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Neboǰsa Gvozdenović
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Chapter 1

Introduction

In this thesis, we consider two well known graph parameters: the stability num-
ber and the chromatic number of a graph. We study semidefinite relaxations
of integer and copositive programs defining these parameters. We extensively
use techniques, known in the literature as block diagonalization and symmetry
reduction, for reducing the sizes of matrices and the number of variables in
semidefinite programs.

We give first a brief sketch of the results presented in this work, and go back
to details in Section 1.3 after introducing background in Section 1.2.

1.1 Overview of results

We compare several hierarchies of semidefinite programming upper bounds for
the stability number of a graph. The first order bounds in all these hierarchies
coincide with the Lovász theta number. Combining the approaches of Lovász
and Schrijver [65], and Lasserre [56, 57], we define a new hierarchy. As a re-
laxation of the hierarchy of Lasserre, it has an advantage that the semidefinite
programs defining its bounds can be block diagonalized. Moreover, it is less
costly and at least as strong as the hierarchy of Lovász and Schrijver. Besides,
we introduce the hierarchy of de Klerk and Pasechik [50] and show that it is
dominated by the hierarchy of Lasserre.

We next define and study the corresponding hierarchies of lower bounds for
the (fractional) chromatic number. We introduce a special operator Ψ which
maps upper bounds for the stability number to lower bounds for the chro-
matic number. As an application, we prove that there is no polynomial time
computable graph parameter nested between the fractional chromatic and the
chromatic number of a graph, unless P=NP.

We compute bounds in the new block diagonal hierarchy for some interesting
graph classes. In particular, we are able to compute the bounds, up to order
three, for Paley graphs with at most 800 vertices, using the properties of their
automorphism groups; and the bounds, of order one and two, for Hamming and
Kneser graphs with up to 220 vertices, using the explicit block diagonalization
of the Terwilliger algebra of the Hamming scheme given by Schrijver in [85].
Finally, we introduce yet another variation of the second order bound in the
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2 CHAPTER 1. INTRODUCTION

hierarchy of Lasserre via a semidefinite program which can be also block diag-
onalized, and we report computational results for some DIMACS benchmark
instances.

1.2 Background and motivation

Graphs, stable sets and colourings

A graph consists of vertices and edges. An edge connects two vertices. A stable
set is a set of vertices of a graph in which no two of them are connected with
an edge. An assignment of colours to the vertices of a graph, such that no two
connected vertices share same colour, is called a vertex colouring. Stable sets
and vertex colourings are closely related. It is straightforward to see that vertex
colouring of a graph is equivalent to partitioning of the set of vertices into stable
sets.

Some problems of practical interest can be modelled as stable set or colouring
problems, e.g. time tabling, scheduling, frequency assignment, register alloca-
tion, pattern matching or coding. In these applications, one is usually interested
in finding a maximum-size stable set in a graph or a vertex colouring of a graph
which uses the least possible number of colours.

For instance, one of the fundamental problems in coding theory is finding a
code, i.e. a subset of possible words which differ from each other significantly, of
a maximum size. Here words are all sequences of letters, from a given alphabet
A, of some predefined length n. Their difference is usually quantified as the
number of places in which they differ, called the Hamming distance. Thus, given
a positive integer d, two words differ significantly if their Hamming distance is
at least d. Consider the graph whose vertices are the words, i.e. the elements
of An, two of them being connected with an edge if their Hamming distance is
smaller than d. Finding an optimal code is now equivalent to finding a maximum
size stable set in this graph.

The stability number α(G) of a graph G is the cardinality of a maximum
size stable set in the graph. The chromatic number χ(G) of G is the minimum
number of colours that have to be used in a vertex colouring of the graph.
Determining α(G) and χ(G) are hard combinatorial optimization problems.

Complexity and combinatorial optimization

Optimization problems are problems in which one tries to find a best solution,
satisfying certain properties, with respect to a given criterion. It is common to
express the criterion of a problem as a function, called an objective function. The
goal is then to find its optimal value (usually the maximum or the minimum) on
a given domain, known as the feasibility domain or the set of feasible solutions.
A combinatorial optimization problem is an optimization problem whose set of
feasible solutions is finite. One of the most important issues when dealing with
combinatorial optimization problems is their complexity.

A decision problem is a question whose answer depends on some input para-
meters and can be either ‘yes’ or ‘no’. When we fix input parameters we get an
instance of a decision problem. An oracle for a decision problem is a machine
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(black-box) which is able to solve it in a single operation. The complement of a
decision problem is the decision problem resulting from reversing the ‘yes’ and
‘no’ answers.

If a ‘yes’ answer to a decision problem is provided with a certificate, which
can be checked in polynomial time (in the size of the input), the problem is said
to belong to the class NP (‘Non-deterministic Polynomial time’). For example,
given a graph G and a positive integer k, consider the following two problems:

(S) Does there exist a stable set in G of size at least k?

(C) Does there exist a vertex colouring in G which uses at most k colours?

The question (S), known also as the ‘stable set problem’, is in NP. Namely,
a stable set of size at least k is a certificate for a ‘yes’ answer since we can
quickly check that it contains at least k vertices and that no two of them are
connected. Accordingly, a vertex colouring which uses at most k colours is a
certificate for a ‘yes’ answer of the problem (C) since we can quickly check that
no two connected vertices received same colour. Hence the problem (C), known
as the ‘colouring problem’, is also in NP.

A decision problem is said to belong to the class co-NP if its complement is
in NP.

A problem is said to be in class P (‘Polynomial time’) if it can be solved,
i.e. the correct answer can be found, in polynomial time. It is also common
to say that such a problem is ‘easy’. There exist decision problems in NP for
which we still do not know if they are easy or not. In other words, we do not
know if P=NP. This is considered to be the most important open question in
complexity theory.

A decision problem A can be reduced to a decision problem B in polynomial
time if there exists a polynomial time algorithm f which transforms instances
of A into instances of B, such that for any instance a of A the answer to the
instance f(a) of B is ‘yes’ if and only if the answer to the instance a is ‘yes’. As
an example we give a transformation from the colouring problem to the stable
set problem. Given a graph G with n vertices and a nonnegative integer k, make
k copies of G, for every vertex of G connect all pairs of its copies and call the
constructed graph Gk. Then, G can be coloured with k colours if and only if
there exists a stable set in Gk of size (at least) n (see Section 2.5 for details).

If a problem is in NP, and every other problem from NP can be reduced to
it in polynomial time, the problem is said to be NP-complete. A problem A is
said to be NP-hard if and only if there is an NP-complete problem B that can
be solved in polynomial time with an oracle for A.

The problem of determining if for a combinatorial optimization problem
there exists a feasible solution, with the objective value of a given quality (usu-
ally greater or smaller than some prescribed threshold value), is the decision
counterpart of the combinatorial optimization problem. Problem (S) is thus the
decision counterpart of the problem of finding α(G), and problem (C) is the de-
cision counterpart of the problem of finding χ(G). Combinatorial optimization
problems whose decision counterparts are NP-complete are NP-hard, i.e., they
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are at least as hard as any problem in NP. The problems of determining the
stability number and the chromatic number of a graph are both NP-hard (cf.
[30]).

Combinatorial optimization and semidefinite relaxations

We cannot expect to find a polynomial time algorithm for an NP-hard combi-
natorial optimization problem. Still, we can try to solve it approximately by
considering some relaxation of it, for which an efficient algorithm exists. In this
thesis, we consider two approaches for modelling combinatorial optimization
problems and related semidefinite relaxations. The main motivation for using
semidefinite relaxations is the fact that semidefinite programs can be solved
in polynomial time (up to a certain precision, see Subsection 2.3.2 for more
details).

Semidefinite programs are programs in which one aims to optimize a lin-
ear function over the intersection of an affine subspace and a cone of semidefinite
matrices. It is common to write a semidefinite program as

min 〈C,X〉 subject to 〈Aj , X〉 = bj (j = 1, . . . ,m),
and X ∈ Rn×n is positive semidefinite,

(1.1)

where 〈·, ·〉 denotes the standard inner product on Rn×n.

The set of positive semidefinite matrices in Rn×n, known as the semidefinite
cone, is convex. Semidefinite programs thus belong to the class of convex opti-
mization problems, and moreover, they generalize linear, quadratic and second
order cone programming problems. If we restrict, for example, the matrix X in
(1.1) to be diagonal, we obtain a linear program.

Integer programming approach. A classical approach is to model a
combinatorial optimization problem as an integer linear program

max cTx subject to Ax ≤ b, x ∈ {0, 1}n, (1.2)

where c ∈ Rn, A ∈ Rm×n and b ∈ Rm. The hardness of the problem is then
hidden in the constraint x ∈ {0, 1}n. (In general, an integer linear program is
NP-hard. See e.g. [30].)

The way to define a basic semidefinite relaxation for (1.2) is to introduce the

matrix variable X =
(
1
x

)(
1
x

)T
. We have that x ∈ {0, 1}n if and only if the first

row of X equals its diagonal. The next step is to express the objective function
cTx and the linear constraints Ax ≤ b, respectively, as a linear function and
linear constraints in terms of the entries of the matrix X . (It can be done in
several ways, see e.g. [61].) In other words, we can rewrite (1.2) in terms of X ,
where instead of the condition x ∈ {0, 1}n we require that X is a symmetric,
rank one matrix, whose first row equals its diagonal, and whose left upper corner
equals one. In this way, the hardness of the problem is moved into the ‘rank
one’ constraint. Finally, the basic semidefinite relaxation is then obtained by
dropping the rank constraint, and by requiring positive semidefiniteness for X
instead. Note that, apart from the semidefinite constraint, all constraints are
then linear.
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The first such semidefinite relaxation was proposed by Lovász for the stable
set problem in his seminal paper [64]. He introduced a parameter ϑ(G) of a
graph G, nowadays called the Lovász theta number, nested between the stability
number α(G) and the chromatic number χ

(
G
)

of the complement G of G. We
will study this bound in details in Chapter 3, and we will see in Chapters 4 and
5 how one can strengthen it to obtain stronger semidefinite bounds for α(G)
and χ

(
G
)
.

Another breakthrough result, obtained by using basic semidefinite relax-
ations for combinatorial optimization problems, is the paper [34] by Goemans
and Williamson. They presented an approximation algorithm for the max cut
problem1. Given a graph instance, the algorithm finds a solution whose (ex-
pected) objective value is not less than 0.878 times the optimum.

Copositive programming approach. A more recent approach is based
on modelling combinatorial optimization problems as copositive programs. In
a copositive program the goal is to minimize a linear function with respect to
linear constraints. The variable is a square matrix, restricted to be copositive. In
this approach, the hardness of a problem is put into the copositivity constraint.
(Testing if a given matrix is not copositive is an NP-complete problem. Cf.
[30].)

The way to relax this hard condition is to replace the copositive cone by
some tractable subcone of it. For example, replacement by the semidefinite
cone would give a semidefinite program. In [75], Parrilo defines a hierarchy of
tractable subcones of the copositive cone, where the first subcone is the sum of
the semidefinite cone and the cone of symmetric nonnegative matrices. We will
see in Section 4.2 the application of Parrilo’s idea to the stability number, which
is due to de Klerk and Pasechnik [50], and in Subsection 5.2.4 the application
to the chromatic number, due to Dukanovic and Rendl [24].

1.3 Outline of the thesis and contributions

Chapter 2: Notation and preliminaries

In Chapter 2 we recall basic linear algebra results, the general framework of
conic programming, important facts about semidefinite programming, necessary
definitions from graph theory, and some useful polynomial optimization tools.

The key ideas of this thesis introduced in Chapter 2 can be listed as follows:

• In Section 2.4 we focus on block diagonalization and symmetry reduction
techniques. We prove Lemma 2.4.5 which enables us to block diagonalize
the new hierarchy defined in Subsection 4.1.4. We recall from [85] an
explicit block diagonalization of the Terwilliger algebra of the Hamming
scheme.

• In Section 2.5 we give a reduction from the colouring problem to the stable
set problem. It is the key observation for building the hierarchies of lower
bounds for the chromatic number of a graph in Chapter 5.

1Given a graph and weights assigned to its edges, the max cut problem is the problem of
splitting the vertex set of the graph into two sets such that the size of the cut, i.e. the sum of
the weights of the edges connecting vertices from different sets, is maximized.
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• In Section 2.6 we explain the sum of squares approach to polynomial
optimization problems, that is used in Section 4.2 to construct a series of
subcones of a copositive cone. We also recall the dual approach based on
moment matrices, whose applications are considered in Subsections 4.1.3,
5.2.1 and 5.2.2.

Chapter 3: The Lovász theta number

Throughout the whole thesis we work with hierarchies of semidefinite bounds.
All these hierarchies have either the Lovász theta number ϑ(G) of a graph G, or
some variation of it, as a starting point. Chapter 3 is devoted to this number.

Chapter 3 contains a tour through several semidefinite programming formu-
lations for ϑ(G), the proof of ‘the sandwich theorem’, and the definitions of some
variations of ϑ(G) obtained by adding nonnegativity and triangle constraints.
We make a few small contributions that are not published, and which are new
to the best of our knowledge:

- a simple proof, based on Lemma 3.1.1, of the equivalence between the
standard definition of ϑ(G) and the definition related to the theta body,
which is stated in Proposition 4.1.1;

- an observation that nonnegativity constraints do not improve ϑ(G) if G
contains some edge symmetry, given in Proposition 3.3.2;

- and an explanation of the phenomenon, appearing in computational re-
sults reported by Dukanovic and Rendl in [25], that triangle constraints
do not improve ϑ(G) if G is a Hamming graph, given in Proposition 3.3.3.

Chapter 4: Semidefinite programming upper bounds for

the stability number

This chapter deals with the hierarchies of semidefinite upper bounds for the
stability number α(G) of a graph G.

We first recall in Section 4.1 the definitions of the stable set polytope STAB(G)
and its well known relaxations. Among others, we describe the theta body
THETA(G). We then introduce and compare three hierarchies of semidefinite
relaxations of STAB(G), the matrix cut hierarchy of Lovász and Schrijver [65]
(Subsection 4.1.2), the moment matrix hierarchy of Lasserre [57] (Subsection
4.1.3), and the new block diagonal hierarchy nested between the previous two
(Subsection 4.1.4). They all start from THETA(G) and converge to STAB(G)
in finitely many steps, for any fixed graph G.

The main contributions of Section 4.1 are as follows:

- Theorem 4.1.4 about the convergence in α(G) − 1 steps of the hierarchy
of Lovász and Schrijver [65] applied to the clique-constrained polytope;

- Subsection 4.1.4, which explains in detail the application of the hierarchy,
proposed in the paper [40] by Gvozdenović, Laurent and Vallentin, to the
stable set problem.
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In Section 4.2 we introduce the hierarchy of de Klerk and Pasechnik [50]
based on the sum of squares approach to copositive programs. We discuss some
convergence properties of this hierarchy and we compare it with the hierarchy
of Lasserre.

The contributions related to the hierarchy of de Klerk and Pasechnik are
derived from the papers [38, 39] by Gvozdenović and Laurent (the paper [39] is
the journal version of the paper [38]). The most important contributions are as
follows:

- Theorem 4.2.13 that partially solves a conjecture of de Klerk and Pasech-
nik about the convergence of their hierarchy.

- Theorem 4.2.17 and Proposition 4.2.23 in which this hierarchy is compared
with the hierarchy of Lasserre and the new block diagonal hierarchy.

Chapter 5: Semidefinite programming lower bounds for the

chromatic number

Although a vast literature exists about hierarchies of relaxations for the stability
number α(G) of a graph G, to the best of our knowledge no such hierarchy for
the chromatic number χ(G) had been studied before we started our research.

In Chapter 5 we essentially follow the work of Gvozdenović and Laurent [37].
We start with the Lovász theta number ϑ

(
G
)

of the complement of a graph G,
and try to strengthen it towards the fractional chromatic number χ∗(G) and
the chromatic number χ(G) of G.

In Section 5.1 we apply the reduction from the colouring problem to the
stable set problem, given in Section 2.5. We first introduce an operator Ψ. It
is monotone nonincreasing and maps any graph parameter nested between α(·)
and χ (·) to a parameter lying between the clique number ω(·) and χ(·). More-
over, if a graph parameter is polynomial time computable, the same holds for its
image under Ψ. As a direct consequence of the properties of Ψ, there is no poly-
nomial time computable graph parameter nested between χ∗(·) and χ(·) unless
P=NP. We conclude the section with quadratic and copositive programming
formulations for χ(G).

In Section 5.2, we define and study hierarchies of lower bounds for χ∗(G)
and χ(G), which are closely connected to the hierarchies presented in Chapter
4. In particular,

- we present the hierarchies based on the moment matrix approach of Lasserre
[56, 57];

- we define, using the same framework, new hierarchies corresponding to
the new block diagonal hierarchy.

Finally, we recall the hierarchy of Dukanovic and Rendl [24] for χ∗(G). Their
hierarchy corresponds to the hierarchy of de Klerk and Pasechnik [50]. We
observe that, for vertex transitive graphs, it is dominated by the moment matrix
based hierarchy.

It should be mentioned that none of the hierarchies for χ∗(G) and χ(G) was
known before we started to work on this topic.
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Chapter 6: Computational results

We show in Chapter 6 how to compute the semidefinite bounds studied in this
thesis.

Section 6.1 contains results for Paley graphs from Gvozdenović, Laurent and
Vallentin [40]. We compute the bounds on the stability number from the new
block diagonal hierarchy, up to order three, for Paley graphs with at most 800
vertices. The properties of the automorphism groups of these graphs allow us
to significantly reduce the number of variables and the number of blocks in the
semidefinite programs that define these bounds.

In the remaining sections of Chapter 6 we follow the paper [36] by Gvozde-
nović and Laurent.

We consider lower bounds for the (fractional) chromatic numbers of Ham-
ming and Kneser graphs in Sections 6.2 and 6.3, respectively. The bounds,
of order one and two, from the new block diagonal hierarchies are computed
for graphs with up to 220 vertices. As the key ingredient, we use the explicit
block diagonalization of the Terwilliger algebra of the Hamming scheme given
by Schrijver in [85].

In Section 6.4, we introduce a new lower bound for the chromatic number
of a graph. It is a variation of the second order bound in the Lasserre type
hierarchy, suitable for nonsymmetric graphs. We report experimental results on
some DIMACS benchmark instances. For several instances, our bounds improve
the best known lower bounds.



Chapter 2

Notation and preliminaries

We summarize in this chapter the mathematical background used in this thesis
in order to make it self-contained. We first introduce some notation and recall
basic linear algebra results. Using these notions we describe the general frame-
work of conic programming, and recapitulate the most important facts about
semidefinite programming. The last but one section focuses on graphs. In par-
ticular, we consider stable sets and vertex colourings. Polynomial optimization
tools, like sums of squares and moment matrices, are summed up in the last sec-
tion. More detailed information about conic and semidefinite programming can
be found in Ben-Tal and Nemirovski [4], Rockafellar [82], Helmberg [44], or de
Klerk [49]. Laurent [58] gives a survey on polynomial optimization techniques
based on moment matrices and sums of squares of polynomials. For a clas-
sic graph theory text we recommend Diestel [23], while Schrijver [84] contains
relevant details about colourings and stable sets.

2.1 Sets, vectors and matrices

By Z, N, C, R and R+, we denote, respectively, the sets of integers, nonnegative
integers, complex numbers, real numbers and nonnegative real numbers. For
z ∈ C, z denotes its complex conjugate.

Given a finite set V , its size is denoted by |V |, whereas the collection of all
its subsets is denoted by P(V ).

For finite sets V and W and a field R (R or C) we consider the vector spaces
RV and RV×W . Thus, the elements of RV are vectors indexed by V , and the
elements of RV×W are matrices with rows indexed by V and columns indexed
by W . For V = {1, 2, . . . , n} and W = {1, 2, . . . ,m} we write Rn instead of RV ,
and Rn×m instead of RV×W . In general, we often identify RV with R|V |, and
RV×W with R|V |×|W |. We sometimes consider vectors as V ×W matrices with
|W | = 1 and matrices as vectors in RV if |W | = 1. We also use the ordinary
product of matrices of compatible dimensions.

Matrices and vectors can be indexed by subsets of P(V ). In particular, given
an integer r, we often use

P≤r(V ) := {I ∈ P(V ) | |I| ≤ r} and P=r(V ) := {I ∈ P(V ) | |I| = r}.

9
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Note that P≤r(V ) contains the empty subset of V which we will denote as 0;
thus, for instance, P≤1(V ) = {0, {i} (i ∈ V )}. Sometimes we identify P=1(V )
with V , i.e., we write i instead of {i}. Furthermore, we sometimes write ij
instead of {i, j} and ijk instead of {i, j, k}, etc. The standard unit vectors in
RP≤1(V ) we denote by e0, ei, i ∈ V .

Throughout, the letters I, J and e denote, respectively, the identity matrix,
the all-ones matrix and the all-ones vector (of suitable size). If I,J ∈ Rn×n we
also write In instead of I, and Jn instead of J.

For a matrixM , we express its ith row, its jth column, and their intersection
by Mi•, M•j and Mij , respectively. The transpose of a matrix M ∈ RV×W (of
a vector if |W | = 1) is the matrix MT ∈ RW×V with MT

ji := Mij for i ∈ V ,

j ∈W . The conjugate transpose of a matrix M ∈ CV×W (of a vector if |W | = 1)
is the matrix M∗ ∈ CW×V with M∗

ji := M ij for i ∈ V , j ∈W .

For a matrix M ∈ RV×V ,

• M is nonsingular if it has an inverse matrix M−1 ∈ RV×V such that
MM−1 = M−1M = I;

• M is symmetric if MT = M ;

• M is diagonal if Mij = 0 for all i, j ∈ V such that i 6= j;

• M is orthogonal if MT = M−1, i.e., MMT = MTM = I;

• diag(M) is the vector (Mii)i∈V ∈ RV ;

• the trace of M is Tr(M) := eTdiag(M) =
∑

i∈V Mii;

• a nonzero vector v ∈ RV is an eigenvector of M with eigenvalue λ if
Mv = λv.

For a matrix M ∈ CV×V ,

• M is Hermitian if M∗ = M ;

• M is unitary if M∗ = M−1, i.e., MM∗ = M∗M = I.

Given a vector v ∈ RV and a set S ⊆ V ,

• Diag(v) denotes the diagonal matrix M ∈ RV×V with diag(M) = v;

• χS denotes the characteristic vector of S in RV defined by

(
χS
)
i
:=

{
1 if i ∈ S,
0 if i ∈ V \S;

• v(S) := vTχS =
∑

i∈S vi.

For matrices M ∈ RV×W , N ∈ RV
′×W ′

their tensor product M ⊗N is the
matrix indexed by (V × V ′) × (W ×W ′), with

(M ⊗N)(i,i′),(j,j′) := Mi,jNi′,j′ ,
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for (i, i′) ∈ V × V ′, (j, j′) ∈ W ×W ′.

We also define the (standard) inner product of matrices M,N ∈ RV×W (of
vectors if |W | = 1), denoted 〈M,N〉 as

〈M,N〉 := Tr(MTN) =
∑

i∈V,j∈W
MijNij .

Observe that

〈M,N〉 = 〈N,M〉, (2.1)

〈M,N1N2〉 = 〈MNT
2 , N1〉 = 〈NT

1 M,N2〉 (2.2)

if M,N,N1, N2 are matrices with compatible dimensions.

For M ∈ RV×V we have

• 〈M, I〉 = 〈e, diag(M)〉 = Tr(M) =
∑

i∈V Mii;

• 〈M,J〉 =
∑
i,j∈V Mij .

2.2 Cones

Given a set K ⊆ RV×W , a matrix M belongs to Int K, the interior of K, if there
exists ε > 0 such that M +N ∈ K for every N ∈ RV×W satisfying 〈N,N〉 ≤ ε.
The set K is convex if λM + (1 − λ)N ∈ K, for all M,N ∈ K and all λ ∈ (0, 1).
It is closed if Int(RV×W \K) = RV×W \K.

A nonempty set K ⊆ RV×W is a cone if it is closed under nonnegative scalar
multiplication, i.e., x ∈ K ⇒ λx ∈ K for all λ ∈ R+. A cone K ⊆ RV×W is

• pointed if K ∩ −K = {0}, where −K := {M | −M ∈ K};

• solid if Int K 6= ∅;

The dual cone of a nonempty set K ⊆ RV×W is the set

K∗ := {M | 〈M,N〉 ≥ 0 for all N ∈ K}. (2.3)

The name ‘dual cone’ is motivated by the following result (cf. [4]):

Theorem 2.2.1. Let K ⊆ RV×W be a nonempty set and let K∗ be as in (2.3).
Then

(a) K∗ is a closed convex cone;

(b) if Int K 6= ∅, then K∗ is pointed;

(c) if K is a closed convex pointed cone then Int K∗ 6= ∅;

(d) if K is a closed convex cone, then so is K∗, and (K∗)∗ = K.
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A cone K is self-dual if K∗ = K. For example, one can easily see that the
nonnegative orthant Rn+ is self-dual.

Throughout we mainly work with subcones of the cone of symmetric matrices
Sn := {M ∈ Rn×n |MT = M}. This cone is not pointed but has numerous nice
properties. Namely, any matrix M ∈ Sn can be decomposed as M = UΛUT

where U ∈ Rn×n is an orthogonal matrix and Λ ∈ Rn×n is a diagonal matrix (the
spectral decomposition theorem). Since MU•i = ΛiiU•i, the diagonal entries of
Λ are the eigenvalues of M , and the columns of U form a set of orthonormal
eigenvectors (UT•iU•i = 1, UT•iU•j = 0, i 6= j).

We consider the following subcones of Sn that are closed, convex, pointed
and solid:

• the cone of (positive) semidefinite matrices,

S+
n := {M ∈ Sn | vTMv ≥ 0 for all v ∈ Rn};

• the cone of copositive matrices (or simply the copositive cone),

Cn := {M ∈ Sn | vTMv ≥ 0 for all v ∈ Rn+};

• the cone of nonnegative matrices,

Nn := {M ∈ Sn | M ≥ 0};

• the cone of doubly nonnegative matrices,

Dn := S+
n ∩ Nn.

The cones S+
n and Nn are self-dual. The dual of the copositive cone is the

cone of completely positive matrices

C∗
n = {M ∈ Sn | M = NTN for some N ∈ Rk×n+ and k ∈ N}.

Finally, one can easily prove that

D∗
n = S+

n + Nn := {M +N | M ∈ Sn, N ∈ Nn}.

We will also use the cones of sums of squares of polynomials and their duals
defined in Section 2.6.

For two matrices M,N ∈ Rm×n, we write M ≥ N or N ≤ M if M − N ∈
Rm×n

+ . Similarly, for two matrices M,N ∈ Sn, we write (Löwner partial order)
M � N or N �M or M −N � 0 if M −N ∈ S+

n .
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2.3 Linear conic programming

A convex programming problem consists of minimizing a convex objective func-
tion over a convex feasible set. It is known that every convex program can be
restated as a problem of optimizing a linear objective function over an intersec-
tion of an affine space and a convex cone (see Remark 2.3.1 below). Problems of
this type are called linear conic programs. Here we recall some basic definitions
and facts about linear conic programs.

Remark 2.3.1. (see e.g. Povh [79]) Let f : Rn → R be a convex function,
and S ⊆ Rn be a convex set. The convex program minx∈S f(x) can be rewrit-
ten as min(z,x)∈S′ z, where S′ := {(z, x) | f(x) ≤ z, x ∈ S} ⊆ Rn+1. The
set S′ is convex and can be represented as the intersection of the convex cone
{λ(1, z, x) | (z, x) ∈ S′, λ ≥ 0} ⊆ Rn+2 and the affine space {u ∈ Rn+2| u1 = 1}.

2.3.1 Primal and dual programs

In this thesis the ambient space is RV×W , where V and W are some finite sets.
An affine space is given by {X ∈ RV×W | A(X) = b}, where A : RV×W → Rm is
a linear operator defined by A(X)j := 〈Aj , X〉 for some matrices Aj ∈ RV×W ,
1 ≤ j ≤ m. The adjoint operator of A is the operator AT : Rm → RV×W

that satisfies 〈A(X), y〉 = 〈X,AT (y)〉, for all X ∈ RV×W and y ∈ Rm. Since
〈A(X), y〉 =

∑m
j=1 yj〈Aj , X〉 = 〈∑m

j=1 yjAj , X〉 we get AT (y) =
∑m

j=1 yjAj .

Let K ⊆ RV×W be a solid, pointed, closed and convex cone. The primal
linear conic optimization problem is

(P)
p∗ := inf 〈C,X〉

s.t. A(X) = b
X ∈ K,

where C ∈ RV×W , b ∈ Rm, and A : RV×W → Rm is a linear operator.
The Lagrange dual of (P) is the conic program

(D)
d∗ := sup 〈b, y〉

s.t. AT (y) + Z = C
Z ∈ K∗, y ∈ Rm.

We say that the primal program (P) is feasible (resp. strictly feasible) if
there exists X ∈ K (resp. X ∈ Int K) such that A(X) = b. Similarly, the dual
(D) is feasible (resp. strictly feasible) if there exists Z ∈ K∗ (resp. Z ∈ Int K∗)
and y ∈ Rm such that AT (y) + Z = C. For a primal feasible solution X and a
dual feasible solution (y, Z) the duality gap 〈C,X〉 − 〈b, y〉 satisfies:

〈C,X〉 − 〈b, y〉 = 〈C,X〉 − 〈A(X), y〉〈C −AT (y), X〉 = 〈Z,X〉 ≥ 0,

since X ∈ K and Z ∈ K∗. Hence 〈C,X〉 ≥ 〈b, y〉, which is known as weak
duality; moreover equality holds if and only if 〈Z,X〉 = 0 in which case we say
that strong duality holds.

A primal feasible solution X∗ is a primal optimal solution if 〈C,X∗〉 = p∗.
Similarly, a dual feasible solution (y∗, Z∗) is a dual optimal solution if 〈b, y∗〉 =
d∗. Note that weak duality implies p∗ ≥ d∗. In general, with respect to this
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inequality several scenarios might occur (see [79] for the details). For example,
both programs (P) and (D) might have optimal solutions such that p∗ > d∗.
On the other hand, it may happen that p∗ = d∗ but an optimal solution for (P)
(or for (D)) does not exist. Sufficient conditions for the equality p∗ = d∗, i.e.,
for so called perfect duality, are given in the following theorem (see e.g. [4]).

Theorem 2.3.2 (Conic duality theorem). Consider the programs (P) and (D).

a) If the program (P) is strictly feasible and p∗ is finite, then p∗ = d∗, and
there exists a dual optimal solution.

b) If the program (D) is strictly feasible and d∗ is finite, then p∗ = d∗, and
there exists a primal optimal solution.

Corollary 2.3.3. If (P) and (D) are both strictly feasible, then p∗ = d∗ and
there exist primal and dual optimal solutions.

In the programs considered in this thesis primal and dual optimal solutions
almost always exist, and moreover p∗ = d∗. Thereafter, we often replace ‘sup’
by ‘max’ and ‘inf’ by ‘min’.

2.3.2 Algorithms, complexity and practical efficiency

When the cone K in the program (P) (or (D)) equals Rn+, S+
n , Cn or C∗

n, we call
the corresponding conic program linear, semidefinite, copositive or completely
positive, respectively. We briefly recall some known results about the complexity
of these types of programs. We avoid technical details which are beyond the
scope of this thesis.

The ellipsoid method. The history of solving convex conic programs goes
back to late fourties, when Dantzig exploited the linear programming duality
to design the simplex method. All proposed variations of the simplex method
required an exponential number of iterations, and it took more than 30 years
until Khachiyan [48] in 1979 presented the ellipsoid method for linear programs
which runs in polynomial time.

The ellipsoid method is based on constructing a sequence of ellipsoids, all
containing the set of all optimal solutions, whose volumes rapidly converge to
zero. In each iteration one has to either show that the center of a considered
ellipsoid is feasible, or to construct a hyperplane which separates the center from
the feasible region. Provided with an answer, one can cut the ellipsoid into two
halves, where one of the halves contains the set of all optimal solutions. This
half can be now circumscribed by an ellipsoid whose volume is constant time
less than the previous one. With this procedure one can produce a feasible
solution at most ε far from an optimal solution, for any given precision ε, after
a polynomial number of iterations.

Roughly speaking, the ellipsoid method works in polynomial time if checking
feasibility and constructing a separating hyperplane can be done in polynomial
time (See Grötschel, Lovász and Schrijver [35] for details.). For example, testing
if a given matrix is positive semidefinite, and providing a separating hyperplane
if it is not, can be done in polynomial time by using Gaussian elimination.
Hence, semidefinite programs can be solved (to any given precision) in polyno-
mial time via the ellipsoid method (under certain assumptions about feasibility).
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Interior point methods. Practical experiences with the ellipsoid method
were disappointing. Fortunately in 1984, Karmarkar [47] proposed a polynomial
time algorithm which became a basis for, what we nowadays call, interior point
(or barrier) methods (see e.g. [91, 49]). In contrast to the ellipsoid method, the
barrier methods can be efficiently used in practice. Nesterov and Nemirovski
[74] showed that an arbitrary linear problem over a convex cone K can be solved
with these methods in polynomially many iterations by using a self-concordant
barrier function for K. Self-concordant barrier functions are smooth on Int K,
and go to infinity as the boundary of the cone is approached. Moreover, they
are convex and can be minimized efficiently by Newton’s method.

The general idea in barrier methods is to leave out the conic constraint, e.g.
in the formulation (P), to add the barrier term f(X) to the objective, and try
to solve the sequence of problems of the form

inf
X∈IntK

〈C,X〉 + µf(X) s.t. A(X) = b, (2.4)

where the parameter µ is sequentially decreased to zero. Roughly speaking,
the strategy is to follow the curve generated by the optimal solutions Xµ (µ ∈
(0,∞)) of the problem (2.4), known also as the central path. It converges to
the analytic center of the set of all optimal solutions of (P), when µ goes to
zero. The sufficient prerequisite for using these methods is having a computable
(up to a certain precision) barrier function. For example, the function f(X) =
− log(det(X)) is such a barrier for the cone S+

n . Barrier methods can thus be
used for solving semidefinite programs.

Interior point methods are the most used algorithms for solving semidefinite
programs in practice due to their fast convergence towards an optimal solution.
Still, the largest problems that can be solved with these methods involve ma-
trices of a size of the order of a thousand rows, and a thousand constraints.
As an alternative some cheaper algorithms were designed, implemented and
tested, e.g., bundle methods [45] or first order methods [14, 80]. In practice,
these algorithms are sometimes able to tackle and digest much larger problems
than interior point algorithms. Their main drawbacks are slow convergence and
weaker precision.

Copositive programs. While linear and semidefinite programs can be
solved efficiently (to any given precision), the optimization over a copositive cone
and its dual cone is hard. Namely, some NP hard problems (see e.g. Section
4.2) can be modelled as copositive (completely positive) programs, yielding that
optimization over Cn (C∗

n) is not tractable unless P=NP. More precisely, testing
whether a given matrix is not copositive is NP-complete [72], hence unless co-
NP=NP, we can not have a polynomial time certificate for copositivity.

Although we do not have an efficient algorithm for solving copositive pro-
grams, we will present, in Section 4.2, a strategy which will help us to solve
them approximately.

2.4 Block diagonal semidefinite programs

Here we focus on semidefinite programs, the main tool for our work. Through-
out, we often use the abbreviations PSD for ‘positive semidefinite matrix’, and



16 CHAPTER 2. NOTATION AND PRELIMINARIES

SDP for ‘semidefinite program’. We first recall some well known facts about
positive semidefinite matrices and then derive several results which are exten-
sively used in this thesis. In particular, we explain the ‘block diagonalization’
concept and show how to exploit group symmetry. The main idea is to trans-
form an SDP into a simpler problem with a block diagonal structure. It will
play a crucial role in our work. Most of the SDP solvers available today support
such a structure. In fact, they are much more efficient if fed with an SDP in a
block diagonal form.

Characterizations. Let M ∈ Sn. Positive semidefiniteness of M can be
characterized in several ways. The following definitions are equivalent:

• vTMv ≥ 0 for all v ∈ Rn;

• all eigenvalues of M are nonnegative;

• M = LLT for some L ∈ Rn×n.

As an immediate consequence of the first item above we have

M � 0 =⇒ NMNT � 0 (2.5)

for all N with appropriate dimensions, and moreover

M � 0 ⇐⇒ NMNT � 0 (2.6)

for all nonsingular N ∈ Rn×n. The next two observations will be used often,
and can be easily derived from (2.5):

- if M is PSD then every principal submatrix1 of M is PSD;

- ifM has two identical rows,M is PSD if and only if its principal submatrix,
obtained by deleting one of the two identical rows and the corresponding
column, is PSD.

If the matrix N in (2.6) is diagonal with v := diag(N), then NMNT is the
matrix obtained from M by multiplying its ith row and its ith column by vi
(i = 1, . . . , n).

A matrix M is positive definite if it is PSD and nonsingular, or equivalently

• vTMv > 0 for all v ∈ Rn\{0};
• all eigenvalues of M are positive;

• M = LTL for some nonsingular L ∈ Rn×n.

It is known that the set of positive definite matrices S++
n is the interior of the

cone of positive semidefinite matrices, i.e., Int S+
n = S++

n .

Primal dual pair. Following the notation from Subsection 2.3.1, given
a finite set V , the index set of matrices, and m, the number of primal linear
constraints, a general primal dual pair of SDPs can be written as

(PSDP)
inf 〈C,X〉
s.t. A(X) = b

X � 0,

1A principal submatrix of a square matrix M is a matrix obtained by deleting the rows
and columns of M indexed by a proper subset of the index set of M .
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(DSDP)
sup 〈b, y〉
s.t. C −AT (y) � 0,

where C ∈ RV×V , b ∈ Rm, and A : RV×V → Rm is a linear operator with
A(X)j = 〈Aj , X〉 (j = 1, 2, . . . ,m).

We can assume, w.l.o.g., that the matrices C, Aj (j = 1, 2, . . . ,m) are sym-

metric. Note that the number of variables is
(|V |+1

2

)
in (PSDP) and m in

(DSDP).

2.4.1 Block diagonalization

The matrices in this thesis often have a block structure. Namely if M ∈ RV×V ,
and {Vp | p = 1, ..., k} is a partition2 of V , we can consider M as a block
matrix [M(p, q)]1≤p,q≤k, where M(p, q) ∈ RVp×Vq is the submatrix of M with
row indices in Vp and column indices in Vq. We call such a matrix block diagonal
if M(p, q) = 0 for all p, q such that p 6= q. Note that λ is an eigenvalue of a
block diagonal matrix M if and only if it is an eigenvalue of one of its diagonal
blocks. As a consequence of this fact we have the following:

Lemma 2.4.1. If M = [M(p, q)]1≤p,q≤k is block diagonal, then

M � 0 ⇐⇒ M(p, p) � 0 for all p = 1, ..., k. (2.7)

While operating with block matrices the Schur complement of a matrix can
be very helpful as well.

Lemma 2.4.2 (Schur complement). For any A ∈ S++
n , C ∈ Sm and B ∈ Rn×m

the following holds

M =

(
A B
BT C

)
� 0 ⇐⇒ C −BTA−1B � 0. (2.8)

Proof. By setting N :=

(
I 0

−BTA−1 I

)
and using (2.6) we have

M � 0 ⇐⇒ NMNT =

(
A 0
0 C −BTA−1B

)
� 0. (2.9)

The result now follows directly from Lemma 2.4.1.

Orthogonal transformation and equivalence. We can sometimes ‘block
diagonalize’ a program given in (PSDP) form. With this we mean that it can
be transformed into an SDP which involves only block diagonal matrices. The
basis of all such transformations is the following observation.

Lemma 2.4.3. If U ∈ RV×V is orthogonal then

〈UMUT , UNUT 〉 = 〈M,N〉 (2.10)

for every M,N ∈ RV×V .

Proof. Directly from (2.2).

2{Vp | p = 1, ..., k} is a partition of V if V1, V2, . . . , Vk are pairwise disjoint and ∪k
p=1Vp = V .
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Assume that U is an orthogonal matrix which ‘block diagonalizes’ the ma-
trices C and Aj (j = 1, . . . ,m) from (PSDP) and (DSDP) simultaneously, i.e.,
UCUT and UAjU

T (j = 1, . . . ,m) are all block diagonal with respect to a given
partition {Vp | p = 1, ..., k} of V . Then we can define the following primal dual
pair of SDPs:

(PSDP’)

inf
∑k
p=1〈Cp, Xp〉

s.t.
∑k
p=1 Ap(Xp) = b

Xp ∈ S+
|Vp|, p = 1, . . . , k,

(DSDP’)
sup 〈b, y〉
s.t. Cp −AT

p (y) ∈ S+
|Vp|, p = 1, . . . k,

where

• Cp ∈ RVp×Vp is the pth diagonal block of UCUT , i.e., Cp := [UCUT ](p, p),
and

• Ap : RVp×Vp → Rm is given by Ap(X)j := 〈[UAjUT ](p, p), X〉, for j =
1, 2, . . . ,m.

Observe that (PSDP) and (PSDP’) are equivalent. Namely, given a (strictly)
feasible solution X of (PSDP), the diagonal blocks Xp := [UXUT ](p, p) (p =
1, . . . , k) of UXUT are (strictly) feasible for (PSDP’). Moreover, from (2.10)

we get 〈C,X〉 =
∑k

j=1〈Cp, Xp〉. On the other hand, given a block diagonal
matrix X ′ whose diagonal blocks Xp (p = 1, . . . , k) are (strictly) feasible for
(PSDP’), the corresponding (strictly) feasible solution for (PSDP) is UTX ′U .
Analogously, (DSDP) and (DSDP’) are equivalent.

In practice, we usually gain in efficiency if we transform a problem, given
in the (PSDP) form, into the (PSDP’) form (or from (DSDP) into (DSDP’)).
Indeed, some problems which are too big for nowadays solvers can be solved
after being transformed into a block diagonal form. It can be done, e.g. when
a program is invariant under a group action, as we will explain in the next
subsection. (See also Sections 6.2 and 6.3.) Before that, we illustrate the ‘block
diagonalization’ procedure by proving two useful results.

Symmetric PSD example. The following lemma plays an important role
in Chapter 5, where we deal with lower bounds for the chromatic number of a
graph. It enables us to explore the symmetry in SDPs defining those bounds.
See Sections 5.1.2 and 5.2.3 for the details.

Lemma 2.4.4. Let X ∈ Rnt be a t× t block matrix, having an n× n matrix A
as its diagonal blocks, and an n× n matrix B as nondiagonal blocks, i.e.

X =




A B . . . B
B A . . . B
...

...
. . .

...
B B . . . A


 .

︸ ︷︷ ︸
t blocks

(2.11)

Then, X � 0 ⇐⇒ A−B � 0 and A+ (t− 1)B � 0.
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Proof. We define a t× t block matrix Ut having the same block structure as the
matrix X . For p, q = 1, . . . , t, let Ut(p, q) denote the (p, q)th block of Ut, defined
by

Ut(p, q) :=






1√
t
In if p = 1 or q = 1,(

1√
t+t

− 1
)
In if p = q ≥ 2,

1√
t+t

In otherwise.

(2.12)

Notice that Ut is symmetric and orthogonal. Let Y := (Ut)
TXUt. Then, Y � 0

if and only if X � 0 and a simple calculation gives

Y =




A+ (t− 1)B 0 . . . 0
0 A−B . . . 0
...

...
. . .

...
0 0 . . . A−B


 , (2.13)

which shows the lemma.

Zeta matrix. In the proof of the next result we use tools introduced in
[59, 65]. In particular, given a finite set T , |T | = t, we use the zeta matrix Z
defined in the following way:

• Z ∈ Rn2t×n2t

is the P(T ) × P(T ) block matrix with Z(S, S′) := In if
S ⊆ S′ and Z(S, S′) := 0 otherwise, for S, S′ ⊆ T , and

• its inverse3 Z−1 is the P(T ) × P(T ) block matrix with Z−1(S, S′) =
(−1)|S

′\S|In if S ⊆ S′ and Z−1(S, S′) = 0 otherwise, for S, S′ ⊆ T .

The fact that Z−1 is the inverse matrix of Z follows from

[ZZ−1](S, S′) =
∑

S′′⊆T
Z(S, S′′)Z−1(S′′, S′) =

∑

S⊆S′′⊆S′

Z(S, S′′)Z−1(S′′, S′)

=
∑

S⊆S′′⊆S′

(−1)|S
′′\S|In =

∑

S1⊆S′\S
(−1)|S1|In,

which is equal to In if S = S′ and to 0 otherwise. Here [ZZ−1](S, S′) denotes
the (S, S′)th block of the matrix ZZ−1.

We use the zeta matrix and its inverse to block diagonalize moment matrices.
In particular, we use them in Section 2.6 to prove the finite convergence of a
sequence of approximations for 0/1 polynomial programs, and in Section 4.1.4
to block diagonalize SDPs defining a new hierarchy of bounds for the stable set
problem. Both applications are based on the following result.

Lemma 2.4.5. Let T , |T | = t, be a finite set and let AS ∈ Rn×n (S ∈ P(T )),

be matrices. Let M ∈ Rn2t×n2t

be the P(T ) × P(T ) block matrix defined by
M(S, S′) := AS∪S′ (for S, S′ ⊆ T ). Then,

M � 0 ⇐⇒
∑

S⊆S′⊆T
(−1)|S

′\S|AS′ � 0 for all S ⊆ T.

3It is called the Möbius matrix. See [65] and the references therein.
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Proof. Define the P(T ) × P(T ) block diagonal matrix D with diagonal blocks

D(S, S) :=
∑

S⊆S′⊆T
(−1)|S

′\S|AS′ (for S ⊆ T ).

Then D = Z−1M(Z−1)T . In order to prove this, consider an (S, S′)th block of
Z−1M(Z−1)T . It reads

[
Z−1M(Z−1)T

]
(S, S′) =

∑

S2⊆T



∑

S1⊆T
Z−1(S, S1)M(S1, S2)


Z−1(S′, S2)

=
∑

S′⊆S2⊆T
(−1)|S2\S′|




∑

S⊆S1⊆T
(−1)|S1\S|AS1∪S2


 . (2.14)

Given a set S3 ⊆ T , such that S3 ⊇ S ∪ S2, consider the coefficient in front of

AS3 in the sum
∑

S⊆S1⊆T
(−1)|S1\S|AS1∪S2 . It reads

∑

(S3\S2)∪S⊆S1⊆S3

(−1)|S1\S| =
∑

S′
2⊆(S2\S)

(−1)|S
′
2|, (2.15)

since [(S3\S2) ∪ S] ∪ S2 = S3 and S3\[(S3\S2) ∪ S] = S2\S. If S2\S 6= ∅ the
value in (2.15) equals zero. Consequently, if S′\S 6= ∅, all coefficients in (2.14)
are equal to zero. This proves that [Z−1M(Z−1)T ](S, S′) = 0 if S 6= S′, taking
into account the symmetry of (2.14) with respect to S and S′.

It is now straightforward to verify that

[
Z−1M(Z−1)T

]
(S, S) =

∑

S⊆S′⊆T
(−1)|S

′\S|AS′ = D(S, S) for all S ⊆ T.

Therefore, M � 0 ⇐⇒ D � 0 ⇐⇒ D(S, S) � 0 for all S ⊆ T , which gives the
result.

The following consequence, which is simply the last result when n = 1, was
presented in [59].

Corollary 2.4.6. Let T , |T | = t, be a finite set and let aS ∈ R (S ∈ P(T ))
be scalars. Let M ∈ RP(T )×P(T ) be the matrix defined by MS,S′ := aS∪S′ (for
S, S′ ⊆ T ). Then,

M � 0 ⇐⇒
∑

S⊆S′⊆T
(−1)|S

′\S|aS′ ≥ 0 for all S ⊆ T.

2.4.2 Exploiting group symmetry in semidefinite programs

In Lemma 2.4.4 we considered a matrix of the form (2.11) which is obviously
invariant under some permutations of rows and columns. We have seen that
testing if such a matrix is PSD can be simplified to checking if two matrices,
with considerably smaller dimensions, are PSD. We now put this idea into a
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more general framework and show how to simplify an SDP invariant under a
group action4.

It has been shown recently that the size of an invariant SDP can be re-
duced using the regular ∗-representation of the algebra of invariant matrices
(see de Klerk, Pasechnik and Schrijver [52]), or by finding an irreducible ma-
trix representation of a group (see Gaterman and Parrilo [31], Vallentin [92],
Schrijver [85]). We focus here on the second approach and its application to the
Terwilliger algebra of a Hamming scheme presented in [85]. (See also Gijswijt
[32] and the references therein.) It will be extensively used in Sections 6.2 and
6.3. Namely, it will enable us to compute bounds for the chromatic numbers of
Hamming and Kneser graphs with as many as 220 vertices.

Action of a group. Let V be a finite set and G be a subgroup of Sym(V ),
the group of permutations of V (also denoted as Sym(n) if |V | = n). The group
G acts on vectors and matrices indexed by V by letting σ(x) := (xσ(i))i∈V and
σ(M) := (Mσ(i),σ(j))i,j∈V for σ ∈ G, x ∈ CV , M ∈ CV×V . In other words, for
a given σ ∈ G

σ(x) = Pσx and σ(M) = PTσ MPσ,

where Pσ ∈ CV×V is the permutation matrix defined by

(Pσ)ij :=

{
1 if σ(i) = j,
0 otherwise.

The permutation matrices are orthogonal, i.e. PσP
T
σ = I (σ ∈ G). Hence, for

every two matrices M and N and for all σ ∈ G, we have

M � 0 ⇐⇒ σ(M) � 0 and 〈M,N〉 = 〈σ(M), σ(N)〉.

The group G decomposes the set V × V into orbits, i.e. into the nonempty
sets Rr (r = 1, . . . , L) satisfying

(i, j) ∈ Rr ⇐⇒ Rr = {(σ(i), σ(j)) | σ ∈ G},

for all i, j ∈ V and r = 1, . . . , L. We also define the matrices Dr ∈ CV×V

(r = 1, . . . , L) by

(Dr)ij :=

{
1 if (i, j) ∈ Rr
0 otherwise.

A matrix M is invariant under action of G if σ(M) = M for all σ ∈ G, or

equivalently, if M =
∑L
r=1 λrDr for some λ ∈ CL. Particularly, the matrix

1
|G|
∑

σ∈G σ(M), the ‘symmetrization’ of M obtained by applying the Reynolds

operator, is invariant under action of G. Due to the convexity of the cone of
semidefinite matrices, we have:

M � 0 =⇒ 1

|G|
∑

σ∈G
σ(M) � 0. (2.16)

Reducing the number of variables in an invariant SDP. Consider
now an SDP given in (PSDP) form, i.e.

inf 〈C,X〉 s.t. 〈Aj , X〉 = bj (j = 1, . . . ,m), X � 0, (2.17)

4The process of simplifying an invariant SDP is also known as ‘symmetry reduction’.
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where C, Aj (j = 1, . . . ,m) are matrices indexed by V . The program (2.17) is
invariant under action of G if for every feasible solution X and for every σ ∈ G
the matrix σ(X) is feasible and 〈C,X〉 = 〈C, σ(X)〉. Assume now that (2.17)
is invariant under action of G, and let X be a feasible solution of (2.17). The
matrix 1

|G|
∑

σ∈G σ(X) is then also feasible for (2.17), due to (2.16). Moreover,

〈C,X〉 = 〈C, 1
|G|
∑

σ∈G σ(X)〉. Therefore, we can restrict X in (2.17) to be

invariant under action G, i.e. we can assume that X =
∑L
r=1 xrDr for some

x ∈ RL. The program (2.17) is thus equivalent to

inf
∑L

r=1 crxr s.t.
∑L

r=1 ajrxr = bj (j = 1, . . . ,m), xr = xs (if DT
r = Ds),

∑L
r=1 xrDr � 0,

(2.18)
where cr := 〈C,Dr〉 and ajr := 〈Aj , Dr〉 (r = 1, . . . , L; j = 1, . . . ,m).

We should point out that the transformation of the program (2.17) to the
form (2.18) changes, and often considerably reduces, the number of variables

from
(|V |

2

)
to L, the number of orbits of V ×V under action of G. We show next

how to reduce the sizes of matrices in an invariant SDP.

Matrix ∗-algebras. A nonempty set of matrices in CV×V is called a matrix
∗-algebra if it is closed under addition, scalar multiplication, matrix multiplica-
tion and under taking the conjugate transpose. In particular, the set of matrices
in CV×V invariant under action of G,

A := {M ∈ CV×V | σ(M) = M for all σ ∈ G}, (2.19)

is a matrix ∗-algebra. It contains the identity matrix and it is spanned by the
matrices Dr (r = 1, . . . , L). Hence, the dimension of the algebra A is simply
the number of orbits of V × V . Every algebra of this type is isomorphic to a
certain block diagonal algebra. It is a consequence of the following theorem.

Theorem 2.4.7. [2] If A ⊆ CV×V is a matrix ∗-algebra that contains the
identity matrix, then there exists a unitary matrix U ∈ CV×V , and positive
integers p0, p1, . . . , pt and q0, q1, . . . , qt such that

U∗AU := {U∗AU | A ∈ A}

consists of all block diagonal matrices



C0 0 . . . 0
0 C1 . . . 0
...

...
. . . 0

0 0 . . . Ct




where each Ck (k = 0, 1, . . . , t) is a block diagonal matrix



Bk 0 . . . 0
0 Bk . . . 0
...

...
. . . 0

0 0 . . . Bk




with qk identical blocks Bk ∈ Cpk×pk on the diagonal.



2.4. BLOCK DIAGONAL SEMIDEFINITE PROGRAMS 23

Obviously
∑t

k=0 pkqk = |V |, L =
∑t
k=0 p

2
k, and A is isomorphic to

t⊕

k=0

Cpk×pk :=









B0 0 . . . 0
0 B1 . . . 0
...

...
. . . 0

0 0 . . . Bt




∣∣∣∣∣∣∣∣∣

Bk ∈ Cpk×pk

for k = 0, 1, . . . , t





.

In this thesis we are focused on real matrices. In particular, while working
with an algebra of type (2.19), we consider only its real counterpart, i.e. its
subalgebra

B := {M ∈ RV×V | σ(M) = M for all σ ∈ G}, (2.20)

and we use the following observation:

If the matrix U , which block diagonalizes A as in Theorem 2.4.7, is orthogo-
nal, then it also block diagonalizes B, and moreover UTBU is isomorphic to⊕t

k=0 Rpk×pk .

Block diagonalization. Let now U be an orthogonal matrix which block
diagonalizes A (and consequently B) as in Theorem 2.4.7, and let Bk(M) (k =
0, ..., t) denote the corresponding Bk-th block the a matrix UTMU , where M ∈
A. Since for every M ∈ B,

M � 0 ⇐⇒ Bk(M) � 0 for all k = 0, 1, . . . , t, (2.21)

the program (2.18) reduces to

inf
∑L

r=1 crxr s.t.
∑L

r=1 ajrxr = bj (j = 1, . . . ,m), xr = xs (if DT
r = Ds),

Bk

(∑L
r=1 xrDr

)
� 0 (k = 0, . . . , t).

(2.22)

Sometimes it can be more convenient to work on the dual side. Namely,
consider the dual program of (2.17), i.e.

sup 〈b, y〉 s.t. C −
m∑

j=1

yjAj � 0, (2.23)

and assume that X in the primal program (2.17) is restricted to be invariant
under action of G. Then we may also assume, w.l.o.g., that the matrices C
and Aj (j = 1, 2, . . . ,m) are invariant. If they are not invariant, we get an
equivalent SDP if we replace them with 1

|G|
∑

σ∈G σ(C) and 1
|G|
∑

σ∈G σ(Aj)

(j = 1, 2, . . . ,m). Since then C and Aj (j = 1, 2, . . . ,m) belong to A, the
program (2.23) is therefore equivalent to

sup 〈b, y〉
s.t. Bk

(
C −∑m

j=1 yjAj

)
� 0 for all k = 0, 1, . . . , t.

It is common to call this procedure, for reducing the sizes of matrices in
(primal and/or dual) SDPs, ‘block diagonalization’. It permits us to solve some
huge, but at the same time highly symmetric, SDPs. For example, in Chapter
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6 we deal with SDPs that involve matrices of size O(2n), whereas at the same
time they belong to an algebra, known as the Terwilliger algebra of the binary
Hamming scheme, of dimension O(n3). As a crucial ingredient we use the block
diagonalization of the Terwilliger algebra given by Schrijver in [85].

The block diagonalization of the Terwilliger algebra. Given a
positive integer n, set N := {1, 2, . . . , n}. For i, j, p = 0, . . . , n, let Mp,n

i,j denote
the 0/1 matrix indexed by P(N) whose (I, J)-th entry is 1 if |I| = i, |J | = j,
|I ∩ J | = p, and equal to 0 otherwise. The set

An :=






n∑

i,j,p=0

xpi,jM
p,n
i,j | xpi,j ∈ R






is a matrix ∗-algebra, known as the Terwilliger algebra of the binary Hamming
scheme. For k = 0, . . . , n, let Mn

k be the matrix indexed by P(N) whose (I, J)-
th entry is 1 if |I 4 J | = k and 0 otherwise. The set

Bn :=

{
n∑

k=0

xkM
n
k | xk ∈ R

}

is an algebra, known as the Bose-Mesner algebra of the binary Hamming scheme.
Obviously, Bn ⊆ An, since Mn

k =
∑

i,j,p|i+j−2p=kM
p,n
i,j . As is well known, Bn

is a commutative algebra and thus all matrices in Bn can be simultaneously
diagonalized (cf. Delsarte [21]). The Terwilliger algebra is not commutative,
thus it cannot be diagonalized, however it can be block-diagonalized as we saw
in Theorem 2.4.7. We recall the main result below.

Given integers i, j, k, p = 0, . . . , n, set

βp,ni,j,k :=

n∑

u=0

(−1)p−u
(
u

p

)(
n− 2k

n− k − u

)(
n− k − u

i− u

)(
n− k − u

j − u

)
, (2.24)

αp,ni,j,k := βp,ni,j,k

(
n− 2k

i− k

)− 1
2
(
n− 2k

j − k

)− 1
2

. (2.25)

Theorem 2.4.8. [85] For a matrix M =
∑
i,j,pM

p,n
i,j x

p
i,j in the Terwilliger

algebra,

M � 0 ⇐⇒Mk :=

(
∑

p

αp,ni,j,kx
p
i,j

)n−k

i,j=k

� 0 for k = 0, 1, . . . ,
⌊n

2

⌋
. (2.26)

To show this, Schrijver [85] constructs an explicit matrix U which satisfies
the conditions given in Theorem 2.4.7. In fact, his U is orthogonal, it block
diagonalizes 





n∑

i,j,p=0

xpi,jM
p,n
i,j | xpi,j ∈ C




 ,

and consequently its subalgebra An. The matrices Mk from (2.26) play the role
of the blocks Bk appearing in the formulation of Theorem 2.4.7. Each of them
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is repeated
(
n
k

)
−
(
n
k−1

)
times, for k = 0, . . . , bn/2c. Finally, (2.26) follows from

(2.21).

The result extends to a block matrix whose blocks all lie in the Terwilliger
algebra and which has a border of a special form. We state Lemma 2.4.9 for a
2 × 2 block matrix but the analogous result holds obviously for any number of
blocks.

Lemma 2.4.9. Let A,B,C ∈ An; say, A =
∑

i,j,p a
p
i,jM

p,n
i,j , B =

∑
i,j,p b

p
i,jM

p,n
i,j ,

C =
∑

i,j,p c
p
i,jM

p,n
i,j and define accordingly

Ak :=

(
∑

p

αp,ni,j,ka
p
i,j

)n−k

i,j=k

, Bk :=

(
∑

p

αp,ni,j,kb
p
i,j

)n−k

i,j=k

,

Ck :=

(
∑

p

αp,ni,j,kc
p
i,j

)n−k

i,j=k

,

for k = 0, 1, . . . , dn/2e. Then,

(
A B
BT C

)
� 0 ⇐⇒

(
Ak Bk
BTk Ck

)
� 0 for all k = 0, 1, . . . ,

⌊n
2

⌋
.

Proof. Directly from the above using the orthogonal matrix

(
U 0
0 U

)
.

Lemma 2.4.10. (see Lemma 1 in [60]) Let M =
∑n

i,j,p=0 x
p
i,jM

p,n
i,j ∈ An,

c =
∑n

i=0 ciχ
(i), where χ(i) ∈ {0, 1}P(N) with χ

(i)
I = 1 if |I| = i (for I ∈ P(N)),

and d ∈ R. Let Mk (k = 0, 1, . . . , bn/2c) be as in (2.26). Then,

(
d cT

c M

)
� 0 ⇐⇒






Mk � 0 for k = 1, . . . ,
⌊
n
2

⌋
,

M̃0 :=

(
d c̃T

c̃ M0

)
� 0

after setting c̃T :=
(
ci

√(
n
i

))n
i=0

.

2.5 Graphs, stable sets and colourings

In this thesis we deal only with finite simple undirected graphs. A graph is an
ordered pair G = (V,E), where V is a finite set and E ⊆ P=2(V ). The elements
of V and E are usually called, respectively, the vertices and the edges of G. Two
vertices i, j ∈ V are adjacent if {i, j} ∈ E. Throughout we also write ij ∈ E. If
G is a graph we denote its vertex set as V (G), and its edge set as E(G).

The adjacency matrix of a graph G is the 0/1 matrix indexed by V (G),
denoted by AG (or by A if the graph is clear from the context) and defined by

(AG)ij :=

{
1 if ij ∈ E(G),
0 otherwise.
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The degree of a vertex i ∈ V (G) is denoted deg(i) and defined by deg(i) :=∑
j(AG)ij . We also define

∆(G) := max
i∈V (G)

deg(i),

the maximum degree of a graph G.
Let G and H be two graphs such that V (G) and V (H) are disjoint. The

direct sum of G and H , denoted by G + H , is the graph with V (G + H) :=
V (G) ∪ V (H) and E(G + H) := E(G) ∪ E(H). The strong product of G and
H , denoted by G · H , is the graph with V (G · H) := V (G) × V (H), in which
(u, v) and (u′, v′) are adjacent if (u, v) 6= (u′, v′), {u, u′} ∈ E(G) ∪ V (G) and
{v, v′} ∈ E(H) ∪ V (H). The Cartesian product of G and H , denoted by G�H ,
is the graph with V (G�H) := V (G) × V (H), in which two vertices (u, v) and
(u′, v′) are adjacent if they are adjacent in G ·H and either u = u′ or v = v′.

Two graphs G and G′ are isomorphic if there exists a bijection f : V (G) →
V (G′) such that

ij ∈ E(G) ⇐⇒ f(i)f(j) ∈ E(G′).

Such a bijection is called an isomorphism. A graph G′ is a subgraph of a graph
G if V (G′) ⊆ V (G) and E(G′) ⊆ E(G). A graph G′ is an induced subgraph of a
graph G if V (G′) ⊆ V (G) and E(G′) = E(G) ∩ P=2(V (G′)).

A graph G, with V (G) = {v1, v2, ..., vn}, is called

• a cycle if n ≥ 3 and E(G) = {v1v2, v2v3, . . . , vn−1vn, vnv1};

• a complete graph if E(G) = P=2(V (G)).

A graph on n vertices is often denoted by Cn if it is a cycle, and by Kn if it
is a complete graph.

A set of vertices of a graph

• no two of which are adjacent is called a stable set;

• any two of which are adjacent is called a clique.

The maximum size of

• a stable set in G is denoted by α(G) and called the stability number5 of
G;

• a clique in G is denoted by ω(G) and called the clique number of G.

A partition of a vertex set of a graph G into

• stable sets is a (vertex) colouring of G;

• cliques is a clique cover of G.

The stable sets of a vertex colouring are called the colours of the colouring. The
minimum number of colours in a vertex colouring of G, denoted by χ(G), is
called the chromatic number of G. The minimum number of cliques in a clique
cover of G, denoted by χ(G), is called the clique cover number of G.

5also known as the independence number of the graph G.
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The graph complement of a graph G = (V,E) is the graph G = (V,E),
where E := P=2(V )\E. Note that every stable set in G is a clique in G, and
analogously, a clique in G is a stable set in G. Similarly if a partition of the
vertex set of a graph G is a clique cover of G, it is at the same time a colouring
of G. Consequently,

• α(G) = ω
(
G
)
;

• ω(G) = α
(
G
)
;

• χ
(
G
)

= χ(G).

In accordance with the third item above we use the following convention: given
a graph parameter β(·), β(·) is the graph parameter defined by β(G) := β

(
G
)

for any graph G.
Some of the parameters mentioned above can be compared. If a graph G

contains a clique C of size ω(G), then the vertices of C are coloured by ω(G)
distinct colours in any vertex colouring of G. Hence,

ω(G) ≤ χ(G), (2.27)

and equivalently
α(G) ≤ χ(G). (2.28)

There exist graphs for which ω(G) < χ(G), e.g., the pentagon C5 is the smallest
graph of this type (see section 3.2). On the other hand, for some graphs the
equality might hold for all their induced subgraphs. Claude Berge [5, 6] was
first to study these graphs. He calls a graph G perfect 6 if

α(G′) = χ(G′) (2.29)

holds for every induced subgraph G′ of G. He conjectures that a graph G is
perfect if and only if any of the following two items hold:

• its complement G is perfect,

• G does not contain an induced subgraph isomorphic7 to Ck or to Ck for
some odd k > 3.

The equivalence with the first item was proved by Lovász in [62], and it is known
as the perfect graph theorem. The equivalence with the second item turned out
to be a much more complicated question. It was finally proved by Chudnovsky,
Robertson, Seymour and Thomas in [19], and it is known as the strong perfect
graph theorem.

As we have mentioned in the previous chapter, the problems of determining
α(G) and χ(G) of a given graph G are both NP-hard problems (see e.g. [30]).
Namely, given a graph G and an integer k, their decision counterparts (recall
problems (S) and (C) from page 3):

a) decide if α(G) ≥ k, called the stable set problem;

6He calls it ‘α-perfect’, but this term was replaced by ‘perfect’ after Lovász proved the
perfect graph theorem.

7An induced subgraph isomorphic to Ck (respectively Ck), k > 3, is usually called a hole
(respectively antihole).
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b) decide if χ(G) ≤ k, called the colouring problem;

are NP-complete problems. Besides, it is hard to approximate χ(G) within
|V (G)|1/14−ε for any ε > 0 (see [3]), and α(G) can not be approximated within
a factor |V (G)|1/2−ε for any ε ≥ 0 unless8 P=NP (see [42]).

Several generalizations of these problems were proposed in the literature.
For example, given a graph G = (V,E), a weight function w : V → R and an
integer k, the problem of deciding if there exists a stable set S in G such that
w(S) ≥ k is called the weighted stable set problem.

In Chapter 5 we use the following reduction from the colouring problem to
the stable set problem. Given a graph G and an integer t ≥ 0 consider Kt�G,
the Cartesian product of the graphs G and Kt. Note that

V (Kt�G) := V (Kt) × V (G) =

t⋃

p=1

Vp, where Vp := {pi | i ∈ V (G)} (2.30)

and {pi, qj} is an edge if i = j and p 6= q, or if p = q and ij ∈ E(G). Chvátal
[20] observed the following:

χ(G) ≤ t⇐⇒ α(Kt�G) = |V (G)|. (2.31)

To see this note first that α(Kt�G) ≤ |V (G)| for every t. Let Sp (p = 1, 2, . . . , t)
be the colours of a vertex colouring of G, and set Spp := {pi | i ∈ Sp} for
p = 1, 2, . . . , t. Now ∪tp=1Spp is a stable set of size |V (G)| in Kt�G, which
proves χ(G) ≤ t =⇒ α(Kt�G) = |V (G)|. For the other direction let S be a
stable set of size |V (G)| in Kt�G. Set Sp := {i ∈ V (G) | pi ∈ S ∩ Vp} for
p = 1, 2, . . . , t and observe that this gives a vertex colouring of G. (Reverse
reductions, from the stability number to the chromatic number, can be found
in Poljak [77], and in Schrijver [84].)

We call a graph ‘symmetric’ if it has a nontrivial automorphism group. Given
a graphG, its automorphism group Aut(G) is the set of all bijections σ : V (G) →
V (G) satisfying ij ∈ E(G) ⇐⇒ σ(i)σ(j) ∈ E(G) for all i, j ∈ V (G). A graph G
is vertex transitive if for every pair of vertices i and j there exists σ ∈ Aut(G)
such that σ(i) = j.

2.6 Polynomials and optimization

Let n be positive integer. For a vector β ∈ Nn, we set

• |β| :=
∑n
i=1 βi,

• β! := β1! · · ·βn!,

• S(β) := {i | βi 6= 0}, and

• Sodd(β) := {i | βi is odd}.
8More precisely, α(G) can not be approximated within |V (G)|1−ε unless NP=ZPP
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One says that β is even when Sodd(β) = ∅. We also set

I≤(n, t) := {β ∈ Nn | |β| ≤ t} and I=(n, t) := {β ∈ Nn | |β| = t} for t ∈ N.

The elements of I≤(n, 1) are the zero vector 0 and the standard unit vectors ei :=
χ{i} (i = 1, . . . , n). Given t ∈ N, the mapping ft : I=(n+ 1, t) → I≤(n, t), given
by ft(β1, . . . , βn, βn+1) := (β1, . . . , βn), is bijective hence |I≤(n, t)| = |I=(n +
1, t)| =

(
n+t
t

)
.

Let R[x1, x2, . . . , xn] = R[x] denote the ring of polynomials in n variables.

For x ∈ Rn and β ∈ Nn we set xβ := Πn
i=1x

βi

i . Every polynomial p(x) ∈ R[x]
can be written as

p(x) =
∑

β∈I≤(n,t)

pβx
β (2.32)

for some t ∈ N, where p = (pβ)β∈I≤(n,t) ∈ RI≤(n,t) is the vector of coefficients.

The degree9 of p(x), p 6= 0, is

deg(p) := max{d ∈ N | pβ 6= 0 for some β ∈ I≤(n, d)}.

A polynomial of the form

p(x) =
∑

β∈I=(n,t)

pβx
β ∈ R[x]

is said to be homogeneous of degree t. Given a polynomial in n variables of
degree t in the form (2.32) its homogenization is the polynomial in n+1 variables
defined by

p(x̃) :=
∑

β∈I≤(n,t)

pβx
βx

t−|β|
n+1 (2.33)

where x̃ = [x1, . . . , xn, xn+1].

Following this, we sometimes identify a polynomial with its coefficient vector,
i.e., the set of polynomials of degree at most t with the vector space RI≤(n,t),
and the set of homogeneous polynomials of degree t with the space RI=(n,t).
Note that the zero polynomial lies in both sets, in RI≤(n,t) and in RI=(n,t).

Sums of squares

In polynomial optimization, the basic question is to decide if a given polynomial
is nonnegative. Instead of trying to answer such a hard question directly, one
can, instead, try to determine if a given polynomial is a sum of squares of
polynomials. The idea is based on the following two facts:

(i) every polynomial which a sum of squares of polynomials is nonnegative,
and

(ii) testing if a polynomial is a sum of squares of polynomials can be done via
semidefinite programming.

9It is sometimes convenient to set deg(0) = −∞.
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The reverse of (i) is, however, not true. It was proved by Hilbert already in
1888 (See Reznick [81] for a nice survey on this topic.).

An n variable polynomial p(x) ∈ R[x] is a sum of squares of polynomials,

sometimes abbreviated as ‘p(x) is SOS’, if p(x) =
∑k
i=1(ui(x))

2 for some ui(x) ∈
R[x] (i = 1, 2, . . . , k). If a polynomial of degree at most 2t is SOS then it can be
written as a sum of squares of polynomials, each of degree at most t. Moreover,
if a homogeneous polynomial of degree 2t is SOS then it can be written as a sum
of squares of homogeneous polynomials, each of degree t. In fact, a polynomial is
SOS if and only if its homogenization is SOS. We can now observe the following:

(i) p(x) =
∑

β∈I≤(n,2t) pβx
β is SOS if and only if there existX ∈ RI≤(n,t)×I≤(n,t)

such that

X � 0 and
∑

γ,δ∈I≤(n,t)
γ+δ=β

Xγ,δ = pβ for all β ∈ I≤(n, 2t); (2.34)

(ii) p(x) =
∑
β∈I=(n,2t) pβx

β is SOS of polynomials if and only if there exist

X ∈ RI=(n,t)×I=(n,t) such that

X � 0 and
∑

γ,δ∈I=(n,t)
γ+δ=β

Xγ,δ = pβ for all β ∈ I=(n, 2t). (2.35)

In other words, deciding if a polynomial p(x) is SOS is equivalent to deciding if
the system (2.34) (respectively (2.35) if p(x) is homogeneous) is feasible.

We also define

• Σ(n, 2t) := {p ∈ RI≤(n,2t)| p(x) is SOS}, the cone of polynomials of degree
at most 2t which are sums of squares, and

• Σ=(n, 2t) := {p ∈ RI=(n,2t)| p(x) is SOS}, the cone of homogeneous poly-
nomials of degree 2t which are sums of squares.

The cones defined above are closed, convex and solid (see e.g. Reznick [81]).
Observe also that the cones Σ=(n + 1, 2t) and Σ(n, 2t) are basically identical
(isomorphic) due to the properties of homogenization.

Sequences and moment matrices

Given a sequence

• (yβ)β∈I≤(n,2t+s) ∈ RI≤(n,2t+s), where s ∈ N , its moment matrix of order
t is the matrix

Nt(y) ∈ RI≤(n,t)×I≤(n,t) defined by (Nt(y))β,γ := yβ+γ , for β, γ ∈ I≤(n, t);

• (yβ)β∈I=(n,2t) ∈ RI=(n,2t), its moment matrix is the matrix

N=t(y) ∈ RI=(n,t)×I=(n,t) defined by (N=t(y))β,γ := yβ+γ , for β, γ ∈ I=(n, t).
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Given a polynomial in the form (2.32) and a sequence y ∈ RI≤(n,2t+s), where
s ∈ N, define the new sequence

py := Nt(y)p ∈ RI≤(n,t), with βth entry (py)β :=
∑

γ∈I≤(n,t)

pγyβ+γ , β ∈ RI≤(n,t).

Define, analogously, py := N=t(y)p ∈ RI=(n,t) when p ∈ RI=(n,t) and y ∈
RI=(n,2t) are given.

In this thesis we often deal with vectors indexed by P(V ), where V is some
finite set. Given a vector y ∈ RP≤2t+s(V ), its combinatorial moment matrix of
order t is the matrix

Mt(y) ∈ RP≤t(V )×P≤t(V ) defined by (Mt(y))IJ := yI∪J (I, J ∈ P≤t(V )).

Given vectors p ∈ RP≤t(V ) and y ∈ RP≤2t+s(V ), define the new vector

py := Mt(y)p ∈ RP≤t(V ), with Ith entry (py)I :=
∑

J∈P≤t(V )

pJyI∪J , I ∈ RP≤t(V ).

We also define the following cones of sequences:

• N (n, 2t) := {y ∈ RI≤(n,2t) | Nt(y) � 0};
• N=(n, 2t) := {y ∈ RI=(n,2t) | N=t(y) � 0}.
Observe again that the cones N=(n+ 1, 2t) and N (n, 2t) are basically iden-

tical.

Duality between sums of squares and moment sequences

Recall first the definition of a dual cone from Section 2.2. The dual cone of a
cone K ⊆ RV is

K∗ := {p ∈ RV | 〈p, q〉 ≥ 0 for all q ∈ K}. (2.36)

We present now the known duality between the cones of sums of squares of
polynomials and the cones of sequences with a positive semidefinite moment
matrix. We will use this result in Section 4.2, where we define a hierarchy of
cones of matrices nested between the semidefinite cone and the copositive cone.
In particular, we will characterize the cones in the dual hierarchy by applying
the following theorem.

Theorem 2.6.1. For the cones defined above we have the following duality
relations

(i) (N (n, 2d))∗ = Σ(n, 2d), (Σ(n, 2d))∗ = N (n, 2d);

(ii) (N=(n, 2d))∗ = Σ=(n, 2d), (Σ=(n, 2d))∗ = N=(n, 2d);

Proof. We prove only (ii) which obviously implies (i). Let p ∈ Σ=(n, 2d) be the
square of a polynomial u ∈ RI=(n,d), i.e.,

p(x) =
∑

β∈I=(n,2d)

pβx
β = u(x)2 =

∑

β∈I=(n,2d)

∑

γ,δ∈R
I=(n,d)

γ+δ=β

uγuδx
β .
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Given a sequence y ∈ N=(n, 2d) we have

〈p, y〉 = pT y =
∑

β∈I=(n,2d)

pβyβ =
∑

β∈I=(n,2d)

∑

γ,δ∈R
I=(n,d)

γ+δ=β

uγuδyβ = uTN=d(y)u.

Hence, (Σ=(n, 2d))∗ = N=(n, 2d). Since Σ=(n, 2d) is closed convex cone, from
Theorem 2.2.1 we get (N=(n, 2d))∗ = ((Σ=(n, 2d))∗)∗ = Σ=(n, 2d).

For a more general result consult [58] and the references therein.

Polynomial optimization problem

Given polynomials p(x) and gj(x) (j = 1, . . . ,m) the polynomial optimization
problem is the problem

p∗ = inf p(x) s.t. x ∈ K, (2.37)

where K := {x ∈ Rn| gj(x) ≥ 0 (j = 1, 2, . . . ,m)}. We set dp := ddeg(p)/2e,
dj := ddeg(gj)/2e (j = 1, . . . ,m) and dK := max(d1, . . . , dm). We also assume
deg(p) ≥ 1.

Among numerous applications let us mention that the polynomial optimiza-
tion problem captures linear, semidefinite and copositive programs. In particu-
lar, a matrix M ∈ Rn×n is copositive if and only if p(x) := xTMx ≥ 0 for all
x ∈ K = Rn+ = {y ∈ Rn | yi ≥ 0 for all i = 1, . . . , n}). It can be also used for
modelling combinatorial optimization problems since

{0, 1}n = {x ∈ Rn | x2
i − xi ≥ 0, −x2

i + xi ≤ 0 for all i = 1, . . . , n}

= {x ∈ Rn | x2
i = xi for all i = 1, . . . , n}.

For example, given a graph G = (V,E), the stability number α(G) of G can be
formulated as

α(G) = max
x∈RV

eTx s.t. x2
i = xi (i ∈ V ), xixj = 0 (ij ∈ E). (2.38)

As we have mentioned earlier, testing if a given matrix is not copositive, and
deciding if α(G) ≥ k for a given k, are NP-complete problems. Consequently,
the problem (2.37) is a hard problem in general.

Relaxations. Several types of relaxations for (2.37) were proposed recently.
One way to relax is by replacing ‘nonnegativity’ by the ‘sum of squares’ condi-
tion. First note that (2.37) can formulated as

p∗ = sup
ρ∈R

ρ s.t. p(x) − ρ ≥ 0, for all x ∈ K.

Following Lasserre [56], one way to relax the condition p(x)− ρ ≥ 0, for all x ∈
K, is to require p(x)− ρ = s0(x) +

∑
j=1 sj(x)gi(x), where s0, sj (j = 1, . . . ,m)

are SOS. Thus we can define

pΣ := sup ρ s.t. p(x) − ρ = s0(x) +
∑

j=1

sj(x)gj(x), ρ ∈ R, s0, sj are SOS.
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If we further bound the degrees of polynomials s0, sj, we get the sequence of
semidefinite programming bounds

pΣ
t := sup ρ s.t. p(x) − ρ = s0(x) +

∑
j=1 sj(x)gj(x), ρ ∈ R, s0, sj are SOS,

deg(s0), deg(sjgj) ≤ 2t,
(2.39)

for every t which satisfies 2t ≥ max(deg(p), deg(g1), . . . ,deg(gm)). The bounds
satisfy pΣ

t ≤ pΣ
t+1 ≤ pΣ ≤ p∗ and limt→∞ pΣ

t = pΣ.

Next we recall the dual approach proposed also in [56], based on moment
matrices. Following [56], for t ≥ max(dp, dK), we define

pt := inf pT y s.t. y ∈ RI≤(n,2t), y0 = 1, Nt(y) � 0,
Nt−dj

(gjy) � 0 (j = 1, . . . ,m).
(2.40)

Obviously, pt ≤ pt+1. To see that (2.40) is a relaxation of (2.37) we need to
prove

pt ≤ p∗, for all t ≥ max(dp, dK). (2.41)

For x ∈ Rn define its zeta vector

ζt,x ∈ RI≤(n,t) by (ζt,x)β := xβ (β ∈ I≤(n, t)).

Consider the vector y := ζ2t,x ∈ RI≤(n,2t). Then, y0 = x0 = 1 and Nt(y) =
ζt,xζ

T
t,x � 0. Moreover, if x ∈ K we have Nt−dj

(gjy) = gj(x)Nt−dj
(y) � 0,

hence y is feasible for (2.40) with pT y = p(x), implying pt ≤ p∗.

The programs (2.39) and (2.40) are dual SDPs (see Lasserre [56]), which
implies pΣ

t ≤ pt.

0/1 case. Under certain conditions on K, the bounds pt converge to p∗ in
finitely many steps. In other words, there exists t ∈ N such that pt = p∗. We
prove that this holds for t ≥ n + dK when K ⊆ {0, 1}n. For an exposition on
more general results see e.g. [58]. Let

K = {x ∈ RV | gj(x) ≥ 0 (j = 1, 2, . . . ,m); hi(x) ≥ 0, −hi(x) ≥ 0, (i ∈ V )},
(2.42)

where V = {1, 2, . . . , n}, gj(x) (j = 1, 2, . . . ,m) are polynomials and hi(x) =
x2
i − xi (i ∈ V ).

Set n := |V |. The program (2.40), with K of form (2.42), now reads

pt := inf pT y s.t. y ∈ RI≤(n,2t), y0 = 1, Nt(y) � 0,
Nt−dj

(gjy) � 0 (j = 1, . . . ,m),
Nt−1(hiy) � 0, Nt−1(−hiy) � 0 (i = 1, . . . , n).

(2.43)

For x ∈ K we have x2
i = xi (i ∈ V ), and thus we may assume, w.l.o.g.,

that each variable occurs in p(x) and gj(x) (j = 1, . . . ,m) with a degree at
most one. In other words we may assume that pβ 6= 0 (analogously (gj)β 6= 0
(j = 1, . . . ,m)) only if β ∈ {0, 1}n, i.e. if β = χI for some I ⊆ V . (Recall the
definition of a characteristic vector χI .) Motivated by this we define p̂ ∈ RP(V )

by p̂I := pχI (I ⊆ V ), and ĝj ∈ RP(V ) (j = 1, . . . ,m) by (ĝj)I := (gj)χI (I ⊆ V ).
The program (2.37), with K given by (2.42), can thus be reformulated as

p∗ = min p̂T x̂ s.t. x̂ ∈ {0, 1}P(V ), ĝ Tj x̂ ≥ 0 (j = 1, . . . ,m). (2.44)
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We now make similar observations for a vector y, which is assumed to be
feasible for (2.43).

Lemma 2.6.2. Let y be feasible for the program (2.43). For all β ∈ RI≤(n,2t)

yβ = yγ , where γi := min(βi, 1) (i ∈ V ).

Proof. For all β ∈ RI≤(n−1,2t) and all i ∈ S(β), yβ+ei
− yβ appears as an entry

in Nt−1(hiy). For all i ∈ V we have Nt−1(hiy) � 0 and Nt−1(−hiy) � 0. This
implies Nt−1(hiy) = 0 and thus proves the lemma.

Consequently, two columns of Nt(y) indexed by β, γ ∈ RI≤(n,t) are identical
if S(β) = S(γ). Moreover, it further implies that two columns of Nt−dj

(gjy)
are identical if their indices have an identical support.

Motivated by Lemma 2.6.2 and the last observations, we define the vector
ŷ ∈ RP≤2t(V ) by (ŷ)I := yχI (I ∈ P≤2t(V )). Recall its combinatorial moment

matrix Mt(ŷ) ∈ RP≤t(V )×P≤t(V ) whose entries are given by

(Mt(ŷ))I,J = ŷI∪J .

The matrix Mt(ŷ) is a principal submatrix of Nt(y), and moreover

Mt(ŷ) � 0 ⇐⇒ Nt(y) � 0. (2.45)

Similarly,

Mt−dj
(ĝj ŷ) � 0 ⇐⇒ Nt−dj

(gjy) � 0 (j = 1, . . . ,m).

The program (2.43) is therefore equivalent to

pt := inf p̂T ŷ s.t. ŷ ∈ RP≤2t(V ), ŷ0 = 1, Mt(ŷ) � 0,
Mt−dj

(ĝj ŷ) � 0 (j = 1, . . . ,m).
(2.46)

Observe that the formulation (2.46) involves smaller matrices and less variables
than (2.43).

We focus now on the convergence of the bounds pt. Before proving the main
result we need the following lemma.

Lemma 2.6.3. Let ŷ be feasible for the program (2.46), and let Z ∈ {0, 1}P(V )

be the zeta matrix. If t ≥ n then

ŷ ∈ conv{Z•I | I ⊆ V }

Proof. Assume that t ≥ n and recall the definition of the zeta matrix Z ∈ RP(V ):
ZI,J = 1 if I ⊆ J and ZI,J = 0 otherwise, for I, J ⊆ V . Corollary 2.4.6 gives

Mt(ŷ) = Mn(ŷ) � 0 ⇐⇒ Z−1ŷ =
∑

I⊆I′⊆V
(−1)|I

′\I|ŷI′ ≥ 0 for all I ⊆ V.

Moreover, ŷ = Z
(
Z−1ŷ

)
∈ conv{Z•I | I ⊆ V }.

We can finally state the main result.
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Theorem 2.6.4. Let K be as in (2.42). If t ≥ n+ dK then pt = p∗.

Proof. Assume that t ≥ n+ dK . Let ŷ be an optimal solution for the program
(2.46). From Lemma 2.6.3 we have that ŷ =

∑r
s=1 λsZ•Is

for some distinct
Is ∈ P(V ) (s = 1, . . . , r), λs > 0 (s = 1, . . . , r) and ŷ0 =

∑r
s=1 λs = 1. It is

now enough to show that Z•Is
(s = 1, . . . , r) are feasible for the program (2.44),

since then

p̂T ŷ =

r∑

s=1

λsp̂
TZIs

≥
r∑

s=1

λsp
∗ = p∗. (2.47)

It can be verified that

q̂TMt−dj
(ĝj ŷ)q̂ =

r∑

s=1

λsĝ
T
j Z•Is

(
q̂ TZ•Is

)2
(2.48)

for all q̂ ∈ RP(V ) and j = 1, . . . ,m.

The vectors Z•Is
(s = 1, . . . , r) are linearly independent since the columns

of Z are linearly independent. Therefore, the system

q̂ TZ•Is
= as (s = 1, . . . , r), (2.49)

has a solution for every choice of as (s = 1, . . . , r).

Pick an s0 ∈ {1, . . . , r} and let q̂ be a solution of (2.49) for the choice
as0 := 1√

λs0

, as := 0 (s 6= s0). Then

q̂TMt−dj
(ĝj ŷ)q̂ =

r∑

s=1

λsĝ
T
j Z•Is

(
q̂ TZ•Is

)2
= ĝ Tj Z•Is0

≥ 0,

for every j = 1, . . . ,m. In other words, Z•Is0
is feasible for the program (2.44).

Finally, (2.47) and (2.41) yield p∗ = pt.

Consider now the problem (2.38). Using the ideas from above, the relaxation
(2.46) for this problem reduces to

pt(G) := max
ŷ∈P≤2t(V )

|V |∑

i=1

ŷi s.t. ŷ0 = 1, Mt(ŷ) � 0, ŷij = 0 (ij ∈ E). (2.50)

To see this observe that the conditions xixj = 0 (ij ∈ E(G)) in (2.38) transform
into

(ŷI∪J∪{i,j})I,J∈P≤(t−1)(V ) = 0 (ij ∈ E) (2.51)

in the relaxation (2.46), and that the conditions (2.51) are implied by ŷij = 0
(ij ∈ E) and Mt(ŷ) � 0.

Proposition 2.6.5. Let G = (V,E) be a graph. Then pα(G)(G) = α(G).

Proof. From Theorem 2.6.4 we have that p|V |+1(G) = α(G). Let t ≥ α(G) and
ŷ be feasible for the program (2.50). Then ŷI = 0 for every I ∈ P≤2t(V ) for
which there exists ij ∈ E such that {i, j} ⊆ I, due to (2.51). In particular,
for every I ⊆ P≤t(V )\P≤α(G)(V ) we have ŷI = 0. Consequently, the columns of
Mt(ŷ) indexed by P≤t(V )\P≤α(G)(V ) are zero columns.

Therefore pα(G)(G) = pt(G) = p|V |+1(G) = α(G) for all t ≥ α(G).

We will discuss the program (2.50) further in Chapter 4.
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Chapter 3

The Lovász theta number

The Lovász theta function maps a graph G = (V,E) to R+. It was introduced
by Lovász in [64] for bounding the stability number and the Shannon capac-
ity1 of a graph. Several equivalent formulations using orthonormal representa-
tions, eigenvalues, adjacency matrices, semidefinite programming were studied
in [54, 61, 64]. Here we define the Lovász theta number via semidefinite pro-
gramming and we prove ‘the sandwich theorem’. We finalize the chapter with
some variations of the Lovász theta number obtained by adding nonnegativity
and triangle constraints.

3.1 Equivalent formulations

Given a graph G = (V,E), set n := |V |. We define ϑ(G), the Lovász theta
number of G, via the SDP

ϑ(G) := max 〈J, X〉
s.t. Tr(X) = 1

Xij = 0 (ij ∈ E(G))
X � 0,

(3.1)

where X is a symmetric matrix indexed by V (or P=1(V )).

If V = ∅ we define ϑ(G) := 0. This is however trivial case.

The dual SDP of (3.1) reads

min t

s.t. tI +
∑

ij∈E
yijE

ij − J = Z

Z � 0, t ∈ R, yij ∈ R (ij ∈ E(G)),

(3.2)

where Eij ∈ RV×V , Eijpq := 1 if {p, q} = {i, j} and Eijpq := 0 otherwise.

Since 1
|V |I is strictly feasible for (3.1) and (|V | + 1)I − J is strictly feasible

for (3.2) the minimum in (3.2) is equal to ϑ(G) (directly from Corollary 2.3.3).

1The Shannon capacity of a graph G is defined as Θ(G) := lim
n→∞

(α(Gn))
1
n , where Gn is

given by G1 := G and Gn := Gn−1 · G for n ≥ 2.
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Let (t, Z) be feasible for (3.2). Set

Z ′ :=

(
t eT

e 1
tZ + 1

t ee
T

)
. (3.3)

Consider Z ′ to be indexed by P≤1(V ), with the first row corresponding to 0 (the
empty set). Lemma 2.4.2 yields Z ′ � 0 ⇐⇒ 1

tZ � 0 ⇐⇒ Z � 0, and thus (3.2)
is equivalent to

ϑ(G) min Z ′
00

= min Z ′
00

s.t. Z ′
0i + Z ′

i0 = 2 (i ∈ V ) s.t. Z ′
ii = Z ′

0i (i ∈ V )
Z ′
ii = 1 (i ∈ V ) Z ′

ii = 1 (i ∈ V )
Z ′
ij = 0 (ij ∈ E(G)) Z ′

ij = 0 (ij ∈ E(G))
Z ′ � 0 Z ′ � 0

(3.4)
where variable Z ′ is a symmetric matrix indexed by P≤1(V ).

Strict feasibility of (3.2) implies strict feasibility of (3.4) since for Z ′ from
(3.3) we have Z ′ � 0 ⇐⇒ Z � 0. Hence, we can write the dual of (3.4) as

ϑ(G) max −2
∑
i∈V X

′
0i −

∑
i∈V X

′
ii

s.t. X ′
00

= 1 (i ∈ V )
X ′
ij = 0 (ij ∈ E(G))

X ′ � 0.

(3.5)

The following lemma leads us to a formulation which is extensively used in the
next chapter.

Lemma 3.1.1. If X ′ is an optimal solution for the program (3.5) then X ′
0i +

X ′
ii = 0 for all i ∈ V .

Proof. Let X ′ be feasible for the program (3.5), and suppose a := X ′
0i +X ′

ii 6=
0 for some i ∈ V . Then b := X ′

ii > 0 since X ′
ii ≥ (X ′

0i)
2. Set cX′ :=

−2
∑
i∈V X

′
0i −

∑
i∈V X

′
ii. The matrix X ′′ obtained by multiplying the ith

row and the ith column of X ′ by 1 − a
b is feasible for (3.5) with the objective

value cX′ + a2

b .

By Lemma 3.1.1 we can restrict the feasible set in (3.5) to the PSD matrices

X ′ =

(
1 −xT
−x X

)
, (3.6)

such that diag(X) = x, and Xij = 0 for all ij ∈ E(G). Moreover, the objective
function then reads 2

∑
i∈V xi−

∑
i∈V Xii =

∑
i∈V xi. Multiplying the first row

and the first column of X ′ by −1 gives
(

1 −xT
−x X

)
� 0 ⇐⇒

(
1 xT

x X

)
� 0. (3.7)

The program (3.5) is thus equivalent to:

ϑ(G) = max
∑

i∈V X
′
ii

s.t. X ′
00

= 1
X ′
ii = X ′

0i (i ∈ V )
X ′
ij = 0 (ij ∈ E)

X ′ � 0.

(3.8)
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This program is also strictly feasible. To see this take x := 1
|V |+1e and

X := Diag(x) and set X ′ :=

(
1 x
x X

)
.

3.2 The sandwich theorem

The sandwich theorem [64] compares three graph parameters: the stable set
number, the clique cover number and the Lovász theta number.

Theorem 3.2.1 (The sandwich theorem). For any graph G = (V,E), one has

α(G) ≤ ϑ(G) ≤ χ(G). (3.9)

Proof. Let S ⊆ V be a stable set in G such that |S| = α(G). Set X ′ :=(
1
χS

)(
1
χS

)T
. Here χS is the characteristic vector of S in RV , and

(
1
χS

)
=

χP≤1(S) is the characteristic vector of P≤1(S) in RP≤1(V ). Since X ′ is feasible
for the program (3.8) and

∑
iX

′
ii = α(G), we have α(G) ≤ ϑ(G).

Let Cj ⊆ V (j = 1, 2, . . . , χ(G)) be disjoint cliques such that
⋃
j Cj = V . Take

their characteristic vectors χCj ∈ RV (j = 1, 2, . . . , χ(G)) and set

Z ′ :=
∑

j

(
1
χCj

)(
1
χCj

)T
. (3.10)

The matrix Z ′ is now feasible for (3.4) and Z ′
00

= χ(G). This proves ϑ(G) ≤
χ(G).

In fact, we have proved ϑ(G) ≤ χ(G) by using the following formulation for
the clique cover number:

χ(G) = min
∑

C clique

λC

s.t.
∑

C clique

λCχ
C = e

λC ∈ {0, 1} for each clique C.

(3.11)

Note that λ is indexed by the cliques of G, and observe that the number of
cliques can be exponential in |V |. Thus the above program is an example of an
integer linear program with an exponential number of variables. By relaxing
the discrete variable domain {0, 1} to the interval [0, 1] we obtain a lower bound
on χ(G) called the fractional clique cover number of G:

χ∗(G) := min
∑

C clique

λC = max eTx

s.t.
∑

C clique

λCχ
C = e s.t. x(C) ≤ 1 (C clique)

λ ≥ 0 x ∈ RV+.

(3.12)

Although the fractional clique cover number is defined to be the optimum of
the linear program above, it is known to be NP-hard (see [35]). The difficulty
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is caused by the fact that the constraints in the ‘primal’ program (3.12) are not
polynomial time checkable. For more details about χ∗(G) consult e.g. [84].

A comparison between ϑ(G) and χ∗(G) can be derived by adjusting the
proof for ϑ(G) ≤ χ(G).

Proposition 3.2.2. For any graph G = (V,E) one has ϑ(G) ≤ χ∗(G).

Proof. Take an optimal λ for the program (3.12), set

Z ′ :=
∑

C clique

λC

(
1
χC

)(
1
χC

)T
, (3.13)

and observe that Z ′ is feasible for (3.4) with Z ′
00

= χ∗(G).

The fractional clique cover number of G is called the fractional chromatic
number of G and it is denoted by χ∗(G). Namely,

χ∗(G) := χ∗(G) = min
∑

S stable set

λS

s.t.
∑

S stable set

λSχ
S = e

λ ≥ 0.

(3.14)

We can now summarize the results described in this section. For any graph
G we have

α(G) ≤ ϑ(G) ≤ χ∗(G) ≤ χ(G), (3.15)

and equivalently
ω(G) ≤ ϑ

(
G
)
≤ χ∗(G) ≤ χ(G), (3.16)

after recalling ω(G) = α
(
G
)

and χ(G) = χ
(
G
)
.

Perfect graphs. For a perfect graph all the inequalities in (3.15) and
(3.16) are equalities. Therefore, the stability number of a perfect graph G can
be determined by computing an approximated value for ϑ(G). It can be done
by solving, for instance, the SDP (3.1) with precision < 1

2 , and then rounding
the objective value to the nearest integer. Similarly, determining the chromatic
number of a perfect graph G can be done by computing ϑ

(
G
)
. Besides these

numerical values, one can find a stable set of the maximum size and an optimal
colouring of a perfect graph in polynomial time using the Lovász theta number
(for details see [35]).

On the other hand, all the inequalities in (3.15) and (3.16) can be strict.
The smallest graph for which this happens is C5, since α(C5) = 2, ϑ(C5) =

√
5,

χ∗(C5) = 5
2 and χ(C5) = 3, and since all graphs smaller than C5 are perfect.

Nevertheless, the values ϑ(G) − α(G), χ∗(G) − ϑ(G) and χ(G) − χ∗(G) can be
arbitrarily large. To see this take, let G be the union of k disjoint copies of C5.
We have

• α(G) = kα(C5) = 2k;

• ϑ(G) = kϑ(C5) = k
√

5;

• χ∗(G) = kχ∗(C5) = 5
2k;
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• χ(G) = kχ(C5) = 3k;

since the parameters are additive with respect to the direct sum of graphs.
Knuth [54] proves additivity for ϑ, while for α, χ∗ and χ it follows directly from
the definitions.

3.3 Nonnegativity and triangle inequalities

Several variations of the Lovász theta number were proposed in order to get
sharper upper bounds for the stability number of a graph and sharper lower
bounds for the chromatic number of a graph.

Given a graph G = (V,E), |V | 6= 0, set n := |V |. McEliece, Rodemich, and
Rumsey [68] and Schrijver [83] give the bound:

ϑ′(G) := max 〈J, X〉 = max 〈J, X〉
s.t. Tr(X) = 1 s.t. Tr(X) = 1

Xij = 0 (ij ∈ E(G)) Xij = 0 (ij ∈ E(G))
X � 0, X ≥ 0 X ∈ Dn,

(3.17)
where X is indexed by V .

Schrijver [83] proves the relation of ϑ′(G) with the linear programming bound
for codes of Delsarte [21].

Among equivalent formulations for ϑ′(G) we often use the following:

ϑ′(G) = max
∑

iX
′
ii = max

∑
iX

′
ii

s.t. X ′
00

= 1 s.t. X ′
00

= 1
X ′
ij = 0 (ij ∈ E(G)) X ′

ij = 0 (ij ∈ E(G))
X ′ � 0, X ′ ≥ 0 X ′ ∈ Dn+1,

(3.18)
where X ′ is indexed by P≤1(V ). In order to see the link between (3.17) and
(3.18) one should follow the steps given in Section 3.1.

Szegedy [90] presented a sharper bound for the fractional clique cover num-
ber:

ϑ+(G) := max 〈J, X〉
s.t. Tr(X) = 1

Xij ≤ 0 (ij ∈ E(G))
X � 0.

(3.19)

The formulation for ϑ+(G) which corresponds to (3.4) is:

ϑ+(G) = min Z ′
00

= min Z ′
00

s.t. Z ′
ii = Z ′

0i (i ∈ V ) s.t. Z ′
ii = Z ′

0i (i ∈ V )
Z ′
ii = 1 (i ∈ V ) Z ′

ii = 1 (i ∈ V )

Z ′
ij = 0 (ij ∈ E(G)) Z ′

ij = 0 (ij ∈ E(G))
Z ′ � 0, Z ′ ≥ 0 Z ′ ∈ Dn+1,

(3.20)
where Z ′ is indexed by P≤1(V ).
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The bounds ϑ′(G) and ϑ+(G) were further strengthened by adding triangle
inequalities. Dukanovic and Rendl [25] define:

ϑ′4(G) := max 〈J, X〉
s.t. Tr(X) = 1

Xij = 0 (ij ∈ E(G))
Xij ≤ Xii (i, j ∈ V )
Xik +Xjk ≤ Xij +Xkk (i, j, k ∈ V )
X � 0, X ≥ 0.

(3.21)

By adding triangle inequalities in (3.20) Meurdesoif [70] defines:

ϑ+4(G) = min Z ′
00

s.t. Z ′
ii = Z ′

0i (i ∈ V )
Z ′
ii = 1 (i ∈ V )

Z ′
ij = 0 (ij ∈ E(G))

Z ′
ij + Z ′

jk − Z ′
ki ≤ 1 (i, j, k ∈ V )

Z ′ � 0, Z ′ ≥ 0,

(3.22)

where Z ′ is again indexed by P≤1(V ).
The parameters defined above satisfy

α(G) ≤ ϑ′4(G) ≤ ϑ′(G) ≤ ϑ(G) ≤ ϑ+(G) ≤ ϑ+4(G) ≤ χ∗(G),

The last inequality follows from the fact that the matrix defined in (3.13) is
feasible for the program (3.22) defining ϑ+4(G). For proving the first inequality

take a maximum size stable set S in G and set X := 1
α(G)χ

S
(
χS
)T

. The matrix

X is feasible for (3.21) and 〈J, X〉 = α(G).

The links between the bounds defined for a graph G and for its complement
G are given in the following theorem.

Theorem 3.3.1. For any graph G

(a) α(G)χ∗(G) ≥ |V (G)|,

(b) ϑ(G)ϑ(G) ≥ |V (G)|,

(c) ϑ′(G)ϑ+
(
G
)
≥ |V (G)|,

(d) ϑ′4(G)ϑ+4 (G
)
≥ |V (G)|.

Moreover, the equality holds in (a),(b),(c) and (d) if G is vertex transitive.

Proof. (a) Take an optimal solution λ for the program (3.14) defining χ∗(G).
Now α(G)χ∗(G) =α(G)

∑
S stable λS ≥∑S stable λS |S| =

∑
S stable λSe

TχS =
eT e = |V (G)|.

Assume that G is vertex transitive and let S be a stable set in G with
|S| = α(G). We have

∑
σ∈Aut(G) χ

σ(S) = kSe for some kS ∈ R+\{0}. Note next

that σ(S) is stable for all σ ∈ Aut(G), which yields χ∗(G) ≤ |Aut(G)|
ks

. On the

other hand we also obtain kS |V (G)| = |Aut(G)|α(G), yielding |V (G)|
α(G) ≥ χ∗(G).
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(b) Let Z ′ be optimal for the program defining ϑ(G) (see (3.4)). Then 1
ϑ(G)

Z ′

is feasible for (3.8). Now Z ′
ii = 1 (i ∈ V (G)) yields ϑ(G) ≥ 1

ϑ(G)
|V (G)|.

Assume that G is vertex transitive. As the program (3.8) is invariant under
action of Aut(G), we can restrict X ′ in (3.8) to be invariant under action of
Aut(G). Let now matrix X ′ be invariant under action of Aut(G) and optimal

for (3.8). Since X ′
ii = ϑ(G)

n as G is vertex transitive, n
ϑ(G)X

′ is feasible for (3.4)

defining ϑ(G). Therefore ϑ(G) ≤ n
ϑ(G) .

The proofs for (c) and (d) are analogous to the one of (b).

The relation (b) was proven in [64], (c) in [90], while [25] contains the proof
for (d). We will see in Chapter 5 how this theorem can be generalized to more
graph parameters which are of interest in this thesis.

Negative results. Dukanovic and Rendl [25] compute the bounds defined
above for several graph classes. In fact, they test if adding nonnegativity and
triangle constraints leads to stronger bounds. Analyzing computational results
they observe the following:

(i) on random graphs (see Section 6.4) adding nonnegativity or triangle in-
equalities does not improve the Lovász theta number considerably (only
in the order of decimals);

(ii) on some vertex transitive graphs the nonnegativity constraints might lead
to substantial improvements over the Lovász theta number (see Section
6.2 for some examples), whereas additional inclusion of the triangle con-
straints often does not give any improvements.

We prove below two negative results about adding additional constraints. We
apply the following result in Section 6.1.

Proposition 3.3.2. If G is vertex transitive and for any pair of edges ij, i′j′

there exist σ ∈ Aut(G) such that σ({i, j}) = {i′, j′} then ϑ′
(
G
)

= ϑ
(
G
)
.

Proof. Since the program (3.1) defining the parameter ϑ
(
G
)

is invariant under
the action of Aut(G), we can assume that the matrix variable X is invariant un-
der the action of Aut(G). IfG is vertex transitive and E(G) = {{σ(i), σ(j)} | σ ∈
Aut(G)} the program (3.1) reads

ϑ
(
G
)

= max 〈J, X〉 s.t. X =
1

|V (G)| I + xAG � 0, X ∈ RV (G)×V (G), x ∈ R.

Since X := 1
|V (G)|I is feasible, any optimal solution satisfies x ≥ 0. This proves

ϑ′
(
G
)

= ϑ
(
G
)
.

We explain now why adding triangle constraints in a program defining the
Lovász theta number of a Hamming graph does not give any improvements.

Given an integer n ≥ 1 and D ⊆ N := {1, . . . , n}, the Hamming graph
H(n,D) is the graph G with node set V (G) := P(N) and with an edge (I, J) if
|I 4 J | := |I\J | + |J\I| ∈ D (for I, J ∈ P(N)).

Proposition 3.3.3. Let G := H(n,D), where n ≥ 2. Then ϑ′(G) = ϑ′4(G).
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Proof. Observe first that each permutation σ ∈ Sym(n) induces an automor-
phism of G, by letting σ(I) := {σ(i) | i ∈ I} for I ∈ P(N). For any K ∈ P(N),
the switching mapping sK defined by sK(I) := I 4K (for I ∈ P(N)) is also an
automorphism of G. Let X be optimal for (3.17) and invariant under action of
Aut(G). It suffices to show that X is feasible for (3.21).

Since X is invariant under action of Aut(G), an entry XIJ depends only
on I4J , i.e. the matrix X belongs to the Bose-Mesner algebra Bn. Therefore
XII = XJJ (I, J ∈ P(N)). We also have XIJ ≤ XII (I, J ∈ P(N)), since

(
XII XIJ

XIJ XJJ

)
=

(
XII XIJ

XIJ XII

)
� 0 (I, J ∈ P(N)).

It remains to prove XIK + XJK ≤ XIJ + XKK (I, J,K ∈ P(N)). Let
I, J,K ∈ P(N). Set L := (I4J)4K and consider the submatrix of X indexed
by I, J,K,L. It is PSD, and since L4I = J4K, L4J = I4K, L4K = I4J ,
we have XIL = XJK , XJL = XIK , XKL = XIJ . Finally,

1

4




1
1

−1
−1




T 


XKK XIJ XIK XJK

XIJ XKK XJK XIK

XIK XJK XKK XIJ

XJK XIK XIJ XKK







1
1

−1
−1




= XIJ +XKK −XIK −XJK ≥ 0.

Note that we did not use nonnegativity in the last proof. Namely, the triangle
constraints are implied by the positive-semidefiniteness and the membership in
the Bose-Mesner algebra.



Chapter 4

Semidefinite programming

upper bounds for the

stability number

Various techniques have been developed in order to formulate and solve (hard)
combinatorial optimization problems. A classical approach in polyhedral com-
binatorics is to identify the set of feasible solutions of a problem with a finite set
F ⊆ {0, 1}n, and then to find the (or at least a partial) linear inequality descrip-
tion of the polytope P := conv(F ). Research has mainly focused on developing
methods for strengthening an initial linear relaxation. Among the first were
the method of Gomory and its various extensions for generating strong cutting
planes (see e.g. [73, 94]). Another approach is to try to represent a polytope P
as the projection of another polytope lying in a higher dimension. Techniques
based on this idea are usually referred to in the literature as ‘lift-and-project’
methods.

A common feature of the lift-and-project methods is the construction of a
hierarchy K1⊇ K2⊇ · · · ⊇ P of relaxations of P such that Kn = P . Various hi-
erarchies of linear relaxations were proposed, e.g., in Balas, Ceria and Cornuéjols
[1], Sherali and Adams [87], Lovász and Schrijver [65]. In [65] the authors also
propose the semidefinite variant of their hierarchy obtained by adding semi-
definite conditions to the relaxations based on matrix cuts (see Section 4.1.2).
Recently, another hierarchy of semidefinite relaxations was proposed by Lasserre
[57]. He shows how the ‘sums of squares and moment method’ technique for
polynomial optimization problems (see Section 2.6) can be used for finding P .
The various methods were compared with each other in [59]. In particular, it is
shown in [59] that the hierarchy of Lasserre refines the hierarchy of Lovász and
Schrijver.

Another more recent approach to combinatorial optimization problems is
based on modelling them as copositive programs. Optimizing over a copositive
cone is hard in general, hence the goal is to find a good approximation for it.
Motivated by the theorem of Pólya, Parrilo [75] defines a hierarchy of cones that
approximate a copositive cone from inside (see section 2.6). His method has been
used for approximating the stability number in de Klerk and Pasechnik [50] and
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the chromatic number in Dukanovic and Rendl [24]. Most recently, Burer [12]
gave a recipe for transforming an integer program, having a quadratic objective
function and linear constraints, into a completely positive program.

In this chapter we consider both, polyhedral and copositive programming,
approaches to the stable set problem.

In Section 4.1, we recall the application of the matrix-cut method [65] and
the moment method [57] to the stable set problem. By combining these two
methods we design a new block diagonal hierarchy which is computationally
less costly than the hierarchy of Lasserre, and moreover it gives at least as good
bounds as the hierarchy of Lovász and Schrijver.

Section 4.2 is devoted to the upper bounds for the stable set number obtained
from the hierarchy of de Klerk and Pasechnik [50]. We review results about the
convergence of these bounds to the stability number and we prove that they are
dominated by the bounds in the hierarchy of Lasserre.

Although most of the techniques presented below can be generalized and
applied to the weighted stable set problem, we restrict our attention to the case
when all weights are set to one, i.e., to the stable set problem.

4.1 Hierarchies of relaxations for the stable set

polytope

We can not expect in general to find a ‘polynomial size’ linear description
of the stable set polytope STAB(G) of a graph G. Otherwise, we would be able
to optimize (a linear function) over it in polynomial time by solving a linear
program, and thus determine the stability number which is an NP-hard graph
parameter. As an alternative, one can consider linear or semidefinite relaxations
of STAB(G). We deal with them in this section.

We first review some classical relaxations of STAB(G) in Subsection 4.1.1.
In Subsection 4.1.2, we apply the operators N and N+ proposed by Lovász and
Schrijver in [65] to these relaxations.

We have seen in Section 2.6 how the hierarchy of Lasserre [56, 57], which
is based on moment matrices, can be applied to combinatorial optimization
problems in general, and to the stable set problem in particular. We recall this
hierarchy in Subsection 4.1.3.

We define a new hierarchy as a relaxation of the hierarchy of Lasserre in
Subsection 4.1.4. Due to its ‘block diagonalization’ property, it is at least as good
as the hierarchy of Lovász and Schrijver and computationally less expensive.

4.1.1 The stable set polytope and its classical relaxations

Given a graph G = (V,E), define

F := {χS | S stable in G} = {x ∈ {0, 1}V | xi + xj ≤ 1 (ij ∈ E)}.

The stable set polytope is

STAB(G) := conv(F ). (4.1)
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Well known linear relaxations are the fractional stable set polytope

FRAC(G) := {x ∈ RV+ | xi + xj ≤ 1 (ij ∈ E), xi ≤ 1 (i ∈ V )}, (4.2)

and its strengthening

QSTAB(G) := {x ∈ RV+ | x(C) ≤ 1 (C clique in G)}, (4.3)

obtained by adding the clique inequalities. Next we define the even stronger
relaxation

THETA(G) := {x ∈ RV | x = diag(X); X−xxT � 0; Xij = 0 (ij ∈ E)}, (4.4)

called the theta body. We have

STAB(G) ⊆ THETA(G) ⊆ QSTAB(G) ⊆ FRAC(G). (4.5)

To prove the first inclusion let x ∈ STAB(G). Then x =
∑k

i=1 λiχ
Si ,

for some stable sets Si, where λ ≥ 0 is such that eTλ = 1. Set X ′ :=
∑k

i=1 λi

(
1
χSi

)(
1
χSi

)T
and observe that X ′ has the form

X ′ =

(
1 xT

x X

)
, (4.6)

where diag(X) = x, and Xij = 0 for all ij ∈ E. Since X ′ � 0 ⇐⇒ X − xxT � 0
we get x ∈ THETA(G).

For the second inclusion let x ∈ THETA(G) be such that x = diag(X) for
some X ∈ RV×V , satisfying X − xxT � 0 and Xij = 0 (ij ∈ E), and let C be a
clique in G. Now (χC)T (X − xxT )χC = x(C)− (x(C))2 ≥ 0 yielding x(C) ≤ 1.
Therefore, x ∈ QSTAB(G).

Proposition 4.1.1. For any graph G we have

• α(G) = max eTx s.t. x ∈ STAB(G),

• ϑ(G) = max eTx s.t. x ∈ THETA(G),

• χ∗(G) = max eTx s.t. x ∈ QSTAB(G).

Proof. The first item is obvious and the second is equivalent to (3.8). For the
third write the dual program of (3.12):

χ∗(G) = max eTx s.t. x ∈ RV , x(C) ≤ 1 (C clique in G). (4.7)

Now, if x is feasible for (4.7) then x̃ ∈ RV+ , defined by x̃i := max{0, xi} (i ∈ V ),
is also feasible, and eT x̃ ≥ eTx. Thus, the set of optimal solutions of (4.7)
remains unchanged if we add the condition x ∈ RV+ .

For more details about the stable set polytope and its basic relaxations
we recommend Gröschel, Lovász, Schrijver [35]. One of the most important
results there is that the stability number of any perfect graph can be found in
polynomial time.
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Theorem 4.1.2. [35] A graph G is perfect if and only if

STAB(G) = QSTAB(G).

Thus, if G is perfect then STAB(G) = THETA(G), which implies α(G) =
ϑ(G). The parameter ϑ(G) can be computed then to ε (e.g. for ε = 1

2 ) precision
in polynomial time, hence we get α(G) by rounding an obtained solution to the
nearest integer.

4.1.2 The Lovász-Schrijver hierarchy

Let V be a finite set. Set n := |V |. Let K ⊆ RP≤1(V ) be a convex cone contained
in the homogeneous unit cube Q := {x ∈ RP≤1(V ) | 0 ≤ xi ≤ x0 (i ∈ V )}. The
objective is to find the complete linear inequality description of the polytope

P := conv

(
x ∈ {0, 1}V |

(
1
x

)
∈ K

)
⊆ [0, 1]V (4.8)

or, equivalently, of the cone P̃ := R+

((
1
x

)
∈ K with x ∈ {0, 1}V

)
. Set

MV := {Y ∈ RP≤1(V )×P≤1(V ) | Yij = Yji (i, j ∈ V ), Yjj = Y0j = Yj0 (j ∈ V )},
(4.9)

M+,V := {Y ∈MV | Y � 0} (4.10)

and, following Lovász and Schrijver [65], define

M(K) := {Y ∈MV | Y ek, Y (e0 − ek) ∈ K for k ∈ V }, (4.11)

N(K) := {x ∈ RP≤1(V ) | x = Y e0 for some Y ∈M(K)}, (4.12)

M+(K) := {Y ∈M+,V | Y ek, Y (e0 − ek) ∈ K for k ∈ V }, (4.13)

N+(K) := {x ∈ RP≤1(V ) | x = Y e0 for some Y ∈M+(K)}, (4.14)

where e0, ek (k ∈ V ) denote the standard unit vectors in RP≤1(V ). We have
P̃ ⊆ N+(K) ⊆ N(K) ⊆ K. The inclusion P̃ ⊆ N+(K) follows from the fact

that, for

(
1
x

)
∈ K with x ∈ {0, 1}V , the matrix Y :=

(
1
x

)(
1
x

)T
belongs to

M+(K) and the inclusion N(K) ⊆ K follows from the definitions (4.11) and
(4.12). Define iteratively N t(K) := N(N t−1(K)) and N t

+(K) := N+(N t−1
+ (K))

for t ≥ 2, setting N1(K) := N(K) and N1
+(K) := N+(K). Then,

P̃ ⊆ N t+1(K) ⊆ N t(K) ⊆ K, and P̃ ⊆ N t+1
+ (K) ⊆ N t

+(K) ⊆ K for t ≥ 1.

Lovász and Shrijver [65] showed that the N and N+ operators have a nice
algorithmic property. Namely, for any fixed t, if one can optimize over K in
polynomial time then the same holds for both N t(K) and N t

+(K). This fact is a
consequence of Proposition 4.1.3 below. Notwithstanding, Lovász and Schrijver
also prove that their hierarchies converge in n steps, i.e. N t(K) = N t

+(K) = P̃
for t ≥ n.
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Semidefinite programming formulation

The above definitions for N t(K) and N t
+(K) are recursive. We now ‘unfold

the recursion’ and give an explicit semidefinite programming formulation for
N t

+(K). The analog result holds for N t(K).

Proposition 4.1.3. [40] Let x ∈ RP≤1(V ) and t ≥ 1. Then, x ∈ N t
+(K) if and

only if there exists Y (0) ∈M+,V with Y (0)e0 = x and, for all s ∈ {1, . . . , t− 1},
k1, . . . , ks ∈ V , σ ∈ {±1}s, there exist Y (σ1k1,...,σsks) ∈M+,V satisfying

Y (σ1k1,...,σsks)e0 = Y (σ1k1,...,σs−1ks−1)(e0(1 − σs)/2 + eks
σs) (4.15)

and, for all k1, . . . , kt ∈ V , σ ∈ {±1}t,

Y (σ1k1,...,σt−1kt−1)(e0(1 − σt)/2 + ekt
σt) ∈ K (4.16)

(setting Y (σ1k1,...,σsks) := Y (0) if s = 0).

Proof. We use the induction on t. For t = 1 the proposition is equivalent to
(4.14). Suppose now that the claim holds for every convex cone contained in Q
and some t ≥ 1. Given such a cone L, set K := N+(L). Then x ∈ N t+1

+ (L) =

N t
+(K) if and only if there exist matrices Y (σ1k1,...,σsks) (as described above)

satisfying (4.15) and (4.16). The condition (4.16) and K = N+(L) imply that
for all k1, . . . , kt ∈ V and σ ∈ {±1}t there exist matrices Y (σ1k1,...,σtkt) ∈M+,V

such that

Y (σ1k1,...,σtkt)e0 = Y (σ1k1,...,σt−1kt−1)(e0(1 − σt)/2 + ekt
σt),

and, for all k1, . . . , kt+1 ∈ V and σ ∈ {±1}t+1,

Y (σ1k1,...,σtkt)(e0(1 − σt+1)/2 + ekt+1σt+1) ∈ L.

Application to the stable set problem

In [65] the operators N and N+ are applied to the stable set problem. To find
the linear description of the stable set polytope STAB(G) of a graph G = (V,E)
or the corresponding cone

ST(G) :=

{
λ

(
1
x

) ∣∣∣ x ∈ STAB(G), λ ∈ R+

}
,

one should apply the N , or N+, operator to one of its linear, or semidefinite,
relaxations. For example to FRAC(G), QSTAB(G) or THETA(G), or more
precisely, to their corresponding cones

FR(G) := {x ∈ R
P≤1(V )
+ | xi + xj ≤ x0 (ij ∈ E), xi ≤ x0 (i ∈ V )},

QST(G) := {x ∈ R
P≤1(V )
+ | x(C) ≤ x0 (C clique in G)},

TH(G) := {x ∈ RP≤1(V ) | x = Y e0 for some Y ∈MV with Yij = 0 (ij ∈ E)}.
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From (4.5) we have

ST(G) ⊆ TH(G) ⊆ QST(G) ⊆ FR(G).

One can verify (see [65]) that N+(FR(G)) ⊆ TH(G), hence applying the N+

operator to FR(G) yields a relaxation of ST(G) which is already better than
TH(G). For instance, when G is an odd circuit, N+(FR(G)) = ST(G) is a strict
subset of TH(G). Lovász and Schrijver [65] also prove

N t(FR(G)) = ST(G) for t ≥ n− α(G) − 1.

N t
+(FR(G)) = ST(G) for t ≥ α(G).

We prove a bit stronger result for QST(G). Namely, applying the N+ operator
to the relaxation QST(G) instead of FR(G), the stable set polytope is found in
α(G) − 1 steps.

Theorem 4.1.4. N t
+(QST(G)) = ST(G) for any t ≥ α(G) − 1.

In the proof we use the following result.

Theorem 4.1.5. (Goemans and Tunçel [33, Th. 3.6]) Let

K :=

{(
x0

x

)
∈ RP≤1(V )

∣∣∣ Ax ≤ bx0, 0 ≤ x ≤ x0e

}
,

where A ∈ Rn×m and b ∈ Rm. Let a ∈ RV+, c ∈ R and I+ := {i ∈ V | ai > 0}.
Assume that the inequality aTx ≤ cx0 is valid for the set K ∩ {x ∈ RP≤1(V ) |
xi = x0 ∀i ∈ I} for all sets I ⊆ I+ satisfying

(a) |I| = t, or

(b) |I| ≤ t− 1 and
∑

i∈I ai > c.

Then, the inequality aTx ≤ cx0 is valid for N t
+(K).

Proof of Theorem 4.1.4. We show thatN t
+(QST(G)) ⊆ ST(G) for t := α(G)−1.

For this consider an inequality aTx ≤ cx0 which is valid for ST(G). Set I+ :=
{i ∈ V | ai > 0} (note a ≥ 0),K := QST(G), andKI := K∩{x | xi = x0 ∀i ∈ I}
for I ⊆ V . Consider a set I ⊆ I+ satisfying (a) or (b) in the Theorem 4.1.5.

Assume first that I is not stable in G. Let i 6= j ∈ I with ij ∈ E. For
x ∈ KI we have xi = xj = x0 and xi + xj ≤ x0, implying xi = xj = x0 = 0.
Thus KI = {0} and the inequality aTx ≤ cx0 is trivially valid for KI .

Assume now that I is stable in G. Therefore, a(I) ≤ b and thus (a) applies,
i.e., |I| = t = α(G) − 1. Set S := {i ∈ V \ I | I ∪ {i} is stable in G} and
T := V \ (I ∪ S). Then, ai ≤ c − a(I) for any i ∈ S (since I ∪ {i} is stable in
G) and S is a clique in G (since, if i 6= j ∈ S are not adjacent, then I ∪ {i, j} is
a stable set of size α(G) + 1). Let x ∈ KI ; we show that aTx ≤ cx0. We have
x(S) ≤ x0 (as S is a clique) and xi = 0 for all i ∈ T (as i ∈ T is adjacent to
some j ∈ I and thus xi + xj ≤ x0 with xj = x0, implying xi = 0). Therefore,
aTx =

∑
i∈I aixi+

∑
i∈S aixi ≤ a(I)x0+(c−a(I))x(S) ≤ a(I)x0+(b−a(I))x0 =

cx0.

Thus we have:

ST(G) = N
α(G)−1
+ (TH(G)) ⊆ N

α(G)−1
+ (QST(G)) ⊆ N

α(G)−1
+ (FR(G)). (4.17)

The right most inclusion is strict, e.g., when G is the line graph of a complete
graph with an odd number of nodes (see [89]).
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4.1.3 The Lasserre hierarchy

Recall first the definition of a combinatorial moment matrix from Section 2.6.
Given an integer t and a sequence y ∈ RP≤2t(V ) the combinatorial moment
matrix Mt(y) ∈ RP≤t(V )×P≤t(V ) is defined by

Mt(y)I,J := yI∪J (I, J ∈ P≤t(V )).

For a given graph G = (V,E) set n := |V | and

Qt(G) := {x ∈ RP≤1(V ) | ∃y ∈ RP≤2t(V ) satisfying
y0 = x0, yi = xi (i ∈ V )
yij = 0 (ij ∈ E), Mt(y) � 0}.

(4.18)

Note that Q1(G) = TH(G). In Section 2.6 we proved (see (2.50) and the
comment below) that ST(G) ⊆ Qt+1(G) ⊆ Qt(G) ⊆ Q1(G) = TH(G) and
ST(G) = Qt(G) for t ≥ α(G).

Comparison with the Lovász-Schrijver hierarchy

The hierarchy Qt(G) in fact refines the hierarchy obtained by applying the N+

operator to the cone TH(G). Indeed it is shown in [59] (see the next subsection)
that

Qt(G) ⊆ N+(Qt−1(G)) for t ≥ 2, (4.19)

which implies Qt(G) ⊆ N t−1
+ (Q1(G)) = N t−1

+ (TH(G)) ⊆ N t−1
+ (FR(G)). Hence

Qt(G) = ST(G) for t ≥ α(G) (see [59]).

Accordingly, the graph parameter

las(t)(G) := max
∑

i∈V xi s.t. x ∈ Qt(G), x0 = 1

= max
∑

i∈V yi s.t. y ∈ RP≤2t(V ), y0 = 1, yij = 0 (ij ∈ E)
Mt(y) � 0

(4.20)

satisfies las(1)(G) = ϑ(G), α(G) ≤ las(t+1)(G) ≤ las(t)(G), with las(t)(G) =
α(G) if t ≥ α(G). In this way one obtains a hierarchy of upper bounds for the
stability number, known as Lasserre’s hierarchy (see [57, 59]). Note that the
program (4.20) is equivalent to (2.50). The computation of the order t parameter

las(t)(G) is via a semidefinite program which involves a matrix of size O(nt) and
O(n2t) variables. It is too expensive for nowadays semidefinite programming
solvers. In the next section we introduce a more economical variation of this
parameter which remains however at least as good as the parameter obtained
by optimizing over the relaxation N t−1

+ (TH(G)).

4.1.4 A new block diagonal hierarchy

In order to define a more economical hierarchy than the hierarchy of Lasserre,
the main idea is to consider, instead of the full matrix Mt(y), some suitable
principal submatrices of it. Namely, given an integer t ≥ 1 and a subset T ⊆ V
with |T | = t− 1, let M(T ; y) denote the principal submatrix of Mt(y) indexed
by the set ⋃

S⊆T
{S, S ∪ {i} (i ∈ V )}. (4.21)
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This is in fact a multiset as we keep the possible repeated occurrences of indices
(e.g., S = S∪{i} if i ∈ S). Hence, in order to define the matrices M(T ; y) for all
subsets T ⊆ V of cardinality |T | = t− 1, we need only to know the components
of y indexed by P≤t+1(V ). Define

Lt(G) := {x ∈ RP≤1(V ) | ∃y ∈ RP≤t+1(V ) satisfying y0 = x0,
yi = xi (i ∈ V ), yij = 0 (ij ∈ E),
M(T ; y) � 0 ∀T ⊆ V with |T | = t− 1},

(4.22)

`(t)(G) := max
∑
i∈V xi s.t. x ∈ Lt(G), x0 = 1

= max
∑

i∈V yi s.t. y ∈ RP≤t+1(V ), y0 = 1, yij = 0 (ij ∈ E),
M(T ; y) � 0 ∀T ⊆ V with |T | = t− 1.

(4.23)

Thus, L1(G) = Q1(G) = TH(G) and `(1)(G) = las(1)(G) = ϑ(G). Obviously, for

any t ≥ 1, Qt(G) ⊆ Lt(G) and las(t)(G) ≤ `(t)(G). For t = 2, `(2)(G) coincides
with the parameter `(G) introduced in [60] and further considered in [51].

Comparison with the Lovász-Schrijver hierarchy

We show next that the analogue of (4.19) holds for the relaxation Lt(G). We
first observe that the edge conditions in the definition of Lt(G) imply in fact
that all variables indexed by non-stable sets are identically zero.

Lemma 4.1.6. For y ∈ RP≤t+1(V ), M(T ; y) � 0 (T ∈ P=(t−1)(V )),

yij = 0 (ij ∈ E) =⇒ yI = 0 (I ∈ P≤t+1(V ) not stable in G).

Proof. Let I ∈ P≤t+1(V ) containing an edge ij. Assume |I| ≥ 3, let k ∈ I\{i, j},
and set T := I \ {j, k}. Then, M(T ; y) � 0 and both sets {i, j} and T ∪ {k}
occur in the index set of M(T ; y). As the (ij, ij)th entry of M(T ; y) is yij = 0,
it follows that its (ij, T ∪ {k})th entry is also 0, giving 0 = yT∪{i,j,k} = yI .

Note also that for every T ⊆ V we have

M(T ; y) � 0 ⇐⇒M(T ′; y) � 0 (T ′ ⊆ T ).

The left implication is trivial, and for the right implication observe thatM(T ′; y)
is a principal submatrix of M(T ; y) if T ′ ⊆ T .

Lemma 4.1.7. For t ≥ 2, Lt(G) ⊆ N+(Lt−1(G)).

Proof. Consider x ∈ Lt(G), i.e., x = (y0, yi (i ∈ V )) where y ∈ RP≤t+1(V )

satisfies yij = 0 (ij ∈ E) and M(T ; y) � 0 for all T ∈ P≤t−1(V ). We show
x ∈ N+(Lt−1(G)). For this consider the matrix Y := M1(y). As x = Y e0 it
suffices to show that Y ∈ M+(Lt−1(G)). We already have Y � 0 and Yjj =
Y0j = yj (j ∈ V ). Remains to show that z := (yk, yik (i ∈ V )) and x − z =
(y0 − yk, yi − yik (i ∈ V )) belong to Lt−1(G).

For this define u ∈ RP≤t(V ) by uI := yI∪{k} for I ∈ P≤t(V ). Then, u0 = z0,
(y − u)0 = (x − z)0, ui = zi and (y − u)i = (x − z)i for i ∈ V . Moreover,
uij = y{i,j,k} = 0 if ij ∈ E. Remains to show M(U ;u) � 0, M(U ; y−u) � 0 for
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U ∈ P≤t−2(V ). Set T := U ∪{k}. The subsets of T are of the form S or S ∪{k}
for S ⊆ U . Hence the index set (4.21) of M(T ; y) can be partitioned into A∪B,
where A = {S, S∪{i} | S ⊆ U, i ∈ V } and B = {S∪{k}, S∪{i, k} | S ⊆ U, i ∈
V }. With respect to this partition, the matrix M(T ; y) has the block form

M(T ; y) =

(A B
A A B
B B B

)
.

Now, M(T ; y) � 0 is equivalent to B, A− B � 0. The condition B � 0 means
precisely that M(U ;u) � 0 and A−B � 0 means M(U ; y − u) � 0.

Corollary 4.1.8. For t ≥ 1, ST(G) ⊆ Lt(G) ⊆ N t−1
+ (TH(G)) ⊆ N t−1

+ (FR(G)),
with equality Lt(G) = ST(G) for t ≥ α(G).

Note that this implies (4.19) and Qt(G) = ST(G) for t ≥ α(G).

Proof. Directly from Theorem 4.1.4, Lemma 4.1.7, and L1(G) = TH(G).

Gijswijt [32, Chapter 6] studies SDP upper bounds for the stability numbers
of some coding graphs (recall the definition of a Hamming graph from Section
3.3). In particular, he computes the maximum

∑
i∈V (G) xi over strengthenings

of L2(G) and N+(TH(G)) obtained by adding nonnegativity conditions, and
reports some instances where the two maximums differ. Thus, we tend to believe
that the inclusion Lt(G) ⊆ N t−1

+ (TH(G)) can be strict.

The new hierarchy is ‘block diagonal’

The parameter `(t)(G) from (4.23) is expressed via a semidefinite program in-
volving the

(
n
t−1

)
matricesM(T ; y) (for T ⊆ V with |T | = t−1). We now observe

that each matrix M(T ; y) has a special block structure with symmetries that
can be exploited to block-diagonalize it. Recall from (4.21) that M(T ; y) is
indexed by the set ∪S⊆TAS , setting AS := {S, S ∪ {i} | i ∈ V }. With re-
spect to this partition of its index set, the matrix M(T ; y) has the block form
(M(S, S′))S,S′⊆T , where M(S, S′) denotes the submatrix of M(T ; y) with row
indices in AS and column indices in AS′ .

Lemma 4.1.9. For S, S′ ⊆ T , M(S, S′) depends only on S ∪ S′.

Proof. Directly from the definition of M(T ; y) as a moment matrix.

Hence there exist matrices AS (S ⊆ T ) indexed by P≤1(T ) with the property
that M(S, S′) = AS∪S′ for all S, S′ ⊆ T . We can now use Lemma 2.4.5. Namely,
for every T ⊆ V we have

M(T ; y) � 0 ⇐⇒
∑

S⊆S′⊆T
(−1)|S

′\S|AS′ � 0 for all S ⊆ T.

For instance, for T = {1, 2}, the matrix M(T ; y) which has the block form

M({1, 2}; y) =




A0 A1 A2 A12

A0 A0 A1 A2 A12

A1 A1 A1 A12 A12

A2 A2 A12 A2 A12

A12 A12 A12 A12 A12


, (4.24)
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is PSD if and only if

A0 −A1 −A2 +A12 � 0, A1 −A12 � 0, A2 −A12 � 0, A12 � 0. (4.25)

Complexity comparison

Here we compare the sizes of the semidefinite programs one has to solve in order
to compute the bounds obtained by optimizing over the relaxations Qt(G) ⊆
Lt(G) ⊆ N t−1

+ (TH(G)). We use the following convention. Consider a semidef-

inite program involving the linear matrix inequalities C(j) +
∑k
i=1 yiB

(j)
i � 0

(j = 1, . . . ,m), where each B
(j)
i has order nj . The size of the jth inequality is

defined as n2
j and the total size of the semidefinite program as

∑k
j=1 n

2
j . The

results are summarized in Table 1 below.

The data from Table 1 for Qt(G) follow directly from (4.18): the semidefinite
program defining Qt(G) involves |P≤2t(V )| = O(n2t) variables, m := |E(G)|
linear equations, and one linear matrix inequality (LMI) of order |P≤t(V )| =
O(nt).

By (4.22), the semidefinite program defining Lt(G) involves |P≤t+1(V )| =
nt+1

(t+1)! + O(nt) variables and m linear equations. By Lemma 2.4.5, it involves
(
n
t−1

)
2t−1 LMI’s:

∑
S⊆S′⊆T (−1)|S

′\S|AS′ � 0 (for S ⊆ T ⊆ V , |T | = t−1). The

(S, T )th LMI has size (n+1)2 since all matrices AS′ have order n+1. Thus the

total size is
(
n
t−1

)
2t−1(n+ 1)2 = nt+1 2t−1

(t−1)! +O(nt).

The data for N t−1
+ (TH(G)) can be evaluated from the following consequence

of Proposition 4.1.3.

Proposition 4.1.10. Let G = (V,E) be a graph, x ∈ RP≤1(V ) and t ≥ 1. Then,

x ∈ N t−1
+ (TH(G)) if and only if there exists Y (0) ∈M+,V , Y (0)e0 = x, Y

(0)
ij = 0

(ij ∈ E) and, for all s ∈ {1, . . . , t − 1}, k1, . . . , ks ∈ V , σ ∈ {±1}s, there exist
Y (σ1k1,...,σsks) satisfying

Y (σ1k1,...,σsks)e0 = Y (σ1k1,...,σs−1ks−1)(e0(1 − σs)/2 + eks
σs)

and,

Y (σ1k1,...,σsks) ∈M+,V , Y
(σ1k1,...,σsks)
ij = 0 (ij ∈ E).

Setting h(n, t) :=
∑t−1
s=0(2n)s = 2t−1nt−1 +O(nt−2), we see that the formu-

lation for N t−1
+ (TH(G)) involves

(
n
2

)
h(n, t) variables, h(n, t) matrices of order1

n+ 1, and O(|E(G)|nt−1) linear conditions.

We can make the following comments. While the relaxation Lt(G) is at least
as good as N t−1

+ (TH(G)), its computation is less costly. Indeed, it involves less
linear constraints, the number of variables and the size of the SDP have the
same order of magnitude, but the constant for the leading term is smaller for
Lt.

1One may observe that, for 1 ≤ r ≤ s, the krth column of the matrix Y (σ1k1,...,σsks) is
identically zero if σr = −1 and it is equal to the 0th column if σr = 1. Thus Y (σ1k1,...,σsks)

has order n − s + 1 = O(n) (for fixed s).
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Opt. over size of SDP # variables # linear
constraints

Qt(G) O(n2t) O(n2t) m

Lt(G) 2t−1

(t−1)!n
t+1 +O(nt) nt+1

(t+1)! +O(nt) m

N t−1
+ (TH(G)) 2t−1nt+1 +O(nt) 2t−2nt+1 +O(nt) O(mnt−1)

m if t = 1

Table 1: Complexity comparison of Qt(G), Lt(G) and N t−1
+ (G).

4.2 The de Klerk-Pasechnik hierarchy

Solving a copositive program is not an easy task in general since, as it was men-
tioned earlier, deciding if a given matrix is not copositive is an NP-complete
problem. However, one can try to relax the copositive condition, e.g. by using
the recipe of Parrilo [75]. He observed that the copositive cone may be ap-
proximated by a series of smaller subcones of it. We briefly recall his idea in
Subsection 4.2.1.

De Klerk and Pasechnik [50] used this idea to design a hierarchy of upper
bounds ϑ(t)(G), t ∈ N, for the stability number α(G) of a graph G. They
conjecture that ϑ(t)(G) = α(G) for t ≥ α(G) − 1. In Subsection 4.2.2, we give
an overview of their work and we partially prove their conjecture.

In Subsection 4.2.3 we compare ϑ(t)(G) with the strengthening of las(t+1)(G)
obtained by adding nonnegativity constraints. Our proof technique enables us
to compare `(t+1)(G) with ϑ(t)(G) for t = 0, 1.

4.2.1 Approximating the copositive cone

To define a tractable subcone observe first that a symmetric matrix M is copos-
itive if and only if

pM(x) := v(x)TMv(x) =
n∑

i,j=1

Mijx
2
i x

2
j ≥ 0, for all x ∈ Rn, (4.26)

where v(x) ∈ Rn+ is defined by v(x)i := x2
i , i = 1, . . . , n. Now, the goal is to

decide if the polynomial pM(x) is nonnegative for all x ∈ Rn. We cannot hope
to answer this question in polynomial time in general, but we can instead ask
if pM(x) is SOS, i.e. if its vector of coefficients pM belongs to the cone Σ=(n, 4)
of sum of squares of polynomials. We have seen in Section 2.6 that this is
equivalent to deciding if a certain SDP (see (4.28) below) is feasible. Parrilo
[75] observed that the sum of squares condition can be further strengthened.
He was motivated by the following result of Pólya [78].
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Theorem 4.2.1. [78] Let q be a homogeneous polynomial that is positive on
the simplex

∆ := {z ∈ Rn+ | zT e = 1}.
Then, there exists N ∈ N such that all the coefficients of the polynomial

(
n∑

i=1

zi

)N
q(z)

are positive.

Parrilo [75] defines the following hierarchy of subcones of the copositive cone

Cn. Given an integer t ∈ N, the cone K(t)
n ⊆ Sn denotes the cone of matrices M

for which the polynomial

p
(t)
M (x) := pM(x)

(
n∑

i=1

x2
i

)t
(4.27)

is SOS. Obviously, if p
(t)
M (x) is SOS then p

(t+1)
M (x) is SOS and pM(x) ≥ 0 for all

x ∈ Rn. In other words:

K(0)
n ⊆ · · · ⊆ K(t)

n ⊆ K(t+1)
n ⊆ · · · ⊆ Cn,

which together with Theorem 4.2.1 implies Int Cn ⊆ ⋃t∈N
K(t)
n ⊆ Cn.

Recall from Section 2.6 that p
(t)
M (x) is SOS if and only if there exists X ∈

RI=(n,t+2)×I=(n,t+2) such that

X � 0 and
∑

γ,δ∈I=(n,t+2)
γ+δ=β

Xγ,δ = (pM )β for all β ∈ I=(n, 2t+ 4). (4.28)

(Recall I=(n, r) = {β ∈ Nn | ∑n
i=1 βi = r}.) Thus testing if p

(t)
M (x) is an SOS

can be done for any fixed t ∈ N by solving an SDP involving a matrix of size
O(nt+2) and O(n2t+4) variables.

Parrilo [75] showed that K(0)
n = Sn+Nn, which implies

(
K(0)
n

)∗
= Sn∩Nn =

Dn. Using ideas from Parrilo [75], Bomze and de Klerk [8] gave the following

characterization of K(1)
n .

Theorem 4.2.2. [8] A matrix M belongs to K(1)
n if and only if there exist

symmetric matrices M(i) (i = 1, . . . , n) such that

M −M(i) ∈ K(0)
n (i = 1, . . . , n)

M(i)jk +M(j)ik +M(k)ij ≥ 0 (i, j, k = 1, . . . , n).
(4.29)

Although the condition (4.29) can be adapted for t ≥ 2, we are not able to

give a characterization for K(t)
n . However, we can prove the following.

Lemma 4.2.3. [39] Let M ∈ Sn. If there exist symmetric matrices M(i)
(i = 1, . . . , n) such that

M −M(i) ∈ K(t)
n (i = 1, . . . , n) (4.30)
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and

M(i)jk +M(j)ik +M(k)ij ≥ 0 (i, j, k = 1, . . . , n), (4.31)

then M ∈ K(t+1)
n .

Proof. Let M , M(i) (i = 1, . . . , n) be symmetric matrices which satisfy (4.30)

and (4.31). Decompose p
(t+1)
M (x) as

(
n∑

i=1

x2
i

)t n∑

i=1

x2
i v(x)

T (M −M(i))v(x) +

(
n∑

i=1

x2
i

)t n∑

i=1

x2
i v(x)

TM(i)v(x).

(4.32)
The first term in (4.32) is SOS due to (4.30), and the second term is SOS since

n∑

i=1

x2
i v(x)

TM(i)v(x) =

n∑

i,j,k=1

x2
ix

2
jx

2
k(M(i)jk +M(j)ik +M(k)ij)

and (4.31) holds. Therefore, the polynomial p
(t+1)
M (x) is SOS.

We next present an explicit description of the dual cone of the cone K(t)
n

(t ∈ N). For this we need the following observation of Bomze and De Klerk [8,
p. 169, Thm. 2.2]:

p
(t)
M (x) =

∑

β∈I=(n,t+2)

(p
(t)
M )βx

2β , where (p
(t)
M )β :=

t!

β!
(βTMβ − βTdiag(M)).

(4.33)

Definition 4.2.4. Let y = (yδ)δ∈I=(n,2t+4) be given, and let N=(t+2)(y) be its
moment matrix indexed by I=(n, t+ 2).

(i) For γ ∈ I=(n, t), Nγ(y) denotes the principal submatrix of N=(t+2)(y) in-
dexed by γ + 2e1, . . . , γ + 2en; that is, Nγ(y) is the n × n matrix with
(i, j)-th entry y2γ+2ei+2ej

, for i, j = 1, . . . , n.

(ii) Define the n× n matrix

C(y) :=
∑

γ∈I=(n,t)

t!

γ!
Nγ(y). (4.34)

Definition 4.2.5. Define the cone

C(t)
n := {Z ∈ Rn×n | Z = C(y) for some y ∈ RI=(n,2t+4) with N=(t+2)(y) � 0}.

Notice that the matrix C(y) in (4.34) involves only entries of y indexed by

even sequences. Therefore in the definition of the cone C(t)
n one can assume

w.l.o.g. that yδ = 0 whenever δ has an odd component.

Proposition 4.2.6. The cones K(t)
n and C(t)

n are dual of each other; that is,

C(t)
n = (K(t)

n )∗ and K(t)
n = (C(t)

n )∗.
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This duality follows from the duality of the cone Σ=(n, 2t + 4) of sum of
squares of polynomials and the cone N=(n, 2dt + 4) of positive semidefinite
moment matrices observed in Section 2.6.

Proof. (of Proposition 4.2.6). Let C(y) ∈ C(t)
n , let M be a symmetric n × n

matrix and let p
(t)
M be the associated polynomial via (4.27). Using (4.33), one

can verify that

Tr(MC(y)) = yT p
(t)
M for any y ∈ RI≤(n,2t+4). (4.35)

Indeed,

Tr(MC(y)) =
n∑

i,j=1

MijC(y)ij =
n∑

i,j=1

Mij

∑

γ∈I≤(n,t)

t!

γ!
y2γ+2ei+2ej

=
∑

β∈I≤(n,t+2)



∑

i|βi≥2

t!

(β − 2ei)!
Miiy2β +

∑

i6=j|βi,βj≥1

t!

(β − ei − ej)!
Mijy2β




=
∑

β∈I≤(n,t+2)




∑

i

t!βi(βi − 1)

β!
Miiy2β +

∑

i6=j

t!βiβj
β!

Mijy2β





=
∑

β∈I≤(n,t+2)

t!

β!
y2β

(
βTMβ − βTdiag(M)

)
= yT p

(t)
M .

Using (4.35) and the equality (N=(n, 2t+ 4))∗ = Σ=(n, 2t+ 4), one can imme-

diately conclude that K(t)
n = (C(t)

n )∗. The cone C(t)
n is closed since it consists of

linear combinations of positive semidefinite matrices and the positive semidefi-

nite cone is closed. Hence C(t)
n = (K(t)

n )∗.

4.2.2 Sums of squares and the stable set problem

Recall first that minimization of a quadratic function over the standard simplex
∆ := {x ∈ Rn+ | xT e = 1} is equivalent to a copositive programming problem.

Theorem 4.2.7 (Bomze et al. [9]). For any Q ∈ Sn we have

min
x∈∆

xTQx = maxλ s.t. λ ∈ R, Q− λJ ∈ Cn.

Proof. minx∈∆ x
TQx= maxλ∈R λ s.t. xTQx− λ ≥ 0 for all x ∈ ∆

= maxλ∈R λ s.t. xTQx− λxTJx ≥ 0 for all x ∈ ∆

= maxλ∈R λ s.t. xT (Q− λJ)x ≥ 0 for all x ∈ ∆

= maxλ s.t. λ ∈ R, Q− λJ ∈ Cn.

This can be applied to the following result of Motzkin and Straus.

Theorem 4.2.8 (Motzkin and Straus [71]). For any graph G with adjacency
matrix AG one has

1

α(G)
= min

x∈∆
xT (I +AG)x.
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As a consequence of the above two theorems we have:

Corollary 4.2.9. For any graph G with adjacency matrix AG one has

α(G) = minλ s.t. λ ∈ R, λ(I +AG) − J ∈ Cn. (4.36)

If we substitute the copositive cone in (4.36) by some subcone of it we obtain
an upper bound for α(G). De Klerk and Pasechnik (4.36) use this observation
and define the hierarchy of upper bounds for α(G):

ϑ(t)(G) := minλ s.t. λ ∈ R, λ(I +AG) − J ∈ K(t)
n . (4.37)

They prove ϑ(0)(G) = ϑ′(G), hence ϑ(0)(G) ≤ ϑ(G). Thus α(G) = ϑ(0)(G) for
a perfect graph G.

Convergence towards α(G)

De Klerk and Pasechnik [50] proved that the bounds (4.37) can be used for
approximating α(G).

Theorem 4.2.10. [50] For any graph G we have bϑ(t)(G)c = α(G) for t ≥
(α(G))2.

We have seen in the previous section some hierarchies of semidefinite relax-
ation of the stable set polytope of a graphG that converge in finitely many steps.
For example we have proved that Qt(G) = Lt(G) = N t−1

+ (TH(G)) = ST(G) for
t ≥ α(G). Motivated by this fact and Theorem 4.2.10, de Klerk and Pasechnik
[50] ask if the sequence ϑ(t)(G) (t ∈ N) converge in α(G) steps towards α(G).

Theorem 4.2.11. [50] If G has stability number α(G) ≤ 2 then

α(G) = ϑ(α(G)−1)(G).

Conjecture 4.2.12. [50] For any graph G

α(G) = ϑ(α(G)−1)(G).

This conjecture and the hierarchy of bounds (4.37) were further studied in
[76, 39]. Although the general case of Conjecture 4.2.12 remains open, we can
prove the following strengthening of Theorem 4.2.11.

Theorem 4.2.13. [39] If G has stability number α(G) ≤ 8 then

α(G) = ϑ(α(G)−1)(G).

The proof of Theorem 4.2.13 is inductive, and it is based on Lemma 4.2.3. It
is rather technical and lengthy, so we omit it here. Instead, we prove Theorem
4.2.11 and explain where the main difficulty comes from.

Let G = (V,E) be a graph with V = {1, 2, . . . , n} and α(G) ≥ 2. Set
α := α(G) and i⊥ := {i} ∪ {j | ij ∈ E} (i ∈ V ). We can now use the idea from

the proof of Lemma 4.2.3. For M := α(I +AG)−J, decompose p
(t)
M (x), defined

in (4.27), as

(
n∑

i=1

x2
i

)t−1 n∑

i=1

x2
i v(x)

TX(i)v(x) +

(
n∑

i=1

x2
i

)t−1 n∑

i=1

x2
i v(x)

T Y (i)v(x), (4.38)
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where

Y (i) :=

( i⊥ V (G)\i⊥
i⊥ (α− 1)J −J
V (G)\i⊥ −J α(I + AG\i⊥) − J

)

=
α

α− 1

(
0 0
0 (α− 1)(I +AG\i⊥) − J

)
+

(
(α − 1)J −J

−J 1
α−1J

)
, (4.39)

X(i) := M − Y (i) (i ∈ V (G)) and G\i⊥ denotes the subgraph of G induced by
V \i⊥. The following observations are easy:

(i)
∑n

i=1 x
2
i v(x)

TX(i)v(x) is SOS, since matrices X(i) (i = 1, . . . , n) satisfy
(4.31);

(ii) the second matrix in (4.39) is PSD;

(iii) α(G\i⊥) ≤ α− 1.

Observe next that only the matrix α
α−1

(
0 0
0 (α− 1)(I + AG\i⊥) − J

)
has to be

considered, since (i) and (ii) guarantee that the remaining terms are SOS. This
matrix equals 0 if α = 2, hence we proved Theorem 4.2.11.

A possible strategy when α ≥ 3 would be induction. Assume thus that the
conjecture is true for all graphs whose stability number is strictly smaller than
α. Then,

(α− 1)(I +AG\i⊥) − J ∈ K(α−2)

|V (G\i⊥)| (i ∈ V (G)).

Taking (i)-(iii) into account, it would be enough to prove

(
0 0
0 (α(G) − 1)(I +AG\i⊥) − J

)
∈ K(α−2)

n .

The main difficulty now comes from the fact that, for t ≥ 1, the cone K(t) is not
invariant under some simple matrix transformations, like extending a matrix by
zero row and column, which obviously preserves positive semidefiniteness and
copositivity.

Example 4.2.14. For G := C5, the matrix 2(I+AG)−J is in K(1)
5 , but adding

zero row and column yields a matrix that does not belong to K(1)
6 .

Thus, the idea of decomposing p
(t)
M as (4.38) does not work. One has to do a

finer analysis to prove the result of Theorem 4.2.13, which unfortunately works
only for the case α(G) ≤ 8.

Dual side

Consider first the dual formulation of (4.37):

ϑ(t)(G) = maxTr(JX) s.t. Tr((I +AG)X) = 1, X ∈ C(t)
n . (4.40)

The set of feasible solutions of (4.40) is bounded due to Tr((I+AG)X) = 1 which

together with C(t)
n ⊆ S+

n ∪ Nn implies Xij ∈ [0, 1] (i, j ∈ V (G)). The maximum
thus exists, since we are optimizing over a compact (closed and bounded) set.
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Moreover, the program (4.37) is feasible and (4.40) is strictly feasible (see [50])
hence the equality in (4.40) holds.

Dukanovic and Rendl [24] split the constraint Tr((I + AG)X) = 1 and con-
sider slightly sharper bounds:

ϑ̂(t)(G) := max Tr(JX) s.t. Tr(X) = 1, Tr(AGX) = 0, X ∈ C(t)
n

= min λ s.t. λ, y ∈ R, λI + yAG − J ∈ K(t)
n .

(4.41)

Observe that for t = 0 the definition coincides with (3.17), yielding ϑ̂(0)(G) =
ϑ(0)(G) = ϑ′(G). They also consider a corresponding hierarchy of lower bounds
for the fractional chromatic number of a graph χ∗(G), which will be recalled in
the next chapter in Subsection 5.2.4. They show how to use symmetry, whenG is
vertex transitive, to compute the bound ϑ̂(1)(G). They use the characterization
given in Theorem 4.2.2 and prove that instead of n matrices M(i) (i = 1, . . . , n)
it is enough to consider one matrix when G is vertex transitive. However, as we
will see in Proposition 4.2.23 below, ϑ̂(1)(G) is dominated by the strengthening
of `(2)(G) obtained by adding nonnegativity conditions.

To be able to compare the bounds ϑ(t)(G) and ϑ̂(t)(G) with the bounds

las(t+1)(G) from the previous section, we define yet another sequence of relax-
ations of the stable set polytope and the corresponding bounds. Given a graph
G = (V,E) and t ∈ N, define

P (t)(G) := {x ∈ Rn | x = diag(X) for some X ∈ C(t)
n satisfying

Tr(AGX) = 0, X − xxT � 0},

and define the parameter:

ϑ̃(t)(G) := max
x∈P (t)(G)

∑

i∈V
xi. (4.42)

Note that the program (4.42) is equivalent to (3.18) and thus ϑ̃(0)(G) = ϑ̂(t)(G) =
ϑ(0)(G) = ϑ′(G).

Theorem 4.2.15. STAB(G) ⊆ P (t)(G) and α(G) ≤ ϑ̃(t)(G) ≤ ϑ̂(t)(G) ≤
ϑ(t)(G) for any integer t ≥ 0.

Proof. Given a stable set S with incidence vector x := χS , define the vector
y ∈ RI=(n,2t+4) with

yδ := 1
|S|t if δ is even and S(δ) ⊆ S, and yδ := 0 otherwise,

after recalling S(δ) = {i | δi 6= 0}, Sodd(δ) = {i | i is odd}, and δ being even if
Sodd(δ) = ∅.

Then, |S|tN=t+2(y) is a 0/1 block diagonal matrix, whose blocks are indexed
by the sets

OT := {α ∈ I=(n, t+ 2) |S(α) ⊆ S, Sodd(α) = T } for T ⊆ S,

and the set O := {α ∈ I=(n, t+ 2)|S(α) * S}.
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Each OT ×OT block is the all-ones matrix, and the O×O block is zero. Hence
N=t+2(y) � 0. For γ ∈ I=(n, t),

|S|tNγ(y) =

( S V \S

S J 0
V \S 0 0

)
= xxT

if S(γ) ⊆ S, and Nγ(y) = 0 otherwise. Hence C(y) =
∑

γ∈I=(n,t)
t!
γ!N

γ(y) =∑
γ∈I=(n,t)

t!
γ!

1
|S|txx

T = xxT . Setting X := C(y) = xxT , we have Tr(AGX) = 0,

and x = diag(X), which shows that x ∈ P (t)(G). This shows the inclusion:

STAB(G) ⊆ P (t)(G) which in turn implies the inequality: α(G) ≤ ϑ̃(t)(G).

We now verify the inequality: ϑ̃(t)(G) ≤ ϑ̂(t)(G). For this let x ∈ P (t)(G).

Then, x = diag(X) with X ∈ C(t)
n , Tr(AGX) = 0 and X−xxT � 0. The matrix

X ′ := X
Tr(X) is feasible for (4.41) with Tr(JX ′) ≥ Tr(X) =

∑
i xi, which shows

ϑ̂(t)(G) ≥ ϑ̃(t)(G). The last inequality is obvious.

4.2.3 Comparison with the hierarchy of Lasserre

We compare here the hierarchy of bounds (4.42) with the Lasserre hierarchy
(4.20). For this, we first add some nonnegativity conditions for the variable y
in (4.18), and define

Q+
t (G) := {x ∈ RP≤1(V ) | ∃y ∈ RP≤2t(V ) satisfying y0 = x0, yi = xi (i ∈ V ),

yI ≥ 0 (I ∈ P≤2t(V )), yij = 0 (ij ∈ E), Mt(y) � 0}.
(4.43)

las
(t)
+ (G) := max

∑

i∈V
xi s.t. x ∈ Q+

t (G), x0 = 1. (4.44)

We also need the following lemma

Lemma 4.2.16. For any C(y) ∈ C(t)
n one has

Tr(JC(y)) =
∑

β∈I=(n,t+2)

(t+ 2)!

β!
y2β , and (4.45)

Tr(C(y)) =
∑

β∈I=(n,t+2)

t!

β!
y2β

(
n∑

i=1

β2
i − βi

)
. (4.46)

Proof. Directly from (4.33) and (4.35).

Finally, the comparison is given in the following result:

Theorem 4.2.17. For any graph G = (V,E) and t ≥ 1

las
(t)
+ (G) ≤ ϑ̃(t−1)(G).
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Proof. In view of Theorem 4.2.15, we have to show that las
(t)
+ (G) ≤ ϑ̃(t−1)(G)

for any positive integer r. For this, let x ∈ RP≤2t(V ) be feasible for the program

defining las
(r)
+ (G). Then, xI = 0 for any I ∈ P≤2t(V ) containing an edge. We

may assume that
∑n

i=1 xi > 0. For p = 1, . . . , t+ 1, define

`p :=
∑

β∈I=(n,p−1)

(p− 1)!

β!
xS(β).

Then, `1 = 1, `p ≥ `2 =
∑n

i=1 xi > 0 for p ≥ 2. For p = 1, . . . , t, define
y = (yδ)δ∈I=(n,2p+2) as follows: yδ = 0 if Sodd(δ) 6= ∅, yδ := 1

`p
xS(δ) otherwise

(then |S(δ)| ≤ p+ 1 ≤ t+ 1).

We first prove some intermediate results.

Lemma 4.2.18. N=p+1(y) � 0.

Proof. For I ⊆ V , set OI := {β ∈ I=(n, p + 1) | Sodd(β) = I} and NI :=
(yβ+β′)β,β′∈OI

. Then, N=p+1(y) is a block diagonal matrix with the matri-
ces NI (I ⊆ V ) as diagonal blocks. As `pNI = (xS(β)∪S(β′))β,β′∈OI

, NI � 0
since it is obtained from a principal submatrix of Mt(x) by duplicating certain
rows/columns (unless |I| = t+1 in which case NI is the 1×1 matrix with entry
xI ≥ 0, implying again NI � 0).

Therefore, the matrix Z(p) := C(y) =
∑
γ∈I=(n,p−1)

(p−1)!
γ! Nγ(y) belongs to

the cone C(p−1)
n . Moreover, Z(p)ij = 0 if ij ∈ E. Define the matrix

Z̃(p) :=




1 Z(p)11 . . . Z(p)nn
Z(p)11

... Z(p)
Z(p)nn


 . (4.47)

Lemma 4.2.19. Z̃(p) � 0.

Proof. The matrix:

`pZ̃(p) =
∑

γ∈I=(n,p−1)

(p− 1)!

γ!




xS(γ) y2γ+4e1 . . . y2γ+4en

y2γ+4e1
... (y2γ+2ej+2ek

)nj,k=1

y2γ+4en




=
∑

γ∈I=(n,p−1)

(p− 1)!

γ!




xS(γ) xS(γ+e1) . . . xS(γ+en)

xS(γ+e1)

... (xS(γ+ej+ek))
n
j,k=1

xS(γ+en)




is positive semidefinite, since the matrices in the above summation are principal
submatrices of Mt(x).

Lemma 4.2.20. Tr(JZ(p)) =
`p+2

`p
and Tr(Z(p)) =

`p+1

`p
.
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Proof. As Z(p) = C(y) ∈ C(p−1)
n , one can use (4.45) and (4.46). Namely,

Tr(JZ(p)) =
∑

β∈I=(n,p+1)

(p+ 1)!

β!
y2β =

1

`p

∑

β∈I=(n,p+1)

(p+ 1)!

β!
xS(β) =

`p+2

`p
.

Moreover,

Tr(Z(p)) =
∑

β∈I=(n,p+1)

(p− 1)!

β!
y2β

n∑

i=1

(β2
i − βi)

= 1
`p

n∑

i=1

∑

β∈I=(n,p+1)

(p− 1)!

β!
βi(βi − 1)xS(β).

We can restrict the inner summation to β with βi ≥ 2. Then, δ := β − ei has
the same support as β and

Tr(Z(p)) =
1

`p

n∑

i=1

∑

δ∈I=(n,p)

(p− 1)!

δ!
δixS(δ) =

1

`p

∑

δ∈I=(n,p)

(p− 1)!

δ!
|δ|xS(δ) =

`p+1

`p
.

Lemma 4.2.21.
`p+2

`p+1
≥ `p+1

`p
.

Proof. By Lemma 4.2.19, Z̃(p) � 0, implying Z(p) − diag(Z(p))diag(Z(p))T �
0. Therefore, eT (Z(p) − diag(Z(p))diag(Z(p))T )e ≥ 0, yielding Tr(JZ(p)) ≥
(Tr(Z(p)))2. The result now follows using Lemma 4.2.20.

We can now conclude the proof of Theorem 4.2.17. From Lemmas 4.2.20
and 4.2.21, we deduce that

∑n
i=1 Z(t)ii = `t+1

`t
≥ `2

`1
=
∑n

i=1 xi. The vec-
tor z := diag(Z(t)) is feasible for the program (4.42) defining the parameter

ϑ̃(t−1)(G). Hence, ϑ̃(t−1)(G) ≥∑n
i=1 zi = Tr(Z(t)) ≥∑n

i=1 xi. This shows that

ϑ̃(t−1)(G) ≥ las(r)(G) and finishes the proof of Theorem 4.2.17.

Corollary 4.2.22. For any graph G = (V,E) and t ≥ 1

las
(t)
+ (G) ≤ ϑ̃(t−1)(G) ≤ ϑ̂(t−1)(G) ≤ ϑ(t−1)(G).

Proof. Directly from Theorems 4.2.15 and 4.2.17.

Observe that in the proof above we use only components of vector x indexed
by P≤t+1(V ). Hence, one may wonder if we can compare `(t) with ϑ̃(t−1)(G).
For this define

L+
t (G) := {x ∈ RP≤1(V ) | ∃y ∈ R

P≤t+1(V )
+ satisfying y0 = x0,

yi = xi (i ∈ V ), yij = 0 (ij ∈ E),
M(T ; y) � 0 ∀T ⊆ V with |T | = t− 1},

(4.48)

and

`
(t)
+ (G) := max

∑

i∈V
xi s.t x ∈ L+

t (G), x0 = 1. (4.49)
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Proposition 4.2.23. For any graph G = (V,E) and t ∈ {1, 2}

las
(t)
+ (G) ≤ `

(t)
+ (G) ≤ ϑ̃(t−1)(G) ≤ ϑ̂(t−1)(G) ≤ ϑ(t−1)(G).

The proof is along the same lines as for the proof of Theorem 4.2.17. One
should only take into account that the matrices `pNI(y) in the proof of Lemma
4.2.18 are now principal submatrices (after duplicating some rows and columns)
of some M(T ;x), with |T | = t − 1. Notwithstanding, this proof does not work
for t ≥ 3 since some of the matrices NI(y) have a higher order than the matrices
M(T ;x). In particular, for t = 3, the matrix `3N0(y) is not a submatrix of any
of the matrices M(T ;x), with |T | = 2.

4.2.4 Weighted case

Let G = (V,E) be a graph. Busygin [15] shows the following extension to the
weighted case of the Motzkin-Straus theorem.

Theorem 4.2.24. [15] Given wi > 0 (i ∈ V ), set wmin := mini∈V wi. Then,

wmin

αw(G)
= min

x∈∆
xT
(
wmin(Diag(w))−1 +AG

)
x.

In other words, the matrix αw(G)
(
(Diag(w))−1 + 1

wmin
AG

)
−J is copositive

or, equivalently, the matrix αw(G) (Diag(w) +AG,w)−wwT is copositive, where
AG,w is the matrix whose ij-th entry is

wiwj

wmin
if ij ∈ E and 0 otherwise. Set

wmax := max
i∈V

wi, WG :=
(wmax)

2

wmin
. (4.50)

The matrix αw(G) (Diag(w) +WGAG)−wwT is also copositive, since the entries
of AG,w are at most WG. This leads us to define the following weighted analogue
of the parameter ϑ(r)(·):

ϑ(r)
w (G) := min t subject to t(Diag(w) +WGAG) − wwT ∈ K(r)

n . (4.51)

This definition reduces to the original definition (4.37) when all weights are
equal to 1.

Recall next the definition of P (t)(G) from previous subsection. As we have
seen, the sets P (t)(G) provide a hierarchy of semidefinite relaxations for STAB(G).
Theorem 4.1.2 implies STAB(G) = P (0)(G) when G is a perfect graph. With
respect to this, a natural question to ask is whether the analogue of Conjecture
4.2.12 may hold, asserting that STAB(G) = P (t)(G) for t ≥ α(G) − 1. We
are able to give a positive answer only in the case t = 1. For this, given pos-
itive node weights w ∈ RV+ , we have to compare the weighted stability number

αw(G) := max
x∈STAB(G)

wTx and the weighted parameter:

ϑ̃(t)
w (G) := max

x∈P (t)(G)
wTx. (4.52)

Lemma 4.2.25. The parameters (4.52) and (4.51) satisfy: ϑ̃
(r)
w (G) ≤ ϑ

(r)
w (G).
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Proof. Assume M := t(Diag(w) +WGAG) − wwT ∈ K(r)
n and let x = diag(X)

where X ∈ C(r)
n , Tr(AGX) = 0, X − xxT � 0. Then, 0 ≤ Tr(MX) = twTx −

wTXw, yielding twTx ≥ wTXw ≥ (wTx)2 and thus t ≥ wTx. This gives the
desired inequality.

Lemma 4.2.26. For r = 0, ϑ̃
(0)
w (G) = ϑ

(0)
w (G). Therefore, ϑ

(0)
w (G) = αw(G)

when G is a perfect graph.

Proof. It remains to show the inequality: ϑ
(0)
w (G) ≤ ϑ̃

(0)
w (G). For this, we first

observe that

ϑ(0)
w (G) ≤ φ(G) := min t subject to tDiag(w) + yAG − wwT ∈ K(0)

n . (4.53)

Our argument is similar to the one used by de Klerk and Pasechnik [50] in

the unweighted case. Assume M := tDiag(w) + yAG − wwT ∈ K(0)
n . Then,

M = P +N , where P � 0, N ≥ 0, diag(N) = 0. Hence, t(Diag(w) +WGAG)−
wwT = M+(tWG−y)AG = P +N+(tWG−y)AG. It suffices now to verify that
N ′ := N + (tWG − y)AG ≥ 0. For this pick an edge, say 12 ∈ E. As P � 0, we
have P11 + P22 ≥ 2P12, yielding t(w1 +w2)− 2(y−N12) ≥ (w1 −w2)

2. Finally,

2N ′
12 = 2N12 + 2t

w2
max

wmin
− 2y ≥ t(w1 + w2) − 2(y −N12) ≥ 0 proves (4.53).

Next, using conic duality, we obtain that

φ(G) = max wTXw subject to Tr(Diag(w)X) = 1, Tr(AGX) = 0, X ∈ C(0)
n .

Set u := (
√
wi)

n
i=1. Rescaling X by Y = Diag(u)XDiag(u), we find that

φ(G) = max uTY u subject to Tr(Y ) = 1, Tr(AGY ) = 0, Y ∈ C(0)
n .

(As C(0)
n consists of the nonnegative positive semidefinite matrices, it is closed

under the above rescaling.) We can now conclude that φ(G) ≤ ϑ̃
(0)
w (G). This

is the same proof as for Theorem 67.11 in [84] (which gives the result with the

cone C(0)
n being replaced by the cone of positive semidefinite matrices).

Theorem 4.2.27. [39] For a graph G with positive node weights w ∈ RV ,

ϑ(1)
w (G) ≤ max

i∈V
(wi + ϑ(0)

w (G\i⊥)). (4.54)

We omit here the proof of this result. It is similar to the proof of Theorem
4.2.11, i.e. it is based on Theorem 4.2.2.

Corollary 4.2.28. STAB(G) = P (1)(G) if G\i⊥ is perfect for all i ∈ V ; this
holds in particular if α(G) = 2.

4.3 Conclusions

We presented several hierarchies of semidefinite upper bounds for the stability
number α(G) of a graph G in this chapter.

In Section 4.1 we were dealing with three hierarchies of relaxations of the
stable set polytope STAB(G). We proposed the new block diagonal hierarchy
which is, as a relaxation of the hierarchy of Lasserre [57], at least as good as
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the hierarchy of Lovász and Schrijver [65], and computationally less costly. All
hierarchies converge to STAB(G) in α(G) steps.

We will see in the next chapter how these hierarchies can be transformed into
hierarchies of lower bounds for the fractional chromatic number χ∗(G) and the
chromatic number χ(G). In Chapter 6 we will show how to compute bounds,
up to order three, in the new block diagonal hierarchy for Paley graphs. For
that we exploit the properties of the automorphism groups of these graphs.

In Section 4.2 we considered the copositive programming formulation for
α(G) of de Klerk and Pasechnik [50] and, by replacing the copositive cone by

K(t)
n (t ∈ N), we obtained a hierarchy of upper bounds for α(G). This hierarchy is

conjectured to converge to α(G) in α(G) steps. We could prove it for α(G) ≤ 8,
but the case α(G) > 8 remains open. Using the dual formulations for bounds in
this hierarchy we defined a slightly sharper hierarchy via P (t)(G) (t ∈ N), the
sequence of relaxations of STAB(G). We have shown that these hierarchies of
bounds are dominated (after adding nonnegativity conditions) by the hierarchy
of Lasserre, and moreover that the first two bounds are dominated by the new
block diagonal, hierarchy bounds. We also introduced the generalization of the
hierarchy of de Klerk and Pasechnik, which consists of upper bounds for the
weighted stability number αw(G).

In the next chapter we will see how χ∗(G) can be formulated as a copositive
program. By once again applying the recipe of Parrilo [75], we will construct a
hierarchy of lower bounds for χ∗(G), which was proposed recently by Dukanovic
and Rendl [24].
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Chapter 5

Semidefinite programming

lower bounds for the

chromatic number

The chromatic number χ(G) of a graph G can be formulated via a 0/1 linear
program (see, e.g., [69]) involving O(n2) variables. One can thus apply the
classical lift and project procedures, proposed for example in [57, 65, 87], to
derive hierarchies of semidefinite approximations finding χ(G) in O(n2) steps.
However, in this chapter we do not take a 0/1 formulation as a starting point.
Instead, we start with the Lovász theta number ϑ(G) of the complement G
defined in Chapter 3. As a lower bound for χ(G), at least as strong as ω(G), ϑ(G)
was already used, e.g., for approximately colouring the graph (see [53, 26, 46]).

We have seen in Section 3.3 how ϑ(G) can be strengthened by adding non-
negativity and triangle constraints. In this chapter we go beyond. We obtain
approximations for χ(G) by applying the techniques presented in Chapter 4 and
by generalizing the reduction (recall (2.31))

χ(G) ≤ t⇐⇒ α(Kt�G) = |V (G)|, (5.1)

from the colouring problem to the stable set problem from Section 2.5. We
present hierarchies of semidefinite bounds, which start with ϑ(G) or some vari-
ations of it, and converge either to the fractional chromatic number χ∗(G) or
to the chromatic number χ(G).

In Section 5.1, we generalize the reduction (5.1) to all graph parameters
lying between ω(·) and χ(·). We introduce an operator Ψ, which is monotone

nonincreasing and maps a parameter sandwiched between |V (·)|
χ(·) and χ(·) to

an integer parameter that lies between ω(·) and χ(·). Moreover, if a graph
parameter is polynomial time computable, the same holds for its image. We
show that Ψ maps

• ϑ(·) to
⌈
ϑ(·)

⌉
by exploring the symmetry in Kt�G, i.e. in the semidefinite

programs defining the image of ϑ(·);

69
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• the whole interval [ |V (·)|
χ(·) , χ(·)] to ω(·), and hence there is no polynomial

time computable graph parameter sandwiched between |V (·)|
χ(·) (or χ∗(·))

and χ(·).
In addition, by applying the idea to the Motzkin-Straus formulation for α(G)
we give (quadratically constrained) quadratic and copositive programming for-
mulations for χ(G).

In Section 5.2 we introduce hierarchies of semidefinite bounds which converge
to either χ∗(G), or χ(G). We construct hierarchies, converging to χ(G) in |V (G)|
steps, by applying the operator Ψ to Lasserre’s hierarchy and to the new block
diagonal hierarchy presented in Chapter 4. We show how to explore symmetry
in semidefinite programs defining Ψ`(2)(G).

To approximate χ∗(G) we choose a convenient formulation for ϑ(G) (equiv-
alent to (3.4)), and use the moment matrix approach. In this way we build
hierarchies for χ∗(G), which converge to χ∗(G) in α(G) steps. At the end of the
section, we also briefly revisit the approach of Dukanovic and Rendl [24] and
indicate links to our hierarchies. They give completely positive programming
formulation for χ∗(G), and apply the ideas from Parrilo [75] and de Klerk and
Pasechnik [50].

5.1 The operator Ψ and its applications

5.1.1 Basic properties of Ψ

Using relation (5.1), we see that the chromatic number of a graph G can be
defined as the optimum solution of the following program

χ(G) = min
t∈N

t s.t. α(Kt�G) = |V (G)|, (5.2)

where Kt�G is the Cartesian product of the graphs G and Kt. Recall that

V (Kt�G) := V (Kt) × V (G) =

t⋃

p=1

Vp, where Vp := {pi | i ∈ V (G)} (5.3)

and {pi, qj} is an edge if i = j and p 6= q, or if p = q and ij ∈ E(G). This fact
motivates the following definition.

Definition 5.1.1. Given a graph parameter β(·) satisfying

|V (·)|
χ(·) ≤ β(·) ≤ χ(·), (5.4)

define the graph parameter Ψβ(·) by

Ψβ(G) := min
t∈N

t s.t. β(Kt�G) = |V (G)|. (5.5)

Lemma 5.1.2. (a) The graph parameter Ψβ(G) is well defined if β(·) satisfies
(5.4).

(b) The operator Ψ is monotone nonincreasing; that is, Ψβ2(·) ≤ Ψβ1(·) if
β1(·), β2(.) satisfy (5.4) and β1(·) ≤ β2(·).
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(c) Ψα(G) = χ(G).

(d) Ψβ(G) = ω(G) for β(·) := |V (·)|
ω(·) .

(e) Ψχ̄(G) = ω(G).

(f) Ψβ(G) = χ(G) for β(·) := |V (·)|
χ(·) .

(g) If β(·) satisfies (5.4), then

ω(·) ≤ Ψβ(·) ≤ χ(·). (5.6)

Proof. (a) Assume β(·) satisfies (5.4) and let 1 ≤ t ≤ n := |V (G)|. As

χ(Kt�G) ≤ n we have β(Kt�G) ≥ |V (Kt�G)|
χ(Kt�G) ≥ nt

n = t. On the other hand,

β(Kt�G) ≤ χ(Kt�G) ≤ n. Therefore, β(Kn�G) = n, thus showing that
Ψβ(G) is well defined.

(b) If β1(·) ≤ β2(·) satisfy (5.4), then β1(Kt�G) = n implies β2(Kt�G) = n,
which gives Ψβ2(G) ≤ Ψβ1(G).

(c) The identity Ψα(G) = χ(G) follows directly from (5.2).

(d) For β(·) := |V (·)|
ω(·) , the identity Ψβ(G) = ω(G) follows from the fact that

ω(Kt�G) = max(t, ω(G)).

(e) We verify that Ψχ̄(G) = ω(G). As χ(·) ≥ |V (·)|
ω(·) , we deduce using (b) and

(d) that Ψχ(G) ≤ Ψ|V |/ω(G) = ω(G). To show the reverse inequality, consider
a clique C in G of size ω(G) and let Ct be the subset of V (Kt�G) consisting
of all the copies of the nodes in C. Thus Ct is covered by t cliques of Kt�G.
As the remaining nodes of Kt�G can be covered by n − |C| cliques, we have
χ(Kt�G) ≤ t+n−|C|. Therefore χ(Kt�G) = n implies t ≥ |C| = ω(G), which
shows Ψχ̄(G) ≥ ω(G).

(f) Consider now the parameter β(·) := |V (·)|
χ(·) . As β(·) ≤ α(·), we deduce

using (b) that Ψβ(G) ≥ Ψα(G) = χ(G), and equality holds since one can easily
verify that β(Kt�G) = n for t := χ(G).

(g) Relation (5.6) now follows directly using again (b).

Corollary 5.1.3. If β(·) is a graph parameter satisfying |V (·)|
ω(·) ≤ β(·) ≤ χ̄(·),

then Ψβ = ω. In particular, Ψχ∗ = ω. Moreover, if |V (·)|
χ(·) ≤ β(·) ≤ α(·) then

Ψβ = χ.

Proof. Directly from Lemma 5.1.2 (b),(c),(d),(e),(f) and Theorem 3.3.1 (a).

Therefore, the operator Ψ takes a graph parameter β(G) (nested e.g. between
α(G) and χ(G)) and produces the integer lower bound Ψβ(G) (nested between
ω(G) and χ(G)) for the chromatic number χ(G); figure 5.1 illustrates how the
operator Ψ acts on various parameters. As α(G)χ∗(G) ≥ |V (G)|,

β(G) ≥ α(G) =⇒ χ(G) ≥ χ∗(G) ≥ |V (G)|
β(G)

.

The next lemma shows that, under the mild assumption (5.7), Ψβ(G) is at least
as good as the obvious lower bound |V (G)|/β(G) for χ(G). However, Ψβ(G)

may be equal to χ(G) while |V (G)|
β(G) always remains below the fractional chromatic

number χ∗(G).
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Lemma 5.1.4. Assume that a graph parameter β(·) satisfies: α(·) ≤ β(·) ≤ χ(·)
and

β(Kt�G) ≤ tβ(G) for all t ∈ N. (5.7)

Then, Ψβ(G) ≥ |V (G)|
β(G) .

Proof. If β(Kt�G) = |V (G)|, then |V (G)| ≤ tβ(G), i.e., t ≥ |V (G)|
β(G) .

The condition 5.7 holds e.g. when β(·) is additive with respect to the direct
sum of graphs and monotone nonincreasing with respect to adding edges to a
graph, i.e. if β(·) satisfies

(i) β(G + G′) = β(G) + β(G′), for any G = (V,E) and G′ = (V ′, E′) with
V ∩ V ′ = ∅; and

(ii) E ⊆ E′ =⇒ β(G) ≥ β(G′), for any G = (V,E) and G′ = (V,E′).

Apparently, if (i) and (ii) hold for β(·) then tβ(G) =
∑t
i=1 β(Gi) ≥ β(Kt�G),

whereGi = (Vi, Ei) (i = 1, . . . , t) are the copies ofG inKt�G, i.e. the subgraphs
ofKt�G induced by Vi (i = 1, . . . , t) (recall the definition ofKt�G from (2.30)).

One can easily verify that conditions (i) and (ii), and consequently (5.7),

hold for α(·), χ(·), χ∗(·), ϑ(·), ϑ′(·), and the parameters las(r)(·) and `(r)(·)
defined in (4.20) and (4.23) respectively.

Remark 5.1.5. If β(·) ∈ [α(·), χ(·)], then Ψβ(G)− |V (G)|
β(G) ≤ χ(G)− |V (G)|

χ(G) , with

equality e.g. when G is a perfect graph (since then α(G) = χ(G) = β(G) and

ω(G) = χ(G) = Ψβ(G)). Hence the gap Ψβ(G)− |V (G)|
β(G) can be made arbitrarily

large. For instance, this gap is equal to n− 2n
n+1 = nn−1

n+1 when G is the disjoint
union of a clique of size n and n isolated points.

|V |
χ ≤ |V |

χ∗ ≤ α ≤ ϑ′ ≤ ϑ ≤ χ∗ ≤ χ

↘ ↓ ↙ ↓ ↓ ↓ ↙
χ ≥

⌈
ϑ+
⌉

≥
⌈
ϑ
⌉

≥ ω

↗ ↑ ↖
|V |
ω ≤ χ∗ ≤ χ

Figure 5.1: Converting graph parameters by the operator Ψ

5.1.2 Action of the operator Ψ on the theta number

We investigate here how the operator Ψ applies to the theta number ϑ(·) and
its strengthening ϑ′(·). In particular we prove that the operator Ψ maps the
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theta number ϑ(·) to
⌈
ϑ(·)

⌉
, and its strengthening ϑ′(·) to

⌈
ϑ+(·)

⌉
. De Klerk

et al. [53] consider a graph parameter closely related to Ψϑ for which they can

also show that it coincides with
⌈
ϑ(·)

⌉
.

Theorem 5.1.6. For any graph G the following holds:

(i) Ψϑ(G) =
⌈
ϑ(G)

⌉
,

(ii) Ψϑ′(G) =
⌈
ϑ+(G)

⌉
.

We need the following lemma for the proof of Theorem 5.1.6.

Lemma 5.1.7. For a positive semidefinite n× n matrix X, nTr(X) ≥ 〈J, X〉,
with equality if and only if X = cJ for some nonnegative scalar c.

Proof. As X � 0, its entries satisfy Xii + Xjj ≥ 2Xij for all i, j ∈ {1, ..., n}.
Thus, n

∑n
i=1Xii ≥

∑n
i,j=1Xij . Equality holds if and only if Xii +Xjj = 2Xij

for all i, j, which gives Xii = Xjj = Xij for all i, j.

Proof of Theorem 5.1.6. If G has no edges (i) and (ii) trivially hold. Assume
thus that G has at least one edge. Then, ϑ(G) < n and consequently Ψϑ(G) ≥ 2.

(i) Let (t,X) be a feasible solution for the program defining Ψϑ(G); that is,

X � 0, Xuv = 0 (uv ∈ E(Kt�G)), Tr(X) = 1, 〈J, X〉 = n. (5.8)

Here the matrix X is indexed by V (Kt�G) = ∪tp=1Vp (recall (2.30)) and t ∈ N,
t ≥ 2. As the program (5.8) is invariant under action of the group Sym(t), one
may assume that X is invariant under action of Sym(t). Then X has the block
form (2.11). Using Lemma 2.4.4, (5.8) can be rewritten as

A−B � 0, A+ (t− 1)B � 0, Aij = 0 (ij ∈ E(G)), diag(B) = 0,
Tr(A) = 1

t , 〈J, A+ (t− 1)B〉 = n
t .

(5.9)

Lemma 5.1.7 implies A + (t − 1)B = 1
ntJ. Setting U := nt(t − 1)(A − B), we

find
U = nt2A− J. (5.10)

One can verify that (t, U) is feasible for the program (3.2) defining the parameter

ϑ(G). As t ∈ N this implies Ψϑ(G) ≥
⌈
ϑ(G)

⌉
. Conversely, let (t, U) be feasible

for (3.2) with t integer. Define the matrices A,B via the equations

A−B =
1

nt(t− 1)
U and A+ (t− 1)B =

1

nt
J (5.11)

and let X be the corresponding block matrix as in (2.11). One can verify that
(5.9) holds and thus (5.8) holds too. That is, (t,X) is feasible for (5.8). Thus
we have shown:

Ψϑ(G) = min
t∈N

t s.t. diag(U) = (t− 1)e, Uij = −1 (ij ∈ E(G)), U � 0.

(5.12)
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We now show Ψϑ(G) ≤
⌈
ϑ(G)

⌉
. For this, set t := ϑ(G) and take an optimal

solution U to the program (3.2). Then, setting Y := 1
dte−1U + dte−t

dte−1 I, the pair

(dte, Y ) is feasible for (5.12) with objective value dte, which implies dte ≥ Ψϑ(G).

Thus equality
⌈
ϑ(G)

⌉
= Ψϑ(G) holds.

The proof of (ii) is analogous to that of (i). Simply note that adding the condi-
tion X ≥ 0 to (5.8) amounts to adding the condition A,B ≥ 0 to (5.9) and thus,
in view of (5.10), to adding the condition Uij ≥ −1 (i, j ∈ V ) to (5.12).

5.1.3 Computing Ψβ

We consider here issues related to the computation of Ψβ(G). We assume
throughout that β(·) satisfies (5.4). There is an obvious way to find Ψβ(G);
namely, by computing β(Kt�G) for each t = 1, . . . , n. We now observe that,
when β(·) is monotone nondecreasing (with respect to taking induced sub-
graphs), one can use binary search and it suffices to compute β(Kt�G) for
O(log n) instances of t.

Lemma 5.1.8. Assume

β(Kt�G) ≤ β(Kt+1�G) for all t ∈ N. (5.13)

Then β(Kt�G) = n⇐⇒ Ψβ(G) ≤ t.

Proof. The ‘only if’ part follows from the definition of Ψβ(G). For the ‘if’ assume
t0 := Ψβ(G) ≤ t. Then β(Kt0�G) = n ≤ β(Kt�G) implies β(Kt�G) = n, since
β(Kt�G) ≤ χ(G) ≤ n.

Under assumption (5.13) one can use binary search for computing Ψβ(G).
Namely, given t0 ∈ [1, n], compute β(Kt0�G). There are two cases:
• Either β(Kt0�G) < n. Then Ψβ(G) ≥ t0 + 1 (by the above lemma) and we
can now restrict the search to t ∈ [t0 + 1, n].
• Or β(Kt0�G) = n. Then Ψβ(G) ≤ t0 and we can restrict the search to
t ∈ [1, t0].
Therefore, one can find Ψβ(G) by computing β(Kt�G) for O(log n) queries of
t.

Observe that one may restrict the range of search for t. Suppose we know a
lower bound t1 and an upper bound t2 on χ(G); that is, t1 ≤ χ(G) ≤ t2. Then
we may assume t ≤ t2 in the definition of Ψβ(G) and if we add the condition
t ≥ t1 then one still obtains a lower bound for χ(G). Therefore, we may restrict
the binary search to t ∈ [t1, t2]. For instance, one can choose t1 = 3 if G is
not bipartite, or t1(G) = ω(G), and t2 = ∆(G) + 1 (or even ∆(G) by Brook’s
theorem (see [84]) if G is not a clique or an odd circuit).

We next present an easy but quite surprising consequence of Lemma 5.1.2
concerning the complexity of graph parameters nested between the fractional

chromatic and chromatic numbers or, more generally, in the interval
[
|V (·)|
ω(·) , χ(·)

]
.

The key observation is that the operator Ψ maps the whole interval to a single
graph parameter (namely, the clique number ω(·)), which is hard to compute.
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Theorem 5.1.9. If β(·) is a graph parameter satisfying |V (·)|
ω(·) ≤ β(·) ≤ χ(·),

then there is no algorithm permitting to compute β(G) in time polynomial in

|V (G)| unless P=NP. As |V (·)|
ω(·) ≤ χ∗(·) ≤ χ(·), the same conclusion holds if

χ∗(·) ≤ β(·) ≤ χ(·).
Proof. Applying Lemma 5.1.2, we find that Ψβ(·) = ω(·). Suppose one can
compute β(G) in time f(n) where f is a polynomial in n = |V (G)|. Then one
can compute Ψβ(G) = ω(G) in time

∑n
l=1 f(ln), thus polynomial in n. As

computing the clique number is an NP-hard problem [30], this implies P=NP.

Corollary 5.1.10. If β(·) is a graph parameter satisfying |V (·)|
χ(·) ≤ β(·) ≤ α(·),

then there is no algorithm permitting to compute β(G) in time polynomial in
|V (G)| unless P=NP.

Let us mention a few graph parameters that are known to lie within the
‘hard’ interval [χ∗, χ]. Hence none of them can be computed in polynomial time
unless P=NP.

Such result was proved already for the circular chromatic number (or star
chromatic number) χc(G) in [10]. It was introduced by Vince [93] and further
studied in [10], [95]. Given r ∈ R, r ≥ 2, a function f : V (G) → [0, r) is said
to be a r-colouring if 1 ≤ |f(u) − f(v)| ≤ r − 1 for all edges uv ∈ E(G). Then
χc(G) is defined as the infimum of all r for which G has a r-colouring. The
following holds: χ(G)− 1 < χc(G) ≤ χ(G) and χ∗(G) ≤ χc(G) ≤ χ(G) (see e.g.
[95]).

Another graph parameter which lies in [χ∗, χ] is the local chromatic number
χloc(G), introduced in [27] as the minimum over all proper colourings of G of
the largest number of colours used to colour the neighborhood NG(v) = {w ∈
V (G) | vw ∈ E(G)} of any vertex v ∈ V (G). Obviously, χloc(G) ≤ χ(G) (the
gap between the two parameters can in fact be arbitrarily large [27]) and Körner
et al. [55] show that χ∗(G) ≤ χloc(G).

The independence ratio of a graph G is i(G) := α(G)
|V (G)| and its Hall ratio is

ρ(G) := maxH⊆G
|V (H)|
α(H) , where the maximum is taken over all subgraphs of G.

Set G�1 = G, and for an integer k ≥ 2 set G�k := G�G�(k−1). Note that G�k

is the graph obtained by taking the Cartesian product of k copies of G. The
ultimate independence ratio I(G) and the ultimate Hall ratio h�(G) are defined
respectively as I(G) := limk→∞ i(G�k) and h�(G) := limk→∞ ρ(G�k). These
graph parameters are studied e.g. in [41], [43], [88]. In particular, the following
relations with fractional and circular chromatic numbers are shown there:

χ∗(G) ≤ 1

I(G)
= h�(G) ≤ χc(G) ≤ χ(G)

(see [95] for the inequality 1 ≤ I(G)χc(G)).

5.1.4 Semidefinite programming formulation for the new

bounds

Next we show that Ψβ(G) can be formulated via a single semidefinite pro-
gram when β(·) is given by a semidefinite program satisfying certain assump-
tions. Namely, our construction applies to the case when the semidefinite



76 CHAPTER 5. LOWER BOUNDS FOR χ(G)

program defining β(·) involves at least one equality constraint of the form
〈A,X〉 = 1 with A � 0. Then one may assume without loss of generality
that all other (in)equality constraints in the program are homogeneous, i.e., of
the form 〈B,X〉 ≥ 0. (Write any equation 〈B,X〉 = 0 as two opposite inequal-
ities 〈−B,X〉 ≥ 0 and 〈B,X〉 ≥ 0.) So let us assume that, for an arbitrary
graph H , we can express β(H) as

β(H) = max 〈C(H), X(H)〉 s.t. 〈A(H), X(H)〉 = 1
B(H)(X(H)) ≥ 0
X(H) � 0,

(5.14)

where C(H) and A(H) are constant symmetric n × n matrices, B(H) : Sn →
Rd(H) is a linear operator, and X(H) is the matrix variable. Note that d(·)
depends on H , e.g. d(H) = 2|E(H)| in the formulation of ϑ(H). Moreover we
assume that

A(H) � 0, (5.15)

〈A(H), X(H)〉 = 0 =⇒ 〈C(H), X(H)〉 = 0. (5.16)

Note that Assumptions (5.13), (5.14), (5.15),(5.16) hold, e.g., for ϑ(·), or
for the hierarchy of Lasserre considered in Section 4.1.3, and the new block
diagonal hierarchy presented in Section 4.1.4. To see this observe first that the
bounds (4.20) and (4.23) satisfy (5.13). Next, in the SDPs (4.20) and (4.23)
we can identify 〈A(H), X(H)〉 with y0, 〈C(H), X(H)〉 with

∑
i∈V (H) yi and the

conditions B(H)(X(H)) ≥ 0 with yij = 0 (ij ∈ E). Then the condition (5.15)
holds trivially while y0 = 0 implies yi = 0 (i ∈ V (H)) and thus (5.16).

Recall that our operator Ψ maps β(·) in the following way:

Ψβ(G) := min t = min t
s.t. β(Gt) = n s.t. 〈C(Gt), X(Gt)〉 = n

〈A(Gt), X(Gt)〉 = 1
B(Gt)(X(Gt)) ≥ 0
X(Gt) � 0.

(5.17)

Here we use the more concise notation Gt := Kt�G. Let us define

Φβ(G) := min
∑n
t=1 t〈A(Gt), X(Gt)〉 s.t.

∑n
t=1〈C(Gt), X(Gt)〉 = n∑n
t=1〈A(Gt), X(Gt)〉 = 1

B(Gt)(X(Gt)) ≥ 0 (t = 1, ..., n)
X(Gt) � 0 (t = 1, ..., n).

(5.18)

Theorem 5.1.11. Under assumptions (5.14),(5.15) and (5.16), Φβ(G) = Ψβ(G).

Proof. Take a feasible solution (t,X(Gt)) for the program (5.17) and for k 6=
t set X(Gk) := 0. In this way one obtains a feasible solution for (5.18)
with the same objective value as (5.17), which shows Φβ(G) ≤ Ψβ(G). Con-
versely, let X(Gt) (t = 1, ..., n) be a feasible solution for (5.18) and set at :=
〈A(Gt), X(Gt)〉. Thus at ≥ 0 since A(Gt) � 0 (by assumption (5.15)) and
∑

t at = 1. Consider t for which at > 0. As
〈
A(Gt),

X(Gt)
at

〉
= 1, X(Gt)

at
is

feasible for (5.14) (with H = Gt) which implies
〈
C(Gt),

X(Gt)
at

〉
≤ β(Gt) ≤ n;
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moreover, equality
〈
C(Gt),

X(Gt)
at

〉
= n implies β(Gt) = n and thus Ψβ(G) ≤ t.

Now we have

n =
∑

t

〈C(Gt), X(Gt)〉 =
∑

t|at>0

at

〈
C(Gt),

X(Gt)

at

〉
≤



∑

t|at>0

at


n = n.

(Here we used assumption (5.16) for the second equality.) Therefore, equality
holds throughout which implies Ψβ(G) ≤ t whenever at > 0. Hence,

∑
t tat =∑

t|at>0 tat ≥ Ψβ(G)(
∑

t|at>0 at) = Ψβ(G) which gives Φβ(G) ≥ Ψβ(G).

Hence, under the assumptions (5.14),(5.15) and (5.16), the parameter Ψβ(G)
can be formulated via the semidefinite program (5.18) which involves a block-
diagonal matrix with diagonal blocks X(G1), . . . , X(Gn), each X(Gt) being the
matrix variable involved in the program (5.14) for the graph H = Gt. For
instance, if (5.14) involves a matrix variable of order f(V (H)), then (5.18)
involves a block-diagonal matrix with block sizes f(n), f(2n), . . . , f(n2). As
explained in Section 5.1.3 one can reduce the size of the program (5.18) by
restricting the range of t in program (5.18) to t ∈ [t1, t2] where t1 ≤ χ(G) ≤ t2.

5.1.5 Quadratic programming formulation for χ(G)

The technique used in Section 5.1.4 can also be applied to derive (quadrati-
cally constrained) quadratic and copositive programming formulations for the
chromatic number.

Recall from Section 4.2 that

1

α(G)
= min xT (I +AG)x s.t. x ∈ RV (G)

+ , eTx = 1 (5.19)

or, equivalently,

α(G) = min t s.t. t(I +AG) − J ∈ Cn. (5.20)

Using (5.19), we can rewrite the program (5.2) as

χ(G) = min t s.t. xTt (I +AGt
)xt = 1

n , e
T
t xt = 1, xt ∈ RV (Gt)

+ . (5.21)

Here and below et denotes the all-ones vector in RV (Gt). Using the idea from
Section 5.1.4 let us define

Φ1(G) := min

n∑

t=1

t(eTt xt)
2

s.t.

n∑

t=1

(eTt xt)
2 = 1

n∑

t=1

xTt (I +AGt
)xt =

1

n

xt ∈ RV (Gt)
+ (t = 1, . . . , n).

(5.22)

Proposition 5.1.12. Φ1(G) = χ(G).
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Proof. Taking a feasible solution (t, xt) for the program (5.21) and setting xk =
0 for k 6= t, we obtain a feasible solution for (5.22) with objective value t. Thus,
Φ1(G) ≤ χ(G). Conversely, let xt (t = 1, ..., n) be feasible for (5.22). Then

1

n
=
∑

t

xTt (I+AGt
)xt =

∑

t|xt 6=0

xTt
eTt xt

(I+AGt
)
xt
eTt xt

(eTt xt)
2 ≥ 1

n

∑

t|xt 6=0

(eTt xt)
2 =

1

n
.

We have used
xT

t

eT
t xt

(I+AGt
) xt

eT
t xt

≥ 1
α(Gt)

≥ 1
n . Hence equality holds throughout,

which implies α(Gt) = n if xt 6= 0 and thus χ(G) ≤ t if xt 6= 0. Therefore,

∑

t

t(eTt xt)
2 =

∑

t|xt 6=0

t(eTt xt)
2 ≥ χ(G)

∑

t|xt 6=0

(eTt xt)
2 = χ(G).

This shows Φ1(G) ≥ χ(G).

Up to rescaling, we obtain the following formulation for χ(G) involving only
quadratic constraints:

χ(G) = min 1
n2

n∑

t=1

t(eTt xt)
2

s.t.

n∑

t=1

(eTt xt)
2 = n2

n∑

t=1

xTt (I +AGt
)xt = n

xt ∈ RV (Gt)
+ (t = 1, . . . , n).

(5.23)

It is not difficult to verify that the above program remains a formulation of χ(G)
if we replace the condition xt ≥ 0 (for all t) by the condition xt is 0/1 valued
(for all t). Therefore this gives a 0/1 (quadratically constrained) quadratic
programming formulation for the chromatic number involving O(n3) variables.

5.1.6 Copositive programming formulation for χ(G)

Starting from (5.23), we can now derive a copositive programming formulation
for χ(G). Namely, consider the program

Φ2(G) := min 1
n2

∑n
t=1 t〈J, Xt〉

s.t.

n∑

t=1

〈J, Xt〉 = n2

n∑

t=1

〈I +AGt
, Xt〉 = n

Xt ∈ C∗
nt (t = 1, . . . , n).

(5.24)

Proposition 5.1.13. Φ2(G) = χ(G).

Proof. The formulation (5.23) for χ(G) implies directly Φ2(G) ≤ χ(G). Con-
versely, let Xt (1 ≤ t ≤ n) be a feasible solution for (5.24). Consider t for
which Xt 6= 0. Say, Xt =

∑
it
xitx

T
it

where xit ≥ 0, xit 6= 0 for all it.



5.2. HIERARCHIES OF SEMIDEFINITE BOUNDS FOR χ∗(G) AND χ(G) 79

Thus λit :=
√
〈J, xitxTit〉 = eTt xit > 0. Set yit :=

xit

λit
. By assumption, we

have
∑

t〈n(I + AGt
) − J, Xt〉 = 0. By (5.20), each matrix n(I + AGt

) − J is
copositive, since n ≥ α(Gt). This implies 〈n(I + AGt

) − J, Xt〉 = 0 and thus
〈n(I+AGt

)−J, xitx
T
it
〉 = 0 for all it. From this follows that 〈I+AGt

, yity
T
it
〉 = 1

n

for all it. As eTt yit = 1, yit is feasible for the program (5.21), implying χ(G) ≤ t
whenever Xt 6= 0. Now, (1/n2)

∑
t t〈J, Xt〉 ≥ (1/n2)χ(G)

∑
t〈J, Xt〉 = χ(G),

giving Φ2(G) ≥ χ(G).

Rewriting the condition
∑
t〈I + AGt

, Xt〉n as
∑
t〈n(I + AGt

) − J, Xt〉 = 0,
the dual conic program of (5.24) reads:

max
y,z

y s.t.
1

n2
(t− y)J + z(n(I +AGt

) − J) ∈ Cnt, 1 ≤ t ≤ n. (5.25)

There is no duality gap since the program (5.25) is strictly feasible. Thus (5.25)
is yet another formulation of χ(G). This opens the road to another type of
hierarchy of relaxations for χ(G), obtained by approximating the copositive cone
by tractable subcones as suggested by Parrilo [75]. This type of approach based
on copositive programming has been studied e.g. in [9] for standard quadratic
optimization problems, in [50, 39, 76] for the stable set problem and recently in
[24] for the colouring problem. We will come back to it in Section 5.2.4.

5.2 Hierarchies of semidefinite bounds for χ∗(G)
and χ(G)

We have seen in the previous section how to construct semidefinite programming
lower bounds for the chromatic number of a graph from semidefinite program-
ming upper bounds on the stability number. Several hierarchies of such upper
bounds for the stability number have been presented in the previous chapter.
As we have seen, Lasserre’s hierarchy proposed in [57] gives the tightest bounds.
For this reason we focus in this section on this hierarchy and its cheaper variant
from Section 4.1.4. We show how they can be used and transformed to produce
hierarchies of lower bounds for the (fractional) chromatic number. We also dis-
cuss the link with another hierarchy recently proposed by Dukanovic and Rendl
[24] based on copositive programming.

5.2.1 Lasserre type hierarchies towards χ∗(G)

Given a graph G = (V,E) and an integer r ≥ 1, define the parameters

ψ(r)(G) := min t s.t. x ∈ Qr(G), x0 = t, xi = 1 (i ∈ V ),

= min t s.t. y ∈ RP≤2r(V ), y0 = t, yi = 1 (i ∈ V ),
yij = 0 (ij ∈ E), Mt(y) � 0

(5.26)
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and

ψ̃(r)(G) := min t s.t. x ∈ Lr(G), x0 = t, xi = 1 (i ∈ V ),

= min t s.t. y ∈ RP≤2r(V ), yi = 1 (i ∈ V ), yij = 0 (ij ∈ E),
y0 = t,M(T ; y) � 0 ∀T ⊆ V with |T | = t− 1.

(5.27)
Note that one can avoid the variable t, simply by replacing t by x0 in the

objective function. We choose these formulations in order to have a unified
presentation of the various bounds.; compare e.g. with (5.2), (5.5), (5.28), (5.29),
(5.41). The minimum is attained in programs (5.26) and (5.27), and moreover,

for fixed r, one can compute ψ(r)(G) and ψ̃(r)(G) to an arbitrary precision in

polynomial time. Obviously, ψ̃(r)(G) ≥ ψ(r)(G) since Qr(G) ⊆ Lr(G), with
equality for r = 1 as Q1(G) = L1(G).

Theorem 5.2.1. The parameters ψ(r)(G) satisfy:

(a) ψ(r)(G) ≤ ψ(r+1)(G),

(b) ψ(1)(G) = ϑ(G),

(c) ϑ+4(G) ≤ ψ(2)(G),

(d) ψ(r)(G) ≤ χ∗(G), with equality if r ≥ α(G),

(e) ψ(r)(G)las(r)(G) ≥ |V (G)|, with equality if G is vertex-transitive.

Proof. (a) is obvious. For (b), let x be optimal for (5.26) with r = 1 and let y be
such that y ∈ RP≤2(V ), y0 = x0, yi = xi (i ∈ V ), yij = 0 (ij ∈ E), M1(y) � 0

(recall the definition of Qr from (4.43)). Then M1(y) =

(
t eT

e M

)
� 0 or,

equivalently, M − 1
t ee

T � 0. After setting U := t(M − 1
t ee

T ) = tM −J, we can

rewrite the program for ψ(1)(G) in the following way

ψ(1)(G) = min t s.t. Uii = t− 1
Uij = −1 (ij ∈ E)
U � 0.

Thus, in view of (3.2), ψ(1)(G) = ϑ(G).
(c) Assume (t, x) is feasible for the program defining ψ(2)(G) and let y be such
that y ∈ RP4(V ), y0 = x0, yi = xi (i ∈ V ), yij = 0 (ij ∈ E), M2(y) � 0.
Consider the principal submatrix Y of M2(y) indexed by {k, ij, ik, jk} where
i, j, k are distinct elements of V and the vector w := (1, 1,−1,−1)T . Then,
wTY w ≥ 0 gives yik + yjk − yij ≤ 1. Setting U := t

t−1

(
(yij)

n
i,j=1 − 1

tJ
)
, one

can now verify that (t, U) is feasible for the program defining ϑ+4(G), which
shows the result.
(d) Let λ be an optimum solution for the minimization program defining χ∗(G)
(recall (3.12)). That is, eTλ = χ∗(G),

∑
S stable λSχ

S = e and λ ≥ 0. For r ∈ N,
define y :=

∑
S stable λSχ

S,r and x ∈ P≤1(V ) with xI := yI for I ∈ P≤1(V ).
Observe that x is feasible for (5.26) with objective value χ∗(G). This shows
ψ(r)(G) ≤ χ∗(G). Assume now r ≥ α(G) and consider an optimum solution
x for (5.26). Setting x̃ := 1

ψ(r)(G)
x, we see that x̃ is feasible for the program
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(4.20), i.e., x̃ ∈ Qr(G) = ST(G). Hence x̃ =
∑

S stable λSχ
S for some λS ≥ 0

with
∑
S λS = 1. Since

ψ(r)(G)ỹ = ψ(r)(G)
∑

S

λS

(
1
χS

)
=

(
ψ(r)(G)

e

)
,

we have χ∗(G) ≤ ψ(r)(G).
(e) Take again an optimum solution x for (5.26) and let n = |V (G)|. Since

1
ψ(r)(G)

x is feasible for (4.20) with objective value n
ψ(r)(G)

, we get las(r)(G) ≥
n

ψ(r)(G)
. Assume that G is vertex-transitive. Then there exists an optimum

solution x for (4.20) which is invariant under action of the automorphism group

of G. In particular, xi = xj for all i, j ∈ V and thus xi = las(r)(G)
n for all i ∈ V .

Then n
las(r)(G)

x is feasible for (5.26), yielding ψ(r)(G) ≤ n
las(r)(G)

.

Theorem 5.2.2. The parameters ψ̃(r)(G) satisfy:

(a) ψ̃(r)(G) ≤ ψ̃(r+1)(G),

(b) ψ̃(1)(G) = ϑ(G),

(c) ϑ+(G) ≤ ψ̃(2)(G),

(c’) ϑ+4(G) ≤ ψ̃(3)(G),

(d) ψ̃(r)(G) ≤ χ∗(G), with equality if r ≥ α(G),

(e) ψ̃(r)(G)`(r)(G) ≥ |V (G)|, with equality if G is vertex-transitive.

The proof of Theorem 5.2.2 is along the same lines with the proof of Theorem
5.2.1. The only difference is that we are not able to compare ϑ+4(G) with the
second bound in the hierarchy (5.27), but with the third one instead. However,

the second bound ψ̃(2)(G), introduced as ψ(G) in [37] and computed for some
Hamming and Kneser graph instances in [36] (see Chapter 6), remains at least
as strong as ϑ+(G).

Theorem 5.2.1 and Theorem 5.2.2 show that the reciprocity relations from
Theorem 3.3.1 for the pairs (ϑ, ϑ) = (las(1), ψ(1)) = (`(1), ψ̃(1)) and (α, χ∗) =

(las(r), ψ(r)) = (`(r), ψ̃(r)) (for r large, r ≥ α(G)) extend to any order r pair

(las(r), ψ(r)) and (`(r), ψ̃(r)) in the hierarchies.

5.2.2 The hierarchies Ψlas(r)(G) and Ψ`(r)(G) towards the

chromatic number

By applying the operator Ψ to the hierarchies las(r)(·) and `(r)(·) introduced in
Chapter 4, we obtain the following hierarchies of lower bounds for χ(G):

Ψlas(r)(G) = min t s.t. las(r)(Gt) = n
= min t s.t. y0 = 1,

∑
u∈V (Gt)

yu = n,

yuv = 0 (uv ∈ E(Gt)),
Mr(y) � 0

(5.28)
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where the variable y is indexed by P≤2r(V (Gt)), and

Ψ`(r)(G) = min t s.t. `(r)(Gt) = n
= min t s.t. y0 = 1,

∑
u∈V (Gt)

yu = n,

yuv = 0 (uv ∈ E(Gt)),
M(T ; y) � 0 (T ⊆ V (Gt), |T | = r − 1)

(5.29)

where the variable y is indexed by P≤r+1(V (Gt)). Recall that the hierarchy

las(r)(·) refines the hierarchy `(r)(·) and that the operator Ψ is monotone non-
increasing. Thus Ψlas(r)(G) ≥ Ψ`(r)(G). As α(Gt) ≤ n, from Corollary 4.1.8 we

get `(n)(Gt) = las(n)(Gt) = α(Gt) for all t ∈ N. Therefore, (2.31) implies:

Proposition 5.2.3. Ψlas(n)(G) = Ψ`(n)(G) = χ(G). �

In fact, the hierarchy Ψlas(r) refines the hierarchy ψ(r), and Ψ`(r) refines the

hierarchy ψ̃(r).

Proposition 5.2.4. For any integer r ≥ 1,

(a) ψ(r)(G) ≤ Ψlas(r)(G), and

(b) ψ̃(r)(G) ≤ Ψ`(r)(G).

The proof uses the following lemma.

Lemma 5.2.5. If (t, y) is feasible for the program (5.28), where y is invariant
under action of the symmetric group Sym(t), then yu = 1

t for all u ∈ V (Gt).

Proof. Let (t, y) be feasible for (5.28), such that y is invariant under action of
the symmetric group Sym(t). Observe that y ∈ RP≤2r(V (Gt)) satisfies y0 = 1,
yuv = 0 (uv ∈ E(Gt)),

∑
u∈V (Gt)

yu = n, and Mr(y) � 0. Let X denote the

principal submatrix of Mr(y) indexed by P≤1(V (Gt)). As y is invariant, with
respect to the partition of P≤1(V (Gt)) ∼ {0} ∪ V (Gt) into {0} ∪ V1 ∪ . . . ∪ Vt
(recall (2.30)), the matrix X has the block form




1
a
a
...
a

aT aT . . . aT

A B . . . B
B A . . . B
...

...
. . .

...
B B . . . A




︸ ︷︷ ︸
t blocks

(5.30)

where a = diag(A), diag(B) = 0, Aij = 0 for ij ∈ E(G), and eTa = n
t . By

taking the Schur complement with respect to the left upper corner and using
Lemma 2.4.4, we have A+(t−1)B− taaT � 0. This implies 〈J, A+(t−1)B〉 ≥
t(eTa)2 = n2

t . On the other hand, by Lemma 5.1.7, 〈J, A+(t−1)B〉 ≤ nTr(A+

(t − 1)B) = nTr(A) = n2

t . Hence equality holds, implying A + (t − 1)B = 1
tJ

and thus a = 1
t e. This shows yu = 1

t for all u ∈ V (Gt).

We now prove Proposition 5.2.4 (a) and the proof of (b) is analogous. Note
that we may assume w.l.o.g. that y in programs (5.28) (or (5.29)) is invariant
under action of the symmetric group Sym(t).
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Proof of Proposition 5.2.4 (a). Let (t, y) be feasible for (5.28) and y be invariant
under action of the symmetric group Sym(t). Define the vector ỹ ∈ RP≤2r(V )

with Ith entry ỹI := ty{pi|i∈I} for I ∈ P≤2r(V ) (where p is any fixed integer in
{1, . . . , t}) and y is feasible (5.28) and invariant under action of Sym(t). Then,
Mr(ỹ) � 0, since it coincides with the principal submatrix of Mr(ty) indexed
by {0} ∪ {{pi | i ∈ I} | I ∈ P≤r(V )\{0}}. Define x ∈ P≤1(V ) with xI := ỹI for
I ∈ P≤1(V ). Since, x0 = t and xi = 1 for i ∈ V , we have that (t, x) is feasible
for the program (5.26), which implies ψ(r)(G) ≤ Ψlas(r)(G).

Summarizing we have shown the following relations among the graph para-
meters:

|V (G)|
las(r)(G)

≤ ψ(r)(G) ≤ Ψlas(r)(G) ≤ χ(G), (5.31)

|V (G)|
`(r)(G)

≤ ψ̃(r)(G) ≤ Ψ
(r)
` (G) ≤ χ(G). (5.32)

Let us point out again that, while ψ(r)(G) and ψ̃(r)(G) remain below the frac-

tional chromatic number χ∗(G), Ψ
(r)
las (G) and Ψ`(r)(G) may reach the chromatic

number χ(G).

5.2.3 Exploiting symmetry to compute the bound Ψ`(2)(G)

We group here some observations about the complexity of computing the graph
parameter Ψ`(2)(·). We show how one can exploit symmetry, present in the
structure of the matrix involved in the program defining the parameter or in the
graph instance, in order to reduce the size of the program. In this way we will be
able to compute the graph parameters for certain large graphs (with as much as
220 nodes for certain Hamming graphs). We give more details and report about
computational results for Hamming and Kneser graphs in Chapter 6.

In order to determine Ψ`(2)(G), we need to compute the parameter

`(2)(Gt) = max
∑

i∈V (Gt)
xi s.t. x ∈ L2(Gt), x0 = 1

= max
∑

i∈V (Gt)
yi s.t. y ∈ RP≤3(V (Gt)), y0 = 1,

yij = 0 (ij ∈ E(Gt)),
M({u}; y) � 0 (u ∈ V (Gt)).

(5.33)

(recall (4.23)) for several queries of t ∈ N. To avoid trivial technicalities we
assume t ≥ 2 throughout the section. As was observed in the previous section,
the program (5.33) is invariant under action of Sym(t), hence we may assume
that y is invariant under action of Sym(t). Moreover, it suffices to require the
condition M({u}; y) � 0 for all u ∈ V1 instead of for all u ∈ V (Gt). (Recall
from (5.3) that V1 = {1i | i ∈ V } denotes the ‘first layer’ of the nodeset
V (Gt) = {pi | p = 1, . . . , t, i ∈ V } of Gt.) Furthermore, when G is vertex-
transitive, it suffices to require M({u}; y) � 0 for one choice of u ∈ V1 instead
of for all u ∈ V1.

Recall from Section 4.1.4 that M({u}; y) is the matrix indexed by A0 ∪
A{u} = P≤1(V ) ∪ {{u}, {u, v} | v ∈ V (Gt)} with the following structure:

M({u}; y) =

(
A0 A{u}
A{u} A{u}

)
.
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We have also seen that M({u}; y) can be block diagonalized, i.e.

M({u}; y) � 0 ⇐⇒ A0 −A{u} � 0, A{u} � 0. (5.34)

Let M2(u; y) be the principal submatrix of M({u}; y) indexed by A0 ∪ A{u} =
P≤1(V )∪{{u, v} | v ∈ V (Gt)} = {0}∪{{v} | v ∈ V (Gt)}∪{{u, v} | v ∈ V (Gt)}.
In other words, M2(u; y) is obtained from M({u}; y) by deleting the second
column indexed by {u}. We now show, using the invariance of y under action of
Sym(t), that the matrix M2(u; y) has a special block structure, whose symmetry
can be used to block-diagonalize it. To begin with, with respect to the partition
{0} ∪ {{v} | v ∈ V (Gt)} ∪ {{u, v} | v ∈ V (Gt)} of its index set, the matrix
M2(u; y) has the block form

M2(u; y) =




y0 cT dT

c C D
d D D



 .

with a, c, d, C,D being defined in terms of y. In view of (5.34), we have:

M2(u; y) � 0 ⇐⇒
(
y0 − yu cT − dT

c− d C −D

)
� 0 and D � 0. (5.35)

Next we observe that the invariance of y under Sym(t) implies a special block
structure for the matrices C and D.

Lemma 5.2.6. Consider the partition V (Gt) = V1 ∪ . . . ∪ Vt of the nodeset
of graph Gt, where Vp := {pi | i ∈ V } for p = 1, . . . , t. With respect to this
partition, the matrices C and D have the block form:

C =




A1 A2 · · · A2

A2 A1 · · · A2

...
...

. . .
...

A2 · · · · · · A1


 , D =




B1 B2 B2 · · · B2

(B2)T B3 B4 · · · B4

(B2)T B4 B3 · · · B4

...
...

...
. . .

...
(B2)T B4 · · · · · · B3



,

(5.36)
where1 A1, . . . , B4 ∈ Rn×n. Moreover, setting a1 := diag(A1), b1 := diag(B1),
b3 := diag(B3), we have c = [aT1 ... a

T
1 ]T , and d = [bT1 b

T
3 b

T
3 ... b

T
3 ]T .

Proof. Consider i, j ∈ V and p, q, p′, q′ ∈ {1, . . . , t} with p = q if and only if
p′ = q′. Then Cpi,qj = y{pi,qj} = y{p′i,q′j} = Cp′i,q′j ; indeed, as there exists
σ ∈ Sym(t) mapping {p, q} to {p′, q′}, the equality y{pi,qj} = y{p′i,q′j} follows
from the fact that y is invariant under action of Sym(t). This shows that C has
the form indicated in (5.36); the argument is analogous for matrix D.

To fix ideas, set u = 1h ∈ V1 (where h ∈ V is a given node of G). Then the
entries of A1, . . . , B4 are given by

A1
ij = y{1i,1j}, A

2
ij = y{1i,2j}, B

1
ij = y{1i,1h,1j},

B2
ij = y{1i,1h,2j}, B

3
ij = y{2i,1h,2j}, B

4
ij = y{2i,1h,3j}

(5.37)

1Here Ai or Bi should not be interpreted as powers of A or B. Namely, i is just an upper
index.
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for i, j ∈ V . (Recall that y{1i,1j} = y{pi,pj}, y{1i,2j} = y{pi,qj}, y{1i,2j,3h} =
y{pi,qj,rh} for any distinct p, q, r ∈ {1, . . . , t} since y is invariant under action of
Sym(t).) Moreover, the edge constraints yuv = 0 (for uv ∈ E(Gt)) in (4.23) can
be reformulated as

A1
ij = 0 if ij ∈ E(G),

B1
ij = 0 if {i, j, h} contains an edge of G,

B2
ij = 0 if hi ∈ E(G) or j ∈ {i, h},

B3
ij = 0 if ij ∈ E(G) or if h ∈ {i, j},

B4
ij = 0 if h ∈ {i, j},

diag(A2) = diag(B2) = diag(B4) = 0,

(5.38)

for distinct i, j ∈ V .
The next lemma indicates how one can further block-diagonalize the two

matrices appearing at the right hand side of the equivalence in (5.35).

Lemma 5.2.7. We have

D � 0 ⇐⇒
(

B1 (t− 1)B2

(t− 1)(B2)T (t− 1)B3 + (t− 1)(t− 2)B4

)
, B3 −B4 � 0.

Moreover,

(
y0 − yu cT − dT

c− d C −D

)
� 0 ⇐⇒ A1 −B3 −A2 +B4 � 0 and



y0 − yu aT1 − bT1 (t− 1)(aT1 − bT3 )

A1 −B1 (t− 1)(A2 −B2)
(t− 1)(A1 − B3) + (t− 1)(t− 2)(A2 −B4)


 � 0.

(We wrote only the upper triangular part in the above (symmetric) matrix.)

Proof. Consider the orthogonal matrices

M :=

(
In 0
0 Ut−1

)
, N :=

(
1 0
0 M

)
,

where Ut−1 is defined as in the proof of Lemma 2.11, i.e. Ut−1 is a (t−1)×(t−1)
block-matrix where, for p, q = 1, . . . , t−1, its (p, q)th block Ut−1(p, q) is the n×n
matrix defined as

Ut−1(p, q) :=





1√
t−1

In if p = 1 or q = 1,(
1√

t−1+t−1
− 1
)
In if p = q ≥ 2,

1√
t−1+t−1

In otherwise.

(5.39)

Recall that Ut−1 is symmetric and orthogonal. A simple calculation shows that

MDM =




B1
√
t− 1B2 0 . . . 0√

t− 1(B2)
T B3 + (t− 2)B4 0 . . . 0

0 0 B3 −B4 0
...

...
...

. . .
...

0 0 0 . . . B3 −B4



.
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The first assertion of the lemma now follows after multiplying the second row/column
block by

√
t− 1. Next we have

N

(
y0 − yu cT − dT

c− d C −D

)
N =

(
y0 − yu (c− d)TM
M(c− d) M(C −D)M

)
.

As the matrix C −D has the same type of block shape as D, we deduce from
the above that M(C−D)M is block-diagonal. More precisely, the first diagonal
block has the form

(
A1 −B1

√
t− 1(A2 −B2)√

t− 1(A2 −B2)T (A1 −B3) + (t− 2)(A2 −B4)

)

and the remaining t − 2 diagonal blocks are all equal to A1 − B3 − A2 + B4.
One can moreover verify that (c − d)TM =

(
aT1 − bT1 ,

√
t− 1(aT1 − bT3 ), 0 . . . 0

)
.

From this follows the second assertion of the lemma.

Summarizing, we have obtained the following more compact SDP for the
parameter `(2)(Gt)

`(2)(Gt) = max teTa1 s.t. A1, A2, B1, B2, B3, B4 ∈ Rn×n satisfy (5.38),

a1 = diag(A1), b1 = diag(B1), b3 = diag(B3),




1 − (a1)h aT1 − bT1 (t− 1)(aT1 − bT3 )
A1 −B1 (t− 1)(A2 −B2)

(t− 1)(A1 −B3) + (t− 1)(t− 2)(A2 −B4)


 � 0,

(
B1 (t− 1)B2

(t− 1)B3 + (t− 1)(t− 2)B4

)
� 0,

A1 −A2 −B3 +B4 � 0,

B3 −B4 � 0.
(5.40)

This formulation applies when G is vertex-transitive; here h is any fixed node
of G. Recall that Ψ`(2)(G) can be obtained by computing `(2)(Gt) for O(log n)
queries of the parameter t and, for G vertex-transitive, the computation of each
`(2)(Gt) is via an SDP with four LMI’s involving matrices of size 2n + 1, 2n,
n, n, respectively. The above reductions obviously apply to the bound Ψ

`
(2)
+

(obtained by adding nonnegativity). We use the formulation (5.40) in Sections
6.2 and 6.3 to compute bounds for Hamming and Kneser graphs.

5.2.4 Link with copositive programming based hierarchies

We have seen two possible constructions for hierarchies of bounds towards α(G)
and χ∗(G), based on the method of Lasserre and its ‘block diagonal’ variation.
As mentioned in Chapter 4 there are several other possible constructions for
approximating the stable set problem. However, to the best of our knowledge,
such constructions were much less investigated for the colouring problem. Re-
cently Dukanovic and Rendl [24] investigated a hierarchy of lower bounds for
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χ∗(G), which is closely related to the hierarchy of de Klerk and Pasechnik [50]
for α(G) presented in Section 4.2. Both are based on copositive programming
and some of its tractable relaxations in terms of sums of squares of polynomi-
als, proposed by Parrilo [75]. Dukanovic and Rendl [24] propose an analogous
hierarchy toward the fractional chromatic number. To start with they show the
following copositive programming formulation for χ∗(G):

Theorem 5.2.8. For any graph G

χ∗(G) = min t s.t. Xii = t (i ∈ V ), Xij = 0 (ij ∈ E(G))
X ∈ C∗

n, X − J � 0.
(5.41)

Using the idea of Parrilo [75] they replace the cone Cn by its subcone K
(r)
n

in (5.41), i.e. for r ∈ Z+ they replace C∗
n by C(r)

n and define

ψ̂(r)(G) := min t s.t. Xii = t (i ∈ V ), Xij = 0 (ij ∈ E(G))

X ∈ C(r)
n , X − J � 0.

(5.42)

Thus, ψ̂(r)(G) ≤ ψ̂(r+1)(G) ≤ χ∗(G). Moreover, it is proved in [24] that

ψ̂(0)(G) = ϑ+(G) and that the pair (ϑ̂(r), ψ̂(r)(G)) satisfies the reciprocity rela-
tion:

ϑ̂(r)(G)ψ̂(r)(G) ≥ |V (G)|, with equality if G is vertex-transitive, (5.43)

thus extending the result given in Theorem 3.3.1(c).

Now one may wonder what is the link between the two hierarchies las(r)

and ϑ(r) for α, and between the two hierarchies ψ(r) and ψ̂(r)(G) for χ∗. Recall
definitions for Q+

r (G) and L+
r (G) from (4.43) and (4.48) respectively and define:

ψ
(r)
+ (G) := min t s.t. x ∈ Q+

r (G), x0 = t, xi = 1 (i ∈ V ), (5.44)

and

ψ̃
(r)
+ (G) := min t s.t. x ∈ L+

r (G), x0 = t, xi = 1 (i ∈ V ). (5.45)

The analogue of Theorem 5.2.1 (e) holds for the pairs
(
las

(r)
+ , ψ

(r)
+

)
and

(
`
(r)
+ , ψ̃

(r)
+

)
as well and we have

las
(1)
+ (G) = `

(1)
+ (G) = ϑ′(G) = ϑ̂(0)(G),

ψ
(1)
+ (G) = ψ̃

(1)
+ (G) = ϑ+(G) = ψ̂(0)(G).

The reciprocity relations, Corollary 4.2.22 and Proposition 4.2.23 imply:

Proposition 5.2.9. For any vertex-transitive graph G

ψ̂(1)(G) ≤ ψ̃
(2)
+ (G), and

ψ̂(r−1)(G) ≤ ψ
(r)
+ (G) when r ≥ 1.
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Proof. Assume that G is vertex transitive. Then for any r ∈ N\{0} we have

ψ̂(r−1)(G) = |V (G)|bϑ(r−1)(G)
, ψ̃(r)(G) = |V (G)|

`(r)(G)
, and ψ(r)(G) = |V (G)|

las(r)(G)
. From Corol-

lary 4.2.22 we have ψ̂(r−1)(G) = |V (G)|bϑ(r−1)(G)
≤ |V (G)|

las(r)(G)
= ψ

(r)
+ (G). Finally, Propo-

sition 4.2.23 implies ψ̂(1)(G) = |V (G)|bϑ(1)(G)
≤ |V (G)|

`(2)(G)
= ψ̃(2)(G).

It is an open question to determine whether the above inequalities remain

valid when G is not vertex-transitive. In [24] the bounds ψ̂
(1)
+ (G), ψ̃(2)(G) and

ψ̃
(2)
+ (G) were compared for some instances of Hamming graphs (which are indeed

vertex-transitive). In most of the instances presented there the first inequality
in Proposition 5.2.9 is strict.

5.3 Conclusions

In this chapter we defined and studied hierarchies of lower bounds for the frac-
tional chromatic number χ∗(G) and the chromatic number χ(G) of a graph
G.

In Section 5.1 we used reduction (2.31) from the colouring problem to the
stable set problem. This motivated the definition of the operator Ψ which
maps (polynomial time) upper bounds for α(G) to (polynomial time) lower
bounds for χ(G). In particular, Ψα(G) = χ(G), Ψχ(G) = Ψχ∗(G) = ω(G) and

Ψϑ(G) =
⌈
ϑ(G)

⌉
. An interesting implication of these properties of Ψ, is that a

polynomial time computable graph parameter nested between χ∗(G) and χ(G)
cannot exist, unless P=NP. We also gave copositive and quadratic programming
formulations for χ(G), which can be seen as analogs of Motzkin-Straus’ result
for the stability number.

In Section 5.2 we presented hierarchies of semidefinite lower bounds, corre-
sponding to the ‘stability number’ hierarchies from Chapter 4, for χ∗(G) and

χ(G). Two hierarchies ψ(t)(G) and ψ̃(t)(G) (t ∈ N\{0}), based on the ‘moment
matrix’ approach of Lasserre and its new block diagonal version, that converge
to χ∗(G) in α(G) steps, and their counterparts Ψlas(t)(G) and Ψ`(t)(G) that
converge to χ(G) in V (G) steps, were proposed and studied. We showed how to
use symmetry to reduce the sizes of the semidefinite programs defining Ψ`(2)(G).

The hierarchy ψ̂(t)(G) (t ∈ N), closely linked to the hierarchy of de Klerk and
Pasechnik, based on the copositive formulation for χ(G) was also revisited.

We will show how to compute the second order bounds ψ̃(2)(G) and Ψ`(2)(G)
when G is a Hamming or Kneser graph in Chapter 6. In Section 6.27 we will
propose another relaxation ψK , K being a clique in G, of ψ(2)(G), which leads
to strong bounds for χ(G) when G is a nonsymmetric graph.
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Chapter 6

Computational results

In this chapter we investigate how to compute the bounds presented in this thesis
for certain graph classes. Our focus is the new block diagonal hierarchy, and in
particular, the bounds `(r)(·) and ψ̃(r)(·) where r ≤ 3, and the bound Ψ`(2)(·).
To compute these bounds we use symmetry reduction and block diagonalization
techniques extensively.

In Section 6.1 we present results about Paley graphs. As well known in-
stances of pseudo-random graphs, Paley graphs are very similar to typical graphs
in G(q, 1/2), the class of random graphs on q nodes with edge probability 1/2.
Paley graphs are also used e.g. by Shearer [86] for bounding the Ramsey num-
ber. For a detailed study of Paley graphs see Bollobas [7, Chap. 13.2]. We
show how to compute upper bounds for the stability numbers of Paley graphs
using the compact SDP formulation for the bounds `(r)(·) defined in Subsection
4.1.4. We reduce the number of blocks in SDPs considerably by exploring an
edge transitivity property.

Sections 6.2 and 6.3 contain results on Hamming and Kneser graphs. colour-
ing Hamming graphs is of interest e.g. to the Borsuk problem (see [96]), while
the chromatic number of Kneser graphs was computed in the celebrated paper
of Lovász [63] using topological methods (see e.g. [67] for a study of topological
lower bounds for the chromatic number).

In Section 6.2 we compute the bounds ψ̃(2)(·) and Ψ`(2)(·) for Hamming
graphs. As a crucial ingredient we use the block diagonalization of the Ter-
williger algebra given by Schrijver [85]. In [85] the author proposes an upper
bound for the stability number of Hamming graphs. Laurent [60] shows that
this bound is just a relaxation of the bound `(2)(·), and uses the same block
diagonalization technique to compute `(2)(·). The same recipe works for com-

puting the parameter ψ̃(2)(·) of Hamming graphs, due to its reciprocity relation

to `(2)(·). For some instances, the parameter ψ̃(2)(G) improves the theta number
ϑ̄(G) substantially. It can be further improved by adding nonnegativity. Still,

Ψ
`(2)(G) hardly improves upon ψ̃(2)(G) for Hamming graphs.

We use the technique from [85] extended to constant-weight codes to com-
pute the bound Ψ`(2)(·) for Kneser graphs in Section 6.3. The fractional chro-
matic and the chromatic number of a Kneser graph are known (see [64] and

[63]). Although the bound ψ̃(2)(·) coincides with the fractional chromatic num-

89
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ber, Ψ
(2)
` (·) is at least as good and sometimes reaches χ(G).

We introduce a further variation ψK(G), K being a clique in G, of our bound
ψ(2)(·) in Section 6.4. It can be especially useful for graphs without apparent
symmetries. Using a simple block diagonalization argument, ψK(G) can be
formulated via a semidefinite program involving |K|+1 matrices of size |V (G)|+
1. We report experimental results on some DIMACS benchmark instances. The
bound ψK is quite strong for some dense random graphs although, as a variation
of ψ̃(2)(·), it remains below the fractional chromatic number.

6.1 Experimental results for Paley graphs

Here we present some computational results for Paley graphs. We compute the
bounds `(t)(G) (t ≤ 3) from (4.23) for the stability number of Paley graphs G
with at most 809 nodes.

Consider a finite field Fq where q is a prime power satisfying q = 1 (mod 4).
The Paley graph Pq is the graph whose vertices are the elements of Fq, two
elements u 6= v ∈ Fq being adjacent if v − u is a square in Fq. This defines an
undirected graph since, as q = 1 (mod 4), −1 is a square in Fq and thus v − u
is a square if and only if u− v is a square in Fq.

The Paley graph Pq is isomorphic to its complementary graph, strongly
regular, and vertex transitive. The automorphism group of Pq consists of the
affine mappings φab : Fq → Fq, defined by φab(u) = au + b (u ∈ Fq), where
a, b ∈ Fq, a 6= 0 square in Fq. It is easy to prove that

E(Pq) = {{σ(h), σ(k)} | σ ∈ Aut(Pq)} if hk ∈ E(Pq); and (6.1)

E(P q) = {{σ(h), σ(k)} | σ ∈ Aut(Pq)} if hk ∈ E(P q). (6.2)

Recall from Theorem 3.3.1 that ϑ(G)ϑ(G) = |V (G)| when G is a vertex-
transitive graph. Since the Paley graph Pq is isomorphic to its complementary
graph, we have ϑ(Pq) = ϑ

(
P q
)

=
√
q. This gives the well known analytical

upper bound
√
q for α(Pq) (cf. e.g. [7, Thm. 13.14]). When q is a square,

equality α(Pq) =
√
q (also equal to the chromatic number of Pq) is proved in

[11]. A small improvement is proposed by Maistrelli and Penman [66] who show
that α(Pq) ≤

√
q − 4 when q is not a square and q 6= 5.

J.B. Shearer has computed α(Pq) for all prime q ≤ 7000. His results can
be found at http://www.research.ibm.com/people/s/shearer/indpal.html9. In
order to illustrate the quality of the relaxations L+

t (Pq), we have computed the

bounds `
(t)
+ (Pq) for t = 2, 3. For the first bound we have `

(1)
+ (Pq) = ϑ′(Pq) =

ϑ(Pq) =
√
q, which follows from (6.2) and Proposition 3.3.2.

We now give some details about computing `
(2)
+ (Pq) and `

(3)
+ (Pq). The basic

tool we use is the invariance of the semidefinite program involved for optimizing∑
u∈Fq

xu over L+
t (Pq).

Here we consider the Paley graph G = Pq and the group G = Aut(Pq). The
semidefinite program maxx∈L+

t (Pq)

∑
u∈Fq

xu is invariant under the action of G
and thus we can assume w.l.o.g. that the variable y ∈ RP≤t+1(Fq) is invariant
under the action of G (recall the definition of Lt(G) from (4.22)). As Pq is vertex
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transitive,

M({h}; y) � 0 ⇐⇒M({h′}; y) � 0 for any h, h′ ∈ Fq.

Moreover, for two pairs {h, k}, {h′, k′} which are simultaneously edges or non-
edges in Pq the properties (6.1) and (6.2) yield

M({h, k}; y) � 0 ⇐⇒M({h′, k′}; y) � 0.

Therefore, in the definition of L2(Pq), it suffices to require M({h}; y) � 0 for
one choice of h ∈ Fq and, in the definition of L3(Pq), it suffices to require
the conditions M({h1, k1}; y) � 0 and M({h2, k2}; y) � 0 for one choice of a
non-edge {h1, k1} and one choice of an edge {h2, k2} of Pq.

q `
(1)
+ (Pq) = ϑ(Pq) =

√

q `
(2)
+ (Pq) `

(3)
+ (Pq) α(Pq)

61 7.810 5.465 5.035 5
73 8.544 5.973 5.132 5
89 9.434 6.304 5.391 5
97 9.849 7.398 6.596 6
101 10.050 6.611 5.496 5
109 10.440 7.366 6.578 6
113 10.630 7.599 7.009 7
137 11.705 8.200 7.047 7
149 12.207 8.231 7.136 7
157 12.530 8.707 7.485 7
173 13.153 9.426 8.050 8
181 13.454 9.112 7.606 7
193 13.892 9.210 7.651 7
197 14.036 9.226 8.063 8
229 15.133 10.290 9.076 9
233 15.264 10.182 8.245 7
241 15.524 9.891 8.272 7
257 16.031 10.247 8.131 7
269 16.401 10.624 8.778 8
277 16.643 10.340 8.670 8
281 16.763 10.605 8.397 7
293 17.117 10.937 9.183 8
313 17.692 11.551 9.451 8
317 17.804 12.337 10.363 9
337 18.358 11.658 9.464 9
401 20.025 12.753 10.023 9
509 22.561 14.307 11.185 9
601 24.515 16.077 12.478 11
701 26.476 16.857 12.824 10
809 28.443 17.371 13.494 11

Table 2: Optimizing over L+
t (Pq) for Paley graphs

We can simplify the programs even further by applying Lemma 2.4.5. Since

M({h}; y) � 0 ⇐⇒ A0(y) −A{h}(y) � 0 and A{h}(y) � 0,

optimization over L2(Pq) can be done via a semidefinite program involving
two matrices, each of size q + 1. Each of the conditions M({h1, k1}; y) �
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0, M({h2, k2}; y) � 0 can be reformulated as four conditions using (4.25).
As {h2, k2} is an edge in Pq, we deduce from Lemma 4.1.6 that the matrix
A{h2,k2}(y) is identically zero. By invariance of the variable y,

A{h1}(y) � 0 =⇒ A{h}(y) � 0 for all h ∈ Fq, and

A{h1}(y) −A{h1,k1}(y) � 0 =⇒ A{k1}(y) −A{h1,k1}(y) � 0.

Summarizing, optimization over L3(Pq) can be done via a semidefinite program
involving the conditions:

A0(y) −A{h1}(y) −A{k1}(y) +A{h1,k1}(y) � 0,
A{h1}(y) −A{h1,k1}(y) � 0, A{h1,k1}(y) � 0,

A0(y) −A{h2}(y) −A{k2}(y) � 0,

thus involving four matrices, each of size q+ 1. Moreover, for optimization over
L2(Pq), we have variables corresponding to nodes, non-edges and stable sets of
size 3, while for optimization over L3(Pq), we additionally have variables corre-
sponding to all stable sets of size 4. For example, the program for optimizing
over L3(P809) involves 34 (resp., 842) variables corresponding to the stable sets
of size 3 (resp., of size 4).

Computational results for Paley graphs Pq for various q ≤ 809 are given in
Table 2. We can observe that for all instances the bounds `(2)(Pq) and `(3)(Pq)
are much smaller than ϑ(Pq) =

√
q. Moreover, for all Paley graphs Pq with

q < 230, the bound b`(3)(Pq)c coincides with α(G).

6.2 Bounds for Hamming graphs

Given an integer n ≥ 1 and D ⊆ N := {1, . . . , n}, the Hamming graph H(n,D)
is the graph G with node set V (G) := P(N) and with an edge (I, J) if |I4J | :=
|I\J | + |J\I| ∈ D (for I, J ∈ P(N)). Hence |V (G)| = 2n.

We indicate here how to compute the parameters ψ̃(2)(G) and Ψ`(2)(G) when
G is a Hamming graph. As the programs defining these parameters for a Ham-
ming graph H(n,D) involve matrices of size O(2n), they cannot be solved di-
rectly for interesting values of n. However one can use the fact that H(n,D)
has a large automorphism group. Each permutation σ ∈ Sym(n) induces an
automorphism of G, by letting σ(I) := {σ(i) | i ∈ I} for I ∈ P(N) and, for any
K ∈ P(N), the switching mapping sK defined by sK(I) := I4K (for I ∈ P(N))
is also an automorphism of G. Then Aut(G) = {σsK | σ ∈ Sym(n), K ∈ P(N)}
and |Aut(G)| = n!2n. It turns out that the block matrices appearing in those
programs belong to the Terwilliger algebra of the Hamming graph. Using the
explicit block diagonalization of the Terwilliger algebra given in [85] we are able

to block-diagonalize the matrices and thus compute ψ̃(2)(G) and Ψ`(2)(G) for
G = H(n,D) for n up to 20.

6.2.1 Compact formulation for ψ̃(2)(G) for Hamming graphs

As the graph G = H(n,D) is vertex-transitive, we have ψ̃(2)(G) = 2n

`(2)(G)
by

Theorem 5.2.2 (e). It is shown in [60] how to compute the parameter `(2)(G)
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(when D is an interval [1, d] but the reasoning is the same for any D). The basic
idea is that the matrix M({h};x), appearing in the program defining `(2)(G),
is a block matrix whose blocks lie in the Terwilliger algebra and thus it can
be block-diagonalized. We recall the details, directly for the parameter ψ̃(2)(G)
as they will be useful for our treatment of the parameter Ψ`(2)(G) in the next
section.

Recall first the definition from (5.27):

ψ̃(2)(G) : min t s.t. x ∈ RP≤3(V (G)), xi = 1 (i ∈ V (G)),
xij = 0 (ij ∈ E(G)),
x0 = t, M({u};x) � 0 (u ∈ V (G))

= min t s.t. x ∈ RP≤3(V (G)), xi = 1 (i ∈ V (G)),
xij = 0 (ij ∈ E(G)),
x0 = t,M2(u;x) � 0 (u ∈ V (G)).

(6.3)

where M2(u;x) is the principal submatrix of M({u};x) indexed by P≤1(V ) ∪
{{u, v} | v ∈ V (G)} = {0} ∪ {{v} | v ∈ V (G)} ∪ {{u, v} | v ∈ V (G)}. (Recall
from Subsection 5.1.3 that M2(u;x) is simply obtained from M({u};x) by delet-
ing the second column indexed by {u}.) By adding the nonnegativity condition

x ≥ 0 in (6.3) one gets the formulation for ψ̃
(2)
+ (G) (compare with (5.45)).

Let x be feasible for the program (6.3). As G is vertex-transitive it suffices
to require the condition M2(h;x) � 0 in (6.3) for one choice of h ∈ V (G).
Moreover, we may assume that the variable x is invariant under action of the
automorphism group of G. To fix ideas, let us choose the node h := ∅ of G (the
empty subset of N). The matrix M2(∅;x) has the block form

M2(∅;x) =




t eT bT

e A B
b B B



 (6.4)

where A,B, e, b are indexed by V (G) = P(N) and diag(A) = e and diag(B) = b.
It can be block diagonalized and (5.35) reads:

M2(∅;x) � 0 ⇐⇒
(
t− 1 eT − bT

e− b A−B

)
� 0 and B � 0. (6.5)

As x is invariant under action of Aut(G), it follows that AI,J = x{I,J} =
x{I′,J′} = AI′,J′ if |I 4 J | = |I ′ 4 J ′|. In other words, the matrix A lies in the
Bose-Mesner algebra; say,

A =

n∑

k=0

xkM
n
k =

n∑

i,j,p=0

xi+j−2pM
p,n
i,j (6.6)

for some reals xk. Moreover, BI,J = x{∅,I,J} = x{∅,I′,J′} = BI′,J′ if |I ′| = |I|,
|J ′| = |J | and |I ′ ∩ J ′| = |I ∩ J |. In other words, the matrix B lies in the
Terwilliger algebra; say,

B =

n∑

i,j,p=0

xpi,jM
p,n
i,j (6.7)

for some reals xpi,j . The following relations link the parameters xi, x
p
i,j .
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Lemma 6.2.1. For i, j, p = 0, . . . , n,

xi = x0
0,i,

xpi,j = xpj,i = xj−pi+j−2p,j = xi−pi+j−2p,i

(6.8)

and the edge equations read

xpi,j = 0 if {i, j, i+ j − 2p} ∩ D 6= ∅. (6.9)

Proof. If |I| = i, then xi = A∅,I = x{∅,I}B∅,I = x0
0,i. Let |I| = i, |J | = j

and |I ∩ J | = p. Then, xpi,j = BI,J = BJ,I = xpj,i. Moreover, xpi,j = BI,J =

x{∅,I,J}x{I,∅,I4J} = BI,I4Jx
i−p
i+j−2p,i. This shows (6.8). The edge conditions

read BI,J = x{I,∅,J} = 0 if {|I|, |J |, |I 4 J |} ∩ D 6= ∅, giving (6.9).

We can now use the results about Terwilliger algebra from Subsection 2.4.2
(Theorem 2.4.8 and Lemma 2.4.10) for block-diagonalizing the matrices occur-
ring in (6.5). For k = 0, . . . , bn/2c, define the matrices

Ak :=

(
∑

p

αp,ni,j,kx
0
0,i+j−2p

)n−k

i,j=k

, Bk :=

(
∑

p

αp,ni,j,kx
p
i,j

)n−k

i,j=k

(6.10)

corresponding respectively to the matrices A, B in (6.6) and (6.7). Define the
vector

c̃ :

(√(
n

i

)(
1 − x0

0,i

)
)n

i=0

∈ Rn+1. (6.11)

Then the parameter ψ̃(2)(H(n,D)) can be reformulated in the following way:

ψ̃(2)(H(n,D)) = min t s.t. x0
0,0 = 1, xpi,j satisfy (6.8), (6.9), and

Ak −Bk � 0 (k = 1, . . . , bn/2c),

Bk � 0 (k = 0, 1, . . . , bn/2c),
(
t− 1 c̃T

c̃ A0 −B0

)
� 0,

(6.12)

where Ak, Bk, c̃ are as in (6.10) and (6.11). To compute ψ̃
(2)
+ (H(n,D)), simply

add the nonnegativity condition xpi,j ≥ 0 to (6.12).

6.2.2 Compact formulation for Ψ`(2)(G) for Hamming graphs

We now give a more compact formulation for the parameter Ψ`(2)(G) when
G = H(n,D). As explained in Subsection 5.1.3, one has to evaluate `(2)(Gt) for
various choices of t ∈ N. In Subsection 5.2.3 we explored symmetry in Gt. In
particular, we formulated `(2)(Gt) via the block-diagonal SDP (5.40). As for the

parameter ψ̃
(2)
+ (H(n,D)), we now observe that A1, . . . , B4 and thus all blocks

in the matrices in (5.40) lie in the Terwilliger algebra.



6.2. BOUNDS FOR HAMMING GRAPHS 95

We fix h := ∅, the empty subset of N . The entries of A1, . . . , B4 are given
by (5.37):

A1
IJ = y{1I,1J}, A

2
IJ = y{1I,2J}, B

1
IJ = y{1I,1∅,1J},

B2
IJ = y{1I,1∅,2J}, B

3
IJ = y{2I,1∅,2J}, B

4
IJ = y{2I,1∅,3J}

(6.13)

for I, J ∈ P(N). (Recall that y{1I,1J} = y{pI,pJ}, y{1I,2J} = y{pI,qJ}, y{1I,2J,3∅} =
y{pI,qJ,r∅} for any distinct p, q, r ∈ {1, . . . , t} since y is invariant under action of
Sym(t).) The edge constraints yuv = 0 (for uv ∈ E(Gt)) are given by (5.38)

A1
IJ = 0 if |I 4 J | ∈ D,

B1
IJ = 0 if {I, J, ∅} contains an edge of H(n,D),

B2
IJ = 0 if |I| ∈ D or J ∈ {I, ∅},

B3
IJ = 0 if |I 4 J | ∈ D or if ∅ ∈ {I, J},

B4
IJ = 0 if ∅ ∈ {I, J},

diag(A2) = diag(B2) = diag(B4) = 0,

(6.14)

for distinct I, J ∈ P(N).

Lemma 6.2.2. The matrices As (s = 1, 2) belong to the Bose-Mesner algebra
Bn and the matrices Bs (s = 1, 2, 3, 4) belong to the Terwilliger algebra An. Say,
As =

∑n
i=0 x(s)iM

n
i (s = 1, 2) and Bs =

∑n
i,j,p=0 y(s)

p
i,jM

p,n
i,j (s = 1, 2, 3, 4).

Then,

x(s)i = y(s)00,i for s = 1, 2, i = 1, . . . , n,

y(s)pi,j = y(s)pj,i = y(s)j−pi+j−2p,j = y(s)i−pi+j−2p,i (for s = 1, 4),

y(2)pi,j = y(2)i−pi,i+j−2p, y(3)pi,j = y(3)pj,i,

y(3)pi,j = y(2)i−pi+j−2p,i for i, j, p = 0, . . . , n.

(6.15)

Moreover, the edge conditions can be reformulated as

y(1)pi,j = 0 if {i, j, i+ j − 2p} ∩ D 6= ∅,
y(2)ii,i = y(4)ii,i = 0 for i = 0, . . . , n,
y(2)pi,j = 0 if i ∈ D or j = 0,

y(3)pi,j = 0 if i+ j − 2p ∈ D or i = 0 or j = 0,

y(4)pi,j = 0 if i = 0 or j = 0,

(6.16)

for distinct i, j ∈ {0, 1, . . . , n}.

Proof. We use the fact that A1, . . . , B4 satisfy (6.13) and (6.14) where the vari-
able y is assumed to be invariant under action of Sym(t) × Aut(G) ⊆ Aut(Gt).
We have A1, A2 ∈ Bn, since the entries A1

I,J = y{1I,1J} and A2
I,J = y{1I,2J}

depend only on |I 4 J |. (Indeed, if |I ′ 4 J ′| = |I 4 J | then there exists
σ ∈ Aut(G) mapping {I, J} to {I ′, J ′} and thus, by the invariance of y un-
der action of σ, y{1I,1J} = y{1I′,1J′} and y{1I,2J} = y{1I′,2J′}.) Similarly, for
s = 1, . . . , 4, Bs ∈ An since the entry BsI,J depends only on |I|, |J |, |I ∩ J |. The

proof for the identities x(s)i = y(s)00,i (s = 1, 2) and y(1)pi,j = . . . = y(1)i−pi+j−2p,i

is identical to the proof of (6.8). Let I, J ∈ P(N) with |I| = i, |J | = j,
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|I ∩ J | = p. Then, y(4)pi,j = B4
I,J = y{1∅,2I,3J} = y{1∅,3I,2J} (use the invariance

of y under the permutation (2, 3) ∈ Sym(t)), thus equal to B4
J,I = y(4)pj,i.

Moreover, y(4)pi,j = y{1∅,2I,3J} = y{1I,2∅,3I4J} = y{2I,1∅,3I4J} (first apply
the switching mapping by I and then permute the indices 1, 2), thus equal to
B4
I,I4J = y(4)i−pi,i+j−2p. Next we have: y(2)pi,j = B2

I,J = y{1I,1∅,2J}y{1∅,1I,2I4J}
(apply the switching mapping by I), thus equal to B2

I,I4J = y(2)i−pi,i+j−2p. Fi-

nally, y(3)pi,j = B3
I,Jy{2I,1∅,2J} = B3

J,I = y(3)pj,i, and y(3)pi,j = y{2I,1∅,2J} =
y{2∅,1I,2I4J} = y{1∅,2I,1I4J} (first switch by I and then permute 1, 2), thus

equal to B2
I4J,I = y(2)i−pi+j−2p,i. The identities (6.16) follow directly from (5.38).

As the blocks of the matrices in the program (5.40) lie in the Terwilliger
algebra, the matrices in (5.40) can be block-diagonalized, as explained in Sub-
section 2.4.2. For this, define the matrices

Ask :=

(
∑

p

αp,ni,j,ky(s)
0
i+j−2p,0

)n−k

i,j=k

, Bsk :

(
∑

p

αp,ni,j,ky(s)
p
i,j

)n−k

i,j=k

(6.17)

corresponding, respectively, to the matrices As (s = 1, 2) and Bs (s = 1, 2, 3, 4)
and define the vectors

ã :

(√(
n

i

)(
y(1)00,0 − y(1)ii,i

)
)n

i=0

, b̃ :=

(√(
n

i

)(
y(1)ii,i − y(3)ii,i

)
)n

i=0

∈ Rn+1.

(6.18)
Using Lemmas 2.4.9 and 2.4.10, we obtain the following reformulation for the
parameter `(2)(Gt) from (5.40)

`(2)(Gt) = max 2nty(1)00,0 s.t. y(s)pi,j (s = 1, . . . , 4) satisfy (6.15), (6.16) and




1 − y(1)00,0 ãT (t− 1)b̃T

A1
0 −B1

0 (t− 1)(A2
0 −B2

0)
(t− 1)(A1

0 −B3
0) + (t− 1)(t− 2)(A2

0 −B4
0)


 � 0,

(
A1
k −B1

k (t− 1)(A2
k −B2

k)
(t− 1)(A1

k −B3
k) + (t− 1)(t− 2)(A2

k −B4
k)

)
� 0 (k = 1, ..., bn/2c),

(
B1
k (t− 1)B2

k

(t− 1)B3
k + (t− 1)(t− 2)B4

k

)
� 0 (k = 0, . . . , bn/2c),

A1
k −A2

k −B3
k +B4

k � 0 (k = 0, . . . , bn/2c),

B3
k −B4

k � 0 (k = 0, . . . , bn/2c),
(6.19)

where Ask, B
s
k, ã, b̃ are as in (6.17), (6.18). To compute `

(2)
+ (Gt) simply add the

nonnegativity condition y(s)pi,j ≥ 0 on all variables.

6.2.3 Numerical results for Hamming graphs

We have tested the various bounds on some instances of Hamming graphs. In
what follows we use the following convention: For an integer 1 ≤ d ≤ n, H(n, d)
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(resp., H−(n, d), H+(n, d)) denotes the graph H(n,D) with D = {d} (resp.,
D = {1, . . . , d}, {d, . . . , n}). The papers [26, 25, 24] give numerical results for
the parameters ϑ (G), ϑ+ (G) for such instances.

In Table 3, the symbol ‘*’ indicates the strict inequality Ψ`(2)(G) > dψ̃(2)(G)e,
which happens for H(10, 8) and H+(10, 8), and we indicate in bold the values
satisfying LB = χ(G) for the obtained lower bound LB. (Indeed in these in-
stances, LB = 2n−1, while P(V ) can be covered by the 2n−1 distinct pairs
{I, V \ I} (I ⊆ V ) which are stable sets as n 6∈ D.)

The results in Table 3 indicate that the parameters ψ̃(2)(G) and ψ̃
(2)
+ (G)

give on some instances a major improvement on Szegedy’s bound ϑ+ (G). On
the other hand, in most cases, the parameter Ψ`(2)(G) gives no improvement

since Ψ`(2)(G) = dψ̃(2)(G)e. It could be that this feature is specific to Hamming
graphs. As we will see in the next section, the bound Ψ`(2)(G) does improve the

bound dψ̃(2)(G)e for Kneser graphs.

graph ϑ (G) ϑ+ (G) ψ̃(2)(G) Ψ`(2)(G) ψ̃
(2)
+ (G) Ψ

`
(2)
+

(G)

H−(7, 4) 36 42.6667 64 64 64 64
H−(8, 5) 72 85.3333 128 128 128 128
H(10, 6) 6 8.7273 10.4366 11 10.8936 11
H−(10, 6) 207.36 320 512 512 512 512
H(10, 8) 2.6667 3.2 3.9232 5∗ 3.9232 5∗

H+(10, 8) 3.2 3.2 3.9232 5∗ 3.9232 5∗

H(11, 4) 16 21.5652 25.7351 26 25.7351 26
H(11, 6) 12 12 12 12 15.2836 16
H−(11, 7) 414.72 640 1024 1024 1024 1024
H−(11, 8) 711.1111 819.2 1024 1024 1024 1024
H(11, 8) 3.2 4.9383 5.7805 6 5.7805 6
H(13, 8) 5.3333 9.4118 12.1429 13 13.6533 14
H(15, 6) 27.7647 30.7368 46.4371 47 50.3036 51
H(16, 8) 16 16 16 16 28.4444 29
H(17, 6) 35 48.2222 86.3086 87 88.3204 89
H(17, 8) 18 18 32 32 46.5122 47
H(17, 10) 6.6666 12.6315 15.8750 16 25.8405 26
H(18, 10) 10 16 18.3076 19 38.8844 -
H(20, 6) 59.3735 59.3735 140.9586 141 140.9586 -
H(20, 8) 41.7143 60.9524 107.1489 - 136.4115 -

Table 3: Bounds for the chromatic number of Hamming graphs

6.3 Bounds for Kneser graphs

We have seen that the parameter ψ̃(2)(G) is bounded by χ∗(G) and that, for
vertex-transitive graphs, it coincides with the bound |V (G)|/`(2)(G). On the

other hand Ψ`(2)(G) can sometimes be strictly greater than dψ̃(2)(G)e, e.g., for
the Hamming graph H(10, 8) (recall Table 3). We present here some numerical
results showing that Ψ`(2)(G) can in fact be strictly greater than dχ∗(G)e for
Kneser graphs.
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Given integers n ≥ 2r, the Kneser graph K(n, r) is the graph whose vertices
are the subsets of size r of a set N with |N | = n, two vertices being adjacent
if and only if they are disjoint. As shown in [64], α(K(n, r)) =

(
n−1
r−1

)
, and thus

χ∗(K(n, r)) = n
r in view of Theorem 3.3.1(a) as K(n, r) is vertex-transitive.

Lovász proved that χ(K(n, r)) = n− 2r + 2 in his celebrated paper [63]. Thus
the fractional chromatic number and the chromatic number of K(n, r) can differ
significantly, and the fractional chromatic number is close to the clique number
ω(K(n, r)) = bnr c. Moreover, Lovász [64] proved that for G = K(n, r), α(G) =

ϑ(G). Hence, `(2)(G) = α(G), implying ψ̃(2)(G) = |V (G)|
`(2)(G)

= χ∗(G) = n/r.

Therefore, Ψ`(2)(G) ≥ dn/re. We show in this section how to compute Ψ`(2)(G).
The Kneser graph K(n, r) coincides with the subgraph of the Hamming

graph H(n, {2r}) induced by the subset P=r(N) := {I ∈ P(N) | |I| = r}. It
will be convenient to view the Kneser graph also in the following alternative
way. Fix a set T ⊆ N with |T | = r and define

P(N,T ) := {(I ′, I ′′) ∈ P(T ) × P(N \ T ) | |I ′| = |I ′′|}.

The mapping
P=r(N) −→ P(N,T )

I 7→ (T \ I, I \ T )
(6.20)

is a bijection and |I 4 J | = |(T \ I) 4 (T \ J)| + |(I \ T ) 4 (J \ T )| holds for
I, J ∈ P=r(N). Hence K(n, r) can also be viewed as the graph with nodeset
P(N,T ), with two nodes (I ′, I ′′), (J ′, J ′′) ∈ P(N,T ) being adjacent if |I ′4J ′|+
|I ′′ 4 J ′′| = 2r.

As we will see below, the matricesA1, A2, B1, . . . , B4 involved in the program
(5.40) for the computation of Ψ`(2)(K(n, r)) lie in Br,r′ (r′ = n−r), a subalgebra
of a tensor product of two Terwilliger algebras, which has also been studied and
block-diagonalized by Schrijver [85] (in connection with constant weight codes).
We follow the same steps as in Section 6.2 for the computation of `(2)(Gt) for
Hamming graphs, which we now carry out for Kneser graphs.

6.3.1 The subalgebra Br,r′

As above, |N | = n and we fix a subset T ⊆ N with |T | = r and set r′ := n− r.

For i, j, p = 0, 1, ..., r (resp., i′, j′, q = 0, 1, ..., r′), let Mp,r
i,j (resp., M q,r′

i′,j′) be the
matrices indexed by P(T ) (resp., P(N \T )) defining the Terwilliger algebra Ar

(resp., Ar′) as in Section 2.4.2. Let now Ar,r′ be the algebra generated by the
tensor products of matrices in Ar and Ar′ ; that is,

Ar,r′ :=





∑

i,j,p,i′,j′,q

xp,qi,j,i′,j′M
p,r
i,j ⊗M q,r′

i′,j′ | xp,qi,j,i′,j′ ∈ R




 .

Matrices in Ar,r′ are indexed by the set P(T )×P(N \ T ). Consider the subal-
gebra

Br,r′ :=




∑

i,j,p,q

yp,qi,jM
p,r
i,j ⊗M q,r′

i,j | yp,qi,j ∈ R



 .

So Br,r′ consists of all matrices from Ar,r′ satisfying xp,qi,j,i′,j′ = 0 if i 6= i′ or j 6=
j′. Hence, for M ∈ Br,r′ and (I, I ′), (J, J ′) ∈ P(T )×P(N \T ), M(I,I′),(J,J′) = 0
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if |I| 6= |I ′| or if |J | 6= |J ′|. Therefore any row/column of M indexed by (I, I ′) 6∈
P(N,T ) is identically zero and we may thus restrict matrices in Br,r′ to being
indexed by the subset P(N,T ) of P(T )× P(N \ T ).

For k ≤ r, letMn,r
k be the matrix indexed by P(N,T ), whose ((I, I ′), (J, J ′))th

entry is equal to 1 if |I 4 J | + |I ′ 4 J ′| = 2k, and to 0 otherwise. Thus Mn,r
k

corresponds to the principal submatrix of Mn
2k (in the Bose-Mesner algebra Bn)

indexed by the subset P=r(N) and Mn,r
k ∈ Br,r′ as

Mn,r
k =

∑

i,j,p,q
i+j−p−q=k

Mp,r
i,j ⊗M q,r′

i,j .

Hence the set

Brn :=

{
r∑

k=0

xkM
n,r
k | xk ∈ R

}

is a subalgebra of Br,r′ .
Schrijver [85] proved the following analogue of Theorem 2.4.8, giving the

explicit block-diagonalization for matrices in Br,r′ . For k = 0, . . . ,
⌊
r
2

⌋
, l =

0, . . . ,
⌊
r′

2

⌋
set

Wkl := {k, k + 1, ..., r − k} ∩ {l, l+ 1, ..., r′ − l}.

Theorem 6.3.1. [85] For a matrix M =
∑
i,j,p,q y

p,q
i,jM

p,r
i,j ⊗M q,r′

i,j in Br,r′,

M � 0 ⇐⇒Mk,l :=
(∑

p,q α
p,r
i,j,kα

q,r′

i,j,ly
p,q
i,j

)

i,j∈Wkl

� 0 for each

k = 0, 1, . . . ,
⌊
r
2

⌋
and l = 0, 1, . . . ,

⌊
r′

2

⌋
.

(6.21)

We have the following analogues of Lemmas 2.4.9 and 2.4.10.

Lemma 6.3.2. Let A =
∑

i,j,p,q a
p,q
i,jM

p,r
i,j ⊗M q,r′

i,j , B =
∑
i,j,p,q b

p,q
i,jM

p,r
i,j ⊗M q,r′

i,j ,

C =
∑

i,j,p,q c
p,q
i,jM

p,r
i,j ⊗M q,r′

i,j be matrices in Br,r′ and define accordingly

Akl =

(
∑

p,q

αp,ri,j,kα
q,r′

i,j,la
p,q
i,j

)

i,j∈Wkl

, Bkl =

(
∑

p,q

αp,ri,j,kα
q,r′

i,j,lb
p,q
i,j

)

i,j∈Wkl

,

Ckl =

(
∑

p,q

αp,ri,j,kα
q,r′

i,j,lc
p,q
i,j

)

i,j∈Wkl

.

Then,
(
A B
BT C

)
� 0 ⇐⇒

(
Akl Bkl
BTkl Ckl

)
� 0 ∀k = 0, 1, . . . ,

⌊r
2

⌋
and l = 0, 1, . . . ,

⌊
r′

2

⌋
.

Lemma 6.3.3. Let M =
∑n
i,j,p,q=0 x

p,q
i,jM

p,r
i,j ⊗M q,r′

i,j ∈ Br,r′ , c =
∑n

i=0 ciχ
i,

where χi ∈ {0, 1}P(N,T ) with χi(I,I′) = 1 if |I| = i, (for (I, I ′) ∈ P(N,T )), and
d ∈ R. Then,

(
d cT

c M

)
� 0 ⇐⇒





Mkl � 0 for k = 0, . . . ,
⌊
r
2

⌋
, l = 0, . . . ,

⌊
r′

2

⌋
, k + l > 0;

M̃00 :=

(
d c̃T

c̃ M00

)
� 0
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after setting c̃T :=

(
ci

√(
r
i

)(
r′

i

))r

i=0

.

6.3.2 Compact formulation for Ψ`(2)(G) for Kneser graphs

In order to compute Ψ`(2)(G) for the Kneser graph G = K(n, r), one has to
evaluate `(2)(Gt) for various choices of t. As G is vertex-transitive, `(2)(Gt)
can be computed using the program (5.40). We now fix h := T ∈ P=r(N)
corresponding to (∅, ∅) ∈ P(N,T ) as chosen node of G. We now show that the
matrices A1, . . . , B4 appearing in program (5.40) lie in the algebra Br,r′ and
thus they can be block-diagonalized using Theorem 6.3.1. The following lemma
is the analogue of Lemma 6.2.2.

Lemma 6.3.4. The matrices As (s = 1, 2) belong to Brn and the matrices
Bs (s = 1, 2, 3, 4) belong to Br,r′. Say, As =

∑r
i=0 x(s)iM

n,r
i (s = 1, 2) and

Bs =
∑r

i,j,p,q=0 y(s)
p,q
i,jM

t,r
i,j ⊗M q,r′

i,j (s = 1, 2, 3, 4). We have

x(s)i = y(s)0,00,i for s = 1, 2, i = 1, . . . , r,

y(s)p,qi,j = y(s)p,qj,i = y(s)i−q,i−pi,i+j−p−qy
j−q,j−p
j,i+j−p−q for s = 1, 4,

y(2)p,qi,j = y(2)i−q,i−pi,i+j−p−q , y(3)p,qi,j = y(3)p,qj,i ,

y(3)p,qi,j = y(2)i−q,i−pi+j−p−q,i for i, j, p, q = 0, . . . , r.

(6.22)

Moreover, the edge conditions can be reformulated as

y(1)p,qi,j = 0 if i = r or j = r or i+ j − p− q = r,

y(2)p,qi,j = 0 if i = r or j = 0 or i+ j − p− q = 0,

y(3)p,qi,j = 0 if i = 0 or j = 0 or i+ j − p− q = r,

y(4)p,qi,j = 0 if i = 0 or j = 0 or i+ j − p− q = 0.

(6.23)

Proof. As in the proof of Lemma 6.2.2, the matrices A1, . . . , B4 satisfy (5.37)
and (5.38), where the variable y is invariant under action of Sym(t) × Aut(G).
A main difference with the case of the Hamming graph is that, for the Kneser
graph G = K(n, r), Aut(G) ∼ Sym(n), i.e., the only automorphisms of G arise
from the permutations of N . Recall that σ ∈ Sym(n) acts on P=r(N) in the
obvious way; namely, σ(I) = {σ(i) | i ∈ I} for I ∈ P=r(N).

Let us first show that A1 ∈ Brn; that is, A1
I,J depends only on |I 4 J | (for

I, J ∈ P=r(N)). For this, let I, J, I ′, J ′ ∈ P=r(N) with |I4J | = |I ′4J ′|. Then,
|I ∩ J | = |I ′ ∩ J ′| and thus there exists σ ∈ Sym(n) such that σ(I) = I ′ and
σ(J) = J ′. Hence, A1

I,J = y{1I,1J} = y{1σ(I),1σ(J)} = A1
I′,J′ since y is invariant

under action of σ. The proof for A2 ∈ Brn, Bs ∈ Br,r′ is along the same lines.

Let us now prove the identity y(1)p,qi,j = y(1)i−q,i−pi,i+j−p−q ; the proofs for the
remaining identities are along the same lines and thus omitted. Say, y(1)p,qi,j =

B1
I,J , where I, J ∈ P=r(N) with |T \I| = i, |T \J | = j, |(T \I)∩(T \J)| = p and

|(I \ T ) ∩ (J \ T )| = q. See Figure 6.1 for the Venn diagram of the sets I, J, T .
Consider sets I ′, J ′ ∈ P=r(N) which together with the set T have the Venn
diagram shown in Figure 6.1. Then, B1

I′,J′ = y(1)i−q,i−pi,i+j−p−q and there exists
σ ∈ Sym(n) such that σ(T ) = I ′, σ(I) = T , σ(J) = J ′. Therefore, y(1)p,qi,j =

B1
I,J = y{1I,1J,1T}y{1σ(I),1σ(J),1σ(T )}y{1T,1J′,1I′} = B1

I′,J′ = y(1)i−q,i−pi,i+j−p−q .
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Figure 6.1: Venn diagrams

For k = 0, ..., br/2c, l = 0, ..., br′/2c, define the matrices

Askl =

(
∑

p,q

αp,ri,j,kα
q,r′

i,j,ly(s)
0,0
0,i+j−p−q

)

i,j∈Wkl

, Bskl =

(
∑

p,q

αp,ri,j,kα
q,r′

i,j,ly(s)
p,q
i,j

)

i,j∈Wkl

(6.24)
corresponding, respectively, to the matrices As (s = 1, 2) and Bs (s = 1, 2, 3, 4)
and define the vectors

ã :

(√(
r
i

)(
r′

i

) (
y(1)0,00,0 − y(1)i,ii,i

))r

i=0

, b̃ :=

(√(
r
i

)(
r′

i

) (
y(1)i,ii,i − y(3)i,ii,i

))r

i=0

.

(6.25)
Using Lemmas 6.3.2 and 6.3.3, we obtain the following reformulation for the
parameter `(2)(Gt) from (5.40)

`(2)(Gt) = max

(
n

r

)
ty(1)0,00,0 s.t. y(s)p,qi,j , s = 1, . . . , 4 satisfy (6.22), (6.23) and




1 − y(1)0,00,0 ãT (t− 1)b̃T

A1
00 −B1

00 (t− 1)(A2
00 −B2

00)
(t− 1)(A1

00 −B3
00) + (t− 1)(t− 2)(A2

00 −B4
00)


 � 0;

(
A1
kl −B1

kl (t− 1)(A2
kl −B2

kl)
(t− 1)(A1

kl −B3
kl) + (t− 1)(t− 2)(A2

kl −B4
kl)

)
� 0

for k = 0, ..., br/2c, l = 0, ..., br′/2c, k + l > 0;

(
B1
kl (t− 1)B2

kl

(t− 1)B3
kl + (t− 1)(t− 2)B4

kl

)
� 0 for k = 0, ..., br/2c, l = 0, ..., br′/2c;

A1
kl −A2

kl −B3
kl +B4

kl � 0 for k = 0, ..., br/2c, l = 0, ..., br′/2c;

B3
kl −B4

kl � 0 for k = 0, ..., br/2c, l = 0, ..., br′/2c,
(6.26)

where Askl, B
s
kl, ã, b̃ are as in (6.24), (6.25). To compute `

(2)
+ (Gt) simply add the

nonnegativity condition y(s)p,qi,j ≥ 0 on all variables.
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6.3.3 Numerical results for Kneser graphs

We show in Table 4 below our numerical results for the bounds Ψ`(2)(G) and
Ψ
`
(2)
+

(G) for several instances of Kneser graphs. We indicate in bold the values

achieving the chromatic number.

Graph dχ∗(G)e = dn/re Ψ`(2)(G) Ψ
`
(2)
+

(G) χ(G) = n− 2r + 2

K(6, 2) 3 4 4 4
K(7, 2) 4 4 5 5
K(8, 3) 3 4 4 4
K(9, 3) 3 4 4 5
K(10, 4) 3 3 4 4
K(11, 3) 4 5 5 7
K(11, 4) 3 4 4 5
K(12, 3) 4 5 6 8
K(12, 4) 3 4 4 6
K(12, 5) 3 3 4 4
K(13, 5) 3 4 4 5
K(14, 5) 3 4 4 6
K(15, 3) 5 6 6 11
K(16, 4) 4 5 6 10
K(24, 6) 4 4 6 14
K(25, 5) 5 6 7 17
K(34, 7) 5 6 7 22
K(36, 6) 6 7 9 26

Table 4: Bounds for the chromatic number of Kneser graphs

6.4 Computing the new bound ψK for DIMACS

benchmark graphs

So far we presented some ideas for approximating the chromatic numbers of
vertex-transitive graphs. In particular, we considered the bounds ψ̃(2)(·) and
Ψ`(2)(·) and showed how the problem size can be reduced by exploiting sym-

metry. For the formulation of ψ̃(2)(G), it was observed before that, when G
is vertex-transitive, it suffices to require in (5.27) positive semidefiniteness of
M({h}, x) for only one h ∈ V (G) instead of for all h ∈ V (G). In case of a non-
symmetric graph G one would need to require M({h}, x) � 0 for all h ∈ V (G);

therefore, with n := |V (G)|, in order to compute ψ̃(2)(G), (resp., `(2)(Gt), and
thus Ψ`(2)(G)), one would have to solve a semidefinite program with 2n (resp.,
4n) matrices of order ≤ n+ 1 (resp., ≤ 2n+ 1). For graphs that are of interest,
e.g. with n ≥ 100, this cannot be done with the currently available software for
semidefinite programming.

For a non-symmetric graph G = (V,E) we propose another variant of the

bound ψ̃(2)(G). Namely, given a clique K in G and x ∈ RP≤4(V ), let M2(K;x)
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denote the principal submatrix of M2(x) indexed by the multiset P≤1(V ) ∪
(∪h∈K{{h}, {h, i} | i ∈ V }). Now define the parameter

ψK(G) := min t s.t. x0 = t, xi = 1 (i ∈ V ), M2(K;x) � 0,
xI = 0 for all I containing an edge.

(6.27)

Then ϑ(G) ≤ ψK(G) ≤ χ∗(G). (The inequalities follow from ϑ(G) = ψ(1)(G) ≤
ψK(G) ≤ ψ(2)(G) ≤ χ∗(G) using definition (5.27) and Theorem 5.2.2(b)(d).)
Set k := |K| and assume w.l.o.g. that K = {1, 2, ..., k}. With respect to the
partition of its index set as {0, {i} | i ∈ V } ∪ ∪kh=1{{h}, {h, i} | i ∈ V }, the
matrix M2(K;x) has the block form

M2(K;x) =




A0 A1 A2 . . . Ak
A1 A1 0 . . . 0

A2 0 A2
. . .

...
...

...
. . .

. . . 0
Ak 0 . . . 0 Ak




where A0, . . . , Ak are indexed by P≤1(V ), (A0)IJ = xI∪J , (Ah)IJ = x{h}∪I∪J
for h ∈ K, I, J ∈ V . The matrix in this form can be block-diagonalized. Define
the (k + 1) × (k + 1) block matrix N whose blocks N(i, j) (i, j = 0, . . . , k) are
(|V | + 1) × (|V | + 1) matrices defined by

N(i, j) :=






I if i = j;
−I if j = 0, i > 0;

0 otherwise.

Here I stands for the identity matrix of order |V | + 1. Then

NTM2(K;x)N =




A0 −
∑k

h=1Ah 0 0 . . . 0
0 A1 0 . . . 0

0 0 A2
. . .

...
...

...
. . .

. . . 0
0 0 . . . 0 Ak



,

which yields

M2(K;x) � 0 ⇐⇒ A0 −
k∑

h=1

Ah � 0, A1, . . . , Ak � 0.

Hence ψK(G) can be computed via a semidefinite program involving k + 1
matrices of size n + 1. (In fact, in the condition Ah � 0 (h = 1, . . . , k) we can
delete one column indexed by {h}, and thus get k matrices of size n.)

We have conducted experiments for some DIMACS benchmark graphs (stud-
ied e.g. in [17, 18, 22, 26, 29, 69]). In Table 5 we present our lower bounds for
the chromatic number of the graphs DSJCa.b. Recall that DSJCa.b are random
graphs with a vertices, two vertices being adjacent with probability 10−1b. The
graph DSJR500.1 is a geometric graph with 500 nodes randomly distributed in
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the unit square, with an edge between two nodes if their distance is less than
0.1. The graph DSJR500.1c is the complement of DSJR500.1. The graphs can
be downloaded from http://mat.gsia.cmu.edu/COLOR03/

In Table 5, the column ‘LB’ contains the previously best known lower bounds
taken from [22, 69], and the values into parentheses come from [16]; the bound
82 for DSJR500.1c is the size of a clique obtained using the heuristic of [13].
The column ‘UB’ contains the best known upper bounds taken from [17, 29, 28],
i.e. the number of colours in the best colourings found so far. The column ‘K’
contains the size of the clique used for computing the parameter ψK(G) (the
clique is found using the heuristic from [13]). We also indicate the value of the
theta number ϑ̄(G) (also computed in [26, 25] for some instances), which already
improves the best lower bound in several instances. We indicate in bold best
new lower bounds for the chromatic number. On several instances they give
a significant improvement on the best known lower bound. Moreover, in two
instances, we are able to close the gap as our lower bound matches the upper
bound. Namely we find the exact value of the chromatic number for the graphs
DSJC125.9 (χ(G) = 43) and DSJR500.1c (χ(G) = 85), which were not known
before to the best of our knowledge. These results demonstrate that the bound
ψK(G) is quite strong.

We should also point out that the semidefinite program for the parameter
ψK , for instance, for the graph DSJR500.1c, contains one 501 × 501 block and
77 blocks of size at most 500×500. One cannot hope to solve such a big problem
using solvers based on interior point methods. The values in columns ‘ ϑ(G) ’
and ‘ ψK(G) ’ were computed using the boundary point method of Povh, Rendl
and Wiegele [80]. This method allows to compute the Lovász theta number and
its variations (e.g. ψK(G)) to reasonably high accuracy even for graphs with
several hundred nodes.

One may wonder why we did not add nonnegativity constraints in the for-
mulation for ψK . The reason is that for random graphs adding nonnegativity
constraints gives only a negligible improvement. This fact was already observed
for the Lovász theta number in [26].

Graph LB ϑ(G)
⌈
ϑ(G)

⌉
K ψK(G) dψK(G)e UB

DSJC125.1 5 4.1062 5 4 4.337 5 5
DSJC125.5 14 (17) 11.7844 12 10 13.942 14 17
DSJC125.9 42 37.768 38 34 42.53 43 43
DSJC250.1 6 (8) 4.906 5 4 5.208 6 8
DSJC250.5 14 16.234 17 12 19.208 20 28
DSJC250.9 48 55.152 56 43 66.15 67 72
DSJC500.1 6 6.217 7 5 6.542 7 12
DSJC500.5 13 (16) 20.542 21 13 27.791 28 48
DSJC500.9 59 84.04 85 56 100.43 101 126
DSJC1000.1 6 8.307 9 5 - - 20
DSJC1000.5 15 (17) 31.89 32 14 - - 83
DSJC1000.9 66 122.67 123 65 - - 224
DSJR500.1c 82 (83) 83.74 84 77 84.12 85 85

Table 5: Bounds for the chromatic number of DIMACS instances
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6.5 Conclusions and Remarks

The goal of this chapter was to show that the semidefinite bounds studied in
this thesis can be stronger bounds for the stability number and the chromatic
number than the Lovász theta number. We confirmed it experimentally, i.e. by
the results presented in Tables 2-5.

We mention now several details about our computations.

Experiments were conducted on a single machine with an AMD Athlon 64
3500 processor and 1024 MB of RAM memory.

The computational results reported in Tables 2-4 were carried out using
the open source codes for semidefinite programming CSDP 5.0 and DSDP 5.8
available, respectively, at
http://infohost.nmt.edu/ borchers/csdp.html and
http://www-unix.mcs.anl.gov/ benson/dsdp/.

For finding large cliques in the instances in Table 5 we used the heuristic
Max-AO (based on [13]) available at
http://dollar.biz.uiowa.edu/ burer/software/Max-AO/index.html.

The boundary point method code is available at
http://www.math.uni-klu.ac.at/or/Software/.

Here is a rough indication of the times needed to compute the bounds in
Tables 2-5.

To compute bounds for Paley graph Pq we needed less than a minute when

q ≤ 100 and around 45 minutes to compute `
(3)
+ (P809).

Each bound in Tables 3-4 could be computed in less than a minute, as it
involves a relatively small SDP; for instance, computing Ψ`(H(20, 6)) is via an
SDP with 1502 variables and 47 blocks with sizes ranging from 1 to 43.

It was harder to compute the bounds ψK in Table 3. In fact, we had to rerun
the boundary point code several times for each instance in order to tailor the
parameters of the code and speed up the convergence to an optimal solution.
The computation times for the parameter ψK(G) vary from a few minutes (e.g.
less than 3 minutes for DCJC125.5, about 25 minutes for DCJC125.1) till four
days for the most demanding instance DSJR500.1c.
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Chapter 7

Perspectives

For this thesis, conclusions and recapitulations of achievements were given at
the ends of the most important chapters. In this chapter we outline possible
directions for future investigations.

In this thesis, we have investigated the hierarchies of semidefinite relaxations
for the stability number α(G), the fractional chromatic number χ∗(G) and the
chromatic number χ(G) of a graph G. All these hierarchies have either the
Lovász theta number ϑ(G) of a graph G, or some variation of it, as the first
relaxation. Since the Lovász theta number was introduced in 1979, It has been
applied in many ways. For instance, ϑ(G) is used for approximately colouring
the graph (see [53, 26, 46]) and the link between ϑ(G) and the Delsarte bound
for codes was observed in [83].

The second order bounds in the new block diagonal hierarchy led to stronger
bounds for the stability numbers, e.g. of ‘code’ graphs in [85, 32, 60], of orthog-
onality graphs in [51], and of Paley graphs in this thesis. However, these results
are just numerical. It will be interesting to see if some analytical bounds can
be derived from some of the hierarchies studied in this thesis. For example,
ϑ(Pq) =

√
q for Paley graph Pq and it is interesting to study if an analogous

analytical formula exists, e.g. for the second order bound ψ(2)(Pq) in the new
block diagonal hierarchy, since the computational results indicate that it can be
much stronger than ϑ(Pq).

The new block diagonal hierarchy Lt(G) of relaxations of STAB(G) is just
an application, to the stable set problem, of the more general hierarchy Lt(K),
K being a convex cone, presented in [40]. It has been shown in [40] that Lt(K)
outperforms the hierarchy of Lovász and SchrijverN t(K). The hierarchyN t(K)
is well studied, and it would be interesting to see if Lt(K) has, apart from
being computationally less costly, more properties which are stronger than the
properties of N t(K) observed, e.g., in [65, 59, 33].

One can also think of developing codes for solving the stable set and the
colouring problem. We have conducted some preliminary experiments using the
bound ψK(G). We developed a heuristic for colouring graphs, which can be
upgraded to an exact ‘branch and bound’ algorithm. Preliminary results gave
graph colourings with quality comparable to ‘state of the art’ heuristics.
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[1] E. Balas, S. Ceria, and G. Cornuéjols. A lift-and-project cutting plane
algorithm for mixed 0-1 programs. Mathematical Programming, 58:295–
324, 1993.

[2] G. P. Barker, L. O. Eifler, and T. P. Kezlan. A non-commutative spectral
theorem. Linear Algebra and Applications, 20(2):95–100, 1978.

[3] M. Bellare and M. Sudan. χ(G) is not approximable within |G|1/14−ε. In
Proceedings of the 26th Annual ACM Symposium on Theory of Computing,
pages 184–193, 1994.

[4] A. Ben-Tal and A. S. Nemirovski. Lectures on Modern Convex Optimiza-
tion: Analysis, Algorithms, and Engineering Applications. Society for In-
dustrial and Applied Mathematics, Philadelphia, 2001.

[5] C. Berge. Färbung von Graphen, deren sämtliche bzw. deren
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List of notation

Sets

Z, N, R, C, R+ : sets of integer, nonnegative integer, real, complex
and nonnegative real numbers (respectively).

|V | : size of a finite set V ;
P(V ) : collection of all subsets of a finite set V ;

P=t(V ) (P≤t(V ) ) : collection of all subsets of size (at most) t
of a finite set V ;

V \S = {i ∈ V | i /∈ S};
V4S = (V \S) ∪ (S\V );

P(V, S) = {(I, J) ∈ P(S) × P(V \S) | |I| = |J |};
Sym(V ) ( Sym(n) ) : group of permutations of V (when |V | = n);

K∗ = {M ∈ Rm×n | 〈M,N〉 ≥ 0 for all N ∈ K}
(dual cone of a set K ⊆ Rm×n);

Int K : interior of a set K;
conv(F ) =

{∑
x∈F λxx | λx ≥ 0 (x ∈ F ),

∑
x∈F λx = 1

}

(where F is finite).

Vectors and Matrices

M−1, MT , M∗ : inverse, transpose, conjugate transpose of M
(respectively);

Mij , Mi•, M•j : ijth entry, ith row, jth column of M (respectively);
M(p, q) : pqth block of a block matrix M ;
M ≥ N : all entries of M −N are nonnegative;
M � N : M −N is symmetric positive semidefinite.

Sets of vectors and matrices

Rn ( Cn ) : n-dimensional real (complex) vector space;
Rn+ : positive orthant of Rn;

RV ( RV×W ) : space of real vectors (matrices) with rows indexed
by V (and columns indexed by W );
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Cones of matrices:

Sn = {M ∈ Rn×n | MT = M} (symmetric matrices);
S+
n = {M ∈ Sn | M � 0} (positive semidefinite matrices);

S++
n = {M ∈ Sn | M � 0} (positive definite matrices);
Cn = {M ∈ Sn | vTMv ≥ 0 for all v ∈ Rn+}

(copositive matrices);

C∗
n = {M ∈ Sn |M = NTN for some N ∈ Rk×n+ and k ∈ N}

(completely positive matrices);
Nn = {M ∈ Sn | M ≥ 0} (nonnegative matrices);
Dn = S+

n ∩ Nn (doubly nonnegative matrices);
D∗
n = S+

n + Nn = {M +N | M ∈ S+
n , N ∈ Nn};

MV = {Y ∈ RP≤1(V )×P≤1(V ) | Yij = Yji (i, j ∈ V ),
Yjj = Y0j = Yj0 (j ∈ V )},

M+,V = {Y ∈MV | Y � 0}.

For a convex cone K ⊆ RP≤1(V ) :

M(K) = {Y ∈MV | Y ek, Y (e0 − ek) ∈ K for k ∈ V };
N(K) = {x ∈ RP≤1(V ) | x = Y e0 for some Y ∈M(K)};

M+(K) = {Y ∈M+,V | Y ek, Y (e0 − ek) ∈ K for k ∈ V };
N+(K) = {x ∈ RP≤1(V ) | x = Y e0 for some Y ∈M+(K)}.

Matrix algebras:

An =
{∑n

i,j,p=0 x
p
i,jM

p,n
i,j | xpi,j ∈ R

}

(Terwilliger algebra of the Hamming scheme);
Bn = {∑n

k=0 x
p
kM

n
k | xk ∈ R}

(Bose-Mesner algebra of the Hamming scheme);

Ar,r′ =
{∑

i,j,p,i′,j′,q x
p,q
i,j,i′,j′′M

p,r
i,j ⊗M q,r′

i′,j′ | x
p,q
i,j,i′,j′ ∈ R

}
;

Br,r′ =
{∑

i,j,p,q x
p,q
i,jM

p,r
i,j ⊗M q,r′

i,j | xp,qi,j ∈ R
}

;

Brn = {∑r
k=0 xkM

n,r
k | xk ∈ R} .

Special vectors and matrices

0 : zero vector (or matrix) of size depending on the context;
I ( In ) : identity matrix (n× n);
J (Jn ) : all ones matrix (n× n);

e : all ones vector;
e0 = e∅, standard unit vector indexed by P≤1(V )

with 1 at the entry with index ∅;
ei = e{i}, standard unit vector indexed by P≤1(V ) (i ∈ V );
Z : Zeta matrix, P(T )× P(T ) block matrix, Z(S, S′) = In

if S ⊆ S′ and Z(S, S′) = 0 otherwise;

Z−1 : Möbius matrix, inverse of Z, Z−1(S, S′) = (−1)|S
′\S|In

if S ⊆ S′ and Z−1(S, S′) = 0 otherwise;
Pσ : permutation matrix for a permutation σ;
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Mn
k ∈ RP(N)×P(N), N = {1, 2, . . . , n}, (Mn

k )IJ = 1 if |I4J | = k,
and equal to 0 otherwise;

Mp,n
i,j ∈ RP(N)×P(N), N = {1, 2, . . . , n}, (Mp,n

i,j )IJ = 1 if |I| = i, |J | = j,

|I ∩ J | = p, and equal to 0 otherwise;
Mn,r
k ∈ RP(N,T )×P(N,T ), N = {1, 2, . . . , n}, T ⊆ N, |T | = r,

(Mn,r
k )(I,I′)(J,J′) = 1 if |I4J | + |I ′4J ′| = 2k,

and equal to 0 otherwise;

Functions of vectors and matrices

diag(M) : vector with entries Mii;
Diag(v) : diagonal matrix with Mii = vi;
Tr(M) =

∑
iMii (trace of M);

〈M,N〉 = Tr(MTN) (standard inner product of M and N);
M ⊗N : tensor product of M and N, (M ⊗N)(ij),(i′j′) = MijNi′j′ ;
x(S) =

∑
i∈S xi;

χS : characteristic vector of S;
Mt(y) ∈ RP≤t(V )×P≤t(V ), combinatorial moment matrix of a vector

y ∈ RP≤2t(V ), Mt(y)IJ = yI∪J ;
M(T ; y) : P(T )× P(T ) block matrix, submatrix of

Mt(y) indexed by (multi)set
⋃
S⊆T {S, S ∪ {i} (i ∈ V )} .

Notation for polynomials

R[x] = R[x1, x2, . . . , xn], ring of polynomials in n variables;
Nn : n-tuples of nonnegative integers;

I=(n, t) ( I≤(n, t) ) : n-tuples of integers whose sum is (at most) t.

For β ∈ Nn, x ∈ Rn :
|β| =

∑n
i=1 βi;

β! = Πn
i=1βi!;

S(β) = {i | βi > 0};
Sodd = {i | βi is odd};
xβ = Πn

i=1x
βi

i ;

For x ∈ Rn, p ∈ I≤(n, t) :

ζt,x ∈ RI≤(n,t), zeta vector of x, (ζt,x)β = xβ ;
p(x) = pT ζt,x =

∑
β∈I≤(n,t) pβx

β .

For M ∈ Rn×n :
pM(x) =

∑n
i,j=1 x

2
ix

2
jMij ;

p
(t)
M (x) =

(∑n
i=1 x

2
i

)t
pM(x);

Moment matrices:

Nt(y) ∈ RI≤(n,t)×I≤(n,t), moment matrix of y ∈ RI≤(n,2t),
Nt(y)β,γ = yβ+γ ;

N=t(y) ∈ RI=(n,t)×I=(n,t), moment matrix of y ∈ RI=(n,2t),
N=t(y)β,γ = yβ+γ ;
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Cones:

N (n, 2t) = {y ∈ RI≤(n,2t) | Nt(y) � 0};
N=(n, 2t) = {y ∈ RI=(n,2t) | N=t(y) � 0};
Σ(n, 2t) = (N (n, 2t))∗ = {p ∈ RI≤(n,2t)| p(x) is a sum of squares },

the cone of coefficient vectors of polynomials of degree
at most 2t which are sums of squares;

Σ=(n, 2t) = (N=(n, 2t))∗ = {p ∈ RI=(n,2t)| p(x) is SOS },
the cone of coefficient vectors of homogeneous polynomials
of degree 2t which are sums of squares;

K(t)
n = {M ∈ Rn×n | p(t)

M (x) is a sum of squares}
= {M ∈ Rn×n | p(t)

M ∈ Σ=(n, 2t+ 4)};
C(t)
n =

(
K(t)
n

)∗
.

Graph theory

G = (V,E) (graph with vertex set V and edge set E);
V (G) : vertex set of a graph G;
E(G) : edge set of a graph G;

ij = (i, j) (edge);
G : complement of G;

β(G) = β
(
G
)

(for a parameter β mapping graphs to R+);
β(·) = β (for a parameter β mapping graphs to R+);
AG : adjacency matrix of G;

G+H = (V (G) ∪ V (H), E(G) ∪E(H)) (direct sum of G and H);
G ·H : strong product of G and H ;
G�H : Cartesian product of G and H ;

Gt = G�Kt

Stable set polytope and relaxations

STAB(G) = conv({χS | S stable in G});
FRAC(G) = {x ∈ RV+ | xi + xj ≤ 1 (ij ∈ E), xi ≤ 1 (i ∈ V )};

QSTAB(G) = {x ∈ RV+ | x(C) ≤ 1 (C clique in G)};
THETA(G) = {x ∈ RV | x = diag(X), X � xxT , xij = 0 (ij ∈ E)};

ST(G) =

{
λ

(
1
x

) ∣∣∣ x ∈ STAB(G), λ ∈ R+

}
;

FR(G) = {x ∈ R
P≤1(V )
+ | xi + xj ≤ x0 (ij ∈ E), xi ≤ x0 (i ∈ V )};

QST(G) = {x ∈ R
P≤1(V )
+ | x(C) ≤ x0 (C clique in G)};

TH(G) = {x ∈ RP≤1(V ) | x = Y e0, for some Y ∈M+,V

with Yij = 0 (ij ∈ E)};
Qt(G) = {x ∈ RP≤1(V ) | ∃y ∈ RP≤2t(V ) satisfying yi = xi (i ∈ V ),

y0 = x0, yij = 0 (ij ∈ E), Mt(y) � 0};
Q+
t (G) : strengthening of Qt(G) by y ≥ 0;
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Lt(G) = {x ∈ RP≤1(V ) | ∃y ∈ RP≤t+1(V ) satisfying yi = xi (i ∈ V ),
y0 = x0, yij = 0 (ij ∈ E),
M(T ; y) � 0 (T ⊆ V, |T | = t− 1)};

L+
t (G) : strengthening of Lt(G) by y ≥ 0;

P (t)(G) = {x ∈ Rn | x = diag(X) for some X satisfying

Tr(AGX) = 0, X � xxT , X ∈ C(t)
n }.

Graph parameters

∆(G) : maximum degree of G;
α(G) : stability (independence) number of G;
ω(G) : clique number of G;
χ(G) : chromatic number of G;
χ∗(G) : fractional chromatic number of G;
ϑ(G) : Lovász theta number of G;
ϑ′(G) : Schrijver’s number of G;
ϑ+(G) : Szegedy’s number of G;

Hierarchies (sequences) of upper bounds for α(G) :

las(t)(G) = max
∑
i∈V (G) xi s.t. x ∈ Qt(G);

las
(t)
+ (G) = max

∑
i∈V (G) xi s.t. x ∈ Q+

t (G);

`(t)(G) = max
∑
i∈V (G) xi s.t. x ∈ Lt(G);

`
(t)
+ (G) = max

∑
i∈V (G) xi s.t. x ∈ L+

t (G);

ϑ(t)(G) = min λ s.t. λ(I +AG) − J ∈ K(t)
n

= max Tr(JX) s.t. Tr((I +AG)X) = 1, X ∈ C(t)
n ;

ϑ̂(t)(G) = min λ s.t. λI + yAG − J ∈ K(t)
n

= max Tr(JX) s.t. Tr(X) = 1, Tr(AGX) = 0, X ∈ C(t)
n ;

ϑ̃(t)(G) = max
∑
i∈V (G) xi s.t. x ∈ P (t)(G);

Hierarchies (sequences) of lower bounds for χ∗(G) :

ψ(r)(G) = min t s.t. x ∈ Qr(G), x0 = t, xi = 1 (i ∈ V (G));

ψ
(r)
+ (G) = min t s.t. x ∈ Q+

r (G), x0 = t, xi = 1 (i ∈ V (G));

ψ̃(r)(G) = min t s.t. x ∈ Qr(G), x0 = t, xi = 1 (i ∈ V (G));

ψ̃
(r)
+ (G) = min t s.t. x ∈ Q+

r (G), x0 = t, xi = 1 (i ∈ V (G));

ψ̂(r)(G) = min t s.t. diag(X) = te, Tr(AGX) = 0, X − J � 0,

X ∈ C(r)
n ;

Action of the operator Ψ :

|V (·)|
χ(·) ≤ β(·) ≤ α(·) =⇒ Ψβ(G) = χ(G);
|V (·)|
ω(·) ≤ β(·) ≤ χ(·) =⇒ Ψβ(G) = ω(G);

Ψϑ(G) =
⌈
ϑ(G)

⌉
; Ψϑ′(G) =

⌈
ϑ+(G)

⌉
.
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Special graphs

Cn : cycle, V (Cn) = {1, . . . , n} (n ≥ 3),
E(Cn) = {12, 23, . . . , (n− 1)n, n1};

Kn : complete graph, V (Kn) = {1, . . . , n}, E(Kn) = P=2(V (Kn));
Pq : Paley graph, q prime power, V (Pq) is the set of elements of

the finite field Fq, uv ∈ E(Pq) if u− v is a square in Fq;
H(n,D) : Hamming graph,D ⊆ N = {1, . . . , n}, V (H(n,D)) = P(N),

IJ ∈ E(H(n,D)) if |I4J | ∈ D;
K(n, r) : Kneser graph, n ≥ 2r, V (K(n, r)) = P=r(N), N = {1, . . . , n},

IJ ∈ V (K(n, r)) if I ∩ J = ∅.



Samenvatting

Achtergrond en motivatie

Een graaf G = (V,E) bestaat uit een verzameling punten V en een verzameling
lijnen E. Elke lijn verbindt twee punten met elkaar. Een verzameling punten
van de graaf heet onafhankelijk als geen twee van deze punten met elkaar zijn
verbonden door een lijn van de graaf. Een puntkleuring van de graaf is een
toewijzing van kleuren aan de punten van de graaf, zó dat de twee eindpunten
van een lijn altijd verschillend gekleurd zijn. Puntkleuringen en onafhanke-
lijke verzamelingen zijn aan elkaar gerelateerd. Een puntkleuring van een graaf
is namelijk precies een opdeling van zijn punten in een aantal onafhankelijke
verzamelingen, één voor iedere kleur.

Veel problemen uit de praktijk, zoals het maken van roosters, productieplan-
ning, het toewijzen van (radio)frequenties, patroonherkenning en het construeren
van foutcorrigerende codes, kunnen gemodelleerd worden met behulp van punt-
kleuringen of onafhankelijke verzamelingen in een geschikte graaf. In deze
toepassingen is men meestal gëınteresseerd in het vinden van een onafhankelijke
verzameling van maximale grootte of een puntkleuring met een minimaal aantal
verschillende kleuren.

De maximale grootte van een onafhankelijke verzameling punten in een graaf
G = (V,E) wordt aangegeven met α(G). Het chromatisch getal χ(G) van G is
het kleinste aantal kleuren in een puntkleuring van de graaf. Het bepalen van
de getallen α(G) en χ(G) zijn NP-moeilijke problemen uit de combinatorische
optimalisering.

Kort gezegd zijn NP-moeilijke problemen optimalisatie-problemen waarvoor
geen efficiënte algoritmen bekend zijn en waarvan veel mensen verwachten dat
het vinden van zo’n algoritme zelfs onmogelijk is. Met efficiënt wordt bedoeld
dat het algoritme het probleem oplost binnen een aantal stappen dat begrensd
is door een polynoom in de lengte van de input voor het probleem (“in poly-
nomiale tijd”). Door het ontbreken van efficiënte algoritmen is het in het al-
gemeen nodig om dergelijke problemen middels alternatieve methoden, zoals
heuristieken, probabilistische methoden of benaderings-technieken te proberen
op te lossen.

Een overzicht

Het Lovász theta getal

Een klassieke aanpak is om een combinatorisch optimalisatie-probleem te mo-
delleren als een lineair programma waarbij bovendien geheeltalligheid van de
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oplossing wordt geëist. De maximale grootte van een onafhankelijke verzame-
ling punten α(G) in een graaf G = (V,E), kan bijvoorbeeld als volgt worden
beschreven. We nemen aan dat de punten van G genummerd zijn van 1 tot en
met n.

α(G) = max
∑

i∈V
xi waarbij xi + xj ≤ 1 (ij ∈ E), x ∈ {0, 1}n. (7.1)

Hier is xi een variabele behorende bij punt i en staat ij voor de lijn tussen
punten i en j. Op deze manier is de moeilijkheid van het probleem verstopt in
de voorwaarde x ∈ {0, 1}n.

Om tot een semidefiniete benadering te komen voor (7.1), wordt met de

vector x de matrix X =
(
1
x

)(
1
x

)T
geassocieerd. De rijen en kolommen van X

zijn gëındexeerd door de punten 1, . . . , n van de graaf en een extra index 0. Er
geldt dat x ∈ {0, 1}n, dan en slechts dan als van de matrix X rij 0 gelijk is aan
de diagonaal gelijk zijn. Verder is X positief semidefiniet en er geldt Xij = 0
als xi + xj ≤ 1 voor punten i en j. De semidefiniete benadering ϑ(G) voor
α(G), het zogeheten Lovász theta getal, wordt gegeven door het semidefiniete
programma

ϑ(G) := max
∑

i∈V
Xii waarbij X00 = 1, Xij = 0 (ij ∈ E), X � 0. (7.2)

Hier betekent X � 0 dat X positief semidefiniet moet zijn. De belangrijkste
motivatie om semidefiniete programma’s te beschouwen, is dat zij, binnen elke
gewenste precisie, in polynomiale tijd kunnen worden opgelost en betere be-
naderingen geven dan de eenvoudigere lineaire benadering die verkregen wordt
door de conditie x ∈ {0, 1}n af te zwakken tot 0 ≤ xi ≤ 1 (i = 1, . . . , n).

Zoals we reeds hebben gezien, kunnen puntkleuringen van een graaf G =
(V,E) gezien worden als een opsplitsing van de verzameling punten in een aan-
tal onafhankelijke verzamelingen. Hiermee kan het chromatisch getal worden
geformuleerd als

χ(G) = min
∑

S

λS waarbij
∑

S

λSχ
S = e, λS ∈ {0, 1},

waarbij de sommaties lopen over alle onafhankelijke verzamelingen S ⊆ V ,
e ∈ RV de vector van enkel enen is (ei = 1 (i ∈ V )) en χS de karakteristieke
vector is van de deelverzameling S, dat wil zeggen χSi := 1 als i ∈ S en χSi := 0
als i 6∈ S. De lineaire benadering χ∗(G), het gebroken chromatisch getal, wordt
verkregen door de 0/1 conditie te versoepelen tot 0 ≤ λS ≤ 1. Beschouw bij
een gegeven oplossing λ (gëındiceerd door alle onafhankelijke verzamelingen S)
de matrix

Y :=
∑

S⊆V onafh.

λS

(
1
χS

)(
1
χS

)T
.

De matrix Y is positief semidefiniet en voldoet aan Y∅∅ =
∑

S onafh. λS ,
Yii = Yi0 = 1 (i ∈ V ) en Yij = 0 (ij ∈ E). Dit leidt tot een semidefiniete
benadering voor χ∗(G) (en voor χ(G)) door deze eigenschappen als voorwaarde
op te leggen aan een matrix variabele Y . Het blijkt dat deze benadering gelijk
is aan ϑ(G), het Lovász theta getal van de complementaire graaf G = (V,E),
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waar E bestaat uit alle paren punten die geen lijn vormen in G. Uitgeschreven:

ϑ(G) = minY00 waarbij Y0i = Yii = 1 (i ∈ V ), Yij = 0 (ij ∈ E), Y � 0.

Hiermee is het duidelijk dat dat de volgende bewering geldt, die bekend staat
als ‘the sandwich theorem’:

α(G) ≤ ϑ(G) ≤ χ∗(G) ≤ χ(G).

Resultaten in dit proefschrift

Er zijn voor combinatorische optimalisatie-problemen verscheidene semidefiniete
benaderingen voorgedragen die sterker zijn dan de meest eenvoudige semidefi-
niete benadering. Daarbij worden extra voorwaarden toegevoegd, zoals in Lovász
en Schrijver [65] door het toevoegen van matrix-snedes (‘matrix cuts’) of zoals in
Lasserre [57] middels het gebruik van ‘moment matrices’ waarbij het probleem
opgetild wordt naar een hoger dimensionale ruimte, aldaar wordt opgelost en
vervolgens weer wordt terug geprojecteerd naar de oorspronkelijke ruimte. Voor
het getal α(G) bijvoorbeeld, geven deze methodes een hiërarchie van grenzen
ν(t) (t = 1, 2, 3, . . .) die voldoen aan:

α(G) ≤ · · · ≤ ν(t+1)(G) ≤ ν(t)(G) ≤ · · · ≤ ν(1)(G) ≤ ϑ(G).

In dit proefschrift brengen we verschillende hiërarchieën van semidefiniete
programma’s in herinnering, samen met de corresponderende bovengrenzen voor
α(G) en maken een vergelijking tussen deze verschillende methoden. De grens
van eerste orde is in elk van deze hiërarchieën gelijk aan het Lovász theta
getal (of een variatie daarop). De grenzen van orde α(G) komen in de meeste
hiërarchieën overeen met α(G) zelf. Dat wil zeggen ν(α(G)) = α(G). Door de
aanpak van Lovász en Schrijver [65] te combineren met die van Lasserre [56, 57],
zijn we in staat om een nieuwe hiërarchie te definieren.

Deze is een relaxatie van de hiërarchie van Lasserre, en heeft daardoor
het voordeel dat de optredende semidefiniete programma’s in blok-diagonaal
vorm kunnen worden gebracht, hetgeen zeer belangrijk is bij daadwerkelijke
berekeningen. Bovendien vergt de hiërarchie minder rekenkracht en is tenmin-
ste zo sterk als de hiërarchie van Lovász en Schrijver.

Vervolgens definieren en bestuderen we hiërarchieën van bovengrenzen voor
het (gebroken) chromatisch getal. Deze hiërarchiën zien er als volgt uit:

ϑ(G) ≤ ψ(1)(G) ≤ · · · ≤ ψ(t)(G) ≤ · · · ≤ ψ(t+1)(G) ≤ · · · ≤ χ∗(G);

dϑ(G)e ≤ Ψν(1)(G) ≤ · · · ≤ Ψν(t)(G) ≤ · · · ≤ Ψν(t+1)(G) ≤ · · · ≤ χ(G).

Hier is Ψ een speciale operator die bovengrenzen voor α(G) afbeeldt op onder-
grenzen voor het chromatisch getal. Als toepassing hiervan, bewijzen we dat er
geen graafparameter kan bestaan die is ingeklemd tussen het gebroken chroma-
tisch getal χ∗(G) en het chromatisch getal χ(G) en die bovendien in polynomiale
tijd kan worden berekend, tenzij alle problemen in de complexiteitsklasse NP in
polynomiale tijd kunnen worden opgelost, dat wil zeggen, als P=NP.

We berekenen deze grenzen in de nieuwe blok-diagonale hiërarchie voor een
aantal interessante klassen van grafen. In het bijzonder zijn we in staat om
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deze grenzen, tot en met orde 3, te berekenen voor Payleygrafen met tot 800
punten door de eigenschappen van hun automorfismegroepen te benutten. Voor
Hamminggrafen en Knesergrafen met tot 220 punten, bepalen we de grenzen
van orde 1 en 2 door gebruik te maken van de expliciete blokdiagonalisatie van
de Terwilliger-algebra van het Hammingschema, zoals gegeven door Schrijver
in [85]. Tenslotte introduceren we ψC (met C een onafhankelijke verzameling
punten in G), een andere variatie op de tweede orde grens in de hiërarchie van
Lasserre. De grens ψC(G) wordt gedefinieerd via een semidefiniet programma
dat ook in blok-diagonaal vorm kan worden gebracht. We beschrijven compu-
tationele resultaten voor een aantal instanties uit de DIMACS benchmark, een
lijst geselecteerde probleeminstanties voor het testen van algoritmen voor het
puntkleuren van grafen. Deze resultaten wijzen erop dat ψC(G) een vrij sterke
grens is voor het chromatisch getal χ(G).


