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Abstract-It is well known that a convolutional code is essen
tially a linear system defined over a finite field. In this paper 
we elaborate on this connection. We will define a convolutional 
code as the dual of a complete linear behavior in the sense of 
Willems. Using ideas from systems theory, we describe a set 
of generalized first-order descriptions for convolutional codes. 
As an applic~tion of these ideas, we present a new algebraic 
construction for convolutional codes. 

Index Terms- Convolutional codes, behaviors, duality, first
order representations, code constructions. 

I. INTRODUCTION 

I N THIS paper we take a detailed look at convolutional 
codes from the perspective of linear systems theory with 

an emphasis on duality relations and on the different rep
resentations of these codes. Using these representations, we 
present a construction of convolutional codes with distance 
lower-bounded by the complexity of the encoder. 

Throughout the relatively short history of the theory of 
convolutional codes, there have been several authors that 
have made the link between convolutional codes and linear 
systems theory. Among the first authors to do this were Massey 
and Sain. They published a series of papers [20], [21], [33), 
containing a systems-theoretic analysis of convolutional codes 
and encoders. After this, Omura in [24] considered Viterbi 
decoding and its relationship to dynamic programming and 
later applications of control theory to optimal receiver design 
for convolutional codes [25]. In several landmark papers [4], 
[5], Forney started to lay the foundation for the algebraic 
structure of convolutional codes. 

Since these papers were written, there have been significant 
advances in the theory of linear systems. One notable advance 
has been the behavioral approach to linear systems of Willems, 
championed in the papers [39]-[41]. This point of view 
generated a renewed interest in the interplay between systems 
theory and convolutional coding theory. We would like to 
mention in particular the recent papers by Fornasini and 
Valcher [3], [37] and the recent papers [7], [16], [17) by 
Forney, Loeliger, Mittelholzer, and Trott. Actually, as will be 
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discussed in Section II, some basic results of the behavioral 
theory of codes were developed by Staiger [34], [35] already 
in 1982. 

In this paper we will introduce convolutional codes as 
submodules of the free module IFn [z]. In doing so, convo
lutional codes become dual to linear time-invariant complete 
behaviors in the sense of Willems. In Section II we develop 
this viewpoint and show how it fits into the current theory. 

In Section III we will show that convolutional codes have 
some canonical first-order representations, as they are known 
to exist for time-invariant linear complete behaviors. We also 
provide an algorithm to compute first-order representations. 

In Section IV we use the representations from Section III to 
construct a class of convolutional codes whose free distance 
is lower-bounded by the complexity + 1 of the encoder. Some 
of the results presented in Sections II and III of this paper 
appeared in abbreviated form in [42). 

II. THE DUALITY BETWEEN CODES AND BEHAVIORS 

In this section we shall be concerned with a behavioral 
interpretation of convolutional codes. In a series of papers 
(see, for instance, [38)-[41]), Willems has advocated viewing 
a dynamical system primarily as a collection of trajectories, 
without necessarily having in mind some specification; for 
instance, by means of differential equations, transfer functions, 
or some other device. In the same way one can view a code 
as a collection of sequences without necessarily having in 
mind a particular method to describe this collection, such as, 
for instance, an encoding device or a syndrome former. A 
collection of trajectories is called a behavior by Willems, and 
his definition of this concept, as given below, is wide enough 
to include codes as a special case. 

Definition 2.1: A dynamical system :E is a triple 

:E = (T, W, B) 

where T ~ IR is the time axis, W is a set called the signal 
alphabet, and B ~ WT is called the behavior. The elements 
of B are called the trajectories of the system. 

The advantage of taking collections of trajectories as a 
starting point is that it becomes possible to discuss properties 
of dynamical systems without reference to some specific 
representation. For an illustration of this, consider the notion 
of "free distance" of a convolutional code. This concept 
depends only on the collection of code sequences, not on the 
specific device that is used to generate those sequences. To 
give concrete algorithms for the design of codes with good 
distance properties one, of course, has to work with finite 
representations of codes, but for this purpose one may choose 
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any representation that is convenient for the problem at hand, 
and one is not tied, for instance, to representations in terms 
of encoding devices. We shall give an example of such an 
approach in Section IV below. In the final stages of a code 
design, one may want to construct representations that can 
be used for various purposes such as encoding and syndrome 
forming; for this one needs the theory of transformations be
tween representations, some aspects of which will be addressed 
in Section III. 

As noted above, the definition of behaviors as given by 
Willems includes convolutional codes. Depending on the pre
cise definition that one wants to use for convolutional codes, 
one may think of convolutional codes as similar to discrete
time behaviors, the main difference being that in the coding 
context one works over a finite field rather than over the real 
field as is standard in discrete-time system theory. This seems 
to be the dominant point of view so far in the emerging litera
ture on the behavioral approach to codes (see, for instance, [2], 
[3], [6], [16], [37]). Actually, Forney and Trott in [6, p. 1491] 
explicitly state that they "treat the terms 'code' and 'system' 
as synonyms." However, there are some indications that the 
relation between codes and behaviors may for a number of 
purposes better be viewed as one of duality rather than as one 
of inclusion. We shall work out this point of view below. 

A. A Duality Relation Between Codes and Behaviors 

Let f := f q be the Galois field with q elements. It 
is generally accepted to define a linear block code as a 
linear subspace of the vector space F". The situation for 
convolutional codes is not so clear and there seems to be no 
universal agreement on how to define a convolutional code. 
Although it is natural in the behavioral framework to define 
a linear convolutional code as a linear subspace of a space of 
sequences of vectors over f, this still leaves open the question 
whether the time axis should be 71_ or 7/_+, and whether the 
sequences should have finite, left-bounded, or infinite support. 
It is possible to avoid making these choices in an abstract 
setting, and of course it is part of the behavioral program to 
do just that, but there is a need to be specific once one starts to 
work with concrete representations. From an algebraic point of 
view, it is perhaps easiest to work with left-bounded sequences 
defined on "1l_ since these may be identified with formal Laurent 
series and thus form a field; this approach is classical (see, 
for instance, [ 4]). In work that emphasizes connections to 
automata theory, Staiger [34], [35] uses 7/_+ as a time axis and 
allows infinite support. Fomasini and Valcher [2], [37] study 
two-dimensional (2D) convolutional codes; their "time axis" 
is Z2 , and they consider mostly (doubly indexed) sequences 
with finite support. 

In the approach we· shall take, it will be crucial to consider 
sequences of finite support. Whether these sequences are 
defined on "1l_ or on 7/_+ is much less essential, and we shall use 
both settings. The entire discussion below can be extended 
to the level of n-dimensional codes as in [2], [37] (cf. also 
the work of Rocha [30] and of Oberst [23] for n-dimensional 
behavioral theory), but for simplicity we shall remain within 
the one-dimensional (ID) framework. 

In anticipation of the duality that will be discussed below, 
and because we would like to use the results from [12], [31], 
we state the following definitions for the case in which the 
time axis is Z+. 

Definition 2.2: A finite-support linear convolutional code is 
a right-shift-invariant subspace of fn [z ]. 

Defi.nition 2.3: An infinite-support discrete-time behavior is 
a left-shift-invariant subspace of fn[[z]]. 

For the case where the time axis is 7/_, the definitions are 
the same except that right-shift invariance for codes and left
shift invariance for behaviors is replaced by shift invariance 
for both. So in this case, the distinction between the two 
definitions is just in the finiteness requirements. 

In this paper we shall refer to finite-support linear convolu
tional codes simply as codes and infinite-support discrete-time 
behaviors simply as behaviors. Of course, this terminology 
may be viewed as restrictive both with respect to codes and 
with respect to behaviors. We believe though that left-shift 
invariance is a natural property if one thinks of behaviors as 
processes for which the state at time 0 is defined by some 
unspecified past, whereas right-shift invariance is more natural 
if the state at time 0 must be zero. The first framework suggests 
itself in the study of physical phenomena, and is used as a 
standard in the work of Willems; the latter framework appears 
to be relevant in the context of coding theory where it is 
usually required that sender and receiver both start from the 
zero state. 

The duality relations that we shall discuss are based on a 
bilinear form that is defined between the space of polynomials 
in a variable z, indicated by f[z], and the space of formal 
power series in z, indicated by f [[ z ]] . The form is defined (in 
a vector version) as follows: 

(, ): P[[z]] x P'[z] --+ f 
00 

(w,v) 1-+ L(wi,vi) 
(2.1) 

i=O 

where ( , ) represents the standard dot product on p1.. The 
above definition applies to systems over Z+; the analogous 
definition for systems over 7/_ uses Laurent polynomials and bi
infinite sequences, and has the summation extending from -x 
to oo. Note that the infinite sum is indeed well defined since at 
most finitely many terms are nonzero. The bilinear form above 
was apparently first used by Macaulay in 1916 [18, sec. IYJ. 
Macaulay used f = <C and vector-space dimension n = 1, 
but he allowed an arbitrary number of variables; so in today's 

· terminology, he considered the scalar complex n-dimensional 
case. 

The bilinear form above brings with it a number of standard 
constructions and remarks. We shall give these for the Z+ case; 
analogous statements hold for the case of two-sided sequences. 
Note that the bilinear form ( , ) is nonsingular in the sense 
that (w, v) = 0 for all v E fn[z] implies that w = O, and 
(w,v) = 0 for all w E P'[[z]] implies that v = 0. For any 
subset C of fn [ z] one defines the annihilator ("inverse system" 
in Macaulay' s terminology) 

C.l = {w E P'[[z]] J (w,v) = 0, 'Vv EC} (2.2) 
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and the annihilator of a subset B of P([z]] is 

BJ... = {v E \Fn[z] I (w,v) = 0, Vw E B}. (2.3) 

We use::, to d_enote the left-s~ift operator on P[(z]] (defined 
by a Lo 'WiZ~ = L:~ Wi+iz'), and z to denote the right-shift 
operator on Fn[z]. It is easy to check that, if w E P([z]] 
and v E IFn(z], one has (w,zv) = (1J"w,v). Also, if G is a 
matrix over IF of size n x k and w E P([z]], f, E fk[z], then 
( w, GP.) = ( Gtw, £). By bilinearity, it follows that for every 
polynomial matrix G(s) E pxk[s] we have 

(w, G(z)l) = (Gt(a)w,l). 

One also easily verifies that, if B is a left-shift-invariant 
subspace of Fn [[z]], then Bl. is a right-shift-invariant subspace 
of P' [ z), and conversely, if C is a right-shift-invariant subspace 
of P'[z], then Cl. is a left-shift-invariant subspace of P([z]]. 

A behavior B is said to have a kernel representation if there 
exists a polynomial matrix P( s) such that 

B = {w E P[[z]] I P(iJ")w = O}. 

One may think of the rows of the matrix P( s) as representing 
the "laws" governing the behavior B. Not every behavior has 
a kernel representation, and a characterization of the behaviors 
that do have such a representation is, in fact, one of the main 
results in the behavioral theory. To state the result one needs 
the following definition [39), in which IN denotes restriction 
to 0,-·.,N. 

Definition 2.4: A behavior B is said to be complete if 
w E IFn[(z]) belongs to B whenever wlN belongs to BIN 
for all N. 

In other words, a behavior B is complete if membership can 
be decided on the basis of finite windows. The result referred 
to above is the following. 

Theorem 2.5 [39, Theorem 5): A behavior B has a kernel 
representation if and only if it is complete. 

An extension of this important result to n-dimensional 
systems was given by Oberst in [23, p. 62). 

It is a classical result from algebra that codes as we defined 
them above always have image representations, in the sense 
that for each code. C there exists a polynomial matrix G( s) 
such that 

C = { v E Fn(z] I 3£(z) E IFk[z]: v(z) = G(z)f(z)}. 

Obviously, the matrix G(s) can be interpreted as an encoder. 
The result from algebra that is used here is the fact that 
the free module IFn[z] is Noetherian [13, Theorem VI.2.1), 
which means that every submodule is finitely generated; note 
here that the definition of a code as given above might be 
rephrased by saying that a code is a submodule of. IFn[z]. 
The same theory also shows that a generator matnx may 
always be chosen to have full column rank, and that two 
polynomial matrices G(s) and G'(s) of f~ll colu~n rank 
generate the same code if and only if there exists a umrnodular 
matrix U ( s) (i.e., a polynomial matrix with constant n?nze~o 
determinant) such that G'(s) = G(s)U(s). Note that m this 
setting a finer structure is obtained than in the. usual settin_g 
(see, for instance, [26)) in which a convolut1onal code 1s 
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understood as a subspace of the space of rational vectors, 
and two generator matrices are equivalent whenever they are 
related by a nonsingular rational transformation. 

The following theorem formally establishes that there is a 
duality relation (in Macaulay's sense) between codes on the 
one hand and complete behaviors on the other. The analogous 
result for sequences over l rather than Z+ has been given by 
Nieuwenhuis and Willems [22, Proposition 2] and the 20 case 
was discussed by Valcher and Fornasini [37). A proof of the 
theorem below is provided in the Appendix. This proof is more 
algebraic in nature than the ones given in [22) and (37), which 
depend on functional-analytic methods, and should therefore 
be more amenable to generalization to cases where F is not 
a field. 

Theorem 2.6: If C ~ Fn[z] is a convolutional code with 
generator matrix G( s ), then c.L is a linear, left-shift-invariant, 
and complete behavior with kernel representation P(s) = 
Qt(s). Conversely, if B ~ P[(z)] is a linear, left-shift
invariant, and complete behavior with kernel representation 
P( s ), then Bl. is a convolutional code with generator matrix 
G(s) = pt(s). 

Dual codes were used already in the early 1970's by 
Forney [4], [5]. Working with l as a time axis and using 
sequences with left-bounded support, Forney looked at codes 
as subspaces of finite-dimensional vector spaces over the field 
IF ( s) of rational functions and so was able to use the duality 
theory of finite-dimensional vector spaces. This context has a 
symmetry in it in the sense that the annihilator of a code is 
then again an object of the same type (i.e., a shift-invariant 
linear space of sequences on l with left-bounded support); 
below we shall emphasize a point of view in which codes 
and their annihilators are regarded as objects of a different 
nature. In extensive work, Oberst (23) has developed a duality 
theory for linear behaviors on an abstract level. He defines 
behaviors by kernel representations and shows that these are 
dual in a natural way to certain quotient modules. In the 
case of discrete-time systems, the duals can be fonned by 
taking quotients with respect to the Macaulay annihilator of 
the given behavior. The framework used by Oberst is general 
enough, however, to include also continuous-time systems, and 
remains even meaningful in some cases in which there is no 
time axis in the usual sense of the word, such as the one 
that is covered by the classical Pontryagin duality in which 
the "signals" are elements of the circle group. The theorem 
above can be constructed as a special case of Oberst's results. 
Theorem 2.6 can also be deduced from the main result of 
Kaplan [11) (compare also with [7, Theorem 2.2)). Our proof, 
however, is elementary and does not rely on either [ 11) or [23]. 

B. Controllability and Observability 

In this subsection we discuss the duality between control
lability and observability. If codes and behaviors are viewed 
as duals, then the dualization of a notion of controllability for 
behaviors is expected to lead to a notion of observability for 
codes. We shall work mostly over l now since we rely on 
a number of definitions and results from the literature which 
have been stated for that case; the analogous theory over Z+ 
does not seem to be equally well-developed. 



1884 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 6, NOVEMBER 1996 

The following notion of controllability for behaviors is due 
to Willems [40]. For a sequence 

we use the symbol w+ to denote the "right half' 

and the symbol w- to denote the "left half' 

Definition 2. 7: A behavior !3 defined on Z is said to be 
controllable if for every w and w' in B there exists a w" E 13 
and integers N, M such that (zN w")- = w- and (zM w11 )+ = 
w'+. 

In words, the above definition says that a left part of a 
trajectory and a right part of another trajectory may always 
be connected via some intermediate string to form a new 
trajectory in 13. 

Willems does not give a definition for observability of 
behaviors, although he does define such a notion for certain 
representations. If we consider what kind of controllability 
concept might be defined for codes, it may be noted that the 
definition above can be made to apply for codes as well (by 
embedding P[z] in P[[z]]). The result is easily seen to be 
trivial: codes are always controllable in the above sense. This 
may be viewed as a mirroring, through duality, of the lack of 
an observability concept for complete behaviors. 

The quickest way to find the dualization of controllability 
is to use the algebraic characterization of controllability in 
terms of kernel representations, as given by Willems [40, 
Proposition 4.3]. It should be noted that kernel representations 
for behaviors over Z may be given by matrices whose entries 
are polynomial ins and s-1. A polynomial matrix P(s,s- 1) 

of size k x n, with k :::; n, is said to be left-prime over the 
ring IF[s,s- 1] if its k x k minors are not all zero and have 
no nontrivial common factors (where factors of the form sk, 
k E Z, are counted as trivial). Right primeness is defined 
analogously; obviously P(s, s-1) is left-prime if and only if 
pt(s, s- 1) is right-prime. 

Proposition 2.8: A complete behavior is controllable if and 
only if it has a left-prime kernel representation. 

This would suggest to define a code to be observable if 
it has a right-prime generator matrix. Right-prime encoders 
are well known (see, for instance, [21]) as noncatastrophic 
encoders; see also the discussion in [26, eh. 2]. To define 
observability of codes in this way would, however, not be in 
the true behavioral spirit since the definition would then rely 
on a particular representation. Fornasini and Valcher [3] have 
recently presented a number of equivalent characterizations of 
observability which avoid this and therefore could be used as 
behavioral definitions. Rephrasing their results for the lD case, 
observability can, for instance, be defined as follows. 

Definition 2.9 (cf [3, Proposition 2.1]): A code C is ob
servable if there exists an integer N such that, whenever the 
supports of v and v' are separated by a distance of at least N 
and v + v' E C, then. also v E C and v' E C. 

In other words, observability means that one can be sure that 
a message has been completed once a sufficiently long string of 
zeros has been received. An important property of observable 
codes is that they allow kernel representations, in the sense that 
there exists a polynomial matrix H( s) (a syndrome former) 
with the property that v EC if and only if H(z)v(z) = O; this 
is the dual of the fact that controllable behaviors have an image 
representation [41, Proposition 4.3]. For the case in which the 
time axis is Z+, observability can be defined in the same way 
as above. Codes on Z+ are naturally associated with matrices 
over IF [ s l rather than IF [ s, s-11, and the standard concept of left 
or right primeness for polynomial matrices requires that the 
greatest common divisor of the appropriate minors should be 
a constant. The characterization that we find for observability 
is however the same as in the l case. 

Proposition 2.10: A code C (on l+) is observable if and 
only if it has a generator matrix G( s) that is right-prime when 
considered as a matrix over IF [ s, s - 11. 

The proof of this proposition is in the Appendix. The proof 
also shows that membership of an observable code on l+ 
cannot in general be decided by a syndrome former alone; 
an additional finite test is needed. However, if the predictable 
delay property [26, p. 44] is added, then this additional test 
can be dispensed with and one has a so-called basic encoder 
[26, p. 53]. It follows from a result by Massey and Sain [21] 
that the property in the above proposition is equivalent to the 
existence of a feedforward inverse with delay. 

C. Completion 

On P[[zl] one can introduce the topology of pointwise 
convergence, with the understanding that on IFn the discrete 
topology is used (i.e., the topology induced by the Hamming 
distance). As noted by Willems [39], a behavior is complete if 
and only ifit is closed in this topology. For a code Con l+, we 
denote by C its completion, i.e., its closure with respect to the 
topology of pointwise convergence. More explicitly, we have 

C = {v E IP[[z]] I vlN E CIN for all N}. (2.4) 

It follows from the work of Staiger [35] that the completion 
of a code can be given in terms of the generator matrix as 
follows. 

Proposition 2.11: The completion of a code C with gener
ator matrix G(s) of size n x k is given by 

C = {v(z) E IFn[[z]] I :lf(z) E IFk[[z]]: v(z) = G(z)f(z)}. 

(2.5) 

The suggestion presents itself to call any subset of IFn[[z]] 
that arises in this way an infinite-input convolutional code. 
This would again not be a definition in behavioral style. 
Actually, already before the behavioral theory was developed 
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within systems theory, an intrinsic definition of infinite-input 
convolutional codes was found by Staiger [35]. In this work 
Staiger uses the following definition. 

Definition 2.12: Let A ~ IF'n[[z]J. A sequence v E A is said 
to be remergeable with respect to A if for every t E 1+ there 

. f { I I I } exists a sequence o vectors vt+l i vt+2, ... , vt+N such that 

The set A ~ IFn [[z]] is said to be remergeable if every element 
in A is remergeable with respect to A. 

One easily sees that remergeability, under the extra condi
tion of right-shift invariance, is equivalent to Willems' notion 
of controllability as given in Definition 2.7 (with the obvious 
modifications to cover the case of trajectories on 1+). Staiger 
now proves the following result. 

Theorem 2. I 3 [ 35 ]: A right-shift-invariant subspace C of 
Fn[(z]] is of the form (2.5) if and only if it is closed (in the 
topology of pointwise convergence) and remergeable. 

One should compare this to the results by Willems (see, 
for instance, [41, Proposition 4.3]) about the relation between 
controllability and the existence of image representations for 
behaviors. Staiger' s result suggests to define an infinite-input 
linear convolutional code as a remergeable closed right-shift
invariant subspace of IP([z]]. 

For codes over '1l. rather than over 1+, the completion leads 
to a shift-invariant subspace of IP((z, z-1Jl e! (P)z; so in 
this case the completion is a behavior. For such codes there 
are two ways to relate a behavior to a code; namely, by duality 
and by completion. 

III. FIRST-ORDER REPRESENTATIONS 

OF CONVOLUTIONAL CODES 

One of the advantages of having a duality relation between 
codes and behaviors is that it becomes possible to transfer 
the whole theory of representations and transformations from 
the context of behavior.s to the context of codes. See, in 
particular, the book by Kuijper [ 12] for the most comprehen
sive account so far of the first-order representation theory for 
linear behaviors. In this section we provide a few examples 
of representation results, and in the next section we shall use 
first-order representations for the construction of convolutional 
codes. The first result below states that each code has a 
generalized first-order representation. A code is said to have 
rate 15:. if its full-rank generator matrices have size n x k, and 
the c":implexity of a code is the highest degree of the full-size 
minors of any full-rank generator matrix (we skip here the 
behavioral definitions of these terms). In the following, the 
term pencil will refer to linear polynomials or equations in 
one variable with matrix coefficients. 

Theorem 3.1 [Realization Theorem I, Existence]: Assu~e 
C ~ pi[z] is a rate-~ convolutional cod~ of complexity 
c. Then there exist ( c + n - k) x c matnces K, L and a 
(c + n - k) x n matrix M (all defined over F) such that 
the code C is described by 

C = {v(z) E P(zl \ 3x(z) E P[z]: 
zKx(z) + Lx(z) + Mv(z) = O}. (3.1) 
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Moreover, the following minimality conditions will be satis
fied: 

l) K has full column rank; 
2) [K M] has full row rank; 
3) [zK + L \ Ml is left-prime. 

Proof" Write C = B.l, where B is a linear time-invariant 
complete behavior. By the representation theory of linear 
complete behaviors (cf. [12, eh. 5]), we know that B can be 
represented in the pencil form aG( = F(, w = H(. So v 
belongs to C if and only if Htv belongs to 

(ker (aG - F)).l = im (zGt - F 1) 

or in other words, if there exists an ;r; E F[zl such that 
zGtx - F 1x - H 1v = 0. Now define K = at, L = -Ft, 
and M = - H 1• The minimality properties follow immediately 
from the corresponding properties for pencil representations of 
behaviors [12, Theorem 4.3]. D 

One also has the following property. 
Lemma 3.2: Suppose that a code C with generator matrix 

G( z) of full-column rank is represented by (3.1), where 
(K,L,M) is a minimal triple. Then for all zo E F, G(zo) 
has full-column rank if and only if zoK + L has full-column 
rank. 

Proof" See [29, Theorem 11]. D 
Lemma 3.2 implies that a generator matrix G(z) is right

prime if and only if the pencil zK +Lis right-prime over the 
ring IF[z,z- 1]. By Proposition 2.10 we therefore have: 

Corollary 3.3: A code C represented by the minimal triple 
(K, L, M) is observable if and only if the pencil zK + L is 
right-prime when considered as a matrix over IF[z, z- 11. 

The next result describes the extent to which minimal 
first-order realizations are unique. The proof is obtained by 
dualizing [12, Theorem 4.34]. 

Theorem 3.4 [Realization Theorem II, Uniqueness]: The 
matrices K, L, M that were intro~uc_ed Jn Theorem 3.1 are 
unique in the following way: if ( K, L, M) is a second triple 
of matrices describing the code C through 

C = {v(z) I 3x(z) E P[zl: zKx(z) + Lr(z) + l\fv(z) = O} 

and if (K, L, M) satisfies the minimality conditi~ns of The
orem 3.1, then there exist unique invertible matnces T and 
S such that 

(K,L,M) = (TKs-1,TLs- 1 ,TM). (3.2) 

The set of triples (K, L, M) satisfying the minimality 
conditions of Theorem 3.1, modulo the equivalence action 
of (3.2), can be studied from a geometrical viewpoint. In 
particular, it has been shown that the categorical quot~ent forms 
a projective variety. We refer to [27], [28] for details. 

As a consequence of Theorems 3.1 and 3.4, we can work 
either with minimal generalized first-order representations of a 
given size or with polynomial encoder matri~es of a fixed rate 
and a fixed complexity. Algorithms are available to go from 
one description to the other. If a code C is descri~e~ by_ a 
triple of matrices (K, L, M) which satisfies the minimality 
conditions 1) and 2) of Theorem 3.1, one can com~u~e a 
generator matrix G(z) through the computation of a mm1mal 
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basis of ker[zK + L I M]. The converse transformation can 
be done by an algorithm that we briefly outline below (cf. 
[29], [31] for more details). 

Assume G(z) has column indices v1 2".: · · • 2".: vk and 
complexity 

Let 

k 

c := Lvi. 
i=O 

X(z) = diag (X1(z), · · · Xk(z)) 
Xi(z) = [1 z · · · z11'-1]t (i = 1, · · ·, k). (3.3) 

The matrix X ( z) has dimensions c x k, is right-prime, and has 
the property that for every polynomial vector 

f(z) = (J1(z),. · ·, fk(z)) E IFk[z], degf;(z) S Vi -1 

there exists a unique vector v E fC such that vX(z) = f(z). 
Because of those properties the matrix X ( z) was called a 
"basis matrix of size v" in [29], [31]. 

Let f(z) E IFk[z] with degfi(z) S Vi, and let [f(z)] denote 
the c + k scalar vector obtained from f ( z) by identifying each 
f; ( z) with the 1 x (vi + 1) row vector corresponding to the 
coefficients of f;(z). In this way we can view f(z) as a vector 
in 1i=c+k. Now consider the map 

!P: IF2c+n - fc+k 

V H V [z;g/]. 
G(z) 

(3.4) 

Since X ( z) is of full rank one verifies that there are c + n - k 
linearly independent constant vectors in the left kernel of this 
matrix, i.e., there is a full-rank matrix (K I L I M) of size 
(c+n-k)x(2c+n) such that zKX(z)+LX(z)+MG(z) = 0. 
This matrix corresponds to a minimal first-order representation 
of G(z). We illustrate the procedure by a simple example. 

Example 3.5: Consider the rate-~ code over F2 given by 
the generator matrix 

( 
z2 z + 1) 

G(z) := z2 +: + 1 ! . 
The column indices are given by v := [ 2, l ], the complexity 
is c = 3, and a basis matrix is 

X(z)o~ G n 
The scalar matrix corresponding to [zX(z)t, X(z )t, G(z)t] is 
given by 

(~ ~ H ~ H : !), 
0 0 0 0 0 1 1 1 0 
0 0 1 0 0 0 1 0 1 

which describes the map .P: F 9 -i- IF 5 . The kernel of .P is 
given by 

hence 

(
0 1 0 1 
0 0 1 1 
1 0 0 0 
0 0 0 0 

K ~ (~ 
1 

D 
0 
0 
0 

M·-.-

0 1 1 0 
0 0 0 0 
1 0 0 0 
1 0 1 1 

L·-.- (~ 
(~ 

0 

D 
0 
0 
1 

0 

D 
0 
1 
1 

is a minimal first-order representation. 

IV. AN ALGEBRAIC CONSTRUCTION 

OF CONVOLUTIONAL CODES 

A key problem in convolutional coding theory has been to 
find a method for effectively characterizing the free distance 
d1 of a given convolutional code. Very much related to this 
problem is the task of designing codes of a given rate and 
complexity with good free distance. At present, perhaps the 
most effective technique for doing this has been to make an 
exhaustive search of the class of codes determined by a fixed 
rate and complexity, and compute the free distance of encoders 
in this class until one with maximal or near-maximal free 
distance is found. Obviously, this technique has its limitations. 

Several methods have been investigated for constructing 
convolutional codes. Perhaps the most popular technique is to 
relate the generators of a convolutional code to the generators 
of some corresponding cyclic or quasi-cyclic code and show 
that the distance of the cyclic code is a lower bound for the 
free distance (see e.g., [9], [14], [19], [36]). One can also 
restrict to the class of rate-~ convolutional codes over IF q and 
develop very effective techniques for code constructions in 
this setting [1], [10]. Yet another way is to restrict the search 
for good codes to tile subclass of convolutional codes having a 
nontrivial automorphism group. This technique is thoroughly 
investigated in [26]. 

In this section we present an algebraic construction tech
nique based on first-order representations of codes. This tech
nique is more general than the above constructions. It is also 
very similar to existing block-code constructions in that we 
make direct use of the parity-check matrix for the convolu
tional code. 

Consider a convolutional code C c IFn [ z] and let H ( z) be 
a syndrome former. If v(z) is a codeword of degree at most I 
then the weight of v(z) can be characterized in the following 
way. If 

v(z) = vo + v1z + · · · + v-yz'Y 

and 
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then the relation H(z)v(z) = 0 is equivalently described by a 
so-called "sliding"block matrix" of size ( m + 'Y + 2) x ( 'Y + 1) 
(see, e.g., [ 15]). The minimal dependence relation of the 
sliding-block matrix describes the minimal weight of the 
codewords having degree at most "f, and in this way one 
achieves a bound on the free distance. Unfortunately, it does 
not seem to be easy to construct a parity-check matrix H (z) 
which results in a sliding-block matrix that has a good distance 
property for all values of 'Y· This is certainly one reason why 
there have been no algebraic code constructions using this 
matrix. 

Below we shall use first-order representations to construct 
a sliding-block matrix that is more manageable for code 
constructions. For this let 

and 

M l ( ~~ ) X ·-.- . . 

M X-y-1 

Consider a convolutional code C represented by a first-order 
description of the form (3.1). The (K,L,M) representation 
(3.1) is then equivalent to the linear constraint 

(4.1) 

Let C be the set of codewords of degree at most "f, "I 
and let colsp 1 be the space spanned by the columns of 1. 
Then C'Y = {v I nv E colsp 1}. For any matrix w such 
that colsp 1 = ker \Ji we get a representation that no longer 
involves the state vector 

c-r = kerwn. (4.2) 

One particular way to carry out this elimination i.s .as f?l
lows. Note that any triple (K, L, M) that satisfies mm1mahty 
conditions I) and 2) of Theorem 3.1 can be written, after 
a suitable similarity transfonnation and a permutation of ~e 
components of the code vector if needed, in the followmg 
form: 

L = [~] (4.3) 

We shall indicate the partitioning of the code vector Vt in the 
above by 'Ut = [ ~' ] . . 

Remark 4.1: In 'the partitioning of the matnce~ K, L, M 
we used matrices A, B, C, D. It is possible to descnbe the dy
namics of the codewords in C-y by the linear input/state/output 

system 

:ct-1 = A:r:t + B'Ut Yt = Gxt + D'ut, 

0 '.S t '.S "(, X-y = 0, X-1 = 0. (4.4) 

The time evolution is from the '"future" to the "past"; of 
course, it would be possible to reverse the time axis in the 
description to get a more familiar-looking fonn. In either 
case, the representation above is different from the state
space representation of a convolutiona! code often considered 
in the coding literature. In the coding literature (see, e.g., 
Massey and Sain [20, Theorem l ]), the image representation 
v(z) = G(z)P(z) is usually described through state-space 
equations where the input P( z) drives the output In 
contrast to this, system (4.3) is a state-space description where 
k components n( z) of the codeword v(.::) drire the remaining 
n-k components ;y(z) ofv(.z ). We would like to point out that 
the corresponding systematic encoder may not be a polynomial 
encoder; to obtain a polynomial encoder, one would have to 
choose a nonsystematic one. 

Now we eliminate the state vector :r. Our first step is to 
substitute the partitions defined by (4.3) into (4. l) and perfonn 
elementary row operations to obtain an equation of the form 

(4.5) 

Then, after permuting columns, Pv = 0 can be expressed as 

Yo 

0 B AB A 2 B "-PB :rll 

D CB CAB c11 1 - 1B 
D CB cx-2 B :if-, =0 

-I 'Uu 

D CB u1 

D 

(4.6) 

where J is the ry(n - k) x 'Y(n - k) identity matrix and 0 is the 
c x 'Y(n - k) all-zero matrix. Note that the matrix ap?earing 
above takes the place of the usual sliding-block matnx; also 
note that the structure of this matrix is rather different from 
the sliding-block form. , , 

By making particular choices of the para~eters A, B. ~ , 
and D we can now attempt to find convolut10nal codes with 
good distance properties. Here we propose the following. Let 
c:, n, k E Z+ with n > k. Let r := max{n - k. k} and 
't := l n~k l · Choose a primitive a of the field Fq, where 
q ~ cri, and define 

0 
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1 1 1 

( a 

0!2 

a' l C := o? 0!4 0 2c 

0n~k-1 0 2(n-k-l) ac(n~k-l) 

and 

C.L) 
1 

1 ) 0:2 Qk 

D·-.-
0 2(n-k-1) 0k(n~k-1) 

Lemma 4.2: The triple (K, L, M) defined by the matrices 
(A,B,C,D) and (4.3) satisfies the minimality conditions of 
Theorem 3.1. Moreover, the convolutional code C defined in 
this way is observable. 

Proof" First we will show that the triple K, L, M de
fined by the matrices (A, B, C, D) satisfies the minimality 
conditions 1)-3) of Theorem 3.1. 

Conditions I) and 2) are readily verified. Condition 3) is 
satisfied if and only if [zl - A I -BJ is left-prime and by the 
well-known Hautus test [8] (which works over finite fields!) 
this is the case as soon as the "controllability matrix" 

R := [B AB · · · Ac- 1B] 

has rank c. Since R is a Vandermonde matrix by construction, 
this is the case and K, L, M is a minimal representation of a 
rate-~ convolutional code C of complexity c. 

It remains to be shown that C is observable. By Corollary 
3.3, it is enough to show that that zK + L is right-prime, i.e., 
that [ z~(::4] is right-prime. Applying once more the Hautus 
test [8] with the "observability matrix" 

readily shows the claim. D 
Theorem 4.3: Let E = max{n - 2k + 1,0}. The code C as 

defined above has rate ~, complexity c, and free distance 

d1:::: c + 1 + €. 

Remark 4.4: Although the following proof is technical, the 
idea is rather simple. Any codeword v(z) in the code defined 
by the matrices A, B, C, and D has a well-defined degree ry. 
If ry is small (less than ci), then our choice of A and B ensure 
that the weight of v(z) is bigger than c+ 1. If ry is large (bigger 
than ci), then our choice of A and C ensure that the weight 
of v(z) is bigger than c + 1 (i.e., that v(z) is not too sparse). 

Proof" That the code has the specified rate and complex
ity can be directly determined from the sizes of the matrices 
used for its representation. 

Let 

v(z) = vo + v1z + · · · + v-yz'Y EC, where v0 :/= 0, v-y :/= O. 

As above, we partition v as Vt = ( Yt ). Our aim is to show that 
the weight of v(z) is at least c + 1'+ E. For this we consider 
two cases: 1) 'Y :::::; ci - 1, and 2) ry > ci - l, where as above 
i denotes r n'.:k l 

Case I: Suppose that ry :::::; ci - 1. The vector ( uo, u1, .. · , 
u-y) t belongs to the kernel of 

R := [B AB · · · A-Y-1 B A-Y B]. (4.7) 

By construction, R is a Vanderrnonde matrix of size c x ('y + 
l)k. Our choice of A and B implies that ('y + l)k 2::: c, 
therefore, wt ( u0 , u1, · · ·, U-y) ;:::: c+ 1. Since U-y =f. 0, it follows 

that [u., J is in the rate-.!£. block code with parity-check matrix 
y., n 

[J -DJ. By our choice of D, this block code is an MOS code, 
which implies that wt (y-y) ;::: e; hence, wt ( v( z)) ;:::: c + 1 + e. 

Case 2: Suppose ry > ci - 1. If 

wt(u-y-ci+1 1 • • ·, U-y-1 1 u,,) 2::: c + 1 

we are done, so assume 

wt(u-y-ci+1 1 ··-,U-y-1,u-y) = b < c+ 1. 

It now follows that there are at most b nonzero u/s in the 
interval 'Y :::: j :::: 'Y - ci + 1, which implies that there 
are at least c - b disjoint subsequences of length i of the 
form Ut, Ut+ 1 , · · · , Ut+i- l containing on! y zero vectors and 
lying completely in the interval ['y - ci + 1, 'Y - 1]. Let 
Ut, Ut+1, · · ·, ut+i-1 be one such subsequence and let y be 
the transpose of (Yti Yt+i, · · ·, Yt+i-1). From (4.6), we obtain 
the following system of equations for the corresponding y: 

y= 

CArt-1 B) ( Ut+i l CA,~,_, B ~7+1 

CA!'-t-·is u,,-1 
u,, 

which is equivalent to 

(
CAi-1) 

Y = ~A (But+;+ ABut+i+l + · · · + A,,-t-i Bu,, ). 

(4.8) 

The expression But+i + ABut+i+l + · · · + A-y-t-i Bu-y must 
be nonzero, since if it were zero, this would imply that 
(ut+;, · · ·, u-y, 0, · · ·, O)' is in the kernel of R as defined in 
(4.7); hence it would follow that wt ( ut+i,. ·., u,,) ;:::: c + 1, 
which contradicts our assumptions. Since the observability 
matrix appearing in (4.8) is of size i(n - k) x c where 
i( n - k) :2: c, and of full rank, there must be at least one 
nonzero output Yj for t :::::; j :::::; t + i - 1. Since we have at 
least c - b such subsequences, we must have at least c - b 
nonzero outputs from Y,,-ci+1 to y,,_ 1. As shown in case 1), 
we have wt (y,,) ;::: E, hence 

wt(vo,v1,···Vci-il 2::: c-b+b+t. 

Since vo =f. 0, we obtain wt (v(z)) ;:::: c + 1 + c O 
Since the class of convolutional codes constructed in Theo

rem 4.3 is observable, their free distance does not change when 
one considers the completion C as defined in (2.4 ). Therefore, 
Theorem 4.3 can be seen as a construction theorem for infinite
input convolutional codes as well. In fact, one could start by 
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discussing input/state/output representations for infinite-input 

convolutional codes and their properties, and then derive (4.6) 
from this viewpoint. 

Example 4.5: Let n = 3, k = 2, and c = 4. Then c2 k = 32 

so we can choose any q 2:: 32. For simplicity, we choose 
q = ~3_7. Next, let n = 2, where 2 is a generator for the group 
of units of f°37. The corresponding A, B, C, and D matrices 
are 

0 
16 

0 
0 

2~ j) 
c = (1 1 1 1) 

j) 
D = (1 1 ). 

A computation of a minimal basis of ker [zK + L [ M] 
(compare with Section III) results in a generator matrix 

( 
:~z 2 + 4z + 9 

G(z) := 18z2 + 26z 
29z2 + 29z + 9 

2z 2 +17z + 13) 
26z + 1 . 

34z2 + 14z + 14 

The designed distance is 5; however, one can easily show that 
the actual distance is greater than or equal to 6. 

Setting q = pm, m E Z+ one can construct subfield codes, 

i.e., codes over F p· This is done in a manner quite similar to 
the classical BCH construction. The main difference is that the 
parity-check matrix (4.6) needs to be extended in a way that 

preserves the factorization. That this can be done, as well as 

the types of codes this technique yields, is discussed in [32]. 

V. CONCLUSION 

In this paper we have studied convolutional codes from 
a module-theoretic point of view and we have related our 

framework to systems theory. We showed that the class 

of linear behaviors having a kernel representation can be 

considered to be dual to the class of convolutional codes. In our 
development, we stressed matrix representations of convolu

tional codes as opposed to the traditional graph representations. 
Using such matrix representations we were able to represent 

the class of convolutional codes in ways not considered in 

the literature previously. In a final section we were able to 
derive an algebraic construction of convolutional codes where 
the resulting codes have free distance lower-bounded by the 

complexity + 1. 

APPENDIX 

In this section we provide proofs for a number of results 

in the main text. 
Proof of Theorem 2.6: Let C be a convolutional code 

with generator matrix G(z). An element w E Fn[[z]] belongs 

to c.L if and only if (w, G(z)f) = 0 for all£ E fk[z]. This 
is equivalent to (Gt(o")'w, f) = 0 for all .f! E fk[z], which in 

turn is equivalent to Gt(a}w = 0. 
For the second part of the proof, let B be a linear, left-shift

invariant, and complete behavior with kernel representation 
P(s). Assume P(s) is of size k x n and let C(Pt) be the 
convolutional code generated by pt(s). Take v E C(Pt) so 

that v = pt(z)f for some £ E fk[.-o]. For any 1v E B, we 
then have 

(w, v) = (w, Pt(z)£) = (P(a)w, t) = 0. 

So it follows that C (pt) ~ B.L. The rest of the proof will be 
devoted to the reverse inclusion. 

First assume that the matrix P( 8) is left-prime, i.e., there 
is a matrix P ( s) such that 

_ [P(s)] 
V(s):= ·.· P(s) 

is unimodular (has a polynomial inverse). Write 

u- 1 (s) =: [T(s) I T(s)] 

where the partitioning is conformable to that of U(s). We 
claim that P(a)w = 0 for w E f"[[z]] if and only w = 
T(a)w' for some w' E p-k[[z]]. Indeed, if w = i'(a)w' 

then we can also write w = [T(a) [ 1\a)][,~,J which implies 

U(a)w = [~,] and so P(o)w = 0. Conversely if P(a)w = 0 

then w = T(o)w' for '11..' = F(a)w. Now take v E 13.L. It 
follows that (T(a)w',v) = 0 for all w' E p-k[[z]], so that 
Tt(z)v = 0. Define v' by v' = Tt(z)v; then 

so that v E C(Pt). 
Now consider a general kernel representation P( s ). We may 

assume without loss of generality that P( s) has full-row rank. 
We may then write P(s) = T(s)Q(s) where T(s) is a square 
and nonsingular polynomial matrix, and Q( s) is of size h: x n 

and left-prime. (This follows by an application of the Smith 
form, which is valid over a general Euclidean domain and so in 
particular for matrices over f[s].) From the above it already 

follows that 

To prove that actually B.L = C(Pt). it suffices to show that the 
quotient spaces C(Qt)/B.L and C(Qt)/C(P1) are both finite

dimensional vector spaces and that the dimensions of these 

spaces agree. 
As is well known, the behavior B(T) determined by the 

nonsingular matrix T( s) is a finite-dimensional vector space 
over f with dimension r := deg det T( s ). Also the mapping 
Q(a) from P[[z]] to fk[[z]] is surjective so we can find 
elements w1 , · ·., Wr E fn [[z]] such that the elements iir; 

defined by 'Wi = Q(a)wi form a basis for B(T). Then B(P) 
is spanned by B( Q) together with the elements IV;, and so 
v E B.L for v E P'[z] if and only if v E C(Q1) and (w;, u) = 0 
for all i = 1, ... , r. To show that these extra restrictions are 

independent, assume that 

(tn(W;,v) = 0 

•=l 
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discussi~g input/state/outpu~ representations for infinite-input 

convolutional codes and their properties, and then derive (4.6) 
from this viewpoint. 

Example 4.5: Let n = 3, k = 2, and c = 4. Then c2k = 32 

so we can choose any q 2:: 32. For simplicity, we choose 

q = 3_7. Next, let o: = 2, where 2 is a generator for the group 

of umts of IF37. The corresponding A, B, C, and D matrices 
are 

0 
16 

0 
0 

c = (1 1 1 1) D = (1 1 ). 

A computation of a minimal basis of ker [zK + L [ M] 

(compare with Section III) results in a generator matrix 

( 
3z 2 + 4z + 9 

G(z) := 18z2 + 26z 

29z2 + 29z + 9 

2z 2 + 17z + 13 ) 
26z + 1 . 

34z2 + 14z + 14 

The designed distance is 5; however, one can easily show that 
the actual distance is greater than or equal to 6. 

Setting q = ri"', m E Z+ one can construct subfield codes, 

i.e., codes over IF P. This is done in a manner quite similar to 

the classical BCH construction. The main difference is that the 

parity-check matrix (4.6) needs to be extended in a way that 

preserves the factorization. That this can be done, as well as 

the types of codes this technique yields, is discussed in [32]. 

V. CONCLUSION 

In this paper we have studied convolutional codes from 

a module-theoretic point of view and we have related our 

framework to systems theory. We showed that the class 

of linear behaviors having a kernel representation can be 

considered to be dual to the class of convolutional codes. In our 

development, we stressed matrix representations of convolu

tional codes as opposed to the traditional graph representations. 

Using such matrix representations we were able to represent 

the class of convolutional codes in ways not considered in 

the literature previously. In a final section we were able to 

derive an algebraic construction of convolutional codes where 

the resulting codes have free distance lower-bounded by the 

complexity + l. 

APPENDIX 

In this section we provide proofs for a number of results 

in the main text. 
Proof r~f Theorem 2.6: Let C be a convolutional code 

with generator matrix G(z). An element w E P[[z]] belongs 

to C..L if and only if (w, G(z)£) = 0 for all£ E fk[z]. This 

is equivalent to (Gt(cr)w,£) = 0 for all£ E fk[z], which in 

turn is equivalent to Qt(<T)w = 0. 
For the second part of the proof, let B be a linear, left-shift

invariant, and complete behavior with kernel representation 

P(s). Assume P(8) is of size k x n and let C(Pt) be the 

convolutional code generated by pt(s). Take v E C(Pt) so 

that v = P1(z)f! for some I E IF"'[.:]. For any 
then have 

(w, v) = (w, P 1(z )f) = (P(cr )w, f) = 0. 

E B. we 

So it follows that C(Pt) <::;; B.l. The rest of the proof will be 
devoted to the reverse inclusion. 

First assume that the matrix P( s) is left-prime, i.e., there 
is a matrix P ( s) such that 

U(s) := [~(s)] 
P(s) 

is unimodular (has a polynomial inverse). Write 

u-1 (s) =: [T(s) I i'(s)] 

where the partitioning is conformable to that of U ( s ). We 

claim that P(a')'w = 0 for w E F"[[z]] if and only w == 
T(cr)w' for some w' E p•-k[[z]]. Indeed, if w = i'(rr)w1 

then we can also write w = [T(a) [ i'(cr)][u~'] which implies 

U(cr)w = [ 0,] and so P(cr)w = 0. Conversely if P(G')w = 0 
~ A 

then w = T(a)w1 for w 1 = P(cr)w. Now take v E f3.l. It 
follows that (T(cr)w',v) = 0 for all w' E p-k[[z]], so that 

jt ( z )v = 0. Define v' by v' = T 1 ( z )v; then 

so that v E C(P1 ). 

Now consider a general kernel representation P(s). We may 

assume without loss of generality that P(s) has full-row rank. 

We may then write P(s) = T(s)Q(s) where T(s) is a square 
and nonsingular polynomial matrix, and Q( s) is of size k x n 
and left-prime. (This follows by an application of the Smith 

form, which is valid over a general Euclidean domain and so in 

particular for matrices over IF[.s].) From the above it already 

follows that 

To prove that actually B..L = C(Pt), it suffices to show that the 

quotient spaces C(Q1 )/B.l and C(Qt)/C(P1 ) are both finite

dimensional vector spaces and that the dimensions of these 

spaces agree. 
As is well known, the behavior B(T) detennined by the 

nonsingular matrix T( s) is a finite-dimensional vector space 

over IF with dimension r := degdetT(s). Also the mapping 
Q(a) from P[[z]] to Fk[[z]] is surjective so we can find 

elements w1, · .. , wr E F" [[z]] such that the elements iii; 

defined by 'W; = Q(a°)'w; form a basis for B(T). Then B(P) 
is spanned by B( Q) together with the elements w;, and so 
v E 3..L for v E fn[z] if and only if v EC( Q1 ) and (w;, v) = 0 
for all ,i = 1, ... , r. To show that these extra restrictions are 

independent, assume that 

(t rx;w;, v) = 0 
i=l 



1890 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 6, NOVEMBER 1996 

for some O:i E F and for all v E C(Qt). It then follows that 
for all £ E fk[z] we have 

so that 

(t, a,W,,I) = (t, a,Q(a)w;,I) 

= (taiwi,Qt(z)e) = O 
i=l 

r 

L:a;w; =0 
i=l 

and hence all a; are zero because the ·w; are independent. 
It follows that the quotient space C(Qt)/BJ. is a finite
dimensional vector space with dimension r =deg detT(s). 

To complete the proof, we note that it is a standard fact 
from polynomial module theory that the quotient module 
C(Qt)/C(Pt) is finite-dimensional as a vector space over F 
with dimension given by deg <let T(s). D 

For the proof of Proposition 2.10, we need the following 
lemma which states that "nontrivial 1/1 codes are never 
observable." 

Lemma 6.1: The 1/1 code generated by a scalar polynomial 
p(z) is not observable unless p(z) = PmZm for some Pm E F 
and some m E Z+. 

Proof: Let p(z) be of the form PmZm+Pm+1zm+1+. ·" 
where Pm f:. 0. Suppose that there exists an integer N as 
in the definition of observability. We can solve the equation 
zm = p(z)r(z)+zm+N q(z) in the polynomial unknowns r(z) 
and q(z) by successively solving the equations 

1 = PmTo 

0 = Pm+iro + PmT1 

0 = Pm+N-1ro + · · · + PmTN-1· 

It follows that zm-zm+N q(z) belongs to the code C; however, 
z m does not, unless p( z) is of the form indicated in the 
statement of the lemma. D 

Proof of Proposition 2.10: Suppose first that the right
primeness condition holds. Then, after postmultiplication by 
an IF[z]-unimodular matrix if necessary, we may assume that 
G(z) = R(z)T(z), where R(z) has a left polynomial inverse 
and T(z) is a diagonal matrix with diagonal entries of the 
form z1. We can find a matrix R'(z) such that [R'(z) \ R(z)] 
is unimodular. Define H(z) and H'(z) by 

[ H(z)] [ 1 -1 
H'(z) = R (z) I R(z)] 

so that in particular H'(z)R(z) = I and H(z)R(z) = O. A 
polynomial w(z) belongs to C(G) (the code generated by G) 
if and only if H(z)w(z) = 0 and H'(z)w(z) E C(T). Now 
let N be an integer that is larger than the degree of H ( z) 
and the degree of H'(z), and suppose that v + v' E C, with 
supports separated by a distance of at least N. It then follows 
from H(z)(v(z) + v'(z)) = 0 that both H(z)v(z) = O and 
H(z)v'(z) = 0. Moreover,.we must have either H'(z)v(z) = 

0 or H'(z)v'(z) = 0, and in both cases it follows from 
H'(z)(v(z) + v'(z)) E C(T) that H'(z)v(z) E C(T) as well 
as H'(z)v'(z) E C(T). 

For the converse part of the proof, suppose now that the full
size minors of G(z) have a common divisor that is not of the 
formpmzm for some m. We can then write G(z) = R(z)T(z), 
where T(z) is diagonal and at least one of the diagonal 
elements is not of the form PmZm. It then follows from the 
preceding lemma that T(z) generates an unobservable code, 
so for all integers N there exist polynomial vectors v(z) and 
v' ( z) whose supports are separated by a distance at least N 
and whose sum belongs to C(T), but that do not themselves 
belong to C(T). By considering R(z)v(z) and R(z)v'(z), one 
sees that the same property holds for C( G) (note that it follows 
from v(z) (/_ C(T) that R(z)v(z) (/_ C(G), because R(z) has 
full-column rank). D 
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