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1. INTRODUCTION

The concept of induction is a most powerful tool in representation the-
-ory. For finite ‘groups, this method of obtaining representations of a group
by means of representations of its subgroups was designed by Frobenius in
1898. In the period 1939-1950, Wigner, Bargmann and others used induction
in an implicit manner, in papers which dealt with the representations of
special noncompact groups, such as the Lorentz group (cf. references of
Ch.X). It was G.W. Mackey in the years around 1950, who constructed a uni-
fied theory of induced representations for general locally compact groups.
He also developed an extension of the important concept of imprimitivity to
locally compact groups. Imprimitivity is closely related to representation
theory, in particular to the theory of induced representations. Finally,
Mackey showed how to apply induction and imprimitivity to obtain irreducible
unitary representations of locally compact semidirect products from certain
proper subgroups ("little groups"). For an important class of semidirect

)

products* these results are fairly complete (see Ch.X). This method, known
as the little group method, had been used earlier by Wigner in connection
with the Poincaré group.

In this chapter we plan to discuss rather extensively the basic fea-
tures of induction on‘finite groups. In the first place webaim to provide
a motivation for the theory_of Mackey, which is to be discussed in the
chapters IX, X and XI. Secondly, this chapter could serve as a simple intro-
duction for people who take interest in advanced representation theory of
finite groups. For further readinag in this direction we refer to the excel-
lent exposé of SERRE [3], where among other things the important theorems
of Artin and Brauer are discussed, which ensue from the induction process.

We will start with reviewing briefly some basic facts from the general
representation theory of finite groups. Next the inducing construction will
be presented, first for characters only (§3), and then for representations
(§4) . Finally we will prove a useful theorem, which provides us with a way
of deciding whether an arbitrary representation is induced from a subgroup.
The extension of this theorem to locally compact groups will be given in
Chapter X.

We emphasize that G will always denote a finite group, unless other-

wise stated. Furthermore, all vector spaces are assumed to be complex and

*)

For instance, the Poincaré group and the Euclidean groups belong to this
class. ‘
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finite-dimensional.
The reader may keep in mind that many of the results apply to compact

groups as well. This can be seen by replacing expressions of the form

eee by j ... dx,

1
T 2
G

G

where |G| denotes the cardinality of a finite group G and dx the normalized

Haar measure on a compact group G.

2. GENERAL REPRESENTATION THEORY FOR FINITE GROUPS

Let V be a finite-dimensional complex vector space. By Gl (V) we will
denote the group of invertible linear operators on . A homomorphism T from
a finite group G into Gl (V) is called a representation of G on V.

Suppose that there exists a linear subspace V' of V which is stable
under the action of 1, i.e. 1T(x) V' = V' for all x in G. Then, denoting the
operators T (x) restricted to V' by t'(x), we obtain a new representation of
G; 1': G+ GL(V'). We call t' a subrepresentation of T. If T admits no non-
trivial stable subspaces, then T is said to be irreducible. Let T1' be a sub-

representation of T on V'. By m. we denote the "average" of a mapping m from

0
I/ into itself with w(V) = V' and “2 = 7, that is,

T(X)WT(X)-I.

1
SRS

0 Gl xeG
Clearly wO(V) = V', and one verifies easily that the complement V" in V of

V' corresponding to m, (i.e. V" = kernel(no)) is stable under 1. The sub-

representation t" corgesponding to V" is called complementary to t', and T
is called the direct sum of T' and t". This is denoted by 7 = t' & T". Con-
versely, if we are given two representations T and ¢ of G on spaces V and
W respectively, we can form in an obvious way a new representation T & o
on the direct sum V & (.

By iterating the construction of complementary subrepresentations given
above, we see that any representation T of G can be written as a direct sum
of irreducible subrepresentations. This result is known as the theorem of

Maschke. Unfortunately, such a decomposition is not always unique, as a

simple counterexample may show. We will say more about this below.
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Let Rep(G) denote the set of all representations of G. We define an
equivalence relation in Rep(G) by calling 7,0 € Rep(G) equivalent (notation

T = ¢g) if there exists an invertible linear mapping T: V(1) - V(o) such that
(2.1) TT(x) = o(x)T, Vx € G.

(By V(1) we denote the representation space of a representation t.) It is
clear that an equivalence class containing an irreducible representation can
contain only irreducible representations. The set of equivalenée classes of
irreducible representation is called the dual of G and denoted by G.

Let T € Rep(G). The complex-valued function X on G defined by
X (x) = trace(t(x)), X € G,

is called the character of T. One verifies easily the following properties

of characters.

LEMMA 2.1. Let 7,0 € Rep(G) and let x and ¢ denote their respective charac-
ters. Then

(i) x (e) = dimension (V(t));

(1) x& ) = X@, ¥x € 6

(ii1) x(yxy D) = x(x), Vx,¥ € G;

(iv) the character of T ® 0 equals X + ¢;

(v) T =0=xX= 6.

We continue with discussing several important consequences of this
simple lemma, especially of (iii).

Two elements x and y of G are said to be conjugate if x = zyz_1 for
some z in G. This defines an equivalence relation in G, so we can partition
G into equivalence classes, which are called conjugacy classes. We shall see
below that the number of conjugacy classes, the so-called class number of G,
is an important feature of the group G. From Lemma 2.1 (iii) it follows that
characters are constant on conjugacy classes. In general, we call a complex-
valued function on G which satisfies this condition a class function (or
central function). The set of all class functions on G, denoted by CL(G),
is a linear subspace of the space £2(G) of all complex-valued functions on
G. The latter space can be equipped with an inner product, defined by

1

@) = ] 0V, 6.0 € £2@).
IGI xXeG
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With an irreducible character we mean the character of an irreducible rep-
resentation. The set of all irreducible characters of G will be denoted by
Inn(G). The following lemma exposes the distinguished role played by Ini(G)
in the space CL(G).

LEMMA 2.2. The elements of INL(G) form an orthonormal basis for CL(G).

COROLLARY 2.3. A class function ¢ is a character if and only if for each

X in Inn(G) the number (¢,X) is a nonnegative integer.

PROOF. Clear from the theorem of Maschke, mentioned above, Lemma 2.1 (iv)

and Lemma 2.2. [

We continue this preliminary subsection with a discussion of the proof
of Lemma 2.2, and some of its corollaries. First we need the celebrated
lemma of Schur. We will take the elements of G to be proper representations,
for convenience. By virtue of Lemma 2.1 (v) we can unambiguously speak

about the character of T € G.

LEMMA 2.4 (Schur). Let 1,0 € é, and suppose we are given a nonzero linear

mapping T: V(t) - V(o), which satisfies
Tt(x) = o(x)T, Vx e o.

Then T = 0 and T is a scalar multiple of the identity on the representation

*)
space .

PROOF. The obvious observation that the kernel and the range of T are in-
variant subspaces for T and o, respectively, shows that T is either zero or
invertible. In the second case we have T = 0. Moreover, if T is invertible
and if X is any eigenvalue of T, then iteration of the preceding argument

yields T- AI = 0, where I denotes the identity on V(t) = V(o). 0O

Next we choose a basis in V(t) and in V(o) for t,0 € G. Then T and o
can be written in matrix form: T(x) = (Tij(x)) and o(x) = (cij(x)). The
Schur lemma implies the following orthogonality relations between matrix

elements of T and o.

*)

This lemma has an infinite dimensional counterpart; see chapter VII.
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COROLLARY 2.5.

(i) For T # 0 one has

1 -1, .
TeT XEG Tij (x)okl(x ) =0, Vi,j,k,Ll.
. 1 -1, 1
(i1) Gl XEG Ty ® T &) = Fmwmy S1e8yke

PROOF. Let T = (Tij) be a linear mapping from V(t) into V(o). Then

0 1 -1
T = TgT Y o(x )TT(x)
le XeG
is also a linear mapping from V(1) into V(o). Moreover, one checks easily
that T0 satisfies relation (2.1). Since

trace(TO) = TéT trace(o(x_i)TT(x)) = trace(T),

xXeG
the eigenvalues of T0 are all equal to (dim V(T))—l' trace(T). Finally,
choosing for T the matrix with T __ = GerSk, the identities stated in the

rs
corollary are readily verified. [J

Let x and ¢ be irreducible characters of G. After choosing the indices
in the orthogonality relations stated above conveniently, we find (¥,x) =1
and (x,¢) = 0 for x # ¢. In order to finish the proof of Lemma 2.2, we have
to check completeness of the system Ini(G) in cf(G).

Let o € ¢£(G), and let T be an irreducible representation of G with

character x. The operator t(a) on V(t) defined by
T(a) = ) a(x)T(x)
XeG

satisfies (2.1), and is therefore a scalar multiple of the identity on V(T)

(possibly zero). We have

trace(t(a)) = ) a(x)x(x) = |G|+ (a,%),
xX€eG
where i(x) t= §_§). Hence,
T(0) lG] (a,i)-I.

= dm((V (D)
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Next, suppose (a,i) = 0 for all x € Inn(G). Then T(a) = O for all T € G. If
we define o(a) for an arbitrary representation of G, we have again o(a) = O,
by direct sum decomposition. In order to finish our argument, we need the

following example.
EXAMPLE 2.6. Let A be the representation of G on the space KZ(G), defined by
-1 2
Ax)E)(y) = £(x "y), fe £7(G).

A basis for !_2 (G) is formed by the functions {ex}XE , defined by

G
1 ifx=y,

ex(y)
0 otherwise.

Note that A(x)ey sxy' The representation A is called the left regular
representation of G. The right regular representation p of G is defined on

£2(G) by

2
(p(x)£) (y) = £(yx), fe L.
For ¢ in the paragraph preceding this example we take A. Then

0 A(a)ee xZGu(x))\(x)ee XEG a(x)ex.
Hence, o(x) = 0 for all x in G. Thus, we proved that any function in CL(G)
which is orthogonal to the system {X;X € I%L(G)} must be zero. Clearly this
implies the same for the system I4A(G), so we are through with Lemma 2.2.
This lemma has important consequences. First, note that it follows from the
orthogonality relations for the irreducible characters that non-equivalent

irreducible representations have different characters. This fact yields

LEMMA 2.7. The number of non-equivalent irreducible representations of G

equals the class number of G.

PROOF. The cardinality of G is equal to that of Inn(G), by the observation
made above. The number of elements in I#4(G) is, in its turn, equal to the

dimension of CL(G) , which obviously is the class number of G. ]

Next, let T be any representation of G, and let

-

(2.2) T=0,8... 80,

1
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be a decomposition of T into irreducible representations. Write XeXqreeerXy
for the characters of T,cl,...,cn, respectively. The following lemma estab-

lishes the degree of uniqueness of decomposition (2.2).

LEMMA 2.8. The number of Uj equivalent to a certain o, (1 £4i,j £n) is-
‘equal to the number (x,xi). In particular, it does not depend on the chosen

decomposition.

PROOF. We have (X:Xi) = Z (xj,xi), and the result follows from the ortho-

j=1
normality relations for irreducible characters. [J

The character ) of the regular representation p is readily found to be
given by x(e) = |G| and x(x) = 0 if x # e. Let Y be an irreducible character

of G. Then

T%;r X (K V(X)) = ple).

(X ¥) )
XeG
Hence, each T in G occurs in the direct sum decomposition of p, with multi-
plicity equal to dim(V(t)). (We call the number of subrepresentations equiv-
alent to a given irreducible representation T which occur in a representa-
tion o, the multiplicity of T in 0.) This observation implies the following
lemma.

- (aimW(nN? = lel.

LEMMA 2.9. ) =

PROOF. Dim(£2 (@) = la|. O

Last but not least we notice that the converse of Lemma 2.1 (v) follows

from Lemma 2.8. Thus we have

LEMMA 2.10. Two representations of G are equivalent if and only if they

have the same character.

EXAMPLE 2.11. Let S3 = {(1),(12),(13),(23),(123),132)} be the permutation

group of an ordered set of three elements. This group is isomorphic to the
dihedral group D3, which consists of those rotations and reflections of the

real plane that preserve a regular triangle. If we set s = (12) and r= (123),

we get 52 = (1) = e, r3 = e, SY = rzs and rs = sr2. The conjugacy classes

are readily seen to be K, = {e}, K, = {s,sr,rs} and K, = {r,rz}. Hence,

3
there are three irreducible characters. Furthermore, we must have
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I @oon®= ] en®=ls,l =6

T€S, er&&(S3)

Therefore, two of the irreducible characters are one-dimensional and one is
two—dimensional.'Let X1 be the trivial character (x1 = 1) and let Xy be the
one-dimensional character that can be defined on all permutation groups:
xz(x) =1 if x is even and xz(x) = -1 if x is odd. (We call a permutation
even (odd) if it contains an even (odd) number of inversions.) For 53 we
get x2(K2) = -1 and x2(K3) = 1, denoting by X(K) the constant value of X on
a conjugacy class K. The third character can now be reconstructed from the

orthogonality relations, knowing that x3(e) = 2:

1
(X1'X3) = 8(2 + 3x3(K2) + 2X3(K3)) =0,
(XyrXa) = (2 = 3xq(K,) + 2x2 (Ky)) = 0
XarX3) = & X315y X337 = L.
Hence, x3(K2) = 0 and x3(K3) = -1. It is convenient to store our knowledge

in a so-called character table, that is, a matrix, with at the ij-th place

the value of the i-th character on the j-th conjugacy class:

Table 1
Ky Ky | %3
X, | 1 1 1
Xy 1 -1 1
X3 2 0 -1

2
The representation T, corresponding to ¥, can be realized in @ by the
3

3

aforementioned isomorphism of S, on D,. Choosing the regular triangle con-

3 3

veniently in:lR2 c Cz, we obtain as the generators of D, two matrices X and

3
Y which are given by

-1 -3
AN !

respectively a reflection and a rotation through an angle %ﬂ. Clearly s

corresponds with X and r with Y. Hence, 13(5) = X, T3(Sz) = 13(e) = I (the
identity matrix), T3(r) =Y, 13(r2) = Y2, T3(sr) = XY, 13(rs) = YX.

The group S, contains an invariant subgroup of index two, namely

3
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2
A3 := {e,r,x"}, the so-called alternating group, which contains all even
permutations. This subgroup is cyclic, and its character table is easily

verified to be:

Table 2

e} | {r} | {2
¢1 1 1 1
2
wz 1 w w
w3 1 w2 w

2imw
Here w = e 3 . Note that it is in general not true that a subgroup inherits

the conjugacy class structure from the original group.

3. INDUCTION OF CHARACTERS

Restricting representations of G to a subgroup H yields representations
of H, with the same representation space. In general this restriction can
not be reversed, that is, it is not always possible to extend representations
of H to representations of G with the same representation space. For instance,
the representations of A3 corresponding to its nontrivial irreducible char-
acters (Example 2.11) cannot be extended to one-dimensional representations
of S3. However, there is a canonical construction which assigns a represen-
tation of G to every representation of H, and which is in some sort dual to
the process of restriction. It proceeds by extending the representation
space of a given representation of H to a larger space in which a represen-
tation of G can be defined (§4). For the sake of clarity we will show by
means of characters that such a construction is possible, before discussing
it in detail. The sense of duality in this context is to be explained at the
end of this subsection.

Thus, let T be a representation of H and let x be its character. We
will show how X can be extended to a character of G. The most natural way,
perhaps, would be to produce a function i: G > € by the following defini-

tion:
X (x) if x € H,
X (x) := {
Q otherwise.
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Unfortunately, this yields in general not even a class function: take for

example any irreducible character of A, ¢ S,. Another possible step is to

3 3
centralize ¥:

(3.1) X(x) :=

IH

T oxw lxw.
€

Here we have a class function on G, but is it a character? To check this we
compute its Fourier coefficients in the space CL(G). Let ¢ be in Ini(G).

(--,—)G and (-,-). we denote the inner products in C£(G) and CL(H), respect-

H
ively.

g = TeT I XGITm =
xXeG
1 Z 1 Z .o=1 —_—
= - (=1 Xy "xy))o(x) =
IGl XeG l I €
= 12 Y oox e v lxy) =
lGl° x,yeG
1 —
= ] XG¢x =
Gl XeG

=——T ] x(x)ex =

X€eH

|H]

= TaT wolg)y

Here ¢| denotes the character of H obtalned by restrlctlng ¢. From Corol-
lary 2.3 we see that taking (IGI/]HI) X instead of x yields a character of
G. Denoting this character by x , it follows from (3.1) that

(3.2) W = Tl— U oxw k), xeoa.
€

DEFINITION 3.1. The character XG defined by (3.2) is said to be induced
on G by x. The corresponding representation is denoted by TG. It is also

called induced on G (by T).

PROPOSITION 3.2 (Frobenius reciprocity theorem). If x and ¢ are characters

of H and G respectively, H being a subgroup of G, then

G
(3.3) X9 g = Ot )y
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The proof of this proposition follows directly from the above computa-
tion, in which we did not use the irreducibility of ¢. It provides us with
information about the decomposition of XG when x is irreducible. For suppose

- that

G

= m and ¢| =
velnn@) XY

n n
nelan (H) ¢

Then one has for all ¢ in I (G) and all x in Inr(H):

m .

G
(x ,¢)G = (x,<!>|H)H =n

X9 - X

Hence, we find the following corollary to Proposition 3.2:

COROLLARY 3.3. If 1T and 0 are irreducible representations of H and G,
respectively, then the multiplicity of 0 in TG equals the multiplicity of T

in oy_..
H

Using formula (3.2) the reader will find no difficulty in verifying

the following results:

PROPOSITION 3.4. Let x and ¢ be characters of the subgroup H ¢ G. Then

G .
x+ 6 = x%+¢¢
and, if Y is a character of G,
G G
Xy = (x-w|H> .

COROLLARY 3.5. For representations T and 0 of H and a representation v of

G, one has

(t® c)G = TG o cG

and
G
TG ®v = (1 8® le) .
COROLLARY 3.6. If the induced representation TG is irreducible, then T is

irreducible.

Unfortunately, the converse of this statement is in general false (cf.

Example 3.8).
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PROPOSITION 3.7 (Induction in stages). If H1 and H2 are subgroups of G such

that H1 c H2, and if Tt is a representation of Hl’ then

Hz)g G

(T =T .

REMARK

(i) If n is the dimension of a representation T of H, then the dimension
of TG'is n.d, where d is the index of H in G, that is, the number of
different left H-cosets. This follows from (3.2). ’

(ii) We can define a linear mapping

ReAH: CL(g) » CLm),

which sends a class function on G to its restriction to H. Formula
(3.2) may be considered as a definition of ¢G for all ¢ in CL(G),
and the resulting mapping ¢ - ¢G:

Ind?: Ce(m) + CL(G)

is then linear, and, moreover, it is the adjoint of RQAH by (3.3). In

this sense, restriction and induction are dual actions.

EXAMPLE 3.8. If we take H ¢ G to be the trivial subgroup {e}, and if we
induce the trivial one-dimensional representation of {e} (denote it by 1e),
then we obtain

G |Gl if x = e,

1) =

0 otherwise.

This is just the character of the regular representation of G. Application
of Proposition 3.7 shows that induction of the regular representation of
any subgroup results in the regular representation of G.

EXAMPLE 3.9. Consider the subgroup A3 of S3 discussed in Example 2.11.

Inducing the caracter wz of A3 on 53 yields

S S S

3 _ 3 _ 3 _
by (Ky) =2, ¥, (K)) =0 and Y, (K 1,

3)
2im

since 1+uu+w2 =0, w= eT. Thus we obtain the only irreducible character

of S3 of dimension greater than one. In general we call a group monomial

whenever all its irreducible representations are induced by one-dimensional

representations.
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EXAMPLE 3.10. Suppose that there are two subgroups N and H of G, such that
(i) N is invariant,

(ii) G = N+*H, and

(iii) N n H = {el.

Then G is called a semidirect product (of N and H). Note that (ii) and
(iii) imply that every element of G can be written uniquely as the product
of an element of N and an element of H. If the additional condition

(iv) N is commutative

is satisfied, then G enjoys the property of having all of its irreducible
representations induced from subgroups of the form N*H', where H' is a sub-
group of H (a little group). This is also true for infinite locally compact
semidirect products satisfying (iv), be it under a certain restriction of a
measure theoretical kind. We will come to this in Chapter XI. Note that

S3 = A3'{e,s} is an example of a semidirect product.

4. THE INDUCING CONSTRUCTION

We will now explicitly construct the representation TG, induced by a
given representation T of a subgroup H of G. First we define a representa-
tion T of G in terms of T and then we prove that its character equals XG,
where ¥ is the character of 1. Except for a lot of technical complications
of a mainly measure theoretical kind, the following procedure is the same
as that for locally compact groups.

Let V = V(1) be the representation space of T. DefineF% as the linear

space of all functions £: G » U that satisfy

(4.1) f(xy) = T(y_l)f(x), Vx € G, Vy € H.
In FT we define an action %(y) for y in G, by

(4.2) CWH @ = £, feF.

Obviously, for all y in G and all f in FT the new function T (y)f belongs

to FT as well. Moreover, T(e) is the identity and, for all x, y and z in G:

(W) (x) = (T(2)F) (y %) = £(z 1y %) =

£((yz) " 1x) = (T(y2) ) (x).
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In particular, it follows that (T(y))_l = f(y’l), so T(y) is invertible for
all y in G. Hence T is a homomorphism of G into the group of all invertible
linear mappings of FT into itself. Consequently, T is a representation of G.

Fix a set of representatives of left H-cosets xH, say {xi}?_l, with

1 d
if i # j. Clearly the functions in FT are determined by their values on the

d = |G/H|; the index of H in G. Thus, G = x,HU ... U x_H, and xiHr1xjH =@

X Hence, the mapping f -+ (f(xl),...,f(xd)) defines a vector space isomor-
phism from FT onto Vd =V @®...9 V. In order to compute the character of T,
it is convenient to lift the action of T on FT to an action on Vd, also
denoted by T, by means of this isomorphism. The action of T (y) on Vd can
be represented by a dxd-array (Tij(y)) of operators on V. That is, for all
y in G we have

(4.3) (T (x;) = Tij(y)f(xj).

I e~10

j=1

Let now xz be the representative of the coset containing y—lxi. Then
xz y—lxi € H, or, saying it in a different way, xgly_lxi € H if and only if

j = £. Hence, using (4.1) and (4.2) we obtain

- -1 _ -1 -1 _
(T(y)f)(xi) f(y xi) = f(xzxz Yy xi) =

I
I t~10

-1 _ . o~1
'r(xi yxz)f(xt) ‘r(xi yxj)f(xj)

j=1

where

T (%) if x € H,

0 otherwise.

Combining this with (4.3) yields fij(y) = %(leyxj). Now we are in a position

to compute the trace of T(y):

trace (T (y)) trace (Tii(y)) =

1}
Il o~ 0,

d -1
= z trace 'r(xi yxi)) =

., -1
= izl x(xi yxi).

Since x(zulyz) = x(y) for all y € G and all z € H, we may rewrite this ex-

pression as
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4 o -1 -1
Z Tal z X(z X yxiz).
= zeH

If i runs from 1 to d and z runs through H, xiz runs precisely once through

G, so we have

trace (t(y)) = T%T' ) X(X_lyx) = XG(Y)v
XeG

Since the trace of the lifted operator T (y) equals the trace of T(y) in FT,
G

we have proved that T = T .

REMARK. Formula (4.2) defines an action similar to the left regular repre-
sentation, be it in a different space. If we take H = {e} and for T the
trivial representation of H, we get FT = KZ(G). Hence the above construc-
tion is in fact a generalization of the regular representation. Generalizing

in the same way the right regular representation we obtain an alternative

approach.

(4.1)" f(yx) = t(y)£(x), Vy € H, Vx € G,
and

(4.2)" (B(y)£(x) = £(xy), =x,¥ € G.

However, it is easily verified that T and %' are equivalent. If we take H
to be an arbitrary subgroup of G, we can also induce the trivial represen-
tation. In that case we have that FT = ZZ(G/H), the space of all complex-
valued functions on G which are constant on left cosets of H. The induced
representation acts in this space just as the left regular representation.
It is often called the permutation representation of G corresponding to H.

EXAMPLE 4.1. Let T be the representation of A3 c S3 corresponding to the

character wz (Example 2.11). Note that T(X) = wz(x)-lc for all x € A3,

since wz is a one-dimensional character. We will construct TS3 explicitly.
Choosing e and s as representatives of the left A3—cosets in S3, we

can identify FT with ¢2, by sending f € FT to (f(e),f(s)) € €°. Using (4.1)

and (4.2), the action of rs3 on ¢2 can be computed:

(13 (e) £) (e) = £(e),

(153 (e) ) (s) = £(s),
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(t53(s) £) (e)

f£(s),

(t53(s) £) (s)

f(e),
and

(t33(0)6) (e) = £(r2) = T(X)E(e) = wEle),

(t53 () £) (s) = £(rs) = £(sr) = T(r2)E(s) = W E(s).

In the same way one finds

5322 (£(e),£(s)) — (w2E(e),wE(s)),

©S3(sr): (£(e),£(s)) — (w2 (s) 0 (e))
and

13 (es): (£(e) ,£(s)) — (WE(s) ,w E(e)).

S
Hence, with respect to the basis (1,0), (0,1) of ¢2, we can realize T 3 as

1 0 0 1 W 0
53(e) = ( ), ©3(s) = ( ), 3 () = ( é),
0 1 1 0 0

2 2
) 0 s 0 w s 0 w
it (00 S () e =)
0 w w 0 w 0

follows:

This unitary representation is clearly equivalent to the one we presented

in Example 2.11, where it was called T3.

5. FINITE SYSTEMS OF IMPRIMITIVITY

We start this section with some preliminary remarks on so-called
G-spaces. Suppose that we are given a (not necessarily finite) group G,
and a set I' on which G acts in the following way. Each x € G defines a
bijection y =+ x(y) of T such that (i) e(y) = y for all y € T and
(ii) x(y(y)) = (xy) (y) for all x,y € G. Then I' is said to be a G-space.
Furthermore, I is said to be a trivial G-space if each mapping y > x(y) is
the identity on I'. It is called a transitive G-space if for any pair
Y,Y' € T there exists an x € G with x(y) = y'. An example of this situation
is provided by taking T = G/H, where H is a subgroup of G. For, let the
G-action be defined by y: xH - y(xH) := (yx)H. Obviously, G/H is a
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transitive G-space. On the other hand, any transitive G-space can be written
as G/H for some subgroup H. Indeed, fix Yo € I' and let H be the stabilizer
in G of YO’ that is,

H:= {x € G; x(ygy) = YO}.

Then f: xH - x(yo) is a well-defined bijection from G/H onto T, such that
for all x and y in G £(y(xH)) = y(£(xH)).

From now on we assume again that G is a finite group. Let V = V(1) be
the representation space of a representation 1 of G. Suppose that there

exist a G-space I', and a family of linear subspaces of V, indexed by T,

say {Vy}yer’ with

(i) V= z@ v (as a vector space direct sum),
and ver Y

(ii) ‘r(x)VY = Vx(y) (Vx € G, Vy € T')

(i.e., the spaces I  are permuted by the action of 1 in V). Then we will call
this family {Vy}yeF a system of imprimitivity (s.o.i.) for 1. In that case,
we say that y admits a s.o.i. Moreover, we will call the system trivial or
transitive according to I' being a trivial or transitive G-space. It will

turn out that we can obtain a lot of information about T by means of the
systems of imprimitivity admitted by Tt.

For instance, it is clear that if 1T admits no s.o.i. except the obvious
one in which T has only one element, then T is irreducible. Indeed, any
direct sum decomposition of V in t-invariant subspaces forms a (trivial)
s.o.i. Such representations are often called primitive. It is in general

not true that irreducibility implies primitivity.

EXAMPLE 5.1. Consider the left regular representation A in KZ(G). Define
subspaces of ZZ(G) by
2 2 .
ZX(G) ;= {f e £°(G); £(y) =0 if y # x}, x € G.
Clearly we have
2 2
e = 1®ie.
X
xeG

Moreover,

2 2
A(Y)ZX(G) = ZYX(G) (Vy,x € G).
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Hence we have a s.o.i. for A with I' = G, and the action of G on itself is
defined by left multiplication with a fixed element. Obviously, this system
is transitive.

The next theorem is the so-called imprimitivity theorem, stated here

for finite groups.

THEOREM 572. Let 1 be a representation of G. The following statements are
equivalent:

(1) T admits a transitive system of imprimitivity.

(ii) There exist a subgroup H © G and a representation o of H such that

T is equivalent to oG.

PROOF. (ii) = (i). Suppose that T = GG. Let ' = G/H, and denote the elements
of T by x := xH. Consider for each X ¢ I the subspaces Fi of Fo defined by

F§:={st;f(y)=0 if y ¢ x}.

As mentioned above, T is a transitive G-space, under the action
X := yX. Furthermore, it is clear that yhlz ¢ X iff z ¢ ;E, for all x, y

and z in G. Hence,
G
T(Y)F}_{ = 0" (Y)F}—{ = Fy—x .

. _ @
Finally, we have Fo = Zier Fo-

(1) = (ii). Let T be a representation of G, admitting a transitive s.o.i.,
say {VY}YEF' Then I' can be identified with G/H, where H is a subgroup of
G, stabilizing some fixed point YO € T. Accordingly, we may write
r = {x1 = e,xz,...,xd}, if {xi}i=1 is a fixed set of left H-coset represen-
tatives. The identity y(y) = y' reduces to yfTi) = xj, where y = X:Yg and
y' = XjYO' Thus, y(xi) = xj if and only if xj vx, € H.

Since every T(x) is an isomorphism of V(1) we can conclude from the
transitivity of the system that all spaces in have the same dimension, say
n. Hence, T(y) may be written as a dxd-array of n-dimensional linear mappings

T, .
1]

(y) := T(y)IVXi: in - ij.

Obviously, Tij(y) is the zero mapping if y(xi) # xj, or, equivalently, if
xglyxi ¢ H. Therefore, in order to compute the trace of T(y), we only have

to take into account Tii(y) for those values of i for which leyxi € H.
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Furthermore, clearly Tii(y) and rll(xllyxi) have the same trace.

Let a representation o of H be defined by

a(y) := T(y)IVx , Yy E€H
1

(so V(o) = Vxl). Using the preceding paragraph we can make the following
computation:

d

121 trace (Tii(y)) =

trace (1(y))

-1
_12 trace ('r“(xi yxi)) =
xi yxieH
d

., =1
121 trace (5(x,; yx,;)) =

trace (6(z_1yz)) =

1
- a7 |
5] z€eG

= '%l’ Z ).((Z_lyz) '

zeG

where x is the character of o. Hence UG =7, [

COROLLARY 5.3. All irreducible representations of G are induced by primitive

representations.

PROOF. A s.o.i. admitted by an irreducible representation is necessarily
transitive. Therefore, the result follows via complete induction from the

imprimitivity theorem 5.2, the stages theorem 2.18 and Corollary 3.6. [

REMARK. The imprimitivity theorem gives rise to an alternative definition
of induced representations, which is, however, less constructive than the
one we used. In order to deepen the insight into the inducing process, we
will make a few remarks on this different approach.

Let T be a representation of G in a space V = V(1). Suppose that we

are given a subgroup H ¢ G and a linear subspace [ ¢ V, such that

(1) T(x)W =0, VxeH,

and
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d ® d
(ii) V= .Z T(xi)w, where G/H = {xiH}i=1'
i=1
Then we shall say that T is induced by o := (T,H)Iw (cf£. SERRE [3, Chapter 7]).

The lack of constructiveness is easily repaired.

Indeed, let o be a representation of H ¢ G, in a space W = W(o). Con-
sider the tensor product KZ(G) ® [l of the space of .all complex-valued
functions on G, and /. For f in EZ(G) we define two new functions on KZ(G),

£ and £, b
y~ 3G tyr ¥

yf(x) = f(y—lx) and fy(x) := £(xy).

In KZ(G) ® (! we define the equivalence relation ~ as follows:

g=fyl
fev ~ g8w if for some y € H: {w

o(y)v.

The space of equivalence classes is denoted usually by ZZ(G) @H W(o) . Writing
f ® v for the equivalence class containing this element, a representation T

of G can be defined in this space by
2
T(y) (£8v) := yf ®v, £®veld (G ®y W(o).

It is readily verified that T is equivalent to oG.
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This chapter deals with the general theory of unitary representations
of locally compact groups. Bij "general" we mean that no use is made of any
special structure of the group, for instance that the group is a semi-simple
. Lie group. The chapter falls apart in two different parts. Sectionl presents
a quick survey of the theory. It is a written version of the lecture given
at the colloquium. The other sections contain a rigorous and rather self-
contained. account of the theory, be it with two important restrictions.
First, we only discuss that part of the theory which can be formulated in
terms of direct sums rather than direct integrals. Second, we mainly re-
strict ourselves to the case of type I representations.

In the discussion of direct sum decompositions it is inessential that
the representations under consideration are actually representations of
groups or unitary representations. We will formulate the theory in such a
generality that, for instance, representations of involutive Banach algebras
and representations of o-algebras of sets (i.e. projection-valued measures)
are included.

The main reference for this chapter is Chapter I in MACKEY's Chicago

Lecture notes [6]. We also made important use of ARVESON [11].

Conventions. Throughout it will be assumed that all Hilbert spaces under
consideration are separable. The inner product on a Hilbert Space H, denoted
by (v,w) or (v,w)H (v,we H), is supposed to be linear in the first argument
and conjugate-linear in the second argument. The corresponding vector norm
on H is given by lvl or HVHH (ve H). The algebra of all bounded linear op-
erators on a Hilbert space H will be denoted by L(H). If A € L(H) then its
adjoint is written as ar. Self-adjoint or heér¥mitian operators on H are al-
ways supposed to be bounded. A projection operator P on H (that is, an op-
erator P € L(H) such that P2 = P) is always supposed to be self-adjoint.

This implies that the null space and range of P are orthogonal to each other.
1. A QUICK SURVEY

Remember (cf. Ch.I) that a unitary representation m of a locally com-
pact group G on a Hilbert space H = H(rm) is a mapping x » m(x): G > L(H)
such that
(i) m(x) is a unitary operator for all x € G;

(ii) m is a homomorphism, that is, wm(xy) = m(x)7m(y) for all x,y € G;
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(iii) m is (strongly) continuous, that is, the mapping x =+ m(x)v: G > H is
continuous for each v ¢ H.

The conditions (i), (ii) imply that m(e) = I and m(x 0) = m(x) * =
(n(x))* for all x € G. Condition (iii) can be replaced by the equivalent
condition:

(iii)' 7 is weakly continuous, that is, the function x > (m(x)v,w): G > @
is continuous for all v,w € H.

Clearly (iii) implies (iii)'. For the proof of the converse note that

In(x)v - m(y)vl? =

= (M(x)v,T(x)v) + (T(y)v,m(y)v) - 2 Re (T(X)V,T(y)Vv) =
= 2 Re {(T(Y)v,m(¥Y)V) = (T(X)v,m(y)v}}, x,vye G, veld,
where we have only used the fact that (m(x)v,T(x)v) = (v,v) = (n(y)v,m(y)V),

because T(x) and w(y) are unitary operators. Hence, if the function x
(m(x)v,m(y)v) is continuous at y then the mapping x - m(x)v is continuous
at y.

In the definition of a unitary representation we admit the case that
H(m) = {0} and 7(x)0 = 0 for all x € G. Then 7 is called the zero represen-
tation of G (notation m = 0).

In general représentation theory it is an important problem to classify
all unitary representations of G up to equivalence in terms of irreducible
representations (or, in case G is not a type I group, in terms of primary
representations). This problem has been solved, although the complete story
would be much too long for this colloquium. A further question, the classi-
fication of the irreducible (or primary) representations, can only be an-
swered, if more structural facts are known about G, for instance that G is
a semi-simple Lie group.

In this introductory section we start with the definitions of subrepre-
sentation, equivalence and direét‘sum, which are basic concepts in represen-
tation theory. Then we discuss the building blocks of general representa-
tions: irreducible, primary and multiplicity free representations. Finally
we define type I representations and we state a canonical direct sum decom-
position of type I representations in terms of multiplicity free represen-

tations.

1.1. The basic concepts

Let m be a unitary representation of G on H. A linear subspace H1 of H
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is called invariant if m(x) H1 c H1 for all x € G. If H1 is a closed invari-

ant subspace then the unitary representation m, of G on H, defined by

1

nl(x) := ﬂ(x)lHl, X € G,

1
is called a subrepresentation of w. In this case the orthoplement H2 = H1

is again a closed invariant subspace of H. Denote the subrepresentation cor-

responding to H2 by Toe Then ﬂl and ﬂz are called complementary subrepresen-

tations of w, H is the direct sum of H1 and H, (notation H = H1 ® Hz) and we

(
say that 7w is the direct sum of ﬁl and m, (noiation m™ = ﬂl ® n2). The repre-
sentation m on H is called irreducible if m # 0 and if {0} and H are the on-
ly closed invariant subspaces of H.

Let m, and T, be unitary reéresentations of G on H1 and H2, respective-
ly. A bounded linear operator A: H1 f H2 is called an intertwining operator
for "1 and ™, if Aﬂl(x) = nz(x)A for all x € G. The linear space of all such
2). If m= ﬂl =T, then we write
R(m) instead of R(w,m). The representations m and m, are called (unitarily)

intertwining operators is denoted by R(ﬂl,n

equivalent (notation o vz) if R(wl,nz) contains an operator A which maps

H1 isometrically onto H2. Then

-1
nz(x) = Aﬂl(x)A ’ x € G.

We already defined the direct sum of two unitary representations. Now
let m be a unitary representation of G on H and let Hl’ H2,... be countably
many, mutually orthogonal, closed, invariant subspaces of H such that their
linear span is dense in H. Let L be the corresponding subrepresentation on
Hi' Then H is the direct sum of the Hi's (notation: H = H1 ® H2 ® ... = E?Hi)
and we say that m is the direct sum of the ni's (notation: w = m @ Ty ® ...
= Zfﬂi). Conversely, if countably many unitary representations " of G are

given and if Hi := H(ni) then let

2
H := {(vl,vz,...)lvie Hi' g HviﬂHi< )},

H becomes a Hilbert space in a natural way and the Hi's can be isometrically
imbedded in H. Thus we have constructed the direct sum H of the Hi's and the

corresponding direct sum m of the ﬂi's is given by

T(X)Vv := (nl(x)vl,nz(x)v2,...),

where v = (Vl'VZ"") € H and x € G. Finally, if 7 is a unitary represen-
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tation then mm(me{1,2,...,°}) will denote the m-fold direct sum of .

1.2. Decompositions of finite-dimensional representations

For reasons of motivation we first define multiplicity free and prima-

ry representations in the finite-dimensional case. Remember:

LEMMA 1.1 (Schur). Let m and p be finite-dimensional irreducible unitary re-
presentations of G. Then:
{o0}.

{AT[XG ¢}, where T is an intertwining isometry

(a) If m ¢ p then R(m,p)

1]

(b) If ™ = p then R(m,p)
for m and p. In particular, R(m) = {AI|re c}.

If 7 is any finite-dimensional unitary representation of G then 7 has
a direct sum decomposition

(1.1) m o minl [::] m2ﬂ2 ® ... ® mpﬂp ,

where the representations m, are irreducible and mutually inequivalent and
the mi's are natural numbers. By an application of Schur's lemma it can be
shown that this decomposition is unique in the following sense. Let p also
be a finite-dimensional unitary representation of G with direct sum decom-

position

(1.2) pe~n ® n ® ... ®n p

11 2P2 PPr !

where the pi's are irreducible and mutually inequivalent. Then m =~ p if and
only if (i) p = r and (ii) there is a permutation f of {1,...,p} such that
“f(i) =0, and mf(i) =n, for i = 1,...,p. Thus (1.1) is unique up to equi-
valence and the ordering of terms.

Two representations m and p of G with decomposition (1.1) respectively
(1.2) are called disjoint (notation $ p) if LA % pj for all i = 1,...,p,
j=1,...,9. A finite-dimensional unitary representation o of G is called
primary if o =~ mm for some irredueible unitary representation m and natural
number m. A finite-dimensional representation T of G is called multiplicity
free if T = m ® ... ® ﬂp for certain irreducible, mutually inequivalent
unitary representations ﬂl,ﬂz,...,ﬂp.

Let m be a finite-dimensional unitary representation with decomposition
(1.1). Instead of immediately decomposing T in terms of irreducible represen-

tations, we may consider two intermediate decompositions. Let
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(1.3) ci = miﬂi, i=1,...,p,s
®
(1.4) T, = ) T, 3 =1,2,3,... .
J . . i
o li|mg=3}

Then Ui is primary and Tj is zero or multiplicity free. Now we have

(1.5) m

R

01 ® 02 ® ... ® Gp '

(1.6) T o= Tl -] 2T2 ® 3T3 ® ... .

Hence the decomposition (1.1) can be obtained in either of the following

ways:

(i) First apply the decomposition (1.5) on m, where the Ui's are primary
and mutually disjoint (this decomposition is unique up to equivalence
and the ordering of terms) and next decompose each of the primary re-
presentations o, in terms of irreducible representations according to
(1.3) (again unique up to equivalence).

(ii) First apply the decomposition (1.6) on m, where the Tj's are zero or
multiplicity free (unique up to equivalence) and next decompose each of
the Tj's in terms of irreducible representations (unique up to equiva-

lence and the ordering of terms).

We give the various decompositions once more in the following table.

T g, ® ... &0 g, "
1 P i
(Ui's primary, (primary)
disjoint) l
ees > ce. +
T ® 2T2 ® m,m, + mpﬂp mm.
(Tj'S 0 or multiplicity free (ﬂi's irreducible, (ni irreducible)
and disjoint) inequivalent)
®
Tj z ™
(multiplicity free) {ifm =3}
(mi's irreducible,
inequivalent)

Table 1.
Decompositions in horizontal direction are canonical decompositions in terms

of primary representations. Decompositions in vertical directions are
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canonical decompositions in terms of multiplicity free representations.
Since representations which are both multiplicity free 'and primary are irre-
ducible, two successive decompositions in horizontal and vertical directions

yield irreducible representations.

1.3. Characterization of multiplicity free and primary representations by

means of the algebra of intertwining operators

Let T be any unitary representation of G on H. If A, B € R(m), A, u € €
then, obviously, AA + pB, AB and A* € R(m). Clearly R(m) contains I. Hence
R(m) is a *-subalgebra with identity of L(H). It is called the commuting al-
gebra of m. The center CR(m) of R(m) is defined as the set {Ae R(n)]AB==BA
for all Be R(m)}. It is a commutative *-subalgebra of R(m) which contains
all scalar multiples of I. R(w) is a commutative algebra if and only if

CR(m) = R(m).

THEOREM 1.2. Let m and p be nonzero finite-dimensional unitary representa-
tions of G. Then:

(a) m b p = R(m,p) = {0}.

(b) 7 is irreducible <> R(mw) = {XIIAe cl.

(c) m is primary <= CR(m) = {AIIA& cl.

(d) m is multiplicity free <> R(w) is commutative.

PROOF. Suppose that m and p are irreducible. Then it follows from Schur's
lemma 1.1 that R(mw,p) = {0} if m % p and R(m,p) = {AT|A€ €} if m = p, where

T is an intertwining isometry from H(m) onto H(p). Now let m and p be finite-
dimensional unitary representations with decompositions T =~ T ® ... ® T
and p =~ p1 ® ... ® pg in terms of irreducible representations. Let a linear

mapping A: H(m) - H(p) have block matrix

All e Alk

A= . .

\Boq Bk

with respect to these decompositions. Then A € R(m,p) if and only if
A,. € R(m.,p,) for all i,j. Hence: R(m,p) = {0} = R(m.,p.) = {0}(Vi,j) <
1] Jj 1 J L
ﬁj # pi(Vi,j) =T é p. This proves (a).
In order to prove the other three statements let m be a finite-dimen-
sional unitary representation with decomposition (1.1). We will calculate

the commuting algebra R(m). First observe that R(m, 7, ) consists of all block
ek
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matrices
(k). (k) (k) (k)
A T e e oA T
11 11 1 1
(1.7) : B | xi“j‘) ¢,
AR g ) g )

et ! Ty Ty
(k)

where Ti: is the intertwining isometry from the jth copy of H(ﬂk) onto the

.th . . R
i copy of H(wk). Since mem -4 mem, if X # &, it follows from (a) that

R(mlﬂl)
(1.8) R(m) = ", ;
S N
R(mpwp)

Hence, if R(m) = {AIlAe €} then p =1 and m, =1, i.e., T is irreducible.

1
This result, together with part (b) of Schur's lemma yields (b). Next, it

follows from (1.7) and (1.8) that CR(mknk) consists of all block matrices

(k) (k)
T &
< . ’ U(k) € G,
'u(k)T(k)
i
and
CR(m,,)
1 1' o
CR(m) = s )

"cr
C (mpwp)

Hence CR(m) = {AI|X5 €} if and only if p =1, and CR(m) = R(m) if and only

if mo=m = ... o= mp = 1. This proves (c) and (d). [

If m and p are arbitrary (possible infinite-dimensional) unditary re-
presentations then we use parts (a), (b), (c) and (d) of Theorem 1.2 as
definitions of disjoint, irreducible, primary and multiplicity free, res-
pectively. By an application of the spectral theorem for hermitian opera-
tors it can be shown that this definition of irreducibility is consistent

with the one we gave earlier in §1.1 (see also Theorem 4.7).
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1.4. Canonical decompositions *of general unitary representations

What are the analogues of the decompositions in Table 1 if m is not
necessarily finite-dimensional? Generally, the decompésition of m in hori-
zontal directioﬁ (in terms of primary representations) still holds, but in
the form of a direct integral rather than a direct sum. However, the decom-
position of 7 in vertical direction (in terms of multiplicity free represen-
tations) fails, except if m is a so-called type I representation.

Roughly, a direct integral of representations can be defined as follows.
Let (X,S,u) be a measure space and let HO be a separable Hilbert space. Let
H := L2(X,u;HO) be the Hilbert space consisting of all mappings f: X - HO

which (i) are weakly measurable, and (ii) satisfy

J Hf(a)ﬂz du(a) < o,

X 0
cf. §vV.1.17. Let G be a locally compact group and, for each a € X, let L be
a unitary representation of G on Ho. Then a unitary representation m of G on
H is called the direct integral of the representations na with respect to

the measure U (notation m = f; wa du(a)) if for each x € G and f ¢ H we have

(m(x)£) (o) = wa(x)(f(u)) a.e. [pl.

This definition has to be adjusted if the Hilbert spaces H("a) do not all
have the same dimension. Then the direct integral of the na's is defined as
the direct sum over n = 1,2,...,» of the direct integrals of the na's for
which dim H(nu) = n. For further details on direct integrals, see §VIII.7.
Now the following parts of Table 1 can be generalized for an arbitrary
unitary representation m of G. First, there is a canonical direct integral

decomposition

(1.9) T f ca du(a),

X
where the oa's are disjoint primary representations (cf. DIXMIER [3, §8.4.2,

§18.7.6], MACKEY [6, Ch.2]). Next we can classify the primary representations "

o of G as follows (cf. MACKEY [6, Ch.1]):

(1) 0 is of type I , that is, o = nT for some irreducible unitary represen-
tation Tt and some n € {1,2,...,»}. This is the only case occuring for

finite-dimensional primary representations.
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(ii) o is of type III, that is, ¢ is not irreducible and any .nonzero sub-
representation of ¢ is equivalent to o.
(iii) o is of type II, that is, there are uncountably many, mutually inequiv-
alent subrepresentations of o.
If all primary representations 9 occuring in the canonical decomposi-
tion (1.9) of m are of type I then m is called a representation of type I.
Type I representations have a canonical decomposition in terms of multiplic-

ity free representations which is analogous to (1.6) (cf. §8.4):

(1.10) T ® 21, © 3T3 ® ... ®8® T,

T1 2

where L is zero or multiplicity free and the Tn's are mutually disjoint.
Finally, if 7 is a multiplicity free representation then the canonical de-

composition (1.9) becomes

(1.11) T a2 j T, du(e),
X
where the na's are mutually inequivalent irreducible representations.

If a locally compact group has the property that all its unitary repre-
sentations are of type I (or, equivalently, that all its primary representa-
tions are of type I) then G is called a type I group. Compact groups (cf.
the Peter-Weyl theorgm), abelian groups (cf. Ch.VIII), connected semi-simple
Lie groups (cf. HARISH-CHANDRA [5]) and nilpotent Lie groups (cf. DIXMIER
[2]) are known to be type I groups. For a unitary representation m of a type

I group we have the following analogue of Table 1:

T f %% du (o) Oy
(type I) X (primary, type I)
(0_'s primary, type I,
disjoint)

1.‘16321:29 cee 09me _— Ima,"a au(a) ma,"a

(t.'s 9 or multiplicity free, X (7 irreducible,

disj01nt) s . o
(r 's irreducible,
. R m e {1,2,...,%})
inequivalent) o

Y J T, dule)
(multiplicity free) {ae lea=j}

(m_'s irreducible,
inequivalent)

Table 2
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The terminology "type I, II, III" was first introduced in the context
of von Neumann algebras, these are weakly closed *-subalgebras with identi-
ty of L(H) (H an Hilbert space). With any unitary representation m of G we
can associate the von Neumann algebra which is the weak closure in L(H(m))
of the linear span of m(G). To a large extent, the analysis of a given re-
presentation m of G is in one-to-one correspondence with the analysis of the
corresponding von Neumann algebra. For instance, primary represéntations
correspond to so-called factors, which have first been classified by MURRAY

& VON NEUMANN [7].
2. THE BASIC DEFINITIONS REVISITED

If a unitary representation of a locally compact group is analyzed on-
ly by means of direct sum decompositions then the group structure and the
topological structure of G do not play any role at all. Therefore we may
develop the theory for "representations" of much more general objects as
well. In this section we will start with such a theory, not using §1.1, al-
though there will be some repetition. At the end of this section we will
list a number of examples which fit into this more general description.

Let G be a nonempty set. For the moment we define a representation T
of G on a Hilbert space H = H(m) as an arbitrary mapping x - m(x): G > L(H).
If dim H(m) = 0 then 7T is called the zero representation of G (notation
™= 0).

Let T be a representation of G on H. A subspace Hl of H is called in-
variant under m if n(x)H1 c H1 for all x € G. A representation m, of Gon a

closed invariant subspace H1 of H is called a subrepresentation of m (nota-

*
tion ) ™ < m) if W(X)IH1 = ﬂl(x) for all x € G. (Note that a closed sub-

space of a Hilbert space is again a Hilbert space.) Instead of w, we will

write Ty or Ty, where P is the projection from H onto Hl' Two sibrepresen—
tations ™ and L) of m are called complementary subrepresentations of m if
H(ﬂz) is the orthoplement in H Of‘H(ﬂl). The representation 7 is called ir-
reducible if m # 0 and {0} and H are the only closed invariant subspaces of
H.

It is not generally true that for each representation m and each sub-
representation L of m there exists a complementary subrepresentation of .
*)

See Table 3 in §6 for a list of notations used for relations between re-
presentations.
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A sufficient condition is the existence of an involution on G (i.e. a bijec-

tion x - xT: G > G with the property that (x™)~ = x for all x € G) such that
~ *
(2.1) m(x") = m(x) , x € G.
Indeed, if H1 is a closed invariant subspace of H(w) and if v € Hi then
* ~,
(m(x)v,w) = (v,1(x) w) = (v,m(x)w) =0

for all w e Hl’ X € G, which shows that Hi is an invariant subspace. This

situation is encountered for instance in the case of a unitary representa-
tion of a locally compact group, with x = x_l.
Let m and Ty be representations of G on H1 and H2, respectively. A

bounded linear operator A: H1 g H2 is called an intertwining operator for m

and m, if Anl(x) = nz(x)A for all x € G. The linear space of all such inter-

twining operators is denoted by R(wl,wz). Ifrm=m = ﬂ2, then we write

1

R(m) := R(w,m). The representations ™ and m, are called (unitarily) equiv-

2

alent (notation nl ] ﬂz) if R(ﬂl,wz) contains an operator which maps Hl'

isometrically onto H2.
Equivalence thus defined is an equivalence relation for the collection

of all representations of G, that is m = w; ﬂl o ﬂ2 g ﬂ2 &My

mT, 27, & T, = Ty = Ty LEE Many theorems in representation theory are (or

1 2 2
can be) formulated in terms of equivalence classes of representations rath-

er than individual representations.
In §1.1 we gave two definitions of a direct sum of Hilbert spaces. Con-
. . , )
sider the second one, i.e., the direct sum H = % Hi = H1 ® H2 ® ... of count-

ably many Hilbert spaces Hi consists of all elements v = (v1,v s...) such

2
that v, ¢ H, (i = 1,2,...) and . lv. I < o, With respect to the inner prod-
i i i i Hy

uct (v,w) := Ei(vi,wi)H (v,we H), H becomes a Hilbert space itself. (The

i
completeness of H is easily shown.)

®
LEMMA 2.1. Let H = D} Hi and let A; € L(Hi) (i =1,2,...). Then the mapping

A: (V1,V2,...) - (Alvl’A2V2"") is in L(H) iff su@i"Ai" < w, In the case

that A € L(H) we have

(2.2) Ial = sup "Al“ .
i

PROOF. First, let A: (Vl’v2"") - (A1v1,A ) be in L(H). Then, for

SVorees
each i and for each v, o€ Hi we have
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"Aivi"Hi =1 (0,---,O,Aivi,0'...,O)||H =1a(0,...,0,v,,0,...,0)1, <
< HAH H(O,...,O,vi,o,..L,O)HH = lal UviﬂHi.
Hence HAiﬂ < lal. conversely, if supiHAiH = M < ® then

2 2 2
< VI [ < Molvl g,
Z "Aivi"H < Z lAi" ﬂviIH_ moliviy
i i i i
Hence Av = (Alvl,A2v2,...) is in H for all v ¢ H and lal < M.
Finally, for the proof of (2.2) let A € L(H). For each i there is a se-
quence v, ,, V, .,... € H, such that lv, | =1 anda la,v, I > la,l as n » «.
i,1 i,2 i i,n ii,n i

Now let Wi € H having Vi as its i coordinate and all other coordinates
’ ’

zero. Then

lal > I I, = I I = la.ll.
al > sup law, Ny =sup layv, Iy =sup l2; U
i,n i,n i i
If A e L(H) and A e L(Hi), i=1,2,..., are as above then we call A
the direct sum of the Ai's (notation A = Z? Ai = A1 ® A2 ® ...). If -
Ty sMyren. are representations of G on H’H1'H2’ respectively, then 7 is

called the direct sum of the Wi's (notation 1 = Zf ML= ® L ® ...) if
m(x) = Z? ﬂi(x) for all x € G. Note that the direct sum Zi ﬂi of the repre-
sentations LATAPYRRS exists if and only if supiﬂni(x)ﬂ< o for all xe€ G. The
n-fold direct sum (n=1,2,...,») of a representation m of G is denoted by nm.

If T is a representation of G on H and if H is the closure of the lin-
ear span of mutually orthogonal closed invariant subspaces Hi then

. - . ® . .
™2 Zi “H-' The intertwining isometry A from Zi Hi onto H is given by
i

v, + v, + ... .

1 2
Let H =12, H, and A = Z? A, € L(H), where A, € L(H.). Then A" = Z? Af.
ii ifi i i i i

A(Vl’vl"") :

Hence, if x - x~ is an involution of G and if, for each i, ﬂi is a represen-
. . . ® .
tation of G on Hi satisfying (2.1) such that 7 := Zi T, exists, then the re-
presentation m also satisfies (2.1). Next, suppose that A, is unitary for
* * [::) *
all i. Then la.l = 1 and A]A, = A,A, .= I. Thus A = I, A, exists and A'A =
i i7i i1 i
AA = I, so A is unitary as well. Hence, if, for each i, ni is a represen-

®
tation of G on Hi such that ni(x) is unitary for all x € G then 1™ = Zi L

i
exists and m(x) is unitary for all x € G.
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*
LEMMA 2.2. Let G be a locally compact group with unitary representations )
ﬂi on Hilbert spaces Hi (1= 1,2,..§). Then T = 2? “i exists and is a unit-

ary representation of G.

PROOF. In view of the previous paragraph, continuity of m is the only non-
trivial thing to be proved. Let v = (vl,vz,...), w = (w1,w2,...) e H := Z? Hi'

It suffices to prove that
x> (M)W, = E (m, (x)vi,wi)Hi

is a continuous function on G. Let x0 € G, € > 0. There is a natural number

j such that
] v <fe> ] lwll . mence
i=j+1 i i=j+1 . i
o o 2 3 o 2 \% 1
| T (mov, ) Is( LA )( A ) <L
i=ger 1 AT =gt P H gy R 3
for all x, where we used Schwarz's inequality and the fact that "ﬂi(x)" = 1.
It follows that
[ vew) y = (mixvew) | <
j ,
| 2 (v w)y = (my gy vy ) |+
i=1 i i
bt v 1 1 1
| I mpviwy [+l T mxgv gy | o< ge+ 3ot g
i=j+1 i i=j+1 i

for x in some neighbourhood of Xq in G, where we used that x - ni(x) is

weakly continuous for all i. O

Now we will specialize to the case of G provided with an involution
x > x and we will consider subclasses Rep of representations of G which

meet the following requirements:

ASSUMPTION 2.3.
(1) If m e Rep then m(¥") = m(x)" for all x € G.
(ii) If m € Rep and T then LA Rep.

*
) See §1 for the definition of a unitary representation of a locally com-

pact group.
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-]
(iii) If TrTorees € Rep then Zi T exists and belongs to Rep.

(iv) If m e Rep and my =T, then m, € Rep.

Note that (i) and (ii) imply that if 7 € Rep, m < 7 then there is a comple-

mentary subrepresentation 7, which also belongs to Rep. Furthermore, condi-

tion (iii) implies that, foi each x € G, sup In(x)l < =,

meRep

EXAMPLE 2.4. Let us consider some examples of sets G with involution and

with a class Rep of representations satisfying Assumption 2.3. The first

three examples are rather abstract; the other examples are more concrete,
with G having additional structure which is preserved by the representations.

(a) Let G be a set with involution and let r: G - [0,») be a function on G.
Define Rep as the class of all representations m of G satisfying
m(x™ = m(x)”" and Ir(x)l < r(x) for all x ¢ G.

(b) Let G be a set with involution x + x and fix a representation LA of G
which satisfies (2.1). Define Rep as the smallest element in the family
of all classes of representations of G which satisfy Assumption 2.3 and
which contain ﬂo. (This family is nonempty, since it contains the class
defined in (a) with r(x) := Hno(x)". Rep can be obtained as the inter-—
section of all classes in the family.) Rep can alternatively be de—
scribed as the class of all representations of G which are equivalent to

a direct sum of sSubrepresentations of (Indeed, it is clear that this

last class is included in Rep, that it 2ontains Tq and that it satisfies
properties (i), (iii) and (iv) of Assumption 2.3. Verification of proper-
ty (ii) is slightly more difficult. It follows by an application of

Lemma 4.6 and Zorn's lemma. We will not give the details.)

(c) Let G be a self-adjoint subset of L(Ho) for some Hilbert space HO (i.e.,
a* e G iff A € G) and define involution on G by A = A*. Let T be the
natural representation of G on HO' Define Rep as in the previous example
(b). In particular, the cases that G consists of one hermitian operator
or that G is a von Neumann algebra (cf. §3), are significant. It is pos-
sible to do the analysis of a hermitian operator or of a von Neumann al-
gebra in representation theoretic terms by studying the properties of
the natural representation T of this object as an element of the class
Rep just defined.

(d) Let G be a locally compact group (or just a topological group) with in-
volution x := x—l. Define Rep as the class of all unitary representa-

tions of G. (Use the definition of unitary representation as given in
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the beginning of §1.)

(e) Let G be an involutive Banach algebra A (cf. Ch.VIII for the definition)
and put X = x*, x ¢ A. Define Rep as the class of all *-homomorphisms
from A into 'L (H), where H is an arbitrary Hilbert space. (This coincides
with the usual definition of a representation of an involutive Banach al-
gebra.) We have In(x)ll < Ikl for all x ¢ A, m ¢ Rep (cf. DIXMIER [3,
§1.3.7]). Hence the class Rep satisfies Assumption 2.3. Of particular im-
portance are the cases that Ais a C*-algebra or the convolution algebra
L1(G) of a locally compact group (cf. Ch.VIII).

(f) Let G be a o-algebra S of subsets of a set X (cf. V.1.1 for the defini-
tion and put E := E, E € S. Define Rep as the class of all projection-
valued measures E > PE on the measurable space (X,S) (cf. Ch.VIII for
the definition).

(g) As a combination of examples (d) and (f) consider a set G U B which is
the union of a locally compact group G and the o-algebra B of Borel sets
on the homogeneous space G/H, where H is some closed subgroup of G. Put
¥ i=x , xe€ G E :=E, E ¢ B. Define Rep as the class of all pairs
(m,P) of unitary representations m of G and projection-valued measures
E +~ P_ on G/H such that (G/H,m,P) is a system of imprimitivity for G

E
(cf. Ch.X for the definition).

The following proposition will be useful in Ch.VIII.

PROPOSITION 2.5. For i = 1,2 let G; be a set with involution and let Repi be

a class of representations of Gi satisfying Assumption 2.3. Let &: Repl >

Rep2 be a mapping such that H(d(m)) = H(w) for all 7 € Repl and R(®(m),®(p))=

= R(m(p) for all m,p € Repl. Then, for TiPMy Tyrees € Repl the following

holds:

(i) H(w) has the same closed invariant subspaces with respect. to T and
o(m), respectively.

(ii) p < w iff ®(p) < &(m).

(iii) mw =~ p iff ®(m) =~ ®(p). For both equivalences the same intertwining iso-

metry can be chosen.

) _ @ , _ @
(iv) m = Zi T iff &(w) = Zi Q(Hi).
PROOF.
(i) H(m) = H(®(m)) and R(W) and R(®(T)) contain the same projection opera-
tors.

(ii) Suppose that p < m or ®(p) < &(mw). Then H(p) = H(®(p)) is a closed
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invariant subspace of H(m) = H(d(m)). Let P be the projection opera-
tor mapping H(w) onto H(p) and consider P as an element of

L(H(m),H(p)). Then: p < ™ < P ¢ R(m,p) = P e R(®(M),d(p)) = &(p) <

< o(m).
(iii) This is obvious from R(m,p) = R(®(m),d(p)) and the fact that m =~ p
iff R(m,p) contains an isometry from H(w) onto H(p).
(iv) m=1I2m < <7 for all i and H(m = I H(w,) < &(r,) < &(m) for
R A i i i i

all i and H(e(m) = 3] H(a(r)) <= o(m) = 5 e, O

For instance, in Ch.VIII such a mapping ¢ will be considered from the
class of all unitary representations of a locally compact group G into the
class of all representations (in the sense of Example 2.4(e)) of the corre-
sponding algebra L1(G).

Let G be a set with involution x - x~ and let Rep be a class of repre-
sentations of G which satisfies Assuﬁption 2.3. Consider some m ¢ Rep. Then
the closed linear subspace H1 of H which is spanned by all elements
T(x)v(xe G,ve H) is clearly invariant under m. Let H0 1= Hi. If v e Ho,xe G,
then m(x)Vv € HO n Hl' Hence m(x)v = 0. Conversely, if v ¢ H and m(x)v = 0

for all x € G then
0= (w,m(x~)v) = (T(xX)w,V)

for all we H and x € G, so Vv ¢ H; = Ho.

We conclude that for any representation m of G on H we can write f as
the direct sum of two invariant subspaces H1 and HO’ where H1 is the closed
linear span of {m(x)v|xe G,ve H} and HO := {ve H|m(x)v=0 for all xe G}. We
call m a degenerate representation if dim HO > 0 and a nondegenerate repre-
sentation if dim HO = 0. Note that unitary representations of groups and
representations of o-algebras by means of projection-valued measures are al-
ways nondegenerate. However, representations of involutive algebras may be
degenerate. Define Rep1 as the class of all nondegenerate representations

in Rep. Then Repl again satisfies Assumption 2.3.
3. THE VON NEUMANN ALGEBRA ASSOCIATED WITH A REPRESENTATION

In the remainder of this chapter we will assume the following conven-
tions: G is a fixed but arbitrary set with involution x + x". Rep is a fixed
but arbitrary class of nondegenerate representations of G which satisfies

Assumption 2.3. "A representation.of G" will always mean-.an element of Rep.
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Let m be a representation of G on a Hilbert space H. Then R(m) consists
of all A € L(H) which commute with all operators in 7(G) := {n(x)|xe G}. The
set m(G) is self-adjoint, that is, A* € m(G) if A ¢ m(G). For an arbitrary
self-adjoint subset V of L(H) the commutant V' of V is defined as the set
v' := {Ae L(H)|AB=BA for all Be V}. Clearly. V' is a linear subspace of L(H)
which contains the identity operator I and for which AB € V' and A* e V'
whenever A, B € V'. Hence V' is a self-adjoint subalgebra with identity of
L(H). In particular, this holds for R(m) := w(G)'.

The bicommutant V" of a self-adjoint subset of L(H) is the commutant
(V')' of V'. Clearly, V" is also a self-adjoint subalgebra with identity of
L(H) and V c V". The center of V' is defined by CV' := {Ae V'|AB=BA for all
BeV'}. We have CV' = V' n V" and CV' is a self-adjoint commutative algebra
with identity. In particular, the center of R(m) is denoted by CR(T).

Remember that the weak topology on L(H) is the weakest topology on L(H)
such that all functions A + (Av,w), v,w € H, are continuous on L(H). The com-
mutant V' of a self-adjoint subset V of L(H), which is evidently closed in
the operator norm topology on L(H), is also closed in the weak topology on
L(H). For the proof note that for A,B ¢ L(H) we have AB = BA if and only if
(ABV,w) = (Av,B*w) for all v,w € H. Now V', being the intersection of the
weakly closed sets {Ae L(H)|(ABv,w)=(Av,B*w)}, BeV, v,w e H, is weakly
closed itself. Generally, a self-adjoint subalgebra with identity of L (H)

which is weakly closed in L(H) is called a von Neumann algebra.

PROPOSITION 3.1 (cf. ARVESON [1, Theorem 1.2.1]).

(a) A self-adjoint subalgebra A of L(H) is a von Neumann algebra if and only
if A = A",

(b) The bicommutant V" of a self-adjoint subset V of L(H) equals the weak
closure in L(H) of the subalgebra with identity of L(H) generated by V.

If m € Rep then m(G)" is called the von Neumann algebra associated with .

4. DISJOINT REPRESENTATIONS AND THE ANALOGUE OF SCHUR's LEMMA IN THE INFI-
NITE-DIMENSIONAL CASE

In sections 1.2 and 1.3 we already met two possible ways of defining
disjoint, primary and multiplicity free representations: in terms of the
canonical decomposition for finite-dimensional representations (§1.2) or in

terms of the intertwining operators (§1.3). In this and the following section
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we introduce definitions of these concepts in terms of equivalence of sub-

representations. These considerations are independent from §1.

DEFINITION 4.1. Two representations o and Tt of G are disjoint (notation
a $ 1) if no nonzero subrepresentation of ¢ is equivalent to a subrepresen-—

tation of T.

THEOREM 4.2. Two representations o and T of G are disjoint if and only if
R(o,t) = {0}. ’

The "if" part of this theorem is easily proved as follows. Suppose that o
and T are not disjoint. Let 01 < o, 11 < T such that 01 o T, # 0. Then the

intertwining isometry for 01 and T, can obviously be extended to some non-
zero operator in R(o,T). This is a contradiction. The "only if" part of

Theorem 4.2 is a corollary of

LEMMA 4.3. Let 0 and T be representations of G on H1 and H2, respectively.
and let A € R(0,T). Then the null space N of A and the closure R of the

range R of A are invariant subspaces of H1 and H2' respectively, and ot =

-

PROOF. The invariance of N and R is evident. Now we look for the polar de-
composition AINL = UH. First we construct H. Let A*: H2 > H1 be such that
(Av,w) = (v,A"w) for all v H1,w € H2. Then A* € R(1,0) and A*A: H1 - H1
belongs to R(og). Clearly A*A is hermitian and positive (i.e.,(A*Av,v) 20
for all ve H,). The null space of A*a is N. (Indeed, for v ¢ H1 we have:
a'av = 0 = (A*Av,w) = 0 for all w € H1 <> (Av,Aw) = 0 for all w € H1 =
Av = 0 = v ¢ N.) Since A"A is hermitian, the closure of its range is Nl,

* .
the orthoplement of its null space. Now let H := (A A)%, that is, H is the

*
2 - A A. This operator may be

unique positive hermitian operator such that H
constructed by the use of the spectral theorem. However, the following more
elementary argument is given in REED & SIMON [8, pp.195-196]: The operator

H is given by the power series

(o]
H = la*al? ) ck(I—Ilzsf‘zt\Il'1 a*m K,
k=0
e
k=0 “x* °
converges absolutely for Iz| < 1. Since A A € R(0), also H € R(0). The null

where V1-z = I k is the power series of v1-z around the origin, which

space of H is N. (Indeed, for v e H1 we have: Hv = 0 < (Hv,Hw) = 0 for all
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W e H1 - (sz,w) = 0 for all w € H1 =aAav=0=ve N.) Hence the range
of H has closure N*.

Next we construct U. Let U: range (H) - range (A) = R be defined by
" U(HV) := Av. Then U is a well-defined linear operator, since H and A have

the same null space N. Furthermore, U is isometric, since, for v,w € le
*
(U(HY) ,U(EW)) = (Av,Bw) = (A*Av,w) = (H°v,w) = (Hv,Hw).

Hence U can be uniquely extended to an isometry from Nl onto R. Finally we

prove that U € R(UNL,TR). Let v € Hl’ X € G. Then
(Uo(x)) (Hv) = UHo(X)Vv = A0 (x)Vv = T(x)AV = (T(x)U) (HV),
where we used that H € R(0) and A € R(o,T). O

Note that the "only if" part of Theorem 4.2 is a generalization of part (a)
of Schur's lemma 1.1.

The following simple observation is quite important. Let m be a repre-
sentation of G on H. Let H1 be a closed linear subspace of H and let P be
the projection operator from H onto H1' Then H1 is an invariant subspace if
and only if P € R(m).

As corollaries of Theorem 4.2 we obtain:

PROPOSITION 4.4. Let m be a representation of G on H and let H1 and H2 be

invariant subspaces of H. If the subrepresentations “H and nH are disjoint

1
then H1 is orthogonal to H2' 2

PROOF. Let P,,P, be the projection operators on Hl’H2’ respectively. The

operator P1P2 maps H2 into H1 and satisfies P,P. m(x)Vv = ﬂ(x)Plev,x € G,

172

). It follows from Theorem 4.2 that

v € H2. Hence P,P, ¢ R('!TP2,TFP1

1
P1P2 = 0. 0

PROPOSITION 4.5. Let P be a projection operator in R(m). Then the complemen-

tary subrepresentations LIS and T p of T are disjoint if and only if

P € CR(m).

PROOF. Let T be a representation of G on H. Let P be a projection in R(m)

with range H, and with null space H,. Let 7, = m, , m, := 7, . If A ¢ L(H)
1 2 1 Hy H,

2
then write A as a block matrix
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(A11 A
A
21 P22
with respect to the decomposition H = H1 ® H2. Then
my (%) 0
T(x) = , X € G,
0 wz(x)
and
P = I 0 .
0 0
Hence A € R(w) if and only if A11 € R(wl), A22 € R(nz), A12 € R(nz,ﬂl),

A21 € R(nl,n2). Now we have the following equivalent statements:

PA = AP for all A € R(m) <

A A 0

11 P12 11

g =
0 0 2 0 for all All € R(nl), A

€ R(m,,m,), A
2
21 !

' <>
12 21 € RTyamy)
Aand R(nl,ﬂz) = {0} & R(ﬂz,nl) = {0} * (in view of Theorem 4.2)
< m, and 7, are disjoint. [
If P is a projection in CR(m) then P is called a central projection

for m. The corresponding subrepresentation 7m_ is called a central subrepre-

P
sentation.

®
LEMMA 4.6. Let OrTysTyrees € Rep. If p & T for all i then p $ Zi m, -

PROOF. Assume p $ LA for all i and write 7 := Z? M. Suppose that A € R(p, ).
Let Pi be the projection operator from H(w) onto H(ni). Then Av = Zi PiAv
for all v € H(p) and PiA € R(p,ﬂi). Hence, in view of Theorem 4.2, PiA =0

for all i. Thus A = 0. A second application of Theorem 4.2 shows that
o & T 0

As a generalization of part (b) of Schur's lemma 1.1 we have:

THEOREM 4.7. A nonzero representation m of G is irreducible if and only if
R(m) = {AI]|xre ¢}.
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The proof of Theorem 4.7 starts with the observation that 7 is irreducible
if and only if 0 and I are the only projection operators in R(w). This
yields the "if" part of the theorem. The proof of the “6nly if" part in the
finite-dimensional case is based on the fact that A € R(m) has an eigenvec-
tor. In the infinite-dimensional case we have to use the spectral theorem for
hermitian operators (cf. RUDIN [9, Ch.12], see also Theorem II.1.6). In fact,
we need only the following version of the spectral theorem, which is contain-

ed in RUDIN [9, §12.23, §12.24].

PROPOSITION 4.8. Let A be a hermitian operator on a Hilbert space H. Then

is
A
in the bicommutant of {A} and A can be approximated in norm by finite linear

there is a collection {PA} of projection operators on H such that each P

combinations of operators PA'
Now suppose that m is irreducible. Then 0 and I are the only projection op-
erators in R(m). The next step is to prove that the operators AI, A € R,
are the only hermitian operators in R(m). Indeed, if A € R(m) is hermitian
and the Px's are as in Proposition 4.8 then the PA'S commute with all oper-

ators commuting with A, in particular PAN(X) = F(X)PA, X € G, hence P, € R(m).

Thus PA = Q0 or I and A = AI for some X ¢ R, since A can be approximaied in
norm by linear combinations of 0 and I. Finally, the case of general Ae R(m)
can be reduced to the hermitian case by writing A = %(A+A*) + i‘gf(A_A*)’
since %(A+A*) and %T(A—A*) both are hermitian operators in R(m). This com-

pletes the proof of Theorem 4.7.
As a corollary of Theorem 4.7 we have:

THEOREM 4.9. Let m be an irreducible representation of G on H such that
m(x)m(y) = w(y)m(x) for all x, y € G. Then dim H = 1.

PROOF. For all x € G, m(x) € R(m). Hence m(x) = A(x) I for some A(x) € G
(cf. Theorem 4.7). Thus each l-dimensional subspace of H is invariant, i.e.,
dim H = 1. [

5. PRIMARY AND MULTIPLICITY FREE REPRESENTATIONS

DEFINITION 5.1. A nonzero representation m is primary if no two nonzero com-

plementary subrepresentations of m are disjoint.
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DEFINITION 5.2. A nonzero representation m is multiplicity free if any two

nonzero complementary subrepresentations of w are disjoint.

There is a striking contrast between the definitions of primary and multi-
plicity free representations. This contrast is also clear from the criteria

in Theorems 5.3 and 5.4 below.

THEOREM 5.3. A nonzero representation m is primary if and only if CR(mw) =
= {A1|re ).

THEOREM 5.4. A nonzero representation w is multiplicity free if and only if

the algebra R(m) is commutative (that is, CR(m) = R(m)).

Observe that the center CR(m) of R(m) is as small as possible if m is pri-
mary and as large as possible if 7 is multiplicity free.

The proofs of Theorems 5.3 and 5.4 are based on Proposition 4.5. It
follows from this proposition that a nonzero representation m is primary if
and only if 0 and I are the only central projections and that it is multi-
plicity free if and only if all projections in R(m) are central. Now Theo-

rems 5.3 and 5.4 can be proved along the same lines as Theorem 4.7.

Proof of Theorem 5.3. If CR(m) = {AI|Ae €} then O and I are the only central

projections. Hence T .is primary in view of Proposition 4.5. Conversely, let
7 be primary. Then 0O and I are the only central projections. Let A be a her-
mitian operator in CR(m). It follows from Proposition 4.8 that A can be ap-
proximated in norm by finite linear combinations of certain projection oper-
ators PA which commute with all operators commuting with A. This implies
that all PA are in CR(m). Hence A = AI for some A ¢ R. Finally, if A is a
general operator belonging to CR(m) then A = B + iC with B, C € CR(w) and

hermitian. 0

Proof of Theorem 5.4. If R(mT) is commutative then all projection operators

in R(w) are central. Hence, by the use of Proposition 4.5, 7 is multiplici-
ty free. Conversely, let 7 be multiplicity free. Then all projection opera-
tors in R(m) are central. Let A € R(m) and hermitian. Then an application
of Proposition 4.8 shows that A can be approximated in norm by linear com-

binations of certain projection operators P, which are in R(m). Hence these

A
PA'S are in CR(m) and the same holds for A. Finally, if A is a general ele-
ment of R(m) then A = B + iC with B, C € R(m) and hermitian. Hence

B, C € CR(m) and thus A € CR(w). O
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6. INCLUSION, COVERING AND QUASI-EQUIVALENCE

Consider finite-dimentional representations m with decomposition (1.1)
and p with decomposition (1.2). Then T is equivalent to p, T is iIncluded in
p, ™ is quasi-equivalent to p or m is covered by p, respectively, if and

only if after possible rearranging of the summands in (1.1) and (1.2) we

have:

(a) (equivalence) p = r and wi o pi, m, = n, (i=1,...,p).
i i < o < i = P .

(b) (inclusion) p < r and ™ pyrmy S my (i 1, ,P)

(c) (quasi-equivalence) p = r and LA (i =1,...,p).

(d) (covering) p < r and LA (L =1,...,p).

The last three concepts are new. We now define them in the general case.

DEFINITION 6.1. A representation p includes a representation m (notation

m<porp2m if m is equivalent to some subrepresentation of p.

THEOREM 6.2. The relation < is a partial ordering for the collection of

equivalence classes in Rep, that is, for Tyr Myr Ty € Rep we have:

(1) if m, = m, then Ty S Mo

(ii) if i, and Ty S Ty then Ty S Myl

(iii) if “1 < "2 and “2 < ﬂl then “1 o ﬂz.

PROOF. Properties (i) and (ii) are evident. Consider (iii). Let H1 = H(nl),
H2 = H(ﬂz). It follows from the inclusion relations that there are inter-

twining isometries A from H1 onto an invariant subspace AH1 of H2 and B
from H2 onto an invariant subspace BH2 of H

of H1 and W

1 We try to find invariant sub-

spaces V of H2 such that av, = W

o 0 , and B(Ws) = Vp. Then the
linear mapping C: H1 > H2 defined by C[V := A and CIVé := B~ is an inter-
twining isometry from H1 onto H2, which will settle property (iii). In or-
der to find such subspaces Vo and W0 we use the mapping F which associates
with each invariant subspace V of H1 a new invariant subspace

(6.1) Fov) := (B@an ).

Clearly, if F(V) = V for some invariant subspace V of H1 then we can take
V0 := V and WO = AVO. We will prove the existence of such a fixed point
v, of F.

Let U denote the class of all invariant subspaces of H1 and let

F(V) (Ve V) be defined by (6.1). Since A and B are linear isometries, they
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map closed, hence complete, linear subspaces of H1 respectively H2 onto com-
plete, hence closed, linear subspaces of H2 respectively Hl' Hence, since A
and B are also intertwining operators, they map invariant subspaces onto in-
variant subspaces and so does F. Note that the mapping F: V - I is monotone
with respect to inclusion: if V

c V, then F(Vl) c F(Vz). Consider the set

1 2
VO of all V ¢ V such that F(V) > V. Then VO is nonempty, since {0} € VO'
Let V0 be the least upper bound of VO in V, i.e. the intersection of all

Vv ¢ I/ such that Vv o V' for all V' VO' We will show that F(VO) = V.. First

o
note that F(VO) > F(V) oV for all V € VO. Hence F(VO) is an upper bound of
VO' so F(VO) > V,. But, by monotony of F, also F(F(VO)) > F(VO), hence

F(VO) € VO. Thus F(vo)r € V,- It follows that F(vo) =V, O
REMARK 6.3. The above proof that F has a fixed point in U/ can be applied to
each partially ordered set V and monotone mapping F: V » V, provided that
/ contains a minimal element and that each subset of V has a least upper

bound in V.

REMARK_QLQ: See for instance DRAKE [4, Ch.2, Ex.4.10(1)] for an analogous
proof of the Schrdder-Bernstein theorem in set theory. A more familiar
proof of the Schr&der-Bernstein theorem can be found in DRAKE [4, Ch.2,
Theorem 4.5]. This last-mentioned proof also has its analogue in the case
of representations (cf. MACKEY [6, p.14]; the reader should be aware for a

slight error in the proof given there).

DEFINITION 6.5. Let m and p be representations of G. Then m is covered by
p (notation m < p or p > ) if each nonzero subrepresentation of 7 contains
a nonzero subrepresentation which is equivalent to some subrepresentation

of p.

An equivalent formulation is: w is covered by p if no nonzero subrepresen-
tation of 7 is disjoint from p. Obviously, if ™ < p then m< p, and if

m< p and p< o then 1< 0.

DEFINITION 6.6. Two representations m and p of G are called quasi-equiva-

lent (notation m ~ p) if both m< p and p< .

Note that equivalence implies quasi-equivalence. The relation ~ is an equiv-
alence relation. The equivalence classes with respect to the relation ~ are
called guasi-equivalence classes. Any quasi-equivalence class is a union of

() equivalence classes.
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In Table 3 below we list the symbols and names of the various rela-

tions between two representations m and p of G.

notation name of the relation reference
m<p m is subrepresentation of p §2

T =p m is equivalent to p §2

™ & P 7 is disjoint from p Def. 4.1

T<p m is equivalent to a subrepresentation of p |Def. 6.1

TL p T is covered by p Def. 6.5

™~ p T is quasi-equivalent to p Def. 6.6

Table 3

LEMMA 6.7. For any representation m of G and n € {1,2,...,2} we have m ~ nm.

PROOF. Since m is a subrepresentation of nm we have m <X nm. Conversely,
Lemma 4.6 shows that no nonzero subrepresentation of nm is disjoint from .

Hence nm < .

We now derive some rather technical results which will be useful later.
In the proof of the next proposition we will first meet an application of
Zorn's lemma (cf. for instance ZAANEN [10, Ch.1, §2, Theor.1]). In subse-

quent proofs this kind of argument will be used repeatedly.

PROPOSITION 6.8. Let T be a representation of G on H with subrepresentation

p. Then there is a unique central subrepresentation of m, denoted by o .,
such that 5 ~ p. Furthermore, 5 is the smallest central subrepresentation
of m which contains p and 5 is the complement of the largest subrepresenta-

tion of m which is disjoint from p.

PROOF. First we show that if 5 exists then it is unique. Indeed, let o and
T be central subrepresentations of m such that o < t1. Since the projections
on H(o) and H(t) commute, we have ¢ = o, ® 0, with o, < 1 and H(o2) ortho-

2 1
gonal to H(t). It follows from Proposition 4.5 that gy & T. Since 0, < 0 < 1,

we must have o, = 0. Hence ¢ £ 1. Thus two quasi-equivaildent centralzsubre-
presentations are equal.

Next we define p. Consider all families {Ti} of mutually orthogonal non-
zero subrepresentations T of m such that Ti p. Since H is separable, all
such families are countable. Let the collection of these families be partial-

ly ordered by inclusion . Application of Zorn's lemma shows that there is a
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-]
maximal family {Ti}. Let T := I/ T,- It follows from Lemma 4.6 that T b -

Let p be the subrepresentation of m which is complementary to t. Then ) $ T,
for otherwise p has a nonzero subrepresentation which is equivalent to a sub-
representation of T and hence disjoint from p, thus contradicting the maxi-
mality of the family {Ti}. It follows from Propisition 4.5 that p is a cen-
tral subrepresentation. Next observe that 5 ~ p. Indeed, p < p in view of
Proposition 4.4, hence p = 5. Also 5 < p, since no nonzero subrepresentation
of 5 is disjoint from p.

Now we show that T is the largest subrepresentation of w which is dis-
joint from p. Let 0 £ m, © é p. Since T is central, the projections on H(t)
and on H(o) commute. Hence ¢ = o, ® 0, with o, < p, 0, < T. Then p b o, <p

1 2 1 1

implies that 01 = 0. It follows that o < T.

Finally we have to prove that p is the smallest central subrepresenta-
tion of m containing p. Let 01 be a central subrepresentation of 7 containing
p. Let 9, be the subrepresentation of m which is complementary to oy It fol-

lows from Proposition 4.5 that 02 é [of hence o, é p. This implies that

1’
>
02 < , hence O’1 (o D

LEMMA 6.9. Let w and p be representations of G. Then there are complementary

subrepresentations TyeTy of m and Py1Py of p such that Ty =P Ty & Pye

PROOF. By Zorn's lemma there is a maximal family {(oi,ri)} of pairs (Oi,Ti)
of nonzero subrepresentations 9 of m and T of p such that both the ci's

®
1= 5 Oy

[}
pi = Zi Ti and let “2 respectively p2 be the complementary subrepresentations

to ™ in w, respectively to Py in p. Then 7

and the T,'s are mutually orthogonal and o, T for each i. Let 7

o 91 and p2, since, other-

1 2
wise, the maximality of the family {(Gi,Ti)} would be contradicted. [J

7. PRIMARY REPRESENTATIONS OF TYPE I

First we derive some general results about primary representations.
LEMMA 7.1. If m is primary and p ~ T then p is primary.

PROOF. Suppose that p is not primary. Then p has two nonzero disjoint sub-

representations. Since m ~ p, there are nonzero disjoint subrepresentations

2!
follows that m is a central subrepresentations of m, not equal to 0 or w.

™ and , of m. In view of Proposition 6.8, %1 $ T, hence H(;l) 1 H(ﬂz). It

This contradicts the fact that m is primary. g
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LEMMA 7.2. If w is primary and O # p < m then p ~ 7 and p is primary.

PROOF. Since 7 is primary, its only nonzero central subrepresentation is .
Hence p = m and p ~ 7 (cf. Proposition 6.8). Then p is primary by Lemma

7.1, O

PROPOSITION 7.3. If m and p are primary then either w é p or m~ p. In the

latter case m < p or p < W.

PROOF. Suppose that m and p are not disjoint. Let m = nl ® Tor P =Py ) Py
as in Lemma 6.9. Then ﬂl and p, are nonzero. Suppose that both m and p, are
nonzero. Since m is primary, L) has a nonzero subrepresentation equivalent

to a subrepresentation of m,, hence equivalent to a subrepresentation of Py-

1!
Since p is primary, we conclude that there are nonzero equivalent subrepre-
sentations of ﬂz and p2. This contradicts the disjointness of m, and p2.

Hence T, O p, = 0, i.e., T < por p < m. Then m ~ p because of Lemma 7.2. 0

In §1.4 we defined primary representations of type I, II or III. Let us
discuss primary representations of type I in some more details. Remember
that a primary representation p is called of type I if p = nm for some irre-

ducible representation 7 and some n € {1,2,...,}.

THEOREM 7.4. Let m and m be irreducible representations. Then:
(a) p ~ 7 if and only if p =~ nm for some n € {1,2,...,°}.
(b) All representations nm(ne {1,2,...,}) are primary.

(c) If nm == mm, then 7 =~ ™ and n = m.

PROOF.

(a) If p =2 nm then p ~ T by Lemma 6.7. If p ~ m then each nonzero subrepre-
sentation of p contains a subrepresentation which is equivalent to T
(since 7 is irreducible). By Zorn's lemma there exists a maximal family
{pi} of nonzero mutually orthogonal subrepresentations oy of p which are
all equivalent to m. Then p = Zf pi, since otherwise the maximality of
the family {pi} would be contradicted. Hence p =~ nm for some n.

(b) Apply part (a) and Lemma 7.1.

(¢) If nm 2mn, then m ~ 7, (cf. Lemma 6.7). Hence.m =~ T since m and w

1 1 1’ 1
are irredicuble. Next we show that dim R(nm) =.n2 if n is finite. Let p=
]
= Z?=1 L where MW for all i. Any A € L(H(p)) can be written as a

block matrix
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11 in
A= : Z
Blyoe .- A

with respect to the subspaces H(ni) of H(p). It follows from Theorem 4.7
that A € R(p) if and only if for all i,j Aij = AijTij' where Tij is a fixed
intertwining isometry from H(nj) onto H(ni) and Aij is some complex constant.
Hence dim R(p) = n2. It follows that nm # mw if n # m and n,m are finite.
Also nm # «m for all finite n for, otherwise, nm < (n+l1)m < om =~ nm for some

finite n, hence nm =~ (n+1)m by Theorem 6.2 (iii). O
8. GENERAL REPRESENTATIONS OF TYPE I

In this section we introduce general representations of type I and we
prove the canonical decomposition of type I representations in terms of mul-

tiplicity free representations. See ARVESON [1, §2.1] for a related approach.

8.1. Some properties of multiplicity free representations

LEMMA 8.1. ILet m be multiplicity free and p < m, p # 0. Then p is multi-
plicity free.

PROOF. Let p < T and.m = p ® 0. Let p = Py @ p,. Then m=p, & (p,®0).
Since m is multiplicity free, we have Py & (p2®<7), hence Py Py Thus p is

multiplicity free. [

LEMMA 8.2. Let m = Z? T be a direct sum of mutually disjoint multiplicity
— i

free representations .- Then T is multiplicity free.

PROOF. First note that for each i "i é Z?#i “j’ hence the projection from
H(m) onto H(ni) is in CR(w) (cf. Lemma 4.6 and Prop. 4.5). Let m = p © o.
Let G and 9, be the subrepresentations on H(p) n H(ni) and H (o) n H(ni),
. (-] ®
t . = = . o= . .
respectively. Then p Ei pi, o Zi Oi' T3 Py ® ci Now pi & o; for all
i, since ﬁi is multiplicity free, and Py Oj if i # j since LA ﬂj. Again

applying Lemma 4.6 we obtain p & 0. Hence 7 is multiplicity free. 0

PROPOSITION 8.3. If m is multiplicity free and p > w then p > T.

PROOF. Letm=1mw, ® m1,, p = p, ® p, as in Lemma 6.9, that is, m, ~p,,
B 1 2 1 2 1 1
Ty A Py- Since m is multiplicity free, T & L hence ™, é Py- Thus “2 é o]

by Lemma 4.6. Since 7 < p, we must have T, = 0. Hence m X p. ]
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It follows from Prop. 8.3 that a multiplicity free representation 7 is
minimal with respect to the partial ordering < in its quasi-equivalence

class. In particular, combination with Theorem 6.2 shows:

COROLLARY 8.4. If w,p are multiplicity free and m ~ p then T =~ p .

8.2. Generalities about type I representations

We define type I representations as the elements of the quasi-equiva-

lence classes of multiplicity free representations:

DEFINITION 8.5. A representation is of type I if it is quasi-equivalent to

some multiplicity free representation.

In view of Theorem 7.4 (a) this definition is compatible with the definition
of a primary type I representation.
In Theorem 8.8 below we will give a few other characterizations of

type I representations. For this purpose we need two auxiliary results.

LEMMA 8.6. If m is of type I then w contains a multiplicity free subrepre-

sentation p such that p ~ T.

PROOF. Use Prop. 8.3. [

PROPOSITION 8.7. Let p be a nonzero subrepresentation of a type I represen-

tation m. Then p is of type I.

PROOF. Let 0 be a multiplicity free subrepresentation of 7 such that o ~ mw.

Let m = 5 ® T. Since this decomposition is central, we have o = 01 ® 02

i <P < 1. o, <p, 0, < . . 6. o, @0, =0=
with 0l Py o, T. Now o1 P, 02 < 1t (cf. Prop. 6.8) and 01 ® 02 [}
=T =p + T. Hence oy =Py i.e. 01 ~ p, and ol is multiplicity free (cf.
Lemma 8.1).

THEOREM 8.8. Let T be a nonzero representation. The following statements

are equivalent:

(a) m is of type I.

(b) T is a direct sum of multiplicity free representations.

(c) Each nonzero central subrepresentation of T contains a multiplicity
free subrepresentation.

(d) Each nonzero subrepresentation of T contains a multiplicity free sub-

representation.
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PROOF.

(a) = (d). Use Lemma 8.6 and Prop. 8.7.
(d) = (b). By Zorn's lemma there is a maximal family {pi} of mutually ortho-

. 2]
gonal multiplicity free subrepresentations of w. Let p := Zi p

ar

i
T=p ®c. Then 0 = 0, for otherwise it would contain a multipli-

city free subrepresentation, in contradiction with the maximality
_ of the family {mJ.

(b) = (c). Let m = Zf wi, all wi's multiplicity free, and let p be a nonzero
central subrepresentation of m. Denote the projections on H(wi)
and H(p) by P, respectively Q. Then Q commutes with all P, and
the projection QPi € R(m) is nonzero for at least one i. Denote
the corresponding subrepresentation by ;- Then o, # 0, o, < LIg

i

ci < p . Hence, by Lemma 8.1, oi is a multiplicity free subre-
presentation of p.

(c) ® (a). By Zorn's lemma there is a maximal family {pi} of mutually dis-
joint, multiplicity free subrepresentations of w. Let p := Z? pi,
m™=p ® 0. Then p is multiplicity free (cf. Lemma 8.2) and E =T,
for otherwise the nonzero central subrepresentation ¢ would con-
tain a multiplicity free subrepresentation disjoint from all pi's,

thus contradicting the maximality of the family {pi}. O
COROLLARY 8.9. A direct sum of type I representations is again of type I.

8.3. Representations of multiplicity n

In the canonical decomposition for type I representations there will
occur multiples nm of multipliciﬁy free representations m. In order to jus-
tify Def, 8.11 below for representations of this form, we need the follow-

ing proposition.

PROPOSITION 8.10. Let T and p be multiplicity free and n, m € {1,...,%}. If

nmT e2mp then m =2 p and n = m.

PROOF. Application of Lemma 6.7 and Corollary 8.4 shows that 7 =~ p. Now

suppose that nm =~ mm and n > m. (Thus, m is finite.) We will obtain a contra-

. . s : +

diction by constructing a complex mXm matrix A such that Am # 0 and Am 1 = 0.
+

Then A" ! = 0 would imply that all eigenvalues of A are zero. Hence A can be

brought in Jordan normal form
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of which the mth power is zero. We turn to the construction of A. Write the

elements of H(nm) as (Vl’v

2,...), where all vi's are in H(w). Let

A"

Qrecet erm+1l*) = (0,v

T(Vllv rolol---)l

- v
1’ ""m-1'"m

then T € R(nm),

m
T (VI""’V

m+1r*) = (OI"’IOIvllOIOI"’)I

hence Tm # 0, and Tm+1 = 0. Here we used that n =2 m+l. Since nm =~ mm, R(nm)

*

and R(mw) are isomorphic as C -algebras. Hence there is an operator S e€ R(mm)
+

such that Sm # 0, Sm 1 = 0. The bounded linear transformations U of H(mm)

can be written as mxm block matrices

with respect to the m subspaces H(m) of H(mw). Then U € R(mm) if and only if
Uij € R(m) for all i,j. If ¢ is a *-homomorphism from R(m) to & then the-
mapping

$Uy ) - - - (U )
¢: U+
¢(Um1) P ¢(Umm)

is a *-homomorphism from R(mm) to the C*—algebra of all complex mxm matrices.
Now consider S. Since S™ # 0, (Sm)ij # 0 for some (i,j). We use that R(m) is
a commutative c*—algebra (cf. Theorem 5.4). Hence there exists a *-homomor-
phism ¢ from R(m) onto € such that ¢((Sm)i.) # 0 (cf. RUDIN [9, Theor.

11.181). Let A := &(S). Then a® = o(s™ # 0, a™! = o(s™) = 0. O

DEFINITION 8.11. A representation 7 is said to have multiplicity n

(n.e {1,2,...,%}) if ™ ~ np for some multiplicity free representation p.

LEMMA 8.12. Let m be a representation of multiplicity n (ne {1,2,...,%}). If
0 is a nonzero central subrepresentation of m then ¢ also has multiplicity

n.

PROOF. 7 is the direct sum of n mutually equivalent multiplicity free sub-
representations L We have the nontrivial central decomposition m = 0 & T.

Then m, = g, ® 1,, where g, < 0, T. £ 1. Also O, é 1., for all i,j
i i i i i i 3j



276 CHAPTER VII

(cf£. Prop. 4.5). Combining this with o, & T, = Gj ® Tj we obtain 9, % cj and

oj < oi (cf. Prop. 4.4). Hence oi o~ oj (cf. Theorem 6.2). The oi's are multi-

®
plicity free (cf. Lemma 8.1) and ¢ = Zi o,- 0

8.4. The canonical decomposition of type I representations

The following two lemmas give the final preparation for the canonical

decomposition of type I representations.

LEMMA 8.13. Let T be a representation of type I. Then T contains a nonzero

central subrepresentation of some multiplicity n (ne {1,2,...,o}).

PROOF. Let p, be a multiplicity free subrepresentation of m such that P~ T
(cf. Lemma 8.6). By Zorn's lemma there is a maximal family {pi} of mutually
orthogonal subrepresentations Py of m such that Py = Pg- Let p := Zf Py and
mT=p ® 0. Let T be such that T = 17 ® ¢ . Then T # 0, for otherwise ¢ ~ T ~
~ Pgr SO O would contain a subrepresentation equivalent to o (cf. Prop.

8.3) in contradiction to the maximality of the family {pi}. Now T is a non-
zero central subrepresentation of p and p is a representation of certain mul-

tiplicity n. Finally apply Lemma 8.12. O

LEMMA 8.14. Let m be a representation of type I. Then T is a direct sum of
mutually disjoint central subrepresentations LI where each " has some mul-

tiplicity n.

PROOF. By Zorn's lemma there exists a maximal family {ni} of mutually ortho-
gonal central subrepresentations ™. of m, where each ™, has some multiplici-
ty n. Then ™ é ﬂj (i# j) by Prop. 4.5. It follows from Prop. 4.5 and Lemma
4.6 that 2? L is a central subrepresentation of m. Let m = (Zf ni) 6 p. Then
p = 0, for otherwise the type I representation p contains some central sub-
representation of certain multiplicity (cf. Lemma 8.13 and Prop. 8.7) in con-

tradiction to the maximality of the family {wi}. O

THEOREM 8.15. Let m be a representation of type I. Then there are unique
central subrepresentations ﬂl,nz,...,wm of wm, where, for each i, ﬂi = 0 or

of multiplicity i, such that

(8.1) T=T, &M, 8 ... &7 .

1 2
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PROOF. Let m = 2? pi be a central decomposition as in Lemma 8.14. Now, for
each n ¢ {1,2,...,°} let ™ be the direct sum of all pi's having multipli-
city n. Then ﬁn is a central subrepresentation of m which is either zero or
of multiplicity n (cf. Lemma 8.2) and (8.1) holds. In order to prove unique-

ness let m = o, ® 0, ® ... ® 0 Dbe another decomposition of the required

2

form. Then we have the central decomposition m = I Tij, where

i, je{1l,...,°}
T.. <®,, T.,, £ 0.,. Then t,, = 0 if 1 # j for otherwise, in view of Lemma
ij i ij J 1]

8.12, Tij has both multiplicity i and j, which contradicts Prop. 8.10. It

follows that ﬂi = ci for all i.

It follows from Theorem 8.15 that a type I representation m has the
decomposition

(8.2) T = ul ® 2u2 ® ... ® oy,

©

where the ui's are zero or multiplicity free and mutually disjoint. Conver-
sely, let us start with a sequence {ul,uz,...,uw} of mutually disjoint re-
presentations un which are zero or multiplicity free and let m be defined
by (8.2). Then m is of type I (cf. Theor. 8.8), each subrepresentation np
is disjoint from its complementary subrepresentation (cf. Lemma 4.6) and
hence each subrepresentation nun is central (cf. Prop. 4.5). By definition
nu is zero or of multiplicity n. Thus (8.2) is the canonical decomposition
of T according to Theorem 8.15. It follows from Prop. 8.10 that 7w deter-
mines the un's up to equivalence. Thus (8.2) establishes a one-to-one cor-
respondence between equivalence classes of type I representations m and
sequences of equivalence classes of multiplicity free or zero representa-

tions I (ne {1,2,...,°}) such that uy é w if n # m.
9. CYCLIC REPRESENTATIONS

Let T be a nonzero representation of G on H. In order to find closed
invariant subspaces of H we may pick some nonzero v € H and construct the
closure of the linear span of the set {n(xl)w(x2)...ﬂ(xk)v[ke {0,1,2,...},

xl,...,x € G}. Clearly this is the smallest closed invariant subspace of H

k
which contains v. The nonzero representation m is called cyclic with cyclic
vector v if the smallest closed invariant subspace of H which contains v is

equal to H.
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PROPOSITION 9.1. Each representation W can be written as a direct sum of

cyclic subrepresentations.

PROOF. By Zorn's lemma there exists a maximal family {ﬂi} of mutually ortho-
®

gonal cyclic subrepresentations of m. Let 7 = (Zi ﬂi) ® p. Then p = 0, since,

otherwise, p would contain a cyclic subrepresentation in contradiction to

the maximality of the family {ni}. O

PROPOSITION 9.2. Each multiplicity free representation m is cyclic.

PROOF. By Prop. 9.1, m is the direct sum of cyclic subrepresentations LIE

Let Vi be a cyclic vector for LA and renormalize the vi's such that

z "v,ﬂ2 < w, Let v, := I, v,. Let P, be the projection on H(m,). Since 7 is
i i 0 i i i

multiplicity free, Pi is central. Hence, if KyreeerX € G then

n(xl) e ‘rr(xk)vi = n(xl) P ﬂ(xk)Pivo = Pi(ﬂ(xl) e ﬂ(xk)vo) belongs to

the representation space HO of the cyclic subrepresentation T with cyclic

vector v,. It follows that H(wi) c H0 for all i. Hence H(m) = HO' O
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In this chapter we present the representation theory of locally compact
abelian groups and the related representation theory of commutative C*—
algebras. Primarily we include these topics, because they are nice, impor-
tant and relatively simple illustrations of the general representation
theory of Chapter VII. However, a second purpose of this chapter is to
state and to prove some preliminaries for the representation theory of
semidirect products with abelian normal subgroup, which will be treated in
Chapter XI. In particular, the SNAG theorem will be relevant there. In
Section 1, a bird's eye view will be given of the results of this chapter.
For reasons of motivation, this will be done in an order which is converse

to the arrangement of the detailed presentation in later sections.

Notation. Throughout, the term "lcsc. space" will be used as an abbrevia-
tion for "locally compact Hausdorff space satisfying the second axiom of
countability” and "lcsc. group" will mean a topological group which is a
lcsc. space as a topological space. If X is a lcsc. space then K(X) will
denote the set of all‘complex—valued‘continuous functions on X with compact

support. All Hilbert spaces are assumed to be separable.

1. INTRODUCTION

Consider the additive group IR of real numbers. The regular representa-

tion A of R is given by
(1.1) M) (y) := £y=x), f£eL°(R, x,ye¢ R,

where L2(IR) is taken with respect to the Lebesgue measure (= Haar measure)
on IR. The Fourier transform

©

(1.2) F@) := (2m~? J f(x) e ax, o€ R,

-00

establishes an isometric mapping from LZ(HU onto L2(IR). (The indefinite
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integral in (1.2) converges in L2—sense.) If we define a unitary represent-
ation i of IR on L2(IR) by /

AE = (A(x)E)", f e Lz(ﬂv , x € IR,

then A is equivalent to A and

lxaf(a), fe L2(IR), x,0 € IR.

(1.3) A(x)E)(a) = e
Formula (1.3) still defines a unitary representation of IR if we re-

2 2
place L™ (IR) by a Hilbert space L” (IR,n), where p is an arbitrary nonzero

Borel measure on IR. Let us denote this representation by nu:

(1.4) (06 @ =@, ferl®Ruw, xoe R
Note that the functions x -+ eiax (o € IR) are precisely the characters of
the group IR, which can be identified with the irreducible unitary repre-
sentations of IR (cf. §I. 4). All irreducible unitary representations of
IR and all (countable) direct sums of mutually disjoint irreducible unit-
ary representations of IR can be written in the form (1.4). However, the
collection of all representations of the form (1.4) is much more general:
up to equivalence it can be shown to consist of all multiplicity free
representations of IR.

Similar results hold for an arbitrary lcsc. abelian group G. A charac-
ter on G is a continuous homomorphism from G into T := {z € € | lz] = 1}.
The set G of all characters on G becomes an abelian group with respect to
the product (aB) (x) := a(x)B(x) (a,B € é, X € G). It is possible to define
a certain canonical lcsc. topology on G such that G becomes a topological
group. If G = IR then G = R and the topology on G coincides with the nat-
ural (Euclidean) topology on IR. For G = T we have G =~ Z (the additive
group of integers with the discrete topology).

Let p be a Borel measure on G. (For convenience we suppose that u is a

finite measure, i.e., u(é) < »_) Analogous to (1.4), the formula
(1.5) (m )E) (@) := alxE(@), fe @G, xeG aecg,

2 - .
defines a unitary representation nu of G on L"(G,u). An important result

of this chapter is that for any unitary representation m of G the following
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three statements are equivalent:
(a) ™ is equivalent to ﬂu for some finite Borel measure u on é.
(b) m is multiplicity free.
(c) mis cyclic:
Furthermore, two representations nu and ™ of the form (1.5) are equivalent
iff the measures u and v are equivalent (cf. v.1.8), and ﬂu and m, are dis-
joint iff p and v are mutually singular, that is, iff p(E) =0= V(G\E) for
some Borel set E in G.

The equivalence of (b) and (c) implies that every unitary representa-
tion m of G is of type I. The canonical decomposition (VII.8.2) of type I
representations implies that for given m there exist mutually disjoint
finite Borel measures “1'“2""'“w on é (uniquely determined by m up to

equivalence) such that m is equivalent to

(1.6) wu ) 2wu ::) 3ﬂu ® ... 0 wnu .
1 2 3 ©

Completely analogous results hold for the representations of a com-
mutative separable C*—algebra (which, for the moment, we again denote by G).
Let G be the set of all nonzero multiplicative linear functionals on G.
Under the so-called Gelfand topology G is a lcsc. space. Now for any finite
Borel measure u on é,formula (1.5) defines a nondegenerate representation
nu of the c*—algebra G on Lz(é,u). Furthermore, for any nondegenerate re-
presentation m of G the statements (a), (b) and (c) are equivalent.

This is not just an accidental analogy between the representation
theories for lcsc. abelian groups and for commutative separable C*—agebras,
but there is, in fact, a causal relationship. We will derive the results in
the group case from the corresponding results in the C*—algebra case by the
following steps. Let G be a lcsc. abelian group:

(i) The formula
(1.7 % (£) =J fxm(xax, £e1l@,
G

establishes a one-to-one correspondence between the unitary representa-
tions m of G and the nondegenerate representations # of the commuta-
tive involutive Banach algebra Ll(G).

(ii) Specialization of (1.7) to the case that T = o € G establishes a
one-tg-one cqrrespondence between G and the space of multiplicative

linear functionals on Ll(Gl. For the Gelfand transform fof fe Ll(G)
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we have %(a) =a(f), o€ G. The Gelfand topology on G induced by
Ll(G) and the group topology on G induced by G coincide.

(iii) The Gelfand transform f - % is a one-to-one mapping from Ll(G) onto
a dense sﬁbalgebra of the commutative C*—algebra Co(é) (the space of
all continuous functions on G which vanish at infinity).

(iv) There is a one-to-one correspondence between the nondegenerate re-

presentations 7 of Ll(G) and ¥ of Co(é) such that
(1.8) Fh =mH, f£eul@.
(v) If wu is defined by (1.5) then
(1.9) (%u(f)g)(a) = f@E@), fe Co@)s € € t2@G,u, o € 6.

(vi) 1If m and T, are unitary representations of G then the intertwining

spaces R(ni,wz), R(ﬁl,ﬁz) and R(ﬁl,ﬁz) coincide.

Let us next discuss the so-called SNAG theorem. It gives a spectral
decomposition for any unitary representation m of a lcsc. abelian group G.
The SNAG theorem is an important tool in the representation theory of
semidirect products of locally compact groups, where the normal subgroup
is abelian (cf. Chapfer XI). The theorem involves the concept of a projec-

tion-valued measure:

DEFINITION 1.1. Let X be a lcsc. space and let B denote the o-algebra of
Borel sets of X. A projection-valued measure P on X acting in a Hilbert
space H is a mapping E - P, from B into the set of projection operators

on H such that

(- - = I
PQ o0, Py =1I;
P =pPg P (E,,E, € B);
E{NE, E,"Ey 172
(1.10) Ao
- = Zm P (strong convergence)
Pp i=1 "Ej g g
if E is the union of mutually disjoint Borel sets Ei’

Let P be as above. For each v,w € H we can define a complex Borel

measure (cf. v.1.13) P on X by
v,w

(1.11) P, w(E) := (PEV,w), E € B.

I
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In particular, PV v (v € H) is a finite positive Borel measure on X. It can
4

be shown that for each bounded Borel function f on X there is a unique

operator A € L(H) such that

(1.12) (av,w) = J £ de,w' v,w € H.
X

We denote this operator A by

j £ ap or J f(a)dpP(a) (symbolically) .
X X

Now we are ready to formulate:

THEOREM 1.2 (SNAG theorem). Let G be a lcsc. abelian group. The formula

(1.13) T(xX) = J o(x)dp(a), X € G,
G
establishes a one-to-one correspondence between the unitary representations

m of G and the projection-valued measures P on G.

We will derive this theorem from an analogous theorem for commutative
* -
C -algebras (Theorem 3.6). If the nondegenerate representation % of CO(G)
is related to the unitary representation 7 of G by (1.7) and (1.8) and if,

according to Theorem 3.6, % is related to a projection-valued measure P by

(1.14) F(£) = J £(w)dp(a), £ e Cy(@),
G

then it can be shown that 7 is related tqQ P by (1.13), cf. Section 6.

Theorem 1.2 is due to Stone, Naimark, Ambrose and Godement, which
four names can be abbreviated as SNAG. First, the theorem was proved in
the special case G = IR by STONE [14]. In fact, he proved that there is a
one-to-one correspondence between unitary representations w of IR on a
Hilbert space H and self-adjoint (generally unbounded) operators A on H
such that m(x) = exp(ixA), x € IR. (Then iA is the so-called infinitesimal
generator of the one-parameter group {m(x) | x € R}.) Now combination
with the spectral theorem II.1.6 for unbounded self-adjoint operators yields
(1.13). For general locally compact abelian groups the theorem was proved
about 1943, independently by NAIMARK [9], AMBROSE [1] and GODEMENT [5].

The remainder of this chapter has the following contents. In §2 we

introduce Banach algebras, in particular involutive Banach algebras and



288 CHAPTER VIII

C*—algebras, and we discuss the properties of the Gelfand transform for a
commutative Banach algebra. In §3 we classify the representations of a com-
mutative C*—algebra up to equivalence and we settle a relationship like
(1.14) for repreéentations of a commutative C*—algebra. Section 4 deals
with general (not necessarily abelian) lcsc. groups G. We discuss the con-
volution product of two functions on G and we settle the relationship (1.7)
between representations of G and of L1(G). Section 5 contains preliminaries
on lcsc. abelian groups G: the dual group G and the Fourier transform

f+>f for f ¢ Ll(G). In 86 all preceding results can rapidly be combined in
order to yield the classification up to equivalence for unitary representa-
tions of a lcsc. abelian group and the SNAG theorem. Finally, in §7 we apply
results from §3 in order to prove some properties of diagonal and decompos-
able operators on a direct integral of Hilbert spaces. We conclude §7 with
the definition of a direct integral of representations. Further results on
this topic would easily fill another chapter, but they fall outside the

scope of this colloquium. The interested reader is referred to the literature.

2. PRELIMINARIES ABOUT BANACH ALGEBRAS

A Banach algebra A is a complex Banach space (i.e. a complete normed
complex linear space) on which a product (x,y) - xy is defined which is

bilinear and associative such that the norm I+l on A satisfies
(2.1) Ixyl < Ixllyl, x,y € A.

*
A mapping x * x : A > A is said to be an involution on the Banach algebra
A if

*

(2.2) (x*) = X; (axd-by)* = Sx*i-ﬁy*; (Xy)* = Y*X*-

A Banach algebra A is called involutive if it is provided with an involution

x > x* such that
*
(2.3) =™ = Ixl, =x e A.

If a Banach algebra A is provided with an involution which satisfies the

stronger norm equality

(2.4) Ixx™1 = 1x12, x ¢ A,
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then A is called a C*-algebra. The standard example of a C*—algebra is L(H),
where H is a Hilbert space. As general references about Banach algebras we
mention HEWITT & ROSS [6, Appendix CJ], RUDIN [12, Ch.10,11], LooMIS [8,
Ch.1v,v], DIXMIER [4,51].

A Banach algebra with unit e is a Banach algebra A with a (necessarily
unique) element e such that ex = xe = x for all x € A and lel = 1. 1f A is
a Banach algebra without unit then we can extend A to a Banach algebra Al
with unit as follows. Let A1 consist of all pairs (x,A), x € A, A € €, with

the obvious linear operations and with the product
(%,2) (y, 1) == (Xy+Ay+ux, ).

Define a norm on A1 by I (x,)I := Ixl + |Ax|. Then Al is a Banach algebra
with unit (0,1) and the subalgebra of all elements (x,0), x € A, is isomor-
phic with A (cf. [6,(Cc.3)]). If A is an involutive Banach algebra then the
involution on A has a unique extension (x,A)* := (x*,X) to A1 such that A1
becomes an involutive Banach algebra.

Let A be a Banach algebra with unit e. We say that an element x € A
has an inverse x--1 in A if there exists a (necessarily unique) element
x 1 ¢ A such that x 'x = xx ' = e. The spectrum of an element x € A (nota-
tion o(x) or oA(x)) is the set of all complex A such that x-Ae has no in-
verse in A. If A is a Banach algebra without unit then the spectrum o (x)

is defined as the spectrum of (x,0) in the Banach algebra with unit Al' In

this last case o0(x) clearly always contains O.

THEOREM 2.1 (cf. [12, Theorem 10.13]). If A is a Banach algebra and x € A
then

(a) the spectrum o(x) of x is compact and nonempty;

(b) the spectral radius p(x) := sup{|A| | A € o(x)} satisfies
(2.5) px) = lim PURAS in ™ <

(The limit in (2.5) always exists.)

Let A be a commutative Banach algebra. A multiplicative linear func-
tional on A is a nonzero linear functional a on A such that a(xy) =
a(x)a(y) for all x,y € A. Every multiplicative linear functional a on A is
bounded and llall < 1 (cf. [6, (C.21)]). Let X be the set of all multiplic-

ative linear functionals on A; X is called the structure space (or maximal
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ideal space) for A. If A has no unit then each o ¢ X has a unique extension
to a multiplicative linear functional on Al' The only element of the struc-
ture space X; of Al which is not in X, is the functional o, defined by
o (x,A) =21, (x,}) € Al (c£. [6, (C.14)]).

For every element x of a commutative Banach algebra A the Gelfand

transform % is the function on X defined by
(2.6) S %(@) :=a(x), o€ X.

The Gelfand topology for X is the weakest topology on X under which all

functions & (x € A) are continuous. Note that the class of all finite

intersections of sets {0 € A l I&(a)—z(ao)! <el,a.e€X,xedA, >0,

forms a base of open sets for the Gelfand topology gn X.

Let Y be a locally compact space. Let CO(Y) be the space of continuous
complex-valued functions f on Y such that &%g f(a) = 0, that is, for each
€ > 0 there is a compact subset K of Y such that |f(a)]| < & outside K.
CO(Y) becomes a commutative C*—algebra if Af, £+ g and fg are defined point-
wise, if £ () := f(a) and if the norm is given by l£l := ggglf(a)l. If Y
is compact then CO(Y) = C(Y), the space of all continuous functions on Y,
and CO(Y) has a unit in this case.

We collect the fundamental facts about the Gelfand transform in the

following theorem.

THEOREM 2.2 (cf. [6, (C.25),(c.26)]1,[12, Theorem 11.9]1). Let A be a commuta-

tive Banach algebra with structure space A.

(a) X is a locally compact Hausdorff space under the Gelfand topology.

(b) The mapping x + % is a homomorphism from the algebra A onto a subalgebra
A of CO(X). The algebra A separates the points of X.

(c) For each x € A, range(%)\{0} = o(x)\{0} and

(2.7) gl = p(x) < Ixl.

(d) If A has a unit e then X is compact, &(a) = 1 for all o € X and
range (&) = o(x) for all x € A.

(e) If A has no unit and if X, =Xu {a_} is the structure space of A1
then X1 is the one-point compactification of X.

*
In the case of a commutative C -algebra the situation becomes very

nice:
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*
THEOREM 2.3 (cf. [6,(C.28)]). If A is a commutative C -algebra then the

*
mapping X +~ % is a norm-preserving *-isomorphism from A onto the C -algebra

CO(X).

Let Y be a locally compact Hausdorff space and let X be the structure
*
space of the commutative C -algebra CO(Y). It is a natural question to ask
for the relationship between X and Y. Obviously, with each y € Y we can

associate an element Gy € X defined by Gy(f) = f(y), £ € CO(Y).

THEOREM 2.4 (cf. [6,(C.32)]). If Y is a locally compact Hausdorff space
then the mapping y - Sy is a homeomorphism from Y onto the structure space
of CO(Y).

If A is a commutative involutive Banach algebra then the Gelfand
transform is not necessarily a *-homomorphism, as in the C*—algebra case.
(See the counterexample in NAIMARK [10,§14.1,Example 3].) However, it will
turn out that a convolution algebra A = L1(G) (G abelian) always has this

property. In such cases the following lemma is useful.

LEMMA 2.5. Let A be a commutative involutive Banach algebra with structure
space X and assume that (x*)“(a) = %(a) for all x ¢ A, o € X. Then A is

dense in CO(X).

PROOF. The subalgebra A of CO(X) separates the points of X (cf. Theorem
2.2(b)) and it is closed under complex conjugation. Now apply the Stone-

Weierstrass theorem (cf. SIMMONS [15,538,Theorem Bl]). [

A representation T of an involutive Banach algebra A on a Hilbert space

H is a *-homomorphism from A into L(H).

THEOREM 2.6. Let T be a representation of an involutive Banach algebra A on

a Hilbert space H. Then

(2.8) Il < Ixl, x e A.

If, in addition, A is commutative then
(2.9) Iox)l < lgl, x e A.

PRQOF. First observe that for a hermitian operator A on H we have
p(a) = lal. Indeed, 1220 = 1aa*l = 1al2. Hence, by recurrence, 1222 = fal2®
n € N. Then (2.5) implies the result.
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Withoﬁt loss of generality we may assume that the representation m is
nondegenerate. Then m(e) = I if A has a unit e, and T uniquely extends to
a nondegenerate representation of A1 if A-has no unit. Thus we may also as-
sume that A has a unit.

If x € A and x-Ae has an inverse in A then w(x) - AI has an inverse in
L(H). Hence oL(H)(an)) € osx).

Let x ¢ A. Then: ln(x)12 = In(x)m(x) "l = Iz )l = pL(H)(w(xx*)) <
pA(xx*) < Ixx™I < Izl = Ixl?. This proves (2.8).

Now assume that A is also commutative. Then (2.7) together with the

above inequalities implies:

Inol? < o, Gex®) = 1) =

* *
supla(xx )| < suploa(x)]| ¢ supla(x )| =
aeXx aex aeX

Il ()1 = p(x)p(x) = (p(x))2 = 112,

where we used that the spectrum of x is complex conjugate to the spectrum
*
of x . 0O

In Example VII.2.4(e) it was observed that tye class of all representa-
tions of an involutive Banach algebra satisfies the conditions of Assump-
tion VII.2.3. Thus all definitions and results of Ch.VII apply to the re-
presentations of such an algebra. _

In this chapter we will restrict ourselves to locally compact spaces
and groups which are second countable (lcsc.). The reason for this is that
we like to have all Borel measures on the space regular (cf. V.2.3). The

following three lemmas deal with these matters.

LEMMA 2.7. If A is a separable commutative Banach algebra then its structure

space X is a separable metric space. Hence X is a lcsc. space in that case.

PROOF. Let {xn} be a countable dense subset of the unit ball in A. Then the
mapping
-1

a > {2‘125;1 (a),2_1$i2((1),...,2 nxn(a),...}

is an injection from X into the separable Hilbert space 22. The metric on
2, . N
£° induces a topology on X under which all functions R and hence, by

density, all functions % (x € A}, are continuous. Thus the topology induced
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on X by the metric is finer than the Gelfand topology. Conversely, we will

show that each ball around ag € X with respect to the metric contains a

neighbourhood of ao with respect to the Gelfand topology. Indeed, let € > 0

and choose the ﬁatural number N such that 2_N < éez. Then, if

Iﬁk(u) - 2k(a0)! < %e for k = 1,...,N, we have
v -n - 2. %
dlo,00) = g 272 () - % (0) )7 <

N _ o
<() 2
n=1 n=N+1

2 Mo2lg h3E <
n

< (ée2+2 4t < el

We conclude that both topologies coincide. [

*
LEMMA 2.8. Let X be a lcsc. space. Then the commutative C -algebra CO(X)

is separable.

PROOF. Choose a countable base U for the topology of X, consisting of
relatively compact, open sets. Let U* denote the collection of all pairs
(V,U) such that V and U are elements of U and V < U. Then U* is countable.
Clearly, if o,B € X and a # B then we can find (V,U) € U* such that a € V,
B ¢ U. For each (V,U) € U* choose a function fV e K(X) such that

,U

< < = v =
0 < fV,U(a) < 1 for all a € X, fVIU(a) 1 for a« € V and £ U(a) 0 for

o ¢ U (cf. V.2.1). Then the set of functions {fV,U | (V,U)V; U*} separates
the points of X. Hence, by an application of the Stone-Weierstrass theorem,
the complex algebra A generated by these functions is dense in CO(X). Let
AO be the set of all finite linear combinations of finite products of func-
tions fV,U((v,U) € U*) with coefficients of the form q1+-iq2 (ql,q2 ration-
al) . Then AO is countable and dense in A. Thus CO(X) contains a countable

dense subset. [J

LEMMA 2.9. Let X be a lcsc. space. Then X is metrizable and every Borel

measure on X is regular.

PROOF. The first statement follows from Lemma 2.8, Lemma 2.7 and Theorem
2.4. A lcsc. space is clearly o-compact. Now the second statement follows
from v.2.5. [
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*
3. REPRESENTATIONS OF COMMUTATIVE C -ALGEBRAS

3.1. Classification of representations up to equivalence

In this section we develop the representation theory of a commutative
separable C*—algebra A. In view of Theorem 2.3, Lemma 2.7 and Lemma 2.8, we
can restrict ourselves to the case that A = CO(X) for some lcsc. space X.

It follows from Theorems 2.3, 2.4 and VII.4.9 that the irreducible represen-
tations of CO(X) are precisely the one-dimensional representations f » f£(a),
where o runs over X.

We now construct more general representations of CO(X): first multi-
plicity free representations and next general type I representations. This
part closely follows ARVESON [2,§2.2]. Let u be a finite Borel measure on X.
Then L2(x,u) is a separable Hilbert space, which contains K(X) as a dense
subspace (cf. V.3.5). Hence CO(X) is dense in L2(X,u). We define a represen-—

tation ™ of C,(X) on L2(X,u) by

(3.1) (ﬂu(f)i)(a) = f(@)g(a), fecCyX, £e L2(Xru)l a € X.

It is easily verified that n“ is indeed a representation. Let us show that
ﬂu is nondegenerate. Suppose that £ ¢ L2(X,u) and vu(f)E = 0 for all
f e CO(X). Then

(n (£1€,8) = J £(o) 1E(o) 1%au(@) =0
X
for all f € CO(X). Let {fn} be a sequence in C,(X) such that 0< fn(a) + 1,

o € X. Then the monotone convergence theorem V.1.5(ii) shows that
0 = (ﬂu(fn)E,E) + (£,8) = 0.

Hence £ = 0.

Let B(X) be the set of all bounded Borel functions on X. Under point-
wise operations it is a commutative algebra with involution. B(X) becomes
a commutative (generally nonseparable) C*-algebra with respect to the
supremum norm. Clearly formula (3.1) defines also a representation of B(X)

on L2(X,u).

THEOREM 3.1. Let m be a nondegenerate representation of CO(X). Then the fol-

lowing three statements are equivalent:
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(a) m = m for some finite Borel measure | on X.
(b) ™ is multiplicity free.
(c) m is cyclic (cf. 8§VII.9).

7 PROOF. We will prove that (a) = (b) = (c) = (a).

(a) = (b). It is our purpose to show that R(nu) = nu(B(X)). Since nu(B(X))
is a commutative algebra, this will imply that ﬂu is multiplicity free (cf.
Theorem VII 5.4). Clearly ﬂ (B(X)) < R(ﬂ ) . Conversely assume T € R(ﬂ ).

Let 1 € L (X,u) be the functlon which is 1dent1cally one on X. For f ¢ c (X)
we have Tf = T(wu(f)l) = ﬂu(f)(Tl). Let g := T1. Then g € L (X,n) and

(T£f) () = g(a)£f(a) a.e. [ul. We will show that g is essentially bounded.
Let & € Co(x), n e L2(x,u). Then

(*) ” g (@) E(a)n (@)du(a) U (TE) (@) n (@) du (a) | =
X X

| crg,my | < Ihlel inl,

where H-H2 denotes the norm in L2(X,u). Suppose that |g(a)] 2 C > 0 on some
Borel set E in X with p(E) > 0. We will show that ¢ < ITl. Choose €,

0 <e < %ﬂ(E). By regularity (cf. Lemma 2.9 and V.2.3) we can choose a com-
pact set K and an open set U such that K € E € U and p(U\K) < €. Now we
make the following choices for & and n. Let £ € CO(X) such that 0 < g(a) <1

if a € X, E(a) = 1 if @ € K and £(a) = 0 if o ¢ U. Let n(a) := x (@) lg(a) ]~
’(g(u))_l. Then it follows from (*) that
Cu(K) < J g@)E()n(a)du(a) | < HTHHgHZHnH2 <
X
< Il (u(®)+e) % (u (%)) 2.
Hence
< holl (1 + e/u®)? < Iol (14 2e/u(®) 2.

on letting € ¥+ 0 we obtain C < ITl. Thus |g(a)| < ITl a.e. [n]. By changing
g on a set of u-measure zero we get g € B(X). Then Tf =7 (g)f for all
f e C (X). Since C (X) is dense in L (X,u), we conclude that T = nu(g).
Hence R(m cm (B(X)).

( u) p( ( ))
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(b) = (c). This is a general fact about representations, cf. Prop. VII.9.2.

(c) = (a). Let m be a cyclic representation of co(x) on H with cyclic vector

v, Ivl = 1. Define p(f) := (m(f)v,v), £ € CO(X). Then |p(£f)] < l£l and
2 *
p(IE£17) = (n(£ £)v,v) = (n(f)v,n(£)v) > O.

Hence p is a bounded and positive linear functional on CO(X) and there is a

finite Borel measure u on X such that

p(f) = I f(a)du(a), f e CO(X),
X
cf. the Riesz representation theorem V.2.8. Define Uf := w(f)v, f € CO(X).
Then U is a linear mapping from CO(X) onto the dense subspace ﬂ(CO(X))v of
H. For each f € Cy(X) we have

luel? = (n(1£1)v,m = plgl?) =

]

]

J [£(0) [2au(a) = ||f||§,
X
Hence U has a unique extension to an isometry from L2(X,u) onto H. Finally,

we show that U € R(ﬂu,ﬂ). Let f,g € CO(X). Then

U("u(f)g) = U(fg) = n(fg)v = n(f)w(g)v = 7 (f)Ug.
By density this extends to g € L2(X,u). Hence m = nu. O

COROLLARY 3.2. Let G be a set with involution. Let Rep be a class of non-
degenerate representations of G satisfying the conditions of Assumption
VII.2.3. Let m € Rep be such that m(x)m(y) = w(y)w(x) for all x,y € G. Then
(a) ™ is multiplicity free iff w is cyclic.

(b) ™ is of type I. In particular, every nondegenerate representation of a

*
commutative separable C -algebra is of type I.

PROOF.

(a) If 7™ is multiplicity free then 7w is cyclic (cf. Prop. VII.9.2). Now
assume that 7 is cyclic with cyclic vector v € H(w). The von Neumann algebra
(R(m))' is generated by 7m(G) (cf. Prop. VII.3.1(b)). Hence (R(m))' is com-
mutative. There exists a separable C*—algebra A c (R(m))' which is strongly

dense in (R(m))' (cf. ARVESON [2, Prop.1.2.3 and Exercise 1.2.E.c]). Then
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A is commutative and the set {Tv | T ¢ A} is dense in H(m). Hence the
natural (clearly nondegenerate) representation p of A on H(m) is cyclic,

so p is multiplicity free (cf. Theorem 3.1). Thus R(p) is a commutative von
Neumann algebra kcf. Theorem VII.5.4). Since R(p) = R(m), another applica-

tion of Theorem VII.5.4 yields that m is multiplicity free.

(b) m™ is a direct sum of cyclic subrepresentations (cf. Prop. VII.S.1).
Hence, by'the first part of the corollary, m is a direct sum of multiplicity
free representations. Now apply Theorem VII.8.8. [

Equivalence and disjointness for representations nu and LN of CO(X)

can be characterized in terms of certain relations of the measures u and v.
The definition of domination (v << u) and equivalence (pu = v) was given in
V.1.8. Borel measures p and v on X are called mutually singular (notation

u L v) if there is a Borel set E in X such that p(E) = 0 = V(X\E). If p and
Vv are Borel measures on X then there are unique Borel measures Hy and Uy
such that p = Hythyr My <<V, 1y 1w (cf. RUDIN [11, Theorem 6.9(a)]). The

pair (ul,uz) is called the Lebesgue decomposition of 1 relative to v.

THEOREM 3.3. Let u and v be finite Borel measures on X. Then
(a) uw L v iff ﬂu $ "v'

(b) u << v iff ﬂu < ﬂv.

(c¢) u = v iff nu ) ﬂv.

PROOF.

(i) w << v = ﬂu < ﬂv.
Indeed, let u << v. Then (formally) du(a) = h(a)dv(c) for some Borel func-
tion h: X » R' (cf£. V.1.9). For £ € L2(X,u) define (UE) (a) := (h(a))%i(u),

o € X. Then

J L) (@) %av (@) = f l£() 12h(@dv(a) = J 1€ (o) | %au (a) .
X X X

Furthermore,

(h (o)) £ () E(a) =

(U(ﬂu(f)E)) ()

1]

(r (£) (UE)) (@), £ eCyx), €« L2 (X)), o€ X

Hence U is an intertwining isometry for "U and ﬂv from H(u“) cnto a
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closed invariant subspace of H(nv).

(ii) p = v=> nu T,

This follows from (i) and Theorem VII.6.2(iii).

(i1) T >y Ly,
(iii) " é "v u v
Indeed, if not p 1 v then the Lebesgue decomposition of u relative to v
yields a nonzero Borel measure o such that o << U, 0 << v. Then (i) shows

that m_ < m and 7_ < 7 . Since m_ # 0, m and m_ are not disjdint.
g~ U g~ v o u v

(iv) u L v= wu é ﬂv'
This is proved as follows. If u L v then u(X\E) = 0 = v(E) for some Borel

set E. Now the mapping & +~(XEE,X £) is an intertwining isometry for

X\E

2 2 .
"p+v and nu @ "v from L™ (X,u+v) onto L™ (X,u) & L”(X,v). Hence nu @ T being

equivalent to w
u+v

from Theorem VII.5.4 and Prop. VII.4.5 that nu é LN

, is multiplicity free (cf. Theorem 3.1). Now it follows

< = << v,
(v) T, P v
Indeed, if not u << v then the Lebesgue decomposition for p relative to v
shows that 0 << 4, 0 L v for some ¢ # 0. Now (i) and (iv) imply that “c < nu,
é . i ' < .
LSRN Since Ty # 0, we can't have ﬂu LM
. - =u = v,
(vi) ﬂu ™ U v

This follows from (v). [

Combination of the canonical decomposition (VII.8.2) for type I repre-
sentations with Corollary 3.2(b) and Theorems 3.1 and 3.3 now yields a com-

plete description of the representations of co(x).

THEOREM 3.4. Let m be a nondegenerate representation of CO(X). Then there
are mutually singular, finite Borel measures ul,uz,...,uw on X, uniquely

determined by m up to equivalence, such that

(3.2) T ® 27 @ 37 O ... ® o
My My M3 u,

Note that the measures ui can be renormalized such that u := zi ui is a

finite Borel measure on X.
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3.2. The relationship of representations with projection-valued measures

In this subsection we will derive a one-to-one correspondence between
nondegenerate representations of CO(X) and projection-valued measures on X.
Projection-valued measures were introduced in Definition 1.1. It was ob-
served in Example VII. 2.4(f) that the class of all projection-valued mea-
sures on X can be considered as a class of representations of B (the col-
lection of Borel sets in X) which satisfies the conditions of Assumption
VII.2.3. Hence we can freely use the concepts of representation theory in
the context of projection-valued measures.

Let P be a projection-valued measure on a lcsc. space X acting in a
Hilbert space H. In §1 we defined

(3.3) Pv,w(E) := (PEv,w), E e B, v,w e H.

For all v € H, Pv v is a finite positive Borel measure on X. A straight-
’

forward calculation yields that

3.4) P =P -P +iP_ ., . —iP_ . v,w e H.
( v,w = vHwW,Vviw  V-w,v-w vHiw, v+iw v-iw,v-iw’ !

Thus Pv w is a complex linear combination of four finite (positive) Borel
r

measures. Hence

@
P =
VIW(E) 2 PVIW(Ei)
i=1
if E is the union of mutually disjoint Borel sets Ei’ where the sum at the
right-hand side is absolutely converging. Thus Pv w is a complex Borel mea-
’

sure on X (cf. Vv.1.13).
If T € L(H) and £ € B(X) then the formal identity

(3.5) T = J £fdP = J £(a)dP (a)
X X

will mean that

(3.6) (Tv,w) = J f(a)d PV w(a)

I’

X
for all v,w € H (cf. v.1.13 for the definition of an integral with respect
to a complex measure). Note that (3.6), and hence (3.5), are already implied,

if the identity
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(3.7) (Tv,v) = J f(a) dPV'v(a)
X

holds for all v € H.

PROPOSITION 3.5. Let P be a projection-valued measure on X acting on
H = H(P). Then, for each f € B(X), N
(3.8) ﬂp(f) := J £ ap
X
is a well-defined element of L(H). Furthermore, LS is a representation on

*
H of the C -algebra B(X). Denote the restriction of ﬂP to CO(X) by ng.

Then wg is a nondegenerate representation of CO(X). Finally, if Q is another
projection-valued measure on X acting on H(Q) then R(P,Q) = R(nP,nQ)

0 0
= R(ﬂP,ﬂQ). .

PROOF. We follow the proof given in RUDIN [12, Theorem 12.21].

First we show that

(3.9) ‘J £(a) de w(OL) < Hel vl , f e B(X), v,w e H.
7

X

This is clear in the case of step functions f = zn

]
i=1 ci in, where the Ei s

are mutually disjoint Borel sets, since

IJ fw @, @21 o r, mp )
VW . i v,wi
i=1
X
n n
=1 e, vl ) e b vlZal? =
. i E, X i E.
i=1 i i=1 i
¥ P 2
= . 2 c; cj(PE_V’PE.v) lwl < =
l,]=1 i 3j
n
=3 IC.I2 (P v,v)llwll2 <
. i E,
i=1 i

IA

n
(max le,N?(] e vwmlul? < 16191 %1,
1<i<n i=1 i

Here we used that PE.PE_ = PE.nE.

of step functions on'x is a dénsg subset of B(X), inequality (3.9) holds for
all £ € B(X).

=0 if i # j. Since the collection SZep(X)
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Formula (3.9) implies that for each f € B(X) the expression

J f(a) dPV’w(a)

X
is a continuous sesquilinear form in v,w € H. Hence there is a unique
bounded linear operator np(f) on H such that this sesquilinear form equals
(nP(f)v,w). Then WP(f) satisfies (3.8) by definition. It also follows from
(3.9) that

(3.10) ||1rP(f)l| < Isl, f € B(X).

Note that Sfep(X) is a dense x-subalgebra of B(X). Hence, if m, restrict-
ed to Step(X) is a *-homomorphism from Sfep(X) to L(H) then m, will be a
representation of B(X) in view of (3.10). Now the proof that

L Step(x) > L(H) is a *-homomorphism is almost immediate, since

Next we prove that ﬂo is nondegenerate. Let v € H. Suppose that

P
ﬂP(f)v = 0 for all f € Co(x). Then

0= (WP(f)V,V) = J £ de v for all f € co(x).

’

X
. _ _ 2 _ 0 .
Hence Pv, = 0. In particular, Pv,v(x) = (Pyv,v) = lvl“ = 0. Thus m, is
nondegenerate.
Finally we show that
R(P,Q) < R(m ,m ) < R(Tro wo) c R(P,Q)
’ PI Q PI Q ’ -
We have that A € R(P,Q) iff Pv,A*w = QAv,w for all v € H(P), w € H(Q).
Hence, if A € R(P,Q) then
*
(AﬂP(f)v,w) = (nP(f)v,A w) = (WQ(f)Av,w)

for all v € H(P), w € H(Q), so A ¢ R(WP,HQ). It is trivial that
g). Finally, if A € R(ﬂg,ﬂo) then

0
) ¢ R(ﬂP,n 0

R(WP,NQ

\
j Ear; axy = J £ %v,w
X X
for all £ € CO(X), v ¢ H(P), w € H(Q). The uniqueness part of the Riesz
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representation theorem for complex Borel measures (cf. (V.2.13)) implies

that PV *x =0

A% N for all v € H(P), w € H(Q). Hence A € R(P,Q). [

Let p be a finite Borel measure on X. It is rather obvious that the

formula

(3.11) (PEf)(u) 1= XE(a)f(a), f e L2(X,u), Ee B, oc¢X,

defines a projection-valued measure P on X acting in L2(X,u). We will show
that the corresponding representation T of B(X) is just the representation

ﬂu defined by (3.1):

(3.12) ﬂu(f) = J f ar, f € B(X).
X .
Indeed, for £ € L2(X,u), E € B we have P

dPEE(a) = IE(a)Izdu(a), formally, and

2
E,E(E) = (PgE,8) = fEIEI du. Hence

(n (£),6) = f £(0) 1£(a) | %du(a) = J £ ap
X X

£,5" f € B(X).

This settles (3.12).

THEOREM 3.6. There is a one-to-one correspondence between projection-valued
measures P on X and nondegenerate representations m of CO(X) such that
H(w) = H(P) and

(3.13) m(f) = J £ ap, f e CO(X).
X
If ﬂi corresponds to Pi’ i=1,2, then R(nl,wz) = R(Pl'Pz)'

PROOF. For each P we can take m = ﬂg as in Prop. 3.5. Let us show that the
correspondence P -+ T is one-to-one. Let P and Q be projection-valued mea-
sures on X acting in H such that IX £ dp = fX f dQ for all f € CO(X). Then
[y £ e, = [ £ g, , for all £ € Cy(X)- and v € H. Hence P =@ _ for
all v € H (cf. V.2.7). This implies that P = Q.

The last statement of the theorem was already proved in Prop. 3.5. Thus
Proposition VII.2.5 applies to the mapping P + n. We now show that to each
nondegenerate representation m of Cp(X) there corresponds a projection-valued
measure P on X such that (3.13) holds. It follows from Theorem 3.4 that m

is equivalent under some intertwining isometry A to a direct sum
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nu +] ﬂu ® ..., where the ui's are certain Borel measures on X. Let Pi be

1 2

defined by (3.11) with p = M. Then LTS corresponds to Pi according to (3.12).
i

Let P := Z? Pi and let Q be equivalent to P under the intertwining isometry

A. Then it follows from Theorem VII.2.5 that m corresponds to Q. [

1
4. THE RELATIONSHIP BETWEEN REPRESENTATIONS OF G AND L’ (G)

In this section we assume that G is an arbitrary lcsc. group, not
necessarily abelian. Let dx (or sometimes dv(x)) be a left Haar measure on
G and denote the modular function on G by A (cf. V.3.7).

First we derive some results about the convolution product f*g, where
f e LI(G) and g € IP(G), 1 < p < o, As a reference we mention LOOMIS
[8,831]. We only need the results in the cases p = 1 and 2, but the general
case does not involve any additional difficulties. We always consider
Lp(G) with respect to the left Haar measure dx.

If £ is any function on G and x € G then A(x)f is the function on G

defined by
(4.1) (A (x) ) (y) := f(X-IY), y € G.

A is a homomorphism: A(xy)f = A(x) (A(y)f), %X,y € G, and A(e)f = £. If
f e LP(G) then A(x)f € LP(G) for all x € G and

(4.2) "A(x)f"P = Hfﬂp

by the left invariance of the Haar measure. Here

-
el e=

G

£ 1P ax) /P

denotes the norm on LP(G).

LEMMA 4.1. For each £ € LP(G) the mapping x + A(x)f is continuous from G to
P(a).

PROQF. Since A (x)f = A(xxal)(A(xO)f), continuity at x, follows from contin-
uity at e. First suppose that f € K(G). Then f is uniformly continuous on G.
Let V be a compact neighbourhood of e. Then the set K := V.supp(f) is com-
pact. Let € > 0. By uniform continuity there is a neighbourhood U < V of e

-1
such that |f(x "y)-f(y)] < e if x € U, y € G. Hence, if x € U then
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IhGoe-gl = (j - Pan /P < comi/P.
G
This shows the continuity of x + A(x)f at e. Now let f ¢ LP(G). Let € > 0.
By density of K(G) in ©(6) (cf. v.2.10) we can find g € K(G) such that
l£-gll < %e for x in some neighbourhood U of e. Then, using (4.2), we find

HA(x)f—fHP <egifxeu. 0O

Thus A is a strongly continuous homomorphism from G into the group of
linear isometries of Lp(G). It is called the left regular representation
of G on LP(G). If p = 2 then A is a unitary representation.

Now let f € Ll(G), g € LP(G). Define the convolution product

(4.3) fxg := f f(x) A(x)g dx,

G
where the right-hand side is a LP(G)—valued integral. We claim that the func-
tion x > £(x) A(x)g : G ~> LP(G) is Bochner integrable, hence also weakly
integrable (cf. V.1.14). Thus f*g is well-defined by (4.3). For the proof
of the Bochner integrability first suppose that f e€ K(G). Then
x > £(x) A(x)g = G ~> LP(G) is continuous with compact support (cf. Lemma
4.1), hence it is Bochner integrable (cf. V.2.14). Now assume that £ € L1(G).
Let {fn} be a sequence in K(G) such that “f—fn"1 + 0 as n »> . Now

T£(x) A(x)g- £ (x) A(x)gllP |f(x)—fn(x)!"A(X)9"P =

]f(x)—fn(x)lﬂgﬂp

is a Borel function of x and

I - I = le-£ 1,1 .
j £(x) A(x)g £ x) A(x)gp dx £-f 1|g"p+0 as n >
G
Hence it follows from V.1.14 that x - £(x) A(x)g is Bochner integrable.
By an application of inequality (V.1.9) we obtain

. 1
(4.4) "f*gﬂp < J I£(x) A(x)gHP dx = Hfﬂlﬂg"p, felL (G), ge LP@G).
G

Next we prove that

(4.5) (£xg) () = J £(x)g(x ly)ax
G
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for almost all y € G if f € LI(G), g € IP(G). We use the weak integrability
of x > £(x) A(x)g. Indeed, (4.3) is equivalent to

<fxg,h> = J <f(x) A(x)g,h> dx
G
q -1 -1 _
for all h € L*(G) where p ~ + g ~ =1 and

<¢,h> := J ¢(x) h(x) ax, ¢ ¢ IP@, h e LY(G).

G
Thus

]
—
—
Hh
x
Q
»
I
—_
<
=2
S
Qs
=
S~
o)
H]

I (£xg) (y) h(y) dy
G

]
—_— R

where we used Fubini's theorem V.1.12. Part of the statement is that

J l£6) g(x 'y) hiy)| ax < w

G
for almost all y € G. Since the above results hold for all h € Lq(G), we
conclude that for almost all y € G

J I£(x) g(x y)| dx < @
G
and (4.5) holds.
Now we have settled these things, it is an elementary exercise to
prove the following two theorems. (Use formula (V.3.19) for the proofs of

the statements involving the involution.)

THEOREM 4.2. Ll(G) is a separable involutive Banach algebra with respect to

the convolution product (4.5) and the involution

* -1 -1 1
(4.6) f (x) := f(x ") Alx ), f e L (G), x € G.

THEOREM 4.3. The formula
~ 1 2
(4.7) A(f)g := fxg, fel (G, ge L”(G),

defines a nondegenerate representation x of LI(G) on L2(G). Furthermore,
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X: 2@ » L(2(G)) is one-to-one.

PROOF. We only show nondegeneracy and injectivity of A. First suppose that
for some g € L2(G) we have K(f)g = 0 for all f ¢ Ll(G). This means in par-
ticular that

(

0= (X(f)g,q) £(x) A(x)g dx,g) =

]

f(x) (A(x)g,9)dx for all f ¢ K(G).

Q— Q—

Since (A(x)g,g) is continuous in x (cf. Lemma 4.1), it must be identically
zero. Thus (g,g) = 0, i.e., g = O.

Next suppose for some f € Ll(G) we have X(f)g = 0 for all g € LZ(G).
If, in particular, g € K(g) then

~ -1
(A (f)g) (y) = J f(x)g(x "y)dx
G
is continuous in y, because g is uniformly continuous on G. Hence, for all

g € K(G) we have

0= J £(x)g(x ) ax.
G
This implies that £ = 0 (apply V.2.13). [

We need one further technical result, before we can discuss the main
theorem of this section. An approximate identity in a separable Banach al-
gebra A is a sequence {un} in A such that "un" < 1 for all n and

“unx—x" -+ 0 and "xun—x" + 0 as n » » for all x € A,

LEMMA 4.4. Let G be a lcsc. group. Then L1(G) has an approximate identity
{un}. The functions u_  can be chosen as elements of K(G) such that u 20,
W= u, lul = 1.

n n n
PROOF. Let U1 > U2 =} U3 > ... be a sequence of compact neighbourhoods of
e such that {Un} forms a base of neighbourhoods for e. For each n choose

*

w_ € K(G) such that W > 0, wn(e) > 0, supp(wn) cu, and supp(w_) < -

n
*
4

*
Let v, = %(wn+wn) and u = vn/fG vn(x)dx. Then u € K, u, 0, u =u

Ilunll =1, Let f ¢ L1(G). Then

n
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Hun*f—f" IIJ u (x) (A (x) £-£)axl <
G

IA

sup IA(x)£-£l > 0 as n > o,
ern

where we used Lemma 4.1. Also

Texu —£l = Du x£™=£"1 = lu_x£*-£*1 > 0. 0
n n n
We can give the following interpretation to Theorem 4.3: we associated
with the left regular representation A of G on L2(G) a representation x of

Ll(G) on L2(G) by means of the vector-valued integral

X(f)g = J £x) A(x)g dx, £ e 1@, ge i@,
G
or, equivalently, by the operator-valued integral
A = Jf(x) A(x) ax, £ e L'(Q).
G
In a similar way we can associate with any unitary representation m of G a

representation % of L1(G) on H = H(m:

(4.8) f(f) = J f(x) m(x) dx, f e Ll(G).
G
Here #(f) is the unique element of L(H) such that

(4.9) (T (E)v,w) = I £(x) (m(x)v,w)dx
G
for all v,w € H. The existence of #(f) is guaranteed by V.1.16, since
x » £(x) (v(x)v,w) is a Borel function on G for all v,w € H and since
x+ £ 1l = [£&0 ] is in L1
It will be shown in the proof of the theorem below that % is actually

a representation of L1(G). Here we make the preliminary observation that
(4.10) m(x)T(£) = T(A(x)E), fe LI(G), X € G.

Indeed, if v,w € H then
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[}

(m(x)®(£)v,w) (ﬁ(f)v,ﬂ(x_l)w) = J f(y)(ﬂ(y)v,ﬂ(x_l)w)dy =
G

1]
QA—Q—

f(y) (m(xy)v,w)dy =
£y () vewdy = (FOVK) ) vaw) .

THEOREM 4.5 (cf. LoOMIS [8,§32], DIXMIER [4,§13.3]). Formula (4.8) establish-
es a one-to-one correspondence between the unitary representations m of G

and the nondegenerate representations % of L1(G).

PROOF. First we assume that 7 is a unitary representation of G on H and we
show that %, defined by (4.8), is a nondegenerate representation of L1(G).

Linearity of % is obvious. If f,g € Ll(G), v,w € H, then

- \
(% (£xg) v, w) j(J £G0g(x y) (n1(y) v,wdxjay =

G G

i
A— Q—— Q——

- \
f(x)(J £ y) (n(y)v,w)dy Jax =
G

£(x) (T (A (x)g)v,w)dx =

f(x) (T(x) T(g)v,w)dx = (F(f)F(g)v,w),

where we used Fubini's theorem and formula (4.10). Hence # is a multiplicat-

ive homomorphism. Next, if fe Ll(G), v,w € H, then

(7 (£5)v,w)

J el mevem A Hax =

£ (x) (ﬂ(x_l)v,w)dx =

f(x) (M(X)w,v)dx =

]
Q— —_— @

FEOw,v = (F(E) v,w.

This shows that % is a *-homomorphism. Now we prove that % is nondegenerate.
Let v € H and suppose that #(f)v = 0 for all f ¢ Ll(G). We have to show that
v = 0. Let € > 0. Let U be a neighbourhood of e such that ln(x)v-vl < ¢ if
X € U. Choose f € Ll(Gl such that £ 2 0, supp(f] < U and £l = 1. Let
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w € H. Then

| (v,w) | [ (F#(E)v-v,w) | =

|J f(x) (7 (x)v-v,w)dx]| <
G

IN

(J f(X)dX)(Sug I (x)v-vl)lwl < ellwl.
Xe€
G
Hence lvl < e for all € > 0, i.e., v = O.
We have shown that, for given w, % defined by (4.8) is a nondegenerate
representation of Ll(G). Let HO be the linear span of {f(f)v | f e L1(G),
v € H}. Then H0 is dense in H. Thus, for x € G, T(x) is completely deter-
mined by its restriction to HO' Formula (4.10) implies that n(x)lH can be
) 0

recovered from :

m m
T (x) (izl T(EHv) = 121 ()£ v,
Let now p be a homomorphism (but not necessarily a *-homomorphism)
from Ll(G) into L(H) such that lp(£f)ll < Ifl for all f € Ll(G) and the linear
span HO of {p(f)v | f e Ll(G), v ¢ H} is dense in H. 1If ZT=1 p(fi)vi is an
element of H0 then, with the use of the approximate identity {un} (cf. Lem-

ma 4.4), we have for X € G:

m
I ey, =
i=1
§
= lim p(A(x) (u_*£,))v, =
n>e i=1 not *
m
= lim 'z p(()\(x)un)*fi)vi =
n>o i=1
m
= lim p (A(x)u ) '2 p(E£)V, .
n-e i=1
Since "p(A(x)un)“ < "X(x)un“ = "un" = 1, it follows that
m m
H'Z PAE) v < H.Z p(£) vl
i=1 i=1

We conclude that, for a given p, the formula
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m m
(4.11) Tx) () p(E)v) = ] pOE)v,
. i . i’vi
i=1 i=1
unambiguously defines, for each x € G, a linear mapping m(x): H0 - Ho such
that In(x)vl < vl for each v ¢ HO' Hence m(x) uniquely extends to a bounded
linear operator on H with ln(x)Il < 1.
We conlude the proof of the theorem by showing that the mapping
m: G + L(H), defined by (4.11), is a unitary representation of G and that

the representation % of L1(G), defined by (4.8), equals the original homo-
morphism p. Let fe Ll(G), v € H, x,y € G. Then

It

T(xy)p(f)v = p(A(xy)E)v = p (A (X)A(Y)E)v =

1

T(x)p(A(y)H)v = m(x)n(y)p (£)v.

Hence 7m(xy)w = m(x)m(y)lw for all w € HO and thus for all w € H. Clearly
(4.11) implies that mw(e) = I. Thus ﬂ(x-l) = (1T(x))_1 for all x € G. If x€ G,
v € H then

"ﬂ(x)v" < vl "w(x—l)ﬂ(x)v" < "n(x)v".

Hence lw(x)vl = llvl, i.e., m(x) is a unitary transformation. In order to
prove strong continuity of m note that x » m(x)p(f)v = p(A(x)£f)v is contin-
uous from G to H for all f € Ll(G), v e H (cf. Lemma 4.1). Hence x~ m(x)w is
continuous for all w € HO and thus for all w € H. We have shown now that T
is a unitary representation of G. Finally we will show that % = p. Let

f,g € Ll(G), v,w € H. Since

f f(x) A(x)g dx = f*g,
G

we have

J £(x) p(A(x)g) dx = p(fxg) = p(£f)p(qg),
G
cf. (v.1.8). Hence

(F(f)p(g)v,w) = J f(x) (r(x)p(g)v,w)dx =
G
= J £(x) (p(A(x)g)v,wldx = (p(£lp(g)v,w).
G
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This shows that #(f)p(g)v = p(f)p(g)v, and finally % (f) = p(f). a
As a corollary to the proof of the preceding theorem we obtain

LEMMA 4.6. Let p be a homomorphism from Ll(G) into L(H) such that lpll <1
and the linear span of {p(f)v I f e Ll(G), v ¢ H} is dense in H. Then p is

a *-homomorphism, sp p is a nondegenerate representation of Ll(G) on H.

We conclude this section with

, . are

THEOREM 4.7. If m, and 7, are unitary representations of G and ¥ 9

1 2 1
the corresponding representations of Ll(G), defined by (4.8), then

R(ﬂl,ﬂz) = R(ﬁl,ﬁz).

PROOF. Let A € R(1T1,1r2), f e Ll(G) , V€ H("l)’ W€ H(1T2). Then

(BF () v,w) (ﬁl(f)v,A*w) = J £(x) (nl(x)v,A*w)dx =
G

]

J f(x)(nz(x)Av,w)dx = (ﬁz(f)Av,w).

G .

Hence Aﬁl(f) = ﬁz(f)A. Conversely, let A € R(ﬁl,ﬁz), f e Ll(G), v e H,
X € G. Then

Anl(x)ﬁl(f)v Aﬁl(A(x)f)v = ﬁz(A(x)f)Av =

nz(x)ﬁ2(f)Av = ﬂz(x)Aﬁl(f)v.

Hence Anl(x)w = wz(x)Aw for w in the closure H of the linear span of
{(#(E)v | £ e Ll(G), v e f}. g

Thus the mapping ™ + % satisfies the conditions of Prop. VII. 2.5 and
subrepresentations, equivalences and direct sums in the case of representa-
tions of G nicely correspond to similar relationships between representa- '
tions of Ll(G). It follows, for instance, that m is irreducible, multipli-

city free or of type I iff % has these properties, respectively.
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5. PRELIMINARIES ABOUT LCSC. ABELIAN GROUPS

Reference for this section is LOOMIS [8, § 34]. Let G be a lcsc. abelian
group and let G denote the set of all irreducible unitary representations
of G. Then G is just the set of all continuous homomorphisms from G into
the multiplicative group T := {z € € | |z| = 1}, cf. Theorem VII. 4.9. In

a natural way, G becomes an abelian group with respect to the product
(5.1) (aB) (x) := a(x)B(x), a,B € G, x € G.

We call G the dual group to G.

Since G is abelian, the involutive Banach algebra Ll(G) is commutative.
It follows from Lemma 4.6 that each multiplicative linear functional o on
Ll(G) satisfies a(f*) = a(f), for all f e L1(G). Thus the structure space
X of Ll(G) consists of all irreducible representations of Ll(G). Applica-
tion of Theorem 4.5 and Theorem 4.7 yields a one-to-one correspondence
a <> & between the irreducible representations of G and Ll(G), respectively.

Therefore we can state the following theorem.

THEOREM 5.1. The formula

o 1
a(f) = J f(x)a(x)dx, fe L (G),
G
establishes a one-to-one correspondence o, <> o between G and the structure

space of Ll(G).

Using the above correspondence we identify the structure space of
1 - -
L™ (G) with G. Thus G becomes a lcsc. space under the Gelfand topology (cf.
Lemma 2.7) and the Gelfand transform for Ll(G) takes the form

(5.2) E(a) = J f(x)a(x)dx, f e Ll(G), @ € G.
G

The function f on G is called the Fourier transform of £ ¢ L1(G). (In lit-
erature f(a) is often defined with a(x) at the right hand side of (5.2)
being replaced by a(x_l).)

Next we prove some results which culminate into the statement that

the group structure and the topology on G are compatible.

PROPOSITION 5.2. The function (x,a) = a(x) is continuous on G X% G.
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PROOF. Let o. € G and choose £ € L' (G) such that E(ao) # 0. (This is pos-

0
sible because the algebra {f | f L1(G)} separates the points of G, cf.
Theorem 2.2(b).) If x € G, & € G then a(x)&(f) = &(A(x)£), cf. (4.10).

Hence, in some nheighbourhood U of ao where f(a) # 0, we have

(Ax)£) (a)

(5.3) o(x) = o) .

The denominator at the right hand side of (5.3) is continuous in a at og-

The numerator is continuous in (x,0) at (xo,ao) for each x. € G, since

0

[AGIE) (@) - (Ax)H) (o) | <
TG D) (@) = MxDE) ()] + [ x)E) (@) = (A(x)E) (o) | <
< I E = Ax) £l + [ (xg) ) (@) - (x(xo)f)’(ao)l.

Now use Lemma 4.1. 0

In the next proposition we characterize the topology of G in terms of

G rather than of Ll(G).

PROPOSITION 5.3. The sets

(5.4) UK,e,a) = {a € G | lalx) - aj(x)| < e if x € K},

where K € G is compact, € > 0 and o, € é, form a base for the open sets of

G.

0

PROOF. First observe that if o, € U(Kl,sl,al) n U(K2,92,a2) then

0

U(KllJKz,e,ao) c U(Kl,el,al) n U(x ,a2) for € small enough, and that the

2'%2
sets U(K,e,ao) cover G. Hence the sets U(K,e,ao) form a base of open sets
for some topology on G.

Next we show that any set U(K,e,ao) is open with repect to the Gelfand

topology on G. It is sufficient to prove that o is an interior point of

0
U(K,e,ao), because, if a € U(K,s,ao) then U(K,sl,a) c U(K,e,uo) for some

81 > 0. Now, by continuity of the function (x,a) - a(x) (cf. Prop. 5.2) and
by compéctness of K we can find a neighbourhood V (with respect to the

Gelfand topology) of a

0 in G such that [u(x)-ao(x)l < g if o € V, x € K.

Hence V ¢ U(K,e,ao).
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Finally we show that any neighbourhood {o € G | [£(a) - E(ao)l < 8}

of a. in G (f € Ll(G), a. € é, § > 0) includes a set U(K,e,ao) for some

0 0
compact K € G and € > 0. This will imply that the topology generated by the
sets U(K,e,ao) is finer than the Gelfand topology. Fix f € Ll(G), ao € é,
§ > 0. Then for each compact K € G, € > 0 and a € U(K,e,ao) we have:
I£(a) -fla) | < (f + J V£ [a(x) -ag(x) |ax
K G\K
< elslh + 2 I | £(x) |dx
G\K
Now put € := % 8/l £l and choose K such that jG\K |£(x) |dx < %—6. Then
If(a)-f(ao)l < § if o € U(K,e,ao). O

It follows from Prop. 5.3 that a sequence {an} on G converges to o, € G

0
iff an(x) hd ao(x) uniformly on compact subsets of G.

THEOREM 5.4. The group operations on G are continuous, so G is a lcsc. abe-

lian group.

PROOF. Consider again the open sets U(K,e,ao) defined by (5.4), which form

1

a base for the topology of G. Since U(K,e,ao) = U(K ,e,a61), the mapping

o > a_lz G » G is continuous. Next observe that
la(x)B(x) -y (KB (x) | < Ja(x) —ag(x) |+ |B(x) -By(x) 1.

Hence 0B € U(K,2e,a060) if a € U(K,e,ao) and B € U(K,e,BO). This shows the
continuity of the mapping (a,B) - aB: G x G > G. O

EXAMPLE 5.5. Let G = IR, the additive group of real numbers. We will investi-
gate the dual group G.

First we show that each continuous homomorbhism o from IR into the
multiplicative group €\{0} has the form a(x) = e® for some ¢ € €. Define

f(x) := x—1 log a(x), x >0,

where the logarithm is chosen such that the function x + log a(x) is con-
tinuous on IR and takes the value O for x = 0. Let n € IN. For each x > 0

we have
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nloga(x)+2kxni 2k_mi

_ log a(nx) _ log(a(x)™ _ - f(x) +

nx nx nx

£ (nx)

for some kx € Z depending on x. Thus x > kx is continuous and integer-
valued, hence constant. Since kx = 0 for small x > 0, we have f(nx) = f£(x)
for all n < IN, x > 0. It follows that f£(gq) = £(1) for all positive rational

+
numbers g. By continuity of £, £(x) = x on IR for some constant c € C. Hence

a(x) = e(~:x for x > 0, and also for other real values of X, since o is a
homomorphism.

If ¢ € G and a(x) = e°F then the condition |la(x)| = 1 forces c to be
purely imaginary, i.e. a(x) = ei)‘X for some A € IR. On the other hand,
any function x - ei)\X (A € IR) is a continuous homomorphism from IR into T.
We identify G with IR such that A(x) := eikx if X € R.

Finally we prove that the topology of G coincides with the usual topo-
logy of IR. Let A, € R. It follows from Prop. 5.3 that the sets

U([—n,n],s,xo), ne IN, € > 0, form a base of neighbourhoods of AO in the

topology of G. Now:

lelxx - elxoxl <gif |x|] £n <

- 4sin2%()\—)\o)x < €2 if |x| < ne>
= |A-r.] < on”! arcsinid ¢)
0 7 €

where we assumed that € < 7. Hence the above base of neighbourhoods of AO

is also a base of the neighbourhoods of A, in the ordinary topology of IR.

0

The following theorem, in particular the statement about the density,

is of great importance in the next section.

THEOREM 5.6. The Fourier transform £ - f, defined by (5.2), is a one-to-one

*-homomorphism from L1(G) onto a dense *-subalgebra of Co(é).

PROOF. We already know that £ - fis a *-homomorphism. It follows from
Lemma 2.5 that its image is dense in Co(é). fn ord?r to prove~injectivity
of the Fourier transform, suppose that £ € L' (G), £ = 0. Let A be the repre-
sentation of Ll(G) defined by (4.7). It follows from (2.9) that IX(£)l <

I£l = 0, hence A(f) = 0. Now injectivity of A (cf. Theorem 4.3) shows that

£ =0. a
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6. PUTTING THE PIECES TOGETHER: UNITARY REPRESENTATIONS OF LCSC. ABELIAN
GROUPS

Let G be a lcsc. abelian group. In this section we will classify the
unitary representations of G up to equivalence and we will prove the SNAG
' 1
theorem. The first step will be to connect the representations of L™ (G)

with those of co(é) .

THEOREM 6.1. Let G be a lcsc. abelian group. Then the formula
X ~ 1
(6.1) fi(f) = #(£), f el (G),

establishes a one-to-one correspondence between the nondegenerate represent-
ations % of Ll(G) and the nondegenerate representations % of Co(é) such that

H(%) = H(%) and R(ﬁl,ﬁz) = R(ﬁl,ﬁz).

PROOF. The mapping f - fis a *-isomorphism from LI(G) onto a dense *-sub-
algebra of Co(é) (cf. Theorem 5.6) and I#(£)l < IEl, £ ¢ Ll(G), for each
representation % of L (G). Hence #, defined by (6.1), uniquely extends to
a representation of Co(é) on H(#). Converselg, if ¥ is a representation of
Co(é) then £ + #(f) is a representation of L™ (G) on H(R) . Clearly ® is non-
degenerate iff f is nondegenerate. Finally, the statements R(ﬁl,ﬁz) c
R(ﬁl,ﬁz) and R(ﬁl,ﬁz) < R(%,#,) follow by density and by restriction,

respectively. 0

Combination of Theorems 4.5 and 6.1 shows that the formulas (4.8) and
(6.1) establish a one-to-one correspondence between the unitary representa-

tions m of G and the nondegenerate representations 7 of CO(G). The corres-

pondence is also given by the formula

(6.2) #(F) = J f()T(0dx, £ e L (Q),
) .
and we have H(m) = H (%), R(ﬂl,nz) = R(ﬁl,ﬁz). In view of Prop. VII.2.5 any
property of a representation which can be defined in terms of direct sums,
subrepresentations and equivalence, holds for m iff it holds for it.
Let y be a finite Borel measure on G and let P be a projection-valued

measure on G acting in H. Then %  and %, defined by

n

(6.3) (F(E)E) (0) = £(@)g(a), £ e Cy(G), E ¢ 2@, o € &,
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and

(6.4) F(£) = [ £dp, f£eCy(®,
"G
are nondegenerate representations of Co(é) (cf. (3.1) and Prop. 3.5). We

will show that the corresponding representations of G are given by

(6.5) (ﬂu(x)E)(a) = o(x)g(a), £ € Lz(é,u), XxeG, acG,
and
(6.6) m(x) = I % dp, X € G,
G
where &(a) := a(x), a ¢ G. First we show that ﬂu and m, defined by (6.5)

and (6.6), are indeed unitary representations of G.

Clearly m, is a homomorphism from G into the group of unitary trans-
formations of Lz(é,u). In order to prove weak continuity of ™ at e let
g,n € L2(X,u) and let K be a compact subset of G. Then

[m (x)g,m) - (g,m| < (J + J ) la(x) —a(e)|lg(a) | In(a) [du(a) <
K G\K

< lgllinl sup |o(x) ~a(e)] + 2 J [€ (o) | In(a) |@u(a).
aeK é\K
Let € > 0. Choose K such that the second term becomes less than %—e. Choose
. € .
a neighbourhood V of e such that |a(x) -a(e)]| < §TEWWHW if x € V, o € K.

(cf. Prop. 5.2). Then

|(TTU(X)E:YI) - (Ern)l <e if x e V.
Next consider m defined by (6.6). Since % € B(é) (cf. Prop. 5.2) and
(xy)~™ =.Ry for x,y € G, 7 is a well-defined homomorphism from G into
L(H(P)) (cf. Prop. 3.5). Clearly m(e) = I. Since (x—l)‘(a) = %(a), x € G,

o ¢ G, we have ('rr(x))_1 = ﬂ(xbl) = (ﬂ(x))* (cf. again Prop. 3.5). Thus m(x)
is a unitary operator for all x € G. In order to prove weak continuity of

m let v,w € H(P), X € G. Then
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[ (m(x)v,w) = (v,w) ]| = IJ (a(x) —a(e))dr. (a)]| <
/ v,w

G

< J la(x) -a(e) 1P |(a).
J v,w

G
Now proceed as in the weak continuity proof fbr ™
Let 'us next show that nu and %u, defined by (6.5) and (6.3), are actual-
2
ly connected with each other by (6.2). Indeed, let f € Ll(G),‘E,n € L7 (X,u) .

Then

J f(X)(wu(X)E,n)dx = ([ f(x)a(x)i(a)n(a)du(a)>dx =
G G

1]

J (J f(x)a(x)dx)g(a)n(afdu(a) = [ f(a)g(a)n(a)du(a) =
G G G

(nu(f)g,n),

where we used Fubini's theorem.
Similarly, the representations m and #, defined by (6.6) and (6.4),
are connected with each other by (6.2), because, for f ¢ Ll(G), v,w ¢ H(P),

we have

J £f(x) (T(x)v,w)dx = J (J f(x)a(x)dPV w(a))dx =
G G G

’w(a) = (f(£)v,w).

= [ /J f(x)a(x)dx\dp (a) = J £(a)ap
\ } v,w ) v
G G G

Now we can conclude from Theorem 3.1, Cor. 3.2(b), Theorem 3.3 and

Theorem 3.4 that:

THEOREM 6.2. Let G be a lcsc. abelian group.
(a) A unitary representation of G is multiplicity free if and only if it
is equivalent to some representation ™ of G of the form (6.5).

(b) pu 1L v iff L é Ti

<< i < .
H v iff vu ﬂv,

WEVvVIffrm ~m

H v*
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(c) Each unitary representation m of G is of type I and there are mutually
singular, finite Borel measures ul,uz,...,um as on G, uniquely deter-

mined by T up to equivalence, such that
TR ® 27 @ 3m @ ... & oo .

Similarly we conclude from Theorem 3.6 that:

THEOREM 6.3. (SNAG theorem). Let G be a lcsc. abelian group. Then formula
(6.6) establishes a one-to-one correspondence between the projection-valued
measures P on G and the unitary representations m of G. We have H(P) = H(m)

and R(Pl’Pz) = R(ﬂl,ﬂz).
7. DIRECT INTEGRALS

In this final section we shortly discuss direct integrals of repre-
sentations. The results naturally fit into this chapter, since they are
connected with the representation theory of commutative C*—algebras, given
in §3. A standard reference for direct integrals is DIXMIER [3, Ch. II, §1,
§21, [4, 58, §18.7]. See also KIRILLOV [7, §4.5, §8.4], ARVESON [2, §4.2],
VARADARAJAN [15, ch. IX, §2].

7.1. Direct integrals of Hilbert spaces

)

Let X be a lcsc. space and let py be a finite* Borel measure on X.

For each a € X let Ha be a Hilbert space. First we consider the situation
that each Hy is a copy of some fixed separable Hilbert space Ho. Remember
(cf. V.1.17), that the Hilbert space L2(X,u;Ho) consists of all functions

£:x » H° which are weakly Borel and which satisfy

(7.1) Tel? .= J Ilf(a)ll2 du () < =,

X HO
Functions f1 and f2 for which fl(a) = f2(a) a.e. [u] (or, equivalently
“fl-fzﬂ = 0) are identified with each other. The inner product is given by

*) Finiteness of u is technically convenient.It means no loss of generality,
since each Borel measure on a lcsc. space is equivalent to some finite
measure.
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(7.2) (£,9) := J (£(@),g(e)) (anla), £,g e Lo (xu:H).
X H
We write
®
2 0 . 0
(7.3) J Hadu(a) = LY(X,u:H) if Ha =H for all o € X,
X

and we call this Hilbert space the direct integral of the Hilbert spaces
Ha with respect to the measure p. (In literature one usually takes for X
a measurable space which is not necessarily topological and locally compact.)
In the special case dinHo = 1 the direct integral (7.3) is just the familiar
L2—space L2(X,u). If dimHo =n (ne {1,2,3,...,2}) then (7.3) can be con-
sidered as the n-fold direct sum of L2(X,u) (cf. v.1.17). This shows that
(7.3) is a separable Hilbert space.

More generally we can define the direct integral of Hilbert spaces Hu
of different dimensions. Let yu be a finite Borel measure on the lcsc.space
X and let m be a so-called multiplicity function, i.e. a Borel measurable
function on X taking values 1,2,3,...,%. For each i € {1,2,3,...,%} fix a

Hilbert space H' of dimension i. Then we write

& [}
(7.4) H = J Hudu(a) := Z Lz(x,ui;Hl)
e ie{1,2,...,2}
if Ha = Hm(a) for o € X, where ui(E) = u(EIWmnl(i)) for E ¢ B,

and we call Hu o the direct integral of the Hilbert spaces Hu with respect
’
to the measure p. The Hilbert space Hu n is again separable. Let
’
X; :==m 1(i), ie {1,2,...,2}. The sets Xi are mutually disjoint Borel sets

. . . _ 2 i
and their union is X. If f = (fl'fz""’fm) € Hu n where fi e L (x,ui,H )

r
for i € {1,2,...,}, then we can represent f by a function

i i, .
f: X > Uie{l,...,w}H such that f(a)=-fi(a) e H" if o € X;, i€ {1,2,...,°}.

Two such functions f, g are identified with each other as elements of Hu o
- r’

if £(a) = g(a) a.e. [p]. The inner product on Hu o is given by
14
14

(7.5) (£,9) = J (f(a),g(a))Hadu(a), f,g € Hu o
X

Direct sums of Hilbert spaces are special cases of direct integrals:

choose the measure p in (7.4) discrete.
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7.2. Decomposable and diagonal operators

It follows from formula (3.1) that the Hilbert space Hu o' defined by
‘/

(7.4), is the representation space for the representation

“0 =T ® 2T ® ... O o1
Hy H, M

©

of the commutative C*—algebra CO(X) and that
(7.6) (my(£)8) (@) := £(a)E(a), £« CO(X), £ e Hu,m’ a € X.

*
In the same way we can define a representation m of the commutative C -
algebra B(X) (consisting of all bounded Borel functions) on H :

7

(7.7) (m(£)E) (o) := £(a)E(a), £ e B(X), & € Hu m' &€ X

A bounded linear operator A on Hu - is called a diagonal operator if
4
A = 7(f) for some f € B(X). The C*-algebra m(B(X)) of all diagonal operators
on H is denoted by Z.
H,m
The formula

(7.8) (Pg8) (@) := xg(a)E(a), E € B, £ ¢ Hu,m’ a € X,

defines a projection-valued measure P on X acting in HU o’ as can be easily
7

verified. Then

(7.9) T(f) = J £fdap, £ e B(X).
X

Indeed, let £ € f . Then
H,m

PE €(E) = J “6(&)"2 du(a), E € B,
’ E a

i.e.,

2
dPE,E(a) = lla(a)llHadu (@) .

Hence
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(m(£)€,8) = J f(a)llg(a)llf{ du(a) = J f(a)dPglg(a).
X @ X
This settles (7.9). We conclude that Tgr T and P, defined by (7.6), (7.7),
(7.8), are related to each other as in Prop. 3.5. Hence ﬂo, 7 and P have

the same commuting algebra Z'.

REMARK 7.1. As a side result observe that for each projection-valued measure
Q on X there is a finite Borel measure p on X and a multiplicity function
m on X such that Q is equivalent to the projection-valued measure P defined
by (7.8), cf. Theorems 3.4 and 3.6.

Next we introduce decomposable operators on H . Consider the space

W;,m
Bm(X,L) of all functions t: X ~ L(HY) such that
(i)  t(a) e L(HY) if m(a) = i;

(ii) t is weakly Borel, i.e., for each i ¢ {1,2,...,*}, v,w € HY, the

Uie{1,2,...,m}

function a » (t(o)v,w) is a Borel function on Xi;
(iii) lell .= supaex "t(oL)HL(Hm(a)) < o, .
If m(a) is equal to a fixed i for all o € X then we write B(X,L(Hl)) instead
of Bm(X,L). It is an easy exercise to show that Bm(X,L)becomesa (general-
ly noncommutative) C*-algebra with respect to pointwise linear operations,
multiplication and involution and with respect to the norm Il -l defined

above. For t € Bm(X}L), £ € Hu,m' let the function T¢ on X be defined by
(7.10) (TE) (o) := t(a)E(a), a € X.
Since, for each v € Hi, ie {1,2,...,}, the function

@ (E@EE ;= (& (@), (t(a)) V)

*
is Borel on Xi (expand £ (a) and (t(a)) v with respect to some orthonormal

basis for #'), the function T{ is weakly Borel on X. Also

Irel? = j here) @17 au@) = J e 121g 17 aute) < 1eb izl

o
X o X

Hence (7.10) defines a bounded linear operator T on Hu o with norm
4

Il < Itl. One verifies easily that the mapping t - T is a representation

*
of the C -algebra Bm(X,L) on Hu . A bounded linear operator T is called a

r
decomposable operator if T satisfies (7.10) for some t € Bm(x,L). Then T is
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called the direct integral of the operators t(a) and we write

(7.11) T = | T(a)du(a).

* M——®

We denote the C -algebra of all decomposable operators on Hu n by R. Note
14
that diagonal operators are special decomposable operators: if t(a) =

f(a)IHa,.a € X, for some f € B(X) then T = w(f).

THEOREM 7.2. Let Hu o be a direct integral of Hilbert spaces Ha given by
’
(7.4) . Let Z be the class of diagonal operators and R the class of decom-
posable operators on Hu o Then:
4

(a) R=12', hence R is a von Neumann algebra.

(b) R* = 2, hence I is a von Neumann algebra.

PROOE.
(a) Clearly R ¢ Z'. Conversely assume that T € Z'. Then also T € R(P). For
i e {1, 2,...,w}, Py, is the projection operator mapping H m onto
12 Xy :HY) ana TPy, = Px,T. Hence T = 5® T,, where T, ¢ L(L Xy H )) and
Ti commutes with all projections PE' E € B(Xi). If we can show that all
Ti's are decomposable then we have also shown that T is decomposable. There-
fore, without loss of generality we can restrict ourselves to a direct
integral H of the form (7.3) with Ha = HO for all a € X. Let T € L(H) com-
mute with all diagonal operators on {{. We have to show that T is decompos-—
able.

For v € HO define v € H by v(a) := v, a € X. Choose an orthonormal

basis {el,e } for HO. Let Hg be the dense linear subspace of HO con-

gres
sisting of all finite linear combinations of these basis vectors.

For each basis vector e choose a weakly Borel function fek: Xx~>H

2 0
which is a representative of the element Te, e L™ (X,u;H ). If

k

~ 0 . 0
v=1Ice € HO then define f_: X - H™ by

£ (o) := Z cf (a), o€ X.

v ¥ k e
For each a e X the mapping v » £ () is linear from H into Ho and for
each v € HO the weakly Borel functlon f is a representative of
Tv € L (X,u;: H ) . Furthermore, for each v ¢ Hg there is a Borel set N_ in X

of u-measure zero such that
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(7.12) va(u)” < Nl

HO 0

H

if a € X\NV' since for each Borel set E in X we have

J Il £ (a)ll2 du(a) = J Iy (a)(TV)(a)II2 du(a) =
v HO E — HO
E X

2 2 2 2 2 2
_H%Wﬂ_ﬂwﬁlshﬂhﬁl_hﬂJﬂﬂwme

E

Choose a countable dense subset co of € such that 0 € co. Then the set
Hg o ofallv ; I ce € Hg with coefficients c, € €, is countable. Hence
N := veHo NV is a Borel set of u-measure zero in X and (7.12) holds for
all v ¢ H 07 @ e X\N. If v € H then there is a sequence {v } in HO o such
that v -+ v in H and fvéa) - f (o) in H for each o € X. Hence (7.12)
holds for all v € H , o € X\N.

Now redefine the functlons f y V € H , by putting f () := 0 if o € N.

Then the mapping v - fv(a) H - H is Stlll linear for all @eX, f isa
representative of Tv for all v € Hg and (7.12) holds for all v € Hg, a € X.
Put

s(a)v := £ (a), o€ X, Ve HO.
v 0

Then, for each a € X, s(a) extends to a bounded linear mapping on HO with
Is(a)l < ITl, The mapping s: X - L(HO) is weakly Borel since the function

a ~+ (s(a)v, w) = (fv('oc),w)H0 is Borel for all v,w € HO, Hence
s € B(X, L(H )) Let S € R be defined in terms of s by (7.10). Then

(8v) (@) = s(a)v = £ _(a) = (Tv)(a) a.e. [u]

for all v € HO.
Let A := S - T. Then A € Z' and Av = 0 for all v € Hg. We have to

show that A = 0. If ey is a basis vector and 9 € B(X) then An(gk)ek =

= 0. Hence Ag = 0 if

n(gk)Aek

g = E ﬂ(gk)ek, 9, € B(X), 9y # 0 for only finite many k.

Note that g(a) = I gk(a)ek, o € X. Hence the set of all such functions

k
g is dense in H. so A = 0.
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(b) since Z ¢ R, we have R' ¢ Z' = R. Hence, if T € R' then T is decompos-
able. If T € R' then PXiT € R' for each i and T will be in Z if PXiT is in
Z for each i. Hence, without loss of generality we may assume that we are
in the situation of (7.3), where Ha = H0 for all o € X. Let T € R' and let
t e B(X,L(HO)) such that (7.10) holds. Choose an orthonormal basis
{el,ez,...} for Ho. For each pair (k,£) define a g€ B(X,L(HO)) by

=5

(ak,ﬂ(a)ep'eq)HO k,pdﬂ,q

and define Ak,l e R in terms of ak,ﬂ by (7.10). Then TAk,ﬂ = Ak,ZT' hence
for each p, q:

(7.13) (t(a)ak,ﬂ(a)ep'eq)HO = (ak,ﬂ(a)t(a)ep'eq)HO a.e. [pl.

Hence, there is a Borel set N of p-measure zero such that (7.13) holds for
all k, £, p, g if a € X\N. We may put t(a) := 0 for o € N without affecting

T. Then (7.13) holds for all a € X. It can be rewritten as

ék,p(t(a)eﬂ'eq)HO = 6£,q(t(a)ep,ek)H0.

It follows that to(a) = (t(a)ek,ek)Ho is independent of k and that
(t(a)ek,ez)Ho =0if k # £.
Let f ¢ H. Then

(T£) (@) = t(a)E(a) = ) (£(a),e) ~(t(ale ,e,) ~ep =
k.2 k40 k'L #O L
= E (f(a),ek)HOtO(a)ek = t,()£(a) .

Hence T € Z. 0

7.3. Direct integrals of representations

Let G be a set on which an involution is defined and let Rep be a class
of representations of G satisfying the conditions of Assumption VII 2.3.
Let Hu,m'be a direct integral of Hilbert spaces Hu as given by (7.4). For
each o € X let L be a representation of G on Ha' belonging to Rep, such
that for each x € G the mapping o - na(x) belongs to Bm(X,L). A representa-

tion m € Rep of G on Hu n is said to be the direct integral of the

4
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representations ﬂa if

(cf.

]
m(x) = J ﬂa(x)du(a)
X
(7.11)) for all x € G. Then we write
]
T = J nadu(u).
X

As an example consider the standard form (6.5) for a multiplicity free

representation of a lcsc. abelian group G. In that case

[}
L@ = J H au (),
&

where Ha = ¢ for each a € G, and

®
ﬂu(x) = J a(x)du(a), X € G.
G

Hence
®
LT [ ady (a) .
G
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1. INTRODUCTION

Let G be a finite group with subgroup H, and let T be a representation
of H on a finite-dimensional vector space /. In chapter VI we considered

the space FT(G,V) of all functions f: G - U satisfying
-1
(1.1) - f£(xh) = 1(h )f(x), x € G, h € H.

On this finite-dimensional vector space we defined a representation TG of G
by

CHm =, xyeq,

the so-called induced representation'of T. In this chapter we plan to do
the same for unitary representations of closed subgroups of locally compact
second countable (lcsc.) groups. Thus, from now on, let G denote a lcsc.
group, H a closed subgroup of G and T a unitary representation of H. Con-
sider again the space FT(G,H) of functions f£f: G > H (where H is the separ-
able representation space of t) satisfying (1.1). Define operators %(y),

y € G, on this space by
(1.2) (T(Y)£) (%) := f(y_lx), X € G.

Since we only consider unitary representations on separable Hilbert spaces,
the space FT(G,H) is not very useful; in particular, it will be too large.
Hence we must solve the following problem: Find a nontrivial T-invariant
linear subspace of FT(G,H) which can be equipped with a positive-definite
sesquilinear form respected by T. In general this will not be possible with-
out a modification of the definition (1.2) of T. A detailed discussion of
the solution of the above problemﬁwill be presented in section 4. However,
in order to provide some motivation for the contents of the preliminary
sections 2 and 3, we will now already give a sketch of the results.

First, suppose that H is compact. Define a linear subspace KT(G,H) of
FT(G,H) by taking all continuous compactly supported functions in FT(G,H).
Clearly KT(G,H) is a T-invariant subspace. Moreover, we can provide it with

an inner product by setting
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(1.3) (f,9) := J (£(x) lg(X){_F-xl f,9 € KT(GIH)I
G

and by virtue of the left invariance of the Haar measure dx, we have
(T, = (£,9), yeG.

Thus, %(x) can be extended to a unitary operator TG(X) on the completion of
KT(G,H) and it can be shown (section 4) that x — TG(X) defines a nonzero
representation of G. However, if H is noncompact, then it is obvious that
KT(G,H) will contain only the zero function. Indeed, (1.1) implies that if
f e FT(G,H) is zero somewhere on a coset, it will be identically zero on
this coset. -

Since the integrand at the right hand side of (1.3) is constant on left
cosets modulo H (by unitarity of 1), it defines a unique continuous function
on the coset space G/H. Therefore we may as well integrate over G/H instead
of G. In doing so we can relax the assumption that the functions f and g be
compactly supported into the weaker condition of being compactly supported
"modulo H". This means that their support has the form KH, where K is a
compact subset of G depending on each function separately. Defined in this
way, KT(G,H) will have nonzero dimension, even if H is noncompact. (This is
a nontrivial fact, which will be dealt with in §4.2.) Furthermore the inte-

gral in

(1.4) (£,9) := J (£(x) ,g(x))du(X) (x := xH), f,g e KT(G,H),
G/H
replacing (1.3), is well-defined for any Borel measure u on G/H. But now
we meet another obstacle: The inner product (1.4) will only be respected
by T if u is left invariant under the action of G on G/H, i.e., if du(yi)
= du(x) for all y in G (y§ i= §§). Unfortunately, such an invariant measure

on G/H will not exist in general, as is shown by the example

a 0 \
G = SL(2,R), H = {( =

c 4

a>0, ce IR}

(Example 3.16). In fact, it will be demonstrated in section 3 that a neces-—
sary and sufficient condition for the existence of an invariant measure is
given by the condition AG - AH, where AG and AH denote the modular func—
tions on G and H, respectively. This condition holds, for instance, if H is

compact.
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An invariant measure on G/H may not always exist, but an invariant
measure class does always exist and is even unique. [A measure class is an
equivalence class of Borel measures under the equivalence relation of
"having the same null-sets". We denote the measure class containing u by
{u}. A measure class {u} on G/H is said to be invariant if for each | ¢ {u}
and y € G, the measure ;y defined by day(i):= dy (yX) belongs to {u} as well.]
The measures in the invariant measure class on G/H are called quasi-in-
variant. It will turn out that we can always find a quasi-invariant measure

U on G/H and a strictly positive continuous function R on G/H X G such that

J £y Ao = f £ R(x,y)du(x),
G/H G/H
for all continuous compactly supported functions £ on G/H. If we have such
u and R and if f,g € KT(G,H) (continuous functions in FT(G,H) with compact

support modulo H) then

T E, T = f (f(x),g(x))HR(i,y)du(i).
G/H

Hence, if we redefine T by

. £y %)
(T (0 1= ——1——,  £ecK(GH),
(R(y "%,9))

then (%(y)f,%(y)g) = (f,9), and it can again be proved that the extension
of T to the completion of KT(G,H) defines a representation of G. This will

be our induced representation.

Convention. All Hilbert spaces considered in this chapter are assumed to
be separable. By lcsc. space (or group) we mean a locally compact Hausdorff

space (or group) which satisfies the second axiom of countability.
2. HOMOGENEOUS SPACES

Let T be a lcsc. space and let G be a lcsc. group. Then T is called a
continucus G-space if (i) T is a G-space (as defined in §VI.5) and (ii)
G acts continuously on TI', that is, the mapping (x,y) ¥ x(y) from G x T
onto I' is continuous. Note that this implies that each mapping y v x(y) is
a homeomorphism from I' onto itself. If the G-action is both continuous and

transitive then I' is called a homogeneous space of G. Two continuous
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G-spaces I' and A are said to be G-homeomorphic if there exists a homeo-
morphism ¢ from I' onto A which respects the G-action, that is, ¢(x(y)) =
= x(¢(y)) for all x in G and all y in T.

Let H be a closed subgroup of G, and consider the left coset space G/H.
We write x := xH (xeG) for its elements. We endow G/H with a topology, the
so-called quotient topology, by calling a subset O ¢ G/H open if its inverse
image under the quotient mapping m: x X is open. Then T is continuous by
definition, and since n_l(n(s)) = SH for any subset S ¢ G, m is also an
open mapping. This implies that G/H, being the continuous, open image of a
locally compact group, is itself locally compact. It is easily verified
that G/H is second countable and Hausdorff. Finally, the natural action of
G on G/H, defined by Xy := Xy, is continuous and transitive. Hence, G/H is

a homogeneous space of G. In fact we have:

THEOREM 2.1. Each homogeneous space of a lcsc. group G is G-homeomeomorphic

with a coset space G/H for some closed subgroup H of G.

PROOF. Let I' be a homogeneous space of G, fix a point YO of T, and set
H:={x¢€eG ] x(YO) = YO}. Then H is a closed subgroup of G, the so-called
stabilizer (or little group) of Yo- Consider the mapping B: x V> x(YO) from
G/H onto T'. Obviously, B is continuous and bijective, and B(yx) = yB(x) for
all x in G/H and all 'y in G. By means of the Baire category theorem (RUDIN
[10, §2.2]) we show that B is open. Since the natural mapping T: G > G/H is
continuous, it suffices to show that B o m: x » x(YO) is open. For this
purpose, we prove that f o T maps any neighbourhood of the identity e € G
onto some neighbourhood of YO' Let V be any neighbour?iod of e,2and choose
another open neighbourhood W of e such that (i) W=W ~, (ii) W < V and
(iii) the closure of W is compact. One readily checks that this is possible.)

Since G is second countable, there exists a countable sequence X, ,X

17727
of elements of G such that G = U:_ xi W. Hence, I is the union of the

countable sequence of compact subs;ts {xiﬁ(yo)}:=1. Since T is locally com-
pact and Hausdorff, we can apply the Baire theorem, which asserts that in
such a space the countable union of nowhere dense subsets has no interior
points, and we conclude that for some xiO the set xioﬁ(yo) has a nonvoid

interior. Let xiow(yo) be an interior point of X5

Oﬁ(yox (We can take w ¢ W
since xioﬁ(Yo) = (xiow(yo))_, by compactness of W and continuity of

x x(YO).) Then we have



INDUCED REPRESENTATIONS 335

-1 -1 -1
Yo €W xio(xiow)(YO) =w W(YO) c V(YO)-

Consequently, YO is an interior point of V(yo) = (Bemw) (V), which ends our

demonstration. (This proof is taken from BOURBAKI [2].) [

EXAMPLE 2.2. Consider the unit sphere Sn'-1 in ﬂ{l. The special orthogonal
-1
group SO(n) acts continuously and transitively on Sn by rotations. The

stabilizer of the pole (1,0,...,0) € Sn&1 consists of all matrices

0....0

R with R € SO(n-1),

O eee O =

R . . . -1,
and it is therefore naturally isomorphic with SO(n-1). Hence, sn is homeo-

morphic with SO(n)/SO(n-1).

We proceed to state two lemmata which will be used in the next

section.

LEMMA 2.3 (Urysohn). Let X be a locally compact Hausdorff space, and let
K and O be subsets of X, with K compact and O open, such that K ¢ O. Then

there exists a continuous function f on X with compact support, such that
(i) 0 < f(x) <1, Vx € X;

(ii) £(x) 1 , Vx € K;
(iii) £(x)

0 ’ Vx € X\O.

For a proof we refer to RUDIN [9, §2.12].

LEMMA 2.4. Let K ¢ G/H be a compact subset. Then there exists a compact
subset K' < G such that K' is mapped onto K by the natural mapping
m: G - G/H.

PROOF. Choose an open neighbourhood U of the identity e € G, such that the

closure of U is compact. Then K c U?_ ﬂ(in) for certain elements xl,...,x

1 n

in G. If we set K' := (UI;=1 xiﬁ) n m1(KX], then K' is compact and
m(K') =K. [

Finally, we state without proof an interesting result, due to Mackey.

By a Borel cross-section we will mean a Borel mapping s: G/H -+ G which
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satisfies m o s = idG

/H

LEMMA 2.5 (Mackey). If G is a lcsc. group and H is a closed subgroup of G,

then there always exists a Borel cross-section s: G/H - G.

In fact a more general result is true. The proof is based on a clas-
sical theorem of Morse and Federer, and can be found in MACKEY [6] or
VARADARAJAN [11, thm. 8.11].

It is important to observe that the projection T generally does not
admit a continuous cross-section. For instance, set G = IR and H = Z . Then
G/H = T, the circle group, and T(x) = ezﬂix. It can easily be shown that no
mapping s: T > IR exists which is continuous and satisfies m o s = idT'

3. QUASI-INVARIANT MEASURES ON COSET SPACES

The main references for this section are REITER [8] and VARADARAJAN
[101].

Throughout this section, all measures will be assumed to be positive
nonzero Borel measures. Let G be a lcsc. group, H a closed subgroup of G,
and consider the homgeneous space G/H. Elements of this space are denoted
by X, where m: x b m(x) = x is the quotient mapping from G onto G/H. For
S © G/H and x e G we write x[8] := {xy|y € s}.

A measure U on G/H is said to be G-invariant (or invariant) if u = ux

for all x in G. Here ux denotes the translated measure, defined by

ux(B) := p(x[B]), for Borel sets B in G/H. Thus, u is invariant if and only
if
(3.1) u(B) = u(x[B]), Vx € G, VB € B(G/H).

(We write B(X) for the collection of all Borel subsets of a Borel space X.)
For instance, if H is an invariant subgroup of G, then the space G/H
becomes a lcsc. group in its own right, with respect to the quotient topol-
ogy, if we define a product by §§ = §§: Since x§ = §§ for all x,y in G,
we see that the left Haar measure on G/H satisfies (3.1). Hence, in this
case an invariant measure always exists, and, moreover, it is unique up to
a constant factor.
Returning to the general case, let v be a left Haar measure on G, and

-1 i A .
set u(B) := v(m (B)), B € B(G/H). Then U is a positive o-additive function
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on B(G/H), and u(@) = 0. Hence, U is a measure in the ordinary sense on the
Borel subsets of G/H, and, since ﬂ_l(x[B]) = xn—l(B) for all x in G and all
B in B(G/H), it satisfies (3.1). However, if C is a compact subset of G/H,
then ﬂ_l(c) is not necessarily compact in G, and v(n_l(c)) can be infinite
(and it will be, in certain cases). Hence, u fails in general to be finite

on compact sets, which is a requirement for Borel measures. Notice that, if
H is compact, v—l(c) is compact for each compact subset C of G/H. Consequent-
ly, v is a G-invariant measure in this case. Apparently, what would seem a
natural way to obtain invariant measures on coset spaces does not work in
general. As we will show later on in this section, there are homogeneous
spaces on which no invariant measure exists at all. Therefore, we will focus
on measures with a weaker invariance property than (3.1). Recall that a
measure U is said to be absolutely continuous with respect to another measure
v on the same space, if each null-set for v is also a null-set for u; nota-
tion: y € v (cf. Vv.1.8). Two measures U and v on the same space are called

equivalent (notation u = v) if Y € v and v < .

DEFINITION 3.1. A measure u on the coset space G/H is called gquasi-invariant
if it is equivalent to each of its translates, i.e. if pu = ux for all x in

G.

The classes of measures corresponding to the equivalence relation =
are called measure classes, and the measure class containing p is denoted
by [ul. A measure class [ul] on G/H is called invariant if u; e [u] for all
u' € [p] and x € G. We can now restate the above definition as follows:

A measure | on G/H is called quasi-invariant if it belongs to an invariant
measure class (notice that y = u' = ux = u;).

We can give still another characterization of quasi-invariant measures
by utilizing the well-known Radon-Nykodym theorem (cf. V.1.9), which gives
a necessary and sufficient condition for two measures to be equivalent. It
turns out (cf. V.2.11) that a measure p on G/H is quasi-invariant if and
only if for each y in G there exists a strictly positive Borel function

x > R(E,y) on G/H such that

—1- - - - -
(3.2) I f(y "x)du(x) = I f(x)R(x,y)du (x)
G/H G/H
for all f in K(G/H) (the space of continuous complex-valued functions on G/H

with compact support).
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In this section we will prove that there always exists a unique in-
variant measure class on G/H. Moreover, we will show that this class always
contains a measure p for which the function R occuring in (3.2) can be taken
to be continuous in both variables (considered as a function on G/H X G).

As a corollary of a certain stage of the existence proof we will obtain a
necessary and sufficient condition for the existence of an invariant measure
on G/H.

We start with the discussion of a very useful relationship between the
spaces K(G) and K(G/H). We fix Haar measures Vg and vy on G and H, respec-
tively. If f belongs to K(G), then consider the expression
IH f(xh)de(h),x € G. The value of this integral remains constant if we let

x run through a left H-coset. Hence, if we set

(3.3) F(x) := J £(xh)dv, (B),
H

then we obtain a function g on the coset space G/H.

LEMMA 3.2. The assignment £ - £ maps K(G) onto K(G/H). Furthermore, £ 2 0

implies £ > 0.

PROOF. Let f € K(G) . Clearly, the support of fis contained in w(supp(f)).
Continuity of f can be verified by simple standard arguments, by exploiting
the fact that f is uniformly continuous. Hence, % e K(G/H) .

Next, let g1 e K(G/H), and set K := supp(gl). Then we can choose a
compact subset K' of G such that m(K') = K (Lemma 2.4). There exists a posi-
tive f?nction g2 e K(G) with gz(x) = 1 for all x € K' (Lemma 2.3). If
X € T " (K), then there exists an element h € H with xh € K'. Hence,

;2(§) > 0 for all X ¢ K. Define a function f on G by £(x) := 0 if x ¢ ﬂ_l(K)
and by

£ 1= g, (Mg, (x)/G,(x) if x € L.

Clearly f is compactly supported. Continuity of £ follows from the fact
that K = supp(gl) and from the continuity of gl, g2 and g2. Furthermore,
g, (x)

E(E) = o=
gz(x)

J g2 (Xh)d\)H(h) = gl (X) ’
H

so f = g. The second assertion of the lemma is obvious. 0
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#
Let y be a measure on G/H and define a measure u on G by
# ~
(3.4) u (£) := u(f), f e K(G).

From the preceding lemma and the obvious linearity of £ f it follows that
u# is indeed a measure on G, uniquely determined by u (cf. the Riesz re-
presentation theorem V.2.8). Hence, we have obtained a mapping u - u# from
the set of measures on G/H into the set of measures on G. (This mapping
may be considered as the dual of the mapping f m %.)

Before we discuss this important mapping in detail, we prove the fol-

lowing useful extension of Lemma 3.2.

LEMMA 3.3. Let u be a Borel measure on G/H and let f be a Borel function on
G.

(i) If f is nonnegative then formula (3.3) defines a Borel function f on
~ #
G/H with values in [0,»], and u(f) = yu (f).
(ii) If £ € Ll(G,u ) (not necessarily nonnegative) then % is well-defined

~ ~ #
a.e. [ul by (3.3), f ¢ Ll(G/H,u) and u(f) = u (f).

PROOF. If £ is a nonnegative Borel function on G, then (x,h) > £(xh) is a
nonnegative Borel function on the product space G X H. From an argument used
in the proof of the Fubini theorem V.1.12 (sometimes separately stated as
the Tonelli theorem) it follows that x V> IH f(xh)de(h) is a Borel function
on G. Moreover, this function is constant on left cosets modulo H, so there
exists a unique Borel function f on G/H as defined in the lemma. (Note that
E can be infinite.)

In order to prove the identity u(%) = u#(f) for such functions £, we
first assume that f is the characteristic function of a compact subset K
of G. Then we can find a sequence of positive functions fn in K(G) descend-
ing to f. By Lebesgue's dominated convergence theorem (cf. V.1.5) and by

Lemma 3.2 we have:

# # ~ ~
I fdy = lim [ fdu = lim J f du = J fdu.
e n v n
G G G/H G/H

#
The function B +— f deu on the Borel sets B contained in K is easily

G/H

verified to define a Borel measure on K. Since this measure coincides with
# #

u  on the compact subsets of K, it must coincide with y on all Borel sub-

# ~
sets of K. Hence, n (XB) = u(xB) for any Borel set B in G which lies in a
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compact subset of G. But then, by linearity of the mapping f +— E, we know
that u#(f) = u(g) for any compactly supported step function £ on G. For any
nonnegative Borel function f on G we can find a sequence f of nonnegative
compactly supported step functions on G such that fn + f. Applying the
monotone convergence theorem (cf. V.1.5), we conclude that p (f) equals
u(e.

Next, for f in LI(G,u#), write £ = f+ - £_, where f+ := sup{f,0}. Then
£, f_ ¢ t1cu’), ana

- #
J (J ft(xh)de(h))du(x)==J fi(x)du (x) < .
G/H H G

Hence

~

£,(x) = I fi(xh)de(h) < oo

+
H
for X on the complement of a certain u-null set in G/H. This proves that
E(Q) = %+(§) - E_(E) is well-defined a.e. [u]. Furthermore, u(|§|) < » and
~ ~ ~ # # #
W(E) = w(£) - u(E) =w (£) -w (F) =w (H. 0O

COROLLARY 3.4. Let u be a Borel measure on G/H and B a Borel set in G/H. Then
e T ; Paaes
u(B) = 0 if and only if u (T 1(B)) = 0.

PROOF. By virtue of the preceding lemma we have the two identities

(x -1 )N(i) = J X _;  (xh)dv.(h), X € G,
m " (B)- T~ (B)
H
and

# -1 ~ - -
u (m (B)) = J (X -1 \ (x)du (x) .
T " (B)’
G/H ‘
Since (Xn—l(B))N vanishes outside E, u(B) = 0 implies u#(ﬂ—l(B)) = 0. Con-

versely, wfal@) = o implies that (x_ )~ is zero a.e. lul. If,

-1(B)
in this case, p(B) would be nonzero, then, in particular, (Xﬁ—l(B))N(;) =0

for some x € B. But then

0= (x » )N(Q) = I v (h) # 0;
T " (B)’ a
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a contradiction. [

COROLLARY 3.5. Let ul and u2 be Borel measures on G/H. Then ul << u2 if and
#

only if ul << ug. Furthermore, if u1 << Moy then
#

du1

— (x) = (%), x € G.

du, aw,

PROOF. The "if" part of the first statement immediately follows from Corol-
lary 3.4. As to the other assertions, let u1 and u2 be measures on G/H with
uy << Hy- By virtue of the Radon-Nikodym theory there exists a positive
Borel function ¢ on G/H such that

H(£) = J £(x) ¢ (x)du, (x)
G/H

for all Borel functions f on G/H. If g € K(G) then one readily verifies that
(g(¢om)) = g¢. But then, by Lemma 3.3, it follows that

]

- # ~ o -
J g(x)¢(X)du2(x) g{x)¢ (x)du, (x) =

G G/H
~ - - #
= J g(x)dul(x) = f g(x)du1(x).
G/H G

# # # #
Hence u1 << u2, and, in particular, the Radon-Nikodym derivative dul/du2
equals ¢ o n. [

#
THEOREM 3.6. The mapping u » U satisfies the following properties:

. i # #
(i) Uy =, iff Wy = Myg
s - , # #
(ii) Uy =Wy iff W E Hyi

#
(iii) u iIs (quasi-) invariant iff y is (quasi-) invariant.

PROOF. The first statement follows from the surjectivity of the mapping
£f & g onto K(G/H), the second one follows immediately from Corollary 3.5,
and the last one follows from (ii) and the obvious observation that
# _ #
)" =), =xe6 0
The following lemma, in combination with the statements of Theorem 3.6,

establishes the unidueness of an invariant measure class in G/H (if it exists).
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LEMMA 3.7. Each quasi-invariant measure on G is equivalent to the Haar

measures, on G.

PROOF. Let u be a quasi-invariant measure on G, and let B € B(G). Then we

|

have

- -1 -
XB-I(x)dvG(x)du(y) = j J xB—l(y x)dvG(x)du(y) =
G G

_1 _
J XB—l(y x)du(y)dvG(x) = J J xx[B](y)du(y)dvG(x) =
G G G

it
—_— A a—

u(x[B])dvG(x).

Elementary considerations show that these steps are all legitimate. Now,
-1 -

if u(B) = 0, then pu(x[B]) = 0, and hence VG(B ) = 0. But B 1 has Haar

measure zero if and only if B has Haar measure zero. Hence, vG(B) = 0.

Clearly this argument can be reversed, so | € [vG]. ]

#
If we can show that the image of the mapping pu—->u contains a quasi-
invariant measure, then the existence of an invariant measure class on G/H
follows at once from theorem 3.6 (iii). For this purpose, we first determine

this image. Let AH and AG denote the Haar moduli of H and G respectively.

LEMMA 3.8. Let Vv be a measure on G. Then there exists a measure u on G/H

#
with v = u iIf and only if

(3.5) J £(xh)dv (x) = AH(h"l) J f(x)dv(x), Vf e K(G), Vh € H.
G G

#
PROOF. Suppose that v is equal to u , for a certain measure u on G/H. Then

v(f) = u(g) for all f in K(G). Fix ho € H and let fho(x) := f(xho), X € G.

Then:

J f(xho)dv(x) = J fho(x)dv(x) = f J fh (xh)de(h)du(Q) =
G G/H H.

-1 - -1
= J J AH(hO )f(Xh)dVH(h)du(x) = AH(h0 ) J f(x)dv(x).
G/H H G
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Next, let v be a measure on G which satisfies (3.5). Then, for % e K(c/H),
we set u(;) := V(f). We first show that this definition is legitimate,
by proving that‘lE1 = ;2 implies v(fl) = v(f2). This property of v follows
primarily from (3.5).

Let f belong to K(G). By virtue of the lemmata 2.3 and 3.2, we can
choose a function g in K(G) such that E(Q) = 1 for all x in 7 (supp(£f)).
Utilizing formula (3.5) and applying the Fubini theorem, we can make the

following computation:

AT OV QYV—/— O mY—/— QY7

h
L

J f(x)dv (x)
G

( J g(xh)de(h)>dv(x)

H

f(x)g(xh)dv(x)de(h)

Q) —

a7t

Tl
|

J f(xh_l)g(x)dv(x)>de(h)
G

g (x) ( AH(h_l)f(Xh_l)de(h)>dv(x)
H
gt | J £ (xh) @y (h))dv(x)
\ H
H
g(x) E(x)av (x) .

But then, if %(;) = 0 for all x in G/H, we have v(f) = 0. By linearity of

the mapping f - E it follows that the number u(%) = V(f) is well-defined.
Clearly, Y is a linear functional. Furthermore, by means of the proof

of lemma 3.2, it can be easily verified that for each g ¢ K(G/H) with g = 0,

a function f € K(G) can be chosen such that £ > 0 and t = g. This shows that

u is positive. Now it follows from the Riesz representation theorem

(cf. v.2.8) that p is a measure. This finishes our proof, since uf =y by

definition. [

If we set v = vG' the Haar measure on G, then the idendity (3.5) reduces

to dvG(x) = (AG(h)/AH(h))dvG(x), Vh ¢ H. Clearly, this will only be true if
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AG restricted to H is equal to AH. It follows from Theorem 3.6 (iii) that
G/H admits an invariant measure if and only if the Haar measure on G lies
in the image of the mapping u + uf. Hence, Lemma 3.8 yields the following

criterion for the existence of an invariant measure on G/H:

COROLLARY 3.9. The coset space G/H admits an invariant measure if and only

if AG(h) = AH(h) for all h € H.

Next we consider the question of the existence of quasi—ihvariant
measures on G/H. By virtue of Lemma 3.8 we can look as well for quasi-
invariant measures on G which satisfy (3.5). This last problem can be solved

in a very nice way by the use of the following crucial lemma:

LEMMA 3.10. There exists a continuous, strictly positive solution of the

functional equation

A (h)

(3.6) p(x) = ——
AH(h)

p (xh), Vx € G, Vh € H.

Before we give the rather technical proof of this lemma, we will

clarify its significance by stating and proving the following theorem.

THEOREM 3.11.

(a) Let p be a continuous, strictly positive function on G satisfying (3.6)

and define a measure v on G by

(3.7) av (x) = p(x)dvG(x).
Then there exists a quasi-invariant measure | on G/H with u# = v, and the
strictly positive continuous function R on G/H x G given by

= p (yx)

.8 R =
(3.8) (x,y) 5 (%)
satisfies
-1 - - - -

(3.9) J fy "x)du(x) = J £(x)R(x,y)du(x), vy € G, £ € K(G/H).

G/H G/H
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(b) Conversely, if u is a quasi-invariant measure on G/H such that (3.9)
holds with some continuous strictly positive function R on G/H x G, then

the measure v given by (3.7) with
(3.10) p(x) := R(e,x), X € G,

satisfies v = Cu#'(c>0) and p is a strictly positive continuous solution of

(3.6).

PROOF.
(a) Let p be a continuous strictly positive solution of (3.6) and let the

measure v on G be defined by (3.7). Then

J flxh)av(x) = A (h 1) J £(x)p (en ™ av ()
G G
-1
= AH(h ) J £(x)dv (x), f ¢ K(G),
G
so there exists a measure u on G/H with u# = v. Furthermore, we have

J fy™ v = | e (ymav, (x
G

G

- p (yx)
ff(x) 5 () av (x), f e K(G).
G

Comparing this to the characterization of quasi-invariant measures we gave
by means of the Radon-Nikodym theorem, we can conclude that v is quasi-invariant
invariant.
Furthermore, note that the Radon-Nikodym derivative dvy(x)/dv(x) is
given by p(yx)/p(x). By virtue of Corollary 3.5 we have
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if u1 and u2 are equivalent measures on G/H. Hence, for u# = Vv we have

so (3.9) holds with R given by (3.8). From (3.8) we infer the fact that R,
considered as a function on G/H X G, is strictly positive and continuous in
both variables. We emphasize that in this case R is uniquely determined by u.
(b) Let u be a quasi-invariant measure on G/H such that (3.9) holds with R

continuous and strictly positive on G/H X G. It follows from (3.9) that for

each £ ¢ K(G/H) and y,z € G we have

J £(X)R(X,yz)du (X) f £z ly a0
G/H G/H

J f(z'1§)R(§,y)du(§)
G/H

£(x)R(2X,y)R(X,2)du (x).
G/H

Hence
(3.11) R(x,yz) = R(zx,y)R(X,2z), X,y,z € G,

so R(e,yx) = R(X,y)R(e,x). If we define a function p on G by (3.10) then p

is continuous and strictly positive on G and R can be recovered from p by
(3.8).

#

Next consider the measure u" on G. We have

_ au du #
R(x,y) = _cﬂz (x) = 73’5#’ (%),

by virtue of (3.9) and Corollary 3.5. By Lemma 3.7, u# is equivalent to the

Haar measures on G. Let ¢ be a version of the Radon-Nikodym derivative
du#/dvG. Then
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du # av ., (yx)
Y (x) = duf(yx) _ ¢(yx) _G _ 9 yx)
auf dut (x) 2 (x) v, (x) b(x) °

Combining (3.8) with the last two equalities we find that for each y in G
o (yx)/p(x) = ¢(yx)/¢(x) for almost all x.
Note that.

F(x,y) == |plyx)/p (x)-0(yx)/¢ (x) |

is a nonnegative Borel function on G. Hence, applying Fubini's theorem, we

obtain:
0= J ( J F(x,y)dvG(x)> dvG(y) = J ( J F(x,y)dvG(y)) dvG(x).
G G G G
Hénce fG F(x,y)dvG(y) = 0 for almost all x € G. Therefore we can choose

x € G such that F(x,y) = 0 for almost all y. We conclude that, for some
c >0, p(z) = cp(z) for almost all z € G. Thus the measure v on G defined by

(3.7) equals cu#. Application of Lemma 3.6 gives for h € H:

dv (xh)

Ag(hav(x) = AH(h)D(x)/dvG(X).

On the other hand

dv (xh) p(xh)dvG(xh) = AG(h)p(xh)dvG(x).

Hence p satisfies (3.6). [J

For future reference we state some properties of continuous R-functions
corresponding with quasi-invariant measures by (3.9). These properties can

be verified either by direct computation or by using the preceding theorem.

L

(3.11) R(X,yz) = R(zX,y)R(X,2),

€ G/H, v,z € G;
(3.12) R(x,e) =1 , X € G/H;
- -1 — -
(3.13) (R(x,y)) = R(yx,y ) , x € G/H, y € G;
_ Ay (h)
(3.14) R(e,h) = .A—(—flT , h ¢ H.
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Suppose that we are given a strictly positive continuous function R on
G/H x G which satisfies (3.11) and (3.14). Then, if we define p by (3.10),
we find

_ _ B A_(h)
p(yh) = R(e,yh) = R(e,y).R(e,h) = p(y) Ty Y <G h e H.
G

In this way we obtain a quasi-invariant measure on G/H, corresponding with

R via (3.9) and with p via du#(x) = p(x)dvG(x).

REMARK. Let Py and 92 be continuous, strictly positive solutions of (3.6),

and let Hy and u, be the corresponding quasi-invariant measures on G/H. Then

au Py

aﬁ; (x) = pz(x) =: F(x).

The function F, thus defined, is continuous and strictly positive on G/H

and it satisfies
(3.15) F(X)R, (x,y) = F(YX)R,(X,y),

where Ri(§,y) = pi(yx)/pi(x), i=1,2.

Proof of Lemma 3.10. Let f be a function in K(G) with £ 2 0, and set

A (h)

G
pf(x) = [ f (xh) Wd\)ﬂ(h), x € G.

H

Then pf defines a positive function on G, which is continuous since f.is

uniformly continuous. Moreover,

A () A (ngh)
5y P£Po) = J FgME Tgny e = Pelxdy B € Hr

H

so p satisfies (3.6). However, pf will fail to be strictly positive in
general. This can be repaired as follows. Let fy denote the function

x > f(xy_l). Furthermore, suppose that we are given a subset X of G such
that
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(i) for each compact subset K ¢ G the equality pg = 0 holds on K for all
but finitely many y in X; Y

(ii) for each x in G, pg # O for some y in X.
: Yy

Then it is clear that

p(x) := (x), x €6,

Z Pe
yex Y
defines a strictly positive continuous function on G satisfying (3.6).

Let S := {xeGlf(x) > 0} and suppose that p € S and S = S_1 (which is,
of course, legal). In the next lemma we will prove the existence of a set

X(S) <G which satisfies the following properties:

(a) For each x in G, xH n Sy # @ for some y in X(S);
(b) for each compact subset K € G weé have KH n Sy = @ for all but finitely

many y in X(S).

It is obvious that this set X(S) satisfies the conditions (i) and (ii)

stated above. This concludes the proof of Lemma 3.10.

LEMMA. Let S be an open symmetric neighbourhood of the identity in G, with
compact closure. Then there exists a subset X(S) of G which satisfies the

above properties (a) and (b).

PROOF. Consider the family of subsets X of G which satisfy the following
symmetric condition: If x,y € X and x #'y then x ¢ SyH. Note that this
family is nonempty. It is partially ordered by inclusion, with each chain
having an upper bound. Hence, we can apply Zorn's lemma and choose a maximal
set, say X(S). We contend that X(S) meets the qualifications stated in the
lemma. First, suppose xH n Sy = @ for a certain x in G and all y in X(S).
Clearly this contradicts the maximality of X(S). As to (b), suppose that
there are a compact subset K of G and countably many distinct elements
Yyr¥prees in X(S) such that KH n Syi # @ for all i. Then there are elements
hl’h2"" in H with yihi € SK for all i. Since the closure of SK is compact,
the sequence {yihi} has a cluster point. Hence, by passing to a convergent
subsequence, we must have ymhm € Synhn for m,n large enough. Hence, for suf-
ficiently large m,n we have Y, € SynH, and therefore Yo = Yo which yields

a contradiction. [

REMARK. If G is a Lie group then, in the above proof of Lemma 3.10, the

function f can be chosen as a nonnegative Cm—function with compact support.
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In that case it follows that, by construction, pf and p are also Cm—functions

on G. Thus the function
(x,¥) » R(X,y) = p(yx)/p(x)

o
is a C -function on G/H x G. It is not known to the authors whether, on a Lie
group G, there always exists a strictly positive analytic solution p of the

functional equation (3.6).

EXAMPLE 3.12. In example 2.2 we showed that the homogeneous space
S0(n)/SO(n-1) is homeomorphic with the unit sphere Sn_1 of dimension n-1.
Since SO(n-1) is a compact subgroup of SO(n) for all n = 1,2,..., there
exists an invariant measure on Sn_l. This is the well-known rotation in-

variant measure.

EXAMPLE 3.13 (cf. V.3.4(e),(f)). Consider the subgroup H of GL(2,IR) consis-
ting of all real matrices (g 11)) with a > 0. The group GL(2,IR) can be iden-
tified in a natural way with a subset of 324. Let A4 be the Lebesgue measure

on :IR4 and set

a (x) = |aet) | 2artx), x e cL(2,R).

VeL(2,R)

Then one readily verifies that v is a left and right invariant measure on
GL(2,R), and therefore this group is unimodular. However, if we let XA de-

note the Lebesgue measure on IR, and if we set

a b —2
de (( >) := a “di(a)di(b),
0 1

then VH defines a left Haar measure on H, which is obviously not right in-

variant. The modular function on H is given by

-1

()= (D))

cf. v.3.11(c). Define a function p on GL(2,R) by

p(x) == |det(x)|_1.
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Then p is a strictly positive continuous solution of equation (2.4). Hence,
the measure v on GL(2,IR) defined by

dv(xi := p(x)dv (x)

GL(2,1R)
is quasi-invariant on GL(2,IR) and it lies in the image of the mapping
p = u#. The quasi-invariant measure py on GL(2,R)/H with pu# = v can now

be expressed in terms of v and p. The corresponding R-function on

GL(2,IR)
GL(2,R)/H x GL(2,R) is given by

= |det(Y)|-1.

R(;(ly) =

Notice that this function is independent of X. This means that the Radon-
Nikodym derivative duy/du is constant for all vy in GL(2,R ). Quasi-invariant
measures with this property are called relatively invariant. One easily
proves the following criterion for the existence of relatively invariant

measures on a coset space G/H:

THEOREM 3.14. There exist relatively invariant measures on G/H if and only
if the function p of Lemma 3.10 can be chosen such that p (x)p(y) = p(xy)
for all x,y in G.

EXAMPLE 3.15. Consider the case where G is the product of two closed sub-
groups K and H, with K n H = {e}, and with the mapping kh -+ (k,h) from G
onto K X H being continuous. Then an explicit expression for a quasi-invari-
ant measure on G/H can be rather easily found as follows. Observe that G and
K x H are homeomorphic. This implies G/H » (KxH)/H ~ K, where the homeo-
morphism from G/H onto K is given by sending x = xH to the projection of

x on K. We denote the projection of G on K and H by m, and Tos respectively,

1
that is,

(3.17) nl(kh) := k, nz(kh) := h, k € XK, h € H.
Define a function p on G by

AH(nz(x))

(3.18) p(x) 1= =t .
AG(W2(X))
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Then p is single-valued, continuous and strictly positive. Moreover, it
satisfies (3.6). Denote by u the corresponding quasi-invariant measure on

G/H. For the R-function we find

-1
AH(nz(yx)(ﬂz(x)) )

-1, °
AG(wz(yx)(ﬂz(X)) )

R(x,y) =

If we identify the homeomorphic spaces G/H and K, this expression reduces

to

B (T, (%))

(3.19) R(k,y) = ————
AG(nz(yk))

In particular, R(k,y) = 1 if y € K. Therefore, p is invariant for the
G-action on G/H restricted to K, so u is, under the above identification,
equal to the left Haar measure on K. (Note that the K-action on G/H reduces
to left multiplication under this identification.)

We are now able to express the Haar measure on G in terms of those on

K and H. Let f ¢ K(G). Then

p#(f) = u(?) =V (§)=

J ( J f(Kh)de(h))de(k).

K H

f f(x)o(x)dvG(x)
G

Hence,

_ -1
J f(x)dvG(x) = J £ (kh) (p (h)) de(h)de(k).
G K

m—

In combination with (3.18) this yields

A_(h)

(3.20) d\)G(X) = KI;(—H)—

de(k)de(h) (x=kh) .

In the case where G is unimodular, (3.20) implies
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(r)

(3.21) dvG(x) = de(klde

(h) (x=kh),

(r)
where vH

&

relates the left and right Haar measures on H, cf. (V.3.23).)

For instance, the situation sketched above is encountered in the case

is a.right Haar measure on H. (Recall that de )(x) = AH(x)dvér%

X)

of semi-simple Lie groups which are non-compact and connected and have finite

center. Indeed, these groups admit a so-called Iwasawa decomposition G = KAN,

where K is compact, A is abelian and closed, and N is nilpotent and closed.

Moreover, it is known that the mapping (k,a,n) - kan from KxAXN onto G is an

analytic diffeomorphism (see HELGASON [3.thm. VI.5.1]). If we set H = AN, we

obtain the situation above.

EXAMPLE 3.16. Consider the case that 6 = SL(2,IR), the group of real 2x2
matrices with determinant 1. Then K = SO(2), the special orthogonal group

in two dimensions, and

- {G )

a

)

c € l{}.

Hence

- {( )

c a

It is rather tedious to compute explicit expressions for ﬂl and m, in this
case, and therefore we use another method. The group SL(2,R) acts on the
one-dimensional real projective space I’l(n{). This space can be obtained
by identifying nonzero vectors in Ilz which are scalar multiples of each
other. By choosing so-called inhomogeneous coordinates, we can identify
P1 (R) with the extended real line R U {=}. Indeed, let [x,y] denote an
equivalence class in 312, and set [x,yl+» t = 3, y # 0, and [x,0] » {=«}.

The corresponding action of SL(2,RR) on R U {«} reads

at+b

a
( ct+d”

b
d)(t) =
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The expression on the right-hand side becomes %-if t = {=}, and {=} if

t = —%». The stabilizer of t = 0 consists of all real matrices
a 0
—1) , a#0,
\C a

and is thus equal to H x % ,. Define a measure y on R U {»} such that
p({=}) := 0 and du(t) := (1+t2) A (t) on R. Then u is SO(2)-invariant and
quasi-invariant for the action of SL(2,IR). We can compute the corresponding

R-function directly:

a b
1 at+b
d“(( )'t) = 2 ) d)‘(ct+d> =
‘e a’ 1+ (at+b) " (ct+d) ’

(ad-cb)dA (t) - dx(t)
(at+b) “+(ct+d)® (at+b) 2+ (ctra)

2 a b
11t S au(t) = R(t,( ))du(t).
C as

(at+b)2+(ct+d)

4. INDUCED REPRESENTATIONS

In section 1 we already defined induced representations in an informal
way. Here we repeat this more formally, proving each step and starting at
once with the most general case. References are, for instance, MACKEY [4],
(51, [6,83.2]1, [7,Ch.1] and BARUT & RACZKA [1,Ch.16].

Let G be a lcsc. group, let H be a closed subgroup of G and let T be a
unitary representation of H on a Hilbert space H. We consider the linear

space FT(G,H) consisting of all functions f : G > H that satisfy

(4.1) £(xh) = T(h )E(x), xe€G, heH.

Choose a nonzero quasi-invariant measure p on G/H such that the corresponding
function RH' defined by (3.2) is continuous and strictly positive on G/H x G.
Such a measure always exists in view of Lemma 3.10 and Theorem 3.11. For

each f ¢ FT(G,H) and y € G the H-valued function T (y)f defined by

(4.2) E@H e = ® Gy N e
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again satisfies (4.1). Furthermore, for f e FT(G,H) and y,z € G we have:

T(yz)f = T(y) (T(2)£),
(4.3)
T(e)f = f

The second equality follows from (3.12) . As to the first equality we have

% 1

f(z_ly— X)

T2 D) x) = (R 27ty

%f(z_ly_lx)

]
[}

(Ru(y'li,z'l)>%(Ru(§,y'1))

(Ru(§,y_1))%(%(z)f)(y_lx) = (F(y) G (2)6) (%),

where we used (3.11). Thus T is a homomorphism from G into the group of

invertible linear transformations of FT(G,H).

4.1. Continuous functions with compact support modulo H : the space K_(G,H)

Let KT(G,H) be the linear space of all continuous functions f : G + H
such that (i)f satisfies (4.1) and (ii) the support of f is contained in a
set KH, where K is some compact subset of G. Then KT(G,H) is a T-invariant
linear subspace of FT(G,H). (Use the continuity of Ru.)

If fl’f2 € KT(G,H) then the complex-valued function x + (fl(x)’fZ(X))H
is constant on left H-cosets of G because of (4.1) and unitarity of T, and
it is continuous on G, with support contained in a set KH for some compact
K € G. It follows that x = (fi(x),fz(x)) is a well-defined function on G/H

which is continuous and has compact support.

For fl’f2 € KT(G,H) define

(4.4) (fl,f2):= j (f1(X)'f2(X))H du (x) .
G/H

In view of the previous paragraph the integral at the right hand side of
(4.4) is well-defined. It follows easily that (.,.) has all the properties

of an inner product on KT(G,H). Moreover, this inner product is T-invariant:
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(4.5) (T(Y £, T(¥)Ep) = (£1,£)), yeG,

where f,,f, € KT(G,H). Indeed:
G, TWE) = | (F (v 0,6 7 ) R Ry Hau) =
TYIITY2_ 1YX12yXHuXIY Hix) =

G/H

= j (fl(X),fz(x))Hdu(x) = (fl,fz).
G/H

Here we used (3.2).

Note that, for H compact, KT(G,H) is included in K(G,H) (the space of
all continuous functions f : G - H with compact support), the measure u is
invariant (i.e., Ru = 1) and (4.4) simplifies to (1.3).

Now we show that the representation T of G on the inner product space

KT(G,H) is weakly continuous.

LEMMA 4.1. If fl'f2 € KT(G,H) then the function y - (f(y)fl,fz) is continu-

ous on G.

PROOF. First we show that all functions f in KT(G,H) are uniformly continuous
on G. Let supp(f) < KH, where K € G is compact. Let € > 0. For each x € K

let VE % be a symmetric neighbourhood of e in G such that "f(y_lx)—f(x)"H< he

’

ifye (VE x) . The sets Ve x§, X € K, form an open cover of the compact
14 ’

subset w(K) of G/H. Hence, there are finitely many points KyreoasX € K such

n n -
that KH c igl Vs,xi xiH. Let Vs := igl Ve,xi' Let 21425 € G, z, 2z, € Ve'
We will show that "f(zl)—f(zz)"H < g. This inequality clearly holds if
-1
Zy12g ¢ KH. Suppose that z, € KH. Then zlhxk € V€,xk for some k 62{1,...,n}

~) e V.V c (v )<,

=1 -1
and some h € H. Hence zzhxk = (zzz1 )(zlhxk Ve, %y -

Now
el el _
"f(zl)—f(z2)"H =lt )f(z)-1t(h )f<z2)"H =
= Hf(zlh)—f(zzh)"H < "f(zlh)—f(xk)"H+"f(zzh)-f(xk)"H <

< Lethe = €.

Thus f is uniformly continuous on G.

Let f,,f, € KT(G,H). Since T is a homomorphism, it is sufficient to

1’
prove continuity of y - (%(y)fl,fz) at e. We have:
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(T(y)fl,fz)-(fl,fz) =

]

\ - 1 -1 -
J ((Ru(x,y ))%fl(y x)—fl(x),fz(x))H du(x) =
G/H

[}

| -1 -
J ((Ru(x,y ))%—1)(f1(y X)'fZ(X))H du(x) +

G/H
o | o w0, E 00, ap @)
1Y 1 Xy Xy XD
G/H
Let Ml' M2, M3 be positive numbers such that "fi(x)"H < Mi on G, i=1,2,
and u(supp(fz)) < M3. Let € > 0. There is a neighbourhood V of e such that

€

2M M M,

if x € supp(fz), y €V
17273

l(Ru(§,y'1))5—1l <

(here we used (3.12) and the continuity of Ru), and

-1
Hfl(y x)—fl(x)"H < 2,

Hence, if y € V then [(f(y)fl,fz)—(fl,fz)[ <e. 0O

So T is a weakly continuous homomorphism from G into the group of uni-
tary transformations of the inner product space KT(G,H). Let K;?ETHT be the
Hilbert space completion of KT(G,H). Then, for each x ¢ G, the operator T (x)
has a unique extension to a unitary operator on this Hilbert space. The
homomorphism property (4.3) and the weak continuity of T are preserved under
this extension. Indeed, it can easily be proved that the following holds:

LEMMA 4.2. Let 00 be a weakly continuous homomorphism from a lcsc. group G

into the group of unitary operators on a pre-Hilbert space VO. Let 0 (x) (x€G)
be the unique extension of GO(X) to a bounded linear operator on the Hilbert

space completion V of V Then 0 is a unitary representation of G on V.

0
The extension of ; to KT(G,H) (again denoted by T) is called the repre-
sentation of G induced by the unitary representation t of H. In fact, T also

depends on the choice of the quasi-invariant measure u. However, we have:
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LEMMA 4.3. Let uw and v be quasi-invariant measures on G/H with corresponding
continuous R-functions Ru and Rv' respectively. Let %u and %v be the repre-
sentations of G induced by T with respect to u and v, respectively. Then

Tu and Tv are equivalent.

PROOF. Let Fu v be the strictly positive continuous function on G/H such
’

that dv(;) = Fu v(§)du(§). Then the linear operator A defined by
14
AF) (x) := (F (X)) #(x), xeG £ek (c,Hy,
H,V T

maps KT(G,H) onto itself and

I ((Af1)(X)'(Af2)(X))H av(x) = J (f1(x)’f2(X))H du (x) .
G/H G/H

Hence A extends to an isometry from H(%u) onto H(%v). It follows from (3.15)
that

%

(A $)0) () = (Fu'v&))';’(Ru&,y‘l)) £y ) =

% %

- -1 1= - - -
= (Rv(x,y ) (Fu,v(y 1X)) fy 1x) = (Tv(y)(Af))(x).

where x,y € G, f € KT(G,H). Hence A is an intertwining operator for T
and T,- ]

We conclude that the equivalence class of the representation T induced
by T is independent of the choice of the quasi-invariant measure on G/H.

A straightforward proof also shows that equivalent.representations of H
induce equivalent representations of G. Hence we may speak about the equi-
valence class of representations of G induced by an equivalence class of

G -
representations of H. We will often write T instead of T.

4.2. ET(G,H) has nonzero dimension

One important question remained unanswered in the previous subsection:
Is the induced representation TG nontrivial in the sense that its represen-
tation space R;TETFT.has nonzero dimension? Fortunately, the answer is posi-
tive. It is based on the following relationship between KT(G,H) and the
linear space K(G,H) consisting of all H-valued continuous functions with

compact support on G:
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LEMMA 4.4. The linear mapping f -+ f defined by
(4.6) £(x) = f 7 (h) £ (xh)dh
H

is a surjection from K(G,H) onto KT(G,H).

PROOF. For each x € G the function h =+ t(h)f(xh) is continuous with compact
support from H to H. Hence the right hand side of (4.6) is well-defined as
a vector-valued integral (cf. V.1.16; in the following we will use some of
the properties of vector-valued integrals mentioned there).

First we prove that f e KT(G,H). We have supp(%) = supp(f) .H. Hence

~

f has compact support modulo H. If x € G, hO € H then

E(xho) = f T(h) £ (xh h)dh = f T(halh)f(xh)dh -
H H
-1 -1~
= t(hy) J T(h)E(xh)dh = T(hy )E(x).
H

Hence E satisfies (4.1). Now we prove continuity of ;. Let V be a compact
neighbourhood of e in G. Then K := V.supp(f) is compact. Let & > O.
since f ¢ K(G,H) is unirormiy continuous, there is a symmetric neighbourhood
U c V of e such that l£f(x) - f(y)“H < g if xy_1 € U. Fix x; € G. Let x € G
such that xxa1 e U. Then
1T - Ex)ly < f Irml I£(xh) - £xgh)l, an =
H

= J I £(xh) - f(xoh)ﬂH dh.
H

- -1
In the last expression the integrand has support in (x 1supp(f) u X5 supp (f))

n H. Observe that xalsupp(f) c xalK and x—lsupp(f) = xal(x
. -1 -1
Hence, since (xh)(xoh) = XX, € U:

x_l)supp(f) c x‘lK.

0 0

I'E(x) - %(xO)HH <e VH((XB;K) n H).

This completes the proof that te KT(G,H).
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We now show surjectivity of the mapping f - f; In the case that dimH = 1
and T is the trivial representation of H this was proved in Lemma 3.2. We
will reduce the general case to this lemma. Let p € KT(G,H). Choose a function
g € K(G/H) such that g(i) =1 if x € supp(p). By Lemma 3.2 there is a function
g, € K(G) such that g(x) = fH gl(xh)dh. Let £(x) := g, (x)p(x). Then f ¢ K(c,H)

and

F(x) = j T(h) (g, (xh)p(xh))dh = J g, (xh)p(x)dh =
H H

= g(x)p(x) = p(x). 0O

PROPOSITION 4.5. For each x € G the set {f(x)lf € KT(G,H)} is dense in H.

PROOF. Fix x € G. Let v ¢ H. In view of the previous lemma it is sufficient
to show that v = 0 if (;(x),v)H = 0 for all f € K(G,H). Let a € K(G) and
£(y) := a(ylv, y € G. Then 0 = (£(x),v)y = [ (T (M) £(xh) ,v), dh = [, a(xh)
(T(h)v,v)H dh. Suppose that v # 0. There is a neighbourhood V of e in G
such that Re(T(h)v,v)H > 0 for h € V n H. Choose a € K(G) such that a is

nonnegative with support in x V and such that oa(x) > 0. Then

0 = j a(xh)Re(T(h)v,v)H dh > O.
H

This is a contradiction. [
COROLLARY 4.6. If dimH # O then dimKT(G,H) # 0.

PROOF. Let f € KT(G,H) with f(e) # 0. (The existence of such f is ensured

by the preceding proposition.) Then

el? = J nf<x)n§ au® > 0. 0O
G/H

4.3. A realization of TG on the space LE(G,H)

Remember that L2(G) is a model for the Hilbert space completion of
K(G), cf. v.3.5. Similarly, we will realize the completion of KT in terms

of certain H-valued L2—functions.
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First consider the linear space BT(G,H) which consists of all H-valued
functions f on G satisfying (4.1) which are weakly Haar measurable, that is,
for each v € H the function x b (f(x),v)H is a Borel function on G (with
respect to the Haar measure). Note that KT(G,H) c BT(G,H) c FT(G,H) and that
BT(G,H) is invariant under T.

If fl'f2 € BT(G,H) then the complex-valued function x = (fl(x),fz(x))H
is constant on left H-cosets of G because of (4.1). Furthermore, if

{el,ez,...} is an orthonormal basis of H then
(£, (), £, (x))yy = Z (£, () ,0)  (E) () )

Hence the function x & (fl(x),f2(x))H, being a countable sum of Borel func-
tions, is a Borel function on G itself. It follows that X (fl(x),f2(x))H

is a well-defined Borel function on G/H. Thus, for f e BT(G,H) the definition

(4.7) el? .= [ (£(x), £(x))y au (x)
G/H
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