
Comparing Negation in Logic Programming

and in Prolog

Krzysztof R. Apt
CW/

and
Faculty of Mathematics and Computer Science

University of Amsterdam, Plantage Muidergracht 24

1018 TV Amsterdam, The Netherlands

Frank Teusink
CW/

Many aspects of Artificial Intelligence can be clarified and made rigorous by
using tools and concepts originating in mathematical logic. Cor Baayen has
stimulated this research programme at CWI. This paper provides an example
of this form of work and is offered to him at the occasion of his retirement
from CWI. The second author is a PhD student employed by SION. His
coauthorship is a tribute to Cor Baayen's successful efforts of ensuring a
smooth cooperation between CWI and SION.

Mathematical logic has played a useful role in clarifying concepts and ideas
advanced in Artificial Intelligence. However, for specific applications it is
often needed to modify and extend well-known logic formalisms, sometimes
in an unusual way.

A case in point is the treatment of negation in Prolog. To properly render
its meaning and compare formally its use to that in logic programming we
had to extend the customary logic programming formalism by allowing vari
ables standing in atom positions (so called meta-1.,ariables) and adopting
ambivalent syntax.

To define the computational process of Prolog one needs to define formally
backtracking, which is an algorithmic concept. We found a simple account
of it by means of a single operation on finite ordered trees. To deal with the
cut operator one more operation is needed.

After taking care of these matters we establish a formal result showing an
equivalence in appropriate sense between these two uses of negation - in
Prolog and in logic programming. This result allows us to argue about cor
rectness of various known Prolog programs which use negation by reasoning
about the corresponding logic programs.

65

This paper is a shorter version of a chapter from Meta-pr·ogramming in
Logic Programming, K.R. Apt and F. Turini {editors), The MIT Press, (in
preparation).

1 lNrfRODUCTION

Duri11g tl1e last 15 years, a lot of attentio11 was devoted to t,he study of negation
in logic progran1r11ing. No less tha11 seve11 Sl1rvey art,icles 011 this sul)ject were
published. J llSt to 111ention t.wo 1nost recent ones: Dix [Dix93] and Apt· a11d
Bol [AB94].

The mai11 reason for this interest is that i11 tl1e logic progra111n1ing setting r1eg
ative literals can be used to n1odel no11-monoto11ic reaso11ir1g. Tl1e computation
process of logic progran1ming provides the11 a readily available corn putational
interpretation. This is 11ot tl1e case with other approacl1es to non-1nonoto11ic
reaso11ing. This computation process is called SLDNF-resolutior1 a11d was pro
posed by Clark [Cla78]. Negatio11 is interpreted i11 it usi11g tl1e ''r1egation as
finite failure'' rule. Intuitively, this rule works as follows: for a ground atorn A,

........ 1A suc~ceeds iff A finit,ely fails,
,A fi11itely fails iff A succeeds,

where ''finitely fails'' rr1eans that the correspondi11g evaluatior1 tree is finite arid
all its leaves are marked as failed.

However, SLDNF-resolutio11 is not a practical way of computing and usually
one resorts to Prolog when seeki11g for a computational interpretation. But
in Pro log negation is implemented in a diff ere11t, way, namely by the predicat,e
(or synonyn1ously relat,ion syn1bol) neg defi11ed i11ternally by tl1e following two
clauses:

neg(X) ~ - X, !, fail.

neg(X) < •

(1)

(2)

where ''!'' is the cut operator and fail is a Prolog built-in with the en1pty
definition.

The intuition behind this definition is perhaps best revealed by first intro
ducing the if _then_else predicate defined as follows:

if_then_else(P, Q, R) ..._<

if_then_else(P, Q, R) .._,
P,~,Q.
R.

if_then_else is intended to model within Prolog the customary

if P then Q else R

construct of imperative programming languages. Then neg can be equivalently
defined by

neg(X) -< if_ then_else (X, fail , □) .

66

where Dis the empty query which immediately s11cceeds. So intuitively, neg(X)
can be interpreted as ''if X succeeds then fail else succeed''.

It is usually tacitly assun1ed that logic programn1i11g and Prolog ways of
dealing with negation are ''equivalent'', in the sense that SLDNF-resolution
combined with the leftmost selection rule (he11ceforth called LDNF-resolution)
properly reflects Prolog's way of handling negation. Upon closer scrutiny this
assumption is far fro1n being obvious. The above definition of the neg predicate
a11d its use in programs calls upo11 a number of features which are present in
Prolog, but absent in logic program111ing, and for whicl1 a formal treatment is
lacking. These are:

• the 11se of meta-variables, that is variables which occur in an atom posi
tion, like X in the first clause,

• the use of n1eta-programming facilities that arise when applying this def
inition of neg, so in constructs of the form neg (A) where A is an atom,
or a query in general.

Additionally, two better under·stood, though not necessarily sin1pler to handle,
features of Prolog need to be taken care of, namely:

• the ordering of the program clauses,

• the use of the cut operator ''!''.

The aim of this paper is to relate precisely these two uses of negation: in logic
programming and in Prolog. To do this we appropriately tune the definition
of the SLDNF-resolution given in Apt and Doets [AD94] to our present needs
and formally define ''Pro log trees'' in the presence of the cut operator. Then
we prove a result that shows an appropriate equivalence between these two
definitions of negation.

The outcome of this study is that we can now interpret various results
about correctness of general logic programs executed by means of the LDNF
resolution (see e.g. Apt [Apt94]) as correctness results about the corresponding
Prolog programs that use negation.

2 SYNTACTIC MATTERS

2.1 General Logic Pr··ograms

To relate general logic: programs to Prolog programs we have to be precise about
the syntax. Fix a first-order language .C. To make this comparison possible we
assume that

• a general program is a sequence and not a set of general clauses,

• the predicates ! , neg and fail are not present in the language .C.

67

A gen,eral clause is defined in the usual way (see e.g. Lloyd [Llo8 7]), so as a
construct of the form A < L 1 , .• • , Lri, wher·e .. 4 is a11 aton1 and L 1 , .•• , L 1i are
literals, i.e. ato1ns or t,heir negations, all in the la11guage £. A11d a q·uery is
a finite sec111ence of lit,erals. In t,l1e C'.011t.ext, of logic progra111r11i11g the r1egatior1
connective is written as '' ,''.

2.2 Prolog Progr·ams

Prolog prograrns here c:onsidered are inte11d<:~d to l)e the progran1s tl1at allow
us to model tl1e negation by n1ear1s of tl1e predic'.at.e neg cle:fir1ed by tl1e clal1ses
(1) a11d (2). However, the syntax of clause (I) creates a number of problen1s,
even if we ignore tl1e cut operator ''!''.

First of all, the use of the meta-variable X i11 clause (1) violates the syr1tax
of the first-order logic. This use of X ir1 the resolt1tion process leads to further
complications. Take an 11,-ary functio11 sy1nbol p i11 the language .C and let
s1, ... , s.n. be son1e terms. Consider now t,he query neg(p(s1, ... , s,n)). Dur
ing Prolog con1putation process it resolves usi11g the clause (1) to the query
p(s1, ... , Sn),! ,fail. Now i11 the fi1·st. query p oc'.curs i11 a positio11 of a fur1ctio11
syn1bol, whereas in the sec~o11d or1e p oc~curs in a l)ositio11 of a relatio11 sy1nbol.
So every fu11ction syn1bol 11eeds also to l)e acceptecl as a relation sy111bol.

Also conversely: take a11 ri-ary relatio11 sy111bol p witl1 s0111e tern1s s 1 , ... , Sn,

and consider the ge11eral clause p(s1 , ..• , Sri) , 1p(s1, ... , Sri). Its desired trans-
lation into a Prolog clause is p (s1 , •.. , s.,,.) E neg (p (s1 , ... , s 7i)). In tl1e head
of the latter clause p occurs in a position of a relation syn1bol, wl1ereas in its
body i11 the position of a function symbol.

As in both cases p was arbitrarily cl1osen, we co11clude that to re11der the
resolution process meani11gful we need to accept tl1at the classes of function
symbols and of relatio11 symbols in the underlying language coincide.

This is clearly ir1 violation with the (usually tacit) assumption that in the
first-order language, say £, fixed above, the classes F,ri and R.,i of, respectively,
its fu11ction syn1bols of arity m and its relation syn1bols of arity n are pairwise
disjoint for m, n > 0. In short, the use of the clause (1) cc1.,nr1ot be p1·operly
accounted for by just referring to the first-order logic.

A simple solution to the above 111e11tioned two pro blen1s is to n1odify the
syntax of the language .C by allowing

• meta-variables, so variables that can occur i11 atoms positio11s, both in
the queries and in the clause bodies,

• ambivalent syntax, so - i11 this case -- by assu111ing that the classes of
function and relation symbols coi11cide.

The latter can be achieved by extending .C to a language in w hic~h for each
m > 0 F1,i U R,,n are the classes of both its functio11 sy1nbols and relation
symbols. Thus in this language terms and atoms coincide.

Additionally, we assume that

68

• the predicates ! , neg and fail are present i11 the underlying language,

• ! is a built-i11 0-ary predicate (with a 1r1eaning to be explained later), and
no clause uses it in its head,

• neg is a built-in predicate defir1ed by tl1e c~lauses (1) and (2), so no other
clause uses it in its head,

• fail is a built-in 0-ary predicate witl1 tl1e empty <lefinitior1, so r10 cla11se
uses it in its head.

The last two assumptions ensure t.hat neg and fail are indeed defined in
ternally in the desired way. For the purposes of syntax tl1e cut operator ''!'' is
viewed here as a 0-ary predicate with the empty definition. This n1ight suggest
that its meaning coincides with that of fail. However, tl1is is not the case. Its
real, operational, ''meaning'' will be defined in Section 4 by means external to
the resolution process.

So in the resulting language, apart oft.he customary atorns, also !, fail and
meta-variables are admitted as atorns (henceforth called special atoms).

Now, a Prolog program is defi11ed as a seque11ce of Prolog clauses preceded
by the clauses (1) and (2). In tur11 a Prolog clause is a construct of the forn1 A
< B1, ... , B 11., where A, B 1 , ... , B.,-,, are atoms in the language C, and A is not
a special aton1. And a Prolog query is a finite sequence of ato111s. For brevity,
in the examples of Prolog progran1s, we drop the listing of the clauses (1) a11d
(2). Finally, we denote sequences of aton1s or literals by bold capital letters.

Note that at this stage we use two notions of an atom - one within the
language .C and another in its ambivalent extensio11 just defined. Frorn the
context it will be always clear to which of these two languages we refer.

2.3 Restricted Prolog Programs
The translation of a ge11e1·al program to a Prolog progra111 is now straightfor
ward and as expected: we just replace everywhere a logic progra111mi11g liter·al

1A by Prolog's atom neg(A) and prefix the resultir1g program with the clauses
(1) and (2). In short, the logic progran1ming negation connective '' ,'' is traded
for the built-in predicate neg. Sirr1ilarly, a general query is translated to a
Prolog query by replacing everywhere ,A by neg (A).

This translation process maps every general program (resp. general query)
onto a Prolog program. However, not every Prolog program (resp. Prolog
query) is the result of translating a general program (resp. general query).
Indeed, in general the cut operator ''!'' can be used in any Prolog clause., not
only (1).

Let us now characterize the Prolog programs (resp. Prolog queries) which are
the result of the above translation of general progra1ns (resp. general queries).
We call them restricted Prolog programs (resp. restricted Prolog queries). To
this we translate ''back'' every Prolog program (resp. Prolog query) onto a
general program (resp. general query) by replacing everywhere neg(A) by 1A,

69

and omitting the clauses (1) and (2) tl1at define the neg predicate. Then a
Pro log program (resp. Prolog query) is restricted if the outcome of this reverse
t.ranslation is a syntac!tically legal general prograrn (resp. general query). For
example the Prolog query neg(q), q is rest,ricted because its reverse translation
is 1q, q, whereas neithe1· neg(q(neg(a))) nor p(q) ,q is restricted because their
respective reverse translatio11s violate the syntactic assumptions concer11ing
general programs.

Of course, it is possible to define the class of restricted Prolog progran1s and
queries directly, though the resultir1g definitior1 is rather tedious.

We now define a resolvent of· a Prolog query as follows.

DEFINITION 2 .1 Consider a non-empty Prolog query A, M and a Prolog clause
c. Let H ~ L be a variant of c variable disjoint with A, M and let 0 be an mgu
of A and H. Then (L, M)0 is called a resolvent of A, M and c u1ith an mgu 0.
□

The only unusual feature in tl1e present setting is, tl1at now the n1gu's also
bind the 1neta-variables. Also, note that the selected literal is always the left
most literal.

It is worthwhile to 1nentio11 that a resolvent of a restricted Pr·olog query
w.r.t. a restricted Prolog progran1 is not necessarily a r·estricted Prolog query.
This is due to the use of clause (1), which introduces a cut ato1n. Thus, the
Prolog queries generated in a computation of a restr·icted Prolog query a1·e not
necessarily restricted Prolog queries. However, the Prolog queries so generated
do have one important property: tl1ey do not contain meta-variables. To prove
this fact we 11eed a stronger property.

DEFINITION 2.2

• An atom A is called unsafe if one of the following holds:

A is a meta-variable,

A is neg(X) where X is a variable,

A is neg(neg(s)) where s is a term.

• A Prolog query is called meta-safe if none of its atoms is unsafe. □

For example, X, p (X) is not meta-safe because its leftn1ost atorn is a meta
variable, neg (X) is not n1eta-safe because the argument of neg is a n1eta
variable, and neg(neg(p(X))) is not meta-safe because the argument of the
outermost neg predicate is itself a neg predicate.

Note that restricted Pro log queries and bodies of the restricted Pro log clauses
are meta-safe.

LEMMA 2.3 Let Q be a meta-safe Prolog query and P a restricted Prolog pro
gram. Then all resolvents of Q are m,eta-safe.

Proof: Let Q be of the form A, L, and let (M, L)B be a resolvent of Q, with

70

an input clause c and mgu 0. As Q is meta-safe, we know that L0 is meta-safe.
We prove that MO is meta-safe as well. Three cases arise.

Case 1 : c is clause (1).

Then M0 is of the form B, ! , fail, where A is of the form neg(B). But
Q is meta-safe, so B is neither a meta-variable r1or of the form neg (B').
So M0 is n1eta-safe.

Case 2 : c is clause (2).

Then MO is the en1pty query, so obviously meta-safe.

Case 3 : c is different from clauses (1) and (2).

The1-l the body of c is meta-safe, and consequently so is M0.

This proves that (M, L)0 is meta-safe. □

COROLLARY 2.4 All Prolog queries generated in a computation of a restricted
Pro log query and a rest,r·icted Pro log program are meta-safe. □

In Prolog, if the selected aton1 js a meta-variable, an error arises. The above
result thus shows that no errors arise in Prolog computations for queries and
programs that are obtained by a translation of a general query and a general
program.

3 COMPUTING WITH GENERAL LOGIC PROGRAMS: LDNF-RESOLUTION

As the next step we define the LDNF-resolution that allows us to compute with
general logic programs. The definition of LDNF-resolution given here is derived
in a straightforward way from that of the SLDNF-resolution given in Apt and
Doets [AD94]. Apart of the fact that we view in this paper a general program
as a finite sequence a11d not as a finite set of general clauses, the differences are
that:

• the leftmost selection rule is used,

• floundering, so -in this context- an abnormal termination due to selection
of a non-ground literal is ignored.

In this way we bring the procedural interpretation of general programs closer
to that of the corresponding Prolog programs and make the subsequent com
parison possible. Recall from Clark [Cla78] and Lloyd [Llo87] that floundering
is a problem that arises only when dealing with the semantic aspects of the
SLDNF-resolution, which are irrelevant here.

Before giving the definition of LDNF-resolution, we recall the definitions of
resolvent a11d pseudo-derivation.

DEFINITION 3.1 Consider a non-empty ge11eral query L, Mand a general clause
c.

71

• Suppose L is a positive literal.

Let H -< · L be a variant of c va1·iable disjoi11t with L, M and let 0 be an
mgu of Land H. Then (L, M)0 is called a resolvent of L, M and c w.r.t.
L, with an mgu 0.

We write then L, M : > (L, M)0, and call it. a positive derivation step.
We call H < L the input cla,use of the derivation step.

• Suppose L is a negative literal. The11 M is called a r·esolvent of L, M
with tl1e identity substitution E w. r. t. L.

We write then L, M c M, and call it a negati1;e deri1.,ation step.

• A general clause c is called applicable to an at,om if it has a variant the
head of which unifies with the atorr1. D

Fix, until the end of this section, a general progran1 P.

'-1 C ti+ 1

of derivation steps is called a pse,udo derivation of PU { Q0 } if

• Qo, ... , Qn, ... are general queries,

• 01, ... , 0n, . .. are substitutions,

• c1 , ... , c,,1, . . . are general clauses of P, or 0,

and for every step involving select,ior1 of a positive literal the following condition
holds:
Standardization apart: the input clause e1nployed is variable disjoi11t fro1n
the initial general query Q0 and from the substitutions a11d i11put clauses used
at earlier steps. D

Intuitively, an LDNF-derivation is a pseudo derivation in which the deletion
of every negative literal is justified by n1eans of a subsidiary (finitely failed
LDNF-) tree. This brings us to conside1· special types of trees, called forests.

DEFINITION 3.3 A forest is a syste111 :F == (F, T, subs) where

• F is a set of trees,

• T is an eleme11t of F called the main tree, and

• subs is a function assigning to s0111e 11odes of trees in F a ("'subsidiary'')
tree from F.

By a path i11 :F we mean a sequence of nodes JVo, ... , Ni, . .. such that for all
i, Ni+I is either an i1n1nediate descendant of _Ni in some tree in :F, or the root
of the tree subs(Ni)- The depth of Fis the lengtl1 of the longest path in :F. □

72

Thus a forest is a special directed graph with two types of edges - the ''usual''
ones sten1ming from the tree structures, and the ones connecting a node with
the root of a subsidiary tree. An LDNF-tree is a special type of forest, built as
a limit of certain finite forests: pre-LDNF trees.

DEFINITION 3.4 A pre-LDNF-tree (relative to P) is a forest whose nodes are
queries. Leaves can be u111narked, or ca11 be n1arked as eithe1· .s,ucce.ss or failure.
Tl1e ('.lass of pre-LDNF-trees is defi11ed ind11ctively:

• For every general query Q, the forest consisting of the 111ain tree which has
the single unmarked node Q is a pre-LDNF-tree (an initial pre-LDNF
tree),

• If Tisa pre-LDNF-tree, then any extension of Tisa pre-LDNF-tree.

Before defining tl1e notion of an extension of a pre-LDNF-t1·ee, we need to
define the notion of successful and finitely failed trees: for T E T,

• T is called successful, if one of its leaves is marked as S'Uccess, and

• T is called finitely failed, if it is fi11ite and all its leaves are n1arked as

failure.

Now, an extension of a pre-LDNF-tree T is defined by performing the following
actions for every non-empty general query Q (with leftn1ost literal L) which is
an unmarked leaf in some tree TE T:

• Suppose that L is a positive literal.

If Q has no resolvents w.r.t. L and a clause fro111 P:

Mark Q as failure.

- If Q has such resolvents:
For every clause c from P which is applicable to L, choose one
resolvent Q' of Q w.r.t. Land c, with an mgu 0, a,nd add this as an
immediate descendant of Q in T. Choose the input clauses in such
a way that all branches of T remain pseudo derivations.

• Suppose that L is a negative literal, say ,A.

- If subs(Q) is undefined:
Add a new tree T', consisting of the single node A, to T, and let
subs(Q) = T'.

If subs(Q) is defined and successful:

Mark Q as failure.

- If subs(Q) is defined and finitely failed:
Add the resolvent Q - { L} of Q as the only in1n1ediate descendant
of Qin T.

73

.

p p p

initial

ext.

' : >
ext.

:)
ext.

' ~>
,q, r ,q, T

' ' ' ' q

p

,q, r

' ' ' ' q

□
success

p
ext.

>
,q, r

failur~,
' ' q

□
success

FIGURE 1. Step-by-step constructio11 of an LDNF-tree for the query p w.r.t.
the general program p ~ --,q, r q < ·••

Additionally, all empty queries a1·e n1arked as success. □

Note that, if no tree in T has un1narked leaves, the11 trivially T is a11 extension
of itself, and the extension process becon1es stationary.

Next, we define LDNF-trees as the lin1it of sequences of pre-LDNF-trees.
Every pre-LDNF-tree is a tree with two types of edges between possibly marked
nodes, so tl1e concept,s of inclusion between such trees and of limit of a growing
sequence of such trees have a clear meaning.

DEFINITION 3.5
• An LDNF-tree is a lin1it of a sequence To, ... , Ta, ... such that To

initial pre-LDNF-tree, and for all i li+i is an extensio11 of T;,.

•
1s an

• An LDNF-tree for Q is an LDNF-tree in which Q is the root of the main
tree.

• A (pre-)LDNF-tree is called s·uccessful (resp. finitely failed) if the main
tree is successful (resp. finitely failed).

• An LDNF-tree is called finite if no infinite path exists i11 it (cf.
3.3).

Definition

□

In Figure 1, we show how the notions of initial pre-LDNF-trees and extensions
of pre-LDNF-trees are used to construct a P-tree.

Finally, we recall the notion of a computed answer substitutio11.

DEFINITION 3.6 Consider a branch in the main tree of a (pre-)LDNF-tree for
Q which ends with the empty query. Let a 1 , ... , an be the consecutive substi
tutions along this branch.

Then the restriction (a 1 · · ·an) IQ of the composition o 1 · · · O:n to the vari
ables of Q is called a computed answer substitution (c.a.s. for short) of Q.
□

74

4 COMPUTING WITH PROLOG PROGRAMS: P-RESOLUTION

In this section, we define the computation process used in Prolog to find answers
to queries, which we call P-resolution. To this end we proceed in two steps.

First, we restrict the LDNF-resolution to logic programs, so general logic
progran1s without negation, by sin1ply disregarding the selectior1 of a negative
literal. We call the resulting computation process LD-resolutiori.

Then, we extend the LO-resolution to Prolog programs by allowi11g the choice
ot· a meta-variable or of a cut aton1 as a selected atom. In tl1e first case an
error is reported, and in the second case the computation tree constructed so
far is appropriately pruned.

In Prolog, answers are computed using a left to right depth-first strategy.
In particu :ar, Prolog processes the c:ut atoms in the tree from left to right.
On the ot11er ha11d, LD-resolution is defined in a breadtl1-first rr1anner: the
process of extending a pre-tree consists of extending all unmarked leaves of that
tree simultaneously. To solve this problem, we have to refine LO-resolution so
that the depth-first strategy is used instead of the breadth-first strategy. At
first sight it seems that to this end we have to implement the backtracking
mechanism used by Prolog. Fortunately, it is not so. A si1npler alternative
is to generate at each stage all direct successors of the leftmost unmarked leaf
only. In this way the backtracki11g process is taken care of automa.tically.

Having discussed the modifications of the LD-resolution we now model the
computation process of Prolog, by providing a for1nal definition of P-resolution.
The central notion in this definition is that of a P-tree. We define them as the
limit of a sequence of pre-P-trees, which in turn are a subclass of a class of
ordered trees called semi-P-trees.

DEFINITION 4.1 A semi-P-tree (relative to P) is an ordered tree whose nodes
contain queries, possibly marked with success, failure, or error·. □

The first step in defining pre-P-trees is to define the effect of the cut operator.

DEFINITION 4.2 Let B be a branch in a semi-P-tree, and let Q be a node in
this branch with a cut atom as the leftmost atom. Then, the origin of this cut
atom is the first predecessor of Q in B that contains less cut atoms than Q. □

To see that this definition properly captures the informal meaning of the
origin note that, when following a branch from top to bottom, the cut atoms
are introduced and removed in a First-In Last-Out manner.

DEFINITION 4.3 Let T be a semi-P-tree, Q a query in T which has a cut atom
as the leftmost atom, and Q' be the origin of this cut ator11. Then, the operator
cut(T, Q) removes from T all the nodes that are descendants of Q' and lie to
the right of Q. □

In Figure 2, we illustrate the effect of cut(T, Q).

DEFINITION 4.4 The class of pre-P-trees is defined as follows:

75

• • • • • • Q' • • • • • •

Ctlt
• • • >

• • • • • • • • •

Q =!, ... • • • Q =!, ...

• • • • • • • • • • • •

failure failure failure failure

FIGURE 2. The effect of the operator cut(T, Q)

• For every query Q, the tree consisti11g of tl1e single u11n1arked node Q is
a pre-P-tree (an initial pre-P-tree).

• If T is a pre-P-tree, then any extension of T is a pre-P-tree.

An extension of a pre-P-tree T is defined as follows:
Let Q be the leftmost unmarked leaf in T. If Q is the empty query, mark Q

as successful. Otherwise, let Q be of the form A, M.

• Suppose A is an ordinary atom (i.e. not a special atom).

If Q has no resolvents w.r.t. a clause fr·om P:
Mark Q as Jailure.

If Q has such resolvents:

For every clause c fro1n P which are applicable to A, choose one
resolvent Q' of Q w.r.t. c and add this as a child of Q in T. Cl1oose
the input clauses in such a way that all branches ot· T remain pseudo
derivations. Order these children according to the the order in which
their input-clauses appear in P.

• Suppose A is a cut atom.

Apply the operation cut(T, Q).

Provide Q with a single child M.

• Suppose A is a 1neta-variable.

Mark Q as error. □

We now define P-trees as the lin1it of sequer1ces of pre-P-trees. In Figure 3, we
show how tl1e notions of initial pre-P-trees and extensions of pre-P-trees can be
used to construct a P-tree (the program used in the fig11re is the translation of

76

p
ext.

initial >

cut

p p p
ext. ext.

> :: >
neg(q),r neg(q),r neg(q),r

q, ! , fail, r r q, ! , fail, r

p

>
neg(q),r

--
/

1
I f · 1 A.,. , ai , r

\
\

\
1\

! , fail, r

r

! ,fail,r

p p
ext. ext.

--> >
neg(q),r neg(q),r

q,!,fail,r

! , fail, r

fail,r

q, ! ,fail,r

~ ,fail,r

fail,r
failure

r

FIGURE 3. Step-by-step construction of a P-tree for the Prolog query p w.r.t.
the Prolog program p < neg (q) , r. q < • •

77

'

the progran1 used in Figure 1). Note that in this Figure, the result of the 'cut
step' (that is, the fifth tree) is not itself part of the sequence of extensio11s; it
was added to clarify the use of the cut operator in the construction of P-trees.

To be able to define the limit of a sequence of pre-P-trees, we have to define
a notion of an inclusion between pre-P-trees, and of the limit of a growing
sequence of pre-P-trees. For pre-LD-trees and pre-LDNF-trees, these notions
were obvious. In the case of pre-P-trees, the pruni11g that takes place when
extending a pre-P-tree, complicates the n1atters a bit.

DEFINITION 4.5 Let T and T' be pre-P-trees. T is said to be included in T' if
T' can be constructed from T by means of one of the following two operations:

1. adding some children to a leaf of T.

2. removing a single subtree fron1 T, provided its root is 11ot a single child
in T.

We say that T is properly included in T', if T is ir1cluded in T' and T' is not
included in T. We use C to denote the transitive closure of the relation ''T is
properly included in T''' and define TC T' as (TC T') V (T = T'). □

Note that operation (2) never turns an internal node into a leaf.

LEMMA 4.6 The relation C is a strict partial order on pre-P-trees.

Proof: We have to prove that the conditions for a strict partial order hold.

1. T et T

Suppose by contradiction that TC T. Then, there exists a T' such that
T is properly included in T', and T' C T. There are two cases:

• T' is constructed by adding children to a leaf of T.
But then, some node Q that is a leaf in T, is an internal node in T'.
By definition of inclusion, and the fact that T' C T, Q is an internal
node in T. This is in contradiction with the fact that Q is a leaf T.

• T' is constructed by pruning a single subtree from T.
By definition of inclusion, the parent of the pruned subtree has at
least two children in T, and therefore, it has at least one child in T'.
Moreover, new nodes can only ''grow'' from leaves. Thus subtrees
pruned from T can never be ''regenerated'', to reconstruct T out of
T'. Therefore, T' i T, which leads to a contradiction.

2. TC T' and T' c T'' imply Tc T''.

Straightforward by the definition of c. □

COROLLARY 4. 7 The relation C is a partial order on pre-P-trees. □

78

•

neg(p)

p,!,fail □

• • •

FIGURE 4. A P-tree for the query neg(p) w.r.t. p < p.

Clearly, with this notion of inclusion, we have that if T extends T' in the
sense of Definition 4.4, then T' C T, so we can use this notion of extension to
construct monotonously growing chains of pre-P-trees.

DEFINITION 4.8

• A P-tree is a limit of a se<1uence Ta, ... ,~, ... such that To is an initial
pre-P-tree, and for all i, li+1 is an extension of~.

• A P-tree for Q is a P-tree whose root is the query Q.

• An P-tree is called finite if no infinite branch exists in it. □

Formally, this definition is justified by the fact that every countable partial
order with the least element (here the relation C 011 pre-P-trees with the initial
pre-P-tree as least element) can be canonically extended to a countable cpo
(see e.g. Gierz [GHK+so]).

Next, we define the concepts of successful and finitely failed P-trees.

DEFINITION 4.9

• A P-tree is called successful if one of its leaves is marked as success.

• A (pre-)P-tree is called finitely failed, if it is finite, and all its leaves are
marked as failure. □

Note that in P-trees, in contrast to LDNF-trees, some leaves can be un
marked. Whenever this is the case, the P-tree will contain exactly one infinite
branch to the left of all these unmarked leaves. Such unmarked leaves repre
sent the resolvents the Prolog computation process did not reach, because it
got ''trapped'' in an infinite derivation (the infinite branch). For example, take
the program p < p., and the query neg(p). Its P-tree is shown in Figure 4.
This tree contains a branch ending with a leaf containing the empty query.
However, this leaf is never reached by the Prolog computation process (and
therefore never marked) because there is an infinite branch to the left of it.

Finally, it is clear how to define the notion of a computed answer substitution.

79

DEFINITION 4.10 Consider a successful derivation i11 a pre-P-tree for Q. Let
0:1, ... , an be the consecutive substitutions along this brar1cl1.

Then the restriction (a1 · · · a:n)IQ of t,he co111position a: 1 · · · O:ri t.o t,he vari
ables of Q is called a comp'uted answer substit,ution (c. a. s. for short) of Q.
□

5 CORRESPONDEN(;E BETWEEN LDNF-TREES .A.ND P-TREES

In this section, we prove that there is a c:lose correspo11de11ce between (co111-
puted answers of) LDNF-trees and P-trees. Nlore precisely, we prove that ter
mination results on ge11eral progran1s w.r.t. LDNF-resolution translate directly
into termination of their translated Prolog progra111s w.r.t. Prolog computa
tion. For this purpose, we start by exami11ing finite LDNF-trees, and their
corresponding P-trees.

THEOREM 5.1 Let TL be a finite LDNF-tree for a general query Q. Then,
there exists a finite P-tree Tp for Q such that Ti and Tp have the same set of
computed answers.

Proof: We prove the clairn by induction on the depth of LDNF-trees (cf.
Defir1itior1 3.3). Asst1rne that the claim holds for all LDNF-trees of deptl1 less
than r. We have to prove the claim for LDNF-trees of deptl1 r.

Let TL be an LDNF-tree for Q of son1e finite depth r·. In the remainder of
this proof, we identify a general query with its translation into a Prolog query.
From the context it will always be clear whether we refer to a general query,
or a Prolog query. Two cases arise.

• Suppose that Q is of tl1e form A, L.

Let Q1 , ... , Qk (k > 0) be the children of Q in TL. Let, for i E [1 .. k], Ti
denote the subtree of TL starting at Q.i.

As, for i E [l .. k], Ti is finite a11d of deptl1 less tl1an r, by inductio11
• •

hypothesis there exists a P-t,ree TJ, fo1· Qi st1cl1 that Tji contains tl1e sa1ne
•

computed answers as Ti.,. Now consider the semi-P-tree Tp with root Q,
children Q1 , .. . , Qk (ordered according t.o the order of their input clauses
in P) and, for i E [l .. k], T} as tl1e subtree star·t.ing at Q'i, as depicted by
the f ollowi11g diagram:

••••••

80

' rrk
'.1. p

To prove that Tp is a P-tree for Q, it is sufficient t,o show that all pruning
caused by selection of cut atoms is guaranteed to be local to the respective
subtrees Tt (for i E [l .. k]). Neit,her Q, r1or its children Q1, . .. , Q k in Tp.,
contain a cut atom, so no atom i11 Tp has Q as its origin. It follows from
the definition of the cut operator tl1at all pruning is indeed local to the

•

respective subtrees Tp. Thus Tp is a P-tree for Q. Fron1 its construction,
it follows that it contains the same computed answers as TL. Moreover,
it is finite.

• Suppose that Q is of the form ,A, L.

Let Tl be the subtree ofTL starting at the root of subs(Q). As the LDNF
tree Tl for A is finite and of depth less than r, by induction hypothesis
there exists a finite P-tree T} for A that has the same computed answers
as Tf. There are two sub-cases.

Suppose that Q has a child in TL.
Then, Tl is finitely failed, and therefore TJ, is finitely failed as
well. But then, we can construct a finitely failed P-tree T)' for
A,! ,fail,L. In this P-tree, the cut atom introduced at the root
will never be reached.
Let Tl be the subtree of TL starting at the single child L of Q.
As the LDNF-tree Tf for L is finite and of depth less than r, by
induction hypothesis there exists a finite P-tree Tj, for L that has
the same computed answers as Tl.
Using T} 1

and Tl, we can construct a finite P-tree Tp for Q that has
the same computed ar1swers as TL. This tree has the following form:

.,.,-"-
1p// neg(A) ,L

.,,,. - -
Tj, 1✓ / A, ! , fail ,L

• • • • ••

Suppose that Q has no children in TL.
Then, Tf is successful, and therefore T) is successful as well. But
then we can construct a finitely failed P-tree T)' for A, ! , fail, L,
in which the cut atom present in its root is selected at son1.e point.

Let Tp be the semi-P-tree such that its root is Q, and the subtree
starting at the single child A, ! , fail, L of Q is T)'. In this tree,
the origin of the cut atom t,hat appears in the single child of Q, is Q.

I

This cut atom is the selected atom in son1e node within T} . Thus
Tp is a P-tree for Q, because the potential second child of Q, that

81

/

.,.,.
/

neg(p)

-

/ I f · 1 I p, . , a1

I
I
I

1 /

I

!,fail p,!,fail

fail

failure

□

fail·ure ',,
....

□
success

....
p

p

□

FIGURE 5. A P-tree and an LDNF-tree for neg(p)

• • •

would contain the query L has been pruned at son1e stage. Thus Tp
is finitely failed, just as TL is. □

Thus if we have a general query Q that terminates w.r.t. a ger1eral progra1n
P, we know that Prolog co1nputation on tl1at query and that progra111 will
terminate, and give the sa1ne con1puted answers as LDNF-resolutio11.

Now what if we have a fi11ite P-tree for a restricted Prolog query Q and a
restricted Pro log program P'? Consider the fallowing restricted Prolog progr·a111

p,
p, p

and the restricted Prolog query neg(p). The P-tree and LDNF-tree for this
query and this program are shown i11 Figure 5 (11ote tl1at tl1e pruned branches
are not really part of the P-tree for neg(p), but existed at son1e point during
the construction of this P-tree). In this exa1nple, the P-tree is finite, because
the potentially infinite branch caused by the clause p < p is prur1ed. However,
in the LDNF-tree, this branch has been constructed in full, and therefore this
LDNF-tree is infinite.

6 APPLICATIONS

Due to the presence of cut in the definition of the predicate neg it is difficult
to reason in a declarative way about Prolog programs that use negation. In
other words, it is not clear how to prove correctness of such programs using
their declarative interpretation.

We now sl1ow how this is possible using the results of this paper. The key
observation is that Theorem 5.1 provides a crucial relationship between the
computational behaviour of Prolog programs and their translations into general
logic programs.

82

In the subsequent discussion we assume that the variables in the input clauses
and the mgu's are chosen in a fixed way. We can then assume that for every
Prolog program P and Prolog query Q there exists exactly one P-tree, and
similarly for general logic programs, general queries and LDNF-trees.

So consider a restricted Prolog program P with a restricted query Q and
their translation PL and Q L onto a general logic program and a general logic
query, respectively. To reason about correctness of P with Q it is sufficient
to reason about PL and QL.. Indeed, suppose that we proved already that
all LDNF-derivations of P and Q are finite. Then by Theorem 5.1 the P-tree
for PL and QL is finite, and PL with QL and P with Q have the same set of
computed answers.

As an example consider the following well-known Prolog program TRANS
about whi~h one claims that it computes the transitive closure a binary re
lation e:

trans(X, Y, E, Avoids) < - member([X, Y], E).
trans(X, Z, E, Avoids) -~

member([X, Y], E),
neg(member(Y, Avoids)),
trans(Y, Z, E, [YI Avoids]).

member(X, [X I Xs]) 'i-~.

member(X, [Y I Xs]) ~< member(X, Xs).

In Apt [Apt94] the following facts about its translation TRANS L to a general
logic program and a binary relation e were established:

• all LDNF-derivations of trans(X, Y, e, []) are finite,

• the computed answer substitutions of trans(X, Y, e, []) determine all
pairs of elements which form the transitive closure of e.

Now, by Theorem 5.1 the same conclusions can be drawn about the original
program TRANS.

The fact that above approach to correctness is limited to restricted Prolog
programs is in our opinion not serious. In fact, we noticed that practically all
''natural'' Prolog programs that use negation are restricted.

REFERENCES

[AB87] B. Arbab and D.M. Berry. Operational and denotational semantics
of Prolog. Journal of Logic Programming, 4(4):309-329, 1987.

[AB94] K.R. Apt and R. Bol. Logic progran1ming arid negation: a survey.
Journal of Logic Programming, 19-20:9-71, 1994.

[AD94] K.R. Apt and K. Doets. A new definition of SLDNF-resolution.
Journal of Logic Programming, 18(2):177-190, 1994.

[Apt94] K. R. Apt. Program verification and Prolog. In E. Borger, editor,
Specification and Validation methods for Programming languages and
systems. Oxford University Press, 1994. To appear.

83

[CKW89] W. Chen, M. Kifer, and D.S. Warren. Hilog: A first-order semantics
for higl1er-order logic progran1n1ing const,r11cts. In Proceedings of
the North-American Conference on, Logic Programming, Clevela11d,
Ohio, October 1989.

[Cla78] K.L. Clark. Negatio11 as failure. Ir1 H. Gallaire and G. Mi11ker,
editors, Logic and Data Bases, pages 293-322. Plenum Press, 1978.

[Dix93] J. Dix. Sema11tics of Logic Pr·ogra111s: Their· I11tt1itions a11d Fo1·mal
Properties. An Overview. In A11dre Ful1rn1ann a11d Hans Rott, ed
itors, Logic, Action arid Information. Proceedings of the K onstanz
Colloquium in Logic and Informatiori (Logln '92). DeGruyter, 1993.

[DM88] S.K. Debray and P. Mishra. Denotational arid operational semantics
for Prolog. Journal of Logic Prograrnming, 5(1):61-91, 1988.

[GHK+so] G. Gierz, K.H. Hofn1ann, K. Keimel, J.D. Lawson, M.W. Mislove,
and D.S. Scott. A Compendi·um of Continuo·us Lattices. Springer
Verlag, 1980.

[HLS90] P.M. Hill, J.W. Lloyd, and J.C. Shepherdson. Properties of a pru11ing
operator. Journal of Logic and Computatio1i, 1(1):99-143, 1990.

[Jia94] Y. Jiang. Ar11bivalent logic as the semantic basis fo n1etalogic pro
grarnming: I. In P. Van He11te11ryck, editor, Proceedings of the In
ternational Conference on Logic Programming, pages 387-401. MIT
Press, June 1994.

[JM84] N.D. Jones and A. I\1ycroft. Stepwise development of operational
and denotational sen1antics for Prolog. In International Symposium
on Logic Programming, pages 281-288, 1984.

[Kal93] M. Kalsbeek. The vanilla meta-i11terpreter for definite logic programs
and ambivalent syntax. Technical Report CT-93-01, Department of
Mathematics and Computer Science, University of An1sterdan1, The
Nether lands, 1993.

[LB92] A. Lilly and B.R. Bryant. A prescribed cut for Prolog that ensures
soundness. Journal of Logic Programming, 14(4):287-339, 1992.

[Llo87] J.W. Lloyd. Foundations of Logic Programming. Syrnbolic Con1puta
tion - Artificial I11telligence. Springer-Verlag, 1987. Second, extended
edition.

[Mos86] C. Moss. Cut & Paste - defining the impure primitives of Prolog.
In E. Shapiro, editor, Proceedings of the International Conference
on Logic Programming, number 225 in Lecture Notes in Computer
Science, pages 686-694. Springer Verlag, 1986.

[MT92] M. Martelli and C. Tricomi. A new SLDNF-tree. Information Pro
cessing Letters, 43(2):57-62, 1992.

[Ric74] B. Richards. A point of reference. Synthese, 28:431-445, 1974.

84

