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ABSTRACT. We construct and analyse integration methods for solv­
ing initial value problems for implicit differential equations (IDEs) 
that can be efficiently used on parallel computer systems. We con­
struct an IDE method for general IDEs of arbitrarily high index, and 
two methods that can be applied to partitioned ID Es. The partitioned 
IDE met.hods both exploit the special form of the problem and con­
verge faster than the general IDE method. The first partitioned IDE 
method is suitable for higher-index problems, the second partitioned 
IDE method only applies to index 1 problems, but is considerably 
less expensive on parallel computers. This paper presents the results 
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1. Introduction 

Consider the initial value problem (IVP) for a system of implicit dif­
ferential equations (ID Es) of the form 

</>(y(t),y(t)) = 0, y(to) = Yoi y, </> E Rd. (1.1) 

*The research reported in this paper was partly supported by the Technology 
Foundation (STW) in the N ederlands. 



160 P .J. VAN DER HOUWEN, W .A. VAN DER VEEN 

In particular, we shall consider the partitioned case where 

} • ,+. (. · (Kilo) \. := 'f'U U, v) = 0 0 ' J := -1>v(u.v) = (JJ11 JJ12). 
, 21 22 

( 1.2) 

Here, d = d1 + d2 with Kn and Ju representing d1-by-d1 matrices (in 
the definition of J, the minus sign is inserted so that explicit differential 

equations y = f(y) yield the familiar formula J = 8f/8y). 
If often happens that the problem ( 1.1) is given in the form 

Q(y)y(t) = f(y(t)), y(to) =Yo, y, f E Rd (1.3) 

with Q a constant, singular matrix of rank d1. By the transformation 

z = s;-1y, this problem can be transformed to 

S1QS2z - S'if(5'2z) = 0, z(to) = 5'21Yo, z, f E Rd (1.3') 

with nonsingular matrices S1 and 5'2 such that 

5'1QS2 = ( ~ ~ ) , 

where the dimension of !is the rank of Q (d. [1, p. 406]). Problem ( 1.3') 
is of the partitioned form {(1.1 ), (1.2)} with Ku = I. Introducing 
the partitioning z = (uT, vT)T, where u and v are respectively of 
dimension d1 and d2 , it can be written in the familiar form of an IVP 
for the serniexplicit differential-algebraic equation (DAE) 

du dt = f(u, v), u(to) = uo, 
( 1.4) 

g(u, v) = 0, v(to) = vo, 

In this paper, we shall analyse integration methods for solving the IVP 
( 1.1) that can be efficiently used on parallel computer systems. We 

construct an IDE method for general IDEs of arbitrarily high index, 
and two methods that can be applied to partitioned problems of the 

type (1.2). These partitioned IDE methods both exploit the specia.l 

form of the problem and converge faster than the general IDE method. 
The first partitioned IDE method is suitable for higher-index problems, 
the second partitioned IDE method only applies to index 1 problems, 
but is considerably less expensive. 
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2. The numerical scheme 

Let us start with the case where (1.1) can be presented in the explicit 
differential equation form 

y(t) = f(y(t)), y(to) =Yo; y, f E JRd. 

A large class of implicit step-by-step methods can be represented in 
the form 

Y - h(A ® I)F(Y) = W, Yn+1 = (e; ® I)Y. (2.1) 

Here, A denotes a nonsingular s-by-s matrix, W is an sd-dimensional 
vector containing information computed in preceding integration steps, 
I is the d-by-d identity matrix, h is the stepsize tn+I - in, and ® 
denotes the Kronecker product. The s vector components Y£ of the 
sd-dimensional solution vector Y represent numerical approximations 
to the exact solution vectors y(etn +eh), c being the abscissa vector 
with c8 = 1 and e representing the s-dimensional vector with unit 
entries. Furthermore, e 5 is the sth unit vector and Yn is the numerical 
approximation to y(tn)· In (2.1), F(V) contains the derivative values 
(f(V£)) for any vector V = (Vi). In the following, we shall use the 
notation I for an identity matrix. However, its dimension will always 
be clear from the context. 
An important class of methods leading to implicit relations of the 
form (2.1) are the (stiffly accurate) Runge-Kutta (RK) methods, where 
W := e ® Yn· In fact, in our numerical experiments we shall use such 
RK methods. 

In order to derive the ana.logue of (2.1) for IDEs, we observe that if</> 
is invertible with respect to y, then this analogue should be equivalent 
to (2.1). This leads us to use (2.1) for expressing the derivative stage 
vector F(V) in terms of Y, and to substitute this expression into the 
equation q.(F(Y), Y) = 0, with q. defined in the same way as F. This 
yields the method 

R(Y) = 0, R(Y) := q.((h- 1A- 1 ®I)(Y- W), Y), Yn+1 = (e; ®J)Y. 
(2.2) 
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Thus, the method (2.2) is completely specified by the pair {A, W}. 
As an example, we consider the IVP (1.3). If we apply (2.2) with 

W := e ~_;_i Yni then it assumes the form 

(h- 1 A-1 0 Q)(Y - W) - F(Y) = 0, Yn+1 = (e'f@ I)Y, (2.3) 

which is equivalent to the RK method discussed in [1, p. 406]. 

REMARK 2.1 - As explained in [1, p. 407], the RK solution Y 
defined by (2.3) is algebraically identical to (I® S2)Z, where Z is the 
RK solution obtained by applying (2.2) with W := e@ Zn to (1.3'), or 
equivalently, to ( 1.4). This equivalence holds for any method {A, W}. 

The implicit equation in (2.2) will be solved iteratively by generating 
sequences of iterates {Y(jl}. Our starting point is the iteration method 

N(Y(:il - yU- 1l) = -(hA ® J)R(YU-1l), j = 1, ... , m, (2.4) 

where N is a nonsingular matrix. The iteration error associated with 

(2.4) satisfies the recursion 

N(Y(i) - Y) = N(Y(.i-i) - Y) - (hA@ J)(R(YU-1)) - R(Y)). 

so that ignoring second-order terms leads to 

y(.i)_ y = M(Y(j-IJ_ y), M := N- 1(N-N0 ), N0 := I@E-A@hJ. 

(2.5) 
where the Jacobian matrices ]( and J are both evaluated at the step 
point tn. The conventional choice for N is the modified Newton it­
eration matrix No resulting in a zero amplification matrix M. The 
advantage of the choice N = N0 is that, even in strongly nonlinear 
problems, a few iterations usually suffice to solve the implicit system 
in (2.2). However, a disadvantage is that solving the linear Newton 
systems can be quite expensive. For example, when direct methods 
are used, the LU-decomposition of the sd-by-.sd matrix No requires as 
many as 0( s3 d3 ) arithmetic operations. 
In this paper, we shall consider several choices of more "convenient" 
iteration matrices N. Since a necessary and sufficient condition for 



ON SOLVING IMPLICIT DIFFERENTIAL EQUATIONS ECC. 163 

linear convergence of the iteration method (2.4) requires the spectral 
radius p( M) to be less tha.n 1, we shall try to combine a small spectral 
radius with a reduction of the complexity of the linear Newton systems. 
In particular, we shall look for matrices N that reduce the computa­
tional complexity on parallel computer systems (for example, matrices 
N with a block-triangular structure). 

REMARK 2.2 - In an actual implementation of (2.4), it may be 
recommendable to remove the h- 1 factor in the residual defined in (2.2) 
by defining the "derivative" iterate y(j) := (h- 1 A-1 @ J)(YU) - W). 

Then, the iteration scheme becomes 

N(A 0 I)(YCil - yU- 1 l) =-(A 0 I)<I>(Y(j-1>, w+ 

+(hA CXJ J)YU-1 l ), 

yUl = w + h(A 0 I)YUl. 

j = 1, ... ,m., 

( 2 .4') 
The sequences {Y(j)} generated by the schemes (2.4) and (2.4') are 
algebraicly identical, but (2.4') can be used as h ---+ 0. 

2.1. General IDE method 

Consider the iteration matrix 

N = I @ K - B 0 hJ = -hT'211 ( 

K - hT11 J 

-hT'31 J 

0 

K - hT2il 

-hT.12 J 

0 

0 

!( - hT.1.1 J 

... ''') 
(2.6) 

where B = ( B.;j) is a diagonal matrix D or a lower triangular matrix T. 
On substitution into (2.4) we obtain 

(I® J( - B 0 hJ)(Y(j) - y(:i- 1l) = -(hA 0 J)R(Y(j-1l). (2.7) 

Formally, this method can be applied to problems of any index as long 
as the matrix f ®J( -B®hJ is nonsingular (that is, the blocks]( -hBiiJ 
should be nonsingular). However, in order to have convergence to the 
exact solution as h ---+ 0, the matrix J( should be nonsingular. The 
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method (2.7) will be referred to as the general IDE method. Further­
more, we shall sa.y that the method is in diagonal mode if B = D and 
in triangular mode if B = T. 

Each iteration with (2. 7) requires the solution of a linear system with 
the block-triangular Newton matrix N. Hence, the system splits into 
s subsystems of dimension d, reducing the computational costs consid­
erably. For example, if direct solution methods are used, then the s 

LU-decompositions associated with the s systems require 0( sd3 ) flops 
which is factor s2 less than the number of flops needed when the mod­
ified Newton matrix No is used. Moreover, these LU-decompositions 
can be done in parallel, so that the effective costs on a parallel sys­
tem are a factor s3 smaller. Similar types of linear systems occur in 
the parallel diagonal-implicitly iterated RK methods and the parallel 
triangular-implicitly iterated RK methods analysed in [2] and [3] for 
solving IVPs for ODEs. 

It follows from (2.5) that the error amplification matrix corresponding 
to (2.7) is given by 

M = (I© K - B © hJ)-1((A - B) ® hJ). (2.8) 

By means of this matrix, we can derive convergence results for nonsin­
gular K and for nonsingular J, respectively. 

2.1.1. Convergence results 

For nonsingular K, the amplification matrix (2.8) can be written as 

so that the eigenvalues of M are given by those of the matrix 

Z(z) := z(I - zB)-1(A - B), (2.9) 

where z E a-(hK-1J). Similarly, if J is nonsingular, then we write the 
amplification matrix (2.8) in the form 

(2.8") 
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The eigenvalues of M are again those of Z(z), but now with z-1 E 
a(h-1J-1 K). 

Matrices of the type (2.9) have extensively been studied in [2) and [3]. 
For a large number of RK matrices A, diagonal and lower triangular 

matrices B have been found such that p( Z ( z)) < 1 if Re ( z) $ 0. In 
the following, matrices B that possess this property will be said to lie 

in the set JB(A) associated with the RK matrix A. 

We summarize the result established in this subsection in the following 
theorem (fron1 now on, we shall tacitly assume the nonsingularity of 

matrices as soon as their inverses are used): 

THEOREM 2.1 - If B E lR(A), then the general IDE method 

(2.7) converges for· all h, provided that either Re(a(X- 1 J)) $ 0 or 

Re(a(J- 1K)) $ 0. 

EXAMPLE 2.1 - Consider the implicit IVP (1.3) where](= Q(y) 
and J = (f(y) - Q(y)y)y. If]( is nonsingular in the neighbourhood 

of the solution,, then Theorem 2.1 requires that the matrix K- 1 J = 
Q-1(y)(f(y) - Q(y)y)y has its eigenvalues in the nonpositive half­

plane. If, instead, J is nonsingular, then Theorem 2.1 requires the 
matrix J-1 ]( = ((f(y) - Q(y)y)y )- 1Q(y) to have its eigenvalues in 
the nonpositive halfplane. As a special case of (L3), we have the DAE 

of index 2, defined by 

( I 0 ) ( ~ ) _ ( g(u, v) ) = O, 
0 0 v h(u) 

with gv and hu nonsingular. The matrices J and J- 1 ]( are given by 

J = ( gu gv ) J-1 ]( = ( 0 0 ) 
hu 0 ' gy1 0 ' 

so that J-1 ](has zero eigenvalues implying convergence of the iteration 

method. 
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2.2. IDE methods for partitioned problems 

In this section, we consider problems of the partitioned form {(1.1), 
(1.2)}. For such problems, it is convenient to write y = (uT,vTl, 
where u and v are respectively of dimension d1 and d2, and to re­
place the stage vector Y by the permuted stage vector X = PY := 
(VT, vT)T, where U and V are stage vectors associated with u and 
v in the same way as Y is associated with y. Let us introduce the 
permuted iterates xUl := pyU), then the permuted versions of (2.4) 

and (2.5) become 

J\r(xul - xU- 1l) = -P(hA 0 J)R(P-1xU- 1l ), J\r := P N p- 1 , 

(2.10) 

x(J) - x = M(xU- 1l - X), M := PM p-1 = ir1(N - No), 

No= P(I ® K - A® hJ)P-1 . 

(2.11) 

Before selecting suitable matrices N, we consider the general IDE 
method, when applied to problems characterized by (1.2). By replac­
ing in (2. 7) y(j) by p-l x(j) and by observing that the permutation 
matrix P has the property that for any matrix C and any matrix J 
with a partitioning as in (1.2), we have 

it can be verified that the general IDE method (2.7) takes the form 

( I 0 Ku - B 0 hl11 -B 0 hJ12 ) (XU) _ xU-l)) = 
-B 0 hl21 -B@ hJ22 

= (-hA@I 0 ) PR(P-1x(j-1)). (2.7') 
0 -hA@ I 

Since 

No = ( I 0 Ku - A© hJ11 -A 0 hJ12 ) • 

-A 0 hJ21 -A 0 hl22 
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the matrix N associated with (2.7') can be written as 

( 
I 0 Ku - B 0 hli1 -B 0 hl12 ) = 

-B 0 hJ21 -B 0 hh2 

=No+h( (A-B)®l11 
(A - B) 0 121 

(A - B) 0 112 ) 

(A - B) 0122 
(2.W) 

From (2.11) it follows that the convergence is expected to be faster as 
the magnitude of the matrix N - No is smaller. Hence, taking into 
account that we should not loose computational efficiency, we are led 
to the alternative iteration matrices: 

N= ( I 0 Ku - B 0 hl11 -B 0 hli2 ) 
-A® hJ21 -A0 hh2 

No+ h ( 
(A - B) ® 111 (A - B) 0 112 ) 0 0 

(2.12) 

) = No+h ( (A-B)@l11 O) 
A 0121 0 

N = ( I 0 K11 ~B 0 hl11 -A 0 hl12 

-A 0 hl22 

(2.13) 
where in (2.13) h2 is assumed nonsingular. These iteration matrices 
generate the methods 

( I 0 K 11 - B 0 hl11 -B 0 hl12 ) (XU) _ xU-1)) = 
I 0121 10 hz 

( -hA 0 I O ) PR(P-ix(j-l))' 
= 0 I · 

(2.14) 

( I 0 Ku - B 0 hlu -A 0 hl12 ) (X(j) _ x(j-1)) = 
O I® 122 

= ( -h~ 0 I ~ ) PR(P-1x(j-1))' (2.15) 

and will be referred to as the partitioned IDE method and the par­
titioned index 1 IDE method (note that the nonsingularity of Jn in 
(2.15) requires the problem to be of index 1). 
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From (2.12) and (2.13), we conclude that for many problems the two 

partitioned IDE methods converge faster than the general IDE method 

(2.7') because they a.re "closer" to the true Newton process. However, 

if B is such that the matrix A - B has entries of small magnitude, 

then we may expect that the general IDE method and the partitioned 

IDE method (2.12) are both superior to the partitioned index 1 IDE 

method (2.15). 

Both partitioned methods lead to linear systems, of which the matrices 

of coefficients can be transformed to block-triangular form. However, 

they differ by their degree of implicitness, and therefore by their amount 

of intrinsic parallelism. Note that the partitioned IDE methods (2. H) 

and (2.15) both reduce to the genera.I IDE method (2.7') if rh = 0 (that 

is, if there is no partitioning). 

2.2.1. Partitioned IDE method 

Each iteration with (2.14) reo,_uires the solution of s systems of dimen­

sion d := d1 + d2 whose matrices of coefficients are of the form 

C; := ( K11 - hB11l11 

121 
·i = 1, ... '8. 

Thus, in order to apply the partitioned IDE method, the matrin.'s C; 

should be nonsingular. 

Furthermore, it follows from (2.7') and (2.14) that for partitioned prob­

lems, the cornputa.tiona.l complexities of the general IDE and parti­

tioned IDE methods are comparable. 

In order _to derive convergence conditions, we rewrite its amplification 

matrix M in one of the following two forms: 

- ( 0 M= 
0 
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where the submatrices M11 and .Af 22 are defined by 

J\if11 := (J - B ® hJ(i11 S22)- 1((A- B) ® hICLJ.1S22 ), 

S22 := .!11 - .li2.li:/h1, 

M22 := (B ®I - I® h- 1sz:/ K 11 .!:211 J 22)-1((A- B) ®I), 

S21 := .li2 - J1iJ2i1 h2· 

Obviously, the eigenvalues of \O(M, - ), and therefore the eigenvalues 

of M, are given by those of M11 or M22· A comparison of M11 with 
the amplification matrix obtained in (2.8) reveals that they have the 

same structure. Hence, the same matrices T as before can be used to 

make p(M) = p(M11) < 1 for all h, provided that the matrix K1/ S22 
has its eigenvalues in the nonpositive halfplane. The eigenvalues of 
M22 are given by the eigenvalues of Z(z), defined in (2.9), with z-1 E 

a(h-1 Si} K1iJ2i1 h2)· 

THEOREM 2.2 - Let B E B(A.) and let (1.2} hold. Then, the 

partioned IDE method (2.14} converges for all h, provided that either 

Re(a(K1i1S22)) ~ 0 or Re(a(S211K1iJ2i1h2)) ~ 0. 

We remark that the Theorems 2.1 and 2.2 lead to equivalent conver­
gence conditions when applied to partitioned problems satisfying (1.2). 
For example, Theorem 2.1 claims convergence if all eigenvalues >. of 
the matrix J-1 K are in the nonpositive halfplane. It is easily verified 

that these eigenvalues >. also satisfy the relation K 11 u = >.S22u. Hence, 
>.- 1 is an eigenvalue of K1i1822 which Theorem 2.2 requires to be in 
the nonnegative halfplane. Thus, the two convergence conditions are 
equivalent when both are applicable. 

EXAMPLE 2.2 - The IDE in (1.3) can be written as the DAE 
(cf. [1, p.486]) 
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which satisfies (1.2) with K11 = I and J11 = 0, Ji2 = I, J22 = 
Q. Assuming that Q is nonsingular, we have S22 = Q- 1(u)(f(u) -

Q(u)v)u· Theorem 2.2 requires that S22 has its eigenvalues in the 

nonpositive halfplane, the same condition as derived in Example 2.1. 

2.2.2. Partitioned index 1 IDE method 

From (2.15) it follows that in each iteration we can first solve in parallel 

the s (uncoupled) d2-dimensional systems for the last sd2 components 

of x(j) - x{j-l) and next the 8 system of dimension d1 for the first sd1 

components. The latter s systems can also be solved concurrently if B 
is diagonal. In the case of direct solvers, the LU-decompositions of '22 

and the matrices I -Biilu, i = 1, ... , s, can again be done in parallel. 

It is here where the sequential (or effective) costs of the partitioned 

index 1 IDE method (2.15) may be substantially less than those for 

the general IDE and partitioned IDE methods (2.7) and (2.14), whose 

LU-costs are~ 2( d1 + d2)3 /3 flops, whereas the partitioned index 1 IDE 
method requires only 2(max { d1, d2} ) 3 /3 flops, i.e. a speed-up factor 

(di+ d2)3 (max{d1, d2} t 3 = (1 + min {d1dz-1, d2d! 1 } ) 3 . For d1 = d2, 
a maximum speed-up factor of 8 is obtained. 

Proceeding as in the preceding subsection, we obtain for the ampli:fica-

tion matrix M 
Mu 

-I 0hJ2;1 121 

where 

Mn := (I - B 0 hK]} J:i:/) (A 0 hIC;/ S22 - B 0hIC;}111), 

so that M and Mu have the same eigenvalues. If either 111 vanishes 
or if we choose B = 0, then 

and if either J12 or '21 vanishes, then 

p(M) = p(Mu) = p(I - B 0hK;/1ut1 ((A - B) 0 hK}:/ J11 )). 

This leads to the theorem: 
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THEOREM 2.3 - Let (1.2} be satisfied. Then, the partitioned in­
dex 1 IDE method (2.15} converges if 

(a) B = 0 or Jn = 0, 

EXAMPLE 2.3 - Consider the DAE of Example 2.2. Since J11 = 
0, Theorem 2.3 (a) applies with K 11 = I and 522 = Q-1(u)(f(u) -
Q(u)v)u, so that we have convergence if h < (p(A) p(S22))-1. 

EXAMPLE 2.4 - Consider the DAE of index 1 defined by 

( I o) (u') _ (g(u, v)) = 0 
0 0 V' h(V) ' 

with Jz2 = hv nonsingular. Since ]z1 = hu = 0, Theorem 2.3 (b) 
applies with ](11 = I, so that we have convergence if B E JR(A) and 
Re (a( Jn)) ::; 0. 

We did not succeed in deriving sharp estimates for more general situ­
ations than the special cases covered by Theorem 2.3. Therefore, we 
followed an alternative approach, by deriving the spectral radius of the 
amplification matrix for a related iteration scheme. The related scheme 
generates a sequence {X(k,m)}, k = 1,2, ... , and is defined by 

X(k,O) =·X(k-1,m), N(X(kj) _ X(k,j-1)) = 

= -PR*(p-1x(k,j-1),p-1x(k-1,m), j= l, ... ,m, 

R*(U, V) :=(I® K - A® hJ*) (U - V)+ 

+(hA Q9 J)R(V), J* := ( 1(>1 j;; ) . 
(2.16) 

where N is defined as in (2.13). Let us compare this related scheme 
with the iteration scheme (2.15) we actually apply. Writing (2.15) in 
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the form 

JV(X(k) - xu~-l)) = -P(hA ® I)R(P-1X(k-l)) = 

= -PR*(p-Ix(k-l)' p-1 x(k-1)) 

( 2.1.5') 

with Ji; also defined by (2.13), we see that (2.15') and (2.16) only differ 

in the frequency by which the quantity R* is updated. In (2.15'), 

R* is updated in each iteration, whereas (2.1()) updates R* each 1n 

iterations. This leads us to conclude that the partitioned index l IDE 

method (2.15) will converge a.s j---'- oo, wh('never (2.16) converges as 

j = 0, L ... , m and k -""'" ::x;. 

In order to derive a convergence condition for (2.16), let k be fixed and 

let X(k) be the solution of the equation 

(2.17) 

It is easily verified tha.t 

Jvf* = 

where 

( 2.18) 

As before, this leads us to require that the matrix K:[/ Jn has its 

eigenvalues in the nonpositive halfplane. Since this condition implies 

convergence of (2.16) for any fixed k, it follows from (2.17) that for 

sufficiently large m the iterates X(k) satisfy the relation 

( 2.19) 

Next, we consider the convergence of the iterates p-l X(k) to the so­

lution Y in (2.2), On subtraction of (2.2) and (2.19), and ignoring 

second-order terms, it follows that 

P(I@ K - A 0 h.J*)P-1(X(k) - PY)= 

P(A 0 (hJ - hJ*))P-1(X(k-l) - PY). 
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An elementary calculation yields 

x(k) - PY= M(X(k-l) - PY), M11 
-I O hJ:;:} J21 

where 

(2.20) 

Thus, the eigenvalues of the amplification matrix M are given by the 
eigenvalues of 

Z*( uh) := c~h( I - ah!Cj./ li1)- 1 K}11( Ju - 822 ), 

S22 :=Jn - Ji2J;.} hi, a E er( A), 
(2.21) 

so that the convergence condition for the sequence {X(k)} becomes 
p(Z*(0:h)) < l. 
Summarizing, we have the result 

THEOREM 2.4 - Let BE lIB(A), let (1.2) be satisfied, let Z*(ah) 
be defined by (2.21), and let Re(lT(I\j./J11 ))::::; 0. Then, the related 

method (.'2.16) converges, p1m,ided that p(Z*(ah)) < 1 for all n E lT(A). 

We recall that it is expected that this convergence theorem also applies 
to the partitioned index l IDE method (2.15). 

EXAMPLE 2.6 ·· Consider the DAE of index 1 of Example 2.4. 
Since l\11 =I and J 21 = hu = 0, it follows that Z*(o:h) = 0, so that 
Theorem 2.4 implies that (2.16) converges if Re(cr(Jii)) ::::; 0. This 
condition is identical with the one obtained in Example 2.4 for the 
method partitioned index 1 IDE method (2.1.5). 

The usefulness of Theorem 2.4 depends on the possibility of estimating 
the quantity p( Z*(nh)). By using properties of the logarithmic norm, 
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it is sometimes possible to derive sufficiently sharp estimates. Let H := 

I - c~hICi/J11 . Then, 

(z*( h).l <hi lllH-1ll llIC1(J - S )ii < hiaiilK1/(J11 - S22)ii 
p a _ a 11 11 22 _ { [ H] [H]} , max -fl - , -µ 

where µ[HJ denotes the logarithmic norm of H. 

3. Numerical examples 

We solved these systems using the general IDE method ( 2. 7), and the 

partitioned IDE methods (2.14) and (2.15) when applicable. In all 

cases, the corrector is defined by the four-stage Radau IIA corrector 

and the predictor formula is given by y(o) := EY~m), where Y~m) 
denotes the final approximation to the stage vector obtained in the 

preceding step, and E is the extrapolation matrix of maximal order. 

The matrix B is chosen either according to the dia.gonal matrix D 
derived in [2] or the lower triangula.r matrix T derived in [3]. These 

matrices are given by 

( 

00.3205 0 0 

B = D := o.0892 o 
0 0 0.1817 

0 0 0 
;2334 ) 

( 

0.1130 () 0 0 ) 

B = T := o.2344 o.2905 o o 

0.2167 0.4834 0.3083 0 

0.2205 0.4668 0.4414 0.1176 

Both matrices ha.ve the property that p( Z( z)) < 1 whenever Re (z) :S 0. 

However, for B = D the maximal va.l ue of 11 Z ( z )i 11 in the lefthand 

halfplane is greater than 1 for j :=; 4, wherea.s for B = L, it is less 

than 1 for all j. As a consequence, B = T should lead to a much more 

robust iteration scheme. Furthermore, the matrices A - B that play a 

role in how close the iteration methods are to the true Newton iteration 
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process a.re given by 

A-D= ( 

-0.2075 -0.040:3 0.0258 -0.0099 

) 0.2344 0.1177 -0.0479 0.0160 

0.2167 0.4061 0.0073 -0.0242 ' 
0.2205 0.3882 0.:3288 -0.1709 

( 

0 0.040:3 -0.0258 0.0099 ) 

0 0.0836 0.0479 -0.0160 
A-T=- . 

() 0.0773 0.1192 0.0242 

0 0.078G 0.1126 0.0551 

Evidently, the magnitude of A -T is considerably smaller than that of 
A-D. 

Since this pa.per aims a.t a comparison of algorithmic properties of the 
three IDE methods and the effect of the diagonal and triangular modes, 
we a.voided effects of stepsize and itera.tion strategies by performing the 
experiments with fixed stepsizes hand fixed numbers of iterations m. 

The tables of results below list the minimal number of correct signifi­
cant digits defined by. 

ll YN - y(tN) II 
csd := - log10 y(tN) 

00
, 

where YN denotes the numerical solution a.t the end point tN, and 
where the division of vectors should be understood as componentwise 
division. 

3.1. The Colpitts oscillator 

Our first test problem is the IVP for the Colpitts oscillator specified 
in [4]. This IVP of index 0 is described by an implicit ODE system 
of the form (1.3) with four linear differential equations and with con­
stant, nonsingular ea.pa.city matrix Q. For such problems, the general 
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IDE method and the two partitioned IDE methods are identical. There­
fore, Ta.ble :3.1 only compa.res the effect of the dia.gona.l a.nd triangular 
modes. The results show that the diagonal mode performs much bet­
ter. Apparently, this problem is relatively easy, so that the increased 
robustness of the triangular mode is not demonstrated. 

h 

D.04 

0.02 

Table 3.1. General IDE method applied to the Colpitts oscillator in 

the form (1.3). 

3.la. B= D. 3.lb. B=T. 

m =3 m= 4 m= 5 m=6 h m = 3 m = 4 rn = 5 m. = 6 

4.0 5.7 6.1 7.4 0.04 3.0 4.2 5.6 6.4 

4.8 7.8 7.9 9.4 0.02 4.2 5.8 7.3 8.7 

3.2. The transistor amplifier 

The second test problem is an IVP for the transistor amplifier given 
in [1] (see also [5]). This nonlinear, eight-dimensional problem of in­
dex 1 can be represented in the implicit form (1.:3) with a. constant, 
non partitioned (but singular) capacity matrix Q, as well as in semi­
explicit form (1.4) with d1 = 5 and d2 = :3. In the implicit. form (1.3), 
only the general IDE method can be applied, whereas the semi-explicit 
form (1.4) allows application of all three IDE met.hods. In order to 
facilitate a. mutual compa.rison, the csd-values in the tables of results 
refer to the accuracies of the numerical solution of the untransformed 
problem (1.3). 

Table 3.2. General IDE met.hod applied to the TraHsistor amplifier 

in the form (1.3). 

3.2a. B=D. 3.2b. B =T. 

h m =4 m= 5 m =6 m= 7 h m =4 m=5 m= 6 m =7 

4. 10-4 * * * 5.7 4. io- 4 * 6.8 6.5 6.5 

2. 10-4 6.0 7.9 8.D 8.6 2 . 10-4 8.U 8.6 8.8 9.3 
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Table 3.3. General IDE qmethod applied to the Transistor amplifier 

in the semi explicit form (1.4). 

3.3a. B=D. 3.3b. B =T. 

h m=4 m =5 m = 6 m = 7 h m=4 m=5 m=6 m= 7 

4. 10-4 * * * 5.1 4 . io- 4 * 5.5 6.0 

2. 10-4 4.6 6.9 7.1 7.3 2. 10-4 6.6 7.8 7.8 

Table 3.4. Partitioned IDE method applied to the Transistor ampli­

fier in the form ( 1.4). 

3.4a. B=D. 3.4b. B=T. 

6.5 

8.4 

h m=4 rn = 5 m = 6 m =7 h m=4 rn = 5 m=6 m = 7 

4. 10-4 3.3 3.6 3.9 4.2 4. 10-4 3.8 4.0 4.3 

2. 10-4 5.1 5.7 6.3 7.0 2. 10-4 5.4 6.2 6.9 

Table 3.5. Partitioned index 1 IDE method applied to the Transistor 

amplifier in the form (1.4). 

3.5a. B=D. 3.5b. B =T. 

h m =4 m =5 m = 6 m = 7 h m=4 m= 5 m= 6 

4. 10-4 4.1 5.1 4.8 5.6 4. 10-4 4.1 4.5 5.0 

2. 10-4 5.5 6.3 8.1 7.3 2. 10-4 5.9 6.4 7.0 

4.7 

7.6 

m=7 

5.6 

7.7 

Table :3.2 lists results for he general IDE method when applied to 
the implicit form ( 1.:3). It dearly shows the greater robustness of the 
triangular mode. Apparently, the Transistor amplifier presents a much 
more difficult problem than the Colpitts oscillator, so that the diagonal 
mode fails for a small numbers of iterations. 
The tables 3.:3, 3.4 and 3.5 present results for the three IDE methods 
when applied to the semi explicit form ( 1.4 ). As expected, the triangular 
mode is again superior to the diagonal mode. Furthermore, we see that 
for larger stepsizes, the partitioned IDE methods are more robust than 
the general IDE method. 
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Notice that algebraically, the results in the Tables 3.2 and 3.3 should 
be identical. They only differ by the way they are computed. The 
differences in these tables are due to rounding errors caused by the 

transformation from the variable y to z = S21y and back ( cf. Re­

mark 2.1). 
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