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Applied mathematics has become an extremely important and useful dis­
cipline in the context of development of powerful computers. On the one 
hand, mathematics (in a broad sense) is the most efficient approach to model 
reality, especially complex reality. Moreover, it provides the best possibili­
ties of reasoning. With cheap powerful computers, mathematics becomes 
implementable and unavoidable in designing, producing, deciding ... 

On the other hand, mathematics has evolved considerably to extend its ap­
plicability to real problems. This is why applied mathematics is so alive and 
fast progressing. Needless to say, the connection between applied mathe­
matics and information technology is an extremely fruitful approach to new 
ideas and a basic source of research topics. This is a line to which Professor 
Cor Baayen has always dedicated his efforts. He has greatly contributed to 
closing the gap between mathematics and computer science. To give an 
exhaustive presentation of all directions of applied mathematics in a short 
talk is of course out of reach, and beyond the possibilities of one speaker. 
So the purpose of this lecture is more to outline some significant features, 
among many others. 

1 SCIENTIFIC COMPUTING 

The traditional applications of mathematics arise ir1 Pl1ysics, Mechanics, 
Powerful computing means and supercomputers have permitted : 

• to study completely new areas of physical sciences. 
• to co11sider new n11merical techniques 
• to investigate new approaches. 

1.1 New Areas of physical sciences 

. . - -

It would be particularly unrealistic to be exha11stive here. Nevertheless, among 
important developments in several fields, we en1phasize the Numer·ical Simu­
lation of Reactive flow. It applies indeed to combustion, aeronomy, par·tially 
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ionized plasmas, aerodynamics, gas dynamic lase1--s, astrophysics, gener·al rriul­
tiphase and magneto-hydrodynamic flows, .... 

The n1odel takes into account the coupling between fluid dynarriics and chemical 
reactions, and thus opens the door to a large family of complex problems. 

The traditional model of an homogeneo,us, viscous, incompressible flow with 
no chemical reactions and no external f or·ces consists of N avier Stokes equations 
• 
• 

au 
- µD,,.u + Dp 

divu 

0 

0 

If the fluid has a constant specific heat c and there are no external heat sources, 
then the temperature of the fluid is the solution of: 

8T 

where c = ½(Du+ (Du)T) is the velocity tensor. The internal energy density 
is cT. 

In general, all variables are coupled and appear as the solution of a corn plex 
system of P.D.E. 

The main unknown are the mass density p, the velocity of the flow u, the 
• 

number densities n i of the individual chemical species and the total energy 
density E. 

The system of equations is tl1e followi11g : 

0 

• • 

• 

'l 
• 

oni . . 

8E • • • 

( u + ui) - m 1
' a i 

~ 
• 

i 

• 

where a is the pressure tensor, q the heat flux, qr the radiative heat flux, ai 
represent external forces, and Qi, Li represent the chemical production rates 

• 

and losses of species i, u 1 is the diffusion velocity of species i. They are highly 
nonlinear expressions of the unknowns, including the temperature T. 

In view of the complexity, a modular approach is useful. Each physical 
process is calculated accurately and calibrated separately . 

The physical properties should be incorporated in the numerical algorithms 
and a mathematical analysis of the behaviour of the algorith111s should be 
performed. For n1ore details, see [18]. 
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1.2 Numerical methods 

We shall illustrate the general idea of decoupling the difficulties in the case of 
Navier Stokes equations: 

O'U 
-µflu+ Dp = f 

div u == 0 
u(x, 0) == u0 (x) 

u = g on r 
div uo == 0 

v-gdI'=O 
[' 

The two main difficulties are non linearities and incompressibility condition. 
Operator ,c;plitting will realize the decoupling. 

Let 0 be a parameter in (0, ½) and a, f3 with a+ f3 = l. 
Knowing un, we compute {un+0,p11+0},un+l-B and {un+ 1,pn+1} by the it­

eration : 

un+8 _ ,un 

-(un. D)un + Jn+0 
div un+B == 0 

(1) 

un+8 = gn+B on r 

un+l-0 _ un+0 
_______ f3µLlun+l-0 + (un+l-0. D)un+l-0 = aµLlun+0 

(1 - 20)~t 

un+l-0 == gn+l-0 on I' 

un+l _ un+l-8 
------ - aµ~'Un+I + Dpn+l == f3µLlun+I-B 

div un+l == 0 
(3) 

un+l == gn+l on r 

(2) is nonlinear and solved by a least square technique , and conjugate gradient 
minimization. ( 1) and ( 3) are linear and can be reformulated as variational 
problems for the pressure p. 

Various possibilities of finite element approximation, multigrid methods and 
domain decomposition can then be used at the discretization stage. 

Efficient software packages result in the combination of all these techniques. 
For more details, see [10]. 

1.3 New approaches 
We present two new directions : 
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1. 3.1 Wave lets 

An alternative to Fourier analysis l1as been developed in recent years, with ap­
plicatio11s to signal and image processing, sou11d ar1alysis and 11u1nerical analy­
sis. It has fou11dations in q11antum field theory, st.at,istical n1echanics and pure 
mat,hematics (geometry of Banacl1 spaces). This is the W a'velet analy~r;;is. 

It combines advantages of the Haar syste111 a11d of the trigor10111etrical system. 
The Haar system is defined by : 

1, 
1 

O<x<-
l 2 

-1 - < X < 1 
2 

VJrri,n ( X) = 2- 7l: t/;(2-r.,ix - n), ·m, n E Z. 

The 1Prn,ri form an orthonormal basis of L 2 (R), (and even LP) but not for 
Sobolev spaces ( unlike trigo1101netric~ series for periodic Sobolev spaces). 011 

the other hand, the 'l/Jrri,ri l1ave good localization properties unlike trigonometric 
functions ( the reverse beir1g true for their Fourier transfor111s). 

A wavelet system is defined by a functio11 1/J ( x) arid 

with the property 

EB rri E Z lV.,ri 

span { 'l/J11i;ri}, orthogonal spaces 

{ 'll'ni,n, n E Z} is an orthonorrnal basis for W,1 ,,. 

Y. Meyer has constructed a "',,.avelet syste111 with 'l/J, ccc wit.h rapide decay 
( faster that any power). Later one l1as co11structed a wavelet system witl1 1/J, Ck 
with exponential decay, and finally I. Daubechies has shown the existence of 
wavelet systems with compact, support and arbitrary regularity. They will be 
very useful for all kinds of applications. 

They are obtained from sequences h1i, with con1pact support, satisfying ad­
ditional assumptions by the following procedure : 

1> ( x) == lim 17 k ( x) 
k ➔ oo 

with 

1Jk (x) 
11, 

770 Il [ 
1 1 
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then 
1/J(x) == 

n 

The most corr1pact support corresponds to the two possible choices : 

1 =F 3 
ho== 

4 2 ' 
3± 3 

h2 = 
4 2 ' 

1± 3 
h3 = 

4 2 ' 

For more details, see [15], [9]. 

1.3.2 Cellular Automata 
The availability of massively parallel computers, has motivated the use of cel­
lular automata on large lattices for obtaining soll1tions to P.D.E., in particular 
the incompressible N avier Stokes equations. A lot of work is necessary to justify 
this approach. 

We describe here a model due to B.M. BOGHOSIAN, C.D. LEVERMORE,[5]. 
See also U. FRISCH, B. HASSLACHER, Y. POMEAU, [13]. 

Consider Burgers' equation : 

au 8 _ u2 

au u(x, t + ~t) u(x, t) 
Replacing by 

~t 
1 u(x + D..x, t) u(x ~x, t) 

Replacing by -
2 ~x 

Replacing by 
1 

~x, t) 2u(x, t)) 
8x2 

u(x, t + ~t) 

+ 

This can be simulated ''approximately'' by the stochastic process : 

1 + w(x, t) 

w(x, t)~1 (x, t)~2(x, t) 
1 - w(x, t) 

+ w(x, t)~1 (x, t)(2(x, t) 
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where ~1, t2 take the values 0, 1, w is randorn and takes the values -1 or 1. Tl1e 
random variables are independent and : 

C 
Ew = 2v~x 

It can be proved that : 

The process ~1 , ~2 is a cellular automata which can be sim11lated on a massively 
parallel computer. 

Reseach on similar types of stochastic processes is important in the context 
of solving nonlinear P.D.E. on massively parallel machines. 

2 CONTROL, IDENTIFICATION, ESTIMATION. 

The applications of these techniques are extremely diversified and come from 
physical sciences as well as from econon1ic or even social sciences. 

We describe some : 

• new areas of applications 
• new algorithms 
• new approaches . 

2.1 New areas of application 

2.1.1 Environmental studies. The program ''Global Change'' 

In view of the growing in1portance of environmental issues, a worldwide pro­
gram of research has been developing in recent years, under the name of'' Global 
Change''. It connects specialists of Climate Dynamics, Oceanography, Plane­
tary Physics, ... It seems that this di1·ection is a source of important mathe­
matical problems, of son1ewhat new nature. 

The basic problem deals with the prediction of physical quantities, solutions 
of a set of nonlinear evolution P.D.E., with unknown paran1eters and unknown 
initial state. No11linearity creates an important sensitivity with respect to initial 
data a11d u11known quantities, resulting in a lack of predictability beyond some 
length of time. A fundamental question is to identify the important regimes 
of the physical variables, those which contain the n1ain futures of interest and 
are persistent. There are several ways to give a mathematical mea11ing to this 
question. The interesting feature is that they result in a mixture of statistical 
and dynamical methods. A lot of work is needed in that directio11, even for 
simple nonlinear systems. 

The point of view of dynamical systems is to obtain the stationary solutions 
of the nonlinear P.D.E. ( or system of P.D.E.) and the long-time behaviour of 
solutions. This is the theory of attractors. 
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A complementary statistical theory has been developed, for which we de­
scribe only two ideas, that of persistent anomalies and that of EOF analysis 
(Empirical orthogonal functions). 

Consider a vector representing physical variables ( typically a flow) which 
is computable through a model, which is not in general completely known 
( this is an important difficulty, which we leave aside). We represent it by 
7Pk(t), k = I ... N where k may represent a point Xk on a grid, or a component 
if the solution is obtained by an expansion. 

We set < 7Pk >= average of 7Pk(t) over some record of data. 

The instantaneous anomaly is defined by : 

-

The pattern correlation between an a11omaly at time t and at a later time t + T 

is defined by : 

........... -- ........- ,.._,. 

a(t)cr(t + T) 

where 

o-(t)2 == 
k k 

-
We say that an anomaly 11/Jk(to) persists from t = t0 , tot= t0 + JT, if: 

p( ti, T) > Po, where tj == t0 + jr, j = 0 ... J - l 

and Po represents the persistence criterion. What is expected is that the anoma­
lies which satisfy a reasonable persistence criterion fall into a small number of 
easily identifiable patterns, related to the attractors of dynamical system. 

The EOF analysis goes as follows. Let : 

rk.e =< 1Pk1Pi > 

Consider the eigenvalues of the matrix r A 1 ... ,X N, ranked in decreasing order 
and e1 ... eN are the corresponding eigenvectors, called the 1st EOF, the 2nd 
EOF, .. . 

Next expand the vector ;{;(t) = (:;{;k(t)) on the basis e1 • · · eN, hence: 

N 

'lj)(t) = 
i=l 

then one can easily check that : 

• 

< CXiOj >== Ai Dij. 
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Tl1e coefficients ai ( t) are called the principal corr,,ponents. The EOF are in-
• 

terpreted as directions of variability of the anornaly, .\ 1· representing the part 
of the variance related to EOF e·i (the total variance being .\ 1 + ... + J\N). 
The important conjecture is that the n1ain OEF are related to the patterns 
associated to persistent ano1nalies. 

In [16] theses connections are exl1ibited experirnentally~ on so111e models. 

Is there a general theory for these phenomenon, at least for some class of 
nonlinear dynan1ical systen1s ? This is an open question, whi<.~h has a crucial 
importance for the understanding of the variability of atmospheric dynamics. 

2.1. 2 Computer vision 

2.1.2.1 The segmentation problem An image can be represented by a func­
tion g( x) measuring the strength of the light signal striking a plane at point x. 
Such a function is expected to have discontinuities reflecting edges of objects, 
and shadows. Outside such lines the function g is expected to behave more 
smoothly. 

Having this in mind, one defines a segmentatior1 of a region n, as a set of open 
connected subsets ni, i == 1 · · · n, each one wit,h a piecewise sn1ooth boundary 
and r is the union of the parts of the boundaries of tl1e ni inside n. 

An approximation of g is a func:tion u which is differentiable on n - r. One 
defines a cost function : 

J ( u' r) == µ ( u - g) 2 dx + I Du 12 dx + VI r I 
n r2-r 

The segmentation problem consists in rninimizing the functional J over the pair 
( u, r). Note that if v == 0, inf J == 0. 

This is a new class of problems in t,he calculus of variatior1s, introduced in 
[17). 

It has attracted a lot, of interest and so1ne progress has been 111ade, concerning 
existence, and approximation. 

It is interesting to co11sider the one dirner1sional problem, ir1 which n 
(0, 1), r == { a1; .. · aN, with O < a1 < a2 ... < aN < 1} and r1 == N. One has : 

1 N 

J ( u, a 1 , · · · , a N ) = µ ( u - g) 2 dx + 
0 a. i=O · 

and we have defined ao == 0, aN+1 = l. 
Since we clo not in1pose cor1tint1ity at, poi11ts a-i, we may write pref er ably : 

N 

. 0 (1, -i.= i 
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There is a probabilistic interpretation of J. Consider in the segment ( ai, ai+ 1 ) 

a process Xi such that : 

where Xi ( ai) is not random, and wi ( t) is a standard Wiener process. We observe 
on (ai,ai+1) the process Yi(t) with: 

where bi is Wiener process independent from Wi. 

The '' a priori probability'' of the trajectory Xi ( t) to coincide with a given 
function ui(t) which is H 1 (ai, ai + 1) is : 

For details see [ 20] . 

ai+l 1 
exp--

2 ai 

[( u~2 + u;)dt - 2uidYi] 

Considering independent processes in each interval, we obtain : 

ai+l I N 
exp--

2 i=O ai 

[(u~2 + u;)dt - 2uidYi] 

and the maximization of this probability results in minimizing J, up to the 
correspondence dyi > g on ( ai, ai+ 1 ). It would be extremely interesting to 
treat the 2 dimensional problem, which is the rea.l 011e, by similar probabilistic 
methods. It is an open problem. 

2.1.2.2 Axiomatic derivation of image processing model .. r:; We describe here a 
new approach to image processing due to L. Alvarez, F. Guichard, P.L. Lions 
and J.M. Morel [4]. Consider the signal g(x) representing the image. We look 
at it at a scale t, measuring roughly speaking the size of details of the image 
(small t means fine scale, while large t means coarse scale). An analysis at scale 
t is a transformation Tt9· A multiscale analysis is thus a family, parametrized 
by t > 0, of nonlinear operators ( or filters). 

Of course, some conditions have to be made on the operator Tt, in order to 
fulfill physical requirements of t,he filter. These restrictions or axioms are such 
that the function u(x, t) = (Ttg)(x) appears as the solution of a fully nonlinear, 
parabolic, possibly degenerate second order equation 

8t ' 
u(x, 0) == g(x). 

(4) 

In fact, the choice of the function F is equivalent to the choice of the fan1ily 
Tt. Among physical requireme11ts, one l1as the following n1ain one 

F(p, A) < F(p, B), rip, A < B 
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which is in fact the condition which suffices to give a meaning to ( 4) in viscosity 
sense. 

Examples: 

• The Gaussian pyramid. It corresponds simply to the heat equation 

1 
F(p, A) == -t·r A 

2 

• Quasilinear filters : 

F(p, A)= 

where 
a> 0, 

• Morphological filters : 

a(IPI) + a'(IPl)IPI > 0 

F(p) = inf p.q 
qES 

wl1ere S is a compact set of R 2 . 

• Curvature operators 

F(p,A) = 1 _ Ap · p 

2.1. 2. 3 Mobile Robotics Consider the problen1 of a rr1obile robot wl1ich tries 
to recover its enviro11ment, during its motion (the environn1ent is assumed to 
be static). The robot is equipped with a camera, which takes images between 
tin1e intervals. One way of approaching the proble1n is to extract tokens fro1n 
the images in the sequence, match them from image to image and recover the 
motion and the structure of the environment. 

Naturally, the tokens we compute in the images should be closely related to 
objects in the scene, if we want the matches to be n1eaningful. They are in 
general surface markings, shadows, dept,h discontinuities. 

Let us explain the general ideas in the case of a point M, which is the object 
to be recognized by the mobile robot ( see Figure 1). So M is the real point, 
C 1 , C2 represent the motion of the can1era ( installed on the robot), m 1 , m 2 the 
images of M. The motio11 is decomposed into a rotation R with a rotation axis 
going through C 1 , and a translation t = C1C2. 

If we consider a coordinate systen1 attached to the camera, then we can 
measure C1 ni1 and C2m2 with the local coordi11ate system. The coordinates 
witl1 respect to a common coordinate systen1, tl1at related to C1 are C 1 r1i 1 
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M 

FIGURE 1. 

and RC1m 1 . Then one expresses the planarity constraint, namely that C1m1, 
C2m2 and t are coplanar ; it a1nounts to : 

C1 m1 · (t /\ RC2m2) = 0. 

The vector t has coordinate tx, ty, iz but from the linearity, we can assume 
that lltll == 1, hence 2 parameters are enough. The matrix R depends of 3 
parameters which characterize the unit rotation axis (2 parameters) and the 
rotation angle. 

Conceptually, what is important is to recognize that the previous relations 
amounts to: 

J(x, a) == 0 

where a is a vector of parameters E ]Rn, and x is a vector of measurement E IRn 
and f is a nonlinear relation. 

Each successive image leads to a relation : 

f(xk, a)= 0 

However the observation is not exact and rather described by the model 

Zk == Xk + Vk 

where vk is a white noise of covariance r. Considering that 

ak+1 ak a 

we are in the fran1ework on nonlinear filtering if we can express x k as a function 
of ak. It is of course natural to linearize around a given estimate of a, and to 
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use extended Kalman filtering. Once t, R is obtair1ed, one can recover fvf by 
expressing the relations : 

.\C1 m1 == t + µRC2rn2 

where A,µ are unknown scalars. In this relation again t, R are k11own random 
variables, as well as C 1 m 1 , C2 m 2 . Thus we are i11 a situation similar to the 
above and can use again a Kalman filter. 

These tech11iques have been extensively used in the context of mobile robotics 
by 0. FAUGERAS and his team, see for instance [11]. 

2.2 New algorithms 

2. 2.1 Parallel algorithms 

The development of multiprocessors has generated a substantial interest in the 
obtaining of parallel algorithms. A thorough analysis is needed, since surprises 
can arise in comparison with the sequential approach. 

Take for instance Jacobi and Gauss Seidel iteratio11s for obtaining a fixed 
point of: 

X == f(x) 

A Jacobi iteration is the following : 

and a Gauss Seidel is : 

i = 1-··n 

The advantage of Gauss Seidel iteration is that it converges more frequently 
that Jacobi, and sequentially it performs much better (the convergence rate of 
Gauss Seidel iteration is better). 

Parallel implementation will change the situation considerably. 

Consider the case when there are n.. processors, and the sequence xk such 
that : 

xk+I ::::: f (xk) 

denoted by xk,J (Jacobi sequence) converges towards the fixed point. Suppose 
also f monotone, i.e. f(x) < f (y) 'r/x, y with x < y. Then take a sequence xk,U 

defined by: 
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Uk is a subset of {1, · · · ,n}. 
One can prove (T.N. TSITSIKLIS) that if one starts with the same initial 

value x 0 and f(x0 ) < x 0 or x 0 < f (x0 ), then : 

where x* is the limit fixed point. Hence Jacobi iteration performs better than 
any parallel version of Gauss Seidel iteration. When they are less than n 
processors available, or the assumption of monotonicity is not satisfied, no 
general statement can be made (see [4]) 

2.2.2 Simulated Annealing and global optimization 

This type of algorithm has been developed in the recent years in order to obtain 
a global minimum for a function U(x), over x E B, B compact, in the case 
when U is smooth. It is clear that such a problem occurs in many applications. 
Simulated annealing has first been used in the context of image processing. 

The algorithm consists in a discrete version of the following stochastic dif­
ferential equation: 

where the following assumptions are made 

• U is C2 from B to [O, oo) and 

0 

DU(x)·x>O, \ifxEB-B 1 

where B is a ball in IR·n, centered at the origin, and B 1 is an other ball, 
also centered at the origin and strictly included in B. 

• a is Lipschitz continuous from B to [O, 1], with rJ = 1, for x E B1, rJ = 0 
0 

for x E 8 B, a > 0 on B 
C 

• Ct == ogt 
• Wt standard Wiener process in 1R..n 

1 _ 2U x . 
• 7rc(x) = zc: € 

1rc: ( x )dx = 1 converges weakly to a 

probability 1r as £ ➔ 0. 

Note that 1r is a probability concentrated on the set of global minima of U (.). 

Then the following result can be proved : 

Ef (xt) ➔ 1r(f) 

t/ f bounded, continuous, as t ➔ oo, uniformly for x (the initial value) in B. 
(For more details see [7]). 
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2.3 New approaches 

Let us just mention the developments related to HOCJ theory and wl1ich permit 
to obtain protection of dynarnic systen1s fron1 disturbances via feedback control 
. We just mention some recent results concerning linear systen1s. 

Let us consider the linear system 

• 
X 

y 

Ax+ Bu + Dw, 

Cx 

where w represents a disturbance, and u a control. We consider feedback con­
trols, u == Ky. The transfer matrix TK(s) is given by 

TK(s) = C[sl - (A+ BK)]- 1 D 

and we consider those K for which A+ BK is stable. The H 2 norm is defined 
by: 

+oo l 1 
21r 

-
tr TK(-jw)*TK(jw)dw 2 

and the H 00 11orm is defined by : 

IITKl[CX) = sup ( tr TK(-jw)*TK(jw)) ½ 
wER 

which are finite since A+ BK is stable. 

The problem of H 00 or H 2 control consists in minimizing the above norms 
with respect to K. 

Note that 

I TKlloo == sup <1 
w O 0 

and thus this norm expresses the sensitivity of the system with respect to ex­
ternal disturbances. 

Among the important results obtained recently, it has been proven that we 
can chose a K such that IITK 11 00 < 'Y, Y,y given, if there exists c such that one 
can solve the Riccati equation 

PA+A*P- 0 
c "Y 'Y 

In fact K = ---
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3 DISCRETE SYSTEMS 

3.1 Discrete event systems 

New applications strongly related to information technology have created the 
need to develop a theory of DEDS, discrete event dynamic systems. Such appli­
cations are production or assembly lines, computer/communication 11etworks, 
traffic systems, ... A special issue of IEEE, Jan. 1989 is devoted to dynamics 
of discrete event systems. 

Many new mathematical techniques have been developed in this context. We 
describe here one of them, the use of an algebraic structure, called dioid, in the 
modelling of timed event graphs. 

Let us just recall the basic definition of a dioid. It is a set V provided with 
two inner operations EB and 0 (addition and multiplication) such that 

- they are both associative 

- addition is commutative 

- multiplication is right distributive with respect to addition 

- there exists a null and identity elements 

:3c E V : \/ a E V, 

:3e E V : \/a E V, 

- the null element is absorbing 

aEBc==a 

a®e=e®a=a 

\fa E V, a@£=£® a= 

- the addition is idem potent 

\/a E V, a EB a = a. 

When addition is commutative, the dioid is called commutative. As an 
example take V = Z U {-oo} U { +oo} and 

= max, = + 
== -oo, e == 0 

(note that we impose the rule (-oo) ® (+oo) = (-oo)). 

We can also consider 

• = m1n, == + 
= +oo, e = 0 

(in which case (-oo) ® ( +oo) == +oo ). 

• 
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A dioid is a structure somewhere between li11ear algeb1·a and lattices. 
One can define a partial order relation 

a>b{:::}a=affib 

and a pseudo left inverse denoted a\c wl1ich is tl1e greatest subsolution of 

a@ X = C. 

Starting witl1 these premises affine equations can be solved, as well as matrices 
defined and a matrix calculus is available. Matrix equations can also be solved. 
Let us see briefly how these concepts apply to timed event graphs. 

Times event graphs are a special kind of Petri nets. They are directed graphs 
with two types of edges, places and transitions 

y 

FIGURE 2. 

In Figure 2,, the transitions are u 1 , u2, x 1 , x2, X3, y and the places are denoted 
by x1lu1, x2lu2, X:ilx1, x3lx2, x3lx3, ylx3, ylx2, x1lx2, x2IX1-

There is a single transition upstream and downstream, at each place. 
In places, there are tokens or not. Tokens are created or consumed when 

transitions are fired, more precisely when a transition t is fired one token is 
consumed at each place which precedes t and one is created at each place 
which succeeds it. 

Let us assume that transitions are imn1ediate, but a token 1nust stay at a 
place an amount of time called the holding tirne, which deper1ds on the place. 
The following symbols are used 
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Ill 

no token 
holding time = 3 

• 

l token 
holding time 0 

FIGURE 3. 

l token 
holding time = 2 

For instance consider the places which precede x 1 , we complete the informa­
tion as follows 

Ill • 

FIGURE 4. 

Let for a transition x, Xn be date at which transition x has been fired for the 
n th time. We can write the relation 

and of course similar relations for other transitions. 

If the dates take values in Z U { +oo} U {-oo}, then we can work with the 
dioid considered above D, with the operations E9 = max, ® == +. 

The preceding relation writes 

(x1)n = (x2)n-l EB3(u1)n 

where 3( u 1 )n == 3 0 ( u 1 )n to simplify the notation. 

One of the objectives of research in these directions is to obtain a theory 
similar to that of linear dynamic systems. In particular a theory of stability is 
being developed. This is important to obtaining an evaluation of performances 
for the real system which is modelled by the event graph. (See [8]). 
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3.2 Hybrid systems 

An hybrid system is a system whose state contains continuously as well as 
finitely valued variables. When the discrete variables take a given set of values, 
the continuous variables behave as tl1e solutions of differential equations. Tran­
sitions between the possible sets of values of the discrete variables are obtained 
through the action of a monitor ( a co11troller). Tl1e action of the controller may 
be instantaneous or require s01ne delay. The objective is in general to keep the 
continuous variables within a given range. De(~isions are taken as feedbacks. 

An hybrid system will be characterized by a given feedback, and the problem 
is to prove that this feedback rule fulfills the goal. 

EXAMPLE 1 Suppose we want to control the ten1perature of a room through 
a thermostat, which can turn instantaneously a heater on and off. The tem­
perature is the continuous variable x(t), v(t) == 1 or O according whether the 
heater is on or off is the discrete variable. We have : 

• 
X -Kx if v = 0 
• 

X K(h-x) if v=l 

If d(t) is the decision taken by the thermostat, d(t) = 1 or O and we have: 

v(t + 0) = d(t) 

We want to maintain x(t) between m and M. Then we take 

d(t) = 1 

d(t) = 0 

if 
if 

x(t) 

x(t) 

m 

M 

and 

and 

v(t) = 0 

v(t) = 1 

and d(t) = v(t) otherwise . Such a feedback fullfills the objective. 

EXAMPLE 2 Suppose we control the water level i11 a tank through a n1.onitor 
which can turn a pump on and off. The water level is x(t), and we set v(t) == 1 
if the pump is on, and v( t) = 0 if it is off. We have 

• 
X -2 if v(t) = 0 
• 

X 1 if v(t) == 1 

Let d(t) be the decision taken by the monitor, d(t) == 1 or O and suppose 
there is a delay of 2 before the decision is executed then : 

v(t) == d(t - 2) 

We wish to keep the water level between 1 and 12. We then consider the 
feedback 
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d(t) = I 

d(t) = 0 

if 

if 

x(t) 

x(t) 

5 an(i v(t) = 0 

10 and I/(l) = 1 

a11d d(t.) = v(t) otherwise such a feedback fl1lfills the desired bel1aviour. 111 

ge11erc1.l, provi11g that a specific feedba{~k sat;isfies a given objective of tl1e con­
tinuous variables is not easy. Results or1 deciclabilit.y of s11cl1 a prc)ble1n are 
available for a particular class of Hybr·id systerr1s ( cf. R. Alur et al. [1]). 

4 NEW . .\REAS OF INFORtv1.ATION TECHNOLOGY 

Let us m,~ntion only son1e recent, rr1athe111atical problerns rnotivated by I.T. 
(again this is by no n1eans exhaustive). 

4.1 A1"'tific·ial intell·igence 

Since artificial intelligence needs to deal with qualitati1.1e aspects, more than 
with quantitative aspect.s ( or in con11ectior1 with tl1en1), tl1is has motivated the 
development of qualitati·ve sim1,.lation ( or qualitati11e physics) i11 particular at 
Xerox Pare. Note that the econo111ists needed much before sin1ilar t.ech11iques, 
in the context of the theory of corriparative econorriics (P.A. SAlvIUELSON). 

Our presentation here relies on son1e recent work of J.P. AUBIN. 

We pose the problen1 of the qualitative et-1olution of soll1tions to a differential 
equation 

X E lR,74 

and more precisely to the qualitative ei1olution of a set of functionals 

V1 (xt), ... , ½,i (xt) 

which are of importance ( energy, entropy, indicators, ... ) . 
The qualitative behavior is expressed by the evolution of the fl1nctio11s sign 

= {-1, 0, +l}rn. 

This is the problem of interest. But we want to obtain this evolution, without 
solving the equation, since some independence should be obtained with respect 
to the initial condition. 

sign (DV'j(xt)f(xt)) it is convenient to int,roduce i11 

the closed subspace K of IRn, where lives Xt, tl1e qualitati1.1e cells 

Ka == { x E Kl sigr1 (D½(x)f (x)) = ai} 

where a E R 11
i 1 ar1d their closure ( large qualitative cells) 

-
Ka= {x E Kl sign (DVJ(x)f(x)) = aj or O}. 
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Let, V(J, i 1
,.) l)e tl1e st1bset, of <}tlctlitativt~ st,at.<:~s <l st1<~l1 t,l1;;:1,t. K,.L is 11clt (~1111>t,)·. L<-:1t 

also de11ot,e l))' x( t; x 0 ) t,l1e sol11tior1 c)f tjli<:\ difi'c,1·e11t.ial f~<Jt1itt,io11 ("<)1·r<~sp<>I1<ii11g 
to a11 init,ial date X(> · Orie~ is i11te1·f:~st,t~ci i11 t,l1e st 1.1dy of trcinsitiori.s bf!i1.1rt;l}Tl, 

qualit<i,tit,e l~ell.s. 
- -If b E 1) ( f, V), we say tl1at. c:~ E V ( f, ii~,) is ;;1 stLc~c:e.-;.<,(Jr· <>f l1. if. VJ.~() E Kb n l{,., 

t,here exist,s r > 0, sucl1 tl·1at, x(t; xl,) E A"'<., fc)r all t E]O, r[. 
A qualit.at,i ve stat.e a is a qu.alit(itit,,: t:q·tt·ililJr·iurrl., if it is its O\\tr1 s11t·c~ess()r. 

·-
It is said t,o bt:~ et q·ualitcitit1e re1)ellor· if \f ;1·cJ E h.~,,, tl1t~f{~ E:~xists t > 0 Sll('l'l t.l1at, 

-
x( t; XcJ) (/. K,1 .. 

The tl1eory developed by J.P. A11l)ir1 per1nits to cl1a.ral~t.erize tl1e rr1ap of 
successors, tl1e qualitative eq1.1ilibria, arid t,l·1e q11alitative repellors. 

It, has bee11 applied to the so-l~alled ~'replicator syst.e111s'', a prototype of wl1icl1 
is the differe1·1tial system ( [2]) 

j=l 

4.2 Neural 1ietworks 

The basic r1eural network ca11 be viewed as ;:1.1·1 ur1directed graph with ri 11odes, 
t.o wl1icl1 are attached a pair ( 'fti/", 0) wl1ere 

v\,r is an n x 'n, syn1n1etric 111atrix, Wij is the weigl1t at,tached to tl1e edge 
(i, i), wii = o 

0 is an n vector, 0i is tl1e thresl1old attacl1ed to tlie node i. 
Nodes are called rteuroris. Each neuror1 has t,vt) possible states (1, -1). Let 

1, be the state of tl1e neural net.work, l'i being the state of 11euror1 'i. 
Let 

Ei (,i,) = -
j=l 

then the followir1g calculatio11 is perfor111ed by tl1e net.work 

v.7+ 1 = sign (Ei(,1.,k)), for 'i E Sk 
v;+ 1 ·vf for if/. Sk 

where Sk is a subset of the nel1rons. 
For· instance if 

k = h'ri + j j = 0 ... ri. - 1 

a11d Sk == {j + I}, tl1e networ·k oper·ates in serial rriode. 
Note that in our notation 

sig11 (a) == 
1 if a> 0 
-1 if a< 0 
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A stable state is a state such that 

A basic theorem of HOPFIELD is that if the 11etwork operates in serial mode, 
then it will converge to a stable state. 

The applicability of neural networks in practice arises from the possibility of 
interpreting the stable states. For instance, in pattern recognition, the stable 
states are known patterns, and for a given input pattern, the network will 
converge to the known pattern which is the closest to the input. It is clear that 
the neural network realizes the following search problerr1 

1 

• • • 

'I, J i 

and attains a local minimum .. 

One can clearly consider many variants of the above problem. For instance 
consider the following model in continuous time 

g( Ui ( t)) 

-Ei(v(t)) 

a 
where g is an increasing function from R to [O, 1] and Ei ( v) == --

energy function ( for instance the above). It will converge towards a local min­
imum of E( v ). It can be realized as an analog integrated circuit. 

In the spirit of simulated annealing, considered above, one can try to attain 
a global minimum of the Energy function, by considering a stochastic version 
of the preceding model. This has been done by E. WONG. 

Consider the model 

Vi(t) 

where T is a constant, and wi are independent standard Wiener processes. The 
stationary probability density of the process v ( t) is 

where Z is the normalization factor. 
The simulated annealing adaptation of the preceding algorithm (for instance 

take T(t) > 0 as t > oo) remains to be done. For more details, see [6] and 
[19] ). 
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4.3 Analytic analysis of algorithm.s 

Con1puter science leads quite frequently to con1binato1·ial algorith111s. A quite 
interesti11g approach of P. Flajolet [12] has shown l1ow generating functions and 
con1plex analysis provide a way to treat these problems. Ir1 particular, formal 
languages, tree enumerations, comparison based searching and so1·ting, digital 
structures, hashing and occupancy have bee11 i11teresting applications. 

A class of con1binatorial structures is a pair of a finite or denumerable set A, 
whose ele1nents are called the aton1s. 

Each atom a E A will have a size la!. We can perforn1 the following opera­
tions : 

The product relation C == A x B : 

C = { 'Y E C 11' = (a, /3), a E A, ,B E B} with I-YI = lnl + lfil 
The union relation C = A + B 

The sequence C = A* 
C = A U B where A + B are disjoint. 

C = {c} +A+ Ax A+ Ax Ax A+••• 

where lei = 0. The set construction C = µ(A), is the collection of all subsets 
of A: 

n1, · · · , ak, · · • inA, a1, · · · O'k · · · different}. 

The multi set construction C = M(A) allows repetitions. 
The cycle construction = C(A) is the set whose elen1ents are (non empty) 

cycles of elements of A. 
Let An be the number of elements of A, whose elements are (non empt:;r) 

cycles of elements of A. Let A 1i be the number of elements of A, whose size 
is n, then tl1e interesting problem is to calculate the Cn corresponding to the 
more complex structure C. This is where the generating functions are useful. 
Define 

A(z) == 
aE.A 

and 

C(z) == 
n 

It is possible to express C(z) in function of A(z). For instance, for C =Ax B 
one has : 

C(z) = zlal+I.BI = A(z)B(z) 

(a,,B)EAx.5 

174 



For C =A+B 

C(z) = zlt31 = A(z) + B(z) 
o:EA /3EB 

For C = A* 

C(z) 1 + A(z) + A(z)2 + · • • 
1 

1 - A(z) 

For C · µ(A), we note that 

hence 

C(z) 

For C = M(A) we have 

hence 

C(z) 1 
IIaEA ___ = 

1-

Consider further C == M2(A), the collection of subsets of A with cardinality 2, 
with possible repetition. Then 

C(z) 
la1 I> la2 I 
1 _ zla1l+la2I + z2lal 
2 .-

I a 1 l#la2 I 

2 ,_ 2 
0:1 ,a2 

hence 

C(z) == 
1 1 

From the previous structures, it is possible to construct further complex struc­
tures, which will lead to functional equations. For instance, consider in Figure 
5 the structure of binary trees ( the size of a binary tree is the number of leaves) 
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FIGURE 5. 

Let .A = { leaf} , then 
B==A+BxB 

hence 
B(z) == z + (B(z)) 2 

which yields a unique formal power series solution 

1 
B(z) = -✓1-4z) 

Similarly consider trees with multiples branches (at least 2), each branch having 
at least 2 leaves, one has 

hence 

which obtains 

B==A+BxB+BxBxB+··· 

B(z) = 

1 
B(z) == 

(B(z)) 2 

1-6z+z2 ). 

Forn1ulas like (1) allow among other things to study the asyn1totic behavior 
of Bn. This is governed by the singularities of the generating function B(z), 
according to a f'amous theorem of Darboux. 
Suppose we consider the class of mathematical expressio11s involving constants, 
the vaiable x, ex and additions or products of sin1ilar type of expressions. We 
can visualize the set of such expressions by : 

+ X exp 
={c}U{x}U I \ u I \ u I 

This permits to represent a11 elen1ent of E as a t.ree, for instance the expression 
x + eex +x is represented by Figure 6. The size of an expressio11 will be the 
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+ 

X exp 

+ 

exp X 

X 

FIGURE 6. 

number of nodes of the tree. The above tree l1as size 7. 
Let E(z) to be the generating function corresponding to E, then we l1ave the 
functional equation 

E(z) = 2z + 2zE(z)2 + zE(z) 

Let [zn]E(z) to be the coefficier1t of zn in the forr11al series E(z), it. represents 
the number of expressions of size n. 
Among possible uses of this machinery, one can comput,e tl1e con1plexity of 
formal differentiation. One cru:1 estimate the asymptotic average size of deriva­
tives. Many more applications can be given. 
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