of types:

in Tl 3 the multi-set of output values is empty, while in Tl 4 an error
’ ¥

message 1is delivered.

193

In the second example the same initial algebra A as above 1s used. The

set T. of transformation rules for configurations over A will describe the

behaviour of a fixed number n_ of counters. The k-th counter (ke {0,..,n

2

O

O

-11})

with content x can conveniently be represented (coded) by the natural number

k +n x. Below, k,€,m vary over {0,...

X
create (k)
kﬁknox

O

!

add (k, € ,m)

mult(k,€,m)

succ (k)

+ +
k nox, 4 noy

m+no(x+y)

+
k nox

m*PnOxy

O

k+n x

read (k)

k+n0(x+y) X
compare (k) ________mwﬂm*_ﬂ___
k+n0(x+y) 0

comgare(k)

cogz(k,E)

k4-n0x

+ X
| < n0

k+n_x

k +n_x,

3

k +
nox |
k +n (x-+l)k

J

O

+
14 noy

Xx+y +1

1

| krknox
| skip (k)

€ +n X

194

,h_—11}.

)

I

J

2,1

2,2

2,4

2,5

2,6

2,7

2,8

2,9

Comments: (1) The rules ‘I‘2 6 and T2 - for compare (k) compare the content a

of counter k with some given number b; if a >b the output is 0, otherwise 1.
(11) Note that the copy(k,€) rule can lead to confusion (in the sense that

two indiscernible objects may arise) if it is applied while an object of

the form €~Pn0x is present (which can be avoided by first performing skip(¢€)

or read(e€)).

(iii) The empty configuration is an adequate initial configuration for this

system. Clearly T offer only limited facilities (subtraction 1s absent

2,1-9
etc.). Moreover explicit naming might be a preferable alternative to the
coding trick, which represents "counter k with content x" as k-*nox, if na-
tural number objects are to be maintained.

4. THE STACK

In this section we consider object-oriented specifications of the stack.

We formulate four different specifications of the dynamic behaviour of a

single stack. This raises the following

Question: is 1t possible to express this rich variety of operational possi-—

bilities without the object—oriented appvroach (i.e. in terms of the original
algebraic framework)?

We will leave this guestion unanswered.

L $: A
S
ER
B
IF: push: AxS » S

©r

- | A
al, ' rxe
_Le:ER
@ eS
TeDB

FebB

E=0

As data space we use T_(Z,0).

I

195

3 push * a T3 1
push(a,x) y
push (a,x)
pop —-———+—— Ty
X a

op ﬂ___JT_‘ v
2 1 ’

The initial configuration is {@}. At each time the configuration will be a

ge

|

singleton.

T4 X a
push .mm_mm“mm“+mﬂm T4 1
push (a,x) '
o [push(a,x) i]
X

por E__H T,
s 1 ’
v (push(a,x) T
WEE : 4,4
tpush(a,x) a
(
top B T
e = 4,5
S 4

As in the previous case {@} should be taken as the initial configuration.

TS create{ TS,l
0 l
X a
Eush '1‘5"2
push(a,x)!

\.

Ay W A—

196

push(a,x)

pop %m—_—iﬂ Ty 5
X a
s

P
SYCEEENES
L 1

In the cas< of TS’*EEE 1s destructive on f. Hence after | has been observed

an empty stack must be created again. Care must be taken not to create two

or more stacks at the same time, because this would lead to non—-deterministic

effects Of.EEE*

In the next example T we replace the create facility by a test on emp-

6
tiness of the stack.

6 push .f_m____mm_+jiﬂ T6 1
push(a,x) | y

push(a,x}

empty 6 2

push(a X)

push(a,x)

PP

6,4

empty ﬂ J T6,3

2
POP § ——— ”“+— Te 5
L

In the case of Té' {2} is again an appropriate initial configuration. In or-
der to prevent loss of the stack it i1s useful to do pop only after a test on
emptiness. If the stack is not empty, pop may be safely applied; otherwise

it should not be applied because in that case the object would be irreversi-

bly destroyed.

197

>. PROCESS ALGEBRA WITHOUT

PA} be the following specification.

Let {EPA'
EPA PR
+: PR xPR » PR
*: PR xPR +» PR
l]: PRx PR + PR
L : PRx PR » PR
al,*,.,ans:PR
PA | X +y = y +Xx Al
(x +y) +z2 = x+ (y+2) A2
ix+xuﬂx A3
(X +y)*2 = xX*z2 + ye*z A4
 (x*y)*z = x* (y*2z) AS
| xlly = x[Ly + vl 2 M1
all x = a*x M2
(a*x) | v = a*(x]ly) M3

(x+y)ll z=x{l z + vl =2 M4

Here 'a' varies over A = {a ,...,an}.We will write the initial algebra

i
TI(ZPA’ PA) of this specification as Am(+,',]!,u_). With;Am(+,*) we denote
, +,* :
the reduct of A (+, 1.l) after forgetting || and || . Let I, Pe I, minus
1,1l and let BPA be Al-5. It can be shown (see Bergstra & Klop [2]) that
+,°

Am(+,‘) = TI(E , BPA). The axiom system PA was introduced 1in {2] as the

PA
core axiomatisation of process algebra.

wWhen we take Aw(+,') as a data space, and use the a e A as rule names,
the following transformation rules (without inputs and outputs) reflect the
operational semantics of + (choice, alternative composition) and * (product,

sequenttal compostition) :
t7.1-4

o A G s o I e

198

Now consider the configuration

{xl,...,xk}.

The behaviour of this configuration corresponds to that of the process

(PO P

Thus the formation of configurations 1s represented by the operation [[cmf

PA. It can be concluded that process algebra is more denotational than object-

oriented system specification by means of transformation rules.

6. SETS OF INTEGERS

Let I be as rollows:

) $ - N
SN
B
ER

IF : eqg: NxN + B
ins: N x SN =+ SN

del: N x SN + SN

s: N -+ N

¢: TeB
FebBb
O eN

P € SN
'LezER

As (conditional) equational specification of the data space we take:

E eq(0,0) = T
eq(0,s(x)) = F
eq(s{x),0) = F
eq(s(x),s(y)) = eq(x,y)

ins(x,ins(x,X)) = ins(x,X)}

I

ins(x,ins(y,X))

| del (x,P) = P

ins(y,ins(x,X))

199

delix,ins{x,¥)} = deli{x,Y)

|
|
|

eqixXx,y) = F +» delix,insi{y,X)} = ins{

configuration transformat

e1t | 1RS{a,X)

insg {(a,X } o

elt del {a,X)

'delﬁa,x)

fins(a,x}

imﬁia;X? F

Remark: note the implicit non-determinism present in T

. Namely, by the

8,3
instance

R = get f’ns(a’mgib'___*__ﬂ”
ins{(b,B) { a

2)}. Further, by E we have

ins{a,ins{b,B}) = ins(b,insgi{a,f)}, hence

the configuration in the LHS of the

displaved step can also be transfo:

med to {in

s{a,P)! by the instance of T _ 3:
o PR

7. A SIMPLE EDITCR

 taken from Bergstra & Kleop [11. Let A = ia},_..,aﬁ?
alphabet ©i symbols. Consider the following signature:

*: FxF - F

edobj: F xF » E4f

e e

ac¥lF {(all a e d)

| €eE
OK e E
with equations
* -
EF X¥ g X
e = X

E{x*y)*z = x*(y*z)

We use the 1initial algebra TI(EF,EF) as data space. With edobij{x,y) we de-

note a text x*y which is being edited with the cursor between x and y.

The following set of rules T _ presents an object-oriented specification

9
of an editor. Here 1t 1s assumed that there are some means to inspect the
object being edited; i.e. the fact that the user is watching the string
being edited, is not explicitly modeled by these transformation rules. A
possibility for modeling this would be to output x* *y whenever edobj(x,y)
is formed, where ' ' is some new symbol denoting the cursor (by putting

x* *v in the lower-righthand corner of the appropriate rule).

201

Iy o
! guit {eﬂabj(x,y} — T9 2
j 7Y |
! left Tg 3

left (a € A) T

gggfj(x.a*y) J
iaht [edobi (x, €)
| edobi (x,¢€) 1
_ : o
richt edobij(x,a*y) (a € A) Tg c
edobij (x*a,y) o

edobij(x,a*y)
(a € A) T9,7,a

' delete
: edobi (x,y)

!
}

9,8

| delete edobj (x,€)
edobij({x,e) 1
insert (édobj(x,y) 4 (a € A) Ty 9 a1
edobj(x*a,y) T

\

Taking care that at most one edobj 1s active at any time this will work.
Note that T9 3-9 constitute the heart of the matter. These rules describe
!
the editing activities proper.
The next step is to describe a storage and retrieval mechanism for files.

Consider the following signature:

EF‘SR | $: FD {File directory)

Z F (texts/files)
é FN i fFile names)
;; P {pairs]
j B (booleans)
5 present: FNx FD + FD (introduction of name)
absent: FN x FD + FD (deletion of name)
. contents: FNx Fx F » FD (comstructor of the file directories)
; pair: FNx FD » P
*: FxF + F (concatenation on files)
, :: FNx FN » FN {concatenation on names)
! eq: FNx FN » B (equality test on names)
| €: Te B {true)
| Feg B (false)
‘} Be FD (empty structure)
' al,««.;anec F (alphabet for file)
; bl,...,bme FN (alphabet for names)
" ee F

€ee FN

Variables: x,y,z € F
u,v,we FN
X £ FD
(Conditional) equations:
EFSR (X *y) *2 = x ¥ (y * 2)

X *e = X

€ * X = x

u* (v*w) = (u*v) *w

u*g = y
| E*u = u
, eq(€,E) = T
| ea(biFx, bi¥Fy) = eq(x,y) (i€{l,...,m})

203

| eq(bi*x,bj*y) = F (i1# 3, i,je {1,...,m})
eq(€, bi* x) = F (ie {1,...,m})
F (ie {1,...,m})

contents(u,x,contents(u,y,X)) = contents(u,x,X)

{

eq(bi *x, €)

eq(u,v}) = F » contents(u,x,contents(v,y,X)) =
contents(v,y,contents(u,x,X))

present (u,2) = contents{u,c,f)

'present(u,cantentsfu,x,X)) = contents(u,x,X)

eq(u,v) = F » present(u,contents({v,x,X)) =

x contents(v,x,present(u,X))

absent{(u,g) = g

absent (u,contents(u,x,X)) = absent(u,X)
eq(u,v) = F » absent(u,contents(v,x,X)) =

contents(v,x,absent (u,X))

The initial algebra TI(I: E) 1s an appropriate data space for the per-

FSR’ "FSR
manent environment of the editor. Working in

T, (2 R)U(Z r E_))

FSR' Er‘s F' °F

we can specify the system as follows (with {#} as an initial configuration):

T
10 1 jntroduce | 2Psent(u,X) - Tig 1
contents(u, ¢,X) OK '
| 3
introduce [Present (u,_X) — - T10,2
present (u,X) 1 y
* | present (u,X) u
SklE e ‘*mmmmnm T10,3
absent (u,X) OK

frabsent(u,x) %mu 1 T

| SKip ~ - — — | 10,4

g {%aﬁsent(u,X}

edit contents (W, x.,X) { © T o s
edobij(e,x) ,pair(u,X) OK f

204

cae [2bsenttw®) | v T
Labsent(u,X} 1 ’
(edobj(x,y), pair(u,x) |]
sSsagve e ““: B I N L Tl(}}?
| Kcantents(u, x*y, X) |
| J
'

(plus:) T

| 9,3-9

8. A MULTI-USER ENVIRONMENT FOR THE SIMPLE EDITOR

We now consider the following organisation:

 central
node

T

' monitor 1 | monitor 2| ~-=--—- | monitor k

At monitor k edit sessions act on an object edebj(k,x,y). A user must log in

Figurﬂ 3.

at a terminal with a user name which should be known to the system (by having
been introduced at the central node). Each user name is also the index of a

file in the permanent central file directory. This file 1s updated after

each edit session.
As before we start with a signature and a specification for the data

space. Like in example 7 we proceed in two phases. The central file directory

is introduced in the second phase.

First phase.

EKME $: F (F?les) | |
Edf (files being edited)
MN (monitor names)
AMO (active monitor objects)
3: PMO (passive monitor objects)
| B (booleans)
UN (user names)
J E (signals)

205

As before we work in T_ (I

*: FPux P » P
* . UN x UN » UN

adobij: MNx Fx P + Edf

£ ¢ F

€ € UN

L,eae, ke MN
_LEE
CKe E

Variables: x,v,z¢ F

u,v,we UN

kK g MN

(x *y) *z = x* (y*z)

X ¥*e = X

€ ¥ X = x

ity

u**eg = y

* 3 o= o

™

eq(€,€) = T

eq(bi *x, bi*y) = eqg(x,y)

eq{bi *x, bi*y) = F

eq(é, bi*x) = F
eqi(bi*x,) = F

I ' "KME' TKME

The first syster

description 1s T

117

206

The transition rules T

(ie{l,...,m})

(1e¢ {1,...,m})

(1e {1,...,m})

11,4-10

(L# 3, 1,3¢ {1,...,m})

E). As initial configuration we assume

describe

the actual working of the editor. The other rules will be replaced in the

second phase.

T /
11| login(k) | PR s 11,1
_amo (k,u), edobj(k,e,x) | OK '
’amo(k u)
login (k) Goewd —]L———— 11,2
La.I!.'!('.'J(k:l-l) _L
((amo (k,u) edob (k X) |)
| logout(k)|__ ~ """ "™) 'Y R T
1 11,3
LPIRD(}C) } X *Y J
{ pmo (k) ')
logout (k)| — — 1 0 Ty 4
* 3
*
left (k) w ma,f.’ Y) e | T]_]_ 5. a
edobj (k*rxta* Y) J T
[edobi (k ’]
left (k) edob '5'3? — ‘ T1l 6
edobj (k, € ,x) 1 '
x i J
ight (k) (edob] (k,x,a * Y) .W T
i 4 2 B A S 11,7;«3
KEdObj (k,x *a,y) l

(: |
| right (k) fdobm__mj eaxee) — j Tll 8
| edobj(k,x,c) L ’
L /
*\
*
edobj(k x,y) o

/
edobj(k,x,c))
delete(k) | - S U Tll 10
edobj(k X , LE) L J ’

P Y

insert (k) EdObjgkif'y) —— ° Tll 11,a
| kedobj (k,x *a,y) J T

207

Notice that the

monitor ob j eCts prevent two or mo

in at the same monitor simultaneou

B l Y »

Second phase.

add a centra

In the second phase we

1 file directory for maintalining user na

mes and for the storage and retrieval of each user's own file.

We need a4 new sighature:

L $: F
FD ? UON
FD
B
IF: known: UN x FD » FD
| unknown: UN x FD -+ FD
| active: UN x FD » FD
silent: UN xF xFD » FD
eq: UNxUN » B
¢: TeB
FeB
P e FD
Variables: x,y,z ¢ F
u,v,w e UN
X, Y, 2 € FD
EFD : active(u, active(u,X)) = active{(u,X)

£

active(u, active{v, X)) = active(v, active{u,X))

active(u, silent{u,x,X)) = active(u,X)

eq(u,v}) = F » active(u, silent(v,x,X)) = silent{v,x, active(v,X)})
silent{(u,x, active(u,X)) = silent{u,x,X)

silent{(u,x, silent(u,y,X}}) = silent {(u,x,X)

eqf{u,v) = F +» silent{u,x, silent(v,y,X)) = silent(v,y,silent(u,x,X))

known{v,8) = silent(v,c,8)

| known {u,active(u,X)) = active({u,X)

208

known{(u, silent(u,x,X)}) = silent{(u,x,X)

R L

eq(u,v) = F + known(u, active(v,X})) = active({v, knowni{u,X))

eg(u,v) = F + known{u,silent(v,x,X)) = silent({v,x,known{u,x,X})

i unknown (u,g) = @

unknown (v, active(u,X)) = unknown(u,X)

unknown (u, silent(u,x,X)) = unknown(u,X)

¢q(u,v) = F + unknown(u, active(v,X)) = active(v, unknown{u,X))
eq(u,v) = F - unknown{u, silent(v,x,X)) = sgilent(v,x, unknown{u,X})
Now let
FD
= U
zKME IKME. ZFD
and
FD
E = E___ .
KME EKME V FD
* L FD FD
We will work in the data space TI(XKME’ EKME) .

Comment. Some remarks about EFD may be in order. Let Z be the "current file
directory". If Z = active(u,X), then this expresses that a user with name u
1s active on some monitor. If Z = known(u,X) this expresses that user name u
is known to Z. Similarly i1if Z = unknown(u,X) this expresses that u 1s not
known to 2. Finally, Z = silent(u,x,X) expresses the fact that the user with
name u is not active and that his (her) file is presently containing the

text X.

We can now present example lez a multi-user environment for the simple

editor. The system T contains T (the standard editing operations)
12 11,4-10

and in addition the following transformation rules:

introduce unkngfn(u,fﬁ‘ | - Tio 1
silent(u,e , X) '
/

{ known (u,
introduce | nO, __(u X} T
B S e S iE e — ™ 12 ' 2
known (u,X) 1

\

12

209

| g
omit own (u,X) | 2)
AL AL * ' et v o~ y o M B AT i E 2 ' 4
| unknown{u,X) 1 i
A

pmo (K,

login (k)

amo {k,v)
T::ii:zqm

silent{u,x,X) ' u ;
amo{k,u), edobj(k,e,x), active{u,X) | OK ; !
i . aetiVﬁ-u A
| login(ky| 2€Tivefw.X) 1w T, . .
active{(u,X) L ;
ﬁ unknown {u, X) u
login(k T
% g (k) R prere 12,7
| unknown (u, X) 1 _

amo (k,u), edobi(k,x,y), X é
- ; 12,9

pmo(k), silent(u, x* vy, X) |

- ”““”+”““"““ T12.10
1

| : ‘ f
| aisplay (k)| S9OPI X AY) S
i edobj(k,x,y) | x*vy 23

Remarks. (a) Notice that a user can only be omitted when not active, An ac-

tive user could logout as if nothing has happened and thereafter his or her
name would be known to the system agailin.
(b} It is entirely feasible to augment this specification with a mechanism

for passwords or other protection mechanisms.

210

9. SEMANTICAL CONSIDERATIONS

In Section 3 we have given an informal explanation of the semantics of trans-
formation rules. In this section we will elaborate that explanation, in parti-
cular, concerning the mechanism by which the transformation rules generate

the transformation steps

C—R ¢

where C,C' are configurations, 1.e. multisets of objects.

Let A e€Alg(X) be a given data space; then we may write a transformation

rule, written above as

r(‘:r) [H]

1in simplified notation as follows:
-
r(vlviw) : X —mm> Y.

Here ;‘m vi,...,vn are f—-terms and V,W,X,Y are finite multisets of I-terms.
These terms may contain free variables and matching works as usual in term
rewrite rules. X,Y themselves are not vet configurations of objects 1in A;
they become so after dividing out therm equality in A. Further, V,W denote
multisets df'input and output values ~ properly speaking this 1s again true
after dividing out term equality. The vl,...,vn are parameters of the rule
names.

Let us introduce a constant § for the empty configuration and an opera-

tor U for the union of configurations. The following axioms are obviously

valid:
XUY = YUX
XU = X
(X UY) UZ = X U(Y UZ).
Note that U is represented in process algebra [2] hw'll, the merge operator.

This connection is not quite smooth: there seems to be a difference in level
of abstraction between process algebra and behavioural specification via
transformation rules.

The propagation of transformations through larger configurations 1s as

follows:

211

r(v,v,w): X —>Y

>
r{iv,V,Ww): Xya ——>Yy 2

Writing [t] for the interpretation of the I~-term t in the data space A, and
IX] = {ft] ! t e X} for the multiset of objects 1n A denoted by the multiset

of I-terms X, we can now state more precisely what a transformation step is:

if R= r(v,V,W): XUZ ——>Y Yy Z is obtained from the instance
-
r(v,Vv,wW): X —> Y of some transformation rule, then R allows the tragrns-
formation step of configuration C = X UZ] to C' = YU Z]

C -——-f--R-*-;’C‘. (See Figure 4.)

. notation:

Such transformation steps can be activated sequentially. In fact, the

situation is similar to the case of term rewriting modulo some given con—

gruence (apart from the multiset feature).

data space A | I ' I A

| - \ -
- /1 -' ' A
- L2

transformation step R

, data space corresponding
to sort 51

Figure b | _mq,.

In other words, the transformation step C -EHG*C‘ where C = {pl,pz,...} is

obtained by choosing a particular representation of C, e.g. {t

that EtiB = P and applying some transformation rule on it as explained, to

transform this representation into another (of C').

In an intultive sense, such a representation of a configuration C can be

considered as an aspect of C. E.g. in the last example (T,.), known(v,@) is

12
the file directory X = @ revealing as an aspect that it knows user name v

(usnally such a fact would have type boolean, here it is of type file direc-

tory). And in silent(v,e,0) the same X = @ reveals another aspect. The trans-

formation rules, then, operate on such aspects.

10. CONCLUDING REMARKS

We feel that the object-oriented notation explained above captures at least

a usefal fragment of "object-oriented thinking". Clearly we have to pay a

212

price 1n terms c¢f manageability of the transformation rules. One can, 1in
view of Section 9, add ¢ and U, and view the transformation rules as ordi-
nary rewrite rules. From the point of view of algebraic specifications, ad-
ding ¢, Uand, in general,s type of configurations, leads to the problem that
configurations have no fixed type. Any object can be an element of a confi-
guration. In fact, ® and U are polymorphic operations and this explains

their flexibility which is vital for modular and incremental systems design.

REFERENCES

[1] BERGSTRA, J.A. & J.W. KLOP, Algebraisch programmeren, (in Dutch), con-
tained in the lecture notes for the PADO course on software engi-
neering, Centrum voor Wiskunde en Informatica, Amsterdam 1984.

[2] BERGSTRA, J.A. & J.W. KLOP, Process algebra for communication and
mutual excluston, Report IW218/83, Mathematisch Centrum, Amsterdam
1983.

[3] COHEN, A.T., Data abstraction, data encapsulation and object-oriented
programming, Sigplan Notices, Vol.19, No.l (1984).

[4] COX, B.J., The object-oriented precompiler, Sigplan Notices, Vol.l8,
No.l (1983).

[5] GOGUEN, J.A. & J. MESEGUER, An initiality primer, to appear in:
Application of Algebra to Language Definition and Compilation
(eds.: M. Nivat and J. Reynolds), North-Holland 1983.

[6]1 JAMSA, K.A., Obgject—oriented design versus structured design, a sStu-
dents perspective, Software Engineering notes, Vol.9, No.l (1984)

[7] JONKERS, H.B.M., On the design of an object—-oriented design language,
paper presented at the Colloguium 'Van Specificatie tot Implemen-
tatie', Centrum voor Wiskunde en Informatica, Amsterdam 1983.

[8] KUTZLER, B. & F. LICHTENBERGER, Bibliography on abstract data types,
Springer Informatik-Fachberichte, No.68, 1983.

[9] MACLENNAN, B.J., Values and objects in programming languages, Sigplan
Notices, Vol.1l7, No.2 (1982).

[10] PLOTKIN, G.D., A structural approach to operational semantics, Report
Daimi FN~-19, Computer Science Dept., Aarhus University, Denmark 198l.

213

