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In analytic queueing theory, Rouche's theorem is frequently used, and when it can be 
applied, leads quickly to tangible results concerning ergodicity and performance analysis. 
For more complicated models it is sometimes difficult to verify the conditions needed 
to apply the theorem. The natural question that arises is: Can one dispense with this 
theorem, in particular when the ergodicity conditions are known? In the present study we 
consider an MIG/I-type queueing problem which can be modelled by N coupled random 
walks. It is shown that it can be fully analysed without using Rouche's theorem, once 
it is known that the relevant functional equation has a unique solution with prescribed 
regularity properties. 
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1. Introduction 
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In analytic queueing theory Rouche's theorem is one of the workhorses. For the 
basic queueing models it is usually not so difficult to verify the conditions which permit 
its application. When it can be applied it leads in a simple way to results concerning 
the ergodicity conditions and the construction of solutions of functional equations for 
generating functions or Laplace-Stieltjes transforms. Generally, the theorem is used 
to prove the existence of a certain number of zeros in a subdomain of the domain of 
regularity of a given function. 

Presently, the queueing models encountered in performance analysis are often 
quite complicated and accordingly the verification of the conditions needed to apply 
Rouche's theorem is frequently quite difficult. Hence the question arises whether the 
use of this theorem cannot be avoided, the more so because the ergodicity conditions 
for the more complicated queueing models frequently can be derived without appealing 
to Rouche's theorem. Recent research has led to new approaches for the derivation of 
these conditions, see, e.g., Meyn and Tweedie [7] and Lindvall [5]. 
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In the present study we analyse a relatively simple M/G/1-type queueing model 
and show that for the analysis of the time dependent case as well as that of the 
stationary case, the use of Rouche's theorem can indeed be avoided. The involved 
stochastic model consists of N coupled random walks, each with state space {O, 1, ... }; 
it is described in section 2. The analysis requires the proof of the existence of a 
specified number of zeros of a functional equation in a certain domain. In section 3 
the functional equations for the generating functions are derived; the time dependent 
case is considered here. By using the fact that these functional equations should have 
a unique solution that is regular in a known domain, it is shown that the construction 
of the solution may be performed without using Rouche's theorem. The analysis in 
section 4 considers the case that the involved Markov chain is aperiodic and positive 
recurrent. The fact that the inherent Kolmogorov equations for the stationary state 
probabilities have a unique, absolutely convergent solution is used to show that the 
corresponding functional equation has the specified number of zeros in the required 
domain. 

We have chosen a relatively simple model for ease of exposition. The approach 
exposed in the present study is of wider applicability; it is certainly an approach to be 
considered whenever the conditions needed for the application of Rouche's theorem 
are difficult to verify. Examples of such cases are encountered in the studies [8] 
and [3]. In [8] Mitrani and Mitra also apply a stochastic argument to establish that 
the solution of their functional equation requires the existence of a certain number of 
zeros of a function in a prescribed domain. In [3] Gail et al. discuss extensively the 
zeros of determinants in a prescribed domain. The matrices considered in [3] are of a 
more general type than the one considered in the present study. The analysis in [3] is 
purely algebraic and the matrix relating to the time dependent case is analysed first. 
By a limiting procedure the results for the matrix encountered in the analysis of the 
stationary case are then derived. Similarly, in the present study, the results of section 4 
may be derived from those of section 3. However, we derive the results in section 4 
independently, as the methods provided in that section are of independent interest. 
In [3] the set of linear equations needed to determine the stationary distribution is 
obtained without using Rouche's theorem. In section 4 of the present study this set of 
equations is directly derived from the Kolmogorov equations for the stationary state 
probabilities by using mainly probabilistic arguments. 

Neuts [9] also presents an analysis of M/G/1-type queueing models without 
using RoucM's theorem. However, the problem setting in [9] differs from that in 
[3] and that of the present study. This will be addressed in Remark 5 below. An 
application of the methods of [3] to the problems discussed in [9] is given in Gail 
et al. [2]. 

This paper thus adds another approach that may be taken to tackle the analysis 
of complicated queueing models and in this way can be used as a tool in concert with 
existing methods. 
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2. The model 

Let 
Pij, i,j E {1, ... , N}, (1) 

be the one-step transition probabilities of a discrete time-parameter, aperiodic Markov 
chain 

Yn, n=0,1,2, ... , 

with an irreducible state space. Let 

(2) 

be the one-step transition matrix and put 

?Jn:= Yn+I -yn, n = 0, 1,2, .... 

Further 
{e~),. .. ,e~)}, n=O,l, ... , 

is a sequence of i.i.d. stochastic vectors with state space {O, 1, 2, ... }N, and for each 
n the N components are independent, nonnegative stochastic variables such that for 
j=l, .. .,N, 

() 

</>j(P) := E{p~d }, !Pi ~ 1. (3) 

It is assumed that this sequence of stochastic vectors and the sequence of stochastic 
variables Yn, n = 0, 1, ... , are independent families. The sequence 

Xn, n = 0, 1, ... , 

is defined by 

xo = xo, Yo=Yo, xoE{0,1,2, ... }, yoE{l, ... ,N}, (4) 

and for Xn ~ 0, 
(5) 

Obviously 

is a discrete time-parameter Markov chain with state space {O, 1, 2, ... } x {I, 2, ... , N}, 
cf. Remark 2 below. 

For !PI~ 1, n = 0, 1, ... ; j = 1, ... , N, we define 

<Pn(p,j) := E{pxnlI(Yn = j) I Xo = xo, Yo= Yo}. 
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From ( 4 ), (5), it is readily obtained that 

for IPI :( 1, j = 1, ... ,N, with 

(7) 

and 6jk Kronecker's symbol. 

Remark 1. From (6) and (7) it is seen that the functions <Pn(p,j) are uniquely, via 
recursion, defined once xo and Yo are known. 

Remark 2. From the structure of the (xn, YrJ-process it is seen that the Xn-process may 
be considered as an embedded Markov chain of queue lengths at departure epochs of 
an M/G/l queueing model in which the arrival process is controlled by the Markov 
chain Yn· 

3. The time dependent case 

For lrl < 1, IPI ::;; 1, j = 1,. .. , N, let 

CXl 

<P(r,p,j) := Lrn<Pn(p,j). 
n=O 

From (6) and (7) it then follows that for lrl < 1, IPI::;; 1, j = 1, ... , N, 

N N 

<I>(r, p, j) - !:_ L <P(r, p, i)Pij</>j (p) = pxD6jy11 + r p ~ 1 L <P(r, 0, i)PiJ</>j (p). (8) 
p i=I p i=l 

For our purposes, it is hardly a restriction to take as initial condition ( cf. ( 4) and 
Remark 1), xo = 0, Yo = 1. Let 

Foi;Oj(r), lrl ~ 1, i,j E {l, ... , N}, 

be the generating function of the first entrance time into state (0, j) from state (0, i). 
From the theory of discrete time-parameter Markov chains it is known that 

( .) Fo1 ;Oj (r) 
<I> r, 0, J = 61j + 1 Fi ( ) , 

- Oj;Oj r 
lrl < 1, j = 1,. .. , N. (9) 
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Obviously, for j = 1, ... , N, 

Fo1;oj(r) is regular in lrl <I and IF01;oj(r)I ~ 1 for lrl ~ 1, (10) 

ct>(r,p,j) is regular in lrl < 1 for every fixed p, IPI ~ 1. 

For the remainder of this section, we will require the following row vectors and 

matrices. For lrl < 1, IPI ~ 1, 

<i>(r,p) := [<I>(r,p, 1 ), ... , ct>(r,p, N)], 

c51:=[c511, .. .,c51NJ, c511=l, c51j=O, j=2, ... ,N, 

F(r) ·= [c5 + Fi11;111(r) c5 + Fo1;0N(r) ] _ <i>(r O) · 11 J-F(11;01 (r)' .. " IN 1-FoN;ON (r) - ' ' 

P(p) := [Pijc/>j(P)]' 
I:= [c5ij]· 

It follows from (8) and (11) that for lrl < 1, IPI ~ 1, 

<i>(r, p) [pJ - r P(p)] = pc51 + r(p - 1 )<i>(r, O)P(p), 

or, equivalently, using (9) 

(11) 

(12) 

[<l>(r,p) + (p - l)F(r)] [pl - rP(p)] = pc51 + p(p - l)F(r). (13) 

Define 
D(r,p) :=det[pJ-rP(p)], IPI ~ 1, p=f=O. 

It follows that D(r,p) is a polynomial in r of degree N and its coefficients are regular 

in IPI < 1 and continuous in IPI ~ 1. 

Theorem 1. For lrl < 1: 

(i) D(r,p) =/= 0 for IPI = 1, 

(ii) D(r,p) has N zeros in IPI < 1 for fixed r. 

Proof Suppose a Po exists such that for some r, lr I < 1, 

D(r, Po) = 0, !Pol = 1, 

i.e., 
<let [po I - r P(po) J = 0. (14) 

Obviously, this is impossible for r = 0. Hence consider 0 < lrl < 1. Then (14) is 

equivalent with 

det [,\I -;0 P(po)] = 0, 
1 

>. = -. 
r 

(15) 
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Hence>. is a characteristic value of the matrix p01 P(po). There are N of these char
acteristic values >.ki k = 1, ... , N, say, when counted according to their multiplicity. 
For these >..k, using [6, p. 144], 

N N 
i>-kl ~ max LPijlc/>j(Po)I = max l:Pijlc/>j(Po)I 

1~i~N . po 1~i::;;N . 
J=l J=I 

N 

~ max LPij=l, k=l, ... ,N. 
l~i~N. 

J=I 

Since in (15) i>.I = lr-11 > l, the first statement of the lemma follows. 

(16) 

Obviously, the number of zeros of D(r,p) in IPI < 1 is an integer valued 
continuous function of r, and from (i), D(r,p) has for irl < 1 no zeros on IPI = 1. 
Therefore, it follows that for lrl < 1 this number is independent of r. It equals N for 
r = 0 and so (ii) follows. 0 

The relations (12) represent a functional equation for <i>(r,p), and as such this 
relation defines a class of functions of which the elements satisfy (12). Once <i>(r, 0) 
is known then (12) determines <i>(r,p), IPI ~ 1. Whenever an element of this class 
has the property that all of its components cD(r,p,j), IPI ~ 1 are regular functions 
of r with lrl < 1, then the coefficients of their series expansions in powers of r 
satisfy the set of equations (6) and (7). This set of equations has a unique solution, 
cf. Remark 1. Consequently, (12) can have only one solution <i>(r,p) with IPI ~ 1 for 
which the <P(r, p, j), j = 1, ... , N, are all regular functions of r in lrl < 1. 

For lrl < 1 denote by 

7rh(r), h=l, ... ,N, 

the zeros of D(r,p) in IPI ~ 1. 
For lrl < 1, p =f. 11'h(r), h = 1, ... , N, and for IPI ~ 1 we have D(r,p) =f. 0 

and so we have from (13) that for lrl < 1, p =f. 7rh(r), h = 1, ... , N, IPI ~ 1, 

<i>(r,p) + (p - l)F(r) = [P81 + p(p - l)F(r)] [pI - rP(p)r 1• 

Because cD(r,p,j), j = 1,. .. ,N, is for every fixed r in irl < 1 regular in IPI < 1 
and continuous in IPI ~ 1, it follows that for Jrl < 1, h = 1, ... , N, 

[p[81 + (p - l)]F(r)] [pl - rP(p)]-l D(r,p)]p=nh(r) = 0. (17) 

The relation ( 17) represents N inhomogeneous equations for the N components Fj (r) 
of the vector F(r), lrl < 1. The functions cD(r,p,j), lrl < 1, IPI ~ 1, j = 1, ... , N, 
are uniquely determined by the regularity conditions in irl < 1 for fixed IPI ~ 1 and 
those in IPI < 1 for fixed irl < 1, and because the set of equations (6), (7) has a unique 
solution. Consequently it is seen that as (cf. (11)) F(r) = <i>(r, 0), the equations (17) 
have a unique, in lrl < 1 regular, solution. 
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Remark 3. In the discussion above it has been assumed that the zeros 7rh(r), 0 < 
r < 1 all have multiplicity one. Suppose 7rh(r) has multiplicity nh > 1 for r = r0, 

0 < lrol < 1. Then in addition to (17) we also have that the kth derivative with 
respect top of the term between brackets in (17) should be zero for p = 7rh(r0) and 
k = 1, ... , nh - 1. Again we obtain a set of N inhomogeneous equations for the 

Fj ( r), lr I < 1, j = 1, ... , N, which should have a unique in I r I < 1 regular, solution 
for the same reasons as given above. However, the number of r in lrl < 1 for which 
multiple zeros may exist is finite, as is seen from the definition of D(r,p). 

4. The positive recurrent case 

The discrete time-parameter Markov chain {(xn, y11 ), n = 0, 1, ... } is obviously 
aperiodic, cf. ( 1) and ( 4 ), and has an irreducible state space. Hence 

lim P{xn = ·i, Yn = j} 
n--too 

(18) 

exists for all j = 1, ... , N; i = 0, 1, 2, ... ; these limits are positive if and only if the 
(x11 , y rJ-process is positive recurrent. 

From now on it is assumed that (cf. Remark 6), 

the (x11 , y 11 )-process is positive recurrent; (19) 

and it will be shown that without an appeal to Rouche's theorem the limiting values 
of (20) below can be calculated. 

It follows from (9) that for j = 1, ... , N, 

0 < lim(l - r)FJ(r) = lim(l - r)<I>(r,O,j) = P{x = 0, y = j}, 
r--+I r--+l 

with (x, y) a stochastic vector with distribution the stationary distribution of the 
(xn, y11 )-process. A well-known Abelian theorem implies that for j = 1, ... , N; 

IPI ~I, 
00 

Q(p,j) := lim(l - r)<I>(r,p,j) = E{pxII(y = j)} = LPiP{x = i, y = j}, (20) 
r--+ I i=O 

uniformly in IPI ~ 1. Defining 

Q(p) := (.O(p, 1 ), ... , .O(p, N)J, 

it follows from (13) and (20) that for IPI ~ I, 

[n(p) + (p - i)n(o)J [p1 - P(p)J - p(1 - p)n(o) = o, c21) 
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where 0 denotes the null vector. 
From (20) it is seen that for every j = 1, 2, ... , N, D.(p, j) is a regular function 

in !PI < 1, which is continuous in !PI :( 1. Insertion of the power series expansion 
in p of D.(p, j) into (21) and setting the coefficient of pi equal to zero leads to the 
Kolmogorov equations for the stationary state probabilities P{x = i, y = j}. These 
probabilities form the unique, absolutely convergent solution of this set of equations, 
apart from a constant factor. 

Of these Kolmogorov equations exactly one equation is linearly dependent on 
the remainder, and in fact when these Kolmogorov equations for P{x = i, y = j} 
are summed over all j = I, ... , N, and all i = 0, 1, ... , then an identity results. This 
linear dependence is equivalent with the fact that p = 1 is a zero of D( 1, p). Note that 
for p = 1 the N relations (21) represent the Kolmogorov equations for the stationary 
state probabilities P{y = j}, j = I, ... , N, of the discrete time-parameter Markov 
chain with one-step transition matrix P = P(I), cf. (2), (11). 

Denote by 
7rh, h=I, ... ,M, (22) 

the zeros of 
D(l,p) = det [pI - P(p)] in IPI :(I. (23) 

Obviously p = 1 is a simple zero; it is the only zero with Jpl = I, as the Yn-process 
is aperiodic and P( 1) = P. 

For the present it is assumed that 

all zeros rrh, h = 1, ... , M, have multiplicity one. (24) 

This assumption will be addressed in Remark 4 below. 
The enumeration of these zeros is chosen so that 

7f"] = 1, J7rhJ < 1 for h = 2, ... , M. 

From (21) it is seen that the functions O.(p,j), j = l, ... ,N, p f. rrh, h = 
2, ... , M are determined once the values Q(O,j), j = 1, ... , N are known. The fact 
that the functions D.(p, j) should be regular for !PI < 1, and continuous for !PI :( 1, 
leads to the conditions: 

(25) 

for h = 2, ... , M. For IPI:::;: 1, we define 

[%(P)] := p! - P(p), 

with 
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As a result of (23), the conditions (25) are equivalent with 

for h = 2, ... , M. 

0(0, 1) q12(7rh) · · · q1N(7rh) 

0(0, 2) 
=0, 
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(26) 

The relation (21) is equivalent with the Kolmogorov equations and (25) with 
the condition that a solution of these equations is absolutely convergent, so it follows 
that 

M)N. 

Otherwise, if M < N, the set of Kolmogorov equations would have more than one 
absolutely convergent solution, which is a contradiction to the assumption (19). 

Consider the case M > N. Then the M - 1 linear equations (26) for 
Q(O,j), j = 1, ... , N, have no solution when they are linearly independent. Because 
(19) implies that there should be a unique solution it follows that if M > N then 
M - N of these linear equations, those for h = N + 1, ... , M, say, should be linearly 
dependent on the other M - 1 equations, i.e., on those for h = 2, ... , N. The linear 
dependence of the equations for h = N + 1, ... , M on those for h = 2, ... , N, leads 
to M - N equations relating the values qij ( 7rh) for i, j = 1, ... , N; h = 2, ... , M; 
i.e., M - N equations between the values Pij• eflj(7rh) and 7rh· These relations in-

volve the probabilities P{eWl = k}, k = 0, 1, 2, ... as, for j = 1, ... , N, eflj(P) are 
their generating functions. The existence of such relations conflicts with the assumed 
independence mentioned directly below (3). Hence we have 

M=N. (27) 

Note that the conclusion (27) has been reached without using the results of the previous 
section. 

From the discussion above it is seen that the following theorem has been proved 
without an appeal to Rouche's theorem (cf. also the results in [3]). 

Theorem 2. If the (xn, Yn)-process is positive recurrent then D( 1, p) has in IPI ~ 1 
exactly N zeros and p = 1 is the only zero in IPI = 1. 

Remark 4. If the zeros 7rh have multiplicity greater than one, the analysis may be 
modified as in Remark 3. 

Remark 5. In the present study, and also in [3], the main point is to show that det[pJ -
P(p)] has exactly N zeros in IPI ~ 1. Once this is established, the linear equations 
for the components of the vector 0(0) follow, cf. (26). In [9] this vector, apart from 
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a scalar, is obtained as the characteristic vector belonging t~ the characteristic value 
one of a finite matrix K, which is a functional of a matrix G ([9, Theorem 3]). This 
G is the minimal solution of a matrix equation, which is obtained by considering a 
class of first entrance time distributions. The approach in [9] thus does not need the 
zeros of det[pJ - P(p)] in IPI ~ 1 and so Rouch6's theorem ~ avoided. Obviously, 
the tradeoff is the derivation of K and the matrix equation for G...:.. From the numerical 
point of view, the iterative solution of the matrix equation for G has to be compared 
with the determination of the N zeros of det[pJ - P(p)] in IPI ~ 1. The arguments 
used in [9] are all purely probabilistic, while those of the present study stem from the 
property that the stationary state probabilities form the unique absolutely convergent 
solution of the Kolmogorov equations. 

Remark 6. Consider the Xn-process. Obviously, we have, cf. (4) and (5), 

Xo = xo, Yo =Yo, 

Xn+l = [xn -1]+ + Cn, n = 0, 1, 2, ... , 

with Cn, n = 0, I, 2, ... , a sequence of independent stochastic variables satisfying 
N 

E{pCn} = LP~~]</>j(p), IPI ~ 1, 
j=I 

where [p~j)J is the n-step transition matrix of the Yn-process. 
It tollows, cf. (3), 

N 

E{(n} = LP~~Jµj. 
j=I 

As the Yn-process is positive recurrent, the following limits exist: 

· l' (n) l' P{ · I } Vj .= im Py J. = im Yn = J Yo= Yo ' 
n-+oo 0 n-+oo 

and so 
N 

lim E{Cn} = ~ Vjµj. (28) 
n-+oo L..J 

j=I 

Assume 2:_7= 1 vjµj < I and choose c > 0 such that I:j':: 1 vjµj + c < I. Let K be 
so large such that for all k ~ K, 

N 

E{(k} < Lvjµj + c, 
j=l 

which is possible by (28). Then 

N 

ExK{XK+1} ~ XK - II(xK > 0) + L Vjµj + €. 

j=l 

The fact that (Xn, Yn) is positive recurrent follows from Foster's criterion (e.g., [7, 
Theorem 11.3.4]) and the fact that c is arbitrary. 
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5. Concluding remarks 

We have presented an approach where the analysis of a particular M/G/l queue
ing system may be performed without the use of Rouche's theorem. It would be of 
great interest to determine whether the methods presented here are applicable to other 
random walks on semi-infinite strips. In particular, recent work on threshold-type 
queueing models [ 1, 4] provides examples which are similar to the model considered 
here and for which employing Rouche's theorem is extremely difficult. It appears that 
the work in this study may be readily adapted to those situations. 
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