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Management of the communications among a set of concurrent processes 
arises in many applications and is a central concern in parallel computing. In 
this paper we introduce MANIFOLD: a coordination language whose sole 
purpose is to describe and manage complex interconnections among inde
pendent, concurrent processes. In the underlying paradigm of this language 
the primary concern is not with what functionality the individual processes in 
a parallel system provide. Instead, the emphasis is on how these processes 
are inter-connected and how their interaction patterns change during the 
execution life of the system. This paper also includes an overview of our 
implementation of MANIFOLD. 

As an example of the application of MANIFOLD, we present a series of small 
manifold programs which describe the skeletons of some adaptive recursive 
algorithms that are of particular interest in computer graphics. Our concern 
in this paper is to show the expressibility of MANIFOLD and its usefulness 
in practice. Issues regarding performance and optimization are beyond the 
scope of this paper. 

1 INTRODUCTION 

Specification and management of the communications among a set of concur
rent processes is at the core of many problems of interest to a number of contem
porary research trends. The theory of neural networks and the conr1ectionist 
view of computation emphasize the significance of the concept of management 
of connections versus the local computation abilities of each node. The con
cept of dataflow programming has a certain resen1blance with connectionism, 
albeit, it is closer to the discrete world of conventional programming than neu
ral networks. Theoretical work on concurrency, e.g., CCS (1] and CSP [2, 3], is 
primarily concer11ed with the semantics of communications and interactions of 
concurrent sequential processes. Commt1nication issues also come up in virtu
ally every other type of computing, and have influenced the design ( or at least, 
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a few constructs) of most progran1ming languages. However, not much effort 
has been spent on conceptual models and languages whose sole pri111e focus of 
attention is on the coordination of interactions among processes. 

In their recent paper [4], Gelernter and Carriero elaborate the distinction 
between com.putational models and languages versus coordination models and 
languages. They correctly observe that relatively little serious attentio11 l1as 
been paid in the past to the latter, a11d tl1at ''ense111bles'' of asyncl1ro11ous 
processes ( n1any of which are off-the-sl1elf progra111s) runnir1g 011 parallel a11d 
distributed platforms will soon bec~o111e predo1ninant. 

MANIFOLD is a language wl1ose sole purpose is to n1a11age complex intercon
nections among independent, concurrent, processes. As such, like LINDA [5, 6], 
it is primarily a coordination language. However, there is no resemblance be
tween LINDA and MANIFOLD, nor is tl1ere any sir11ilarity betwee11 tl1e under
lying models of these two languages. The details of the MANIFOLD model and 
the syntax and se1nantics of the MANIFOLD language are, of course, beyond tl1e 
scope of this paper and are described in a separate document [7]. In this paper, 
we give an overview of the MANIFOLD language and its i1nplementation and 
prese11t the skeleton of some recursive algorith1ns which are of particular inter
est in computer graphics. Also, an application of the language in the field of 
scientific visualization is presented. We sumn1arize only enough of the descrip
tion of the MANIFOLD model and language here, to make the examples and 
tl1e significant implementation issues presented in this paper understandable. 

The rest of this paper is organized as follows. In §2 the main motivations 
behir1d the MANIFOLD language and its underlying co111puting n1odel are dis
cussed. In §3 a more detailed description of the language is presented. In §4 we 
mention some of the application areas where MANIFOLD can prove to be a use
ful tool. In §5, we prese11t the skeleton of a few adaptive recursive algorith1ns 
taken from the field of computer graphics. The purpose of these examples is 
to illustrate the use of some of the features of the MANIFOLD language and to 
demonstrate the ger1eral applicability of MANIFOLD concepts. The analysis of 
these programs gives us a good opportunity to show the descriptive power of 
MANIFOLD. In §6, we discuss some of the similarities and major differences 
between MANIFOLD and certain related syste1ns and n1odels for parallel com
puting. In §7 we n1ention some of the extensions a11d enhancements we plan to 
make to the MANIFOLD syste1n in the future. Finally, §8 concludes this paper. 

2 MOTIVATION 

One of the fundamental problems in parallel programming is coordination and 
control of the communications among the sequential fragments that comprise a 
parallel program. Programming of parallel systems is often considerably more 
difficult than ( what intuitively seems to be) necessary. It is widely acknowl
edged that a major obstacle to a more widespread use of massive parallelism 
is the lack of a coherent model of how parallel systems must be organized arid 
programmed. To complicate the situation, there is an important pragmatic 
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concern with significant theoretical consequences on models of computation for 
parallel systems. Many user communities are unwilling and/or cannot afford 
to ignore their previous investment in existing algorithms and ''off-the-shelf'' 
software and migrate to a new and bare environment. This implies that a 
suitable model for parallel systems must be open in the sense that it can ac
commodate components that have been developed with little or no regards for 
tl1eir inclusion in an environment where they must interact and cooperate with 
other modules. 

Many approaches to parallel programming are based on the same computa
tion models as sequential programming, with added on features to deal with 
communications and control. This is the case for such concurrent programming 
languages like Ada [8], Concurrent C [9, 10], Concurrent C++ [11], Occam [12] 
and many others ( the interested reader 1nay consult, e.g., the survey of Bal et al. 
[13] for more details on these languages). 

There is an inherent contradictio11 in such approaches which shows up in 
the form of complex semantics for these added on features. The funda1nental 
assumption in sequential programming is that there is only one active entity, 
the processor, and the executing program is in control of this entity, and thus 
in charge of the application environment. In parallel programming, there are 
many active entities and a sequential frag1nent in a parallel application cannot, 
in general, make the convenient assumption that it can rely on its incren1entally 
updated model of its environment. 

To reconcile the ''disorderly'' dynan1ism of its environment with the orderly 
progression of a sequential fragment, ''quite a lot of things'' need to happen at 
the explicit points in a sequential fragment when it uses one of the constructs to 
interact with its environment. Hiding all that needs to l1appen at such points 
in a few communication constructs within an essentially sequential language, 
makes their semantics extremely complex. Inter-mixing the neat consecutive 
progression of a sequential fragment, focused on a specific function, with up
dating of its model of its environment and explicit communications with other 
such fragments, makes the dynamic behavior of the components of a parallel 
application program written in such languages difficult to understand. This 
may be tolerable in applications that involve only s1nall scale parallelism, but 
becomes an extremely difficult problem with massive parallelism. 

Contrary to languages that try to hide as much of the ''chaos of parallelism'' 
as possible behind a facade of sequential programming, MANIFOLD is based on 
the idea that allowing programmers to see and feel this parallelism is actually 
beneficial. It is a formidable intellectual experience to realize that if one frees 
oneself from the confines of the sequential paradigm and accepts that logical 
processes are ''cheap'' ( that is, they are fast to activate and to communicate 
with), then a number of practical problems and applications can be described 
and solved incomparably more easily and more elegantly. In other words, there 
often is a pay-off in usi11g parallel or distributed programming, even if higher 
speeds are not (necessarily) achieved. Just as a practical example, the basic 
approach of using multi-processing is very clearly one of the reasons for the un-
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deniable technical superiority of the NeWS windowing syst,em over X Windows 
[14]; also, aln1ost all the applications list,ed i11 §4 fall in this category. 

The assumption of having cheap logical processes is not only in lir1e with the 
direction of future hardware developrnent, it is also cornpat,ible with the cur
rent trend in tl1e evolution of contemporary software systen1s. The increasingly 
more frequent use of so-called ''ligl1t-weigl1t'' processes within conventional op
erating syste1ns1 is a clear indication (see, for example, the Brown U11iversity 
Thread Package [15], tl1e so-called fLSyste111 [16], or eve11 the way sorne of the 
above cited languages, e.g., AT&T's Concurrent C, are i111plemented). More re
cent operating syste1n designs offer light-weight proc~esses in their kernels ( e.g., 
OSF /1, based on the Mach syste111 [17, 18] of· Carnegie Mellon, or SunOS [19]). 

Separating comn1unication issues fron1 the fur1ctionality of the co1npo11ent 
modules in a parallel system makes them n1ore independent of their context, 
and thus more reusable. It also allows delaying decisio11s abol1t the interconnec
tion patterns of these modules, which may be char1ged subject to a different set 
of concerns. This idea is one of the n1ain motivations behi11d the develop111ent 
of the MANIFOLD system. 

There are eve11 st,ronger reaso11s in distribt1ted progra1n111ing for delayi11g 
the decision about the interco1111ections a11d the comn1unication patterns of 
modules. Son1e of tl1e basic problen1s with tl1e parallelisrn i11 parallel co1nput
ing become more acute in real distrib11ted computi11g, due to the distribution 
of the applicatio11 rnodules over loosely coupled processors, perhaps running 
under quite different environn1ents in geographically different locations. The 
implied communications delays a11d the heterogeneity of the co1nputational en
vironment encon1passing an applicat,ion bec:on1e more sig11ificant co11cerns than 
in other types of parallel progran11ning. This n1andates, arr1ong other things, 
more flexibility, reusability, and robustness of modules with fewer hard-wired 
assumptions about their environment. 

The tangible payoffs reaped frorn separat,ing tl1e cor11munications aspect of 
a n1ulti process application from tl1e functionality of its i11dividt1al processes 
include clarity, efficiency, and reusability of n1odules and t11e co111n1unicatio11s 
specifications. This separatior1 makes the con1n1unications co11trol of the coop
erating processes in a11 application n1ore explicit, clear, and understandable at 
a higher level of abstraction. It also encourages individual processes to make 
less severe assun1ptions about their environ1nent. The same communications 
control component can be used with various processes that perform functions 
similar to each other from a very high level of abstraction. Likewise, the same 
processes can be used with quite different co1nrnunications control compor1ents. 

3 THE MANIFOLD LANGUAGE 

In this section we give a brief and informal overview of the MANIFOLD lan
guage. The sole purpose of the MANIFOLD language is to describe and manage 

1 Some authors prefer the term ''pseudo-parallelism'' for such or similar forms of paral
lelism, again, see Bal et al [13]. 
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FIGURE 1. The model of a process i11 Manifold. 

Outgoing 
Streams 

complex communications and interconnections among independent, concurrent 
processes. As stated earlier, a detailed description of the syntax and the se
mantics of the MANIFOLD language a11d its underlying model is given else
where [7]. Other reports contain more exan1ples of the use of the MANIFOLD 

language [20, 21, 22, 23]. 
The basic components in the MANIFOLD n1odel of comp11tation are processes, 

events, ports, and streams. A process is a black box with well defined ports 
of connection through which it exchanges units of information with the other 
processes in its environment. The internal operation of some of these black 
boxes are indeed written in the MANIFOLD language, which makes it possible 
to open them up, and describe their internal behavior using the MANIFOLD 

model. These processes are called manifolds. Other processes may in reality 
be pieces of hardware, programs written in other programming languages, or 
human beings. These processes are called atomic processes in MANIFOLD. 

In fact, an atomic process is any processing element whose external behavior 
is all that one is interested in observing at a given level of abstraction. In 
general, a process in MANIFOLD does not, and need not, know the identity of 
the processes with which it exchanges information. Figure 1 shows an abstract 
representation of a MANIFOLD process. 

Ports are regulated openings at the boundaries of processes through which 
they exchange units of information. The MANIFOLD language allows assigning 
special filters to ports for screening and rebundling of the units of information 
exchanged through them. These filters are defined in a language of extended 
regular expressions. Any unit received by a port that does not match its regular 
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expression is automatically diverted to the error port of its manifold and raises 
a bad unit event ( see later sections for tl1e details of events and their l1andling i11 
MANIFOLD). Tl1e regular expressions of ports are an effective means for ''type 
checking'' and can be used to asst1re that the u11its received by a 111a11ifold a1--e 
''n1eaningful. ,, 

Interconnections between tl1e ports of processes are made with streams. A 
strearn represents a flow of a sequence of units betwee11 t.wo ports. Cor1ceptu
ally, the capacity of a stream is infi11ite. Strearns are dyna1nically constructed 
between ports of the processes that are to exchange some i11formation. Adding 
or removing strean1s does not directly affect the status of a running process. 
The constructor of a stream (which is a n1a11ifold) need not be tl1e sender nor the 
receiver of the information t,o be exchanged: any third party manifold process 
can define a connection between the ports of a producer process and a consumer 
process. Furthermore, strea1n definitions in MANIFOLD are generally additive. 
Thus a port can simultaneously be connected to many different ports through 
different streams (see for example the network in Figure 2). The flows of units 
of information in strea111s are automatically replicated and n1erged at outgoing 
and incoming port junctio11s, as necessary. The units of information excha11ged 
through ports and streams, are passive pieces of informatior1 that are produced 
and consumed at the two ends of a stream with their relative order preserved. 
The consumptio11 and production of units via ports by a proc~ess is analogous 
to read and write operations in conventio11al programming languages. The 
word ''passive'' is meant to suggest the similarity between units and the data 
exchanged through such co11ventional I/O operations. 

Independent of the stream mechanism, there is an event mechanism for in
formation exchange in MANIFOLD. Contrary to units in streams, events are 
atomic pieces of inforn1atio11 that are broadcast by their sources in their envi
ronment. In principle, any process i11 an environment ca11 pick up a broadcast 
event. In practice, usually 011ly a few processes pick tip occurrences of each 
event, because only they are '"tu11ed in'' to their sources. Occurrences of the 
same event frorr1 the san1e source can override each other fro1n the point of view 
of some observer processes, depending on the difference between the speed of 
the source and the reaction time of an observer. This provides an automatic 
sampling mechanism for observer processes to pick up inforn1ation from their 
environment which is particularly llseful in situations where a potentially sig
nificant mismatch between the speeds of a producer and a consumer is possible. 
Events are the primary control mechanis1n in MANIFOLD. 

Once an event is raised by a source, it generally conti11ues with its processing, 
while the event occurrence propagates through the enviror1rnent independently. 
Event occurrences are active pieces of information in the sense that in general, 
they are observed asynchronously and once picked up, they preemptively cause 
a change of state in the observer. Communication of processes through events 
is thus inherently asynchronous in MANIFOLD. 

Each manifold defines a set of events and their sources whose occurrences it is 
interested to observe; they are called the observable set of events and sources, 
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respectively. It is only the occurrences of observable events from observable 
sources that are picked up by a manifold. Once an event occurrence is picked 
up by an observer manifold, it may or may not cause an immediate reaction 
by the observer. In general, each state in a manifold defines the set of events 
( and their sources) that are to cause an immediate reaction by the manifold 
while it is in that state. This set is called the preemption set of a manifold 
state and is a subset of the observable events set of the manifold. Occurrences 
of all other observable events are saved so that they may be dealt with later, 
in an appropriate state. 

Each state in a manifold defines a pattern of connections among the ports 
of some processes. The corresponding streams implementing these connections 
are created as soon as a manifold makes a state transition (caused by an event) 
to a new state, and are deleted as s0011 as it n1akes a transition from this state 
to another one. This is discussed in more detail in §3.2. 

3.1 Manifold Definition 

A manifold definition consists of a header, public declarations, and a body. The 
header of a manifold definition contains its name and the list of its forn1al pa
rameters. The public declaratior1s of a manifold are the statements that define 
its links to its environment. It gives the types of its formal parameters and 
the names of events and ports through which it communicates with other pro
cesses. A manifold body primarily consists of a number of event handler blocks, 
representing its different execution-time states. The body of a manifold may 
also contain additional declarative statements, defining private entities. For an 
example of a very simple manifold, see Listing 1 which shows the MANIFOLD 

source code for a simple program.2 More complete manifold programs are also 
presented, e.g., in §5. Declarative statements may also appear outside of all 
manifold definitions, typically at the beginning of a source file. These decla
rations define global entities which are accessible to all manifolds in the same 
file, provided that they do not redefine them in their own scopes. 

Conceptually, each activated instance of a manifold definition - a manifold 
for short - is an independent process with its own virtual processor. A manifold 
processor is capable of performing a limited set of actions. This includes a set 
of primitive actions, plus the primary action of setting up pipelines. 

Each event handler block describes a set of actions i11 the form of a group con
struct. The actions specified in a group are executed in some non-deterministic 
order. Usually, these <tctions lead to setting up pipelines between various ports 
of different processes. A group is a comma-separated list of 1nen1bers enclosed 
in a pair of parentheses. In the degenerate case of a singleton group ( which con
tains only one member) the parentheses may be deleted. Members of a group 
are either primitive actions, pipelines, or groups. The setting up of pipelines 

2 In this and other MANIFOLD program listings in this paper, the characters''//'' denote 
the beginning of a comment which continues up to the end of the line. Keywords are typeset 
in bold. 

91 



/ I This is the header (there are no arguments): 
example() 
/ I These are the public declarations: 
/ I Two ports are visible from the outside of the n1anifold ''example''; 
I I one is an input port and the other is an output one. 
/ I In fact, these ports are the default ones. 

{ 

} 

port in input. 
port out output. 

I/ The body of the manifold begins here. 

II 
/ / private declarations: 
I J three process instances are denned: 
process A is A_type. 
process B is B_type. 
process C is C_type. 

I I First block (activated when ''example'' becomes active) 
I I The processes described above are activated on their turn 
/ I in a ''group'' construct: 
start: ( activate A, activate B, activate C) ; do begin. 

I I ,.4. direct transfer to this block has been given fron1 ''start''. 
I I Three pipelines in a group are set up: 
begin: (A > B,output ) C,input > output). 

I/ Event handler for the event ''el ''; several pipelines are 
/ I set up (see Figure 2): 
el: (B > input,C > A,A > B,output > A,B > C,input , output). 

I/ Event handler for the event ''e2''; a single pipeline 
I I is set up (see Figure 3): 
e2: C > B. 

Listing 1. An example for a n1anifold process. 
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input output 

C 

A 

B 
input.__ _____ ~ output 

input 
'----------' 

example 

input output 

FIGURE 2. Connections set up by the n1anifold eJrarople on event e1. 

within a group is simultaneous and atomic. No units flow through any of the 
streams inside a group before all of its pipelines are set up. Once set up, all 
pipelines in a group operate in parallel with each other. 

A primitive action is typically activating or deactivating a process, raising an 
event, or a do action which causes a transition to another ha11dler block without 
an event occurrence from outside. A pipeline is an expression defining a tandem 
of streams, represented as a sequence of one or more groups, processes, or ports, 
separated by right arrows. It defines a set of simultaneous connections among 
the ports of the specified groups and processes. If the initial (final) name in 
such a sequence is omitted, the initial (final) connection is made to the current 
input (output) port. Inside a group, the current input and output ports are the 
input and output ports of the group. Elsewhere, the current input and output 
ports are input and output, i.e., the executing manifold's standard input and 
output ports. As an example, Figure 2 shows the connections set up by the 
manifold process example on Listing 1, while it is in the handling block for 
the event e1 (for the details of event handling see §3.2). Figure 3 shows the 
connections set up in the handling block for the event e2. 

In its degenerate form, a pipeline consists of the name of a single port or 
process. Defining no useful connections, this degenerate form is nevertheless 
sometimes useful in event handler blocks because it has the effect of defining 
the named port or process as an observable source of events and a member of 
the preemption set of its containing block (see §3.4). 

An event handler block may also describe sequential execution of a series of 

93 



• input output 
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input._ _____ ~ output 
• input ,...._ ____ ____, 

example 

input output 

FIGURE 3. Connections set up by the manifold example on eve11t e2. 

(sets of) actions, by specifying a list of pipelines and groups, separated by the 
semicolon (;) operator3 • In reaction to a recognized eve11t, a manifold processor 
finds its appropriate eve11t handler block and executes the list of sequential sets 
of actions specified therein. Once the manifold processor is through with the 
sequence in its current block, it terminates. 

3.2 Event Handling 

Event handling in MANIFOLD refers to a preemptive change of state in a man
ifold that observes an event of interest. This is done by its manifold processor 
which locates a proper event handler for the observed event occurrence. An 
event handler is a labeled block of actions in a manifold. In addition to the 
event handling blocks explicitly defined in a manifold, a number of default 
handlers are also included by the MANIFOLD compiler in all manifolds to deal 
with a set of predefined system events. The manifold processor makes a tran
sition to an appropriate block (which is determined by its curr·ent state, the 
observed event and its source), and starts executing the actions specified in 
that block. The block is said to capture the observed event (occurrence). The 
name of the event that causes a transfer to a handling block, and the name 
of its source, are available in each block through the pseudonyms eventJ1ame 

3 In fact, the semicolon operator is only an infix manner call (see §3.5) rather than an 
independent concept in MANIFOLD. However, for our purposes, we can assume it to be 
the equivalent of the sequential composition operator of a language like Pascal. 
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and event_source, respectively. 
The manifold processor finds the appropriate handler block for an observed 

event e raised by the source s, by perf arming a circular search ir1 the list of 
block labels of the manifold. The list of block labels contains the labels of all 
blocks in a manifold in the sequential order of their appearance. The circular 
search starts with the labels of the current block in the list, scans to the end 
of the list, continues from the top of the list, and ends with the labels of the 
block preceding the current block in the list. 

The manifold processor in a given manifold is sensitive to (i.e., interested 
in) only those events for which the n1anifold has a handler. All other events 
are to be ignored. Thus, events that do not 1natch any label in this search 
do not aff<\ct the manifold in any way (however, see §3.5 for the case of called 
manners). Similarly, if the appropriate block found for an event is the keyword 
ignore, the observed event is ignored. Normally, events handled by the current 
block are also ignored. 

The concept of an event in MANIFOLD is different than the concepts with 
the same name in most other systems, notably simulation languages, or CSP 
[2, 3]. Occurrence of an event in MANIFOLD is analogous to a flag that is 
raised by its source (process or port), irrespective of any con1munication links 
among processes. The source of an event continues immediately after it raises 
its flag, independent of any potential observers. This raised flag can potentially 
be seen by any process in the environment of its source. Indeed, it can be seen 
by any process to which the source of the event is visible. However, there are 
no guarantees that a raised flag will be observed by anyone, or that if observed, 
it will make the observer react immediately. 

3.3 Event Handling Blocks 

An event handling block consists of a comma-separated list of one or more block 
labels followed by a colon ( : ) and a single body. The body of an event handling 
block is either a group member (i.e., an action, a pipeline, or a group), or a 
single manner call( see §3.5). If the body of a block is a pipeline, and it starts 
(ends) with a >, the port name input (respectively, output) is prepended 
(appended) to the pipeline. 

Event handler block labels are patterns designating the set of events captured 
by their blocks. Blocks can have multiple labels and the san1e label may appear 
more than once marking different blocks. Block labels are filters for the events 
that a manifold will react to. The filtering is done based on the event names 
and their sources. Event sources in MANIFOLD are either ports or processes. 

The most specific form of a block label is a dotted pair e.s, designating 
event e from the source (port or process) s. The wild-card character * can be 
replaced for either e, ors, or both, in a block label. The form e is a short-hand 
for e.* and captures event e coming from any source. The form *.s captures 
any event from source s. Finally, the least specific block label is *. * ( or *, for 
short) which captures any event coming from any source. 
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3.4 Visibility of Event Sources 

Every process instance or port defined or used a11yw here i11 a n1a11ner ( see 
§3.5) or manifold is an observable source of eve11ts for that n1an11er or manifold. 
This simply means that occurre11ces of eve11t.s raised by such sources (only) 
will be picked up by the executing 111a11ifold proc~essor, provided that there is 
a handling block for them. The set of all events fror11 obse1·vable sources tl1at 
match any of the block labels in a rr1anr1er or n1anifold is the set of observable 
events for that manner or manifold. The set of observable events of an executing 
manifold instance may expand and shrink dynamically due to rnanner c:alls and 
terminations (see §3.5). Depending on the state of a n1anifold processor (i.e., 
its current block), occurrences of observable events cause one of two possible 
actions: preemption of the current block, or saving of the ever1t occurrence. 

In each block, a manifold processor can react to only those events that are 
in the preemption set of that block. The MANIFOLD language defines the 
preemption set of a block to contain only those observable events whose sources 
appear in that block. This means that, while the n1a11ifold processor is in a 
block, except for the manifold itself, no process or port other than the ones 
named in that, block can be the source of events to which it reacts imn1ediately. 
There are other rules for tl1e visibility of parar11eters and the operands of certai11 
primitive actions. It is also possible to define certain processes as permanent 
sources of events that are visible in all blocks. A n1anifold can always internally 
raise an event that is visible only to itself via the do primitive action. 

Once the manifold processor enters a block, it is imn1une to any of the events 
handled by that block, except if the event is raised by a do action in the 
block itself. This tern porary in1munity remains ir1 effect until the manifold 
processor leaves the block. Other observable event. occurrences that are not in 
the preemption set of the current block are saved. 

3.5 Manners 
The state of a manifold is defined in terms of the eve11ts it is sensitive to, its 
visible event sources, and the way in which it reacts to an observed event. The 
possible states of a manifold are defined in its blocks, whicl1 collectively define 
its behavior. It is often helpful to abstract and parameterize some specific 
behavior of a manifold in a subrouti11e-like module, so that it can be invoked 
in different places within the san1e or different manifolds. Such modules are 
called manners in MANIFOLD. 

A manner is a construct that is syntactically and semantically very similar 
to a manifold. Syntactically, tl1e differences between a n1anner definition and 
a manifold definition are: 

1. The keyword manner appears in the header of a manner definition, before 
its name. 

2. Manner definitions cannot have their own port definitions. 
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Semantically, there are two major differences between a manner and a man
ifold. First, manners have no ports of their own arid therefore cannot be con
nected to streams. Second, a manner invocation never creates a new processor. 
A manifold activation always creates a new processor to ''execute'' the new 
instance of the manifold. To invoke a manner, however, the invoking processor 
itself ''enters and executes'' the manner. 

The distinction between manners a11d manifolds is sin1ilar to tl1e distinction 
between procedures and tasks ( or processes) in other distributed programming 
languages. The term manner is indicative of the fact that by its invocation, 
a manifold processor changes its own context in such a way as to behave in a 
different manner in response to events. 

Manner invocations are dynamically 11ested. References to all non-local 
names in a manner are left unresolved until its invocation time. Such ref
erences are resolved by following the dynamic chai11 of manner invocations in 
a last-in-first-out order, terminating with the enviro11ment of the n1anifold to 
which the executing processor belongs. 

Upon invocation of a manner, the set of observable events of the executing 
manifold instance expands to the union of its previous value and the set of 
observable events of the invoked manr1er. The new 111e111bers tl1us added to this 
set, if any, are deleted from the set upon termination of the invoked man11er. 

A manner invocation can either terminate normally or it can be preempted. 
Normal termination of a manner invocatio11 occurs when a return prin1itive 
action is executed inside the manner. This returns the cor1trol back to the 
calling environment right after the manner call ( this is analogous to returning 
from a subroutine call in conventional programming languages). Preemption 
occurs when a handling block for a recognized event occurrence cannot be 
found inside the actual manner body. This initiates a search through the 
dynamic chain of activations similar to the case of resolving references to non
local names, to find a handler for this event. If no s11ch handler is found, 
the event occurrence is ignored. If a suitable handler is found, the control 
returns to its enclosing environment and all manner invocations in between are 
abandoned. 

Manners are simply declarative ''subroutines'' that allow encapsulation and 
reuse of event handlers. The search through the dynamic chain of manner calls 
is the same as dynamic binding of handlers in calling environments, with event 
occurrences picked up in a called manner. Preemption is nothing but cleanly 
structured returns by all manner invocations up to the environment of a proper 
handler. 

In principle, dynamic binding can be replaced by the use of ( appropriately 
typed) parameters. Our preference for dynarnic binding in 1nar1ners is moti
vated by pragmatic considerations. Suppose a piece of information (e.g., how to 
handle a particular event, or where to return to) rr1ust be passed from a calling 
environment A, to a called environment B, through a number of interrnediaries; 
i.e., B is not called directly by A, but rather, A calls some other ''subroutine'' 
which calls another one, which calls yet another one, ... , which eventually calls 
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B. Passing this information from A to B using parameters means that all inter
mediaries must know about it and explicitly pass it along, although it has no 
functional significance for them. Dynamic binding alleviates the 11eed for this 
explicit passing of irrelevant information and 1nakes tl1e intermediary routines 
more general, less susceptible to change, a11d 1nore reusable. 

3. 6 Scope Rules 

The scope of a name is the syntactic context wherein that r1ame is known as to 
denote t,he same entity. The scope of the names of ato111ic process specifications, 
manner definitions, and manifold definitions co11tair1ed in a source file is tl1e 
entire source file. The scope of the names defined in the private declarative 
section (inside the body) of a rnanifold or manner is the n1anifold or the manner 
itself. The scope of the names defined i11 the declarative statements outside of 
any manifold or manner definition, is the entire source file. 

Ports of a manifold or atomic process are accessible to any process that knows 
its name and tl1e name of its ports. Ports of a process, together with the events 
defined in its public declaration section, provide the communication links of a 
process with other processes running in its environment,. 

Except in n1anners, non-local names (i.e., used but not defined in a context), 
are statically bound to the entities with the same narr1e in their enclosing con
texts. It is a compile-time error if such a non-local name remains unresolved. 
The binding of non-local names (i.e., used but not defined) in manners is dy
namic: these names are bound upon activation of a manner to the entities 
with the same name in the environment of its caller. The chain of manner 
activations leading to the present activation are traversed all the way up to the 
environment of a n1anifold instance, in search of appropriate targets for this 
binding. Names that ren1ain unresolved at this point are bound to appropriate 
benign defaults ( e.g., void described in §5.1.1 ). 

MANIFOLD supports separate compilation. This is a very effective mecha
nism for modularization of large applications. In principle, all names defined 
and used in a source file are strictly local to that file. Names ( of events, man
ners, manifolds, or atomic processes) that are used in different source files and 
must indeed designate the same entity at execution time, must be explicitly 
declared as such using extern, import, and export constructs ( see [7]). 

4 APPLICATIONS 

The MANIFOLD language has already been used to describe some simple exam
ples, like a parallel bucket sort algorithm, a simplified version of a (graphics) 
resource management and the like. The interested reader is ref erred to the 
reports published elsewhere [20, 21]. These examples were primarily meant 
to test the MANIFOLD concepts then1selves. In this section we mention some 
of the possible application areas for MANIFOLD in large-scale and non-trivial 
parallel systems. 
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MANIFOLD is an effective tool for describing interactions of autonomous ac
tive agents that communicate in an environment through address-less messages 
and global broadcast of events. For example, elaborate user interface design 
means planning the cooperation of different entities ( the human operator being 
one of them) where the event driven paradigm seems particularly useful. In 
our view, the central issue in a user interface is the design and im plementa
tic)n of the communication patterns among a set of modules4 . Some of these 
modules are generic ( application independent) programs for acquisition a11d 
presentation of information expressed in forn1s appealing to humans. Others 
are, ideally, acquisition/presentation-independe11t modl1les that in1plement var
ious functional components of a specific application. Previous experience with 
User Interi·ace Management Systen1s (see, e.g., [24]) has shown that concur
rency, event driven control mechanisn1s, and general interconnection networks 
are all necessary for effective graphical user interface systems. MANIFOLD 

supports all of that and, in addition, provides a level of dynamism that goes 
beyond many other user interface design tools. As an example, it has recently 
been used to successfully reformulate the GKS5 input model [25]; this work 
is regarded as a starting point in the development of new concepts for highly 
flexible, reconfigurable graphics Hystems suitable for parallel environments. 

Separating the specification of the dynamically changing communication pat
terns among a set of concurrent modules from the modules themselves, seems to 
lead to better user interface architectures. A similar approach can also be useful 
in applications of real time computing where dynamic change of interconnection 
patterns (e.g., between measurement and monitoring devices and actuators) is 
crucial. For example, complex process control systems must orchestrate the 
cooperation of various programs, digital and/ or analogue hardware, electronic 
sensors, human operators, etc. Such interactions may be more easily expressed 
and managed in MANIFOLD. 

Coordination of the interactions among a set of cooperating autonomous 
intelligent experts is also relevant in Distributed Artificial Intelligence applica
tions, open systems such as Computer Integrated Manufacturing applications, 
and the complex control components of systems such as Intelligent Computer 
Aided Design. 

Recently, scientific visualization has raised similar issues as well. The prob
lems here typically involve a combination of massive numerical calculations 
(sometimes performed on supercomputers) and very advanced graphics. Such 
functionality can best be achieved through a distributed approach, using segre
gated software and hardware tools. Tool sets like the Utah Raster Toolkit [26] 
were already a first step in this direction, although in the case of this toolkit 
the individual processes can be connected in a pipeline fashion only. More 
recently, software systems like the apE system of the Ohio Supercon1puter 

4 In fact, given the previous experiences of the authors, the problems arising in user
interface techniques provided some of the basic motivation to start this project in the first 
place. 

5 Graphical Kernel System is the ISO Standard for Computer Graphics. 
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Center [27], the commercially available A VS Visualization Package of Stardent 
Computer Ltd. [28], the IRIS Explorer systen1 [29] a11d others, work on the ba
sis of inter-connecting a whole set of different software/l1ardware con1ponents 
in a more sophisticated com1nur1ication network. The suc:cesses of these pack
ages, and mainly the general ideas behind them, point. toward a n1ore general 
development trend which leads to reconside1·atior1 of tl1e software architecture 
used for graphics packages in general. 

For the emerging new technologies and application areas that are expected to 
result in a tremendous growth in con1puter grapl1ics in tl1e nineties, a new soft
ware base is necessary to accommodate demands for high perforn1ance special 
hardware, dedicated application systems, distributed and parallel computing, 
scientific visualization, object-oriented n1ethods and multi-media, to na111e just 
a few. Some of the major technical concerns in the specification and the devel
opment of new graphics systerns is extensibility and reconfigurability. To ensure 
these features it is feasible to envisage a highly parallel arcl1itecture wl1ich is 
based on the concept of cooperating, specialized agents with well defined but 
reconfigurable comn1unication patterns. An ''orchestrator'' like MANIFOLD can 
prove to be quite valuable in such applications. 

5 ADAPTIVE RECURSIVE ALGORITHMS IN MANIFOLD 

In this section, a well-known class of algoritl11ns in tl1e field of computer graphics 
and image processing is described using the MANIFOLD for·malis1n. It is not 
the purpose of this section to analyze these methods from a strictly algorithmic 
point of view, nor do we intend to devise new versions of already existing 
algorithms. We simply intend to show the descriptive power of MANIFOLD 

using well-established algorithms. 
It is beyond the scope of this paper to give all the specific details of each 

algorithm. The interested reader can cor1sult or1e of the standard text books on 
computer graphics and/ or image processing (e.g., [30] for computer graphics 
and [31] for image processing) or refer to the literature given in the references 
( e.g., [32, 33, 34, 35, 36] or others). 

5.1 Warnock's Algorithm 
One of the very well known problems in computer graphics is what is usually 
referred to as Hidden Surface Removal. The problem is as follows. When 
a three-dimensional scene, usually 1nodeled using a large number of planar 
polygons in space, is visualized on a screen, all of its polygons must be projected 
onto a plane (i.e., the plane of the display screen) fron1 a given viewpoint. 
Mathematically, this projection is well understood, but there is an additional 
problem to solve: those polygons, or parts of polygons, that are occluded by 
another one, as seen from the selected viewpoint, must be eliminated. The 
removal of these (sub-)polygons is what is called the removal of hidden surfaces. 

There are several well-known and widely applied solutions to this problem. 
One of the earliest is Warnock's algorithm which is described in detail in the 
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TestAndColor() import. 
DivideArea() 

{ 

port out first_area. 
port out second_area. 
port out third_area. 
port out fourth_area . 
• import. 

export Warnock() 

process test_and_color is TestAndColor. 
process divide_area is DivideArea. 
process v is variable. 
process n is variable. 

start: 
( activate v, activate n 

activate test_and_color, 
input > ( > test_and_color, >- v), 

). 
subdivide: 

( activate divide_area, 
v > di vide_area, 
divide_area.first_area > Warnock(), 
divide_area.second_area >- Warnock(), 
divide_area.third_area > Warnock(), 
divide_area.fourth_area ➔ Warnock(), 
n=4 

); 
do wait_to_die. 

terminate: 
save. 

wait_to_die: 
void. 

terminate: 
n = n - l; 
if( n === 0, 

done: 
do end. 

end: 

do end, do wait_to_die ). 

deactivate parent. 
} 

Listing 2. Manifold Program for Warnock's Algorithm. 
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literature, e.g., in (30]. A short description of this algorith1n is as follows. 
This algorithn1 is based on a recursive area-subdivision of the computer 

screen. At each stage in the recursive subdivisio11 process, the projection of 
each polygon has one of four relationships to the area of interest ( which is, at 
the beginning, the full screen of the display): 

1. surrounding polygons completely contain the area of interest; 

2. intersecting polygons intersect the area; 

3. contained polygons are completely inside the area; 

4. disjoint polygons are completely outside the area. 

Based on these tests, there are certain cases where the exact color(s) for 
rendering the area of interest can be determined very easily. Obvious cases 
include when all polygons are disjoint fron1 the area ( and her1ce the background 
color can be used), when there is only one polygon which either intersects the 
area or is contained in it, or when there is one and 011ly one polygon which 
completely surrounds the area. There are also son1e less obvious but still easily 
decidable cases which the original version of the algorithn1 takes into account. 

There are, however, cases where there is no easy way to col or the area. In 
these cases, Warnock's algorithm subdivides the area into four equal sub-areas 
to simplify the problem and then the same method is applied recursively for 
each of the four sub-areas. The recursion stops when the din1ension of the sub
area bas reached the size of one pixel on the screen; so1ne additional calculations 
are then done to determine the color of this single pixel. 

5.1.1 A Manifold Program for Warnock's Algorithms 

Before commenting further on the algorithm, let us see how its skeleton car1 be 
described using MANIFOLD. The complete listing of the program appears as 
Listing 2. 

The program uses two (atomic) processes which implement its truly algo
rithm specific and numerically oriented details. These atomic processes are 
''imported'', which means that they are external to the present MANIFOLD 

source file and will be made available at link-time. TestAndColor is supposed 
to receive the description of an area on its standard input (as far as MANIFOLD 

is concerned, this description is just an abstract unit to be forwarded; we refer 
to it as ''area handle'' in what follows). It then performs the test on all poly
gons in the scene, following the scheme described in the previous sectio11. The 
result of this step is either: 

• the area can be filled without ambiguities, in which case TestAndColor 
raises the event done, fills the area with the calculated color(s) and ter-

• m1nates; or 
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• the area cannot be filled without ambiguities, in which case TestAndColor 
raises the event subdivide and terminates. 

The atomic process DivideArea receives an area handle on its standard 
input; it has, apart from the standard ports, four publicly declared output 
ports, onto which it places the four area handles after it performs a subdivision. 
Once these units are produced, Di videArea terminates. 

It is the manifold process Waruock that embodies the skeleton of Warnock's 
algorithm. It is important to understand the details of this program to gain 
a real insight into the descriptive power of MANIFOLD; this is why a more 
detailed description of this process is given in what follows. 

In the cieclaration part of Warnock, two instances of the atomic processes 
described above are declared. This means that the manifold Warnock now has 
a reference for these processes and can, therefore, involve them into several 
parallel pipelines, if necessary. The additional two declarations concern two 
''utility'' processes (part of the standard environn1ent of the MANIFOLD sys
tem) which are able to store some units and, if the type of the units permit, to 
perform some elementary arithmetic on them. 

The start state of Warnock activates the two variable processes and the 
local instance of TestAndColor. A pipeline is then set up, which involves a 
group as well. This pipeline describes the following relationships: 

• a unit (i.e., an area handle) arriving on the input of Warnock is redirected 
to the local instance of TestAndColor, and 

• a copy of the same unit is ''stored'' in the variable v. 

The manifold is suspended in this block and must receive an external event 
to change its state. According to our specifications, these external events may 
be either subdivide or done, depending on the result of the test performed 
on the local area. (Note that although many instances of TestAndColor may 
be active and raise the events subdivide and/or done, the only instance of 
TestAndColor visible to an instance of Warnock is its locally declared one. 
This is why the other events raised by other instances cause no confusion.) 

The state labeled subdivide is obviously the essential part of the manifold 
Warnock. The corresponding block contains, in fact, two statements, joined by 
the connective ''; '', which can be though of as a delimiter for sequential execu
tion. In the first staten1ent, the local instance of the atomic process Di videArea 
is activated and, also, four independent instances of the manifold Wa.rnock are 
implicitly created and activated ( using a process specification name in a state
ment, instead of declaring an instance in the declaration section, means the 
implicit creation and activation of an instance of that process). The pipelines 
defined in the group are fairly straight-forward: 

• the content of the variable v is transferred to the area divider, and 
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• the four handles for the generated sub-ar·eas are forwarded, respectively, 
to the four (recursive) instances of Warnock 6 . 

This series of pipelines are the 011es whic:h realize the recursive step. 
The rest of the manifold Warnock 1nakes sure tl1at the processes are t,er1ni

nated properly. A separate variable (n) is used to store tl1e ( co11stant) value 
of 4. The top-level instance of 'Warnock waits for all of its ''children'' to deacti
vate before it deactivates itself. This is done bv the combination of t,he states 

~ 

labeled wai t_to_die and terminate. The basic idea is tl1at. each instance of 
the Warnock manifold sends a deactivation request to its parent before its own 
deactivation (see the state labeled end). This deactivation request is turned 
by the MANIFOLD system into a systen1 event called terminate on the re
ceiver's side; the particularity of this event is that it can always be caught i11 

a manifold, irrespective of the visibility of its originator. This is exactly what 
the manifold Warnock does: it catches the event and checks against its counter 
to see if all of its children processes are deactivated before it ter1r1i11ates itself. 
The if statement used for this purpose is, in fact, a manner, with the obvious 
meaning and is part of the ''standard'' MANIFOLD environment. 

Note that there are two blocks in Warnock with the same label terminate. 
The reason is to avoid a race condition wl1ich can happen in the block for 
subdivide. Indeed, it is perfectly possible that di vide_area is still busy cal
culating, e.g., the fourth sub-area while the Warnock i11stance for, say, the first 
sub-area already tern1inates. Obviously, Warnock must not (yet) change state 
but it must not ignore the event either ( otherwise a non-termination will oc
cur). By putting a separate block for terminate with tl1e statement save we 
make sure that the event is neither lost nor preen1pts the state subdivide. 

If no subdivisio11 is necessary, Warnock makes a state transition to the block 
labeled done, which does an immediate state transition again. This, finally, 
leads to the termination of the manifold. Strictly speaking, it is not necessary 
to have a separate intermediary state in this case ( a block may have multiple 
labels). However, when our example is exter1ded further in the next sections, 
having a separate state will prove to be beneficial. 

5.2 Analysis of the Program 

Warnock's algorithm is an exan1ple of the image space algorithms in computer 
graphics. These algorithms are primarily concerned with images and compute 
the attributes of each pixel on the screen. Resolution of the relationships among 
objects in a scene becomes a secondary cor1cern. On t,he other hand, object 
space algorithms are concerned with the properties of and relationships an1ong 
the objects in a scene and compute an image only after these relationships 

6 The use of the term recursive is perhaps sornewhat rr1isleading here. Contrary to its 
common connotations in other programming languages, there is no implied ''wait for return 
or death of your child'' process in MANIFOLD. This means that a parent process can 
terminate (and have its resources deallocated) as soon as it spins off its (recursively created) 
children, if there is no functional requirement for it to wait for their results. 
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are determined. Warnock's algorithm is not very much in use today. Indeed, 
if the hidden surface removal is to be performed in image space, availability 
of powerful hardware makes other methods (pri111arily, the so called Z-buffer 
method) more attractive. Whether or not this preference will persist in the 
future is a matter of debate and its details are far beyor1d the scope of this 
paper. 

Nevertheless, War11ock's algorithms is still of i11terest, because it is a very 
simple example of a general principle which seems to be extremely popular 
both in computer graphics and in irnage processing. This pri11ciple is what 
we might call recursive subdivision. The idea is the extremely simple, albeit 
very powerful, concept of divide and concl1r: if a proble1n cannot be solved at a 
given level, the underlying model is somehow divided and the same algorithm is 
used recursively on the results of the division. If the subdivision of the problem 
is chosen appropriately, the problem becon1es more easily solvable for eac~h of 
the results of the subdivision. Interestingly, with a properly chosen subdivision 
scheme, such algorithms are someti1nes readily adaptable for parallel hardware. 

Although, obviously, the principle of recursive subdivision is 11ot restricted 
to computer graphics, its popularity within the con1puter graphics con1munity 
seems to be related to the special nature of the field. Indeed, the geometric na
ture of the underlying problems often gives very clear clues for how to perform 
the subdivisions and how to control its recursion in an optimal way. Thus, the 
application of recursive subdivision is very natural in working with synthetic 
or digital images. Apart from Warnock's algorithm for removal of hidden sur
faces, similar or more elaborate approaches ca11 be used in calculating and/ or 
displaying spline c11rves or surfaces [33), perforn1 calculations on CSG7 objects 
using quadtrees [32], digital filtering of images, global histogramming of digi
tal images [37], parallelizi11g such time consuming rendering procedures as ray 
tracing [35] especially on CSG objects, performing the calcl1lations 11ecessary 
to visualize volumes [ 38] , etc. 

What is the role of MANIFOLD in this respect? Looking at the program on 
Listing 2, it is clear that MANIFOLD has a real expressive power in describing 
the skeleton of a recursive subdivision algorithm. Note that tl1e atomic: pro
cesses used by the program are defined i11 a fairly abstract way; any atomic pro
cess, abiding to these specifications, can be ''plugged in'' the same MANIFOLD 

program to serve a different application. Although most of the algorithms listed 
above require a more sophisticated version of the algorithm ( and we will elab
orate on these improvements in the following sections), we believe the listing 
commented in detail in §5.1.1 makes the essential point: that using MANIFOLD 

it is possible to describe in a very concise and declarative form, the primary 
communication skeleton of a certain class of systems or algorithrr1s without 
bothering with their computational details. 

These examples also reveal another general and more important characteris
tic: most of the algorithms cited above were, originally, not meant for parallel 

7 Constructive Solid Geometry 
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hardware. Instead, the recursive subdivision approach made the problems at 
hand just (n1ore) easily solvable and manageable; it was the expressive power 
of ''parallelism'' and not perforn1ance gains per se, that was important here. It 
is almost a ''by-product'' that s01ne of these algorithms ar·e good candidates for 
true parallelism. We use the tern1 ''s0111e'' because it is no even certain that all 
these algorithms run much more efficie11tly on a true, n1assively parallel hard
ware, than on a conventional sequer1tial ·machine. Tl1ere may be a trade-off 
between the obvious gains of parallelism and otl1er considerations ( e.g., bulk 
data access). 

Nevertheless, MANIFOLD is useful for expressing the communications and 
control structl1re of these algorithms, even if the actual i1nplementation of a 
MANIFOLD system may run only on a conventional single-processor computer 
supporting simulated parallelism only ( as in the case of our first experimental 
implernentation based on Concurrent C++ ). This seems to be a clear case of 
a more general pri11ciple: it may be extren1ely beneficial to use rnental models 
which use concurrency, communication, and coordination, as natural paradigms 
to grasp the essence of a problem and/or of an algorithm. Concurrency need 
not be considered a ''necessary curse," as perceived by a large nun1ber of prac
titioners. On the contrary, it is often very helpful in conceptual simplification 
of the problem at hand. Gelernter and Carriero ( [4]) stress that: 

. . . in principle you can use the same coordination language that 
you rely on for parallel applications progran1mi11g when you develop 
distributed systems. You can use the same n1odel in building ... a 
file system. 

We agree both with this statement, and with their implied position that the 
same language can also be used to describe systems and problems at large, that 
will not necessarily end up running in a parallel or distributed environment. 
We believe that as a coordination language, MANIFOLD is useful towards these 
ends. 

5.3 Improvements to the Program 

In this section we present enhancements to the MANIFOLD program described 
in §5.1 and evolve a better framework for expressing different version of the 
adaptive recursive algorithms mentioned above. The improvement to the pro
gram is done in two steps. First, the restriction of a fixed number of subdivisions 
is relaxed. Second, we allow the possibility of backward control in the recursive 
processes; i.e., allow a parent to wait for and use the results produced by its 
children. 

5.3.1 Variable Number of Subdivisions 

The program in §5.l has an obvious restriction that may make it inappropri
ate for general use in other applications. This program has a ''hardwired'' 
subdivision feature: each area must be subdivided into exactly four sub-areas. 
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Although this is natural in the case of Warnock's algorithm, and it is trivial to 
change the number four, imposing any fixed number by itself is a constraint that 
hinders more general usability of this program for other applications. In partic
ular, a more general class of recursive subdivision algorithms use an adaptive 
subdivision scheme wherein the number of subdivisions at each level of recur
sion, as well as the subdivision boundaries, may depend on the data and thus 
Cctnnot be predetermined. 

In this section, we present an improven1ent to the MANIFOLD program of 
§5.1 that allows the nurnber of subdivisions to be determined dynamically at 
each level. To put our revised MANIFOLD program in the right perspective, we 
remark that a later version of Warnock's algorithm, called the Weiler-Atherton 
algorithm (see [30]), subdivides the screen along polygon boundaries, rather 
than along the two mid-lines of the screen. Clearly, the Weiler-Atherton algo
rithm requires a variable number of subdivisions. 

The revised MANIFOLD program now consists of two parts: the one i11 List
ing 3 and the one in Listing 4. The first part is, in fact, a somewhat simplified 
version of the program in Listing 2. We have changed the specification of the 
Di videArea process: wl1at we require now is that when Di videArea receives 
an area handle, it produces a series of area handles ( one for each sub-area) on 
its standard output and then ter·1ninates. 

The recursive step is now hidden into a separate manifold process, called 
Distribute. This program appears in Listing 4 and will be explained later. 
As far as the manifold Warnock8 is concerned, Distribute receives the area 
handles for this level's sub-areas on its standard input and, somehow, takes care 
of the recursion. A separate pipeline is set up in the block labeled subdivide 
to send these handles to a local instance of Distribute. Note that now it 
is Distribute that is responsible for proper termination; consequently, the 
counter n has disappeared from Warnock. 

As a commentary on MANIFOLD programming, note the difference between 
the two pipelines: 

v ➔ divide_area, divide_area --+ distribute 

that appear as separate group members in the state subdivide, and the some
what similar single pipeline: 

v ► divide_area > distribute 

that may be mistaken as their equivalent. While the two alternatives work 
the same as long as the flow of units are concerned, they indeed behave quite 
differently on termination. In MANIFOLD, a pipeline breaks up as soon as any 
one of its processes terminates or raises a special event break. In case of our 
single pipeline, this can happen as soon as the process v has delivered its value, 

8 By now ''Warnock'' is a misnomer for this program and ''Weiler-Atherton'' is probably a 
better name. However, we prefer to keep the name ''Warnock'' to preserve the similarity with 
the previous MANIFOLD program, for pedagogical reasons. 
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TestAndColor() 
DivideArea() 
Distribute() 

• import. 
• import. 

import. 

Warnock() 
{ 

} 

process test_and_color 
process v 

is Test And Color. 
is variable. 

process divide_area 
process distribute 

is DivideArea. 
is Distribute. 

start: 
( activate v, 

activate test_and_color, 
input > ( >- test _and_color, > v), 

). 
subdivide: 

( activate divide_area, 
activate distribute, 

); 

v > divide_area, 
divide_area > distribute 

do end. 
done: 

do end. 
end: 

deactivate parent. 

Listing 3. Program with variable area subdivision; part I. 
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Dist,rillut,c~() 
{ 

port in intt~rt1al. 
process 11 is vi\.rial)le. 

st,art,: 

( activate 11, 11 - (.) )~ do 1r1ai1t_<')rc:le. 
rnain_cvclt~: ., 

getunit(i11put) · -+ int.t"?-rn;::1.l; 
do r1ext _areii. 

next, _arE:~a: 
(n == n + 1, getunit(inter11i1.l) "., War11ock);, 
do n1ai11_cvc~lt~ . ... 

ter1ni11at,e: 
save. 

discon11ected. in r>tl t: v.rait. _for _cl {~<"tt,11: 

void. 
terrninate: 

Il Il - 1~ 
if( Il == 0, 

e11d: . 

do e11d, do wait_for -<li~atl1 ). 

} 

List,ing 4. Progra1·11 wit.11 varirtt)le area st1lldivisi<)Il~ 11art, II. 

which cru1 result, i11 the brt~akllJ) of tl1e c~o1111ec·t.i<.111 bet:w€~e11 di vide_a.rea ar1<i 
distribute, if they are all in t.l1e sa111e pipeli11e. Havrir1g tl1er11 ir1 two st~parate 
pipelines in a group, as in tl1e state subdivide ir1 List,i11g 3, t~11sures tl1at su(~l1 
premature breakups Vv"ill riot happe11. (In MANIFOLD, a grou1) tt:\r111i11ates wl1e11 

all of its n1e111bers are broken 1.1p.) 
A number of c~o11structs used in tl1e originttl Warnock progri1.111 (l..1isti11g 2) 

now appear in Distribute (see List.i11g 4). Using tl1e t~C)t111t.er n tcl c~our1t; t.he 
nu1nber of activat,ed child processes, ~., well as ha11dlir1g <)f their deac~t,i,1ations, 
are exactly the sarr1e a..q before. The prir11ary diff ere11ce is, of C'()ltrse, i11 the 
har1dling of a variable number of ir1co111ing ur1its. 

The Distribute n1anifold uses the built-in pst~uclo-pro<·f~ss9 get1Jni t whicl1 
acts as fallows: 

• it is suspe11ded 011 a port of t.he caller, as lor1g as t,}1ere is 110 1111it, available 
for delivery 011 t,he port; 

• when a u11it is or bec~o111es available, tl1is u11it is sent. out 011to t.l1e Ollt,put 
port of get11n it a11d the pseudo-prt)cess terrninat,es (i.e., t.}1e pipelir1es ir1 

9 By pseudo-process we mean one of the prir11itive actio11s <.)f MANIFOLD that behave 
like a real process in a pipeli11e, although they are 11ot truly separate processes. 
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which it is involved are broken); 

• if there is no unit available for delivery on tl1e port and there is no external 
process connected to that port, get unit is not only suspended, but it also 
raises the disconnected event ( with the selected port as the source of 
the event). 

The Distribute manifold takes advantage of these features of getunit. In 
the block labeled main_cycle (which, except for activation of the counter is the 
effective starting block of Distribute), a pipeline is set up using getuni t with 
its output connected to another ( externally non-visible) port of Distribute. 
The role of this pipeline is twofold: 

1. When a unit arrives ( actually, an area handle from the Di videArea pro
cess, although Distribute does not know the origin of the unit), it is 
picked and put into the internal port. Next, an internal state transi
tion is made which results in the activation of a new instance of Warnock. 

2. When there is no unit in the buffer of the input port of Distribute, 
and this port is no longer connected to any other port (which means 
that the connecting Di videArea process has terminated), get11ni t raises 
a disconnected event ( which results i11 the preemption of the current 
state). 

The rest is relatively clear: the unit stored in the internal port is picked 
by another instance of get11ni t, which passes it to an (implicitly activated) in
stance of Warnock, and the manifold returns to its waiting state in main_cycle. 

It may not be immediately obvious why we use a separate st,ate (next_area) 
to activate a new instance of Warnock. Indeed, merging the two states main_cycle 
and next_area is possible and also alleviates the need for the port internal, 
since we can use the pipeline 

getunit(input) > Warnock 

in the block labeled main_cycle. However, the advantage of having two sep
arate states instead of one is that we avoid an unnecessary activation of yet 
another instance of Warnock in each recursion. Using two distinct states, we 
can be sure that Warnock is activated if and only if there is another area handle 
in the internal port of Distribute. 

5.3.2 Handling Return Values 

The algorithms that can use the MANIFOLD programs in §5.1.1 and §5.3.1 are 
constrained by another limitation. Once the recursive branches of the algorithm 
start off, they do not communicate with their parents any more (or, to be 
precise, they have 110 communication expressed by the MANIFOLD program). 
This is fine (indeed, desirable) with the original Warnock's algorithm: the sub
areas of a screen can be filled independently of one another, and a parent has 
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Permanent(inp,outp) 
port out inp. 
port in outp. 

{ 
start: 

inp ➔ outp. 
} 

Permanent( middle,second) 
process middle. 
process :--;econd. 

{ 
start: 

input > middle > second. 
} 

Listing 5. Programs to set up permanent pipelines. 

no reason to stay alive and take up resources once its children are started. 
However, this is obviously inappropriate in a number of other applications. 

Once again, a slight improvement on Warnock's algorithm serves as a good 
motivating example. In §5.1.1 we assumed that the recursion stops when the 
size of an area reaches the size of a pixel. Strictly speaking, this assumption 
is true, but it results in aliasing problems (i.e., the appearance of ''staircase'' 
polygon edges and unpleasant color transitions). One of the anti-aliasing meth
ods which can be easily used with Warnock's algorithm requires the recursion 
to go on at least one more step, to the level of sub-pixels. The color properties 
computed at sub-pixel levels are then returned to the pixel level routines, which 
in turn average them out to calculated the color of their pixels. 

To use MANIFOLD for such an algorithm implies that (at least betwee11 the 
pixel and sub-pixel levels) each recursive branch must compute and return a 
value to its parent, and each parent must wait for the returned result of all of 
its children before it can complete its function and terminate. In this section, 
we modify our MANIFOLD programs to accommodate returned values. 

Listings 6 and 7 show the new version of our MANIFOLD program; they 
correspond to the Listings 3 and 4, respectively. As in the previous section, 
we only highlight the differences between the old and the new versions in this 
section. 

The specification of the atomic process TestAndColor is now slightly dif
ferent. Representing the ''bottom'' of the recursion, this atomic process is 
also required to return a value to be forwarded to the upper level ( e.g., the 
color value, in the anti-aliasing example). Additionally, a new process, called 
Merge, is defined: this process receives ''values'' on its standard input port and 
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FIGURE 4. A pictorial representation of the manifold Distribute. 

''merges'' then1 into one value delivered on its output port ( in our anti-aliasing 
example, this process calculates the average of color values it receives) 10 . What 
Merge does is to read an unknown number of units from its standard input, 
compute their ''merged'' result ( e.g., their average), write it out to its stan
dard output, and terminate. It detects the equivalent of an end-of-file on its 
standard input (if it is in fact an atomic process), or reacts to a disconnected 
event (if it is another manifold), to realize that it has received all input units 
it is expected to process. 

With these definitions in n1ind, the differences between the new and the 
old version of Warnock are not too difficult to understand. In the start 
block, the pipeline contains an additional item, which stores the output of 
test_and_color in a local port. Also, the new version of Distribute is 
expected to have an output, too, which is redirected to the output port of 
Warnock. Finally, the state labeled done is no longer only a state transition; it 
first reads the value produced previot1sly by the bottom of the recursion and 

10 Note that in Listing 6, the declaration of Merge does not specify whether it is an atomic 
process or yet another manifold. It simply states that its declaration is contained in a separate 
MANIFOLD source file, and will be available at link time. 
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transfers it to the output port. Apart from these differences, the new version 
of the Warnock manifold has an identical behavior to the previous one. 

The new version of Distribute uses two small manifolds of Listing 5 which 
are usually part of the standard MANIFOLD environment. The meaning of 
these two manifolds is clear: they set up pipelines which remain unbroken as 
long as members of the pipeline are active. Ren1ember that, according to the 
specification of MANIFOLD, if a manifold leaves a state, all pipelines set up in 
that state are broken before leaving. The use of the Permanent manifolds is to 
avoid this breakup. 

Distribute now sets up a slightly more complicated network of cor1nectior1s. 
Figure 4 is a pictorial representation of these connections. In the startup state 
of Distribute, a permanent connection (using the first version of Permanent 
in Listing 5) is set up from the output port of merge (an instance of Merge) 
to the output port of the running instance of Distribute. Note that this 
is a perfectly legitimate setup: ports of a process instance (e.g., merge) can 
be connected in pipelines even before the process is activated. Additionally, 
another pseudo-process, guard, is activated. The role of this pseudo-process is 
to raise an ever1t ( named in its argun1ent) if a unit appears on its designated 
port. 

The pipelines set up in the state next_area are slightly different: the con
nection between each new instance of Warnock and merge is set up using 
Permanent, to prevent its breakup in case of a state transition. This is where 
the second version of Permanent is used ( note that the different signatures of 
the two Permanent manifolds disambiguates the choice). 

The two events disconnected. input and wait_for_death are now handled 
by two distinct states. The state labeled wai t_f or _death is the same as before: 
it is used to wait to receive the right number of terminate events before dying. 
The new state for disconnected. input activates merge and then makes a 
transition to wai t_f or _death. 

There is a subtlety about merge that needs more explanation here. Our 
specification of Merge states that it receives an unknown number of input units, 
and detects the equivalent of an end-of-file to know they have been exhausted. 
Thus, we must make sure that at least all connections between merge and its 
suppliers are established before it is activated. This is why we connect all 
instances of Warnock to merge before arriving at disconnected. input where 
we activate it. 

Before terminating, Distribute must not only wait for all of its local in-
stances of Wa.rnock to terminate, but it must also n1ake sure that the output 
value of merge has actually arrived and is transferred out of its output port. 
This is done by the event output_arrived which is raised by guard. Note 
the use of the save action for this event; its role is the same as for the event 
terr11inate, as explained earlier. 
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6 RELATED WORK 

The ge11eral concerns which led to the design of MANIFOLD are not new. The 
CODE system [39, 40] provides a means to define dependency graphs on se
quential programs. The programs can be written in a general purpose pro
gramming language like Fortran or Ada. The translator of the CODE system 
translates dependency graph specifications into the underlying parallel con1-
putation structures. In the case of Ada, for example, these are the language 
constructs for rendezvous. In the case of languages like Fortran or C, some suit
able language extensions are necessary. Just as in traditional dataflow models, 
the dependency graph in the CODE system is static. 

The MANIFOLD streams that interconnect individual processes into a net
work of cooperating concurrent active agents are somewhat similar to links in 
dataflow networks. However, there are several important differences between 
MANIFOLD and dataflow systems. First, dataflow systems are usually fine
grained (see for example Veen [41] or Herath et. al [42] for an overview of the 
traditional dataflow models). The MANIFOLD model, on the other hand, is 
essentially oblivious to the granularity level of the parallelism, although the 
MANIFOLD systen1 is mai11ly intended for coarser-grained parallelism than in 
the case of traditional dataflow. Thus, in contrast to most dataflow systems 
where each node in the network performs roughly the equivalent of an assembly 
level instruction, the computational power of a node in a MANIFOLD network is 
much higher: it is the equivalent of an arbitrary process. In this respect, there 
is a stronger resemblance between MANIFOLD and such higher level dataflow 
environments like the so called Task Level Dataflow Language (TDFL) of Suhler 
et al. [43]. 

Second, the dataflow-like control through the flow of information in the net
work of streams is not the only control mechanism in MANIFOLD. Orthogonal 
to the mechanism of streams, MANIFOLD contains an event driven paradigm. 
State transitions caused by a manifold's observing occurrences of events in its 
environment, dynamically change the network of a rl1nning program. This 
seems to provide a very useful complement to t.he dataflow-like control mech
anism inherent in MANIFOLD streams. 

Third, dataflow programs usually have no means of reorganizing their net
work at run time. Conceptually, the abstract dataflow 1nachine is fed with 
a given network only once at initialization time, prior to the program execu
tion. This network must then represent the connections graph of the program 
throughout its execution life. This lack of dynan1ism together with the fine 
granularity of the parallelism cause serious problems when dataflow is used in 
realistic applications. As an exan1ple, one of the authors of this paper partic
ipated in one of the very rare practical projects where dataflow programming 
was used in a computer graphics application [44]. This experience shows that 
the time required for the effective programming of the dataflow hardware ( al
most 1 year in this case) was not commensurate with the rather simple func
tionality of the implemented graphics algorithms. 

The previously mentioned TDFL model (43] changes the traditional dataflow 

114 



model by addi11g the possibility to use high level sequential programs as com
putational nodes, and also a means for dynan1ic modification of the connec
tions graph of a running program. Hc>wever, the equivalent of the eve11t driven 
control n1echanism of MANIFOLD does not exist. i11 TDFL. Furthermore, the 
progran1rning language available for liefinir1g individual 111a11ifolds seems to be 
incomparably richer tl1an the possibilities offered i11 TDFL. 

FolloVvTi11g a very different mer1tal path, the aut,hors of LINDA [5, 6] were also 
clearly concerned witl1 coordination of con1111unicatio11s and the reusability of 
existi11g software. LINDA uses a so called generative comrnunication n1odel, 
based on a tuple space. The tuple space of LINDA is a ce11trally 111anaged space 
which contai11s all pieces of infor111ation tl1at processes ,vant to communicate. 
A process in LINDA is a black box. Tl1e tuple space exists outside of these 
black boxes which, effectively, do the real con1putir1g. LINDA processes can 
be written in any language. The sen1antics of the tuples is independent of the 
underlying programming language used. As sucl1, LINDA supports reusability 
of existing software as components in a parallel system, mucl1 like MANIFOLD. 

Instead of designing a separate language for defi11ing processes, the autl1ors of 
LINDA have chosen to provide la11guage extensions for a number of different ex
isting progra111n1ing languages. 1"his is necessary in LINDA because seemingly, 
its model of co111n1unication (i.e., its tuple space and the operatio11s defined for 
it) is not intended to express con1putation of a ge11eral 11ature by itself. The 
LINDA language extensions on one l1and place certain co111munication concerns 
inside of the ''black box'' processes. On the other hand, there is no way for a 
process in LINDA to influence other processes in its environment directly. Con1-
munication is restricted to the inforn1ation contained in the tuples, voluntarily 
placed into and picked up from the tuple space. We believe a mechanism for 
direct influer1ce (but not necessarily direct control), such as the event driven 
control in MANIFOLD is desirable in parallel programn1ing. 

One of the best known paradig1ns for organizing a set of sequential processes 
into a parallel system is the Commu11icating Sequential Processes model for
malized by Hoare (2, 3] which served also as a basis for the development of the 
language Occan1 [12]. Clearly not a programming language by itself, CSP is 
a very general model which has been used as the foundation of many parallel 
systems. Sequential processes in CSP are abstract entities that can communi
cate with each otl1er via pipes and events as well. CSP is a powerful model for 
describing the behavior of concurrent systems. However, it lacks some useful 
properties for constructing real systems. For exan1ple, there is no way in CSP to 
dynamically change the communications patter11s of a running parallel system, 
u11less such changes are hard-coded inside the communicating processes. The 
communications between a process and its environ1nent are an integral part of 
its semantics in CSP. Occam inherits both of these characteristics from CSP. 
In contrast, MANIFOLD clearly separates t,he functio11ality of a process from 
the concerns about its communication with its environment, placing the latter 
entirely outside of the process itself. The responsibility for establishing and 
managing the interactions among processes in a parallel system is completely 
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taken over by manifolds. A manifold orchestrates the ir1teractions among a set 
of processes (so1ne of which rnay be other n1anifolds) without their knowledge. 

Another significant difference between CSP (arid Occan1) a11d MANIFOLD 

is that all comn1unication in CSP is sy,.nchror1ous 1 wl1ereas everytl1ing (includ
ing events) in MANIFOLD are async:hro11ous. Furtl1err11ore, tl1e data-flow-like 
means of comn1unication and its assoc:iated control n1echanisn1s are deen1ed es
pecially important in MANIFOLD, for which it has first class suppor·t, througl1 
special language constructs. 

An important distinction betwee11 MANIFOLD and r11any otl1er syste1ns (e.g., 
Occam) is that they generally fix the nun1ber of processes, the topology of 
the communication network, and the potential connectivity of each individual 
process at compile time. MANIFOLD processes, on the other hand, do not know 
who they are connected to, can be created dynamically, and can be dynan1ically 
connected/disconnected to/fron1 other processes while they are running. 

An ISO standard for ope11 syste111s interconnection is the language LOTOS 
(Language Of Ten1poral Ordering Specification)[45, 46, 47]. It is a for1nal 
description technique based on the ten1poral ordering of observable behavior of 
concurrent processes. The LOTOS language is based 011 a co11curre11cy n1odel of 
parallelism described by Milner, called CCS (see [l]). (CCS is similar i11 its flavor 
to CSP, although there are significa11t differe11ces between then1.) The aton1ic 
form of interaction in LOTOS is tl1rough events which, as ir1 CSP, syncl1ronize 
their participating processes. The behavior of a p1·ocess in LOTOS is described 
in behavior expressions that are composed of simpler behaviors using sequential 
and choice operators. LOTOS includes n1any other language constructs, e.g., to 
support abstract data types. Nevertheless, its view of parallelism is essentially 
the same as CSP. 

As mentioned in §2, the complexity of using languages like Ada, Occam, 
and Concurrent C++ can become overwhelming in highly parallel applications 
that require dynamically changi11g communication patterns. The MANIFOLD 

environment offers an abstraction of the necessary co1nmu11ication facilities 
which can then be built on top of a distributed programmi11g language like 
Concurrent C++, or Ada. 

7 DIRECTIONS FOR FURTHER WORK 

More experience is needed with a fully operatior1al MANIFOLD systen1 to eval
uate its potentials and the adequacy of its constructs in real, practical appli
cations. Nevertheless, it is already clear that certain changes and extensions 
to the MANIFOLD language can have a positive impact on its use in large and 
complex systems. Several such improvements are currently in our list, of which 
we mention only a few major ones here. 

For instance, the notion of derived manifolds n1ay be a useful extension to 
the language. This concept leads to a hierarchy of manifold definitions with 
inheritance, analogous to the class hierarchies in object oriented languages. 
Language support for such syntactic conveniences seem to be quite useful in 
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large software developments. 
An issue that we have encountered a few tin1es in our examples is a need for 

directed events. Strictly speaking, the concept of event in the MANIFOLD model 
is, of course, contrary to the notion of directed events, because MANIFOLD 

events are broadcast and can be picked up by any process in t.he environment. 
We do not yet know how in1portant the need for dir·ected events is, because we 
have been able to do without them so far. Nevertheless, the effect of directed 
events can be supported at the language level in MANIFOLD by introducing 
proper constructs to explicitly control the observability of event sources and/ or 
the preemption sets of manifolds. Observability and preen1ption sets are both 
defined implicitly in the current MANIFOLD language: they are derived by 
the compiler from the source code. Syn1metric to the way in which a third 
party process can define streams between two other processes in the current 
MANIFOLD language, new language constructs can allow processes to define 
and modify observability and/ or preemption sets. 

8 CONCLUSIONS 

This paper is a11 overview of the MANIFOLD system and sketches the highligl1ts 
of its implementation. More experience is still necessary to thoroughly evaluate 
the practical usefulness of MANIFOLD. However, our experience so far indicates 
that MANIFOLD is well suited for describing complex systen1s of cooperating 
parallel processes. 

MANIFOLD uses the concepts of modern programn1ing languages to describe 
and manage connections among a set of independent processes. The unique 
blend of event driven and data driven styles of programming, together with the 
dynamic connection graph of streams seen1 to provide a promising paradigm for 
parallel programming. The emphasis of MANIFOLD is on orchestration of the 
interactions among a set of autonomous expert agents, each providing a well
defined segregated piece of functionality, into an ir1tegrated pa1~allel s3irstem for 
accomplishing a larger task. The declarative nature of the MANIFOLD language 
and the MANIFOLD model's separation of communication and coordination 
from functionality and coordination, both significantly contribute to sin1plify 
programming of large, complex parallel systems. 

In the MANIFOLD model, each process is responsible to pr·otect itself from its 
environment, if necessary. This shift of responsibility from the producer side to 
the consumer of inforn1ation seems to be a crucial necessity in open systems, 
and contributes to reusability of modules in general. This model irnposes only 
a ''loose'' connection between an individual process and its environment: the 
producer of a piece of inforrnation is not concerned with who its consumer 
is. In contrast to systems wherein most, if not all, information exchange takes 
place through targeted send operations within the producer processes, processes 
in MANIFOLD are not ''hard-wired'' to other processes in their environment. 
The lack of such strong assumptions about their operating environment makes 
MANIFOLD processes more reusable. 
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The recursive algorithms as well as the example related to the IRIS Explorer 
system, described in MANIFOLD, are 011ly small-scale albeit important practical 
examples for the usage of MANIFOLD. However, MANIFOLD can be used to 
in1plement more complex interactions, e.g., in a ltser interface toolkit, as well. 
For example, in a separate paper, [25], we describe an i111plementation of the 
GKS logical input device in MANIFOLD. 

In our view, massive parallel systen1s and the current tre11d in co1nputer 
technology toward computing farms open new horizons for large applic:ations 
and present r1ew challenges for software technology. Classical views of paral
lelis1n in programming languages that are based on extensio11s of the sequential 
progran1ming paradigm are ill-suited to meet this challenge. We also believe 
that it is counter-productive to base programming paradigms for computing 
farms and massively parallel systems solely on strictly synchronous communi
cation. Many of the ideas u11derlying the MANIFOLD system, if 11ot the present 
MANIFOLD language itself, seem promising towards this goal. 
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Test And Colar () 
DivideArea() 
Merge() 
Distribute() 

• import. 
• import. 
• import. 
• import. 

Warnock() 
{ 

} 

process test_and_color is TestAndColor. 
process v is variable. 
process divide_area is DivideArea. 
process distribute is Distribute. 
port in internal. 

start: 
( activate v, 

activate test_and_color, 
input , ( > test_and_color ➔ , > v) ~ internal, 

). 
subdivide: 

( activate divide_area, 
activate distribute, 

); 

v > divide_area, 
divide_area - distribute, 
distribute ► output 

do end. 
done: 

getunit(internal) , output; 
do end. 

end: 
deactivate parent. 

Listing 6. Program with return values I. 
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Distribute() 
{ 

} 

port 
process n 
process merge 

start: 
( • activate n, 

in internal. 
is variable. 
is Merger. 

Permanent( merge.output,self.output ), 
guard( self.output,output_arrived), 
n=O 

); 
do main_cycle. 

main_cycle: 
getunit(input) ---i- inte1·nal; 
do next_area. 

next_area: 
(n = n + 1, getunit(internal) > Permanent(Warnock,merge) ); 
do main·cycle. 

terminate: 
save. 

disconnected.input: 
( activate merge, do wait_for _death ) . 

wait_for _death: 
void. 

terminate: 
n == n - 1· 

' if ( n == 0, do end, do wait_for_death ). 
output_arrived: 

save. 
end: 

void. 
output a.rrived: . 

Listing 7. Program with return values II. 
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