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PREFACE 

The colloquium "Topics in Applied Numerical Analysis" was held at the 
Department of Numerical Mathematics of the Centre for Mathematics and 
Computer Science during the academic year 1983/ 1984. The aim of this collo­
quium was to draw attention to the widespread use of numerical mathematics 
in scientific real life problems, as well as to foster co-operation between 
mathematicians working in an academic environment and representatives from 
industries and institutes where the numerical solution of real life problems is 
studied. 

These two volumes contain, in complete form, the papers presented by the 
speakers among the participants. Also it contains a contribution by J.L.O. 
Vranckx who, at the last minute, was unable to attend the colloquium in per­
son. 

The greater part of the papers deal with the numerical solution of a certain 
mathematical problem from practice. It was very interesting for the participat­
ing mathematicians to attend the lectures of the practitioners and to !Je the 
wide range of difficult technical problems which arise in, e.g., the engineering 
sciences. 

The success of the colloquium was due principally to the speakers. To all of 
them I extend my sincere thanks and appreciation. 

October 1984 J.G. Verwer (ed.) 
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IMPROVEMENT OF THE ACCURACY OF NUMERICAL SIMULATORS FOR 
FLOW THROUGH OIL/GAS RESERVOIRS 

F.J. JACOBS 

Contents 

I. Introduction 

2. Flow model (isothermal multicomponent multiphase flow through porous media) 

3. Characteristic features 

3a. Pressure equation 

3b. Transport part 

3c. Conservation 

4. MULTISIM 

4a. Standard discretisation 

4b. Criticism and possibilities for improvement 

5. Flux correction for MULTISIM 

6. Local grid refinement and multigrid for the pressure equation. 

I • INTRODUCTION 

Enhanced oil recovery (EOR) processes [I], nowadays bei.ng developed 

to produce the bypassed fifty per cent of proven reserve which is left 

after natural depletion and/or water injection, have induced KSEPL to 

reconsider the accuracy of their numerical reservoir simulators. 

As in EOR the number of components in the mass balance system is greatly 

increased in comparison with the classical black oil description, which 

obscures the interpretation of numerically diffused composition profiles 

in terms of waves (penetrating water tongues) and shocks (oil/gas banks), and asat 

the same time the occurrence of shocks depends raore critically on the systerr. 

parameters, simulation of enhanced oil recovery requires also enhanced accuracy. 

It is doubtful whether the simple standard discretisation of SHELL's 

simulators (fixed grid during the entire simulat:Lon, one-step in time, 5-

point (2D) in space for the pressure equation and 1 5 1-point (2D) in space 
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(i.e. one-point upstream in each grid direction) for the transport part) 

is able to satisfy the demands by means of brute force even with the help 

of vectorisation. 

For the model of isothermal multicomponent multiphase flow such as it 

forms the basis of the simulatorMULTISIM, the concepts of two alternatives 

for raising the accuracy are presented. The first method is an implementation 

of flux correction, or rather of correcting the flux evaluation point, which 

has led to FCMULTISIM, a variant of incompressible MULTISIM that contains 

an improved discretisation for the transport part, but does not involve 

any further modifications of the standard algorithm. The second method 

implements the idea of adaptive local grid refinement. So far, it has been 

worked out only for the special case of incompres,sible immiscible two-phase 

flow (oil+ water). However, the fundamental problem of constructing an 

efficient multigrid solver for the pressure equation has been overcome. In 

addition, preliminary versions of local time stepping in the transport part 

and of adaptation criteria have been developed. 

2, FLOW MODEL 

Isothermal multicomponent multiphase flow through porous media. 

Concepts 

<P, porosity, fluid volume in unit volume of rock 

m. (i=I ••• I), E. m. = I, mass fraction of component i in unit mass of fluid 
l. l. l. 

S. (j= I .•. J), E. S. =I, saturation, volume fraction of phase j in unit volume of fluid 
J J J 

r .. , E. r .. = I, relative mass fraction of component i in unit mass of phase j 
l.,J l. l.,J 

p., density of phase j 
_J 
p = E. p.S., mean density 

J J J 
µj' viscosity of phase j 

pj' pressure of phase j 

p, reference pressure 

pc.= p. - p, capillary pressure 
J J 

v., volume flow rate of phase j (vector) 
-J 
ka, absolute permeability (tensor) 

kr., relative permeability of phase j 
J 

A, kr./µ., mobility of phase j 
J J J 

AT E. A,, total mobility 
J J 

~• gravity 



Assumptions 

Darcy's law: 

v. = -ka A. (grad p.-p.g), 
-J ~ J J J-

Fluid-rock properties: 

kr. kr.(S) 
J J -

pc. pc.(S). 
J J -

Rock properties: 

~ = Hx,p) 

~ = ~(x,p) 

Fluid properties (phase equilibrium): 

p,m(l:.m.=l) + r .. , S., p., µ. for all i and j. 
- 1 1 1,J J J J 

Mass balance equations 

a/at[~pm. J 
1 

q. 
1 

-div[l:. p.r .. v.] + q., i 
J J 1,J-J 1 

I, •.• , I 

{
qi,k(t), rate constrained well 

qi,k(~,p-pwell(t)), pressure constrained well 

No flow boundary conditions 

(v. ,n) 
-J -

o, j = t, ... ,J. 
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Expressed in the I unknowns p,~(~-one component) the mass balance equations 

define a system of the following form. 

Compressible (general case): 

(I) a/at f.(p,m)=div[L g .. (p,m){grad p+c,rad pc.(p,m)-p.(p,m)g}J 
1 - J 1] - P ] - J - -

+ q. (p,m). 
1 -

Incompressible (rock and fluid properties independent of p, in particular 

constant component density p. and 1/p = i::. m./p.): 1 1 1 1 
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(2) a/ at f. (m) 
l. -

div[L g .. (m.){grad p+grad pc.(m)-p. (m)g}] 
J l.J - J - J - -

+ q.(p,m). 
l. -

Incompressible, immiscible (the phase equilibrium computation reduces to 

r .. = cS •• ,S(=S-one phase) is chosen as unknown, the i-th equation is 
1.,J l.J - -

divided by p.): 
l. 

(3) div[ka \.(S){grad p+grad pc.(S)-p,g}J = l.- 1.- ].-

+ q. (p,S) IP·. 
l. - l. 

3, CHARACTERISTIC FEATURES 

3a. Pressure equation 

To elucidate the role of pin the system, we observe that {'af./'am.} 
l. J 

as a Ix (I-1) matrix admits ai such that Ei ai 'afi/amj = O. Therefore, 

multiplication of the i-th equation with a. and summation results in the 
l. 

pressure equation: 

(4) E.a.3f./3t = [E.a.3f./3p]3p/at 
l. l. l. l. l. l. 

E.a. div[Lg .. {grad p+grad pc. - p.g}] + La.q .• 
l. l. J l.J J J - l. l. l. 

The coefficient E.a.af./'ap = [E.a.m.Ja(~p)/ap will be recognized as a 
l. l. l. l. l. l. 

kind of compressibility modulus, It vanishes in the incompressible case, 

Thenthea. are given by the constants 1/p. and under the assumption of 
l. l. 

perfect mixing (1/p. = E.r .. /p.) the pressure equation for this case 
J l. 1.,J l. 

reduces to 

(5) 0 = div[kaE.\,(S(m.)){grad p+grad pc.-p.g}J + Lq./p .• = l. i-- l. ].- l. l. l. 

The same equation follows in theirnrniscible situation directly from 

summation of (3), 

Eq. (4) expresses that p follows a parabolic 'diffusion' equation (highly 

non-linear via its coefficienbs), which degenerates into an elliptic equation 

(linear in p with the usual assumption that pressure constrained wells are 
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linear in p) when the compressiblity decreases. From this we conclude that 

(i) a discretisation of (I) must proceed implicitly in p, 

(ii) unique existence of a p-solution is always guaranteed, because, even 

in the critical case of incompressibility, the presence of at least one 

pressure constrained well (a production well) at some ~• which satisfies the 

no~l condition aq. k/ap < 0 for all i, will keep the (b.c. + differential) 
1, 

operator for p positive. 

3h. Transport part 

Assuming_that p and grad p have been solved by means of (4) or (5), we may con­

sider the remainder of (I) as a non-linear first order hyperbolic 

transport system in divergence form for§_, except for the presence of a 

generalised diffusion introduced by pc. The nature of the diffusion becomes 

very obvious from the incompressible inmiscible case. If we introduce the 

total velocity _vT = E.v., which follows from the solution of (5), and 
J-J 

express grad pin terms of ~T and!, we transform (3) into 

(6) a/at[~Si] = -div[~TAi/AT] 

-div[kaE.A.A,(p.-p.)~/AT] 
==- J 1 J 1 J 

+div[kaE.A.A.grad(pc1--pc.)/AT] + q./p. 
=J1J J 11 

(of which only I - equations apply in combination with (5)). It appears 

that the diffusion coefficients are only non-zero in the transition zone 

between injection fluid and reservoir fluid, because the relative permeability 

for a specific phase is zero where that phase is not present. 

From the above remarks we conclude that: 

(i) if pc~ O, a discretisation of (1) must proceed implicitly in§_, 

(ii) if pc= O, shock phenomena must be expected, which are best followed 

with an explicit discretisation (if high accuracy is required, the CFL 

condition must be satisfied anyway and implicit methods present only a 

computational burden). 

We will restrict our further attention to the case pc= O. Of course, 

the explicit discretisation must be 'upstream' in some sense and, as we 

are dealing with a non-linear system in multidimensional space, this in 

turn requires some form of flux splitting that decides which component 

combinations stream from which directions. In accordance with Darcy's law, 
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we split the system in its phases propagating along v .• 
-J 

~- If all the ground characteristics of the system would coincide (as 

in ID always, or in horizontal 2D if~ is absent and the ground characteristics 

are all equal to ~T' see (5) and (6)), one could think of following the 

system along the unique ground characteristic with the superior Godunow version 

of the upstream method, which is based on solving local (ID) Riemann 

problems. Indeed, in ID this approach differs from the phase splitting above, if 

gravity effects are important. However, with normally two fields (~T and~) 

present, a general multidimensional extension seems impossible. 

3c. Conservation 

To close the discussion of the flow model, we emphasize the importance 

of the discretisation scheme being conservative (i.e. following the 

component masses f. without losses). Then on a coarse grid at least one 
1 

essential property of (I), namely total component mass conservation, is 

reflected in the discrete approximation. This implies that, for the general 

compressible case, it does not make sense to rewrite (I) in the form of a 

pressure equation and a remaining independent transport part with the object 

of constructing separate discretisations for these two parts. 

4, MULTISIM 

4a. Standard discretisation 

The requirements formulated in section 3 are all satisfied by the 

standard discretisation for pc!::: 0 of SHELL's reservoir simulator MULTISIM, 

of which a 2D description follows. 

It is a one-step method in time, which operates on a fixed block centered 

grid. tix, Cly denote the mesh widths; (x ,y) is the center of block (m,n); m n 
(x8 +l/Z'yn) is the center of the interface between blocks (m,n) and (m+l,n); 

the grid axes are oriented in the principal directions of ka. 

The formulae for the evolution tk + tk+l = tk + lit are: 

(7) 
k+I k 

(f. -f. )/tit = 
1,m,n 1,m,n 

( k+½ k+½ )/ ( k+½ k+½ )/ k+½ F. 1 -F. 1 tix + F. i-F. 1 Cly+ q. 1,rn+2 ,n 1,m- 2 ,n 1,m,n+ 2 1,m,n- 2 1,m,n 



(8) 

(9) 

( 10) 

( 11) 

k+l 
;f. 
i,m,n 

k+l q. 2 
i,m,n 

Fk+! - - ( )k k+l 
• 1 - E. P. r. . ( 1 )v • 1 i,m+2 ,n J J i,J up. m+2,n x,J,m+2,n 

J 

k+l -ka A 
vx,j,m+l,n = xx,m+l,n j,up.(m+½,n) x 

J 

k+l k k+l k 
[{(p +l +pc. +l )-(p +pc. )}/6x m ,n J,m ,n m,n J,m,n 

- (Pj,m+l,n+pj,m,n)g/2J 
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(12) ka 1 xx,m+2,n 2/(1/ka +l +1/ka ),ka =kaxx(x_ n•Pmk n) xx,m ,n xx,m,n xx,m,n -.n, , 

(13) up. (m+½ ,n) 
J 

f(m,n), i• f • ( k+i ) 
sign vx,j ,m+l ,n 

'\. (m+ I , n) , if sign(vk+i +1 ) 
x,J,m 2,n 

>O 

< 0 

k+I -k+I To solve for (p ,m ) we use a Newton process based on linearisation of 
k+I -k+I -f.(p ,m ) and of the pressure constrained wells, if necessary. Evaluation 

i -

of the coeffic1ents a. defined in section 3a at the last iteration 
( k+ I (!) -k+ I (.e)) d. i . f 11 . f 1 . 1 · . . h p ,m an summation o a equations a ter mu tip ication wit 

1 - . 1 · . f k+I (!+I) 1 ( d 0 • • f ai resu ts in a inear equation or p a one a iscretisation o 

the pressure equation (4)). Its solution is substituted in the right hand 

member of (7) for the computation of new values f~+I (!+I), which are 
. d -k+ I (!+I ) / f i · · inverte to~ by means of mi= fi Ei i" In the case of incompressi-

bility when the a. are constant, the iteration reduces to one step. 
i 

4b. Criticism and possibilities for improvement 

i) The weakest point of the method is the computation of up.(m+l/2,n) in 
J 

(13) as either (m,n) or (m+l,n). This one-point upstream feature introduces 

numerical diffusion. An improvement would be given by taking into account 

the actual distance, which is covered by phase j in the x-direction during 

time b.t/2. Evaluation of the flux for the value of §.k at the resulting point 

must follow from int~rpolation. Well-known methods in ID interpolate between 

xm, xm+I and at least a second upstream point xm-l or xm+2• Hence the 

proposal leads to an enlargement of the difference molecule form. 
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ii) The transport method in 2D can be interpreted as an approximate back-

ward tracing of the characteristic per phase from (x tk+I) to a point 
_ k m,n~ 

(x, t ) • For flow in the positive x and y direction, x lies in the triangle 

(x x x ) if 6t satisfies the stability condition. The phase m,n' m-lLn' m,n-1 • 
values at x are determined from interpolation, which implies that there is 

always an interpolation error if the flow does not coincide with one of the 

grid directions. In a different formulation: the magnitude of the numerical 

diffusion 'parallel' to the flow depends on 6t and vanishes for the optimal 

6t, but the magnitude of the 'perpendicular' component depends on the grid 

orientation and vanishes only for flow in the grid directions. The phenomenon 

is known as the grid orientation effect. An obvious remedy is again the 

extension of the difference molecule for ~,now with the diagonal upstream 

points at least. 

iii) If we want to reduce the grid orientation of the iii-molecule with a 

one-step method in time, while maintaining conservation, we are forced to 

hexagonal grids [2] or to combinations of rotated 5-point molecules [3] 

for pat the same time. Extension of the p-molecule means larger matrix 

inversions. 

An alternative way of extending them-molecule (in both respects i and ii) 

is by means of an interpolation between values of m at level tk and pre·· 

1 . . 1 1 1 k+I Th fl 1 ' - ' _k+l/2 iminary va ues at eve t us ux eva uation points m. 112 can 
k -J,m+ ,n 

be determined for the replacement of ~upj(m+l/ 2 ,n) in (JO) and (II). This 

is the idea of flux correction wliich will be discussed in section 5. 

iv) The main obstacle for obtaining high shock resolution is the fixed 

grid. It can be refined around wells and porosity or absolute permeability 

transitions (all with fixed positions), but it cannot be adjusted to the 

propagating fronts. Because of the conservation condition and the coupling 

between! and p, the first task in the introduction of adaptable grids is 

the construction of efficient linear algebra solvers for the pressure 

equation. A multigrid solution for this problem will be discussed in 

section 6. 

5. FLUX CORRECTION FOR MIJLTISIM 

For a linear ID equation 

( 14) as/at -a/ax[vS], v > 0 constant, 
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the distance covered by the advancing profile during 6t/2 is v6t/2, Obviously, 

for (14) x + (l-cr)6x/2 (where cr = vMhx) is the point at which, according 
m 

to the suggestion of section 4b, the value of Sk should replace the one-

point upstream value Sk in the evaluation of the flux Fk+l/ 2 for the 
m m+l/2 

conservative scheme 

(IS) 

As Skis a mean block value, the profile Skin block m is unknown, If we 
m 

suppose that it can be approximated with a linear profile 

( 16) 

k k . . 1 we must estimate its slope 6 by comparison of Sm with at least 1.ts 'C osest 
k k m 

neighbours S 1 and S 1• Van Leer [4] gives the arguments for taking m- m+ 

(I 7) 

with 

( 18) Cl, = 

This defines the corrected one-point upstream evaluation point for Fk+l/ 2 
m+l/2 

as 

(I 9) 

If S denotes the profile at time l~vel tk+I obtained with (15) for one-point 
k+1/2 k+1/2 

upstream evaluation of Fm+l/Z' an equivalent expression for Sm+l/ 2 is 

(20) 
k+l/2 

5 m+l/2 

which is easily computable for non-linear systems 

(21) -a/ax[v!_(~_)J, v{af/as} > o. 

For a system, the computation of a.. with (18) for each component S. 
l. l. 

separately seems questionable and superfluous: a.= 1/2 indicates a wave and 

a.= 0 or I a shock, whereas these different phenomena cannot occur at the 
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same time and place for the normal injection type problem (decay of a 

discontinuity) because of their different propagation speeds. In addition, 
k 

Ii Si= 1 for dependent . h d"f k+l/2 wit i ferent a., L S. = 1 does not follows from 
. i i i k+l/2 

systems with Ii Si= 1, which would disqualify S as an evaluation point. 

Therefore, we replace (18) for systems with 

(22) a = 

Extending the idea to (I), we experimented with (19) and estimates of o 

obtained by extrapolation from former time levels, but we have only succeeded 

in constructing a robust method with (20). Choosing the normal one-point 

upstream method (7)-(13) of MULTISIM for the computation of the preliminary 

profile~. we arrive at the following expressions for the corrected 

upstream evaluation points: 

(23) 
k+l/2 k 

m = m + 
-j,m+l/2(-) -m 

- k - k ½[a(m 1-m )+(1-a)(m -m 1)J 
-m+ -rn -rn -m-

k+l/2 
for contributions to Fm+l/ 2 by phases j with vj > O, 

k+l/2 
~.i ,m-1/2(+) 

f 'b . k+l/2 b h . . h 0 or contri utions to Fm-l/ 2 y p ases J wit vj < • 

Extension of (23) to a multi-dimensional algorithm FCMULTISIM is straight­

forward. For its justification in 2D, we remark that the result is almost 

identical to the simple second order conservative scheme 

(24) sk+ 1 = [ 1-o /', {I+½ (1-o ) o - ½o 6 } 
XX XX yy 

k -o I', {1+ 1 (1-o )o - 1 o /', }JS yy z yy,xx 

(1',x denotes the backward difference operator), which is proposed by van 

Leer in [5J. We assume that the local slope in block (m,n) of the Sk profile 

is taken as 

(25) = a(Sk l -Sk )/1',x + (1-a)(Sk -sk I )/tx, 
m+ ,n m,n m,n m- ,n 

by the analogy of (17). Method (24) adds flux corrections tothe one-point 

upstream method with 2D 9-point difference molecule: 

(26) k+I k S = [1-o /', {I - 1o /', }- o /', {I - 1o /', }JS • 
X X 2 y y y y 2 X X 
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In (26) we recognize a dimensional splitting of the transport: [1-icry!::,.yJ 

represents ID transport in they-direction. If v is not constant, cr I::,. must y y y 
be replaced with ¥,(1::,. v ]. Then, for dependent systems with an additional 

uy y y t:,. k 
algebraic relation E. S.=I, the intermediate evaluation points [I __ t_t:,. v ]S ]. ]. 21::,.y y y -
are not admissible because t:,. v ;. O. The same objection can be raised against 

y y 
the intermediate points in (24). However, if cr I::,. is changed into 

+ + y y 
[(1-a)cr I::,. +acr t:,. E ], where E denotes the shift operator in the positive yy yyx X 

x-direction, the modified intermediate evaluation point for the x-direction 

in (24) can be expressed as 

(27) sk+ll//22 = sk + !{a(S +I -sk )+(I-a)(s -sk I )}. 
m+ ,n m,n m ,n m,n m,n m- ,n 

Again Sis the result which is obtained with the normal one-point upstream 

method with 2D 5-point molecule. For (27) E. S~+l/2=1 holds. Of course, 
. ]. ]. 

in (27) we have recovered the FCMULTISIM algorithm. The inclusion of 

diagonal upstream points in (24) and (26) by means of I::,. t; diminishes the grid xy 
orientation effect. The same may be expected of FCMULTISIM because of the 

resemblance above. As far as tests (including counter-current flow examples) 

have been performed, FCMULTISIM confirms the expectation that it will reduce 

shock diffusion and grid orientation in MULTISIM. The efficiency of the 

improvement is indicated by the observation that FCMULTISIM (tt,t:,.) performs 

at least as well as MULTISIM (t:,.t/2,t:,./2), whereas the computing costs, 

which are determined by the matrix inversions for the pressure equation, 

have been lowered with at least a factor of 2n in nD. 

6. LOCAL GRID REFINEMENT AND MULTIGRID FOR THE PRESSURE EQUATION 

Once a flexible administration has been established for the grids of 

different levels that compose the locally refined grid on which a matrix 

equation for an implicit discretisatio.n. ,roust be solved, it is 

only natural to use the same grids in a multigrid solution method. Successful 

black box multigrid methods derive the matrices on the coarse grids from 

the matrix on the fine grid with the Galerkin PTAP construction. To prevent 

that the addition of finer levels during the refinement process will change 

the coarse matrices, which hence all must be consistent discretisations, 

it is necessary that the multigrid Galerkin prolongation/restriction 

coincides with a finite element Galerkin prolongation/restriction. Experience 

makes numerical reservoir simulation adhere to the inverse weighting of 
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ka (12) for obtaining good discretisations. An experience that is shared by 

Kettler and Meyerink [6] in their construction of multigrid prolongations 

which are based on flow continuity and differ from (bi)linear interpolation. 

What seems to matter is that in the problem 

(28) -div(~ grad p) + c.p = f 

primarily the velocity";!__ -~ grad p is the smooth variable and not p. Being 

committed to finite element Galerkin, we cannot obtain the inverse weighting 

and the flow prolongation from finite element methods for (28) in p. However, 

we succeed with mixed finite element methods in p and";!__, which are based on 

the splitting 

(29) div ";!__ + c.p f 

-I 
~ ";!_ + grad p O. 

Of course, the resulting matrix is no longer symmetric positive definite. 

The lowest order Raviart-Thomas element on a rectangular grid is defined as 

(30) p : piecewise constant 

V : piecewise constant in y-direction, 
X 

piecewise linear and continuous in x-direction 

V : similar to V y X 

For this element Schmidt [7] has designed a FAS multigrid method, for which 

convergence has been proved in the case of constant compressibility c. 
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WITH SPARSE SYSTEM MATRICES: 
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The dynamical behaviour of linked mechanical systems being frequently 

used in crash victim simulation may be given by the set Sq= b or ordinary 

differential equations (ode's). Sis called the system matrix and b the 

power vector. The vector q, which has to be solved, represents the transla­

tion and the rotation of the member elements of the system, thus defining 

the whole movement of the system. 

In the course of time S and b will be changing and so will q. On 

solving the set of ode's, by a numerical process, sets of linear equations 

of the form Sx =bare to be solved many times. The speed of the solving 

process depends for a great deal on how quickly Sx =bis solved. Now Sis 

sparse, i.e. S contains many zero elements. The structure of S, i.e. 

the pattern of zero elements, depends only on the structure of the mechanical 

system and on its description. 

It is obvious that a solution method exploiting this structure will 

be much faster than the traditional ones. In this paper we will discuss such 

a method. 

Moreover a strategy will be given to find the optimal way of describing 

the mechanical system; optimal in the sense of speed of solving Sx = b. 

2 STRUCTURE OF THE MECHANICAL SYSTEM 

The structure of the matrix Sis completely defined by that of the 

mechanical system. Therefore we shall have to describe and analyse that 

system first of all. 

The system consists of n elements coupled together by hingelike joints. 

One joint is exactly linked up with 2 elements. On the contrary one single 

element can be linked up with an arbitrary number 0f joints. The elements 

are stiff, they can only rotate (under more or less resistance) around the 

joints. Loops are not allowed in the structure, but branches are. 
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To define the structure we have to number the elements. Joints do not 

need to be numbered. We shall call the i th element, e(i), and choose the 

origin in one of the joints. 

10 

4 

5 Fig. I 

In fig. I we see a linked structure with the numbers of the elements; the 

origin is marked O. 

We imagine tracks starting at the origin and running to the ends of 

all branches of the system. All elements must be part of at least one 

track. Some elements can be part of more than one track however. Tracks 

are defined by their elements. The elements must be numbered starting at 

the origin. So e(I) has to be linked up with the origin. 

Besides tracks we distinguish branches. They need not start at the 

origin but may sprout from other branches. Every element has to be part 

of just one branch. 

In the example of fig. I we see the branches: 1-2-3, 4-5, 6-7-8-9, 

10-11-12, 13-14-15 and the tracks: 1-2-3, 1-4-5, 6-7-10-11-12, 

6-7-8-9, 6-7-13-14-15. 

There is an elegant way to define the structure through its 

branches using pointers. This method matches the structure of the matrix 

nicely. Every element points to its adjacent element closer to the 

origin. So we can use the same pointer for an element which is 

situated on different tracks. This is possible because, if we walk towards 

the origin, the tracks coincide; they converge towards the origin. 

We define the whole structure by means of one single integer array 

called R of n variables. The rank number within the array gives the 
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number of the element, while the value gives the number of the adjacent 

element closer to the origin. Elements joining the origin point to 0. Save 

some jumps, the pointer of an element points to its predecessor. The jumps 

are caused by the junction of branches. 

In our example R is: 

Rank number 2 3 4 5 6 7 8 9 10 II 12 13 14 15 = element 

value 0 2 I 4 0 6 7 8 7 10 II 7 13 14 points to 

We .can easily extract the tracks (in reverse) from R: 

15-14-13-7-6-0, 12-11-10-7-6-0, 9-8-7-6-0, 5-4-1-0, 3-2-1-0. 

We can verify this in fig. ·J. 

3 CONSTRUCTION OF THE SYSTEM MATRIX 

We consider the movement of a mechanical system of n elements, a 

movement in 3 dimensions. The system matrix S follows from Lagranges 

equations and is a (n+ I) *(n+ I) matrix of elements, being 3x3 submatrices. We may 

consider Sas a matrix of submatrices and as a matrix of numbers. In the latter 

case Sis a (3n+3)*(3n+3) matrix. To avoid confusion we will denote the 

matrix in the former case by S3. 

Being m = 3n + 3, Sis a m*m matrix, synnnetric and positive definite. 

The greater part of the submatrices is empty, i.e. all their elements are 

zero. Nonempty means: not previously known, whether all elements are zero 

or not. The submatrix S3 .. is nonempty if element e(j) co-rotates with e(i) 
1J 

when e(i) is rotated in respect of the origin, or in reverse e(i) co-rotates 

with e(j). This means that e(i) and e(j) are situated on the same track. 

In the other case submatrix S3 .. is empty. 
1J 

In addition to rotation there will be tcanslation. If the mere 

translation of the origin causes a co-translition of e(j) then s10j is 

nonempty. Because save in case of fracture all elements are connected with 

the origin, so the whole oth row is nonempty. If no confusion is possible 

we will (non) empty submatrices also call (non) zercs. 

Our example of fig. I gives the following structure of S3, where x's 

denote nonempty submatrices. Because of symmetry only the upper triangle 

is given. 



272 

0 2 3 4 5 6 7 8 9 10 II 12 13 14 15 
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4 STRUCTURE OF THE MATRIX 
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As stated before the structure of S3 and so of Sis defined as: 

- S3 .. = 0 if there exists no track on which e(i) and e(j) are situated 
l.J 

together. 

- S3 .. -f O if there exists at least one track on which e(i) and e(j) are 
l.J 

situated both. 

- If e(i) and e(j) are on the same track with e(i) closer than e(j) to 

the origin than i < j. 

From this we will deduct 2 useful rules. 

I. We choose a (nonzero) element S3 .. on the main diagonal, representing 
l.l. 

element e(i) of the mechanical structure. 

If we pass along its row rightward we will come across nonzeros say 

S3 ... These represent the mechanical elements e(j), situated on the 
l.J 

same tracks as e(i) but farther from the origin. 
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For progrannning purposes we choose the numbering of the elements in 

such a way that passing along a row up to a certain point, we only meet 

nonzeros and beyond that point only zeros. For all rows these points are 

stored in an array called K, so that element K(i) contains that point for 

row i. 

This means that for every mechanical element e(i) must hold: 

All elements situated on tracks together with e(i) but farther from the 

origin must have numbers greater than i and must form together with i a 

set of successive natural numbers. 

We can achieve this numbering by the following strategy: 

Start at the origin. 

a If there is no branch joined to the origin of which the elements 

are still unnumbered, the process has finished. 

Otherwise: 

b Walk along an unnumbered branch and number its elements. Coming 

across a junction always take the rightmost branch (seen from the 

origin). 

Reaching the end of a branch, backtrack up to the first junction 

with a branch to the left or the origin. Having reached the 

origin repeat the process at a otherwise at b. 

2. We choose as before an element S3ii of the main diagonal, representing 

e(i). If we walk along the i th column towards the top we again meet 

nonzeros. These represent mechanical elements which we come across 

walking down the track towards the origin, starting at e(i). We can 

find the place of these nonzeros by means of the pointer array.R. We 

start at R(i) and just follow the pointers. 

In this way we can fill the array K. Therefore we need the numbers 

of the elements at the ends of the tracks. Let 1 be such a number. If we 

start following pointers at R(l) we find a series of numbers. We fill 

the places of K defined by these numbers with the number 1. We do so for 

all tracks in increasing order, starting with the one with the lowest 

end number. 

5 CHOLESKI DECOMPOSITION 

Mainly by intuition the method of Choleski has been chosen to solve 
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the set of linear equations. This method is rather fast and matches 

the structure of S very well as we will see. 

Using this method we have to decompose Sin an upper and a lower 

triangular matrix which must be their transpose mutually. U is the upper 

triangular matrix and UT its transpose. Because Sis a symmetric and 

positive definite the decomposition can be done. 

It's even possible to do this in 2 ways: S = UT U and S = U UT. 

As we will see later on the latter matches the matrix structure better, 

so we choose that one though it's not the better known one. In stead of 

solving the set of equations S x = b, we will solve U UT x-= b. If we call 

UT x = y, we can solve Uy= b first and then UT x = y. Solving these 

sets is simply repeated substitution. 

To determine the elements of U (and UT) we use the definition of matrix 

multiplication, considering that u:. = U ..• 
l.J J l. T 

S, U and UT being matrices of order m, S = U U means: 

m m m 
I T I u .. Ujk u .• u .• + I u .. Ujk s .. uik ukj l.J k=j k=j l.J l.J JJ k=j+I l.J 

For u 0 for 
jk 

k < j and i < j because D is an upper triangular matrix. 

m 
u~. 2 m 2 

(S. I) for i j this gives s .. + I Uik or u .. ✓cs .. - I u.k) l.l. l.l. k=j+I l.l. 1.1. k=j+I 1 

m 
(S. 2) and for i I j: U .. 

l.J 
cs .. - I u.ku.k)/u .. 

l.J k=j+I 1 J JJ 

m m 2 
Considering that rk=j+I Uikujk O and rk=j+I Uik = 0 when i ~ m, 

we can find a computing sequence for the elements U .. , only using 
l.J th 

elements of U already computed. We have to start with them column. First 

of all we compute its diagonal element U and then its other 
mm 

elements. In this way we may compute all columns down to the first. 

We may consider U as. a transformation of S. 

6 TRANSFORMATION PROPOSITION_S 

First of all we notice that for the computation of U .. , besides S .. 

only need elements of the .th and the 
.th ~th l.J 

we l. J row. Of the 1. row we use 

the elements to the right of u ..• Of the .th those to the J row we use 
l.J 
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right of U .. and U .. itself. 
JJ JJ 

Most of the rows are just filled to a certain point beyond which they are 

empty. 

This yields the following worksaving propositions: 
I f O 1 1 . th . . I S .. = and al e ements of the i row of U, to the right of U .. 

1J 1J 
are zero then U .. = 0. 

1J 
This immediately follows fro□ the eriuations 5,.2" 

2. If S .. = 0 and all elements of its row 
1J 

to its right are zero then U.. 0. 
1J 

The proof can be given by induction. 

For all elements of the mth column the proposition is clear, because 

there are no elements to the right of it. 

Under the 

to prove: 

This 

induction supposition: Uik = 0 V k 

u .. = 0. 
1J 

follows from proposition I 

2: j+I and S .. 
1J 

3. If Sij = 0 and k > j > i then either Sik = 0 or Sjk 0. 

0, we have 

In terms of the mechanical system this means: If e(i) and e(j) 

are not on the same track and e(k) is farther from the origin then e(i) 

and e(j) then: Either e(i) and e(k) are not on the same track or 

e(j) and e(k) are not. 

This follows from the divergence of the tracks towards their ends. 

4. If S .. = 0 then 
1J 

Again the 

For elements of 

u .. = o. 
1J 

proof must be given by induction. 

the mth column the proposition is clear. Under the 

induction supposition: Uik = 0 if Sik =0 Vk> j+I and Sij = 0, we have 

to prove U .. = 0. 
1J 

This follows from proposition 3 and the equations 5. 2, When 

transforming the structure of the matrix will not be changed. Because 

those elements which are zero stay zero and those of which we cannot 

proof they are zero we have to treat as nonzeros. 

5. If sij f 0 and sjk f 0 for i < j < k then sik f 0. 

Because ifs .. f 0 then U .. f 0 the proposition means that for 
1J 1J 

the computation of the productsum of UikUjk we only need those values 

of k for which Ujk f 0. 

In terms of the mechanical system the proposition is: 

Given: e(i) and e(j) are on the same track and e(j) and e(k) are 

on the same track, e(i) closer to the origin than e(j) and e(j) closer 

to the origin than e(k). Then e(i) and e(k) are situated on the same 

track. 
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This follows from the convergence of tracks towards the origin. 

We notice that proposition 4 need not the being nonzero of a row up 

to a certain point and zero beyond that point. The only demand is that of 

2 elements on the same track, the one who is closer to the origin has· 

the lower number. 

i j R RK K KR 
1 0 0 15 48 
2 1 48 
3 2 48 
4 0 3 5 18 
5 4- 1 8 
6 5 18 
7 2 6 3 12 
8 7 1 2 
9 8 1 2 

1 0 3 2 9 3 12 
11 10 1 2 
1 2 11 1 2 
1 3 4 6 5 1 8 
14 13 18 
1 5 14 18 
1 6 5 4 1 5 5 18 
1 7 16 18 
18 1 7 18 
19 6 0 3 1 5 48 
20 19 48 
21 20 48 
22 7 6 21 1 5 48 

7. USE OF THE STRUCTURE OF THE SYSTEM MATRIX 23 22 48 
24 23 48 
25 8 7 24 9 30 
26 25 30 
27 26 30 
28 9 8 27 9 30 
29 28 30 

·aaaaalaaaal•xxxxxxxx••·············••xxxxxgxxxx 30 29 30 
xxxxxxxxxxxaxxxxxxxxaxxxxxxxxxx a•xa 31 1 0 7 24 12 39 xag~ ~;~; ~~~x~~xxxxx xxxxxxxx xxxxxxxxxxx xx3 32 31 39 

X X ~X 6 33 32 39 
xa~H 34 11 10 33 1 2 39 

35 34 39 
X 36 35 39 
•a~Hs 

1 3 
37 12 t1 36 12 39 

XX 19 
38 37 39 

X 39 38 39 

xag~~~g~~~~~~~~~~~~~~~~~~~~j~~ 40 13 7 24 15 48 
XXXXaXXXX~XXXXXaxaxgxxx XX 41 40 48 

xa~~j~~X XXXXX X X XXXX~z 42 41 48 
43 14 1 3 42 1 5 48 
44 43 48 xa 45 44 48 

xaaaaaaaa 31 46 1 5 14 45 1 5 48 

·a~~IH 
47 46 48 
48 47 48 

X 40 fig. '1 
xxxxxxxaa 

xa~~a~aa 
axxx 

Fig. 3 xa~g 
48 
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Besides the array R with pointers to the submatrices of S3 we need a 

similar array with pointers to the numbers of S, we will call that array 

RK. T~e also need an array similar to K with the numbers of the rightmost 

nonzero's of the rows of S. We can derive RK from Rand KR from K considering 

that: 

If RK[i] corresponds with R[j] and KR[i] with K[j], then i = 3j + I, 

RK[i] 3*(R[j]+l) and KR[i] = 3*(K[j]+l). The remainder of the values of 

RK is part of a continuous series from O to m-1. For every element joints 

to its predecessor, except the jumps. And with these jumps is dealt in R. 

The unknown values of KR are the same as their known predecessors. 

In fig. 3 the system matrix is shown and in fig. 4 the list of i,j,R, 

KR,K and KR of the example of fig. I. 

A procedure in the programming language Pascal, using the structure of S 

given by the arrays RK and KR could be: 

procedure choleski (S:ad2;var U:ad2;RK,KR:adl; var alarm: boolean); 

var i,j,k,upper,lower: integer; 

sigma: real; 

{We assume that ad! 

ad2 

array[! .. m] of real; 

array[l .. m,l •. m] of real;} 

begin 

alarm:= false; 

for j:= m downto I do {finishing columns} 

begin 

i:= j; {start of pointer following} 

lower:= j+l; upper:= KR[i]; 

repeat {finishing elements of column j} 

sigma:= S[i,j]; 

fork:= lower to upper do sigma:= sigma+ U[i,k]*U[j,k]; 

if if j then U[i,j]:= sigma/U[j,j] {diagonal element} 

if sigma> 0 then U[j,i]:= sqrt(sigma) else alarm:= true; 

i:= RK[i]; {number of the next nonzero} 

until i = O; 

end; 

end; 

After the decomposition we have to solve 2 sets of linear equations: 

Uy b and UTx = y. 

To solve Uy = b we use the formula y. = (b.-Z:mk . I U.kyk)/U ..• 
1 1 =1+ 1 11 

We can use the information of KR to avoid multiplication by zero in 

the following piece of program: 
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for i := m downto I do 

begin 

sigma:= b[i]; 

for j:= i+I to KR[i] do sigma:= sigma - U[i,j]*y[i]; 

{if i+I > Kr[i] the do loop is neglected} 

y[i]:= sigma/U[i,i]; 

end; 

To solve UTx = y we use the formula: x. 
1 

T 
Uik = Uki the formula becomes: 

i-1 
x. = (y. - l uk.¾)/u ..• 

1 1 k=l 1 11 

Here we can use the information of RK in: 

x[I]:= y[l]/u[l,I]; 

for i:= 2 tom do 

begin 

sigma:= y[i]; 

k:= i; 

repeat 

k:= RK[k]; 

sigma:= sigma - U[k,i]*x[k]; 

until RK[k] = O; 
x[i]:= sigma/U[i,i]; 

end; 

8 MINIMUM NUMBER OF NONZEROS 

The choice of the origin determines the number of nonzero elements 

of the matrix S3. It would be very advantageous, if we could find a 

strategy to choose the origin in such a way that the number of nonzeros 

would be minimal. 

For this purpose we consider a pivot element e(p), which is connected 

to the w joints S(i), i = l •• w. 

First of all we try to find out which of the joints gives the fewest 

nonzeros in case of being the origin. We call that joint the most favourable 
th one. In counting the nonzeros we leave the O column and row out of account, 

for these are full of nonzeros. 

In case of removal of e(p),the mechanical structure falls apart in a 

set of w pieces: {D(i)li=l •• w}. 



Before the removal D(i) was attached to e(p) by the joint S(i). 

Let D(i) contain E(i) elements and give with S(i) as origin N(i) 

nonzeros. We say that E(i) elements are hanging on S(i). 

Let us consider the piece D(i) and choose the joint S(i) as origin, 

we have N(i) nonzeros. If we put e(p) back we have N(i) + I nonzeros. 

If after that we fasten the piece D(j) then the number of nonzeros 

increases with N(j) + E(j) up to N(i) +I+ N(j) + E(j). We have to add 

this E(j) because it's the number of nonzeros in the pth row to the 

right of S3 . If we put back al the other pieces, the number of nonzeros 
pp 

will become the total number of nonzeros in case S(i) is the origin. That 

number we call NN(i). 

i-1 w 
NN(i) N(i) + I + I {E(j) + N(j)} + I E(j) + E(j)} or 

j=I j=i+I 

w w 
NN(i) c I N(j) + 1 + I E(j)) - E(i) so 

j=l j=I 

w w 
NN(i) + E(i) { I N(j) + I E(j)} + I constant. 

j=I j=I 

So NN(i) is minimal in case E(i) is maximal. 
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This means: The joint S(w) on which most elements are hanging is the 

most favourable joint of element e(p). All other joints of e(p) are less 

favourable. This holds even more for joints linked with the other joints 

of e(p) via other elements. This is because the number of elements which 

hangs on those joints is even less. 

However, it is possible that one of the joints which is linked with 

S(w) by means of another element than e(p), say e(q), is more favourable 

than S(w). Whether this occurs, we can find out by counting the elements 

hanging on the joints of e(q). If we find again S(w) the most favourable 

one, then we have found the most favourable joint of the whole structure. 

Otherwise we have to take e(q) for pivot element and continue the process. 

Of course it is possible that we find joints which are equally favourable. 

In that case we can choose arbitrarily. 





NUMERICAL MATHEMATICS IN PRACTICAL DATA FITTING 

C.G. van der LAAN 

A few examples of problems arising from practical situations, where 

splines are used, are discussed. The problem situations are: 

- separation of exponentials 

- determination of growth curves 
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- computer aided repositioning and quantification of facial swelling volume. 

In all these cases the algorithmic and numerical aspects are a vital but 

small part; the totality of: numerical mathematics, statistics, graphics, 

software engineering in a variety of environments, with emphasis on the 

proliferating software-tai7,ered general purpose, personal computers and 

microsystems, is getting more and more important. The latter aspect is 

examplified by the NAG library because of the graphical supplement, the 

statistics chapters andthe PC-subcollection. 

I • SEPARATION OF EXPONENTIALS 

A well-known problem is the determination of n and the coefficients 

(~,ak) from the model 

n akx 
L ake 

k=I 

for given measurements (~,fk)r=I' p >> n. Thomasson & Clark (1974) 

surveyed four classes of techniques: graphical, algebraic iterative and 

transform, and proposed a combination of a graphical method, a transform 

method and an iterative method. As Lanczos (1957) has pointed out separation 

of exponentials is an ill-posed problem, therefore we propose a modification 

of the model into the direct sum of two exponentials with in between a 

linear combination of cubic B-splines, i.e. the function M(x) defined by 
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exponential: f(x) bO + aoe 
aox 

' 
X < XI 

l 
B-spline: S(x) I c.B. /x;t), XI 

:, X :, X (with knots t) 
j=l J J' m 

U X 
exponential: g(x) = b00 + -a00e 00 ' X < X 

m 

B. 4 (x;t) denotes a cubic B(asic) spline with knot sequence t. The general 
J' 

idea is that the extreme data represent the exponential behaviour of the 

data on either end rather well, while in between no clear distinction between 

exponentials can be made; so don't. Besides, the user was not interested 

in the coefficients (no identification only representation) but in: the 

area under the curve, the horizontal asymptote and the intersection of 

the extrapolated curve and the Y-axis. In order to get a smooth approximation 

continuity conditions up to the second derivative were added at the 

breakpoints x 1 and xm, i.e.: 

S (k) (xl)' 

s(k)(x) 
m ' 

k o, 1,2 

k = 0,1,2. 

From these conditions and the model assumption we have for the coefficients 

of the exponentials. 

II 

a0 S (x 1)/S'(x 1) 

-aOxl 
a0 s'(x1)e /a0 

aOxl 
b0 = S(x1) - a0e 

and analogously 

a s"(x )/s'(x) 00 m m 
-a X 

a s'(x )e 00 m/a 00 m oo 

b 00 S(x) -
m 

a X 00 m 
a e 00 

The solution of the users problem is then given by 

- determination of an approximating spline in the least square sense (via 

NAG or de Boor routines (1978)); 

- calculation of the exponential coefficients; 



determination of required quantities. (Integral, asymptote and inter­

section of extrapolated data with Y-axis.) 

Discussion. A refinement of the above approach could be to optimize also 
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the locations x 1 and xm, i.e. to optimize for the extend to which the end 

data behave like an exponential. This can be stated as the nested minimi­

zation problem: minimize x 1 and xm over the constrained least squares problem 

min IIM(x) - yll 2 
a 0 ,a0 ,b0 ,{c.},a ,a ,b 

J 000000 

with the following nonlinear constraints 

ao s"(x 1)/S'(x1) a s"(x )/s' (x ) 
00 m m 

-aOxl -a X 
0 m 

ao S'(x 1)e /a0 a s'(xm)e /a00 00 

aOxl a X 

bo = S(x1) - a0e b s(xm) 
oo m 

- a e 
00 00 

The practice in the above is that users often come up with an ill-posed 

problem; the numerical analist is urged to consider a different problem 

formulation: no separation of exponentials but approximation and extrapola­

tion. 

2. DETERMINATION OF GROWTH CURVES 

In Gerver et al. the problem of determination of age-dependent reference 

values is treated. The classical approach is grouping into age classes, 

calculating mean and standard deviation for each group, plotting the values 

and smoothing by eye. This process is laboursome and in fact not reproducible. 

Our approach was to abandon the grouping into age classes and to create 

a smooth mean-line via a cubic spline model function in the least squares 

sense as follows. 

Given the data (xi,yi)' i=l, ••• ,n, the problem is to construct a smooth 

function f such that 

n 2 
Q(f) = I [yi - f(x.)J 

i=I 1. 

is small. Various linear spaces F of cubic splines are considered, each 

space being characterized by two numbers k and m and a sequence of k 
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* so-called variable knots. Computation of fF such that 

is a matter of elementary least squares. In this respect it is useful if F 

is spanned by the so-called B (asic)-splines (De Boor (1978)). Given the 

numbers k, m and the k variable knots, the dimension d of Fis given 

by d = (k+l)(m+l) + 3 and the knot-sequence by t 1, ... ,td-t 4 ' wheretm+S' 

t 2m+6 , ... , tkm+k+4 correspond with the so-called "variable" knots and the 

others are called "intermediate". Any f E F can now be represented by 

f(x) 

* where the Bj, 4 •s are the B-splines. The optimal element fF is determined 
* * . by the corresponding optimal weights c 1, .•• ,cd which can be obtained as 

the solution of the overdetermined set of equations. 

Given the number k of variable knots and the number m of intermediate 

knots (in each of the k+I intervals defined by the variable knots) and 

starting from an initial guess of the k variable knots, the optimal space 

* * Fk is determined by maximizing Q(fF ) over all space Fk satisfying: 
,m k,m ,m 

(I) t 1 = t 2 = t 3 = t 4 = age of youngest child measured 

(2) td+I = td+ 2 = td+} = td+4 = age of oldest child 

(3) the intermediate knots between two consecutive variable knots are 

chosen at equal distances. 

More precisely, the NAG library is used to calculate the "variable" knots 

t t t in such a way that the corresponding Q(fF*) is ~+?' 2m+6•···; km+k+y 
minimal. Here fF belongs to the knot-sequence t 1, .•• ,td+4 where the 

mentioned restrictions are satisfied and in particular them intermediate 

knots in the intervals (t4 ,t 5), (t 5 ,t2 6), ••• ,(td ,td 1) are for each m+ m+ m+ 4Il + 
interval at equidistant positions: 

The numbers k and m were modified such that the graphical representation was 

as nice as possible. This technique with two variables k and m is a 

convenient generalization of the cases: m=O, of variable knots only; and 

k=O, of fixed equidistant knots only. 

The statistical part of the problem is the determination of the standard 

deviation, a. It would have been natural from a statistical point of view 
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to draw a smooth line, e.g. by applying a spline approximation similar to 

the one used for the determination of the mean, through the following points: 

-1 ½ (x. ,[r S (x.)] ) , 
i r i 

i = !r + 1, ••• ,n - !r, 

with 

r/2 ~ 2 
S (x.) = L (y .. -y(x.+.)) , i 

r 1. j=-r/2 1.+J 1. J 
½r + I, ... ,n - h, 

where y denotes the mean. From these quantities the confidence intervals for 

the cr are given by 

for selected arguments x. 

A nice smooth curve ;(x), through the intervals belonging to xi with i i 1, 

••• ,ik, was obtained by applying the algorithm of Reinsch as available in 

IMSL. The application of this algorithm requires that again some subjective 

choices have to be made, e.g. the choice of k. From this; and the mean, 

the p97 , Pgo• p75 , p25 , p 10 , p3 curves were obtained via pk = p50 (1±fkcr), 

fk a factor, see figure (2. I). 

!8D.00 

:;::: 
135.00 u 

z 

f-
I 
c.:::i 

w 
I 

90.00 

1±5.00 0. 00 

CENTILES OF 
HEIGHT 

BOYS 0-18 YEARS 
OOSTERWOLDE (FR) 

OF AGE 
79-80 
I 

5. 71 11.43 17. 14 

RGE (IN YERRSl Fig. 2. I. 
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The practice in the above is that simple problems give sometimes rise to a 

modern, time saving and more scientific, i.e. reproducible method, where the 

final choice between alternatives for some parameters remains with the 

user, in other words: Computer assisted and Intuition controlled Heuristics, 

to paraphrase Bauer. Honestly speaking variable knots were introduced in 

order to locate changes in pre-adolescence growth behaviour which we could not 

find, of course; after all a general and flexible program remained. 

3. COMPUTER AIDED REPOSITIONING AND QUANTIFICATION OF FACIAL SWELLING VOLUME 

To determine the effectiveness and optimal dosage scheme of cortico­

steroids in reducing postoperative swelling and other complaints a new 

method of quantifying the swelling volume is in development, see van Rijn & 

van der Laan. for more details. Accurate three-dimensional repositioning of 

the patients head, which is necessary for the pre- and postoperative 

measurements to be comparable, and calculation of the swelling volume is 

processed by the computer. 

Quantification of the swelling. 

The problem how to quantify the swelling volume can be split into 

mathematical repositioning of the patient's head and calculation of the 

swelling volume. 

Repositioning. 

From a mathematical point of view the pre- and postoperative data 

matrices describe roughly the same surface except of course for the swelling, 

but the relative position of their co-ordinate systems is shifted and 

rotated because of the repositioning error. 

EXAMPLE. Consider a plane given by the equation 

x+y+z=I, 

in the normal x-y-z-Cartesian co-ordinate system. The intersection points 

of the co-ordinate axes and the plane are described by the triples 



in the given co-ordinate system. The same points can be described by the 

triples 

in the shifted and r.otated x-y-z-co-ordinate system, where the axes are 

given by the lines 

x-axis: 2x - 2z & X y 

y-axis: X + y & z = 0 

z-axis: 2x + z = & X = y 

in the x-y-z-system. 

z 

z 
\ 

\ 

____ .y y 

X 
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Fig. 3.1. A plane given by the formula x+y+z = I in the x-y-z-co-ordinate 
system and x=O in the x-y-z-co-ordinate system. 

The x-y-z-co-ordinate system will coincide with the x-y-z-co-ordinate system 

by a shift of the ·origin. 6 to O, followed by a rotation around the 

y-axis and z-axis. This process is not unique. In general co-ordinates 

in the x-y-z-system are related to co-ordinates in the x-y-z-system by 

the formula 

(3. I) 
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with 

R....W 
X 

R.... (<f,) 
y 

0 

[~

I 

cos<f, 

-sin<f, 

[ 
cos<f, 

-sin<f, 

0 

where the 6-vector represents the origin O in x-y-z-co-ordinates and <f,x' 

<P-, <P- represent the rotation angles around the x-axis, y-axis and z-axis, 
y z 

respectively. For the proof see appendix A. 

Mathematical repositioning can be formulated as determination of the para­

meters p = {<f,~,<P-,<f>-,6x,6y,6z}, followed by transformation of the postopera-
x y z 

tive data with these parameters via formula (3.1). 

In the sequel we assume that pre-operative data are represented by triples 

i 1,2, ... ,N 

with N the number of measurements, a. the angle, r the complement of the 

radius and z the cilinder axis. Postoperative data are marked with a~ (tilde). 

Determination of repositioning parameters 

Suppose the pre-operative data have been fitted by the formula r(a.,z) (See 

appendix B). 

For the determination of the repositioning parameters p we have chosen the 

following least squares criterion 

arg mini:. (r(a.!,z!)-r!) 2 , 
p J J J J 



where a'.,z'.,r'. are determined via trial repositioning parameters p from 
J J J ~ ~ ~ 

the postoperative data a.,z.,r. via formula (3.1) as follows 
J J J 

In principle, all points outside the swelling could have been taken into 

account. We considered, however, a subset of the postoperative data, where 

the independent co-ordinates are contained in a window 
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The window parameters are to be supplied by the user. In our tests the 

window contained parts of the nose and eyes, in order to create a well-posed 

problem, 

Initially, during the minimization process a well-distributed subset of 

the window points are considered for efficiency reasons; ultimately all 

window points are taken into account. 

Once the repositioning parameters pare found the postoperative data are 

transformed into repositioned data, i.e. 

m. ; r:i 
J J 

j 1,2, ••• ,N 

via formula (3.1). 

Calculation of the swelling volume 

After the mathematical repositioning the pre-operative and post­

operative data are comparable, and represented by formulas r(a,x) andr(a,z), 

respectively. 

The swelling volume bounded by the surfaces rand rover the domain 

[al ,ah. h] x [zl ' 2h' h] ow 1g ow 1g 



290 

is given by 

(3.2) V 

¾igh 

J {r2(a,z) 
2 - r (a,z)}dzda 

(see appendix C). 

The approximation of the face is illustrated in fig. 3.2 and fig. 3.3 which 

reflect original data and (simulated) data from which the reposition 

parameters are to be determined. 

Fig. 3.2 & 3.3. Original data and to be repositioned data. 

Conclusions 

First, computer aided repositioning is efficient and accurate.and 

gives the possibility of repositioning the patient to obtain comparable 

measurements, either afterwards or on-line. The duration of a measurement, 

i.e. scanning of a patient's face, can drasticallt be reduced, because 

there is no need of accurate repositioning the patient before scanning. 

The accuracy of repositioning is highly improved by this method. 



Second, abstract simulation by computer appeared to be time-saving and 

required much less effort in testing the computer program than concrete 

simulation by the plaster head. When comparing the results it became 
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evident that abstract simulation is at least as accurate as concrete simula­

tion. 

Future aspects 

At this moment we process the scanning results with the university 

computer, a CYBER 170/760 of Control Data Corporation. In the future we 

intend to transform dataprocessing to a mini- or microcomputer in order to 

be independent of access limitations, and datatransfer to, the university 

computer and to create our own, but coupled, system with scanner, disk units, 

graphic screen and plotter. 

The system described can also be used for other purposes such as quantifying 

tumor-volurne changes in the face, e.g. parotid gland turnors, side-face 

analysis for osteotomies and orthodontics and quantifying facial oedema 

in radiotherapy. 

Appendix A.(Relation between shifted and rotated and original data). 

Co-ordinates in the x-y-z-system and the shifted and rotated x-y-z­

system are related by the formula: 

with 

0 

R,..(q,) 
X 

[~

I 

cosq, 

-sin<t> 

where the ~-vector represents the origin of the x-y-z-system in x-y-z-co­

ordinates. 

PROOF. We can start with rotation around the x-axis until the y-axis is in 

or parallel to the x-y-plane (note: z-axis ~ y-axis). 
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Then rotate around the y-axis until z-axis and z-axis are parallel and 

finally rotate around z-axis until the other axes are parallel. The whole 

is completed by a shift of 6 to 0. The above process is a repeated 2-

dimensional rotation. 

The rotation in 2 dimensions can be described by the R-matrices, because 

co-ordinates in a x-y-system and the rotated xcp-ycp-system are related by: 

sincp][xcp] 
coscp Ycp 

as can be deduced from the following figure. 

Fig. A. Co-ordinates in mutually rotated co-ordinate sys terns in a plane. 

The above formula can be expanded to 3 co-ordQnates by inserting O and I 

at the appropriate places, which will yield the R-matrices. 

Appendix B. (Fitting 2-dimensional data by product B-splines). 

In I-dimensional fitting the B-spline functions are a versatile tool. 

A cubic B-spline basic function is positive on the interval (t.,t. 4), 
l. 1.+ 

where the points t 1,t2, ••• ,tn denote the knot sequence, and zero outside 

the interval as depicted in figure B. 

t, 
l. 

Fig. B • Cubic B-spline basic function on the interval t 1 to tn. 



293 

For I-dimensional fitting problems the model function 

n-4 
). 

i=l 
c. B. (x; t) 

1 1 

is used, where the coefficients {c.} are determined from some given data 
1 

via the least squares criterion. For 2-dimensional data fitting problems 

product functions analogous to x.y. are formed by B. (x;u)B.(y•t) with knot 
1 J 1 J ' 

sequences 

With these product,functions the model function 

n-4 m-4 
Y. Y, 

i=l j=I 
c .. B. (x;u)B. (y;t), 

1J 1 J 

is used. Fitting this model function to data in the least squares sense 

involves a lot of technical details, such as ordering the data points in 

such a way that the sparsity in the resulting linear least squares problem 

is exploited as much as possible and such as the algorithm choice for the 

solution of the overdetermined system of linear equations. Appropriate 

choices are made in the NAG-routine EOZDAF, and for the details we refer 

to the documentation of the routine. The evaluation of the model function 

is done via the NAG-routine EOZDBF preceded by EOZZAF for efficiency 

reasons with respect to grouping argument values. 

Appendix C. (Volume of a surface described by product B-splines in cilinder 

co-ordinates). 

In cilinder co-ordinatesan infinitesimal volume at point (cx,z,r) is 

given by dz*rdcx*dr, as can be seen in the following figure: 

Fig. C. The infinitesimal volume at point (cx,z,r). 
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Integration of this volume yields 

ah ~ r ah zh 

f I cf rdr]dzda I f (r2(a,z)-r2 (a,z))dzda 
J J 
a,e_ Z,e_ r al Z,e_ 

with r the inner and r the outer surface and z,e_, ~ the bounds in the z­

direction and al,ah the bounds in the angle a. 

For the special case that the surfaces are represented by similar product 

splines, 

n m 
r (a' z) I L 

i=l j=l 
n m 

r (a, z) Z: L 
i=I j~I 

we obtain for the integrand: 

with 

-2 2 r - r 

c .• 
l.J 

c .. B.(a)B.(z) 
l.J l. J 

c .. B. (a)B. (z) 
l.J l. J 

Interchanging summation and integration and factorization of the integrals 

yields 

ah zh 
n m n m 

Bi (a)Bk(a)da}{ f ): I. I ): - + I B. (z)B,e_ (z)dz}. V cijck,e_{ 
i=l j=l k=l l=I J. 

al Z,e_ 

The integrals can be calculated via programs given by the Boor (1975). 

The practice in the above is that although from a mathematical software 

point of view no optimal model function (i.e. the product spline) is used 

it serves the automation process of integrating local small computer 

systems and the measurement apparatus. This latter aspect of the proliferation 

of powerful personal computers or micro computer systems, which must be 

tailored for a particular application by software, will dominate computer 

usage in the 80's. Numerical analists and software engineers should be 

aware of this. 
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MODELLING OF DMOS TRANSISTORS 

G. de MEY, D. LORET, A. van CALSTER 

The DMOS transistor is a semiconductor component disigned as a switching 

device, i.e. it can be either in a high conducting state ("on") or a non 

conducting state ("off"). In the on state, the transistor should be able to 

conduct a large electric current with a negligible voltage drop. In the off 

state the current is almost zero, but the trnasistor should be able to with­

stand a high voltage across its terminals. For practical reasons, this voltage 

should be as high as possible, which means high electric fields in the semi­

conductor. However, the maximum electric field may never exceed the ionisation 

level. The purpose of the present study was to design an optimal transistor 

geometry in order to get the highest possible terminal voltage. In order to 

calculate the field distribution, Poisson's equation has been solved using 

the boundary element method. This numerical technique is extremely usefull if 

the divice geometry is a variable input parameter. 
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I. Introduction. 

In order to understand the physical behaviour of a D-MOS 

transistor, the "classical" MOS (metal-oxide-semiconductor) 

transistor will be outlined first. 

SOURCE GATE DRAIN 

OXIDE 

r-------
lNVERSION 

p SUBSTRATE 

Figure I. 

Structure of a simple MOS transistor. 

Fig. I shows a typical MOS 

structure. In a p-type semiconducting substrate, two heavily 

n-doped (n+) regions are diffused. A junction between p- and 

n-type semiconductors gives rise to a diode so that under normal 

conditions, no current can flow from drain to source because 

there is always a blocking diode (either the n+p junction at the 

source or the drain). By adding a third gate electrode t_he electron 

conduction between source and drain can be controlled. In principle 

this can be done without energy consumption because the gate is 

insulated from the semiconductor by a non conducting oxide. It is 

clear that a positive gate voltage will attrack electrons to the 

oxide-semiconductor interface giving rise to an-type inversion 

layer just beneath the gate oxide. There is now a direct conduction 

path (n+, n-type inversion layer, n+) between source and drain and 

the transistor is in the "on" state. By applying a negative gate 

voltage electrons will be pulled away from the gate oxide, the 

inversion layer disappears, the semiconductor is now completely 

p-type and there is no conduction between source and drain as out­

lined above. The MOS transistor is now in the "off" state. 



We see that conduction between two electrodes can be controlled 

by a gate electrode which is insulated from the semiconductor. 

Mentioned so far, the transistor is described as a switch, but it 

can also be used to amplify electric signals in a more continuous 

way. For the sake of simplicity we shall limit ourselves to the 

switching device. 

A good electric switch should fullfil several contradictory 

conditions at the same time 

- in the on state the transistor should require a minimal voltage 

drop or the on resistance should be as low as possible. 

- the transition between the on- and the off-state should be fast. 

- in the off state the transistor should withstand high voltages 

across its terminals without internal ionisation causing short 

circuiting between source and drain. 

The first two conditions can be met by decreasing the gap between 

source and drain. The last condition can be met by increasing the 

gap. A high voltage on the drain electrode in the "off" state 

creates high electric fields which can lead to ionisation. 

In order to meet these contradictory requirements, a DMOS 

(double diffused metal oxide semiconductor) transistor has been 

introduced (fig. 2). The substrate is now a lightly doped (n-) 
+ -layer and there are two regions (n and p) beneath the source. 

These regions are obtained by two sequential diffusions through 

the same mask, hence the distance AB is small compared to BC (fig. 2). 

SOURCE GATE DRAIN 

A B 

~ I 
~ I 

p A-..j 
----- ~ /"- DEPLETION REGIONS ______ ,,,,,,,,,. 

n- SUBSTRATE 

Figure 2. 

Structure of double diffused (DMOS) transistor. 
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In the conducting "on" state, the drain n+ and the n substrate act 

as a large drain contact. The gate voltage creates an-type inversion 

layer between A and B. Due to the small distance between A and B the 

transistor is very fast and the conduction between A and B requires 

no voltage drop. In contrast to the classical MOS transistor one has 

the additional resistance of the low doped n- region. Nevertheless 

this resistor can be kept low because then- region extends over the 

whole substrate. In the off state the p n interface will now be the 

blocking diode and the depletion region(= absence of charge carriers) 

is built up in then substrate. Due to the large distance BC, very 

high voltages can be applied to the drain electrode. 

SOURCE GATE DRAIN 

n- n+ 

p ------------
'-/-·-------------

DEPLETION/p -- SUBSTRATE 
REGION 

Figure 3. 

DMOS transistor on p substrate. 

Another interesting configuration is shown on fig. 3 using a 

p substrate. The working mechanism is identical to the previous 

one. For a more precise description of DMOS transistors one is referred 

to the literature [ I] [ 2] [ 3] . 



2. Fundamental equations. 

The fundamental equations for a semiconductor device are 

G - R (I) 
II n 

~ + .!. V.J G - R (2) 
,H q P p p 

Jn nqµE + q D Vn (3) 
n n 

J p q µE - q D Vp (4) 
p p p 

-v2cp v.E =-q- (p - n + ND - NA) (5) 
EoES 

where 

n electron concentration 

p hole concentration 

J electron current density 
n 

J hole current density 
p 

ND donor concentration 

NA acceptor concentration 

G,R generation and recombination rates 

µ = qD/kT : mobility of charge carrier (electron or hole). 

Several computer programs have been written to solve the non 

linear partial differential equations (1)-(S) for a lot.of semi­

conductor devices. For MOS transistors the programs MINIMOS 

(T.U. Wien) and CADDET (Hitachi) are the best known [ 41[ 5]. 

In several applications, drastic approximations of (1)-(5) can 

be made. For semiconductor layers with large dimensions and no 

internal junction, it can be proved that no charge density will be 

built up. For an n-type layer one can state that [6] : 

p<(;n ( 6) 
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The equation (3) reduces to: 

J =J=N qµ E= GE n D n 
(7) 

and the Poisson's equation simply becomes the Laplace' equation. 

The relation (7) tells us that the layer behaves as a medium with 

a·constant conductivity a. This approximation will be used in 

section 4, to investigate the drift resistance of a DM0S transistor. 

A second well known approximation is the abrupt depletion 

method described in many textbooks on semiconductor components. 

Under zero current condition (J "" 0, J "" 0) the equations (3) 
n P 

and (4) lead to : 

n = n 
0 

p 
-q<j> /kT p e 

0 

(8) 

(9) 

Inserting (e) and (9) in the potential equation (5) gives rise to 

(I 0) 

For a n-type semiconduc tc,r n O "" ND and p O "" 0, hence ( I 0) can be 

simplified to : 

(11) 

It should be noted that q/kT = 40 at room temperature or 

exp(+q<jl/kT) = 4.2 I0-) 8 for <P = - Volt. It is therefore reasonable 

to replace the right hand member by a step function which equals 

either 0 or -qND/s 0 s 8 as soon as <P turns out to be negative. The 

region where the charge density equals -qND/s 0 s 8 is called the 

depletion region. The boundary of the depletion region is not always 

known a priori. The abrupt depletion approximation will be used in 

section 5 to investigate the off state of a DM0S transistor. Some 

possible configurations of depletion regions are shown on fig. 2 and 

fig. 3. 



3. The boundary element method. 

In the abrupt depletion approximation, the Poisson's equation 

can be written as : 

(12) 

where p is a known charge density (fig. 4) and constant in the 

depletion region and zero elsewhere. Using the equation for the 

Green's function G(rlr') = 1n lnlr-r' 1 = 

o<r-r') 

one gets after applying Green's theorem 

1' cp <r) aG <"rlr') - G <rlr') ap <r) de 
C an an 

= cp<r') + - 1 - ff p(r)G<rlr')ds 
E ES 

0 s 

(13) 

( 14) 

If p is piecewise constant(= qN0 e.g.) the right hand member of 

(14) can be calculated analytically for polygonal geometries [ 7]. 

n 

Figure 4. C 

Polygonal geometry used to outline the boundary element method. 

By putting r' on the boundary C, (14) turns out to be an integral 

equation along C. If cp is given on a part of the boundary the normal 

derivative acp/an will be treated as the unknown function and vice 

versa on the remaining part of C where acp/an is given. To solve 

(14) numerically the boundary C is divided into N elements C. 
J 

N 
E f 

j=I C. 
J 

(cjl aG - G ~)dC = cjl(r') + - 1- ffpG dS 
an an E 0 E8 

(I 5) 
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If N points i! are 
]. 

algebraic set of N 

It should be noted 

chosen on the elements {C.}, (15) reduces to an 
]. 

equation and N unknowns (either~- or (a~/an).). 
J J 

that all the coefficients such as 

f G(ilr.)dC can be calculated analytically [ 7]. 
J 

4. The on-state of the DMOS transistor. 

In the "on" state the path AB (fig. 2) becomes a perfect 

conductor due to the generation of a thin inversion layer. 

® 

,-,,J [....._____ 

Figure 5. 

Conducting paths for the electrons in the on-state. 

Fig. Sa shows some typical current lines. It turns out that the 

current is only limited by then-region. Hence we just have to 

calculate the resistance of this region, called the drift 

resistance. Once observes that (fig. Sa) that the gate electrode 

has an overlap LA with then-region. In order to calculate the 

drift resistance this overlap is considered as a perfect contact 

so that we can evaluate the approximate structure of fig. Sb. 



Some results are shown on fig. 6, giving the resistance as a 

function of LD for different values of the thickness TD. The 

discrete points are calculated with the method outlined in section 

3 (using p = 0) and the continuous lines are obtained by conformal 

mapping techniques. It is well known that the structure of fig. 5b 

20 

16 

12. 

8. 

4. 

R.W(.12.cm) 

10µm 15µm 
T, =5µm / 20µm 1 _/ / .- __ .-25µm u~-~ C=1oµm 
~ L8 =10µm 

0.-+--~--~---~--~-- ) 
Lo(JJ-m 20. 40. 60. 80. 100. 

Figure 6. 

Drift resistance of a DMOS transistor in the on state as a 

function of the channel length for various values of the 

thickness TD. 

can be mapped and that resistance values are invariant under the 

conformal transformation. Because the overlap LA is much smaller 

than the drain contact it is also found that LA has a major 

influence on the resistance values. Nevertheless, the calculated 

resistances were found to be acceptable for industrial applications. 
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5. The off state of the DMOS transistor. 

The purpose is to design a transistor capable to withstand 

high voltages in the off state without any internal ionisation or 

avalanche effects. Ionisation occurs when the electric field exceeds 

a critical value. Mentioning the fact that the potential can be 

found by integrating the electric field from source to drain, the 

highest possible voltage will occur with a homogeneous electric field 

distribution, with the electric field strength just below the 

ionisation level. 

For high voltages (typ. 400 Volt) it turns out that then 

layer becomes now completely a depletion region as shown on fig. 7a. 

SOURCE DRAIN 

IT J __ :~---~ - , 
-;}rj, -o 

B -;3n - C 
I </J=1,oo 

X 

p=No 

cp=0 'J<p =0 
'Jn 

p=-¼ 

i 'f;=0 

y 

Figure 7. 

Simplified geometry to analyse the off state. 



This geometry is further simplified to the structure of fig. 7b where 

the depth is calculated according to the one dimensional solution 

of the Poisson's equation. The structure of fig. 7b can be calculated 

by the method outlined in section 3. Because the shortest distance 

between the iji= 0 and ~= 400 Volt lines coincide with the x-axis, 

it is expected the highest electric field will be found on it. Fig. 8 

shows the influence of the thickness TD on the behaviour of the 

electric field. One observes that TD= 10 ]..Im is optimal because the 

field distribution is the most homogeneous and never exceeds 24.104 

V/cm. Similar graphs have been obtained describing the influence of 

substrate doping, etc •... 

Lo=25µm 

N0 =1.1015cm-3 

NA=3.10 14cm-3 

20. 

0-f---,---~-~-~~-x 
0. 6. 12. 18. 24. µm 

E(104v/cm) E(104v/cm) 

30. 
To=15µm 24 

24. · 

18. 18. 

12. 12. 

6. 6. 

o-----~-~-~..._x +---r---r---.---,~.._.. X 

0. 6. 12. 18. 24pm o. 6. 12. 18. 24. 11m 

E(104v/cm) 
40. 

E(104v/cm) 

30. r 0 =711m To=5f1m 30 

20. 
20. 

10. 10 

0. 
X 

X 

0. 6. 12. 18 24f1m 0. 6. 12. 18. 24. 11m 

Figure 8. 

Electric field strength along the oxide-semiconductor interface 

for various values of TD. 
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E (1o4v/cm) 
:OUR MODEL 

000 · CADDET 

18. 

12. 

6. 

0. X 

0. 6. 12. 18. 24. µm 

Figure 9. 

Comparison with the CADDET results. 

The results have also been compared with the program CADDET [5]. 

This program solves the non linear equations (I) - (S). Only the 

contribution of the hole current J is neglected. Fig. 9 shows a 
p 

good agreement between both results. Note however that the computation 

time of CADDET was more than one hour whereas the method of section 3 

requires only a few minutes. This may not be interpreted as a dis­

approval of the CADDET program because it can also be used to study 

transistors for other biasing conditions than the off state. CADDET 

also provides the (small) drain current, which is completely neglected 

in our model. 

p 

p-type buried layer p-

Figure 10. 

DMOS transistor with buried layer. 

In order to make the field behaviour more rectangular the idea 

of a buried layer was introduced (fig. 10). This is a bounded p-doped 
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region with a higher doping than the substrate. Due to the higher 

charge density when this buried layer becomes depleted it will influence 

the electric field. Fig. II shows a nice result and fig. 12 proves the 

agreement with CADDET. Nevertheless a three-dimensional plot (fig. 13) 

proves that the highest electric field occurs in the bulk and no 

longer along the surface as it was in the absence of a buried layer. 

Therefore the idea of buried layer has been dropped. 

20. 

16. 

12. 

8. 

4. 

E (10 4 v/cm) 

0-1--~-~--....-----.---'--- X 

0. 6. 12. 18. 24. µm 

Figure I I. 

Electric field strength along the oxide-semiconductor interface 

for a DMOS with buried layer. 

E ( 104v/cm) 

0 

0. 6. 

0 0 0 

12. 18. 

Figure 12. 

:CADDET 
.·OUR MODEL 

24 

Comparison with the CADDET results for buried layer. 
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X 
y 

Figure 13. 

3-D plot of electric field strength for buried layer DMOS. 

6. Conclusion. 

It has been demonstrated that a quite simple program based 

on the boundary element method to solve Poisson's equation has been 

succesfully used to optimise the parameters of a DMOS transistor. 

Both the on and off state could be analysed. 

The results were verified with the numerical data obtained with 

the much more sophisticated CADDET program. 
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BOX SCHEMES FOR THE SEMICONDUCTOR 
CONTINUITY EQUATION 

S. POLAK, W. SCHILDERS, A. WACHTERS 
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Box schemes are often used for the semiconductor equations. The usual box 
schemes suffer from two disadvantages. The boxes must satisfy cumbersome 
geometrical requirements and in the case of the singularly perturbed 
semiconductor equations they do not sufficiently reduce to a stable 
integrator for the reduced (characteristics) problem. In this paper we 
briefly discuss the disadvantages of the classical scheme and we present 
a class of box schemes that do not have any geometrical problems and give 
the possibility to adapt better to the singularly perturbed character of 
the semiconductor problem. 

1 • INTRODUCTION 

Box schemes are difference schemes obtained by applying a Green's 
theorem transforming a surface integral into a loop integral. This 
scheme is described in section 2 and a new scheme of this type is 
proposed in section 4. 
In the mathematical literature we have found very little on such 
schemes. In this paper we are not filling that gap. We are just 
proposing a new scheme together with a heuristic reasoning about the 
merits of this scheme. 
In the engineering literature many instances of the application of 
box schemes can be found. Especially in device modelling this is the 
most used discretisation technique. 
In section 2 we discuss the standard box scheme used in device 
modelling. We also describe some disadvantages of this scheme. 
In section 3 the singularly perturbed nature of the continuity 
equation is investigated, in section 4 the new class is described and 
in section 5 it is applied to the continuity equation. 
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2. THE CLASSICAL BOX SCHEME 

Let us consider the equation 

( 2. 1) l'lu=f 
and u=u 

in Q 

on <Sri ~r 

Suppose a mesh given in Q, with a meshpoint xo and several meshlines 
coinciding in xo as shown in fiq. 1 

Fig. 1 

Then a box is constructed around xo by using the midperpendiculars of 
xoxi• Their intersections are the vertices of a polygon which is 
called a box B with boundary B. using Green's theorem now gives 
instead of (2.1) 

p38vu.dn = JJf do 
B 

Then u.dn is approximated by 

u(xi}-u(xo) 
Vu.dn= ----

This way a difference scheme is constructed on a nonrectangular 
grid. The equation in x0 has the form 

6 

.I 
1=1 

I 8 i-Si+1I 

lxi-Xi+1I 

For the continuity equation (see section 3) and triangular meshes 
this problem is treated in ,e.g., [1] The same author needs the 
following geometrical condition for a convergence proof. The meshes 
must have a circumscribed circle with midpoint inside the mesh (see 
[2]) 
Also in practice it is well known that both obtuse triangles and 
arbitrary quadrilaterals can give problems. We have one particular 
example where we are solving a diode problem on a distorted 
quadrilateral mesh giving essentially erroneous results due to the 
distortion (see section 6). 



3. THF. CONTINUITY EQUATION 

In this paper we shall concentrate on the use of box schemes for one 
of the equations [3] used in device modelling. This equation has the 
form 

( 3. 1) 

where p is the unknown and~ supposed to be known in this paper. 
It should be noted here that R also is a function of p and possibly~ 
that the function p varies enormously and that all the coefficients 
that depend on the unknowns have been set to one for the sake of this 
discussion. It is always combined with both Dirichlet and Neumann 
boundary conditions in the same problem. In this section we consider 
the discretisation of (3.i) without special attention to these 
boundary conditions. For practical purposes other forms of this 
equation are used but for this discussion (3.1) is simplest and 
essentially the same as the others. 

Let us first consider the one dimensional case. Then the equation is 

( 3 • 1 I) 
( ~ ( dp + ap \\ = R 

dx dx )) 
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where a=d~/dx with of course two boundary conditions. The function a varies 

(0-10 5) in x. Where a is large (3.1 ') is singularly perturbed. In the 
limit it reduces to the ODE 

(3. 2) d (ap) =R 
dx 

However for (3.1') we have two boundary conditions whereas (3,2) is 
an initial value problem. So for large a we almost have one boundary 
condition to many. This is found back as a transition layer in the 
solution. This can also be understood by considering the solution of 
( 3. 1' ) in the form 

( 3 .3) 

where f(x) is a solution of the inhomogeneous problem not satisfying 
the boundary condition. For large a,e-axfo only in a very short 
interval. The difference scheme for (3.1) must be adapted to the fact 
that we are almost solving (3.2) for large a. If for instance we use 

( 3. 4) 

for (3.1') (for definition of the operators Oh and µ see e.g. [4]) we 
find 
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for (3.2) it is obvious that this is not a stable ODE integrator. 
This leads to: 

requirement (A): the difference scheme for (3.1') must reduce to a 
stable scheme for ( 3. 2) if a +oo. 

In [5] a scheme is derived for (3.1) which satisfies requirement (A). 
This scheme is essentially the same as the "Gummel" scheme [6] used 
in device modelling and derived in a totally different, more physics 
inspired way. 
To understand this scheme we may reason as follows. The operator 
should be replaced by an operator resulting in backward Euler for 
(3.2). However this replacement depends on a. Let us define 

M(a)= .5[(1+s(a))E½+(1-s(a))E_½] 

Replacingµby M(a) and using the fact that M(a)=µ+.5s(a)lih we find 

(3. 5) oh((1+.5 s(a)h) oh+hµa)p=R 

We still have to find a suitable function for s(a). For this purpose 
we use the fact that the transition layer is represented by the 
solution e-ax of the homogeneous problem. We substitute this, writing 
Y=1+.5 s(a)h in 

(3.6) 

giving Y(a)=.5ah cotgh(.5ah) 
The important observation is that we used the fact that the 
homogeneous scheme has two basic solutions, 1 and e-ax in an 
essential way. This cannot be extended to two dimensions. However 
in two dimensions the reduced equation is 

(3. 7) V. ( (171/J)p)=R 

This is a first order equation and therefore can be considered as a 
set of ODE's along the characteristics. This leads to: 

requirement(B): the discrete scheme for the ODE's along the 
characteristics defined by ( 3. 7) as II viµII ➔ oo. 

In the following we briefly look at different schemes proposed in the 
literature for this preblem in the light of requirement(B). All the 
investigated schemes satisfy (B) if 171/1 is parallel to the x or the y 
axis. They all reduce to backward Euler along the characteristics 
which is a line parallel to the axis. However if a=(1,1) the 
situation is rather different. 
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For this problem we calculated the coefficients for one equation for 
the methods proposed in [6] ~ [8] for a square mesh. The coupling 
pattern is given in fig. 2 

C Bz A3 

BI Az B2 

BI C 

Al Fig. 2 

The coefficients are now given as follows. 

C B1 B2 A1 A2 A3 

-3 -1 -10 16 0 for Mitchell et al. [7] 

-12 8 -10 16 0 for Brookes et al. [ 8] 

0 0 -2 0 for Gummel (section 5) 

It is easily understood that these schemes "spread" the solution 
perpendicular to the characteristics, a phenomenon also called cross 
wind diffusion. A pattern of the form 

0 B -B O A -A 

would have essentially less cross wind diffusion. 
The new scheme proposed in section 4 gives exactly that. 
It can be noticed e.g. that the B1=8, B2=-10 are closer to this then 
the B1=-1, B2=-1 O which is symptomatic for the improvement claimed by 
the authors of [ 8]. 

4. A NEW CLASS OF BOX SCHEMES 

In section 2 we have shown how classically a box scheme is 
constructed using midperpendiculars. In this section we generalise 
the box scheme idea. 
Suppose we have a grid M consisting of points, straight segments 
connnecting neighbouring points and meshes as usual. No geometrical 
restrictions are made. Now a box point is chosen inside each mesh and 
a box point is chosen inside each mesh segment. Neither should 
coincide with a mesh point. By connecting each mesh box point with 
each of the segments box points in the same mesh a box mesh M* is 
obtained. Fig. 3 shows a very arbitrary example 
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We do not discuss the righthand side of (4.1) any further in this 
paper but concentrate on the left hand side. 
For the discretisation of pVu.dn we first approximate u in terms of 
nodal values. 
This defines Vu.an in each nonvertex point of the octogon in a 
unique way. So we now may choose some quadrature giving some 
difference scheme. 
Summarising we may say that there are four steps in this 
discretisation: 

- Choice of a mesh 
- Choice of a box mesh 
- Approximation of u in terms of nodal values 
- Choice of quadrature 

We might do this for instance with a triangular mesh by taking the 
baricentres and the segment midpoints. 
In practice we use a quadrilateral mesh using baricentres and segment 
midpoints as shown in fig. 4 giving octoganal boxes. 

Fig. 4 

A box again is used with a Green's theorem giving 

( 4. 1) pV u.dn= fJf do 
octogon 

Now we approximate u in each quadrilateral by an isoparamatric 
bilinear function as is usual in FEM. A quadrature for the left hand 
side then transforms (4.1) into a nine point scheme. 



5. A NEW BOX SCHEME FOR THE CONTINUITY EQUATION 

Let us reconsider the continuity equation. In the classical box 
scheme, as used for the continuity equations in device modeling, the 
one dimensional reasoning is simply transferred to the segments XQXi 
as defined in section 2. 
So we have to appr0ximate 

(5.1) g;(vp+(Vl/J)p).dn 

with the operators oh an<'i µ appliecl on the segment XQXi giving 
5 

l [oh(Y0hP+lxi-xoll/Jµ P) (ti>J I Si+1-siJ 
i=1 
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In section 3 we already saw that this results in a scheme with 
spurious cross wind diffusion perpendicular to the characteristics. 
The schemes presented in section 4 offer the possibility to introduce 
the factory only in the direction of the characteristic in a 
quadrature point. 
For this purpose we choose a local coordinate system (x',y') in each 
quadrature point chosen for the evaluation of (5.1). The x' direction 
is tangential to the characteristics. So along VljJ. Then (5.1) becomes 

( 5. 2) 

As an approximation for this we use 

where the bar indicates using isoparametric bilinear quadrilaterals 
as in FEM. 
Still they has only one dimensional meaning! 

y=.5hiiix coth (.5h ~x,l 

and the remaining problem is the meaning of h. We take h, assuming 
the characteristic a straight line, the length of the segment along 
the x' axis inside the mesh (see fig. 5) 
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Fig. 5 

1 
X 

It is probably very difficult to escape the inconsistency of a one 
dimensional and a two dimensional reasoning in the construction of 
these schemes. The essence of the problem is that the reduced two 
dimensional problem must be integrated in a stable way along the one 
dimensional characteristics. 
Summarising we so far have chosen: 

- a quadrilateral mesh 
- octogonal boxes with the help of the mesh baricentres and 

segment midpoints. 
- a bilinear isoparametric approximation per mesh. 

and we have introduced a local coordinate system and a "fitting 
factor" Yin the direction of the field 171/J. 

Now we still have to choose a quadrature to approximate the loop 
integral. we choose eight quadrature points, the midpoints of the 
sides of the octogon and presume the integrant in (5.2) (constant 
along that side). This gives a nine point scheme in general. 
For the reduced equation on a square mesh, as in section 3 we find 
the coefficients 

0 -1 0 -2 2 

In general, taking one 'llladrature point on a box segment dividing the 
segment with a ratio 8, 8=0 on the vertex inside the mesh and 1 on 
the vertex on the mesh segment, we find the coefficients 

o - e e o 20 -4 4-20 

so for 0 =O we find 

0 0 0 0 28 -20 

which means exactly backward Euler along the 45° characteristics. 
However for the pure Laplace equation this choice of quadrature might 
be less fortunate because a checker board scheme results. We do not 
have much practical experience to judge the importance of this 
phenomenon. 
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It is obvious that for any direction of Vi/! the so constructed 
difference scheme is a sum of backward Euler type schemes along the 
characteristics through quadrature points for the reduced equation. 
So for one equation there is no cross wind diffusion. However 
neighbouringequationsdo not use the same characteristics, except for 
very special cases such as 0 =O and Vi/J = ( 1, 1) • 

6. EXAMPLE 

In section 2 we remarked that, in practice, obfuse triangles and 
arbitrary quadrilaterals can give rise to essentially erroneaous 
results. To show this, we consider the following diode problem, which 
was taken from [9 ]: (µ=10- 4 cm) 

n 

I 
p 

Fig. 6 -2.78µ 0 

The equations we have to solve are 

(6.1) 

(6.2) 

(6 .3) 

-div(~qradi/Jl=q(p-n+D(x)) 
qµ 1 

div ( ~ gradp+qµPp [qradi/J- an gradniJ) =qR 
i qµn 1 

div ( 7x gradn-cwnh [gradtj,+ an.gradniJJ =qR 
J. 

with boundary cond i. t ions: 

1 -0(0) 
1/)(x=O)=--log(-) a n1 

p(x=O) =-n;o> 
n(x=O) =-n/D(O) 

1/)(x=-8µ) =VA +-i-logD(-Sµ) 
a ni 

n (x=-8 µ) =n (-8µ) 

p(x=-8µ) =ni 2/D(-8µ) 

y 

L 
X 
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We have Neumann boundary conditions on the lines y=0 and y=0.2µ. The 
functions/constants appearing in (6.1)-(6.3) are given by: 

s=11.7*so; s 0=8.854*10-14 

q=l .6021*10-19 

D(x) =6* 1015-2.15*101 B*exp{-(1 .15: 1 o-4 )2} 
( 

x+8*1Q-4\ 
+1.19*1019*exp{- 1.3*10-4 /} (cm-3; x in cm) 

ni=1.22*1o10 
µp=500 
µn=500 

R=0 

a=q/KT; k=l.38*10-23; T=300 

The constant VA (applied voltage) in the boundary condition fort at 
x=-8µ is variable and was taken to be 0,5 and 20 respectively. 

The above problem was solved on a rectangular mesh (to give the 
reference solution) and on a distorted mesh (see fig. 7). 

11 I I I I 1111111111111111111111 

(a) rectangular mesh 

~ 
(b) distorted mesh 

Fig. 7 



In figure 8 we show the results of our calculations on a severely 
distorted mesh. We see that the solution on the distorted mesh 
differs significantly from the solution on the rectangular mesh. 
Physically, this is not acceptable (cf. [9]); the figures were also. 
taken from this reference). 
If we use the box scheme described in sections 4 and 5, however, we 

·obtain an accuracy of two decimal places for the solution on the 
distorted mesh • 

A ., 
: . 
fi 

I 
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••• ... 
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ON THE NUMERICAL ANALYSIS OF WATER LUBRICATION 
IN OIL PIPELINES 

N. PRAAGMAN, A. SEGAL 

I. INTRODUCTION 

In order to transmit a given quantity of very viscous oil through 

a long pipeline a large pressure gradient is required. This is mainly 

due to the friction with the pipe wall. For that reason investigations 

have been made to determine in which way this friction and with it the 

power required to transmit oil can be decreased. These investigations led 

to the conclusion that there is an advantage in adding a less viscous 

liquid for instance water, provided that the two liquids are immiscible. 

Experiments show that the less viscous fluid wets the complete inner pipe 

wall if the velocity of the flow is large enough. (See figure I and [5]). 

As a result the friction experienced 

Figure I. Oil-water pattern in a pipe if the flow velocity is large enough. 

by the oil is considerably smaller and although power is needed to drive 

the added liquid, the total power requirement diminishes. 

If, in the case of an oil water mixture, the velocity of the flow 

becomes too slow the oil touches the top of the pipe and hence the oil 

will experience friction from the wall. (See figure 2.) Especially during 

the start of the transport such a situation is encountered. 
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Figure 2. Oil-water pattern in a pipe if the flow velocity is low. 

It is possible to compute the position of the interface in such a 

situation utilizing a mathematical formulation. This formulation is obtained 

by requiring that the potential energy has a minimum. In order to gain 

insight in the power requirements for that minimum the two-phase axial 

laminar flow pattern in the pipe has to be computed. This flow pattern 

can be used to compute numerical values for the power reduction factor 

and this can be done for several oil/water ratios. 

In section 4 of this paper results of computations to obtain these 

values are given for some practical examples. First, in section 2, the 

mathematical formulations describing 

(i) the position of the interface 

(ii) the axial flow field 

(iii) the power reduction 

are given, while in section 3 the numerical methods are treated. Section 5 

contains the concluding remarks. 

The basic ideas for the mathematical description of the problem at 

hand are given in [I]. The numerical techniques for solving the mathematical 

problems can be found in [2], [3] and [4]. 

2. THE MATHEMATICAL FORMULATION 

In order to obtain the mathematical formulations the following 

assumptions have to be made: 

- the flow is laminar 

- the fluids move only in the axial direction of the pipe 

- the contact angle y (see figure 3) between the inner pipe wall and 

the interface is an a priori known constant 

- both fluids are incompressible 



327 

2.1. The interface oil-water 

To determine the positionof the interface the expression for the potential 

energy Vhas to be analyzed. In V the terms representing gravity, interface 

tension and surface friction are important. Using calculus of variations the 

following conditions under which Vis minimized are obtained, (see figure 3) 

( i) if f3 1T + y ;,: 2' 

the curve y(x) giving the position of the interface has to satisfy: 

(I) 

with 

(2) y(-sinf3) cosf3 

and 

(3) f(y) 2 -½Ay + yy - cos(f3+y) 

(ii) if f3 + y < f, then 

dy .. /-y-­
dx isign✓~ - I 

y(-sinf3) = cosf3, f as above. 

The value of isign depends on the situation treated. From t4e starting 

point P to the turning point Tp the value is I, while from Tp to the 

synrrnetry point SP isign = -I. 

X-OXIS 

Figure 3. Definition sketch of 
f3,y,P,T and S . 

p p 

f3 

y 

determines the intersection point P of 
the pipe wall and the interface. 

is the angle between the tangent in P to 
the wall and the tangent in P to the 
interface. 

T is the point of the interface where the 
P tangent is parallel to the y-axis. 

S is the point of the interface where the 
P tangent is parallel to the x-axis. 
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The variable A in (3) is the so-called stratification parameter. A is 

dependent on the densities pi of the oil and p 2 of the water, the 

acceleration of gravity g, the radius of the pipe a and the interface 

tension T. A is computed using the formula 

2 
(p2-pl)ga 

A= T (4) . 

The variable A in (3) is a parameter which has to be determined in such 

a way that the property of symmetry 

(5) dy 
dx (x=O) 0 

holds for the curve y(x). 

2.2. The axial flow field. 

For the given assumptions the flow field is described by the following 

partial differential equations (normalized for a pipe with radius I, 

and a pressure gradient I) 

(6) -div (µoil gradw) = I, section I, i.e. oil 

(7) -div (µ t gradw) wa er I, section II, i.e. water 

Figure 4. The domains I and II of the PDEs (6) and (7). 

In these equationsµ .1 andµ are the (constant) viscosities of the 
01. water 

two liquids. 

The boundary conditions for ware: 



(8) - on the pipe wall: w O on an1 

(9) 

( JO) 

- on the symmetry axis: aw = 0 on an 
an 2 

- on the interface: w is continuous on I 

h . f ~w - on t e inter ace:µ ·1 a1 
01 n oil 

aw 
µwater anl t wa er 

on I. 

For the definition of the domains and boundaries see figure 5. 

2.3. The power reduction factor. 
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The non-dimensional volumetric flow rate, if the pipe is filled with 

oil only, reads 

I I wdxdy I 2 'IT 
2'IT ¼(1-r )rdr = a· 

n 0 

Hence the normalized volumetric flow rates of oil and water are: 

(I 2) Qoil 
8 I wdxdy 
'IT 

noil 

( 13) 
~ater 

8 
'IT I wdxdy 

nwater 

Since w is proportional to the pressure gradient (eq. (6) and (7)) 

it follows that Q •1 is the ratio of the pressure gradients required to 
01 
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transmit a given volumetric flow rate of oil without and with addition of 

water. 

( 14) 

The reduction in the required pumping power is given by the factor 

F 
p 

Qoil*Qoil 

~ater +Qoil ' 

due to the proportionality of wand the pressure gradient. (see [I]). 

3. METHOD OF SOLUTION 

For the solution of the three subproblems of section 2 numerical 

techniques have been used. These will be treated in the following subsections. 

3.1. Determination of the interface. 

Given the values of the angles Sandy and the ordinary differential 

equation (ODE) for the position y(x) of the interface, an approximation 

of y(x) is computed using the Runge-Kutta-Fehlberg method (see [3]) of 

second order. The formulae of this method read, in case of the standard 

ODE, 

( 15) 

y = F(y,t) 

IY:+I = yn 

Yn+l yn 

tn+I tn 

+ hnF(yn,tn) 

¾ * + --y{F(yn,tn) +F(yn+l 'tn+I)} 

+ h 
n 

The computed approximation yn+I of y(tn+I) is accepted or rejected, 

depending on the local error: 

(16) * le =lly 1 -y 111. n+I n+ n+ 

A new stepsize, either to repeat the rejected step or to start a new step 

at tn+I' is computed using the formula 

(17) 
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TOL is the required ~ccuracy per unit step. Since the local curvature of 

the interface, especially neara turning point, changes rapidly, a rather 

high accuracy is required. The interface is computed for several values 

of l. The value of A is adjusted with respect to (5), using a bisection 

method. 

3.2. Computation of the axial flow field. 

The partial differential equations (6) and (7) with the boundary 

conditions (8), (9), (10) and (11) are easily solved using a standard 

Galerkin finite element approach. 

First the problem is rewritten using a variational formulation (see 

[4], [2]): 

Find w E ¾;{n) such that 

II µ{gradw.grad~)dxdy II ~dxdy, V~ E ¾;{n) 

n n 
(18) with 

{vlv is continuous on n, v1 3n 1=0} 

and 

Problem (18) is discretized using the Finite Element Method. (F.E.M.). 

The domain n is divided in triangular elements e. (see figure 6) and an 
J 

approximating space VE(n) of ¾;(n) is defined: 

{vl<i> -The restriction of v to an element e. is a 
linear polynomial J 

(ii) -vis continuous over n 

Now the discretized version of (18) reads: 

(19) {
Find vh E VE(n) such that 

JJ µ(gradvh.grad~h)dxdy = ff 
n n 

h 
~ dxdy, 
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Observe that (9) and (II) are natural boundary conditions that have no 

impact on the functions of VE(Q). 

Figure 6. Triangularisation of the oil-domain n0 • 

Problem (19) is transformed into a system of linear equations by the 

introduction of piecewise linear basisfunctions ~i satisfying 

(20) ~. (x. , y.) = o .. 
]_ J J 1-J 

where j is the jth nodal point of the mesh. The approximating solution 
h 

v EVE then can be written as: 

(2 I) 
h . 

V (x,y) 
N 

I 
j=I 

V • ,P • (x, y) • 
J J 

b . . h Su stitution of~ ,Pi, (i=I,2, ••• ,N) in (19) yields the following 

system of N linear equations in the unknowns v1, v2 , ••• ,vN: 

(22) 
N 

I 
j=l 

rr a,p. a,p. a,p. a,p. 
v. µ(-J _i + _J _i)dxdy 

J JJ ax ax ay ay 
Q 

(i=l ,2, •.. ,N). 

The resulting system of equations can be solved either with a direct method 

(Gaussian elimination) or an iterative solver. (For example a preconditioned 

conjugate gradient method). Because of the few equations that were needed 

to solve this problem with the accuracy required, about 100, a Cholesky 

factorization technique is prefered. 

3.3. Calculation of the power reduction factor Fp. 

In order to obtain quantitative results for F, equations (12) and 
p 

(13) have been solved numerically. For the approximation of the integrals 



the two dimensional trapezoid rule has been used: 

M 
(23) II wdxdy M I = I 

i=I I wdxdy I 
Q e. 

l. 

with M the number of elements e. 
l. 

and w. ,w. 
l. I 1.2 

three nodal 

and w. the computed 
1.3 

points i 1, i 2 and i 3 

4. RESULTS OF COMPUTATIONS 

i=I 

in '2, Oi the area of element ei, 

values of the axial velocity win the 

of element e .• 
l. 
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In this section results are given for three test examples. In order to 

determine the position of the interface with sufficient accuracy a value 

of TOL = I0-3 has been used, and A has been computed with an accuracy 

of I0- 5. With these values the coordinates of the points of the computed 

interface are correct to three decimal places. The triangularization of 

Q is also a parameter which can influence the results. Therefore several 

refinements have been computed. It turned out that with a coarse mesh as 

given in figure 6 the relativ~ error in F is already less than 2%. 
p 

Table I. Power reduction factor for several angles Sand waterfractions. 

Stratification parameter - : 10.00 

Oil viscosity cp : 6.00 

Water viscosity cp : 1.00 

Interface tension N/M : 0.02 

Contact angle y degree: 30.00 

Water fraction s Power reduction 

0.74 15° 0.00 

0.61 30° 0.01 

0.49 45° 0.05 

0.37 60° 0. 13 

0.28 75° 0.34 

0.20 90° 0.63 

0. 12 105° 0.93 

0.07 120° 1.10 

0.03 135° I. I 3 
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Table 2. Power reduction factor in case that the stratification parameter 
is I, and all other variables are the same as in table 1. 

Water fraction f3 Power reduction 

0.73 100 0.00 

0.66 15° 0.01 

0.59 20° 0.04 

0.50 30° 0. 10 

0.37 45° 0.30 

0.27 60° 0.57 

0.20 75° 0.82 

o. 14 90° 1.00 

0.09 105° 1.18 
' 

0.06 120° 1.18 

0.03 135° 1.15 

Table 3. Power reduction factor, as in table 2 however the contact angle 
is s0 • 

Water fraction f3 Power reduction 

0.52 15° 0. 1 I 

0.34 30° 0.55 

0.24 45° 0.90 

o. 16 60° 1.22 

o. 10 75° 1.41 

0.06 90° 1.38 

0.04 105° 1.30 

0.02 120° 1.18 

0.01 135° I. 17 

The tabulated results show that there is an optimal choice indeed for the 

water-oil ratio in order to obtain the best possible power reduction factor. 

Comparison of tables 2 and 3 makes clear that the contact angle y plays 

an important role. Comparison of tables I and 2 shows that the influence 
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of the stratification parameter A is less significant. 

5. CONCLUSIONS 

A mathematical model for the transport of oil has been treated. It 

has been shown that a quantitave solution for the power reduction factor 

can be obtained using a combination of the following numerical techniques: 

- a Runga-Kutta-Fehlberg ODE integration 

technique 

- the bisection method 

- the Galerkin F.E.M. 

- the Conjugate Gradient method or Gaussian elimination 

- a numerical quadrature method. 
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REMARKS ABOUT A COMPUTATIONAL METHOD 
FOR SHALLOW WATER EQUATIONS THAT WORKS IN PRACTICE 

G.S. STELLING, J.B.T.M. WILLEMSE 

I • INTRODUCTION 

In this contribution we will describe a numerical model for the simula~ 

tion of flow in shallow seas, Pstuaries and rivers, Simulation models of 

this kind are in use quite extensively for civil engineering and water 

management problems. Examples will be given in the last chapter of this 

contribution, A simulation model involves various aspects, This work 

describes a number of important matters. Each subject however is treated 

very briefly. Details are given by Stelling [I]. The model will be described 

step by step. Therefore the second chapter only deals with purely initial value 

problems. The first part of the chapter treats linear problems, while the 

second part shows how the linear methods are extended to non-linear problems. 

The third chapter is on boundary conditions. For hyperbolic problems 

the approximation of boundary conditions is of crucial importance. For a 

simple linear problem this remark will be illustrated. Then a few 

heuristic principles are introduced which are the basis of the boundary 

treatment given in this chapter. Also some practical aspects of the choice 

of boundaries and moving boundaries due to tidal flats will be described. 

The fourth chapter describes applications. The applications involve 

flow in the North Sea, the Eastern Scheidt estuary, the river Rhine and a 

tidal flume. 

2eINITIAL VALUE PROBLEMS 

2.1 Introduction. 

This chapter describes a numerical scheme for a purely initial value 

problem of shallow water equations. 

The equations are given by: 
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2 2 ½ 
(2.1-la) + uu + vu + gl;x + u(u +v) - fv - v(u +u ) ut y g c2H XX yy X 

2 2 ½ 
(2.1-lb) vt + UV + vv + gz; + gv(u +v) + fu - v(v 

c2H X y y 

(2.1-lc) l; + (Hu) + (Hv) 
t X y 

0 

where: u = velocity in x direction 

v = velocity in y direction 

1; waterelevation above some plane of reference 

h waterdepbh below some plane of reference 

H h+i;= total waterdepth 

f Coriolis parameter 

g acceleration due to gravity 

C Chezy coefficient for bottom roughness 

XX 
+v ) 

YY 

F(x) 

F(y) 

F(x,y) = external forcing functions of windstress or barometric 

pressure. 

v = viscosity coefficient. 

In order to clarify the scheme described in this chapter we start the 

treatment with the frozen coefficient equations derived from (2.1-la). These 

equation are given by: 

(2.1-2a) ut + Du + Vy + gi;x 0 
X y 

(2. 1-:-2b) vt + Uv + Vv + gl;y 0 
X y 

(2, 1-2c) 1J + uz; + Vi; + Hu + Hv 0 
t X y X y 

where U,V and Hare constant coefficients. 

For (2.1-2) we have omitted the effects of Coriolis, bottom friction, 

viscosity and external forces. 

In section (2.2) we describe the numerical scheme for the approximation of 

(2.1-2) and a stability analysis is added as well, In section (2.3) we 

describe a non-linear scheme for the approximations of (2.1-1). This scheme 

is similar to the linear scheme. 



2.2 Linear aspects. 

For the approximation of (2.1-2) in discrete points of the x,y space 

first a grid must be defined. The grid is defined by fig, 2-1. 

n+I u 

V V 

n I;; u I;; 

m m+½ m+I 

fig. (2-1) numerical grid. 

In the "u" points the velocities in the x direction are approximated, In 

the "v" points the velocities in the y direction while in "1;; 11 points 

waterlevelsare approximated, 
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The grid of fig. (2-1) is a socalled "staggered grid" which has been 

applied already since Hanssen [14], For the approximation of (2.l-2a) the 

grid has several advantages such as efficiency and the absence of spurious 

roots, In case of implicit approximations for the time derivative the 

matrix conditions are much better then in case of non-staggered grids. 

A discussion on the advantages of staggered grids is given by Stelling [I]. 

The spatial approximation of (2.1-2) is mainly based upon central 

differences. Only the approximations of Vu and Uv are based upon averaging y X 

of central differences and higher order upwind differencing •. 

The discretization in time is based upon the trapezoidal rule, To simplify 

the implicit equations an ADI perturbation is applied, 

The resulting scheme is given by: 

stage I: 

(2.2-la) 0, at m + ½,n 

(2.2-lb) O, at m,n + ½ 

(2,2-lc) O, at m,n 

stage 2: 
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(uk+l_uk+½)/½T + k+fX k+I k+! 
0, at m + ~ ,n (2.2-ld) UuOx + S (V, u ) + gl; 2 

+y Ox 

(vk+J_vk+½)/½T + 7z.i:rY k+! k+l 0, at m,n + (2.2-Ic) Vv 2 + SOx(U,v z) + gl;Oy Oy 

(2.2...:Jf) (l;k+l_l;k+½)/½T + 
""ic+Tx k+IY k+' k+l Ul; z + Vl;Oy + Hu 2 + HvOy O, at m,n 

Ox Ox 

where: 

1; 0Y at m,n+½ denotes (1; +l-1; )/6y, m,n m,n 

"'f.Y at m,n+½ denotes (1; +l+l; )/2, m,n m,n 

s0y(V,u) at m,n denotes V(u +2+4u +1-4u 1-u 2)/126y m,n m,n m,n- m,n-

{
V(3u -4u 1+u 2)/26y if V > 0 m,n m,n- m,n-

S (V, u) at m,n denotes +y 
V(-3u +4u 1-u 2)/26y if V ~ 0 m,n m,n+ m,n+ 

-x -y u0 , v0 , u, v, s0 (U,v) and S (U,v) are defined similar to the definitions 
X y X +x 

given above.For the functions Soy• Sox• S+x and S+ymany alternatives are possible. 

The stability of the scheme (2.2-1) can be studied by substitution of: 

(2.2-2) 

After some derivation, see Stelling [ I J, this leads to 

(2.2-3) 

Where G is the well known amplification matrix, see Richtmyer and Morton 

[IS]. The matrices A,B,C,D and A are given by: 



a 0 

A= 0 

0 ',lg}{ -2 gH DOy 

0 

C = 0 C 

' -W 0ox 
0 

where 

D = Ox 

DOy 

D = Ix 

-
Dly 

a= 

b 

d = 

s 
+x 

-

I 

0 

' -2@ DOy ' B = 

' -I +2VDly 

'/2H -2 gH 0ox 

0 D = 

' -I +2UD!x 

0 0 

A = 0 0 

0 

~
6oxl 0 b 

~- 0 ' -- 2 gH 0ox I --¥JDtx 

0 0 ·~--z"gH DOy 

d 

0 

0 - .!.lgH D I - .!.. VD 
2 Oy 2 ly 

0 0 iH/g 

i sin (o 1 ½tix)/(!tix), 

i sin (o2!tiy) / (½tiy), 

i sin (o 1tix)/tix, 

i sin (o2tiy)/tiy, 

' - ' -+ - UD + 2 vs+y' 2 Ix 

' - ' -- - VD - 2 USOx' 2 ly 

' - ' -- 2 UD!x - 2 VSOy' 

[(l-cos(o1tix)/ + i sin(a 1tix) (2-cos(o 1tix))J/tix, 

s 0x = i sin(o 1tix)(2+cos(cr 1tix))/3tix 
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and 

From (2.2-3) it follows that the following relation holds: 

(2.2-4) 

For stability it is sufficient that: IIBC- 111 < I and IIDA- 10 < I. To prove 

this we write A and Das follows: 

(2.2-5) D 

where: 

A 
s 

D 
s 

[ 
I 

T ---/gHD 
2 Oy 

It follows that D AH or: 
s s 

Since AH A-I is a unitary matrix it follows that: 
s s 

(2.2-6) s Max (Id/ a I , I) 

Because Id/al s I it follows that IIDA- 111 s I. 

Similarly one can prove that IIBC-111 s I, which completes the proof of 

stability. 

Note that despite of the unconditional stability the maximum timestep 

is limited based on considerations of accuracy. Especially the ADI structure 

can limit the maximum timestep as explained by Stelling[!]. 



Note that the Courant number, which is an often used dimensionless 

number, to indicate the size of the time step, is given by: 

(2.2-7) Cf 
2 2 l 

2n'gH(l/llx + 1/t.y ) 2 • 
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The factor 2 of (2. 2-7) is due to the fact that the gridsizes l:ix (or t.y) 

are defined as the distance from a "u" point (or "v" point) to the nearest 

other "u" point (or "v" point), instead of to the nearest "r;" point. 

2.3 Nonlinear equations. 

In this section we describe the approximation of (2.1-1). The frozen 

coefficient equation of this method was given already in the previous section. 

Based on this linear scheme a number of nonlinear schemes can be constructed. 

The grid is given by figure 2-2. The choice was based upon practical 

experiments. The version that proved to be stable for many situations was 

chosen. 

The resulting scheme is an ADI/predictor corrector/iterative method which 

is given by: 

stage I: 

For p 

(2.3-lc) 

(2.3-lb) 

(2.3-lc) 

where 

[OJ 
u 

1,2, q=l,2, ••• ,Q: 

k r. 

-x 
(u[q]_uk)/'~ + [q] k + =k+½ k =k+l ~[q] 

~• u uOx s0y(v ,u) - fv 2 + $~ox 

O, at m+½ ,n 

+ gv[p][(~k) 2 + (vk) 2J½/(c2Hk) - v(v6:~ + v6~) = O, at m,n+½ 

(r;[q]_r;k)/½-r + (hyu[qJ)Ox + r;[q-1Ju6~J + u[q-1Jr;6~Jx+(Hkvk)Oy = 0, 

k+l u 2 
[QJ k+! 

U , V 

V = ;xy, U = ~xy 

at m,n 

[2] 
V 
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=k+½ k =k+ 1 k k k k 
S (v u) at m+½,n= v ~ (u 1 +4u 1 -4u -u )/121:iy 

Oy ' m+ 2 ,n m+ 2 ,n+2 m+ 2 ,n+I m+½,n-1 m+½,n-2 

l~k (3v[p-oJ_4v[p-oJ +v[p-oJ )/21:ixif~k >O 
m,n+½ m,n+½ m-1,n+½ m-2,n+½ m,n+½ 

=k [p] 
s+ (u ,v ,o) at m,n+½ = 

x . =k ( 3 [p-l+o] 4 [p-l+o] [p-l+o])/21:i .f =k O 
um,n+½ - vm,n+½ + vm+l ,n+½ - vm+2,n+½ x 1 um,n+{ 

lo, if 
p' = 

I, if 

E uk > 0 (E u denotes the sum of u over all grid points) 
m,n m,n 

< [p-I+o(p+p')J 2 [pJ [p-o(p+p')J)/1:i 2 
vm+l ,n+½ - vm,n+½ + vm-1,n+½ x 

Stage 2: 

[OJ k+½ [OJ k+ 1 
U = U , V = V 2 , 

For p = 1,2 and q = 1, ••• ,Q: 

[p] k+½ k+f[p]'X =k+½ [p] =k+l k+l 
(u -u ' 11 T+u U +S [v U o(p+p')]-fv 2 +gl;; 2 ,~ ~ ~ ' ' ~ 

(2.4-ld) 

(2.4-le) 
( [q] k+½)/l [q] k+lx S (=k+I k+½) + f=k+I + [q] 
v -v 2 T+v vOx + Oxu ,v u gl;;Ox 

(2.4-lf) 

at m,n 

where 

S (=k+½ [pJ o) 
+y V ,u , l;k+½ (3}P;oJ_4}p-oJ +}p-oJ )/21:ix, if ;k+½ >O 

m+½ ,n m+ 2 ,n m+½ ,n-1 m+½ ,n-2 m+½ ,n 

at m+½ ,n = 

=k+½ (-3 [p-I+oJ 4 Cp-1+0J_ [p-I+oJ)/2• .f =k+½ o 
V l U ! + U l U 1 2 ux, 1. V I < m+ 2 ,n m+ 2 ,n m+ 2 ,n+I m+ 2 ,n+ ml- 2,n 
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o(p+p') [ I + ( -1 ) p+p ' J 

k+l 
JO, if Z: V 2 > 0 

p' = m,n 
(E v denotes the s\llll of v over all grid points) 

m,n 

l k+ 1 
I, if Z: v 2 < 0 

m,n 

S ( =k+l k+½) I 
Ox u ,v at m,n+ 2 

and 
< [p-l+a(p+p')J 2 [pJ [p-o(p+p')J)/~ 2 

um+½ ,n+l - um+½ ,n + um+½ ,n-1 y 

n=J 1;; u 1;; u 1;; 

n+½ V h V h V 

n 1;; u ;:_; u 1;; 

Figure 2.2. numerical grid. 

3. BOUNDARY CONDITIONS 

3.1 Introduction. 

This chapter describes the boundary treatment of the simulation method 

in a concise way. The boundary treatment is of crucial importance; a wrong 

numerical treatment of boundaries could well lead to instabilities. Relevant 

articles on the stability of numerical boundary procedures are written by 

Kreiss [2], Gustafsson,Kreiss and Sundstrom [3], Goldberg and Tadmor [4] 

[5], Michelson [6] and others. The theory treated by these authors is 

difficult to apply to two -dimensional problems. Even for one-dimensional 

problems the analytical difficulties are often hard to come by. Yet the 

theory of boundary conditions is very important to improve the general 

insight into the numerical treatment of boundary conditions. From this theory 

we have derived a few heuristic principles that we apply for applications. 

In section 3.2 we introduce the ideas behind our views by means of a 

simple example. 

In section 3,3 the actual treatment of closed boundaries is given. In section 

3.4 the treatment of open boundaries will be given. 
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3.2 Stability of numerical boundary procedures. 

Numerical equations at the inner points of a numerical grid can often 

not be solved near or at the boundaries of this grid. This leads to the 

construction of special boundary schemes or extrapolation methods near 

boundaries for the calculation of "missing" points. We will illustrate this 

remark with a simple example; consider the following initial boundary value 

problem: 

(3.2-la) O, O<x$l, t<!O 

(3.2-lb) u(O,t) = 1, u(x,O) 1-x, O<x$ 

The solution of this equation is given by: 

(3. 2-2) u(x, t) {
l+t-x, 

1 ' 

t-x $ 0 

t-x > 0 

Note that only one boundary condition is given at the "inflow" boundary 

X = 0. 

Eq. (3.2-1) will be approximated by central differences while the time 

is kept continuous. This yields: 

(3.2-3a) (u) + (u 1-u 1)/26.x = O, m = 1,2, ••• ,M m t m+ m-

(3.2-3b) 1--mllx, m 1 , 2 , ••• ,M 

Where 6.x denotes the distance between two gridpoints, 6.x = 1/M. 

The equations (3.2-3) are not complete because at m = M+l an equation 

is missing. Suppose that at m = M+l the following equation will be given: 

(3.2-4) ~+l = 0. 

Combined with (3.2-4), (3.2-3) is a complete .set of equations. Its solution 

however is highly oscillatory, see Stelling [1] p. 43, and does not converge 

to the solution of (3.2-1). By the addition of sufficient numerical viscosity 

the oscillations will disappear. In that case a viscosity term will be added 
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to (3.2-3a) as follows: 

(3.2-5) 2 
(u )t + (u 1-u 1)/(2Lx)-e(u 1-2u +u 1)/(Lx) = 0 m m+ m- m+ m m-

Although for sufficiently large values of E nonoscillatory and even 

convergent approximations of (3.2-1) can be obtained it is not a very 

satisfactory solution of the problem because it might imply very small values 

of Lx in order to obtain approximations of sufficient accuracy. 

In fact the reason for large oscillatons is (3.2-4) which is basicly an 

overspecified boundary condition. The following outflow boundary condition: 

(3.2-6) 

will reduce the oscillations drastically and moreover this condition will 

ensure convergence. Extrapolation formula up to first order will not 

destroy convergence as has been pointed out by Gustafsson [7]. 

Note that substitution of (3.2-6) into (3.2-3a) yields: 

(3.2-7) 

which is in fact a first order upwind differencing approximation. Yet 

with (3.2-6) the convergence of (3.2-3a) is of second order, see Stelling 

[I] p. 41. General theorems about the order of convergence related to the 

order of the boundary extrapolation formulas are given by Gustafsson [7]. 

The stability of numerical boundary procedures for I-dimensional hyper­

bolic problems is studied by Gustafsson,Kreiss and Sudstrom [3], For 

dissipative approximations this theory has been extended to multi-dimensional 

problems by Michelson [6]. 

For two-dimensional problems the application of such theories yields very 

complicated analytical problems while the results only hold for linear problems. 

By practical experience we found the numerical boundary procedures to be of 

crucial importance for stability or for the exclusion of wiggles especially 

with respect to the "advective" part of the shallow water equations. 

With respect to the advectivepart we have adopted the following simple 

criteria for the construction of numerical boundary procedures: 
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(i) Avoid overspecification of zero order boundary conditions. Higher order 

boundary conditions are often less hazardous. 

(ii) Viscosity terms require extra boundary conditions, also analytically. 

These conditions are only implemented within the boundary treatment 

of the viscosity terms. For advection terms the boundary treatment 

remains according to (i) as if viscosity is absent. This reduces 

ascillations if the amount of viscosity is only very small and the 

extra boundary conditions are of order zero. 

(iii) Use schemes near bounaries that are stable when they are applied to 

a purely initial value problem. 

3,3 A few aspects of numerical boundary procedures. 

There are two types of boundaries: closed and open. Closed boundaries 

are physical, they are land-water boundaries. Open boundaries are non physical. 

They are drawn across the water to limit the domain of the problem. At 

closed boundaries the following boundary conditions are prescribed: 

(3.3-1) 
0, if V 1 0 

where u~ denotes the velocity normal to the boundary, u 11 the velocity 

parallel to the boundaryand clan the derivative normal to the boundary. 

If v ,f, 0 then (3.3-1) denotes a perfect slip boundary condition. Note that 

non-slip boundary conditions or partially non-slip conditions are possible 

as well. If the flows contains eddies this can influence the flowpattern 

significantly, see Stelling [I] and Stelling and Wang [13]. 

The location of closed boundaries has two possibilities: (i) the 

location is constant in time. (ii) the location is time varying due to 

flooding and drying of tidal flats, i.e. tidal flats are simulated numerically 

by moving closed boundaries, see Stelling [I] or Stelling, Wiersma and 

Willemse [8]. This second aspect complicates the treatment significantly. 

At arbitrary locations within the numerical domain the presence of closed 

boundaries must be recognized. This will cause some computational overhead. 

In order to keep this overhead as small as possible a certain strategy 

has been described by Stelling [I]. 
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Open boundaries have a constant location in time. Often waterlevels or 

velocities are prescribed. For the number of boundary conditions see e.g. 

Daubert and Graffe [9]. For well posedness see e.g. Verboom Stelling and 

Officier [10] or Edwards and Preston [II]. The boundary conditions as 

implemented for our simulation model are somewhat different from the 

boundary conditions described in the afore mentioned literature and are 

based on practical experiments. 

First we will treat some aspects of waterlevel boundary conditions. 

Waterlevel boundary conditions are treated in the following way: 

+ -
+ 
0 

water level + 
boundary ➔0 

+ 
solid walls 

of length b.x 

+ 

+ 

+ 

Figure 3.2 waterlevel boundaries. 

Water level boundaries are located on waterlevel 

velocity points along the open boundary are set 

velocity points along the open boundary together 

points, see figure 3-1. 

to zero. The zero 

with the prescription 

The 

of 

waterlevels basicly cause the following boundary conditions to be effective: 

(3.3-2a) 

(3. 3-2b) a 
an (u 11 ) = 0, at inflow and or if v / O 

The boundary condition (3.3-2b) is a consequence of the treatment of 

advection terms near zero velocity points as described by Stelling[!]. 

It is to be noted that near waterlevel boundaries, if the flow field 

contains significant gradients due to large gradients of the bottom profile 

or due to eddies that reach the open boundary, the flow field is very 

sensitive to small disturbances. Even instabilities are likely to occur, 

although instabilities can be suppressed by adding a small non-reflective 

type of boundary condition to (3.2-2a), see Stelling [I] p. 152. According 

to some authors, see Edwards and Preston [II], waterlevel bounary 
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conditions do not yield well-posed problems. By addition of a small 

disturbance to the boundary condition this problem can be solved. The 

addition of a small non relfective part to (3.2-2c) yields: 

(3.3-3) 

where E~ denotes a small quantity (s 2). 

Despite of (3.3-3) it is still strongly rec0Dm1ended to choose the 

location of the open boundary such that near or at the open boundary strong 

velocity gradients are not to be expected. For example in case of studies 

of the effect of jetties on the velocity distribution the open boundary 

has to be chosen at a sufficiently large distance from the jetty. 

Similar to waterlevel boundaries velocity boundaries are prescribed. 

Velocity boundaries are given at velocity points as represented by fig.3-2 

boundary point 

• 
+ 0 + 

0 

+ 0 + 

+ + 
Figure 3.2 velocity boundaries 

Again the velocities just outside the domain in the direction along the 

open boundary are set to zero. 

Effectively this yields the following boundary conditions: 

(3.3-4a) 

(3.3-4b) a an (u 11 ) = O, at inflow and/or v + o. 

Although the stability of velocity boundary conditions is much larger than 

of waterlevel boundary conditions it is still profitable to add a non­

reflective part. This has a stabilizing effect. In case of stationary 

problems it sometimes increases the convergence to the steady state solution 

very significantly. 

Addition gives: 

(3.3-5) u a r:: 
U + E at; (u±2tgH) 
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where Eu denotes a small quantity, (s). 

Note that also discharges can be given as boundary conditions. For our 

model this type of boundary condition is given at velocity points. 

Finally we want to stress the fact that in many cases computational 

difficulties are due to improper choices of the location of open boundaries 

or due to an inadequate numerical boundary procedure. Stabilizing these 

difficulties by addition of artificial viscosity, for which sometimes 

euphemistic terms are in use like "selective lumping" or "filtering", 

quite often affects the accuracy of the results. If really complicated 

flow pattern are to be studied then these inaccuracies could well be 

inacceptable. 

It is our experience that by carefully chosen locations of the open 

boundaries and also by carefully constructed boundary procedures the addi­

tion of artificial viscosity can be minimized or even omitted. Another 

aspect that strongly contributes to the supression of spurious "wiggles" 

is the application of fully staggered grids, see Stelling [I]. 

4. EXAMPLES 

In the section we will show some practical applications of the numerical 

method described in the previous sections. These examples differ in type: 

time varying problems as well as stationary, and a large range in the 

gridsizes. The applications are not described in detail, they merely serve 

as an illustration of the capability and robustness of the numerical method. 

In the first example we will show some specific results of a simulation 

of the North Sea. This simulation was run with a timestep of T = 600 sec., 

and with a gridsize of 6x = 6y = 8000m. The model consists of approximately 

11000 active calculation points. In figures 4.1 and 4.2 two computed 

timehistories are shown in stations at the Dutch and at the English coast, 

and in figure 4.3 a resulting flowpattern is given. For a detailed 

description of this model and of some of its applications we refer to 

Voogt [12]. 

The second example concerns a model of a small part of the Eastern 

Scheldt estuary, where a storm surge barrier is being built. This model 

belongs to a series of models (some of them are so-called nested models) 

whose gridsizes vary from 6x = 800m to 6x = !Orn, and which are all situated in 
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the Eastern Scheldt estuary. The simulation we show was run with a timestep 

of T = 60 sec and with a gridsize of tx = 90m. In figures 4.4 and 4.5 two 

flowpatterns are given, at maximum ebb and at maximumflood. For a description 

of the effect of the timestep on the accuracy of the results (for applica­

tions on models with a complex geometry) we refer to Stelling, Wiersma and 

Wille!llse [8]. 

In the third model we show a steadystate calculation of a small part of 

the river Rhine. This simulation was performed with tx = 50m, and T = 60 

sec. Here, the timestep can be interpreted as an iteration parameter for 

reaching the steady state. In figure 4.6 we show the resulting streamlines 

of the calculation. 

The fourth and last example consists of a simulation of a laboratory 

flame, where the development of eddges behind a backstep has to be calculated. 

The simulation was run with a timestep of T = 0.125 sec. and tx = 0.025 m. 

In figures 4.7 up to 4.14 we give flow patterns at different moments. This 

example shows that the method is capable of handling difficult flow patterns. 

For a detailed description of the. example, together with a comparison to 

measurements, we refer to Stelling and Wang [13]. 
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The transient scattering of electromagnetic fields by one- and two­

dimensional obstacles of finite extent is investigated with the aid of the 

time-domain integral equation technique. In solving such equations with the 

marching-on-in-time method, numerical instabilities form a major problem. 

These instabilities can be attributed to the errors in the discretization 

of the source-type integrals that occur in the equations. In this paper, we 

formulate two so-called stability criteria for such a discretization which, 

if they are met, guarantee that the instability can be controlled by 

reducing the discretization step. With the aid of these criteria, we ana­

lyze the solution of a number of electromagnetic scattering problems, 

namely the scattering of a pulsed plane wave by a one-dimensional, inhomo­

geneous, lossy dielectric slab, both in vacuum and in between two homogene­

ous, lossless dielectric halfspaces, and the scattering of such a pulse by 

a perfectly conducting or an inhomogeneous, lossy dielectric cylinder. 

Numerical results are presented and discussed. 
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I • INTRODUCTION 

In this paper, a number of one- and two-dimensional electromagnetic 

transient-scattering problems are investigated with the aid of the time­

domain integral equation technique. This technique has been applied to 

various configurations both in electromagnetics and in acoustics (see [I] 

and references cited therein). An important tool in the numerical solution 

of such equations is the so-called marching-on-in-time method. This method 

utilizes the property in the equation that the scattered field is expressed 

in terms of one or more integrals of field values at previous instants. The 

spatial domain of these integrals is either the boundary of the scattering 

obstacle (for homogeneous or impenetrable scatterers) or its interior (for 

inhomogeneous scatterers). 

A limiting factor in the application of the marching-on-in-time method 

is the accumulation of the errors made in each step. In the one-dimensional 

case, this accumulation can be handled by discretizing the relevant space­

time integrals in such a way that the error per step in the updating scheme 

is proportional to h2 , where his the mesh size of a uniform space- (dimen­

sionless) time grid. If this error is not amplified in the next step, the 

overall error towards the end of a finite interval will then at worst be 

proportional to h, since the number of updating steps increases linearly 

with 1/h (see also [2]). Hence, this error can be controlled by choosing h 

sufficiently small. For two- and three-dimensional scatterers, the accumu­

lation of errors is more difficult to handle and may even lead to instabil­

ities. 

In the present paper, the one-dimensional technique is extended to a 

time--domain scattering problem in more than one dimension. In doing so, we 

first derive two so-called stability criteria for the discretization of the 

space-time integral which, if they are met, guarantee that the instability 

can be controlled by reducing the discretization step. Next, we illustrate 

the role of these criteria in the stability analysis of the marching-on-in­

time method by reconsidering the one-dimensional problem discussed in 

[2, 3] of an inhomogeneous, lossy dielectric slab embedded in vacuum which 

is excited by a pulsed electromagnetic plane wave. Also, we generalize the 

solution scheme developed for that case to the related problem of a slab 

sandwiched between two homogeneous, lossless dielectric halfspaces. 

Finally, we use the stability criteria to analyze the numerical 

solution of two two-dimensional electromagnetic scattering problems. For 
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the problem of a pulsed wave incident on a perfectly conducting cylinder, 

which was previously investigated in [4, 5], the integral equation can be 

discretized such that the stability criteria are met, with the exception of 

a possible systematic error for late times. For an inhomogeneous, lossy 

dielectric cylinder we have only been able to partly meet these criteria. 

Nevertheless, the behavior of the solutions obtained can, as far as their 

stability is concerned, be understood with their aid. For all configura­

tions, representative numerical results are presented and discussed. 

2. STABILITY CRITERIA 

For a general, one-, two- or three-dimensional linear time-domain 

scattering problem, the real-valued field $(~,t), here assumed to be a 

scalar, satisfies an integral relation of the shape 

(2. I) $(~, t) 

with x a Cartesian position vector and R = l~-~•I. In (2.1), D denotes a 

finite domain, K(x,x';t-t') a linear, time-invariant operator acting on 

$(~',t'), $i(~,t)-a-known incident field that for ~ED vanishes forts O, 

and c a wave speed parameter. Further K = 0 when x 1ED' where D' is the 

complement of the closure of Din the space under consideration. When ~ED, 

0 s t < 00 , (2.1) is an integral equation that allows the numerical determi­

nation of$ with the marching-on-in-time method. In this method, we 

discretize in space and time, approximate the second term on the right-hand 

side of (2. I) accordingly, and invoke the equality sign in (2. I) at the 

relevant space-time points. To this end, we construct a uniform spatial 

grid {x} with mesh size hand take t = 6t, where m = O, I, 2, .•• ,00 • The -a 
time step 6t is chosen such that 6t = min(R ,)/c, where R , = Ix - x ,I. aa aa -{:( -{:( 
Then we end up with algebraic equations of the type 

(2.2) ~ ~i ~ 1m ~ ~ 
$(a,m) = $ (a,m) + la• ½n'=OK(a,a';m-m')$(a',m'), 

where ii(a,m) = $i(x ,m6t). Furthermore, the upper limit of the time inte-
-a 

gration in (2.1) is always less than t, unless R = 0 which occurs only if 

a'= a. Hence, owing to the choice of 6t, the interpolations can be organ­

ized such that K(a,a';O) = 0 if a'~ a, while for passive obstacles the 

property K(a,a;O) s O can be shown to hold. Then, (2.2) can be solved by 
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a step-by-step updating procedure, involving only the solution, at each 

space-time point, of a linear equation for the unknown field value. 

Due to the discretization of the multiple integral in (2.1), $(a,m) 

will only be approximately equal to the actual field value !(~,mllt). 

Since in the numerical solution of (2.2), each field value $(a,m) is com­

puted from field values $(a' ,m') at previous instants, the computational 

errors due to this discretization accumulate. As a consequence, the 

solution obtained may be unstable. We will now derive conditions under 

which such an instability can be controlled. To this end, we consider 

$(x ,mllt) - $(a,m). Combining (2.1) and (2.2), we arrive at 
-a 

(2. 3) 

with 

[l - K(a,a;0)][$(x ,mllt) - $(a,m)] 
-a 

= f dx' fmllt-R/cdt'K(x x'·mllt - t'H(_x',t') 
D - 0 -a'- ' 

- ' 1 ,m, 0K(a,a';m-m'H(x ,,m'L',t) +A(a,m), 
la. lm = -a 

, ,m-1 ~ ~ 
A(a,m) = la• lm'=OK(a,a' ;m-m')[H~.,m'L',t) - Ha' ,m')J. 

In (2.3), the difference of the first two terms on the right-hand side 

denotes the effect of the discretization error in the updating step; the 

term A(a,m) represents the accumulation of the errors made in previous 

updating steps. Now suppose that for the exact field $ (~, t), the discre­

tization of the integral in (2.1) satisfies the criterion 

(2. 4) 

fndx' fft-R/cdt'K(~,~• ;mllt - t'H(~' ,t') 

= I~, l=•=aK(a,a';m-m'H(~.,m'L',t) + O(h2), 

uniformly in a and m, and let e = max{ }l$(x ,mllt) - i(a,m)I, Using the m a -a 
triangle inequality, we then obtain from (2.3) and (2.4): 

(2.5) IA(a,m) I 

since K(a,a;O) $ 0. Next suppose that the variation of $(a',m) with a' and 

m' allows the estimate 
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(2.6) 

uniformly in a and m. (2.6) implies that the increase in the accumulated 

error A(a,m) per updating step is at most of the same order of magnitude as 

the effect of the discretization error. Combining (2.5) and (2.6), we then 

find. 

(2. 7) 

Substituting (2.4) and (2.7) into (2.3), using the triangle inequality, and 

taking the maximum over {a}, we finally end up with 

(2. 8) e 
m 

while e0 = 0 in view of the initial conditions. From (2.8), it follows by 

induction that e = O(mh2). Because the time step lit is proportional to h, 
m 

the error l$(x ,mllt) - i(a,m)I at the end of a finite time interval 
-a 

0 < t < T will then at most be proportional to (T /h)h2 = T hand, ma.x ma.x ma.x 
hence, it can be controlled by choosing h sufficiently small. 

For scattering by passive obstacles, the field$ generally becomes 

negligible after some finite instant Tma.x· Then the time-domain field can 

be determined without instabilities by discretizing the multiple integral 

in (2.1) such that requirements (2.4) and (2.6) or, equivalently, require­

ments (2.4) and (2.7) are met, and by choosing h sufficiently small. It is 

noted that the analysis presented above is a worst-case analysis. There­

fore, a marching-on-in-time scheme may be stable although the conditions 

(2.4) and (2.6) are violated. Upon variation of h, however, the stability 

of the scheme will not behave as predicted above. We will now analyze some 

specific time-domain scattering problems using the stability criteria (2.4) 

and (2.6). In doing so, we will denote (2.4) as criterion I, while 

criterion II refers to the condition that at least one of the equivalent 

requirements (2.6) and (2.7) is met. 

3. SCATTERING BY AN INHOMOGENEOUS, LOSSY DIELECTRIC SLAB 

In the first problem, we consider the scattering by a one-dimensional 

inhomogeneous lossy dielectric slab (Fig. I) of thickness d, embedded in 

vacuum (see also [2, 3]). The permittivity E(x) and the conductivity cr(x) 
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A Eyx.t! 
Vacuum J__1__ 

Ejx.lJ 

. ,_ I\ 

Figure I. A pulsed plane wave normally incident on an inhomoge­

neous, lossy dielectric slab embedded in vacuum. 

are assumed to be real-valued. Normally incident on the slab is an electro­

magnetic pulse of finite duration given by 

(3. I) Ei = F(t - x/c)i , Hi= -Y F(t - x/c)i 
-z O y 

where Ei denotes the electric and Hi the magnetic field strength, 

yo= c:0/µo)½, c = (Eoµo)-!, wit~ Eo and µo being the permittivity and 

permeability in vacuo, respectively. The total electromagnetic field is 

then written as 

(3.2) E = E (x,t)i , H = H (x,t)i. 
- z -z - y -y 

In terms of the field components E and H, the source-free electromagnetic 
z y 

field equations in the slab are given by 

(3. 3) 
a H (x, t) 

X y 

a E (x, t) 
X Z 

[E(x)at + cr(x)]Ez(x,t) 

µOat Hy<z,t). 

Elimination of H leads to 
y 

(3. 4) 

which will be regarded as our fundamental differential equation. With the 

time-domain Green's function technique, the following integral relation is 

obtained, which is equivalent to (3.4): 
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(3.5) 

where x(x) = E(x)/£ 0 - I denotes the dielectric susceptibility, 

z0 = (µ 0/£0)!, and t' = t - lx-x'l/c. For O < x < d and O < t < 00 , (3.5) is 

an integral equation for Ez. The second term on the right-hand side of 

(3.5) is identified with the reflected field Er(x,t) when x < O, while the 
z 

total field in x >dis identified with the transmitted field Et(x,t). From 
z 

(3.5), we then have the relations 

Er(x,t) Er(O,t + x/c) for X < 0, 
(3. 6) z z 

Et (x, t) Et(d,t - (x-d) / c) for X > d, z z 

by which the field outside the slab can be obtained from the fields at the 

slab's interfaces. 

In order to solve the integral equation (3.5) numerically, we discre­

tize in space and time. When the space step is h = d/N and the time step is 

~t = h/c, this discretization results in: 

(3. 7) 1,N ex x(n)[~ E (nm') - 2 Ez(n,m'-2) + 12Ez(n,m'-4)] 
- 2 ln=O n 2h 2 z ' 

-lI!=o cxn ;(n)Ez(n,m1 ) 

where .t = 0, I, 2, ••• , N and m = 0, I, 2, ••• 00 • In (3.7), we have 
I I ~i i ~ ~ 

m' = m - .t - n , E (.t,m) = E (.th,~t), x(n) = x(nh), a(n) = z0a(nh), z z . 
ex 

n 
h for O < n < N and cx0 = cxN = h/2. The spatial integral in (3.7) has 

been approximated by a repeated trapezoidal rule and the time-derivative by 

a three-point backward interpolation formula with a time interval equal to 

the double time step. With the aid of the error estimates for these 

approximations (see [6, 7]), it follows directly that the discretization in 

(3.7) meets criterion I. If, as in [3], the time derivative were approxi­

mated by a two-point formula, the error in that approximation would be of 

O(h) and, hence, criterion I would be violated. 

In order to show rigorously that criterion II holds for the discreti­

zation in (3.7), we need additional information on the variation of 

E (.th,~t) - E (l,m) with .t and m. Since such information is not available, z z 
only the following intuitive argument can be given. In the last term on the 
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right-hand side of (3.7), the total error is a superposition of N errors of 

O(e ,), each of them multiplied by a factor h provided by the space inte-
m 

gration. Therefore, it is at most proportional to max{m' }em, = ~m-i · In ·the 

second term on the right-hand side of (3.7), each error is multiplied by a 

f~ctor 1/h due to the time differentiation as well as a fac~or h from the 

space integration. The total error is then a superposition of O(N) errors 

of O(e 1) and will therefore depend on the sign distribution of these m-
errors. Since the approximations leading to the discretization (3.7) are 

all based on interpolation in x or t, this sign distribution will be 

determined by the higher-order space and time derivatives occurring in the 

corresponding error estimates. Now E (x,t) represents a pulsed wave which, 
z 

due to repeated reflections at the slab's interfaces, travels backwards and 

forwards across the slab. For such a solution, the integrand in (3.5) and 

its derivatives vary with x'. As a consequence, the errors 

E (nh,m'~t) - E (n,m') will average out. With (2.5) at the previous z z 
instant, it then becomes plausible that (2.7), i.e. criterion II, is met. 

The choice of the time interval of double length in the discretization 

of the time derivative in (3.7) allows a restriction of the numerical 

computation to space-time points (!h,~t) where!+ m is even. A further 

reduction in computation time can be achieved by decomposing the summation 

in (3.7) according to I!=o = I~=O + I!=t+l and separating off the terms 
containing E (!,m). This results into 

z 

E <t,m) 
z 

0! 3 ~ I = { I + -f[4h x(!) + o(!)J}- x 

~i 3 I 2 {E (!,m) + ¥Sx(!-l,m-1) + S (!,m) J z X 

(3. 8) I + s2 (!,m-2)] - 2[Sx (!,m-2) 
X 

+ Hs1ct,m-4) 2 + S (!,m-4)] 
X X 

where 

(3.9) 
1~! a o(n)E <n,m - t + n), 

- 2 ln=O n z 
~N ~ ~ 

-lln=i+I ana(n)Ez(n,m + ! - n); 

similar definitions hold for S~ and S~. If Ez(!',m') is known for 



0 ~ l' ~ N and m' < m, E (l,m) can be determined by computing the right­
z 

hand side of 
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the sums s 1 
a' 

(3.8). 
S2 SI 
a' X 

In the computation of the field at the next instant, 
2 and S need not be evaluated again but can be obtained 
X 

from the recurrence relations 

(3. I O) 
s!(l,m) = s!(l-1,m-l) - !a1;(l)Ez(f,m), 

s!(l-1,m+I) s!(l,m) - !a1;(l)Ez(f,m), 

and similar relations for s 1 and s 2• If these recurrence relations are 
2 X X 

used, the computation time is proportional to N as N+oo, while a direct 

evaluation of (3.7) leads to a computation time of order N3• Note that 

approach differs from the related ones described in [2] and [3], where 

recurrence relations for E (l,m) are used. 
z 

this 

The computational scheme described above was implemented in PL/I on 

an Amdahl 470/V7B computer. Numerical results were obtained for several 

incident-pulse shapes F(t) and various susceptibility and conductivity 

profiles. Numerical instabilities were not observed, even for rapid 

variations in the shape of the incident pulse and/or for small values of N, 
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Figure 2. Incident, reflected and transmitted field in the case of 

(a) a lossless, homogeneous slab and (b) a lossless slab 

with a parabolic susceptibility profile. In both cases 

the incident field was given by F(t)=sin2 (TTt/T)rect(t-T/2;T) 

with cT/d=I. The time variable is ct/d. 
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SPACE-TIME FIELD DIAGRAM. 
Figure 3. Three-dimensional 

space-time plot of the field 

inside the slab for 4 runs 

of the pulse specified in 

Fig. 2 through the slab 

specified in Fig. 2a. The 

travel time for a single 

traverse through the slab 

is denoted by T with, in 

this case, cT/d=l.5. 

for which cases the results become inaccurate. As an illustration, we 

present in Fig. 2a, Fig. 3 and in Table I, results for a sine-squared 

pul,se incident on a homogeneous, lossless slab. For that configuration, the 

solution is known in closed form in terms of transmitted and reflected 

waves. Fig. 2a shows the computed reflected and transmitted fields at the 

ends of the slab while Fig. 3 gives the field distribution inside the slab 

for the first four runs of the pulse across it. In Fig. 2a, a slight over­

shoot is observed at the instant where the directly transmitted wave has 

completely emerged from the slab. This can be explained by the fact that at 

that space-time point, the derivative a~Ez(x,t),which occurs in the error 

estimate for the discretization of the time derivative, becomes unbounded. 

We have not taken special measures to prevent this effect since it turns 

out to vanish as N increases. In Table I, we provide results of an 

accuracy test. For a lossless medium (cr = 0), we have the identity 
Ein = Eout with 

' 

(3. ll) 

where Ein and Eout denote the total energy that, per unit surface, flows 

in and out of the slab, respectively. In Table I, we have, for increasing 

N, checked this identity, compared the actual maximum values of E (0,t) and 
z 

Ez(d,t) with the corresponding numerical values and listed the computation 

times for a fixed time interval. It is observed that the computation times 

are indeed proportional to N2. Furthermore, the error in the computed 

fields decreases considerably faster than was predicted by the worst-case 

estimate of O(1/N). 
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Table I. Computational data from the numerical solution of the scat­

tering problem specified in Figs. 2a and 3 for increasing N. 

The outgoing energy and the computation time correspond to 

the time interval O<ct/d<20. 

error(%) E (0,2T+Ti2) z 
CPU time 

exact 0.375 0.96 0.192 

N=IO 0.291 28.7 0.665 O. I 16 0.38s 

N=20 0.344 9.1 0.842 0.155 1.50s 

N=40 0.370 1.4 0.946 0.186 6.05s 

N=80 0.3743 0.18 0.958 0.1916 23.8 s 

N=l60 0.37492 0.02 0.9598 0.191993 96.0 s 

Similar numerical experiments were carried out for the discretization pre­

sented in [3], where a two-point formula is employed to approximate the 

time derivative. It turns out that for incident pulses of short durations 

(cT/d ~ I), computational problems arise that cannot be removed by 

increasing N. Finally, in Fig. 2b, results were plotted for an inh=ogene­

ous, lossless slab. As in Fig. 2a, discrete reflected and transmitted 

pulses are observed originating from repeated reflections and transmissions 

at the slab's interfaces. In addition, a continuous reflected and trans­

mitted field is observed in the time intervals in between, caused by the 

inhomogeneity of the slab. 

4. SCATTERING BY AN INHOMOGENEOUS, LOSSY DIELECTRIC SLAB IN BETWEEN TWO 

HOMOGENEOUS, LOSSLESS HALFSPACES 

In the second problem, we consider the dielectric slab discussed in 

Section 3 sandwiched between two homogeneous, lossless dielectric half­

spaces. The configuration then consists of three domains V. (with 
l. 

i = I, 2, 3) as indicated in Table 2. As in Section 3, we want to determine 

the electric field strength in this configuration caused by a linearly 

polarized electromagnetic pulse of finite duration T which is normally 

incident from V1• In principle, this problem can be solved by forming an 

integral equation of the type (3.5), in which a homogeneous, lossless 

dielectric with£= £1 is treated as the reference medium: 
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Table 2. Subdivision of the configuration into domains 

domain x-coordinate permittivity conductivity ,pemeabi li ~.y 

VI --co<x<O e:(x)=e:1 cr(x)=O µ (x)=µo 

v2 O<x<d e: (x)=e:2 (x).::e:o cr (x)=cr2 (x).::O µ(x)=µo 

v3 d<x<00 e:(x)=e:3 cr (x)=O µ(x)=µo 

(4. I) i ZI 00 

Ez(x,t) = E (x, t) - rf o{[e:(x') - e: I Ja t + cr (x') }E/x' 't I )dx'' z 

where E!(x,t) = F(t - x/c1), z1 = (µ 0/e: 1)! and t' = t - lx-x'l/c1 with 

c 1 = (e: 1µ0)-!. However, application of the marching-on-in-time method for 

the integral equation (4.1) clearly results in a solution for which the 

wave front propagates with a speed of at most c 1• As a consequence, the 

solution obtained will be incorrect if the actual wave speed 

c(x) = [e:(x)µ 0J-! locally exceeds c1, i.e. e:(x) < e: 1 for some x. In fact, 

numerical experiments for such cases produced results that increased 

exponentially with increasing t. Furthermore, for e: 3 ~ e: 1, the range of 

the space integration in (4.1) becomes semi-infinite, which requires 

special care if the electric field is to be computed for large t, 

Both these problems can be circumvented by choosing for the reference 

medium a lossless, piecewise-homogeneous, th~ee-layer medi;um wi.th 

e:(x) = e: 1, e: 0, e: 3 for x in V1, V2 , V3, respectively. With the time-domain 

Green's function for that configuration, the following integral relation 

is obtained 

(4.2) 

E (x,t) = Ea(x,t) 
z z 

-:of~ J z ( x' , t - I x-x' I /c) dx 1 

ZO 00 n d ( ) + 2 R1In=O(R1R3) f0 Jz x',t - [x'+x+2nd]/c dx' 

ZO 00 n d ( J + 2 R3In=O(R1R3) f0 Jz x',t - [(d-x')+(d-x)+2nd]/c dx' 

- :o R1R3I:=0(R1R3)nf~{Jz(x',t - [(d-x')+x+(2n+l)d]/c) 

+ Jz(x• ,t '.: [x' + (d-x)+(2n+l)d]/c)}dx', 



where Jz(x,t) denotes the polarization current density 

J (x,t) = [£0x(x)a + cr(x)]E (x,t). 
z t z 

I 

In (4.2) we have R1 = (N 1 - I)/(N 1 + I) with N1 = (£ 1/£ 0) 2 and a similar 

definition for R3 , where R1 and R3 denote the plane-wave reflection 

coefficients for a boundary between the corresponding medium and vacuum. 

The auxiliary field Ea(x,t) is the field that would result from the 
z 

incident pulse in the reference medium: 

+ -
- T1R3T1 G(t + x/c 1 - 2d/c) in VI 

Ea(x,t) + 
x/c) - T:R3 G( t - [ (d-x) + d]/ c J in v2 (4. 3) T1 G(t -z 

' 

' 
+ + ( T?3 G t - (x-d)/c3 - d/c) in v3, 

with 

375 

In (4.3), we have the plane-wave transmission coefficients T: = 2N 1/(N 1+I), 

T1 = 2/(N 1+I) and T; = 2/(N3+I) with the superscripts+ and - referring to 

the direction of propagation. The integral equation given by (4.2) and 

(4.3) does not suffer from the same difficulties as the one given by (4.1) 

and, hence, does allow the application of the marching-on-in-time method. 

Although the equation obtained seems complicated, it can be solved by a 

recursive scheme similar to that employed in Section 3. Actually, the 

relations (3.8) and (3.10) still hold for O < l < N. For l = O,N, we have 

relations of the same kind involving the relevant reflection factors R1 
and R3• 

With the computational scheme resulting from (4.2) and (4.3), we have 

also performed a number of numerical experiments. The solutions obtained 

showed the same accuracy and stability behaviour that was observed for the 

case of the single slab. As an illustration, an example is shown in Fig. 4. 



376 

1 t£LP FIELD, AEFLECTEO ANO TftRNSHITTED FIELD. 1 ACTUR. FIELD, AEFLECTED RNO TAANSHITTED FIELD. 

0.9 

o.e ,; 

0.7 /\Et(dt) 

0.6 I\ z ' 
o.s 

o.• ! ! 
o.s ! \ 
0.2 

f \ 
0.1 i \ 

-0.1 

-0,2 

-0.3 

-o.• £,= £3= 6 ·25£0,£2=£0 
-0,50 I 2 • • s 6 

TIHE -

(a) 

t 
:c ... 
Iii! 
"' I= ., 
C 
..J 

"' .: 
I 

u 

~ 
u 
"' id 

1 • 9 10 

0.9 

o.e 
0,7 

0,6 

0,5 

o.• 
o.s 
0,2 

0,1 

-0.1 

-0.2 

-0.3 

-o.• 

f\ 
!\Et(dt) 
! ! z ' 

I\ 
X=125,o=0,N=100 

(b) 

- 0•5o 1 2 s II s a 1 a s 10 

TIHE -

Figure 4. Reflected and transmitted field for the scattering of the 

incident field F(t)=sin2(nt/T)rect(t-T/2;T) with cT/d=l in 

a three-media configuration with E1=E 3=6.25E 0, E2=2.25E 0 and 

cr(z)=O. (a) auxiliary field as specified in (4.3); (b) 

actual field computed for N=IOO. The time variable is ct/d. 

5. SCATTERING BY A PERFECTLY CONDUCTING CYLINDER 

In the third problem, a pulsed electromagnetic plane wave of finite 

duration T is perpendicularly incident on a perfectly conducting cylinder 

(see Fig. 5). For this configuration, the magnetic field satisfies the 

boundary integral equation (see [4, 5]) 

(5. I) 

In (5.1), .:!_(£_,t) denotes the equivalent surface current E_(,E) x ,!!(.E.,,t). In 

order to simplify this equation, we first carry out the curl operation 

according to 

"J X 

(5 .2) 
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Figure 5. Scattering of 

pulsed electromagnetic 

plane wave by a perfect­

ly conducting cylinder. 

where i_R = (.e._-.e._')/R. Next, we integrate b! parts the first term on the 

right-hand side of (5.2). Assuming that !!_i(.e._,t), and therefore also !!_(.e._,t), 

is a continuously differentiable function oft, we end up with: 

(5. 3) 

. lft-R/c dt' t - t' ~ J( , t') 
-i X - 2 2 o I p ' ' 

.::.R_ RO _ R /c ]• t --[(t-t') 

with i_R = (.e._-.e._')/R. Substitution of (5.3) and use of the definition of 

.::!_(.e._,t) in (5.1) finally results in two scalar integral equations for the 

tangential components of H: 

i 
+¼~eds' 

(i ·n') 
H (p, t) -R- I/.e._' ;t,R), 2H (p, t) R z - z -

(5.4) 
(i_R•~ 

H (p, t) i 
+¼~eds' I (p I; t ,R) ' 

T-
2H (.e._, t) R T-

with 

I ( ' R) fot-R/ c dt' t - t' ~ H < ' ' ) 
Z ~ E._ ;t, = 2 2 2 o I p ,t • 
,, [(t-t') - R /c ]2 t z,, -

These equations are now in a form that is suitable for the application of 

the marching-on-in-time method, as discussed in Section 2. Since both 

equations are solved by the same procedure, we restrict the discussion to 

the case where the magnetic field has only a z-component (H-polarization). 

Following Bennett [4], we restrict the space points to the finite set (e.e.}, 
l = I, ... , N. The path length between two neighboring points is h = 1/N, 

with L the total length of the contour e. The contour integral is approxi-
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mated by a repeated rectangular rule. As a function of s', the integrand of 

(5.4) is a periodic, differentiable function with an integrable derivative. 

Therefore, it follows from discrete Fourier theory that the approximation 

error is proportional to h2 (see [8]). This leaves us with the determina­

tion of the integrand to the same order of accuracy. For a specific 

obstacle, we assume the factor (i_R•n')/R to be known for R > O, while for 

R➔O, ·we have (i_R•n')/R ➔- l/2a(p__), with a(.e_) the radius of curvature at the 

point of observation. To determine the time integral for R > 0, we restrict 

R to multiples 0f cnt. For t=mllt and R=kcnt, the time integral reduces to 

(5 .5) 
x a H (p' t'). 

t' z - ' 

The integrals over the subintervals m'nt < t' < (m'+l)nt are obtained by 

approximating Hz(.e_',t') by a quadratic interpolation polynomial in t', 

also using the field value at t' = (m'-J)nt. The time differentiation and 

the subsequent integration are carried out analytically. By considering the 

interpolation error (see [6, 7]),, it can be shown that this procedure leads 

to an approxi~ation of order h2 of the time integral Iz(£.t;mnt, kcnt). The 

integral Iz(£.,e,;mnt,Ru,), which is required in the discretized contour 

integral, is obtained from the values at R = kcnt by linear interpolation 

in R. For small R, this may not seem justified since the approximation 

error is proportional to h2aiiz, with cliiz logarithmically singular at 

R O. However, the interpolation only needs to be carried out for 

R > cnt, and in that region the interpolation error is of order h2ln(h). 

Hence, the total error in the discretization is also of order h21n(h). 

Since the analysis presented in Section 2 can directly be generalized to 

include the factor of ln(h) in the discretization error, we may consider 

criterion I to be met. 

As for the case of the dielectric slab, the complicated form of the 

integrals in (5.4) makes it hard to show that criterion II holds for the 

corresponding discretized form. Again, we have to be content with the 

following intuitive argument. In the time differentiation, an error of 

O(em,) is multiplied by a factor 1/h while integration over a single space 

coordinate provides a factor h. Such a factor h cannot be attributed to 

the time integral because of the singular behavior of its integrand near 

t' = t-R/c. In a sum of the type (2.2), the total error is then a super-
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position of O(N) errors of O(em_l) and will therefore depend on the sign 

distribution of these errors. Since all the approximations made above are 

based on interpolation in either s, R or t', this sign distribution will be 

determined by the higher-order space and time derivatives occurring in the 

corresponding error estimates. For a wave-like solution, these derivatives 

vary in space and time and, hence, the errors ~(x ,,m'.llt) - i(o:' ,m') will 
-a 

tend to average out. In that case, the discretization satisfies criterion 

II. On the other hand, if the solution is constant in space for a non­

vanishing time interval, it may, at some instant, exhibit a systematic 

error at all space points. Such an error will be amplified in the next few 

time steps and, hence, a systematic instability in the solution will be 

observed. 

The computational scheme described above was implemented in PL/I on an 

Amdahl 470/V7B computer for both polarizations. In Fig. 6, results are pre­

sented for a circular cylinder with radius a, illuminated by an E-polarized 

sine-squared incident pulse of duration cT/a = 2 for 32 and 64 points on 

the integration contour. It is observed that the instabilities can indeed 

be controlled by reducing h = 211a/N. For large t, the tangential field 
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Figure 6. HT as a function 

of the normalized time et/a 

for a perfectly conducting 

cylinder illuminated by the 

pulse specified in (3. I) 

for F(t)=zogin2 (11t/T) X 

x rect(t-T/2;T) with 

cT/a=2. Figs. (a) and (b) 

show the results computed 

with N=32 and N=64, respec­

tively. 
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turns out to be constant around the contour. Obviously, the incident field 

excites a "stationary" current propagating in the z-direction and a corre­

sponding "stationary" magnetic field around the cylinder. Note that the 

onset of this phenomenon coincides in time with the start of the - system­

atic - instabilities. For H-polarization, the incident field only induces 

a current propagating in the transverse direction, which becomes negligible 

after some finite instant. Until that instant, the induced current, and 

hence Hz' vary along the contour C. As a consequence, the errors average 

out and systematic errors as observed for E-polarization do not show up. 

A disadvantage of the technique is the sharp increase in computation 

time upon reduction of h. For the configuration considered here, the number 

of operations is approximately proportional to N4 • For the field shown in 

Fig. 6, the computation times were I, 10 and 130 seconds for N=l6, 32 and 

64, respectively. The results obtained are in agreement with a reference 

solution obtained by applying an FFT-algorithm to the frequency-domain 

Fourier-Bessel series solution (see [9]). 

6. SCATTERING BY AN INHOMOGENEOUS, LOSSY DIELECTRIC CYLINDER 

Finally, we turn our attention to the scattering of an E-polarized 

pulsed plane wave by an inhomogeneous, lossy dielectric cylinder (see Fig. 

7), i.e. the two-dimensional equivalent of the problem discussed in Section 

3. For this configuration we have, as in (3.4), the fundamental differen-

Ei~ 

J\__ 
t_ 

X 

Figure 7. Scattering of a pulsed electromagnetic plane wave by an 

inhomogeneous, lossy dielectric cylinder. 



tial equation 

(6. I) 

Using the free-space Green's functioti, we end up with the following inte­

gral relation for the electric field: 

(6.2) 
µ a J (x' y' t') 

E~(x,y,t) - --2.Jfdx'dy'ft-R/c dt' t' z2 '2, 2 -
2rrs O [(t-t') - R /c J2 

In (6.2), Jz(x,y,t) denotes the polarization current density 

(6.3) 

with o the conductivity and x the electric susceptibility. Equation (6.2) 

is an integral equation if (x,y)ES. Compared to the integral equations 

discussed in the previous sections, we now have the additional difficulty 

of a logarithmic singularity in the space integration. This singularity 

shows up explicitly if we carry out a partial integration with respect to 

time. For continuous otJz in t, we arrive at 

(6.4) 

X O 2 f J (X I , y f , t I)}, 
t z 

where in the second integral, the integrand remains bounded as R+O. 
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In discretizing the integrals in (6.2) or (6.4), the space time points 

were limited to:~= kh, yl = lh, tm mtit with ~t = h/c. The boundary of 

the domain of integration was piecewise approximated by straight lines 

within square subdomains of width h. The time integrals were handled by 

approximating, as in Section 5, the field as a function of time by an 

interpolation polynomial of sufficiently high degree. Two different methods 

were attempted to determine the space integral. In method I, the conven­

tional approach was followed and Jz(x' ,y' ,t') was approximated by a piece­

wise-constant function: 

(6.5) 
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for (x,y)ESnSkl, where Skl denotes the domain max(lx-~I ,jy-yll) < h/2 and 

where cr(k,l) and x(k,l) are taken at some point inside SnSkl. Substitution 

of (6.5) in (6.2) results, for each combination of a point (~,yl) and a 

square Sk'l'' in an integral over Sk'l' of a function of~= 1£..'-£:.icR_I 
only. For the self-patch domain Skl, this function is integrated analytical­

ly; the contribution from the remaining patches is obtained by analytical 

integration of 

In method 

space integral 

a linear approximation in~-

II, we approximated the term 3 J (x',y',t-R/c) in 
t z 

of (6.4) and the 'complete integrand of the second 

bilinear interpolation 

(6.6) 

the first 

one by the 

for~< x < ~+I and yl < y < Yf+J and determined the resulting space 

integrals analytically. In (6.6), the factors A, B, C and Dare chosen such 

that 6(~,yl) = 6(~,yl) for all k and l. It is noted that neither of the 

discretizations meets criterion I. In method I, (6.5) already violates this 

criterion. In method II, we have the error estimate: 

(6. 7) 

where (x',y') varies over the range of the interpolation. Since the deriva­

tives in (6.7) become unbounded as R+O, especially the contributions of 

surface patches near the point of observation are not computed with 

sufficient accuracy. 

Numerical results have been obtained for both discreti~ation schemes 

described above. The results obtained by scheme I exhibit a short-term 

instability. This instability is caused by interpolation errors at the 

space points next to the point of observation, where at t' = t-R the time 

derivative must be determined by backward time interpolation. It can be 

removed by using, after each time step, the field obtained to determine a 

new approximation to those time derivatives by central time interpolation 

instead of backward time interpolation. The computed field values are 

subsequently improved by correcting the discretized version of the integral 

in (6.2) for half the difference of the two approximations of the relevant 

time-derivatives. With this correction procedure, the computational scheme 

yields stable results for a fairly wide range of incident-pulse durations 

and contrasts. An example is shown in Fig. 8. The computation times are 
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Figure 8. Ez as a function 

of the normalized time 

et/a for a homogeneous, 

circular cylinder with x=3 

and er=0 illuminated by the 

pulse specified in (3.1) 

for F(t)=sin2{wt/T) x 

x rect(t-T/2;T) with 

cT/a=I0 at the points 

indicated in the inset 

(method I, h=a/2). 

approximately proportional to N5 • For a not too small value of h, however, 

they are of the same order of magnitude as in the previous section. For a 

homogeneous circular cylinder, the results coincide with a reference 

solution obtained from the frequency-domain Fourier-Bessel series solution 

(see [9]). For too short incident-pulse lengths or too high contrasts, 

long-term instabilities are observed at late times. Since the discretiza­

tion violates criterion I, a reduction in the discretizatiori step does not 

remove these instabilities. 

Scheme II has until now only been implemented for a square cylinder 

with diameter 2a. For X = 0, the results show, for a finite range of h, a 

stability behavior similar to that in the perfectly conducting case. For 

small er, a stable solution can be obtained by reducing h. For larger er, we 

again observe an almost stationary current Jz erEz which does not vary 

spatially within S. As in the previous section, it can be argued intuitive­

ly that such a solution may become unstable due to a systematic error at 

all space points. An example is shown in Fig. 9a. Similarly, it follows 

that for X > 0, instabilities can already be caused by a systematic error 

along a single line x = ~- Both these systematic errors can be removed by 

using the second-order differential equation (6.1) to regularize the 
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Figure 9. Ez as a function of 

the normalized time et/a for a 

homogeneous square cylinder 

with x=O illuminated by the 

pulse specified in (3.1) for 

F(t)=exp(-16(t-T) 2/T2) with 

cT/a=IO computed with method II 

for h=a/3. (a): z0crd=2, 

without regularization; (b): 

z0crd=IO, regularization with 

p=q=l. 

marching-on-in-time scheme. This regularization proceeds as follows. If 

the mesh size his chosen ash= a/N and x(x,y) and cr(x,y) are continuous 

inside S, (6.1) can be discretized as 

E (k+l ,.i'.,m) + E (k-1,l,m) + E (k,l+l ,m) + E (k,l-1,m) - 4E (k,l,m) z z z z z 

~ 3~ ~ ~ 
hcr(k,l)[2Ez (k,l,m) - 2Ez (k,l,m-1) + ½Ez (k,.i',m-2) J 

(6. 8) 
- [ I + x(k,/:) ][2E (k,l,m) - SE (k,l,m-1) + 4E (k,l,m--2) z z z 

- E (kl m-3)]- 0 
z ' ' 

for -N < k < N, -N < l < N and m = 0, I, 2, .•. , 00 The equality sign in 

(6.8) holds up to O(h4) if E (k,l,m) is replaced by E (kh,lh,mtit). For 
i z z 

Ez(x,y,t) and, hence, Ez(x,y,t) three times differentiable with respect to 

t, we obtain, by quadratic extrapolation 

(6.9) E (k,l,m) = 3E (k,l,m-1) - 3E (k,l,m-2) + E (k,l,m-3) z z z z 



for -N ~ k ~ N, -N ~ l ~ N and m = 0, I, 2, ••• , 00 to the same order of 

accuracy. Next, we introduce the squared error D (p,q) as 
m 

,N ,N · 2 ,N-1 ,N-1 2 
lk=-N lf=-N ol(k,l,m) +plk=-N+I lf=-N+I 02(k,f'.,m) 
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(6. I O) 
{ ' ,N 2 ,N-1 2} 

+ pq lk=±N lf=-N °3(k,l,m) + lk=-N+I lf=±N 03(k,l,m) ' 

where o1, o2 and o3 denote the deviations in the equality signs of the 

discretized form of (6.4) and of equations (6.8) and (6.9), respectively 

and p and q are nonnegative regularization parameters. E (k,l,m) is then 
z 

redefined as that combination of field values that, form fixed, minimizes 

D (p,q) for given field values at the previous instants. The product pq 
m 

should be chosen as small as possible since (6.9) is not based on (6.1) or 

an equivalent integral equation. For the case X = 0, a representative 

example is shown in Fig. 9b. For large susceptibilities (x > 4), we again 

encounter long-term instabilities at late times. These errors cannot be 

removed by a further reduction of h, since for small h, the -inaccurate­

contributions from the neighboring points are relatively more important. 

Presently, an alternative discretization scheme that does meet 

criterion I is under investigation. Results are not yet available, 

7. CONCLUSION 

In this contribution, we have formulated two so-called stability 

criteria for the discretization of time-domain integral equations in the 

application of the marching-on-in-time method. If these criteria are met, 

the instability in the numerical solution can be controlled by reducing 

the discretization step. The relevant analysis of some simple electromag­

netic scattering problems shows that generally, the integrals can be dis­

cretized with the required accuracy. The effect of errors made in previous 

updating steps can, until now, only be understood intuitively. In view of 

the results obtained, it seems worthwile to further investigate this 

matter. Also, it would be interesting to generalize the technique to more 

complicated scattering problems. For such cases, however, the computation 

time may well be a limiting factor, since the main disadvantage of the 

technique is the sharp increase in computation time upon reduction of the 

discretization step. 
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WEAKLY REFLECTIVE BOUNDARY CONDITIONS 
FOR TWO-DIMENSIONAL SHALLOW WATER FLOW PROBLEMS 

G.K. VERBOOM & A. SLOB 

In this paper weakly-reflective bounda:ry conditions are derived for the 

two-dimensional shallow water equations, including bottom frietion and 

Coriolis force, The essential aspects of the derivation are given, Zeroth 

and first order approximations are applied to the test problem of an initially 

Gaussian-shaped free surface elevation, For the numerical solution a finite 

element program is used and various aspect of the numerieal implementation 

are diseussed, For small scale practical problems a rather simple (one 

parameter) formulation might be suffieient. The influence of this parameter 

is discussed on the weakly-reflectiveness of the boundary eondition. 

I , INTRODUCTION 

In the numerical solution of many hydraulic engineering problems waves 

play a dominant role, As the area of interest generally is just a small 

part of a much larger system artificial boundaries are introduced to obtain 

a limited domain. In nature waves can cross these artificial boundaries 

unhampered in both &irections, but in our numerical model we must include 

this property explicitly, In literature so-called non- and weakly-reflective 

boundary conditions are derived for hyperbolic equations: Taylor 1975; 

Engquist and Majda 1977, For the quasi-linear one-dimensional shallow water 

equations Verboom 1982 derived upto second order weakly-reflective boundary 

conditions, For tidal wave problems reflection coefficients of only a few 

percent were realized with the Preissmann-scheme, For more general schemes 

numerical reflections limit the effect of higher order conditions, 

In this paper we derive zeroth and first-order weakly-reflective boundary 

conditions for the two-dimensional shallow water equations including bottom 

friction and Coriolis force, The essential aspects of the derivation are 

given, Next the conditions are applied to the test problem of an initially 

*)Paper presented at the 5th International Conference on Finite Elements in 
Water Resources, Vermont, June 18-22, 1984. 
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Gaussian-shaped free surface elevation. For the numerical solution we use a finite 

element program with bi-linear base functions and an explicit time integration 

scheme. For many practical problems in which the boundary conditions are 

derived from a larger area (coarser grid) model a much simpler formulation 

proposed by Stelling 1983 will do, Verboom et al. 1984. 

This condition is discussed and results are reported for three values of 

the parameter included in that formulation. 

2, THEORETICAL ASPECTS 

Formulation of the problem. 

The two-dimensional shallow water equations in primitive variables read 

(I) 

with; T (u, v, 1;) and 

+ o, 

The notation is explained at the end of the paper. The bottom friction 

parameter, A, is generally given by 

A 
g~ 

2 • 
C (h+1;) 

External forces, such as wind can be accounted for in F. For most practical 

computations we solve System I with an ADI-finite difference program, but 

for specific relatively small scale problems we can use an explicit finite 

element program that solves the corresponding system written in conservative 

form, However, for the derivation of weakly-reflective boundary conditions 

it is advantageous to symmetrize and/or diagonalize matrix A1 or A2• As 

System I is a quasi-linear strictly hyperbolic system, A1 and A2 can be 

symmetrized simultaneously, but only one can be diagonalized at a time. 

Matrices A1 and A2 are symmetrized by the transformation 

(2) 2/g(h+i;). 
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For the analysis in the following section we diagonalize matrix A1 with the 

additional transformation 

with 

(3) 

+ T 
v = V (u,v,ijl) 

V 

+ 

(
J//z o 1/fi) 

o I 0 

i//zo-1//2 

The system for v reads 

(4) o, 

Wl..thv+= I I T <rz (u+iµ),v, 12 (u-t/J)) and 

A 

B 

C 

( 
o t/J/2/z 

iµ/2/z o 

o -iµ/2/z 

( 
A/2 -f//z A/2) 
f//z A f//z 

A/2 -f//z A/2 

Derivation of weakly-reflective boundary conditions 

The general solution of System 4 contains progressive waves which even 

in the limit of vanishing C and Fare coupled (because A and B cannot be 

diagonalized simultaneously). Therefore, it is impossible to derive truly 

non-reflective (local) boundary conditions, i.e. a complete decoupling of 

ingoing and out-going waves. As a result, the boudary conditions to be 

derived are only weakly-reflective in some kind of approximation. For the 

one-dimensional shallow water equations, Verboom 1982, the approximation 

parameter is (A/w), where w is the wave frequency. For the two-dimensional 

problem two additional parameters exist: (f/w) and the angle of incidence 

of waves at the boundary. 
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To derive weakly-reflective boundary conditions for the half-space problem 

x $ 0 one can proceed along the following lines: 

i) freeze the coefficients in System 4 in order to arrive at a linear system, 

ii) perform a Fourier transform in time and in y-direction, with dual 

variables wand n, respectively, and write the transformed system as 

(S) v 
X 

GV, 

with 

(6) G 

where the index f refers to "frozen", and I is the identity matrix. In 

Equation 5 we neglected F, but we will return to this matter later on. 
-I 

For Af to exist we must exclude the cases where uf 

the boundary, and u: = ½~, i,e. no critical flow. 

iii) perform a transformation w = Wv, such that D 

0, no flow across 

is a diagonal 

matrix, The components of ware decoupled and these quantities or more 

precisely an approximation to these quantities must be prescribed at the 

boundaries. The number of conditions to be prescribed at x = 0 is given by 

the number of positive eigen-values of D; similarly the number of boundary 

conditions for the right half-space problem, x ~ 0, equals the number of 

negative eigen-values of D. 

iv) write the transformation Was a polynomial in (n/w) and (1/iw), and 

truncate this polynomial. A local weakly-reflective boundary condition is 

obtained by an inverse Fourier-transform. 

The advantage of this formal derivation is that w still is an exact 

result: approximations are introduced in the final stage of the derivation 

only, Unfortunately, it is not possible to write the eigen-values and eigen­

vectors of G, Equation 6, in an explicit form if f and A are non-zero 

simultaneously, as they are in the general case. To solve this problem we 

can proceed along two lines. 

Firstly, following Engquist and Majda 1977 instead of diagonalizing G 

exactly and then approximating W one can diagonalize G approximately with 

a much simpler transformation. Above that, it is sufficient to decouple 

the ingoing waves from the outgoing waves upto the desired order of approxima­

tion, whereas the outgoing waves still might depend more strongly on the 

ingoing waves, For the matrix WGW-I this means that only some of the 



off-diagonal terms need to be zero (in the order of approximation). The 

transformation matrix W can now be written as 

(7) w ~ 1 
p=o 

For System 4 W will turn out to be rather simple for (p and q) s I. pq 
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Secondly, one can by-pass all matrix manipulations and substitute a solution 

of the form 

(8) ; = -zy' exp(iwt+ik x+ik y), 
X y 

in the frozen coefficient problem, and look for boundary conditions of 

the form 

au+ Bv + y$ f, 

where a, 8,yand fare functions of w, k and k, such that only ingoing 
X y 

waves are prescribed, Weakly-reflective boundary conditions are obtained 

by approximating the coefficients a, 8 and yin terms of w, k, and k. The 
X y 

number of boundary condition required equals the number of ingoing waves and 

is found from the analysis. However, additional information is required on 

what kind of combinations of u, v, and w might be physically relevant. 

A drawback of both methods is that the boundary conditions derived do not 

guarantee a stable computation, see I.also Verboom et al. 1982. If, as a 

rule of thump, the boundary condition contains a term like yt + by, then b 

must be negative irrespective of the other terms. 

We proceed with a derivation along the lines indicated by Engquist 

and Majda 1977: apply the transformation given by Equation 7 to Equation 5 

and 6. In a rather straightforward analysis weakly-reflective boundary 

conditions can be derived for inflow and outflow boundaries. The results for 

the left half space problem, x s O, subcritical flow, and (p and q) s I 

are summarized in Table I. 

The boundary conditions given in Table I apply (as well) for a boundary at 

x=L for a problem defined at x=[O,L], L E IR, of course. 

For p=I and q=I two conditions instead of one are derived without introducing 

a second order derivative in space or time. Set B differs from set A in 

that it is a higher order approximation in (A/iw)-terms; for (f/iw)-terms 
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this was found to be not possible. A similar result was found by Pakvis 1983, 

for the one-dimensional shallow water equations. The one-dimensional weakly­

reflective boundary condition, equivalent to set B, with p=I and q=I, reads 

(9) 

The parameter S can be chosen arbitrarily, but Equation 9 is a one order higher 

approximation in (\/iw)-terms, if S=0, For the linear equations Pakvis 

proved that the reflection coefficient depends rather strongly on S, The 

optimal value is about z~ro.for small values of (\/w) and approaches -0.8 

if (\/w) is of the order of 100. For these extremely high values of (\/w), 

which can easily be encountered in, for instance, flood wave problems, the 

reflection coefficient with the optimal value of S was found to be less than 

half the reflection coefficient with S=0, 

Table I Weakly-reflective boundary conditions for subcritical in- and outflow 

boundaries for the left half-space problem, x s 0. 

Subcritical inflow (uf < 0 and uf < ~). 

p=l 

q=l 
A: 

B: 

Subcritical outflow (0 < uf < ~) 

p=O, q=O u-,jJ = gl 

p=J' q=O (u-,jJ) t - ufvy = gl 

p=I, q=I A: (u-,j,) t 
Af 2uf 2uf 

+ 4 (1 +l,;") (u+,jJ) ---v;:- fv-ufv = g 1 f f y 

B: (u-,j,) t 
Af 2uf 2uf 2uf 

+ 4 {(3 +-;µ:-)u-(1 --;µ:-H} ---w;- fv-u v 
f f f f y gl • 
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For the two-dimensional linear shallow water equations without friction and 

Coriolis force Wagatha 1983 derived a set of parameters to perturbe the 

boundary conditions. He could decrease the reflection by optimizing these 

parameters, through the influence was much less compared to the factor reported 

by Pakvis. As Wagatha obtained his results from numerical computations it 

might be that spurious reflections due to the numerical scheme blurred the 

results. From these results it is expected that the boundary conditions 

summarized in Table can be optimized by introducing certain parameters. 

However, this is left for the future. 

The external influences, driving forces, are included in the right hand 

sides of the boundary conditions. As the components of g are unknown in 
+ 

general and cannot be taken from field measurements one must construct g 

from previous knowledge on u, v, wand their derivatives if these occur in 

the boundary conditions. For practical problems this information can be 

obtained from a larger area (coarser grid) model only. To get rid of short 

wave disturbances due to the initial condition Stelling 1983 proposed a much 

simpler formulation. For a velocity controlled inflow boundary at x=0 this 

formulation is given by 

( I O) 

where a is constant, a> 0, The influence of the second term readily follows 

from an analysis of a linear one-dimensional problem given by 

0 

o. 

The reflection coefficient at x=0 is given by 

( 11) Re 

here T is the wave period. For short waves Re goes to zero, but Re:::. I for 

long (tidal) waves. It is to be noted that Equation 10 has some resemblance 

with Equation 9 for 8 = -1 and a~ 2/A; the main difference is, of course, the 

right hand side. Equation 10 has been applied successfully in many so-called 

nested model applications, Verboom et al. 1984. 
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Steady-state solution and external forces 

... 
In the derivation of the preceeding sections we neglected not only F 

(and external forces) but also the steady-state solution of System 4. The 
. . ... , ... ... . 

latter can be accounted for by substituting v = v - v .l.n the frozen 
. 0 

coefficient formulation, where ; 0 is the steady-state solution. In the final 
➔ • ➔ ➔ • h ( . ) result vis replaced by v - v0 • In actual computations t e approximate 

steady-state of the original problem is used with good results. The influence 

of steady external forces such as wind can be accounted for in the same way, ... 
through it may require a larger area model to get a reliable quess for v. 

Time dependent winds must be accounted for in the boundary forcing function ... 
g. Apart of nested models no general procedure seems to be available to solve 

this problem. 

NUMERICAL RESULTS 

The first example concerns the application of a finite element program 

with weakly-reflective boundary conditions to,,the evolution of a Gaussian­

shaped free surface elevation, Figure I. 

Figure I. Initially Gaussian-shaped free surfac~ elevation. 

2 2 2 The relevant parameters are: h = 10 m, ~(0,x,y) = exp(-x +y )/L, L = 200 m, 

bottom friction and Coriolis force are neglected. System 2 but expressed in 

conservative form with variables (h+~)u, (h+~)v, and (h+~) instead of u, v 

and ~. respectively, is solved with a Galerkin finite element method. 

Square elements with bi-linear base functions are used; the time discretiza­

tion is basically explicit and characterized by 



Un+I f (Un Vn Hn) I . , , 

( 12) Vn+I f (Un+I ,vn.,Hn) 
2 

Hn+I f (Un+ I Vn+ I Hn) 
3 , , ' 

with U = u(h+s), V = v(h+s), and H = h+s. 

The numerical parameters are 6x = 50 m and nt = 5 s. The results at four 

points in time are given in Figures 2A-D. At the boundaries zeroth order 

conditions are prescribed, i.e. p=O, q=O. 
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To study the reflective properties in more detail these results are sub­

tracted from a larger area solution and a reflection coefficient is defined 

as 

Re 

Though Re is not a proper reflection coefficient in that its value is bounded 

to the domain [-1,1], it provides an indication of the degree of reflections. 

Figure 2. Time evolution of an initially Gaussian-shaped free surface eleva­
tion after 30, 60, 80 and 110 s, 

Figure 3 shows the results for a zeroth order, p=O and q=O, and a first order, 
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p=I aad q=O, boundary conditions, respectively. The reflection coefficient 

is given as a function of the angle of incidence of the wave, which is 

proportional to the coordinate along a boundary. 

0.25 

0.2 

0.15 

0.1 

ODS 

0.0 

A 

0 4S 9 13.5 18 22.5 27 31.5 36 40.5 45 
Angle of Incidence ( in dgrs ) 

Figure 3. Reflection coefficient as a function of the angle of iniidence 
and the boundary conditions. A: zeroth order, B: first order, C: first order, 
~x and ~t halved. 

The reflection coefficient depends rather strongly on the angle of incidence 

and increases about a factor of3 in the range (0-45) 0 • The reflections at 

normal incidence are solely due to numerical reflections; they especially 

confuse the results of the first order condition. 

Concerning the numerical implementation there is a lot of freedom in a finite 

element program, because the program itself even does not demand a specific 

number of boundary conditions. For the zeroth order condition we used the 

following implementation at outflow, 

-n+I n u +u 
2 

-n+I n+I . n+I -n+I where u is a temporary value of u and is used to find v and 1j, , 

and un+l = ~n+!Hn. The definite values of un+I and lj,n+I are found from 

n+I 1/ln+½ 
- 1/10 u u 

0 

n+I + 1/ln+½ -n+I -n+l 
u u + 1/1 2 

1/ln+½ 2/2(Hn+l+Hn)/2. 
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Finally, the new values of Un+I is found from Un+I = un+IHn+I_. Several other 

formulations were tested, but the best results were obtained if u and w were 

shifted one half time step, as follows from Equation 12 and u+w was kept 

constant. 

The second example concerns the influence of the parameter a in Equation 

10. This boundary condition is used in an ADI-finite difference program with 

a space staggered grid. For a schematized river section (2 km long and 5 m 

depth) the waterlevel is prescribed and kept constant at the downstream end 

and the velocity is abruptly prescribed at Im/sat the upstream end. The 

numerical parameters used are: ~x = 100 m and ~t = 100 s. 

Figure 4A shows the velocity at the downstream boundary as a function of 

time for a= 100, 500 and 1.104• For a= JOO, Figure 4A-II, strong eigen­

oscillations are generated which are damped in time by bottom friction. The 

initial period is about 1.5 hours, whereas the wave transition time is only 

300 s. For a= 500, Figure 4A-I, the boundary condition is also transparant 

for the eigen-frequencies and hardly any eigen-oscillation is generated. The 

initial period is about halved. If a is increased about 1000 the initial 

period starts to increase again, not because of oscillations but because the 

variables now approach the final solution in the limit of large time (like 

a super-critically damped resonator), Figure 4B-I. 

As the transition time is only about 300 s the initial period should 

drop well below one half hour if a weakly-reflective boundary condition of 

Table I is used. 

0.15 

~ M M U ~ U ~ U U 
---+- TIME IN HOURS 

C 

~ 1.05 

in f 0.90 

0.75 

0.60 

0,45 

0.30 

0,15 

I[ 

0 0,3 Q6 0.9 12 1,5 1.8 2,1 2.4 2,7 
---+- TIME IN HOURS 

Figure 4. Velocity as a function of time. Influence of a, A-I, A-II, andB-I, 
and of a zeroth-order boundary conditions, B-II, on the initial period. 
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Figure 4B shows the result if the velocity boundary is replaced by a zeroth 

order condition. Indeed, no eigen-oscillations are generated and the initial 

period is about 0.3 hour. The short (2~t) waves are due to the abrupt starting 

condition only: they do not occur if the boundary condition is increased 

to its final value in one or two wave transition times. This boundary condi­

tion, with a about 100, is succesfully used in many practical applications, 

Verboom et.al. 1984, 

A final remark concerns the influence of the parameter a on the eigen-frequencies 

of a problem area. If a> 0 the eigen-frequencies are lowered: for the 

example discussed above the.oscillation period was increased by about 27% 

for a = 100 and by about a factor of 3 for a= 500. These figures are con­

firmed by an analysis for a simple one-dimensional formulation, 

CONCLUSION 

Weakly-reflective boundary conditions have been derived for the two­

dimensional shallow water equations, including bottom friction and Coriolis­

force, With a finite element formulation reflection coefficients of only a 

few precent were obtained. The reflection coefficient increases by about a 

factor of three if the angle of incidence increases from zero to 45°. The 

effect of higher order conditions is blurred by reflections generated by 

the numerical scheme itself, For many practical applications a much simpler 

formulation proposed by Stelling 1983, suppresses effectively short wave 

disturbances and eigen oscillations of the problem area. Initial periods of 

only a few wave transition times earl be realized by using the weakly­

reflective boundary conditions derived in this paper. 
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NOTATION 

-+ 
w 

u,v 

s 
h 

>.. 

C 

f 

g 

x,y,t 

F 
A. 

J 
1/i 
-+ 
V 

A,B,C 

V 

ll) 

T 
-+ v 

T 
(u,v,s) 

velocity components in x and y direction, respectively 

free surface elevation above a reference plan 

bottom below a reference plane 

bottom friction parameter 

de Chezy-coefficient 

Coriolis parameter 

gravitational acceleration 

space and time coordinates 

vector,includes external forces 

coefficient matrix 

2/g(h+s) 

(J+/z (u+ljl), v, J//z(u-ljl)/ 

coefficient matrices 

transformation defined in Equation 3 

2Tr/T 

wave period 

Fourier transform of; in t and y 

matrix defined in Equation 6 

boundary forcing function 

reflection coefficient 



TWO-DIMENSIONAL SPECTRAL ANALYSIS IN THE EVALUATION 
OF IMAGE QUALITY OF IMAGING SYSTEMS 

J. VRANCKX 

I • INTRODUCTION 

As amanufacturerof imaging systems one of our main concerns at 

Agfa-Gevaert is the "image quality" achieved by our systems. This image 

quality is determined by objective parameters such as sharpness, 

graininess, contrast resolution etc •. All these objective parameters can 

be measured and are combined in the ultimate image quality criterion: 
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the signal-to-noise ratio. The problem with the separate measurement of 

these parameters is that the measurements are very often performed in non­

comparable situations. To avoid this, we developed a method where signal­

to-noise ratio is determined in one single measurement. 

The method was developed for the Medical Imaging Department of the 

Diagnostic Imaging Systems Division. The examples shown will all refer 

to specific problems of this department ·so maybe a brief introduction into 

the world of medical radiography is needed. It should however be stressed 

that our method is not at all restricted to this specific type of imaging 

systems. 

Radiographs are made by exposing a patient to a beam of X-rays; the 

patient's body modulates the beam. This modulated beam is the input signal 

for the imaging system. A conventional imaging system in medical radiography 

consists of a light sensitive film sandwiched between two intensifying 

screens. The role of these screens is to absorb the X-rays and to convert 

the absorbed energy into light photons. These light photons are then 

absorbed in the film, where they produce optical density upon development. 

The modulated X-ray beam carries the input signal. 

There are several sources of noise in such a system: the most important 

one is the statistical fluctuation of the X-ray absorption. Other sources 

are inhomogeneities in screen and film. 
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Since our method for measuring signal-to-noise ratios is closely 

related to the measurement of noise we will, after a short review of the 

properties of Fourier-tranforms, discuss the noise measurement and show 

some experimental results. Then we will discuss the method for the signal 

to-noise measurement. We will show some experimental results for different 

screen-film systems and show the effect of quantisation caused by the 

digitisation needed for digital image processing. 

2. FOURIER TRANSFORMS (Ref. 1-4,9) 

Let f(p,q,r ••• ) be a function of the variabl~s p,q,r, •••• These 

variables can be space, time or other coordinates. The Fourier Transform 

of f(p,q,r, ••• ) is then defined as 

(I) F(µ,v, ••• ) J oo Joo 2ni(pµ+qv) f(p,q, ••• )e dpdq ••• p=-oo q=-oo 

with i = M. 
The inverse Fourier Transform is defined as 

(2) f( ) J oo Joo F( ) -2ni(pµ+qv+ ••• )d dV p,q, ••• = µ=-oo v=-oo µ,v, ••• e µ ••• 

The functions f(p,q,r, ••• ) and F(µ,v, ••• ) are Fourier Transform pairs which 

we will denote as 

(3) f (p ,q,r ••• ) FT 
<-> F(µ,v, ••• ) 

The Fourier Transform is a complex function, which can be seen when we 

rewrite the exponential of eq I as 

(4) 2nix 
e cos 2nx + i sin 2nx 

Fourier transforming a function is thus decomposing it into sine and 

cosine functions with different frequencies. 

The Fourier Transform pairs shown in fig. I are then easily understood. 

We will now give some important properties of Fourier Transforms, 

properties we will rely on in the later parts of this paper. 

The first property is LINEARITY. Let f(p,q, ••• ) and g(p,q, ••• ) be two 



functions with their respective Fourier Transforms F(µ,v, .•• ) and 

G(µ,v, ••• ). The functions 

(5) a.f(p,q, ••• ) +b.g(p,q, ••• ) 

also form a Fourier Transform pair. 

We now give some SYMMETRY relations: 

FT 
<-> a.F(µ,v, ••. ) +b.G(µ,v, ••. ) 

- the Fourier Transform of a real even function is real even 
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- the Fourier Trnasform of a real uneven function is imaginary and uneven. 

The symmetry relations for complex functions will not be considered here. 

The interested reader can find them in ref. 3. 

The third property is CONVOLUTION and CORRELATION. The convolution 

of two functions is given by 

(6) y(!;,n, ••• ) 

Let the functions 

(7) f(p,q, ••• ) FT 
<-> F ( µ , V , ••• ) 

be Fourier Transform pairs. The functions 

(8) FT y ( 1;, n, ... ) <-> F ( µ, V, ••• ) • G ( µ, V, ••• ) 

are then also Fourier Transform pairs. A convolution can thus be calculated 

by Fourier transforming the two functions, multiplying the Fourier 

Transform and taking the inverse Fourier Transform of this product. 

Correlation is defined as 

(9) 00 00 * 
k(!;,n, ••• ) = fp=-oo fp=-oo f(p,q, ••• )g(p+!;,q+n, ••• )dpdq 

where* denotes the complex conjugate. 

The functions 
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are the Fourier Transform pairs. Correlation can thus be calculated in 

the same way as convolution. 

All these equations stand for continuous analytical functions. In 

practice that type of function is not available: what we have are discrete 

samples lying in some finite interval. The integrals in the previous equations 

are to be replaced by summations. The finite discrete Fourier Transform has 

the same properties as the continuous Transform (linearity, symmetry). The main 

difference lies in the fact that the discretisation and the truncation in the 

data results in discretisation and truncation in the resulting Fourier 

Transform. TheNyquist criterium states that for N samples taken with a 

sampling distance of t.p the maximum frequency of the Fourier Transform is 

( 1 1) V max 1/(2t.p) 

and the frequency-interval is 

(12) t.v I/ (Nt.p) 

3. ANALYSIS OF IMAGE NOISE: WIENER SPECTRUM AND AUTOCORRELATION (Ref. 1,5-8) 

An image is a two-dimensional pattern of optical density D(x,y). In 

an image made without an external input signal the pattern is only noise. 

One first way to describe this pattern is by its mean and by its standard­

deviation: 

(I J) 

(14) 

--li llfXfY 
D - X Y~ 2X 2Y -X -Y D(x,y)dxdy 

' 

cr2 - lim 1 1 fx fy [D(x,y)-DJ 2 dxdy 
D - X,Y---2X 2Y -X -Y 

More information about the density pattern can be extracted from the 

autocorrelation function: 

(15) Ac( ) 1 . 1 1 fx fy An*(x,y)AD(x+",y+n)dxdy 
l;,n = x~~ 2x 2Y -x -Y O O "' 

with t.D(x,y) D(x,y) - D. From equations 14 and 15 we see that 

AC(O,O) 
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The Wiener spectrum is defined as 

(16) W(u,v) • 1 1 * x!½~ ZX ZY F (u,v).F{u,v) 

with F(u,v) being the Fourier Transform of tD(x,y). The Wiener spectrum is 

the ·Fourier Transform of the autocorrelation function. This is written 

as 

(17) AC(~,n) 

From equations 15 and 17 we see that the standard deviation of the density 

pattern is 

( 18) 2 
CJD AC(0,0) = ff:m W(u,v)dudv. 

The Wiener spectrum is thus equivalent to the autocorrelation function. 

It contains more information than the standard deviation since it describes 

the frequency dependence of the noise. The standard deviation only 

gives a global appreciation of the noise. It can be shown that under some 

conditions (which are most often satisfied in imaging systems) the 

Wiener spectrum not only contains the first two moments (mean and standard 

deviation) but also all higher moments of the density distribution in the 

image. 

We will now consider some methods to measure the Wiener spectrum• 

Conceptually the simplest method is the two-dimensional scan method 

using a circular aperture. The resulting two-dimensional spectrum 

W' (u,v) is, for small density fluctuations giving a, linear relation 

between density and transmission fluctuations: 

(19) 2 2 W' (u,v) = W(u,v) xT (u,v) xTM(u,v) 

where W(u,v) is the true spectrum and T(u,v) the transfer function of 

the circular aperture: 

(20) T(u,v) = 2J 1(wwd)/{wwd) 

where J 1 = a Bessel function of the first kind (the two-dimensional 
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counterpart of sin (x)/x) 

w = lu2+v2 

d the diameter of the circular aperture. 

and TM(u,v) =the transfer function of the measuring system. In the 

frequency range we consider it sufficiently close to unity 

to be ignored. 

It is easy to calculate the true spectrum from the measured one. 

One of the difficulties of this method is the positional accuracy 

of the microdensitometer. The newer computer-controlled microdensitometers 

are sufficiently accurate to scan a film image homogeneously in a 

rectangular grid. Another problem is the computing power required for the 

two-dimensional Fourier Transform. The 16-bit minicomputers which are 

often used to control the microdensitometers do not have the necessary 

computing power. It is probably due to these two difficulties that up 

to now only a few two-dimensional noise power spectra have been 

published (Ref. 5). 

A second method consists of a one-dimensional scan using a circular 

aperture. The resulting spectrum is integrated along one of the frequency 

axes: 

(2 I) W' (u) roo W(u, v) x T2 (u, v)dv. 

De Belder (Ref. 8) gives an equation to calculate the true spectrum from 

the measured one. 

In the third method, which is widely used, the sample is scanned 

in one dimension with a long narrow slit. Basically equation 21 holds 

also for this case. Due to the adequate choice of the aperture and 

under some assumptions (Ref. 6) this equation can be reduced to: 

(22) W' (u) = sinc2 (,rau) xw(u,O) x I 

where sinc(irau) stands for sin(irau)/(irau) 

a= the slit width 

1 the slit length 
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The measured spectrum then is a section through the real two-dimensional 

spectrum. The main drawback of this method is that working with too short 

a slit leads to an underestimation of the noise power at low spatial 

frequencies (Ref. 6-8). This method gives indeed biased results in the low 

frequency range of the spectrum. It is possible to synthesize a longer 

slit from a two-dimensional scan with a short slit to lower the bias. 

At Agfa-Gevaert we implemented the two-dimensional method because 

it gives unbiased results at low frequencies, very important in the study 

of radiographic systems, and because it makes it possible to find directional 

effects and moreover because of its inherent simplicity. The main problem 

to solve was the problem of computing power. The measuring method we 

used can be described as follows: a film sample of uniform density 

(usually about density above fog) is scanned two-dimensionally with 

a circular aperture of diameter don a Perkin Elmer PDS model I0I0A 

microdensitometer. For the two-dimensional Fourier Transform we used 

the Fortran subroutine for multidimensional Fast Fourier Transform written 

by Norman Brenner (Ref. 10). To protect against aliasing the sampling 

distance is chosen to be half the aperture diameter. For white noise 

this would give maximally about 40% aliasing at the Nyquist frequency and 

about 10% at 0.75 times the Nyquist frequency. For radiographic systems the 

noise is lower at higher frequencies so that the aliasing is lower than 

the just mentioned values. We mostly work with an array of 256 x 256 measuring 

points. To have smoother spectra we take an ensemble average over 49 blocks, 

each block being 64 x 64 points wide. The blocks overlap 32 points in the 

x and in they direction (Ref. 9). For an aperture diameter of d we have: 

the sampling distance 

the Nyquist frequency 

tx ty = d/2 

u = v = 1/d max max 

the bandwith for 64 x 64 data blocks: tu = tv I / (32d) 

Due to the microdensitometer optics the spectral values are expressed in 

instrument density and should be transformed into diffuse density values 

(Ref. 6). The correction for the aperture diameter can then be applied 

according to equations 19 and 20. 

The noise power spectrum of Agfa-Gevaert's CURIX RPI film-CURIX 

UNIVERSAL screen system has been measured with circular apertures of 
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.4,.2,.1 and .OS 11llil diameter. All spectra where calculated from 256 x256 

data points. As an example fig. 2 shows the two-dimensional spectrum 

for the 0.2 11llil aperture, the z-axis being logarithmic, in units of 11llll2 • 

The spectrum is in instrument density and uncorrected for the aperture 

transfer function. The spectrum is obviously quite rough, the spread being 

about 14% of the spectral value. 

Since it is easier to compare one-dimensional spectra we take an 

average over the two-dimensional spectrum at constant circular frequency 

w = /u2+:;T, after we made sure that the noise was isotropic. Fig. 3 shows 

the resulting uncorrected one-dimensional spectra. The spectra are now 

rather smooth, the spread being some 4% of the spectral value. It is very 

interesting to see that the spectra overlap at low frequencies: the 

spectra are, by definition, unbiased at these frequencies. The discrepancies 

at higher frequencies can easily be removed by correcting for the aperture 

transfer function, as is shown in fig. 4. The corrected spectra are 

totally independent of the aperture diameter. 

4. ANALYSIS OF SIGNALS IN NOISE (Ref. 3,9) 

We will now describe two methods for measuring signal-to-noise 

ratios. In the first method we use a one-dimensional signal as input. 

The Wiener spectrum of the combined signal and noise is measured. 

The second method can use any low contrast signal as input. The Wiener 

spectra of signal and noise are calculated from the cross-correlation of 

two images containing the same signal. 

4.1. Analysis of one-dimensional signals 

We use here an image which consist of a one-dimensional sine-wave 

superposed on the noise. The Wiener spectrum has a peak at the frequency 

of the sine-wave, as is shown in fig. 5. Taking the spectral value along 

a circle with the frequency of the sine-wave as radius gives a curve 

as fig. 6. It is then possible to estimate the signal (peak value) and 

the noise (the median value) at that frequency. We used the method for 

measuring Wiener spectra as described previous section. The aperture 

diameter is .2 11llil and the sampling distance is .125 11llll. We use this sampling 

distance to have an integer number of signal periods in a 32~x distance. 



4.2. Analysis of unconstrained signals 

The cross-correlation of two density patterns 6D 1 (x,y) and 6D2 (x,y) 

is given by 

(23) CC(l;,n) 
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This function describes how the first patterns looks like the second one. 

One can define a cross-Wiener spectrum as the Fourier Transform of the 

cross-correlation: 

(24) 

FT 
<-> F 1 (u,v) 

FT 
<-> 

Contrary to the normal Wiener spectrum this is a complex function. If R 

and I are the real and the imaginary part of the Fourier Transform then 

the cross-Wiener spectrum can be written as: 

(25) CW(u,v) 

The normal Wiener spectrum can be seen as a special case where both 

density patterns are the same so that R1 = R2 and r 1 = r 2• 

Suppose now that we have two density patterns with the same signal 

superposed on noise. When the signal is small, signal and noise can be 

regarded as independent. Two subsequent realisations of the noise (mainly 

statistical fluctuations of the photon flux) can also be regarded as 

independent. The two images are: 

with 6D(x,y) being the signal and 6DNi(x,y) the noise. Let FSNi be the 

Fourier Transform of the i-th image, F8 the Fourier Transform of the 

signal and FNi the transform of the i-th noise realisation. Using the 
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linearity of the Fourier Transform and equation 26 we then can write that: 

F SNI (u,v) 
(27) 

The cross-Wiener spectrum is then: 

CW(u,v) 

(28) 

Taking the inverse Fourier Transform of the cross-Wiener spectrum gives 

us the cross-correlation: 

CC(~,n) 

(29) 
ccs<~.n) + ccNJ,s<~.n) + ccs,N2(~,n) 

+ CCNI ,N2 (~ 'n) 

We used the following Fourier Transform pairs to derive equation 29: 

CC(~,n) FT 
<-> CW(u,v) 

FT * CCS(~,n) <-> FS(u,v).FS(u,v) = WS(u,v) 

(30) FT * CCNl,S(~,n) <-> FN 1(u,v).FS(u,v) 

FT * CCS,N2 (~,n) <-> FS(u,v).FN1(u,v) 

F'J.' * CCNl,N2 (~,n) <-> FN 1(u,v).FN2(u,v). 

Since image and noise are said to be independent there is no correlation 

between them. The same is true for the two realisations of the noise. The 

sole non-zero term in equation 29 is the cross- correlation 

between the signal and itself: this is its autocorrelation. The cross 

Wiener spectrum is nothing but the Wiener spectrum of the signal. It is 

easy to calculate now the Wiener spectrum of the noise by subtracting 

the signal spectrum from the (signal+noise) spectrum. Signal-to-noise 



4 I I 

versus frequency can be calculated by dividing the signal-spectrum by the 

noise spectrum. A global appreciation of signal-to-noise is given by 

integrating the spectra and by dividing the resulting standard-deviations. 

Fig. 7 shows the noise spectrum after the signal spectrum is subtracted, 

The total spectrum (signal+noise) was shown in fig. 5. We see that the 

signal is almost completely removed. When giving numerical results we will 

use the integrated form of the signal-to-noise ratio. 

The resulting signal-to-noise ratios are dependent on the input 

signal and on the imaging system. Imaging systems can be compared by 

using the same signal as input or by dividing the measured signal-to-noise 

by the input signal-to-noise ratio, In principle there are no constraints 

on the kind of signal that is used as input signal. As a result of our 

method of averaging the spectra over 64 x64 point data blocks with an 

overlap of 32 points (to have smoother spectra), we introduce the 

restriction that the signal should have an integer number of periods in a 

32tx distance. Non periodic signals should have the same statistical 

characteristics in every data block. 

The signal-to-noise ratios where measured by the method described in 

4.1 and by the cross-correlation method using the same sinewave input signal. 

Since the first method gives the signal-to-noise ratio at the fixed signal 

frequency and the second method gives a global value (integrated over the 

whole spectrum) the results are not the same. Both methods have been used 

to measure the signal-to-noise ratios for five different screen film systems. 

There is a 98% correlation between the two sets of results., 

In the introduction we mentioned the inhomogeneities of the 

intensifying screen as a possible source of noise. It is possible to 

evaluate the importance of this source of noise by using the screen 

inhomogeneities asan input signal. By making two images of exactly the 

same part of the screen we can extract the screen noise from the other 

(random) types of noise. This is important for us to evaluate the 

quality of the screens. Fig. 8 shows the Wiener spectrum of the screen 

noise for a screen that was made so as to have a great amount of inhomo­

geneities. We see here that the Wiener spectrum is not isotropic. 

Inspection of the screen indeed shows an alignment of the inhomogeneities. 

In this screen the amount of screen noise is as great at the other sources 

of noise together. In commercial screens the situation is much better, 
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screen noise being some 20 to 30% of the other noise sources. Since 

independent sources of noise are to be added squared, screen noise adds only 

a negligible amount to the total system noise. 

We will now investigate the influence of digitisation on the signal 

to-noise ratio. Measuring the spectra already requires a digitisation phase: 

the PDS microdensitometer uses a logarithmic amplifier and a 12 bit A/D 

converter. This results in 4096 different grey levels equally spaced along 

the optical density axis (from D=O to D=S.12). This is optimal for the 

small density variations under investigation. Fig. 9 shows how signal 

and noise for a screen-film system are affected by a change of the number 

of bits used in the A/D conversion. Also shown is the grey level spacing. 

Fig. 10 shows the influence of the number of A/D bits on the signal­

to-noise ratio. For an 8 bit A/D conversion the S/N is lowered some 3% 

as compared to the 12 bit conversion. The spacing between the grey levels 

is then equal to the standard deviation of the density fluctuations caused 

by the noise. Digitisation with less than 8 bit results in a severe loss 

of signal-to-noise ratio. This important result sets a lower level on the 

number of grey levels required when digitising images. 

5. CONCLUSION 

We developed methods to evaluate the noise and the signal-to-noise 

ratio of imaging systems. These methods were used with good results in 

the study of radiographic screen-film systems. This field however is 

not the only field where our methods are applicable. Every. imaging system 

or parts thereof can be evaluated using this method. In image processing 

it is possible, by measuring signal to-noise ratios before and after 

processing, to evaluate the effectiveness of the so-called 'noise-cheating' 

algorithms. Itis also possible to evaluate lenses, photographic materials, 

camera's, CRT-display's and so on. 

Another field where our methods are of great importance is the 

field of statistical image enhancement. In this type of enhancement 

discrimination between image and noise is sought on statistical grounds 

(maximum likelihood, maximum entropy, Bayes-criterion). All these methods 

require a good estimate of the noise power spectrum. Our method gives 

that estimate and what more is, it also gives an estimate of the signal 

power spectrum. 
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FIG.1-EXAMPLES OF FOURIER TRANSFORM PAIRS 
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FIG,5-CURIX RPl FILM+ CURIX UNIVERSAL SCREEN 
SINE-WAVE : TOTAL SPECTRUM 
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FIG.7-CURIX RPl + CURIX UNIVERSAL SCREEN 
TOTAL SPECTRUM MINUS SIGNAL SPECTRUM 

FIG.8-SCREEN NOISE FOR EXPERIMENTAL SCREEN 
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FIG.9-INFLUENCE OF QUANTISATION ON SIGNAL AND 
NOISE 
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FIG.10-INFLUENCE OF QUANTISATION ON SIGNAL-TO­
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ROBUST CALCULATION OF 3D TRANSONIC POTENTIAL FLOW BASED 
ON THE NON-LINEAR FAS MULTI-GRID METHOD AND 

A MIXED ILU/SIP-ALGORITHM 

A.J. van der WEES 
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A mixed incorrrplete ,lower upper decorrrposition/strongly irrrplicit 

procedure (ILU/SIP) relaxation algorithm is investigated within a non­

linear FAS multi-grid research code. The algorithm is designed to be fast, 

robust (stable convergence for all local flow directions) and insensitive 

(good short wave darrrping for all possible mesh ratios). The algorithm 

involves only one free parameter. 

Numerical results will be presented for the Laplace equation and for a 

transonic model disturbance equation solved for the flow in "a windtunnel 

with a burrrp on the bottom". 

NOMENCLATURE 

* A,A ,B 

a,b ,c 

matrix-vector operators, equations (20), (21) 

sensitivity constants, simulating mesh ratios, equation (29) 

e error vector, equation (27) 

FN right-hand side in GN-problem, equation (I) 
---K K 
y- right-hand side in G -problem, equation (2) 

GK grid of level K 

G complex reduction-factor, equation (28) 

g right-hand side in Von-Neumann boundary condition, equation (17) 
ij g i,j = 1,2,3, contravariant metric tensor 

hK h . "d K mes size on gri G 
I~-I . . f 'd GK 'd GK-I . 7:( restriction operator rom gri to gri acting upon 

dependent variables 
-K-1 
~ restriction operator in Von-Neumann boundary condition acting 

K 
~-I 

~,jK 
i,j ,k 

upon dependent variables 

prolongation operator from grid GK-I to grid GK 

grid-point indices on grid GK in two dimensions 

grid-point indices; also grid-dimensions 

*Part of this research has been performed under contract with the Netherlands 
Agency for Aerospace Programs (NIVR), 
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i 

L,U 
11 

M 
K K K 

m ,n ,P 

N 

n 

imaginary unit 

Jacobian 

Level index in multi-grid method, K=l ••• N 

general non-linear operator on grid GK 

correction operator on grid GK 

lower and upper matrices 

number of iteration sweeps on grid G1 

freestream Machnumber 

numbers of iteration sweeps on grid GK,K > I 

number of levels in multi-grid method 

iteration count 

auxiliary constant, equations (31), (35), (36) 

residual on grid GK, equation (4) 

amplification factor per cycle in a 2-level multi-grid method 
. . f 'd K 'd GK-I ' restriction operator rom gri G to gri acting upon 

residuals 
il-1 K restriction operator in Von-Neumann boundary condition acting 

et 

13, 
i 

£ 

q,K 

l.<1>! 
K K-1 

1/1 ,1/Jappr. 
K 

AK 

A 

µ,e,w 
\} 

P,P 

upon residuals 

amplification factor per cycle in a K-level multi-grid method 

orthogonal coordinates 

ILU/SIP parameter 

i = 3,4 •.• Z(N-2), coefficients in equation (16) 

1,4, ratio of specific heats 

mesh size in x-direction on GK 

correction to <P after one iteration sweep, equation (21) 

small parameter, introduced in tables 1,2,3 

exact solution of GK-problem (here disturbance potential) 

approximate solution of GK problem 
K . K-1 K K exact value on G and approximate value on G of(~ -<P) 

positive constant, equation (13) 

wavelength on grid GK 

reduction-factor per work unit in the multi-grid method 

"frequencies" of Fourier components in the error 

integer defining a fixed recursive strategy withing the multi­

grid method 

reduction-factor, respectively maximum reduction-factor in the 

high-frequency part of the error spectrum, obtained from a local­

mode analysis 
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first order backward finite difference operators 

I • INTRODUCTION 

Finite difference methods for the calculation of 3D transonic potential 

flow are of growing importance in aerodynamic design. However, much work 

has yet to be done before they become a mature capability. This involves 

the extension of the methods to complicated geometries (finite volume 

approach, zonal approach), the.coupling with boundary layer calculation 

methods and ultimately the incorporation in (interactive) design processes. 

Quite a different aspect is the obvious need for finer grids and better 

convergence levels. The connnon necessary requirements here with respect 

to the solution algorithms are "fast" and "robust" (stable convergence 

for all local flow directions). Though rather reliable, the Successive Line 

Over Relaxation (SLOR) schemes that are still being used today in a 

good many routinely used computer codes satisfy neither of these require­

ments, 

For a number of years, now, efforts are under way to obtain faster 

algorithms. In mono-grid methods the Approximate-Factorization (AF) 

schemes are promising[l,2,3,4].Another interesting development is the 

Strongly Implicit Procedure (SIP)[5].A breakthrough, however, seems to 

have been the multi-grid(MG) method [6,7]. 

An important ingredient in any multi-grid method is the relaxation 

algorithm used to smooth the errors. So far, SLOR, ADI (Alternating 

Direction Implicit) as well as SIP have been used succesfully as the smooth­

ing algorithmin transonic applications of the multi-grid method rs,9,10,11, 

12,13,14,IS,16,17]. The "best" smoothing algorithm is obviously 

determined by the balance that exists between its damping characteristics 

for short-wave errors, its computational complexity and its robustness 

and insensitivity (good short wave damping for all possible mesh ratios). 

The aim of the paper is to present research that has been carried 

out at NLR to construct a robust and insensitive smoothing algorithm 

within the multi-grid method that performs (hopefully) faster than SLOR. 

To that end, a suitable candidate for the smoothing algorithm, the 

Incomplete Lower Upper (ILU) decomposition scheme [18,19,20,21], has been 

thoroughly investigated. In its most general form, ILU can be looked upon 

as a general scheme that includes SIP [14] as a special case. It will be 
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demonstrated in the paper that a particular form of this general scheme, 

denoted by ILU/SIP, is a promising insensitive and robust candidate for 

the smoothing algorithm in multi-grid methods for transonic applications. 

Its performance as a smoothing algorithm within a so-called non-linear 

Full Approximation Storage (FAS) multi-grid method will be demonstrated 

by solving a form of the transonic small-disturbance equation on a 

rectangular domain. 

Most results presented in this paper are taken from [22], which was 

presented at the AIAA 6th Computational Fluid Dynamics Conference, Danvers, 

Massachusetts, USA (July 1·983). Some more recent results have been included 

also to show the current capacilities of the ILU/SIP algorithm within the 

FAS multi-grid method. 

The results of the present investigation have provided the basis for 

the fast solvers that are being implemented at NLR in the production codes 

for the calculation of transonic flow about airplane configurations. 

2. MULTI-GRID METHOD 

The concept underlying the multi-grid method is to eliminate efficiently 

each Fourier component of the error spectrum on the coarsest possible grid. 

This concept relies on the use of relaxation algorithms that are very 

efficient in damping those components of the error whose wavelength, in 

at least one of the coordinate-directions, is comparable to the mesh size. 

For non-linear equations, the so-called non-linear Full Approximation 

Storage (FAS) [6,7] has been used by many investigators [8,9,IO,tl,12,t3,14, 

15,16] and isnow widely accepted. A brief outline of the FAS multi-grid 

method follows below. 

Consider the discretized non-linear boundary value problem 

(I) 

on the finest grid GN of a sequence of grids GK, K = 1,2, ••• ,N, of 

d • h . " h " 1 d . H GK-I " t d ecreasing mes size in t e computationa omain. ere, is construe e 

from cf by leaving out every other gridpoint and hence the mesh size in 

any coordinate-direction satisfies hK-I = 2hK. 

Since the FAS multi-grid method is a recursive process, it is sufficient 

to explain the relationship between the problems that must be solved on 



the "d K gn. s G and K-1 G , • 

Suppose that the K G -problem is -N (note that F FN) 

(2) LK,pK -~ - . 

where ,pK is a yet unknown approximation of <PN on GK. Note, that $K can 

only contain Fourier components for which AK z 2hK in each coordinate-

d . . h 1 Kb . . . f K Th h irection. Furt er, et$ ea given approximation o <P. en t e 
. K K Kb ld h . necessary correction w = ,p -$ can e so ve from t e correction 

equation 

(3) 

where the residual RK is defined by 

(4) 
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As it is more efficient to solve those components of wK, which are smooth 

on GK-I (AK z 2hK-I in each coordinate-direction), as much as possible 
K-1 on the coarser grid G , it is worthwhile to approximate equation (3) on 

the grid GK-I. In the FAS multi-grid method this approximation is 

~K-1 K-1 
L W = 

(5) 

K-1 _.K-1 
Here IK and WK are restriction operators (not necessarily the same) 

that assign (smoothed) values of $Kand RK to each gridpoint of GK-I. By 

h ff h f h . . ,,~-I 1 . t e cut-o c aracter o t e restriction operators, o/ can on y contain 

Fourier components which are smooth on GK-I. 

A convenient way to solve equation (5) is to introduce 

(6) 

and consequently write the GK-I problem in the form 

(7) 

where 

(8) 

K-1 K-1 
L ,p 

-K-1 
F ' 
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K-1 K Since L and L approximate the same differential equation they can be 

taken (and will be taken in this investigation) identical. This has the 

advantage that the same relaxation algorithm can be used on each grid. 
K-1 h . . K-1 f . 1 d f . Now~ , or rat er an approximation$ o it, can be so ve rom equation 

(7) by doing a number of relaxation sweeps, starting from I~-l$K as the 
K-1 initial guess. Then~ is obviously approximated by 

(9) 

see equation (6). 

It follows that the original approximation $K to ~K can be improved to 

$! by putting 

( 10) $K = $K + IK ~K-1 = $K + IKK-l($K-l_L~-1$K), 
o K-1 appr. 7C 

where IKK-I is a prolongation operator that assigns values of ~K-I to appr. 
each gridpoint of GK by interpolation. 

This way, mainly the short wave components of ~K (2hK ~ \K < 2hK-l in at 
K least one coordinate-direction) need·to be determined from the G -problem, 

equation (2) or (3). As the relaxation algorithm was required to be very 

efficient in damping error components of precisely that part of the spectrum, 

the short wave components of ~K can be determined doing only a few 

relaxation sweeps. 

Fixed strategies: V-cycles versus W-cycles 

K K-1 The relationship between the G -problem and the G -problem as 

explained above is depicted in Fig. !. It remains to define a strategy 

by which this relationship is employed recursively on the grid sequence 

GK,K = 1,2, ••• ,N. Here, only fixed strategies will be considered. 



Fig. I 

PROLONGATION 

LK\OK=FK 

do pk relaxation sweeps 

cp/-1 = l:-1 q,K 

FK-1=w(-1 Fk-wt-·' LK<PK+LK-1 11:-1 <PKl 

PROLONGATION 

. <f>oK= q,K + 1:_, ( <f>K-1 -lt-1 q,K) 

L K-1,/-1 = f'K-1 

do pK- l relaxation sweeps 

RESTRICTION 

Relationship between the GK-problem and the 
cK-1-problem in the non-·linear FAS multi-grid 
method 

The simplest fixed strategy by far is obviously the repeated application 
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of a so-called V-cycle (see Fig. 2). In transonic calculations this simple 

form of fixed strategy has been used successfully by many authors [9,11, 

13, 14, 15, 16, 17]. It will be shown in this paper that a somewhat more compli­

cated fixed strategy, called a W-cycle (see Fig. 3), is in fact more promi­

sing. A theoretical result of Hackbush [23] substantiates this point of view 

and will be summarized below. 

K Consider a 2-level-multi-grid method to solve the G -problem in which 
K-1 

the G -problem is solved exactly in each cycle. After one cycle, the 

original error ~K is then reduced to ~K according to the relation 
new 

(II) nl II = vknln. new 

A necessary and sufficient condition for convergence is, of course, that 

the amplification factorvK satisfies O :S vk < 1, 
N 

Next consider a N-level multi-grid method to solve the G -problem according 

to the following fixed recursive strategy: 
K "Within each cycle to approximately solve a G -problem, 

K-1 
K = 3, .•• ,N-1, the cycle to approximately solve a G -

1 problem is v times repeated. Furthermore, all G -problems 

are solved exactly". 
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Obviously, v = I represents a V-cylce (see again Fig. 2), while v 2 

represents W-cycles of the type shown in Fig. 3. 

n4 

iterations 

G1 ------­

Fig. 2 Example of a V-cycle on four grids 

Fig. 3 Examples of a W-cycle on three and on four 
grids 

If wK is the amplification factor of one such cycle to approximatley solve 
K a G -problem, there must hold 

(12) n,l 11 = w niln. 
new K 

For a rather large class of non-linear elliptic problems, Hackbush [23] has 

derived the following recursive inequality, 

(13) 0, K > 0, 
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for this particular strategy. 

Now suppose, for example, vK v for K ~ 2 and K = I. Then, following the 

equality sign in (13), there is obtained for the V-cycle (v=I), 

( 14) wN = (N-l)v. 

This indicates that the V-cycle strategy can diverge for large enough N, 

so that in general the convergence of V-cycle strategies is not guaranteed. 

Similarly, the W-cycle strategy corresponding with v = 2 leads to 

v < I, K ~ 2 this is a finite series of the form 

(16) 

Comparison of equations (14) and (16) indicates that the prospects of 

obtaining wN < I are in general better for the W-cycle strategy. In fact, 

Hackbush [21] has proved that the W-cycle, strategy converges if the coarsest 

grid is fine enough. W-cycle strategies have been used successfully by 

several authors [25,26,27], Recently, Braess [24] has proved that the 

V-cycle strategy also converges under the additional assumption that at 

least one relaxation sweep has to be performed before and after the coarse 

grid correction on each grid (mk > 0 and nk > O in Fig. 2). 

Fig. 4 Example of dummy gridpoints on GK and GK-I 
for a two-dimensional situation 
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Von Neumann boundary,conditions 

In applying multi-grid methods, the treatment of Von-Neumann boundary 

conditions requires careful attention, In this paper, these conditions 

will be enforced using dummy gridpoints. The procedure is best explained 

for a K example of a G -problem (see Fig. 4), 

( 17) 

where (iK-1,jK) is the dummy grid point on grid GK. Equation (17) is in fact 

the "boundary-equivalent" of equation (2) and hence will be treated in 

a similar fashion as much as possible. Therefore, if ~K is again a 

given approximation of <f!K, the restriction of equation (17) to the GK-I_ 

problem is formally, 

K-1 K-1 
<f!. 1 . -<{!. I • 

1 K-t ,JK-1 1 K-I- ,JK-1 

2t..~-I 

( 18) 

2t..~-I 

In equation (18), the boundary-restriction operator ~-I can involve only 

boundary gridpoints of GK. On the other hand, the restriction operator 
K-1 IK is the same as defined before. The difficulty with equation (18) is 

that the second term in the right-hand side involves the gridpoint 

(iK_ 1-l,jK-I) = (iK-2,jK) where the operation I~-l~K is undefined. Hence, 

equation (18) is approximated as follows, 

K-1 K-1 
<f! iK-l+l ,jK-1 -<P iK-1-l 'jK-I 

ZL'..~-1 

( 19) 
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-K-1 
where IK is now a boundary-restriction operator involving only boundary 

K ~-I 
of G. Also here, the boundary-restriction operators WK and gridpoints 

-K-1 
IK need not necessarily be the same. 

3. ILU/SIP-ALGORITHM 

General description 

An extensive treatment of ILU and SIP can be found in Meijerink and 

Van der Vorst [19] and Stone [18] respectively. Here,only a brief description 

will be presented. 
K 

Quasi-linearization of the G -problem, equation (2), results in the matrix-

vector equation 

(20) 

If $K is a given approximation to ~K, an iteration process (note that the 

irrelevant grid-level index K has been dropped) to solve this equation can 

be described as 

(21) 
jA*[$n]6$n = f - A[$n]$n, 

A*[$n] = A[$n] + B[$n], 

6$n = $n+I _ $n. 

This results in the modified equation 

(22) 

where the error matrix B should be chosen such that the iteration matrix 

A* is easily invertible. In both ILU and SIP the error matrix Bis derived 

from an incomplete decomposition [18,19]of the system matrix A, viz. the 

LU-decomposition of a sparse matrix approximating A. This results in sparse 

lower and upper matrices Land U. The easily invertible product LU 

defines the iteration matrix A* and the errormatrix B according to the 

relation 

(23) LU A+ B. 
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As an illustration of the matrices A and B, their structure is sketched in 

Fig. 5 for the case that a form of ILU is applied to the 7-point discreti­

zation of the Laplace-operator. 

--- ----, 
I 
I 
I 
I 
I 

-------, 
I 
I 
I 

' : ' I k-PLANE ' --; -~ f j-LINE 

L_____ -------, 

I 

' I 
I 
I 
I L ____ _ 

I 
I 

Fig. 5 Upper left corner of the patterns of the 
system matrix A (drawn lines) and the error 
matrix B (dotted lines) for an !LU-decompo­
sition of the 7-point discretization of the 
Laplace-operator on an i*j*k-grid. 

In the literature, several versions of ILU and SIP algorithms can be 

found. Incomplete Crout-decomposition (or Cholesky-decomposition, if the 

matrix is symmetric) is most commonly used. 

The algorithms differ in the treatment of the entries of the errormatrix 

B. The following versions can be distinguished: 
. + n+l 1. The term with at~ in the modified equation (22) is left untouched, 

meaning that the entries of B need not be computed. This version is known 

as ILU. 
• + n+l 

2. Elimination of the term with at~ from the modified equation (22) 

by what is generally called "lumping": during the incomplete decomposition 

of A, all entries in each row of Bare computed and added to the main 

diagonal of A. In terms of finite-difference approximations this corresponds 

to a zeroth-order Taylor-expansion of the entries in the error matrix B. 

3. Elimination of the term with at~n+l from the modified equation (22) 

by a first-order Taylor-expansion of the entries in the error matrix B. 

The basic interpolation-formula for an entry B. . k of Bis on a uniform i+p ,J+q, 
grid 
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(24) B. . k ]_ +p ,J+q, B. . k + B. . k - B .. k' 1-+p,J' 1-,J+q, 1-,J' 

where the entries on the right-hand side are assumed to be contained within 

the matrixpattern of A. 

Equation (24) is used as follows. If, as a result of the incomplete decompo-

sition of the matrix A, there appears an entry 

error matrix B, it is added to the off-diaonal 

and substracted from the diagc,nal entry A. ,. k 
i,J' 

version is known as SIP. 

B.+ ·+ kin a row of the ]_ p,J q, 
entries A. . k' A. . k 

]_ +p 'J ' ]_ 'J +q ' 
of the systennnatrix A. This 

In most cases the entries of the matrix A are small compared to the largest 

entries of the systemmatrix A, However, they are not insignificant. They 

can be helpful (as is assumed with ILU, version 1), especially in elliptic 

problems. In other cases, the choice of Taylor-expansion (versions 2 and 3) 

can be crucial in order to obtain a fast and insensitive algorithm. 

The !LU/SIP-algorithm is obtained by taking the convex combination of 

SIP (method 3) and ILU (method 1), 

(25) ILU/SIP(a) = a*SIP + (1-a)*ILU, 0 ~a~ 1. 

This combination has, implicitly, been used earlier [S,14,18], but it has 

never been recognized as such. This explains why experience with ILU 

[20,21] has not been used in the past within SIP. 

Two important aspects of the !LU/SIP-algorithm are its full implicit­

ness and the absence of a preferred sweep-direction, As a consequence 

local flows in all possible directions are solved equally well. The 

price for the full implicitness is the need to store the entire upper 

triangular matrix U, (see equation (23)). Under "Coding aspects" it will 

be shown that the disk-storage required is not restrictive. The alternative 

is, of course, to use an algorithm which is restricted to being implicit 

per plane in order to allow incomplete LU decomposition per plane in core. 

Such an algorithm, called plane-ILUt is in fact a three-dimensional 

generalization of the two-dimensional SLOR-algorithm, in which the solution 

of the tridiagonal system per line has been replaced by the incomplete LU 

decompositionper plane. This method will be analyzed for an elliptic test­
problem and compared with (fully implicit) ILU/SIP. 

tThis plane-ILU algorithm is not to be confused with the line-ILU algorithm 
developed by Meijerink and presented by Kettler [28], which is in fact a 
block-ILU algorithm. 



432 

Multiple applications [20,21,27]have shownthat ILU within the multi­

grid method is a robust and insensitive tool for the solution of a wide 

variety of elliptic problems, which, on a uniform grid, is at least two 

times faster than SLOR within the multi-grid method. Application of SIP 

within the multi-grid method for the solution of transonic flow [14] has 

led to results which are promising, but which leave room for improvement. 

In what follows, the good results obtained by Wesseling r21J for two-dimen­

sional elliptic problems using ILUwithin the multi-grid method will be 

generalized to the three-dimensional mixed type problems of transonic flow 

by using ILU/SIP within the multi-grid method. 

Local mode analysis 

In particular the damping of the high-frequency components in the error 

spectrum and the insensitivity of the !LU/SIP-algorithm will be analyzed 

by means of the local mode (Von Neumann) analysis. This is an effective 

tool to investigate locally the damping of the various (high-frequency) 

Fourier components of the error. As the local mode analysis is not valid 

near shocks and sonic surfaces, the analysis will be restricted to the 

relaxation of strictly elliptic and hyperbolic finite-difference schemes. 

(26) 

for 

(27) 

The local mode analysis consists of two steps. First the equations 

(A<P) .. k 
l.J fijk 

n 
eijk $ijk - <P ijk 

n $n+I n n+l n 
M .. k - $ijk eijk - eijk l.J ijk 

gridpoint i ,j ,k are combined with equation 

n+I n I (A+B)(e -e) .. k 
l.J 

(21) to give 

Next, the Fourier component e~.k = (G[µ,8,w])nei(iµ+jS+kw) is substituted 
l.J 

into this expression, leading to the reduction-factor 

(28) p[µ,8,w] IG[µ,8,w]j, 
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which can be analyzed as a function of the "frequencies" 0 < µ,0,w,,; 71. 

For the use within the multi-grid method, in particular the high-frequency 

modes of the error (at least one "frequency" is high, e.g. T < µ ~ 71) 

should be damped efficiently. A good measure for this is the maximum 

value p ofp(µ,0,w) over the high-frequency part of the (µ,0,w)-domain. 

Elliptic testproblem 

For the testproblem the commonly used seven-point discretization of 

the elliptic equation 

(29) a'{) + b,p +c'{) 
XX YY zz 

0, a,b,c > 0 

will be taken. 

The following relaxation algorithms will be compared: 

-SL0R-x (successive relaxation of x-lines), 

-SL0R-xyz (three subsequent sweeps of SL0R-x, SL0R-y and SL0R-z), 

-y-planeILU (incomplete LU-decomposition of planes of constant y), 

-ILU (version I in "General description"), 

-ILU with lumping (version 2 in "General description"), 

-SIP (version 3 in "General description"), 

-ILU/SIP(a) (convex combination: a*SIP + (1-a)*ILU, 0 ~a< I). 

The sensitivity of each algorithm is investigated by employing various 

values of a, band c, simulating various mesh ratios in a computational 

domain. 

If 6x = 6y = 6z, discretization of equation (29) by central differences 

yields for the systemmatrix A: 

(30) 

where$ is short for$ pqr i+p,j+q,k+r· 
For the operator B, the following expressions can be found: 

-SL0R-x: (B$)000 = b$010 + c$001' 

-SL0R-xyz: three subsequent sweeps of SL0R-x, SL0R-y and SL0R-z, 
ac 

-y-plane ILU: (B$)000 = b$010 + Q($_101+$10-1), 
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Q ./4 2 2 2 a +b +c + (a+b+c) -(a +c ), 

Q ./4 2 222 a +b +c + (a+b+c) -(a +b +c ), 

2 
-ILU with lumping: (B$)OOO = (BILU$)OOO - Q (ac+ab+bc)$OOO' 

Substitution of equations (30) and (31) into equation (27) leads to 

the results presented in table 1, which have been obtained by numerical 
2,r 

evaluation of equation (27) for the frequency values µ,e,w = ± K' 
K = 2,3,4,8,16,32,64. These values are considered to be representative for 

the entire frequency-domain. Due to the symmetry of the problem, only 

the values of a,b and c mentioned in the table need be considered. 

Table 

s ) 
(1,1,11 

I E = .1 I 
(E,1,11 

(1,E,11 

(1/E, 1, 11 

(1, 1/E,11 

(1,E, 1/EI 

(E, 1/E, 11 

(1/E,1,EI 

Maximum reduction-factors p of high­
frequency modes for various algorithms in 
case of the elliptic testproblem, 
equation (29) 

y-plane ILU ILU/SIP (a) 
SLOR--x SLOR-xyz ILU 

with ILU I LU/SIP (. 71 SIP 
lumping a=0 a= .7 a= 1 

.50 .48 .41 .22 .27 .27 

u 

.90 

l 
.82 N I l I .85 .72 .66 .24 

.83 .72 s I 

.49 

l 
.44 T l l l .69 .34 .32 .17 

.84 .83 
A 

.97 .81 

.97 .90 .97 
B 

.81 .76 .15 

.49 .77 L 

E 



Table I (continued) 

:;;: y-plane 
ILU ILU/SIP (a) 

SLOR--x SLOR-xyz ILU 
with ILU ILU/SIP 1.71 SIP 

I lumping Cl= 0 Cl= .7 Cl= 1 

(1,1,1) .50 .48 .41 .22 .27 .27 

·U I E = .001 I 
(E,1,1) .99 I .98 N 

I I I .98 .97 .95 
r 

.38 
(1,E,1) .98 ,97 s 
(1/E, 1, 1) .16 I .17 T I I I .53 .28 .15 .03 
(1, 1/E, 1) .99 .99 

A 
(1,E, 1/EI .99 .18 

(E, 1/E, 11 
B 

.02 .99 .46 .99 .18 .17 

(1/E, 1,EI .10 .10 L 

E 

Table 2 Maximum reduction-factors p of high­
frequency modes for various algorithms in 
case the elliptic testproblem, equation (29), 
is reduced to the two-dimensional case 

~ y-plane ILU ILU/SIP (a) 

SLOR-x SLOR-xyz with ILU ILU/SIP (al SIP 
ILU lumping Cl= 0 Cl= .7 Cl= 1 I 

(1,1) .45 .39 .63 .20 .21 .23 

I £ = .1 I 
(E,11 .83 

I see I I .46 I I .14 (1,E) 
.61 >1 .26 

.45 SLOR-x 

I E = .001 I 
(E,11 .99 

I I I .17 I I .02 (1,E) 
.67 .42 .09 

.45 
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From table I it can be concluded that SLOR-x and y-plane ILU are very 

sensitive to variation of mesh ratios. For e=.1 (a mesh ratio of /JO= 3.16) 

as well as e=,001 (a mesh ratio of 11000 = 31.6), almost unacceptable 

maximum reduction-factors in the range p = ,97-.99 can occur. SLOR - xyz, 

ILU and ILU/SIP(.7) are moderately sensitive. SIP is most intensitive. 

ILU with lumping is unstable. The best damping is obviously provided by 

ILU/SIP(a), where the insensitivity improves with increasing a. Except for 

(a,b,c) = (l,1,1), where the damping is nearly independent of a, the 

maximum reduction-factor p shows a similar tendency. The most insensitive 

character of SIP (a=l) is questionable, however, because this property 

is not preserved for values of a slightly lower than one, For this reason, 
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this most insensitive character of SIP will probably not show up in practical 

numerical experiments, where the basic assumptions of the local mode 

analysis (constant coefficients and periodic boundary conditions) are 

violated anyway. The final conclusion from table I is, that all ILU/SIP(a) -

algorithms are expected to be in the order of two times faster than SLOR-x, 

SLOR-xyz and y-plane ILU within the multi-grid method on a uniform grid. 

The insensitivity is probably best served by taking ILU/SIP.(a) with a 

closer to one, e.g. a= 0.7. As a consequence of this conclusion, the 

analysis for the hyperbolic testproblem that follows hereafter will be 

restricted to ILU/SIP(a) and SLOR-x, the latter being used as the reference 

case. 

For purposes of comparison, the results for the two-dimensional case 

are presented in table 2. Here, SLOR-x (or y-plane ILU) is the only very 

sensitive algorithm. All other algorithms, expect ILU with lumping, which 

can be unstable, are relatively insensitive. 

HyPerbolic testproblem 

A representative hyperbolic testproblem is 

(32) al{) -trbl{) +c·I() 
XX yy ZZ 

O, a,b,c > O. 

The discretization will use central-differencing in they- and z-direction 

and upwind-differencing in the x-direction. This results for the system 

matrix A in: 

(33) 

The SLOR-x algorithm is stabilized by constructing the term ~ta (2aa + 
+ + n+I . . • . . t x 

ba +ea)~ in the left-hand side of the modified equation (22) by y z 
choosing the error matrix B according to 

(34) 

This algorithm will be compared with the ILU/SIP(a)-algorithm for two cases: 
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- without adding any,stabilizing terms; 

(B4>)ooo = 

+ bc(4>0-10 +4>010 +4>001 +4>00-1 -Z4>000J 

(35) Q = b+c+½a+ /(b+c+½a) 2-(b2+c2). 

. . . ' + ( + ) n+ I . h 1 h d . d with anextra stabilizing term ~tot 2aox 4> in t e eft- an si e of 

the modifiedequation (22)by choosing the errormatrix B according to 

Cl 
+ Q [Zab(-4>_100 - 4>001 + 4>ooo) + 

+ Zac(-4>_100 - 4>001 + 4>ooo) + 24>000] 

+ bc(-4>0-10 - 4>001 - 4>010 - 4>00-1 + Z4>000J 

(36) Q = a+b+c+ /(a+b+c) 2-(b2+c2). 

The choice of sensitivity parameters will be limited to (a,b,c) = 
1 

(£,1,1), E = • 1, because this is representative for a situation in the 

supersonic part of a highly transonic flow away from shocks and sonic 

surfaces. Numerical evaluation of the reduction-factors for the same 

frequencies as with the elliptic testproblem leads to the results presented 

in table 3. (Note in particular that all ILU/SIP(a)-algorithms are exact, 

p = O, if the testproblem is reduced to the two-dimensional case.) 

Of each algorithm only the stability characteristics are given in the 

table, because these are considered to be the most important property. 
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Table 3 Conv~rgence characteristics for various 
algorithms applied. to the hyperbolic 
testproblem -f<Pxx+<l>yy+<l>zz=f, e:=.I 

a <I> n+1 . 
algorithm stable for stable for t m 

high frequencies low frequencies modified 
equation (22) 

SLOR-x stabilized yes yes no 

ILU (ex= 0) yes no yes 

ILU stabilized (ex= 0) yes no yes 

SIP I ex = 1) no no no 

SIP stabilized I ex= 1) yes yes no 

ILU/SIP (.7) yes no yes 

I LU/SIP (. 7) stabilized yes slightly unstable yes 
(ji~l.01) 

h 1 h . . + n+ I . h d. . Te tab e shows tat a non-vanishing at,p -term in t e mo ified 

equation (22) always results in an algorithm that is unstable for the low­

frequency components of the error spectrum. The reason is that the modified 

equation in this case is an unstable differential equation. Reversely, 
+ n+I . however, the absence of at,p in the modified equation (22) does not 

guarantee a stable algorithm, because the CFL-criterion has to be satisfied. 

Obviously, this is not the case w:i.th SIP. Stabilizing SIP by adding 
+ + n+I . . . • 
axat,p appears to be possible, however. Summarizing, both SLOR-x and SIP 

b b ·1· d dd. + + n+I .h 'f' d ' (22) Th can e sta i ize a ing axat,p tote modi ie equation • e two 

versions of ILU and ILU/SIP(.7) are only unstable for low frequencies, 

· but can probably be used within the multi-grid method to reduce high­

frequency error components. Note that table 3 has to be interpreted with 

caution with reference to the mixed elliptic/hyperbolic problems of 

transonic flow, Also, boundary-conditions, shocks and sonic surfaces are 

not included in the local mode analysis. The practical use of the local mode 

analysis for the hyperbolic testproblem is therefore of limited value here, 

althoughit gives useful theoretical information. In practical transonic 

experiments,however, it will appear thateven the presence of at,pn+I in the 

modified equation can still produce convergence, as will be shown in the results. 

Robustness and insensitivity 

Due to its full implicitness, ILU/SIP has the desirable property that 

it can, in principle, converge for all local flow directions (robustness) 
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without the need to choose a sweep-direction. Also the convergence 

characteristics within the multi-grid method are not severely affected on 

stretched grids (insensitivity). This is in contrast to SLOR-algorithms, 

where the sweep-direction influences the robustness as well as the 

insensitivity. This makes ILU/SIP a suitable candidate for use within the 

multi-grid method, especially in those cases where the local flow-direction 

varies strongly (e.g. in air-intakes). 

A further useful property of ILU/SIP is its flexibility with respect 

to the choice of the matrix pattern for the lower and upper triangular 

matrices Land U. For instance, less sparse difference-molecules than 

the 7-point Laplace-discretization can be fully accommodated within 

the ILU/SIP-algorithm by a simple extension of these matrix patterns. 

Extension of the matrix pattern can however also be applied for sparse 

difference-molecules to improve the convergence and insensitivity charac­

teristics of the ILU/SIP-algorithm within the multi-grid method. The price 

to be paid is, of course, that a less sparse upper matrix Uhas to be 

stored. 

Coding aspects 

An important demand at NLR with respect to the choice of a relaxation­

algorithm within the multi-grid method has been that it should be 

possible to implement it on a computer of large, but limited, addressable 

storage capacity (.5-2 Mwords). This has been translated to the basic 

requirement that the algorithm should have a plane-by-plane structure, 

enabling a code to be set up requiring only a limited number of planes 

in core at the same moment. Vectorizability is desirable but not a 

pacing item. 

The evaluation of residuals has proved to be expensive in finite 

volume codes. Because residuals have to be evaluated in each relaxation­

sweep, even a rather expensive algorithm can become cost-effective, 

provided its reduction-rate is high. For this reason the reduction-factors 

in table I and 2 have not been corrected by the different amount of work 

that has to be done in each algorithm (if the evaluation of residuals 

becomes very expensive, these amounts of work will become almost equal). 

By its full implicitness, the ILU/SIP-algorithm requires that the 

entire computational domain be updated simultaneously. Hence the whole 

upper triangle matrix U must be stored, requiring (for the test-problem 
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in this paper) storage-capacity for four large vectors (of length equal to 

the solution-vector). As in general this upper matrix U cannot be stored 

in core, I0-transfers have to be made in each relaxation-sweep. These 

transfers can be carried out plane-by-plane. The absence of a preferred 

sweep-direction (see under "Robustness and insensitivity") can be used to 

advantage by choosing the sweep-direction and the number of planes to be 

transferred simultaneously, in such a way that an optimal balance between 

in-core storage and usage of I0-time is obtained. 

The vectorizability of the !LU/SIP-algorithm has not yet been 

thorougly investigated. Although intrinsically difficult to vectorize, the 

algorithm can be modified [29]to fullvectorizability in the case of a 

linear problem. It is expected, though, that the robustness and insensivity 

of the algorithm will be more or less damaged by this modification. 

4. RESULTS 

Description of test-problem 

The transonic small-disturbance equation 

(37) o, 

is solved on a rectangular domain using a finite-volume type fully 

conservative finite-difference scheme. Roughly speaking, this envolves 

central differencing in elliptic areas (M < 1), upwind differencing in 

hyperbolic areas (M > 1), while special switch operators are used at the 

interfaces [30]. The configuration is depicted in Fig. 6 and it is in fact "a 

windtunnel with a bump (simulating a non-lifting airfoil) on the bottom". 

In the x-direction, the "bump" is a doubly-coupled semi-airfoil whose 

thickness varies in they-direction. The maximum thickness is 5 % of the 

chord. A sample pressure coefficient and Machnumber distribution showing 

a strong shock wave, are presented in Fig. 7. The physical domain is 

covered either by a uniform or by a stretched grid (see Fig. 8); in the 

latter case the physical domain is larger. In most cases calculated the 

multi-grid uses a sequence of four grids G4 , c3 , G2, G1, which is constructed 

by a repeatedly leaving out every other gridpoint; occasionally the 

coarsest grid G1 will be discarded. In most of the results that will be 

presented the finest grid G4 employs 64*16*16 meshes. However, some results 
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on a finer grid of 96*24*16 will also be shown. In many cases, calculations 

have been carried out using the so-called full multi-grid method, in which 

the physical problem is subsequently solved on the grids G1, G2 , G3 (each 
4 time using the multi-grid method) before the multi-grid process on G is 

actually started (see Fig. 9). This generally has a favourable effect on 

the (gradual) build-up of supersonic zones. 

Vario.us experiments using MG(non-linear FAS) ILU/SIP 

Th 1 . b h 1 1 ' . 'd l N ere ations etween t e ea cu ations on the various gri s G ••• G 

in the non-linear FAS multi-grid method are sunnnarized in Fig. 1. The 

restriction process involves the two restriction operators {-l (working 

on residuals) and I~-l (working on dependent variables; here, disturbance 

potentials~). Both injection operators and the smoothing operator defined 

in Fig. 10 will be tested and compared. The prolongation process involves 

the prolongation operator 1~_ 1• Both tri-linear interpolation and four 

point cubic interpolation in the three coordinate directions, compare 

Shmilovich and Caughey 1JJ], will be.tested and compared. 

et> =0 y 

cl>=O 

-c 
X 

Fig. 6 Description of testproblem: "Windtunnel 
with a bump on the bottom" 



442 

I <O 
I C 
I 
I 
I 
I 
I 
I 
I 

0.03125 

;-------
BOUNDARY OF 
UNIFORM GRID 

'-----v-------­
UN I FORM MESHES 
~ 

BOUNDARY OF 
UNIFORM GRID 

tz 
0.03125 

~-------
1 

L<') 
N 
(0 

"BUMP" ~ 

I. 1.0 

Fig. 8 The 64*16*16 stretched grid 

} UNIFORM 
MESHES 
-x 



-0.5 1.0 ----

0 

0.5 

0.5 

~ 
0 ~ 

SHOCK 

1.0 x/c 

Fig. 7 Pressure coefficient and Machnumber 
distribution for Moc,=0.9 along the line ABC 
(see Fig. 6 ). 

G4 - - - - - - - - - - - - - -

~==i=-. multi-grid (MG) 
cycles 

solve physical problem on G4 using MG 

solve physical problem on G3 using MG 

solve physical problem on G2 using MG 

solve physical problem on G 1 

Fig. 9 Schematic of full multi-grid method 
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j_ 
64 

1 
64 

Fig. 10 Schematic of smoothing operator for 
K-1 K-1 

WK ' IK 

On the grid GK the "finite-volume" operator is LK. This operator generally 

requires the contravariant metric tensor gij and the Jacobian J. The 

required geometric data on GK can be.determined numerically in two ways. 

One way is to determine them directly from the coordinates of the GK grid 

points. The second way is by restriction (injection or smoothing) of the 

available geometric data (gij,J) on GK+!. As the second way requires far 

more storage space and is less accessible to recalculation of geometric 

data, the first way seems preferable for complicated three-dimensional 

problems. In this paper, therefore all geometric data in LK are determined 

directly from the coordinates of the GK grid points. Hence, LK can be 

and is taken identical on each grid GK. 

With respect to fixed multi-grid strategies the relative merits of 

V- and W-cycles will be investigated. The choice of V-cycle will be 

limited to the N-level class (N=4,3) defined by, compare Fig. 2, 

I k k 
VN[m,l ,n]: - m m, n n for K 2 N-1 

- if m " n then N N 
0 m m, n 

else N 
= o, N 

m n n. 

The choice of W-cycles will be limited to the 4-level recursive class 
I w4[1 ,n] depicted in Fig. JI. 



4 . 
G ---- n---

t1 t1 

Fig. I I Schematic of the four level recursive 
W-cycle class w4 [i1, n] 
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In the testproblem a uniform computational space I;, n, t; is introduced 

through the simple stretching functions 

(38) x=x(I;), y=y(n), z=z(t;). 

The transonic small-disturbance equation (37) then transforms identically 

into 

2 t;x 
1; n 1; {[ ( I -M ) -n,. <P 1: + xyz co .,, .,, 

y z 

(39) 

In all experiments of which convergence histories are shown, the mean 

(1 1) norm (MEANRES) will be plotted against so-called equivalent work­

units (WU). One work-unit equals the amount of work done for one relaxation 

sweep on the finest grid. In the calculation of the number of work-units 

needed for one multi-grid cycle,the work invested in restriction and 

prolongation is neglected, For example, the W-cycle strategy w4 (4,2) 

requires 2 + ½ + 6~ + 5\~ = 2,65625 work-units per cycle. Because the 

plots enable the comparison of "mathematical convergence rates" only, it 

must be realized that the best convergence rate does not automatically 

correspond to the fastest computer runtime. Computer runtimes are the 

product of the balance that exists between good mathematical convergence, 

the time needed for restriction and prolongation and the magnitude of the 

work-unit which is determined by the choice of relaxation algorithm. It is 

emphasized here, that the work-unit of the SLOR algorithm and the ILU/SIP 

algorithm are different. In a few cases, also plots of the number of 
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the number of supers0nic points (NRSUP) as a function of the work-unit 

will be presented. 

Performance of MG (non-linear FAS) -ILU/SIP 

In the experiments that will be presented both the residuals and the 

dependent variables will be smoothed in the restrictions. Preliminary 

experiments have shown that this choice pays off when the ILU/SIP algorithm 

is used within the multi-grid method. For the same reason, unless stated 

otherwise, cubic interpolation will be used in the prolongations. In all 

transonic runs the gradual build-up of the supersonic zone is ensured as 

much as possible by applying the full multi-grid method (Fig. 9). Three 

versions of the ILU/SIP(a)-algorithm will be compared, viz. ILU(a=O), 

ILU/SIP(. 7) and SIP(a=1). The choice a = . 7 is reasonably optimal [31,32]. 

Elliptic testproblem 

First the performance of the three different ILU/SIP(a) versions 

within the multi-grid method will be·demonstrated for the case M00 = O, 

corresponding to the elliptic testproblem, equation (29), for a=b=c=I. 

The resulting convergence histories on the uniform 64*16*16 grid are shown 

in Fig. 12 for the W4[3,l]-strategy. Obviously the ILU/SIP(.7) algorithm 

leads to the fastest convergence with an reduction-factor per work unit 

A~ .21. In view of the results in table 1, it is a bit unexpected that 

ILU/SIP(.7) leads to slightly better results than ILU for a purely elliptic 

problem. The rather striking slow-down of the convergence rate in case of 

the SIP-algorithm is caused by slow damping of the boundary-conditions at 

the far-field boundaries. This phenomenon has also been reported by 

Schneider and Aziz [31,3 2]. 

The resulting convergence histories on the stretched 64*16*16 grid are 

shown in Fig. 13. Again, the ILU/SIP(.7)-algorithm converges fastest with 

an initial reduction-factor per work unit A~ .30. Use of the SIP-algorithm, 

however, has caused instability (due to the unstable relaxation of boundary­

conditions). The curves for ILU and ILU/SIP(.7) show a distinct kink after 

which the convergence rate slows down considerably. 

A close examination of the numerics has revealed that the kink in the 

MEANSRES-plot corresponds to the shift of the maximum residual from a 

position close to the "bump (airfoil) on the bottom of the wind tunnel" 
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(Fig. 6) to a position close to the far field boundary of the computational 

domain. This has led to the following explanation. Near the "airfoil" the 

grid is uniform and has modest mesh ratios (Fig. 8), whence the ILU/SIP 

algorithm is able to smooth the local errors efficiently. At the far-field 

boundary of the computational domain the grid is highly stretched and 

exhibits some rather nasty mesh ratios (Fig. 8). As can be learned from a 

local mode analysis, this causes the ILU/SIP algorithm to be far less 

efficient in the smoothing of local errors. So, the convergence at the 

far-field boundary is lagging behind and this ,;;hows up eventually in a 

dominating maximum error. Hence, the multi-grid process is ultimately 

determined by the relatively inefficient !LU/SIP-damping near this far-field 

boundary. On more regular grids than in the present test problem, the 

same phenomenon will show up as a more gradual stalling of the rate of 

convergence. This has been observed e.g. by Raj [15]. 

A way to overcome this effect, at least partially, will be briefly 

discussed hereafter. 

Local Richardson extrapolation 

In mono-SLOR algorithms, a well known technique to accelerate 

convergence is the so-called (global) Richardson extrapolation [33]. Here 

the same idea is applied to the afore-mentioned local errors near the 

far-field boundary of the computational domain, which are lagging behind 

in convergence rate due to the fact that the highly stretched grid 

exhibits some nasty mesh ratios (Fig. 8), causing less effective damping 

of local error modes. Figure 13 shows a preliminary result if this technique 

is used as the basis of a fixed extrapolation strategy. 

Transonic testproblem 

The numerical computations for the transonic testproblem have mainly 

been performed using the ILU/SIP(a)-algorithm without extra stabilizing 

terms in the supersonic zone, equation (35). Only for the case M00 ' ,= 0. 90 

on the stretched 96*24*16 grid was it necessary to add extra stabilizing 

terms in the supersonic zone, equation (36). 

First the robustness of the ILU/SIP(.7)-algorithm within the multi­

grid method will be demonstrated on the stretched 64*16*16 grid at 

M00 = 0.90. The results for the W4[9,3]-strategy and two different 
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V4[0,9,3]-strategies,are shown in Fig. 14. In one V-cycle strategy, pure 

injection in the restriction and tri-linear interpolation in the prolongation 

has been used. This choice was motivated by the fact that this combination 

proved to be nnreliable in the MG-SLOR experiment, compare Fig. 15. The 

other V-cycle strategy uses smoothing and cubic interpolation as in all 

W-cycle strategies. The figure shows reliable convergence for all three 

strategies. Apparently, the unreliable convergence of MG-SLOR experiments 

with pure injection and tri-linear interpolation is not encountered here. 

The figure also shows tbe tremendous effect of smoothing (residuals as well 

as dependent variables) and cubic interpolation. It can also be observed 

that the V4[0,9,3]-strategy and the W4[9,3]-strategy perform almost equally 

well, beit that the W-cycle is slightly better initially. 

A comparison of ILU(a=O), ILU/SIP(.7) and SIP(a=l) on the stretched 

64*16*16 grid at M00 = 0.95, employing the W4[6,2]-strategy is shown in 

Fig. 16.It appears that the SIP-algorithm leads to unstable multi-grid 

performance, compare also Fig. 13, due to the unstable relaxation of the 

boundary conditions at the far-field .boundaries. Furthermore, ILU/SIP(.7) 

leads to much faster convergence than ILU(a=O). The reason is probably 

that ILU/SIP(.7) contains less 8 ~n+l in the modified equation (22), see 
t 

also under "Hyperbolic testproblem". 

Fig. 17 shows an application of the local Richardson extrapolation 

technique for the highly transonic case M00 = 0.95 on the stretched 

64*16*16 grid. The algorithm used within the multi-grid method is ILU/SIP(.7); 

the strategy is W4[9,3]. It can be observed that, after the Richardson 

extrapolation is switched on, the convergence speed becomes indeed 

comparable to the convergence speed before the kink occurs. Thus, at the 

cost of onlya few extrawork units highly converged results on stretched grids 

canbe obtainedwithin a reasonable numberof work units. 

Finally, the ILU/SIP algorithm will be tested within the multi-grid 

method on the much finer 96*24*16 stretched grid. First, the case M00 = .95 

will be considered. Fig. 18 shows that in this case the MG-ILU/SIP(.7) 

method leads to a limit cycle after one order of magnitude recution of 

the mean residual. Apparently, the formally unstable character of the 

modified equation (22), which contains a non-vanishing at~n+l_term, mani­

fests itself (see under "Hyperbolic testproblem"). Therefore, the ILU/SIP(. 7)­

algorithm has been used in the stabilized version, equation (36), which 



adds a stabilizing 3~3t<t,n+l_term to the modified equation (22) in the 

hyperbolic region. Fig. 18 shows that this stabilized method indeed 

converges, although the convergence rate is rather slow. The fastest 
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' b ' d 'f h ~ ~n+I ' 1· ' d f h d'f' d convergence is o taine 1 teat~ -term is e iminate rom t e mo i ie 

equation by using ILU/SIP(I.) in the hyperbolic region, thus eliminating 

the formal instability of the modified equation. Moreover, the added a + n+ I . . -t- + n+ I 
xclt<P -term has to be kept as small as possible by adding a Eoxclt<P -

term with £ < I (usually£ =. 4 is taken). This way, the algorithm is 

unconditionally stable and fast and reliable convergence is obtained (Fig. 

18). The above ILU/SIP(.7)-version, with ILU/SIP(J.) plus a stabilizing 
+ + n+I . 

eclxclt<P -term in the hyperbolic region, will now be compared to the 

SLOR-algorithm within the multi-grid method. Fig. 19 _(M00=.90) shows that 

the initial reduction rate (A~.74) is indeed much better than the one for 

SLOR (A~.84). Two orders of magnitude reduction in the error of the 

residual are already achieved at 14.5 work units, where SLOR requires 

7.5 work units more. Fig. 19 also shows that the Richardson extrapolation 

is an effective tool to obtain fast convergence after the "kink" has 

manifested itself (A~.82). 

In Fig. 20 the more severe test case M00 .95 is shown. In this 

case, the initial convergence rates of MG-SLOR and MG-ILU/SIP are almost 

equal (A~.81). Two orders of magnitude reduction in the residual are ob­

tained at approximately 30 work units. The comparison to SLOR on four 

successive grids shows that this mono-grid method has not achieved the two 

orders of magnitude reduction in the error level even after JOO work units, 

In Fig. 21 it is shown that the build-up of the number of supersonic 

points is better for MG-ILU/SIP(.7) than for MG-SLOR. The mono-grid SLOR 

method is significantly worse than the multi-grid methods. A crossplot 

of Fig. 20 and Fig. 21 shows the above two effects in an even more 

illuminating way. At about 1.5 orders of magnitude reduction in the 

residual, MG-ILU/SIP(.7) has already nearly reached the final number of 

supersonic points, while MG-SLOR is still about I% away from this final 

value. The mono-grid SLOR method is, however, still far from the final 

value. If the number of supersonic points (development of the supersonic 

zone) is interpreted as a measure for the "quality of the solution", it 

is obvious from Fig. 22 that multi-grid methods (MG-SLOR and MG-ILU/SIP 

provide (at a certain error level) solutions of far better quality than 

the corresponding mono-grid methods. This is explained by a more efficient 
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approximation of the.long-wave contents of the solution. Additionally, the 

MG-ILU/SIP method provides a solution which is better than the one provided 

by the MG-SLOR method. 

5. CONCLUDING REMARKS 

Two relaxation-algorithms, viz. SLOR and a mixed Incomplete Lower 

Upper decomposition/Strongly Implicit Procedure (ILU/SIP), have been 

investigated for use within the non-linear FAS multi-grid method in 

transonic applications. The well-understood SLOR-algorithm was used 

primarily for reasons of comparison. 

The main conclusions of the research presented can be sunnnarized as 

follows: 

- The combination of pure injection in the restrictions and tri-linear 

interpolation in the prolongations is far from being optimal. 

Smoothing of the residuals in the restrictions combined with cubic 

interpolation in the prolongations; contributes the most to the improve­

ment of the (mathematical) convergence rates of an otherwise fixed multi­

grid strategy. 

- Both V-cycle and W-cycle fixed strategies can lead to reliable multi-grid 

convergence. However, the prospects of fixed W-cycle strategies are better 

from a theoretical viewpoint. 

- For transonic applications, and even for subsonic (purely elliptic) 

applications, the ILU/SIP(.7)-algorithm performs better than ILU. The 

use of SIP within the multi-grid method can easily lead to divergence. 

- ILU/SIP is a serious candidate for the error-smoothing algorithm within 

the multi-grid method in transonic applications. The algorithm is 

unconditionally stable in supersonic (hyperbolic) regions of the flow 

and is a more efficient smoothing algorithm than SLOR. Its full 

implicitness and insensitivity, but also the absence of a preferred 

sweep-direction in the coding, are especially of value if complicated 

configurations involving strongly varying local flow directions and 

highly stretched grids are involved (e.g. air intakes). 

- At a certain (specified) reduction of the error level, MG-SLOR as well 

as MG-ILU/SIP provide solutions of better quality than the corresponding 
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mono-grid algorithms. This can probably be used to advantage by specifying 

a lower convergence level. 

- An explanation has been provided for the deterioration of the initial 

convergence rate of the multi-grid method on highly stretched grids. 

This stresses the requirement of smoothly stretched grids, not only 

from a viewpoint of approximation accuracy, but also of solution efficiency. 

- A local form of the well-known Richardson extrapolation has been put 

forward as a possible means to partically overcome the deterioration of 

the initial multi-grid convergence rate on highly stretched grids. A 

more consistent way to avoid deterioration of the convergence rate is 

possiblythe use of a grid which is less efficient in the number of 

computational points, but which has a smoother stretching. 
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TRANSPORT OF WASTE HEAT OR POLLUTANTS IN THE SUBSOIL 

W. ZIJL 

I • INTRODUCTION 

The last decade has witnessed rapid progress in the development of 

computer-based models for the simulation of subsurface fluid motion. Well­

known are reservoir simulation models for economically predicting the 

response of an oil or gas producing reservoir to a variety of operating 

conditions or development plans. 

The subsurface environment is increasingly involved in water and 

energy supply, and also in waste disposal problems. 

In many of these cases, numerical simulation is indispensable to 

obtain reasonably quantitive insight in economical and environmental 

effects, and to weigh various alternatives against each other. 

The recent advent of supercomputers and attached array processors now 

makes possible, technically and economically, advanced three-dimensional 

simulations of subsurface transport processes, 

In this way, transport of pollutants and waste heat in a subsurface 

flow system can be predicted, being an important tool for environmental 

impact assessment and licensing purposes (I). 

The classical theory of porous media is devoted to the description 

of flow and transport through soils consisting of sand, clay, peat, etc. 

Typical applications are in the fields of petroleum reservoir engineering 

and groundwater hydrology. In these fields, a porous medium is defined 

as a solid structure containing a multiply connected void space through 

which a fluid can flow; see Fig. I. The constituents of the solid structure 

(i.e. the sand, clay, peat) may be distributed randomly or in a regular 

way. The fluids (oil, water, gas) spread through the void space, thereby 

causing a pressure gradient which acts as a force on the constituents of 

the solid structure. For a good understanding of transport processes in 
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porous media, it might be helpful to consider the many non-classical examples 

of fluid motion conforming to this definition. For instance, agricultural 

products are stored to be available over longer periods, and the container 

with these products can be considered as a porous medium for the cooling 

air flow; see Fig. I. Other examples include filtration, chemical reactions 

using solid catalysts, adsorption, and mass transfer in packed columns. 

Finally, flow in the core structure of nuclear power reactors and their 

components like shield rod arrays, heat exchangers, and steam generators 
can be considered as flow in a porous medium (2), (3). Non-classical porous 

media are often refered to as generalized porous media. 

Fig. I. Fluid motion in void space of porous medium. 
The constituents may be sand, clay, peat, etc. 
(classical porous medium) or potatoes, eggs, 
tubes etc. (generalized porous medium). 

Fluid motions in (generalized) porous media are governed by the 

fundamental laws based on conservations of mass, momentum and energy. 

However, from a practical standpoint, it is hopeless to try to apply these 

basic laws directly to the problems of (generalized) porous media. Instead 

a semiempirical approach is used where the concept of a fluid-structure 

continuum is employed. An important parameter in a porous medium is the 

porosity defined as a fraction of the control volume not occupied by the 

solid matrix, or solid structure. 

We can see that, if the control volume is of the size of a pore, the 

porosity would be either one or zero. As we increase the size of the 

control volume, the porosity value will fluctuate before reaching a 

representative value. The value of porosity associated with a point P is 

the representative value for a control volume of sufficiently large size 

containing P. Other physical properties are defined as a mean value at a 
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point Pin the porous, medium for the same control volume or representative 

elementary volume. This is the so-called continuum approximation, where 

the actual porous medium is replaced by a fictitious continuum. 

It is simple to prove that the surface porosity, that is the fraction 

of a sufficiently large control surface not covered by the solid structure, 

is equal to the earlier defined (volume) porosity (4). 

The resulting equations for the underground motion of oil, gas and 

water are conventionally solved with finite difference methods using one-, 

two-, or three-dimensional grids, and vector computers or attached array 

processors are used to solve the resulting system of large matrix equations! 

To establish the advantage of vector computers (or super computers) over 

conventional scalar computers, the program SWIP has been run on two scalar 

computers and on the vector computers Cray-IS and CYBER-205, simulating 

a two-dimensional, axi-symmetric subsurface heat storage cycle. While no 

significant difference was found between performance of the two super 

computers, it appeared that their application is already attractive if 

problem size exceeds some 800 grid blocks. In the near future this turn-over 

point will be lower as a result of software written specially for vector­

computers, such as the program DARTEX. 

In this paper much emphasis will be laid upon appropriate mathematical 

modeling of these above-described geohydrologic problems, and especially 

the problems encountered when considering anisotropy are discussed in more 

than conventional detail, since these problems have serious consequences 

for the numerical analysis. 

2. BASIC EQUATIONS 

2.1. The fluid-structure continuum 

The basic equations to be solved are well-established; they are the 

classical partial differential equations expressing conservation of mass, 

linear momentum and energy for a Newtonian fluid, the so-called Navier­

Stokes equations (5). To obtain a well-posed partial differential problem, 

initial and boundary conditions must be prescribed. 

The initial condition for the fluid velocity.! is that ,!(.!,,O) must be 

prescribed at time t = O, and the boundary condition at a boundary completely 

enclosing the fluid is that v must be prescribed for all times t > O. For 

the (generalized) porous medium under consideration, this means that v = 0 
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must also be prescribed on the individual constituents of the solid 

structure (e.g., on the grains of sand). 

Although the equations and boundary conditions needed for the prediction 

of the flow pattern in a porous medium are well-established, it is, however, 

also a well-known fact that the Navier-Stokes equations can l'lardly be solved. 

Even for simple geometries, analytical and numerical solutions can only be 

obtained for relatively low Reynolds numbers only. 

Furthermore, the requirement that v = 0 on all components of the solid 

structure is prohibitive even for low Reynolds number flow. Consequently, 

from a practical standpoint, it is hopeless at this time to try to apply 

the basic Navier-Stokes equations directly to the problem of flow in 

porous media. 

For that reason, it is necessary to describe the flow distribution in 

a porous medium approximately by partial differential equations describing 

a so-called fluid-structure continuum. 

Such a continuum approximation is well-known in petroleum reservoir 

engineering and groundwater hydrology, where the actual porous medium 

(sand, clay, peat, etc.) is replaced by a fictitious continuum to any 

point of which we can assign mean variables and parameters which are continuous 

functions of the space and time co-ordinates. In these classical fields, 

the equations describing flow are the continuity equation and Darcy's Law. 

A complete treatment of the dynamics and statics of fluids in porous 

media, where most of the problems considered are oriented towards ground­

water hydrology is presented in (4). A derivation of the continuum 

equations for generalized porous media (a tube bundle in heat exchangers) 

has been presented in (2). 

2.2. The continuum equations 

Starting from the fundamental conservation equations, or Navier-Stokes 

equations, the fluid-structure continuum equations are derived and the 

resulting equations are given by: 

(2. I) 0 (continuity eqn.) 

.:. 
(2.2) -'ilp + pg + pQ (momentum eqn. ) 

(see (2)). 
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In Eqs. (2.1), (2.1), y is the mean fluid velocity in the void space 
.:. 

between the constituents of the solid structure, y is the mean fluid 

motional acceleration given by~= a~/at + ~-V~, p is the mean fluid 

pressure, p is the fluid density,~ is the porosity representing the ratio 

of the volume occupied by the fluid and the total volume, Q represents 

the frictional force distribution, and~ is the gravitational acceleration. 

The force distribution Q is an unknown for which an additional expression 

must be found. 

At low Reynolds number flow (based on the hydraulic' diameter of the 

void space), the advective acceleration in Eq. (2.2) may be neglected, 

and g is linear in Iii. If, in addition, momentum transport may be considered 

as quasi-steady (this is allowed on time scales where sound propagation 

is negligible) the momentum equation (2.2) simplifies to Darcy's law: 

(2.3) k -- -(Vp - pg) 
µ -

where u is the volumetric flow rate in the space containing both the fluid 

and the solid structure (in the literature u is often denoted as the 

Darcy velocity),µ is the fluid dynamic viscosity, and k is the permeability 

depending on the geometrical properties of the solid structure and on 

the flow direction. In this way, momentum equation (2.2) may be considered 

as a generalization of Darcy's Law (2.3). 

The equations describing motion in the fluid-structure continuum have 

essentially the same character as the well-known Euler equations describing 

inviscid fluid dynamics; the only differences are the porosity~ representing 

the ratio of the volume occupied by the fluid and the total volume, and 

the continously distributed force term Q (or permeability k) accounting 

for the flow resistance of the structure. 

The principal difference between the Navier-Stokes equations and the 
2 Euler equations is the absence of the second-order viscosity term µVy 

in the Euler equations. One of the consequences of this absence is a 

simplification of the boundary conditions. Instead of boundary conditions 

for the three components of y for the Navier-Stokes equations, only 

the boundary condition for the normal component of the fluid velocity, 

v.n = O, holds for the Euler equations. This latter mathematical feature 

makes Euler-like equations especially well-suited for the description of a 
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fluid-structure continuum in contrast to Navier-Stokes-like equations, as 

will be shown in the following discussion. 

As an example, let us assume that the porous medium is a container 

filled with potatoes, and that the fluid is a cooling air stream. 

From a physical point-of-view, the boundary conditions in this 

fluid-structure continuum are that no fluid is flowing out of the impermeable 

walls of the container, i.e., ;.n = 0 on the walls. Of course, in a fluid­

structure continuum no boundary conditions may be prescribed on the 

individual constituents of the Structure (the potatoes). 

A mean volumetric flow rate of fluid is passing across a unit area 

containing the solid constituents (the potatoes), and the local fluid 

velocity, as it passes through the clearances between the individual 

solid constituents, will not be considered. Additional boundary conditions, 

e.g., for the velocity components parallel to the walls, for the so-called 

turbulent tangential stress, or for the vorticity, may not be prescribed 

since, if they are prescribed, there is no reason why the same conditions 

are not applied on the boundaries of the individual constituents of the 

solid structure. 

In:.conclusion, from a physical point-of-view the boundary conditions 

in a fluid-structure continuum approximation should have an Euler-like 

character, and "improvement" of the momentum equation by adding a second­

order term is non-physical. 

Of course, this point has great consequences for the numerical 

approximation method applied to solve the equations. 

2.3. The permeability or resistance force 

In this section only low Reynolds number flow with quasi-steady 

momentum transfer will be considered, since this type of flow is commonly 

encountered in petroleum reservoir engineering and groundwater hydrology. 

However, many of the conclusions also hold for generalized porous media. 

For this type of flow, acceleration of fluid does not play a part 

in the momentum balance, and the continously distributed vicous drag 

force is proportional to the mean velocity v: 

(2.4) pg_ - ~ u k _, 



whereµ is the fluid dynamic viscosity, and k is the permeability of the 

solid structure. In general, the solid structure is anisotropic, which 

means that the permeability depends on the flow direction (i,e,, k = k(!_) 

with y.ak/ay = O). 

For instance, in many cases the subsoil has a structure such that in 

the horizontal flow direction the permeability is larger than in the 

vertical flow direction. If the flow is in the vertical direction, the 

following relationship holds: 

(2.5) 

also, for flow in the horizontal direction the following relationship 

holds: 

(2.6) µ -pg_ = - ¾ cf>y, 

where kv < ¾• kv and¾ are constants 

One of the many possible combinations of (2.5), (2,6) is: 

pg_ = _______ µ _______ cf>y. 

vh 2 vv 2 
¾(lyl) +kv(]yl) 

or, equivalently, 

(2.7) 

Similarly, also the following choice is possible: 

(2,8) 
V V 

I I (_!!__) 2 + J__(_y_) 2 
k(f> = kh 1v1 kv 1v1 • 

where vh and vv are the horizontal and vertical velocity components. 
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In fact, there is an infinity of ways in which expressions (2,5) and 

(2,6) can be satisfied, and only experiments can justify the ultimate 

choice of a friction model. For tube bundles some experimental work has 

been performed in this area (6). For an isotropic medium, where kh = kv = k, 

expressions (2.7) and (2,8) simplify to k(y) = k independent of y. 
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In Eq. (2.4) it is assumed that the frictional force has always a 

direction apposite oo the flow direction. However, in petroleum reservoir 

engineering and groundwater hydrology it is common practise to assume that relations 

(2.5) and (2.6) hold simultaneously for the x, y and z-components of the 

velocity, i.e.: 

(2. 9) 

- -V V V 

g_ = (Qx,Qy,Qz) = -µ<j> </' -f, kz) • 
X y Z 

This latter expression leads to a linear problem and, thus, to 

numerically simpler formulations (no iterations), but the consequence is 

that the solid structure feels a force component normal to the direction 

of flow. 

This implies, for instance, that a solid structure (e.g. a tube bundle) 

dropped in a lake will sink to the bottom along a path not parallel with 

the direction of gravitational acceleration, but will instead follow a 

path with lateral displacement (see Fig. 2), which seems to be non-physical. 

....I!.. k U11 V 
// 

Resultant upward force 

t 
I 
I 
I 

' 

\ 
\ 

Resultant velocity 
of tube bundle 

Fig. 2. Tube bundle dropped in 

a pool of water. 

According to the tensor 

model of permeability 

(2, 9), the tube bundle wil 1 

sink with a lateral 

velocity component; with 

the scalar model of 

permeability (2,7) or 

(2,8), the tube bundle 

will sink in the vertical 

direction. 
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Also, flow in a pipe filled with an anisotropic porous medium (e.g. a 

sand-clay mixture) will exert a force on the pipe normal to the flow 

direction (see Fig. 3), which, again is non-physical. 

TUBE WALL 

ANISOTROPIC POROUS MEDIUM 

\ ."' 
\ -~ 

~ Usin 8-41 :n:02t.L n ver 
\ 
Resultant force 
on tube element t.L 

Fig. 3. Pipe filled with anisotropic medium. 
According to the tensor model of permeability 
(2.9), the tube will feel a lateral force; with 
the scalar model of permeability (2.7) or (2.8), 
there is no lateral force. 

Another type of argument against the tensor model (2.9) is that in a 

tube bundle the permeability has different values of the azimuthal 

orientation e of the flow path in radial direction (see Fig. 4), and it is not 

clear how this can be incorporated in a dyadic which has a maximum of three 

principal directions. 
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Fig. 4. 

SHELL 

Arrangement of tubes in a heat exchanger. The permeability 
in the direction of K is larger than the permeability in 
the direction of K2• the tensor model of permeability does 
not allow for this. 

Also, let E:_(_~) be the force on a piece of porous medium caused by the 

velocity i• From the Darcy equation (2.3), where k is assumed to have 

tensor character and k is independent of i, it follows that E:_(i) -E:_(-i). 

In other words, whether one forces (pumps) water to flow from the 

front or from the end of the piece of porous medium, the drag is the same. 

From hydrodynamics we know that this is non-physical for higher-Reynolas 

number flow in a porous medium with non-symmetric constituents; see Fig. 5. 



It is interesting to note that this pradox is similar to the Olmstead and 

Gautesen paradox for Oseen flow (7) • 

u 

C]C]C]C]C]C] 

C]C]C]C]C]C] 

C]C]C]C]C]C] 

C]C]C]C]C]C] 

C]C]C]C]C]C] 

F(u) F (-u l 

-U 

Fig. 5. Arrangement of specially shaped constituents, According to 
the tensor model of permeability F(U) = -F(~U); the scalar 
model of permeability allows F(U) 1' -F(-U). 
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Also arguments based on hydrodynamic theory (lift-theory, ~iagnus effect) 

can be applied to show that the existence of a sensible lateral force is 

very unlikely (18). 

In conclusion, even in classical anisotropic porous media, the equations to be 

solved are always non-linear. Consequently only numerical approximation 

methods will lead to a solution. 

For a discussion of the permeability in non-Darcy flow see (6), (8), 

(9). 

3, NUMERICAL SIMULATION 

3.1. Why simulation 

Planned interventionsinthe subsoil, as production of hydrocarbons (oil, 

gas) and groundwater, heat injection and extraction (heat storage in 

aquifers), underground coal gassification, geothermal heat production, and 

the establishment of waste disposal sites, should more and more be judged 

with respect to their economic and environmental impacts. 

As an example, waste disposal sites are a source of slowly,;slinking 
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groundwater contamination. Precipitation (rain, snow) causes infiltration 

of water into the waste disposal site. This water absorps contaminants 

during percolation through the waste disposal site until it enters a 

subsoil regional flow system. Finally this contaminated water comes at an 

other place (e.g. in a water winning region) where its presesence might 

not be desired; see Fig. 6. 

Hydrological cycle. Groundwater enters 
the underground by infiltration (e.g. 
precipitation) and leaves the under­
ground in surface water (e.g. rivers) 
and water winning wells. 

From this example it will be appreciated that execution of a planned 

intervention without an environmental impact assessment is no longer 

justified. 

The transport processes in the subsoil can be simulated numerically 

with reasonable accuracy. Simulation in the energy technology (thermal 

energy storage, geothermal energy) is necessary to predict feasibility and 

efficiency beforehand, and simulation of transport of pollutants coming 

from planned waste disposal sites is necessary for licensing procedures. 

Environmental impact assessment deals with the prediction of the 

impact of a planned intervention (e.g. the planned establishment of a 

waste disposal site) and the prediction of the impact of some reasonable 

alternatives (e.g. other locations for the waste disposal site). It will be 

clear that, in the case of waste disposal sites, experiments or demonstration 
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projects are impossibLe, Simulation of the transport to be expected is the 

only possibility to judge the evironmental impact, Even if a waste disposal 

site is fully contained, e.g. with plastic foil or asphalt, it remains 

necessary to determine the impact of a hypothetical crack in the 

containment. 

In other fields of technical sciences, especially in the fields of 

nuclear reator techniques and offshore techniques, the application of 

numerical simulations (stress analyses) for licensing authorities is already 

common practise. Also for that reason it may be expected that the importance 

of numerical simulations in environmental impact assessment studies will 

increase considerably in the next few years. 

3.2. Computer programs based on the pressure and transport velocity 

representations 

Conventional numerical analysis of flow in porous media is based on 

the pressure as primary variable, i.e., the mass flow rate is eliminated 

by substitution of (2.3) into (2.1) yielding a diffusion-type equation 

for the pressure: 

2 2 
(3. I) -v(L).(kgVz) - Lv - (kgVz) - s, 

µ µ 

where K p~dp/d(p~) is the combined bulk modulus of liquid and porous 

medium,_£ gVz is the gravitational acceleration and Sis an additional 

source term in the continuity equation (2.1). 

Provided that p, µ, K, k and~ are known as a function of space and 

time, the pressure can be calculated from (3.1). Having obtained the pressure 

field, the transport velocity field is determined from (2,3) by numerical 

differentiation of p. 

However, numerical differentiation often leads to a degradation of 

accuracy and, therefore, it is better to avoid it. For that reason approaches 

where the transport velocity is calculated directly are presented in the 

literature; see (JO), (11), (12). 

One possibility is to "differentiate" equation (3. I) to obtain an 

expression for the mass flow rate .s_ = p~~ ( 12): 

(3. 2) 
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where the so-called Darcy vorticity g is defined as: 

(3.3) 

and where S = µ/{pk) is the drag coefficient, 

From a physical point~of-view, the following boundary conditions are 

possible: 

i) The normal transport velocity component !!.·1. is prescribed. For example, 

at an impermeable base or at a water divide !!.·1. = 0. With the aid of 

equation (2.3) this condition can be replaced by a boundary condition 

for the pressure. 

ii) The pressure is prescribed. With the aid of equation (2.3) this 

condition can be replaced by boundary conditions for the tangential 

transport velocity components. 

In order to obtain a well-posed problem equivalent to the system (2.1), 

(2.3), the following auxiliary boundary conditions must be added to the 

above-mentioned physical boundary conditions and equation (3.2); see (12). 

i) If the normal component !!.·1. is prescribed, then the tangential 

components !!. x('v'x_g_) = _ptg, must be prescribed in addition. 

ii) If the pressure p or the tangential components!!. x s_ are prescribed, 

then the continuity equation 'v'._g_ = -a(p~)/at must be also prescribed. 

The computer code SWIP (Survey Waste Injection Program) is based on 

the pressure representation {3.I). The code has been developed by INTERCOMP 

Resource Development and Engineering, Inc, Houston (USA) by the direction 

of the United States Geological Survey, Water Resources Divisions, Denver. 

SWIP was originally put together, in part, from petroleum reservoir 

simulation codes. 

In SWIP also the energy and material balance equations are solved. 

These balance equations are: 



(3.4) V.[pk H(Vp-pgVz)] + V.(~.VT) 
µ 

Net energy 

advection 

SH 

Enthalpy in 

with fluid 

sources 

Accumulation 

Conduction Heat loss to 

surrounding strata 

Energy in 

without fluid 

input 

where His the fluid enthalpy, A is the combined thermal conductivity of 
= 

liquid and porous medium, U is the fluid internal evergy =H -p/p, and UR 

is the internal energy of the solid structure. 

(3.5) k 
V. [ p Cr-(Vp-p gV z) ] 

µ 
+ V. (pE_. VC) - SC 

Net advection Diffusion Sources 

(including micro 

dispersion) 

-Ad'/JpKeC 
a 

at(~pKeC) 

Reaction/decay Accumulation 

where C is the concentration, g is the combined diffusion and micro­

dispersion coefficient, Ad is the reaction constant and Ke is the 

equilibrium adsorption coefficient. Diffusion is the phenomenon that 

contaminants in a stagnant fluid spread out occupying an ever increasing 

portion of the flow domain, and micro dispersion is a similar phenomenon 

for a moving fluid with mean velocity v. From a physical point-of-view 

micro dispersion is advection on the level of the Navier-Stokes flow 

with velocity~ in the void space between the constituents of the solid 

structure. This micro dispersion should not be confused with macro 

dispersion, which is advection around pieces of porous medium with a 
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permeability constrasting with the permeability of the surroundings porous 

medium. This latter type of dispersion should not be described by the 

introduction of a (non-physical) dispersion coefficient, but by an accurate 

representation of the permeability field in equations (3.1) or (3.2). 

The computer program DARTEX (DARcy vorTEX) is based on the transport 

velocity representation (3.2). It has been developed by the TNO Institute of 

Applied Geoscience (formerly Groundwater Survey TITO). 

At present the program is in the phase of being a prototype, but it 

is planned to transform it into a robust code in 1984. 

In DARTEX the flow field _g_ is calculated for steady states only 

(negligible accumulation). In contradistinction with the SWIP code the 

temperature dependencies of viscosity and density are not accounted for. 

aowever, not only the linear tensor model (2.9), but also the non-linear 

scalar models (2.7), (2.8) are implemented to account for anistropy. From 

a numerical point-of-view this means that a suitable iteration method must 

be found. 

3.3. Numerical approximation methods 

As is COilllllon practise in fluid dynamics and petroleum reservoir 

engineering, the resulting sets of equations are solved using the finite 

difference approximation. 

The partial differential equations are replaced by difference equations 

by dividing the region of interest into a three-dimensional grid and 

developing finite-difference approximations for this grid. Once the region 

of interest is divided into grid blocks, finite-difference equations are 

developed whose solution closely approximates the solution of the original 

equations. 

Both for SWIP and DARTEX block-centered grids have been used, which 

are second-order consistent if equidistant spacing is applied (12). 

In SWIP the resulting pentadiagonal (2D) or septadiagonal (3D) matrix 

equations are solved either directly by n4-ordeting and LU factorization, or 

iteratively by Line Successive Overrelaxation (3). 

In DARTEX the resulting septadiagonal matrix is symmetric and positive 

definite, and the system of linear equations is solved by preconditioned 

conjugate gradients (14). 



3.4. Supercomputers 

Due to the limited capacity of the past generation of computers, it 

was customary to perform simulations with two-dimensional models, i.e., 

the quantities to be determined like concentration, temperature and 

velocity were, in most cases, considered as a function of the horizontal 

coordinates x and y, but not of the vertical coordinate z. In this way, 

mean values over the vertical coordinate were obtained. However, due to 

the layered structure of the underground, taking the mean value over the 

vertical direction is an unreliable procedure since, in that case, 

preferential flow paths are neglected. The preferential flow paths make" 

that the actual dispersion of contaminants is completely different from 

the dispersion predicted by mean values, 

477 

The right answer is to make predictions with three-dimensional models 

(3D models). However, using 3D models the number of arithmetic operations 

and the memory requirements increase drastically with several orders of 

magnitude. And there is still another complicating factor. The detailed 

structure of the permeability- and porosity fields must be introduced 

in the model. However, this requires a finer grid causing again a drastic 

increase in arithmetic operations and memory requirements. 

For that reason, supercomputers (or vector computers) or attached 

array processors should be used. 

4. SWIP AND DARTEX ON SUPERCOMPUTERS 

4.1. Heat storage 

As a test example, a heat storage problem was chosen. In an aquifer 

with a thickness of 30 m between impervious layers, hot water with a 

temperature of 110°c is injected with a mass flow rate of 16.7 kg.s-l 

(volumetric flow rate 63.1 m3 .h-1). The initial temperature in the 

aquifer is 20°c, In the whole aquifer the porosity is 0.3; however, the isotropic 

aquifer is layered with respect to the permeability. The upper layer of 

JO mthickness has a permeability of 1.5 x IO-l 2m2, the middle layer 

with a thickness of 10m has a permeability of 0,3 x lo- 12m2, and the 

lower layer of 10m thickness has again a permeability of 1.5 x 1012m2• 
-I -1 -1 (Hydraulic conductivities of 4.Sm day , 0.9m.day and 4.5m.day 

respectively at 20°c); see Fig. 7. Though the upper- and undersides are 
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impervious, heat tran~ier to the over- and underburden clay layers is 

possible. Both viscosity and density of the groundwater are temperature 

dependent, possible solutes are not accounted for. 

The time of injection was 30 days; then there was neither injection 

nor production, and finally, there was production of the stored hot water 

during 30 days. Of course, not all the injected heat is recovered. 

For a contour plot of the temperatures see Fig. 7. We will not go 

further. into the physical aspects of the problem, but discuss the 

computational results. Since the solution is axi-synnnetric around the well, 

the axi-synnnetric option of SWIP was used. The extension of the region was 

limited to 60m. 

2 3 S 6 8 9 10 11 12 13 14 15 16 17 18 

VERTICAL CROSS-SECTION C X-2 l :TE/fERATLRES CDEG FJ; J = 

Fig. 7. Contou~ plot of temperatures 30 days after injection. 
Injection takes place at the axis of synnnetry (the 
left-hanu vertical line). 

4.2. Evaluation of test results 

159.1251 

142.5756 

126.21252 

109.4747 

92.9243 

A number of test problems was run on the VAX 11/780 of the TNO Institute 

of Applied Geoscience, on the CYBER 175/100 of the Academic Center Utrecht, 

on the Cray -IS/1000 of the University of London Computing Centre, and on 

the CYBER 205 of Control Data Corporation (Arden Hills, USA). The data 

regarding operation system, compiler and precision are presented in table 

I• 



Table I. Overview of used hardware and system software 

operating operating compiler compiler compiler precision 

system system level option (bits) 

level 

VAX 11/780 VMS 2.4 F 77 V2.4-64 optimize 32 

CYBER 175/ 100 NOS/BE 1.5 538 FTN 4 4.8+564 OPT=2 60 

Cray-lS/1000 COS 1.11 CFT 1.10 OFF=CTPV 64 OFF=CTP 

CYBER 205 VSOS I L 575 FORTRAN R 20C O=BLOUV 64 2.0 O=BLOU 

The discretization in grid blocks consisted of equidistant intervals to 

maintain second-order consistency all over the flow field. Three levels 

of refinement in discretization were used for the same physical problem: 

1st) 18 x 9 grid blocks, 2nd) 36 x 18 grid blocks, and 3rd) 54 x 27 grid 

blocks. For these three problems the·CPU time was determined on the VAX-

11/780; these timeswere 183.9 sec, 1364 sec, and 6186 sec. The problem 
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18 x 9 has a CPU time of 43.52 sec on the CYBER-175/100, i.e., more than a 

factor 4 faster than running on the VAX-11/780. 

Running on the Cray-lS/1000 under the condition that the compiler 

did not generate vector code (i.e. with pure scalar arithmetic) resulted 

in CPU-times of 8.632 sec, 67.77 sec, and 330.1 :sec respectively, i.e., 

a factor 21, 20 and 19 faster than on the VAX-11/780. After having used 

the vectorization option of the compiler, and after having made slight 

changes in the most time-consuming DO loops, the CPU times were 7.60 sec, 

47.08 sec, and 179.9 sec respectively, i.e. respectively 14%, 44% and 

83% faster than with pure scalar arithmetic, and respectively a factor 

24, 29 and 34 faster than the VAX 11/780. It is noted that the 

acceleration increases by increasing vector lengths, which were respectively 

9, 18 and 27 for the three problems. 

On the CYBER 205, under the condition that the compiler did not 

generate vector code, the results in CPU time are 10. 75 sec for the 

18 x 9 problem; and 488.2 sec for the 54 x 27 problem. With respect to 

the VAX 11/780 the accelerations are 17 and 13 respectively, i.e. the 

scalar performance of the CYBER 205 is decreasing with respect to the 

VAX 11 /780 for increasing problem size. After vectorization by the : · 
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compiler, the CPU times of the 18 x 9 and the 54 x 27 problems were 9.822 

sec and 266. 9 sec respectively. 

That is to say, vectorization resulted respectively in a 10% and 

115% decrease of the CPU time, with respect to pure scalar arithmetic, 

and in a factor 19 and 27 with respect to the VAX-11/780. It is noted 

that the effects of vectorization of the CYBER 205 are more pronounced 

than these effects of the Cray-IS, in such a way that the decrease in 

scalar performance of the CYBER 205 is compensated by an increase in 

vector performance (for this particular problem). The results are summarized 

in the tables 2, 3 and 4. 

Table 2. CPU-time (sec) 

)8 X 9 36 X )8 54 X 27 

VAX-11/780 183.86 1364.47 6185.85 

CYBER-17 5/ I 00 43.52 

Cray-IS (scalar) 8,63 67. 77 330.11 

Cray-IS (vectorized) 7.60 47.08 179.94 

CYBER-205 (scalar) 10.75 488. 15 

CYBER-205 (vectorized) 9.82 226.90 

Table 3. Acceleration with respect to VAX 11/780 

)8 X 9 36 X )8 54 X 27 

CYBER-175/ I 00 4 

Cray-IS (scalar) 21 20 19 

Cray-IS (vectorized) 24 29 34 

CYBER-205 (scalar) I 7 13 

CYBER-205 (vectorized) 19 27 



Table 4. Acceleration of vectorization with 
respect to pure scalar arithmetic. 

)8 X 9 36 X )8 54 X 27 

Cray-IS 1.14 1.44 1.83 

CYBER-205 1.095 2. 15 
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From table 3 it follows that the acceleration V of the Cray-IS and the 

CYBER 205 (where the compilers generate vector code) are related to the 

problem size N by the following expressions (for this particular problem 

with the code SWIP): 

V b = 0.8 x V cy er cray 

For instance, it is not unrealistic to state the the price of 

computing time amounts f. 0.10 per CPU-second on the VAX, and f. 3.00 per 

CPU-second on the Cray. In that case N should be larger than 800 to make 

the Cray competitive with the VAX. 

In practical situations problems are always three-dimensional and 

the number of grid blocks commonly encountered is 20 x 20 x 10 = 4000 or 

larger. In this example is V _ 45, V b ~ 35 and computations with cray cy er 
the VAX would be 50% more expensive than calculations with a supercomputer. 

Furthermore, with some additional efforts to vectorize SWIP the 

accelerations presented here can certainly be doubled, making the use 

of supercomputers even more cost effective (15). 

This cost effectiveness becomes even clearer from our experiences 

with the program DARTEX. For a relatively small test problem with 

7 x 7 x 5 = 245 grid blocks the acceleration on the Cray-IS with respect 

to the VAX was 37 times. Furthermore, it turned out that the process of 

preconditioning, which was not yet vectorized, consumed 49% of the CPU-time. 

That is to say: only by vectorizing the preconditioning (e.g. by the use 

of Neumann Series (14)) the program can be made approximately 70 times 

faster on a supercomputer than on the VAX. 
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CONCLUSIONS 

- The equations describing fluid flow in the anisotropic subsoil are non­

linear, which means that numerical approximation methods must be applied. 

- Since actual problems are always three-dimensional with large spatial 

variations in permeability, supercomputers and attached array processors 

provide a promising way to solve problems. 

It is expected that the demand for simulation of transport phenomena in 

the underground will increase considerably when environmental impact 

assessment studies are required by a licensing authority. 
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