
The Meaning of Negative Premises in Transition
System Specifications

ROLAND BOL

Uppsala University, Uppsala, Sweden

AND

JAN FRISO GROOTE

Centre for Mathematics and Computer Science, Amsterdam, The Netherlands

Abstract. We present a general theory for the use of negative premises in the rules of Transition
System Specifications (TSSs). We formulate a criterion that should be satisfied by a TSS in order to
be meaningful, that is, to unequivocally define a transition relation. We also provide powerful
techniques for proving that a TSS satisfies this criterion, meanwhile constructing this transition
relation. Both the criterion and the techniques originate from logic programming [van Gelder et al.
1988; Gelfond and Lifschitz 1988] to which TSSs are close. In an appendix we provide an extensive
comparison between them.

As in Groote [1993], we show that the bisimulation relation induced by a TSS is a congruence,
provided that it is in ntyft/ntyxt-format and can be proved meaningful using our techniques. We also
considerably extend the conservativity theorems of Groote [1993] and Groote and Vaandrager [1992].
As a running example, we study the combined addition of priorities and abstraction to Basic Process
Algebra (BPA). Under some reasonable conditions we show that this TSS is indeed meaningful,
which could not be shown by other methods [Bloom et al. 1995; Groote 1993]. Finally, we provide a
sound and complete axiomatization for this example.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and
Theory; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about
Programs; F.3.2 [Logics and Meanings of Programs]: Semantics of Programming Languages; I.2.3
[Artificial Intelligence]: Deduction and Theorem Proving.

General Terms: Algebra, Semantics

Additional Key Words and Phrases: Bisimulation, congruence, conservative extension of TSSs, logic
programming, negative premises, ntyft/ntyxt-format, priorities and abstraction, process algebra,

R. Bo! was partly supported by the European Communities under ESPIRIT Basic Research Action
3020 (Integration).
J. F. Groote was supported by the European Communities under RACE project no. 1046 (SPECS)
and ESPIRIT Basic Research Action 3006 (CONCUR).
Authors' present addresses: R. Bol, Department of Computer Systems, Uppsala University, P.O. B~x
325, S-751-05 Uppsala, Sweden, e-mail: rolandb@docs.uu.se; J. F. Groote, Centre f~r '.'1athen;at1cs
and Computer Science, P.O. Box 4079, 1000 AB Amsterdam, The Netherlands, e-mail: 1fg@cw1.al.

Permission to make digital/hard copy of part or all of this work for personal or classroom use. is
granted without fee provided that the copies are not made or distributed for profit or :om'.11e~c1al
advantage, the copyright notice, the title of the publication, an_d its date. appear, and notice is given
that copying is by permission of the Association for Computmg Mach_mery ~ACM) .. ~nc. To. c~py
otherwise, to republish, to post on servers, or to redistribute to lists, requ1res pnor spec1f1c perm1ss10n

and/ or a fee.
© 1996 ACM 0004-5411/96/0900-0863 $03.50

Journal of the ACM, Vol. 43. No. 5, September 1996. pp. 863-914.

864 R. BOL AND J. F. GROOTE

stable model semantics, stratification, structured operational semantics (SOS), sum of TSSs, transi
tion relation, transition system specification (TSS), well founded model semantics

l. Introduction

Since its introduction in Hennessy and Plotkin [1979] and Plotkin [1981],
Plotkin-style operational semantics has become a popular means for giving
meaning to process calculi, specification and programming languages in terms of
transition systems. A transition system consists mainly of a transition relation
which is specified by a set of rules forming a Transition System Specification (TSS)
[Groote and Vaandrager 1992]. Recently, the use of negative premises in these
rules has become popular1 because it allows one to define more operators in an
easy way. However, the logical meaning of those negative premises is not always
clear. Therefore, the formal foundation of some of these articles is somewhat
questionable. The problematic nature of negative premises has already been
observed in Baeten and Bergstra [1988], Bloom et al. [1995], and Groote [1993].

In this paper, we provide a way to treat negative premises in general and we
study some of the consequences of this treatment. The fundamental problem of
negative premises in TSSs is that they cannot be proved in the same way positive
premises can. In order to overcome this problem, we resort to a non-classical
treatment of negation, similar to default logic [Reiter 1980] and logic program
ming [Gelfond and Lifschitz 1988]. Without negative premises the notion of
proof is standard. With negative premises we may only use the rules for which
the negative premises hold. A negative premise holds by default, that is unless
the opposite can be proved. Now suppose __,. contains all transitions that can be
proved in this way. Then it must satisfy:

-7 is the set of transitions that are provable by those rules of which the
negative premises are consistent with __,._

Following Gelfond and Lifschitz [1988], we call such a transition relation stable
for the TSS.

It is possible that a TSS has zero, one, or more stable transition relations. If a
TSS P has exactly one stable transition relation then we propose that this
relation is the transition relation associated with P. If a TSS has zero or more
than one stable transition relation, it is hard to imagine that any specific
transition relation can be associated with it on reasonable grounds. That is,
unless one is prepared to associate with a TSS a transition relation that is not
decisive about all transitions. But this is not considered appropriate for the field
of operational semantics.

In general, it is difficult to show that a TSS has a unique stable transition
relation. However, some techniques have been developed for showing its exis
tence. The first technique, called stratification, is presented in Groote [1993]. It is
based on the notion of local stratification in logic programming [Przymusinski
1987]. In this article we show that the transition relation associated with a

1 See Baeten and Bergstra [1986], Bloom et al. [1995], Bolognesi et al. [1990], Groote [1993],
Hennessy and Regan (1990], Ichikawa et al. [1990], Janicki (1987], Langerak (1989], Nicollin et al.
(1990], and Pneuli [1985].

Negative Premises in Transition System Specifications 865

stratified TSS according to Groote [1993] is indeed the unique stable transition
relation for it. This also implies the same fact for positive TSSs and TSSs in the
so-called GSOS-format [Bloom et al. 1995], as they are stratified.

Stratification is an intuitively appealing technique, and quite easy to use, but it
is not always strong enough. Here, we introduce a more powerful technique,
based on well-founded models in logic programming [van Gelder et al. 1988;
Przymusinski 1989]. This technique, which we call reduction, is more powerful
than stratification, but also more difficult to use. The two techniques can be
amalgamated, using reduction when necessary and stratification when possible.
This is demonstrated in our running example, showing that under some reason
able conditions a transition relation can be associated with it.

A desirable property for a TSS is that the strong bisimulation equivalence
induced by it [Milner 1980; Park 1981] is a congruence. In Groote and Vaan
drager [1992] the tyft/tyxt-format was introduced, as a syntactical condition on
TSSs that guarantees this property for positive TSSs. In Groote [1993], this
condition was generalized to the ntyft/ntyxt-format for stratified TSSs. Here we
show that the same condition is sufficient for all TSSs for which the reduction
technique works. In contrast, we show that the condition is not sufficient for
TSSs having an associated transition relation that is not produced by reduction.

It can be useful to enrich a given language with additional language constructs.
In order to do this in a systematic way, the sum of two TSSs has been introduced
[Groote and Vaandrager 1992]. The sum of two TSSs P0 and P 1 is called a
conservative extension of P 0 if certain relevant properties of terms over the
signature of P0 are preserved. In Groote [1993], syntactical conditions on
stratified TSSs were given ensuring that their sum is conservative. Here we
generalize these conditions considerably and we extend them to TSSs for which
the reduction technique works.

Throughout the paper, we use an example to illustrate these techniques: a TSS
specifying the operational semantics of Basic Process Algebra (BPA) extended
with priorities [Baeten et al. 1986] and abstraction [van Glabbeek 1987; Milner
1980]. We show using reduction and stratification that this TSS is meaningful. In
Section 10 we give a sound and complete axiomatization of strong bisimulation
equivalence induced by this TSS. It turns out that most of the standard
techniques for positive TSSs can still be used.

1.1. RELATED WORK. For those readers who are interested in reading more
about TSSs, we give a short summary of recent results in this area. With regard
to negative premises in TSSs the reader is referred to van Glabbeek [1995],
which provides an neat overview of potential semantics for negative premises in
rules, including an alternative formulation of our notion of TSSs that are positive
after reduction. In van Glabbeek [1995], such TSSs are called (ws-)complete. An
argument is given why a TSS with a unique stable model but which is not
(ws-)complete should not be considered as meaningful.

It is interesting to note that Fokkink and van Glabbeek [1995] have shown that
the well-foundedness condition on TSSs in order to show the Congruence
Theorem to hold (Theorem 8.14) can be omitted. Their main argument is that
for every ws-complete TSS in ntyft/ntyxt format an equivalent well-founded
ws-complete TSS in the same format can be constructed.

866 R. BOL AND J. F. GROOTE

There appear two main streams in extending the format of operational rules.
In the first one, explicit predicates are allowed in rules [Baeten and Verhoef
1993; Verhoef 1995]. It is shown that for the path and panth formats the
Congruence Theorem for bisimulation still holds. In Fokkink and Verhoef [1995]
and Howe [1996], transition system specifications that allow substitutions are
being studied. In Fokkink and Verhoef [1995] and Verhoef [1994], sufficient
criteria are provided to guarantee conservativity of extensions (cf. Theorem 9.5).
In Howe [1996], structured evaluation systems are introduced, and it is proven
that bisimulation is a congruence for the operators defined using such systems.

In Aceto et al. [1994], it is shown how to generate automatically a complete
axiom system for bisimulation semantics given a Transition System Specification
where the rules are in a certain format. In Aceto [1994], this format is somewhat
relaxed but such that still finitary sets of axioms are generated. In Bloom [1995],
the issue of generating an axiom system is also shortly touched upon.

In the category of miscellaneous results, we find [D'Argenio 1995] who shows a
conservativity result for preorders. In Bloom [1995] and van Glabbeek [1987],
formats for observation equivalences are being studied. In Aceto and Ing6lfsd6t
tir [1994/1995], denotational models for languages specified using particular
types of rules are given.

This paper is structured as follows:
1. Introduction
2. Preliminaries

Transition relations, TSSs and the running example are introduced.
3. Transition relations for TSSs

Several proposals for associating a transition relation with a TSS are given
and stratified TSSs are defined. It is concluded that none of the existing
techniques can handle the running example.

4. TSSs and their associated transition relations
We identify meaningful TSSs using stable transition relations and 'strip
ping' of TSSs.

5. Reducing TSSs
The reduction technique is presented and its soundness is proved.

6. Reduction and stratification
Reduction is stronger than stratification. An amalgamation of both tech
niques provides a meaning to the running example.

7. Bisimulation relations
P-bisimulation and P =? Q-bisimulation are introduced.

8. The ntyft/ntyxt-format and the Congruence Theorem
The Congruence Theorem holds for TSSs in ntyft/ntyxt-format for which
reduction works.

9. Conservative extensions of TSSs
The sum of TSSs is conservative under some liberal conditions.

10. An axiomatization of priorities with abstraction
A sound and complete axiomatization for the running example is given.

Negative Premises in Transition System Specifications 867

Appendix A. The relation between TSSs and logic programs.

We provide an extensive comparison between TSSs and logic programs.

2. Preliminaries

In this section we provide the basic concepts of this paper: transition relations and

Transition System Specifications (TSSs). An example of a TSS is given in which

priorities and abstraction are integrated in BP A. This example will serve as a

running example throughout this article.

We assume the presence of an infinite set V of variables with typical elements
x, y, z

Definition 2.1. A (single sorted) signature is a structure 2. = (F, rank) where:

-F is a set of function names disjoint with V,

-rank: F __,. N is a rank function which gives the arity of a function name; if

f E F and rank(!) = 0 then f is called a constant name.

Let W ~ V be a set of variables. The set of 2.-terms over W, notation T('~, W),

is the least set satisfying:

-W ~ T(!., W),

-if f E F and t 1, ... , trank<f > E T(2., W), then f(t 1, ... , trank(f)) E T(2., W).

T('i, 0) is abbreviated by T(2.); elements from T(2.) are called closed or ground

terms. lf(!,) is used to abbreviate T(2., V), the set of open terms. Clearly, T(2.) c
lr ('i). Var(t) ~ V is the set of variables in a term t E lf (2). A substitution a is

a mapping in V---? lf(2). A substitution a is extended to a mapping a: lf(l)---?

lr(l) in a standard way by the following definition:

-a(f(t1,. ·., trank(f))) = f(a(t 1), .•. , a(trank(f))) for f E F and t 1, ... ,

frank(!) E lf(!,).

A substitution is closed (or ground) if it maps all variables onto closed terms.

A transition relation prescribes what activities, represented by labeled transi-

tions, can be performed by terms over some signature. Generally, the signature

represents a programming or a specification language and the terms are pro

grams. The transition relation models the operational behavior of these terms.

Definition 2.2. Let !, be a signature and A a set of labels. A (labeled)

transition relation is a subset ~ of Tr(l, A), where Tr(!i, A) = T(!,) X A X

T('i). Elements (t, a, t') of a transition relation are written as t 4 t'.

A transition relation is often defined by means of a Transition System

Specification (TSS). Plotkin [Hennessy and Plotkin 1979; Plotkin 1981] defended

the use of TSSs to give an operational semantics, and therefore a TSS is

sometimes called an operational semantics in Plotkin style. The term, TSS, was

first coined in Groote and Vaandrager [1992] for a system in which rules had

only positive premises. Negative premises were added in Groote [1993].

Definition 2.3. A TSS (Transition System Specification) is a triple P =
(2., A, R) with !, a signature, A a set of labels and R a set of rules of the form:

b1

{tk~tklkEK} U {t,-fr[lEL}

t ~t'

868 R. BOLAND J. F. GROOTE

with K, L (possibly infinite) index sets, tk> t/0 t 1, t, t' E lr(I), ak, b1, a E
A(k EK, l EL). An expression of the form t .!4 t' is called a (positive) literal.
t':fr is called a negative literal. <p, l/J, x are used to range over literals. For a literal
l/J, source(l/I) denotes the term at the left hand side of lfJ and, if lfJ is positive,
target(!/!) denotes the term at the right hand side. For any rule r E R the literals
above the line are called the premises of r, notation prem(r), and the literal
below the line is called the conclusion ofr, denoted as conc(r). Furthermore, we
write pprem(r) for the set of positive premises of r and nprem(r) for the set of
negative premises of r. A rule r is called positive if there are no negative
premises, that is, nprem(r) == 0. A TSS is called positive if it has only positive

0
rules. A rule is called an axiom if its set of premises is empty. An axiom -- is

t -!4 t'
often written as t!4 t'. The notions 'substitution', 'Var' and 'closed' extend to
literals and rules as expected.

Throughout this paper, we use the following Transition System Specification
scheme to illustrate the techniques we introduce. It describes the semantics of a
small basic process language extended with priorities and abstraction. This
combination has not been studied before due to the technical complications that
are involved. Priorities are investigated in Baeten et al. [1986], Best and Koutny
[1990], Camilleri [1989], and Cleaveland and Hennessy (1988]. We follow the line
set out by Baeten et al. [1985] who introduced a priority operator e. We base our
example on BPA,,."" Basic Process Algebra with T, e, and 8 as introduced in
Groote and Vaandrager [1992], and extend it with recursion and priorities. For a
general overview of process algebra, the reader is referred to Baeten and
Weijland [1990].

Example 2.4 (BPA,, • ., with priorities). We assume that we have a given set Act
of actions that represent the basic activities that can be performed by processes.
A et., == Act U { T} is a set of actions containing the symbol T representing
internal or hidden activity. Moreover, we assume a partial ordering < on Act.,,
which we call the priority relation: actions higher in the ordering have a higher
priority than actions lower in the ordering. We assume that < is backwardly
well-founded, that is, the inverse of< constitutes a well-founded ordering.

Our signature contains a constant a for each action a E Act.,. Moreover, we
have two special constants 8 and e. 8 is called inaction (or deadlock) and it
represents the process that cannot do anything at all. In particular, 8 cannot
terminate. e is called the empty process, which cannot do anything but terminate.

Two basic operators compose smaller into larger processes: sequential compo
sition is written as '·' and alternative composition is denoted by +. We often leave
out the "' and assume that "' binds stronger than +.

Actions can be abstracted away: for all I ~Act the unary abstraction operator
r1 performs this task by renaming all actions in I to T.

For recursion it is assumed that there is some given set E of process names.
Each process name X E E is treated as a constant in the signature. Furthermore,
we assume that a set E of process declarations is given. For each process name X
in E there is a declaration X ~ t x E E where t x is a closed term over the
signature. Terms that do not contain process names are called recursion free.

The remaining operators in the signature deal with priorities. The priority
operator 8 acts as a sieve: 8 (x) only allows those actions from x that have highest

Negative Premises in Transition System Specifications 869

TABLE I. THE OPERATIONAL SEMANTICS OF BPAs,, WITH PRIORITIES (a E Actn;, b E Act.).

E: Rl:

a: R2:

+: R3.l:

R4.l:

6: R5.l:

<l : R6.1:

TJ: R7.1:

recursion: R8:

r-rules: R9.l:

R9.2:

x....!!:+x'

x +y....i!:+x'

x....!!:+x'
----- if a E A.et.,.
x · y....i!:+x' · y

R3.2:

R4.2:

y....i!:+yl

x+ y....i!:+y'

x__::4x 1 y...!±+y'

x·y--2:..+y'

x....!!:+x' \.fb > a x~ x_:4x 1

B(x)--2:..+fJ(x') if a E Act.,. R5.2: B(x)-4e(x')

x....i!:+x' \.fb > a y~ 'f A
a I a E et.,. R6.2:

x <J y-=-tx'

x-4x' if a rf. I R7.2:
r1(x)-4r1(x')

t ...!±+y
~ if X {::: tx E E
X-=-ty

a...E.+r if a E Act.,.

x....!..+y y--2:..+z

x-4z
R9.3:

x...E.+x'
-----ifaEI
rr(x)!..+rr (x')

x....!!:+y y....!..+z

x...E.+z

priority. For the axiomatization of BPA.ser with priont1es, which is given in
Section 10, we need the unless operator <J, which was introduced in Baeten et al.
[1986]. This operator is applied on two operands and only allows an action in its
left-hand side provided the right-hand side cannot do any action with higher
priority.

When (Actr, <)and (E, E) are fixed, we obtain a TSS which is an instance of
BP A.ser with priorities. Such an instance will be denoted as P e = (2: 9, A e, R 8).

The signature 2: 0 = (F 8, rank e) is described above. The labels in A e are exactly
those in ActT together with one special symbol v which is used to signal
termination. If a process term t can perform a v-step, that is, t '{,. t'' this means
that t has an option to terminate.

The rules in Re are given in Table I. Here, the action a ranges over Act r\/ =
Actr U { y} and b ranges over ActT. In rules R5.1 and R6.l we use the notation
Vb > a x o/o> which means that for all b with higher priority than a, there is a
negative premise x ~. Rule R5.1 is intuitively appealing. It says that 8 (x) may
do an a -action if x can do this action and x cannot do any action with higher
priority. But there is a snag in it. Due to the negative premises, it is not at all
straightforward to see that P e defines a transition relation. In fact, in Example
4.8, we will present a case in which it does not make sense at all.

870 R. BOL AND J. F. GROOTE

Rules R9.l-R9.3 are explained below. We think that the remaining rules are
self-explanatory, although we like to point out that rule R4.2 makes use of a
process that explicitly signals termination.

Rules R9.1-R9.3 [van Glabbeek 1987] model the properties of T. R9.2 and
R9.3 say that whenever an action a is observed in some time interval, numerous
unobservable T-actions can also happen during the same time, both before and
after a. Rule R9.1 says that if an action a is observed, some internal activity may
exist before the next action can take place.

Through these rules, our interpretation of T becomes observation equivalence as
introduced by van Glabbeek [1987]. That is, two terms are observation equivalent
in a transition system defined by a TSS if and only if the terms are strongly
bisimilar (as defined in Section 7) in the transition system defined by the TSS
augmented with rules R9.1-R9.3 (assuming, of course, that these TSSs indeed
define transition relations).

Van Glabbeek's equivalence is a minor variant of the observation equivalence
as introduced by Milner [1980]. The difference boils down to the rule KFAR
[Baeten and Weijland 1990] which is valid in Milner's observation equivalence,
whereas in van Glabbeek's only KFAR- holds [Baeten and Weijland 1990]. Both
rules deal with divergence through the assumption of fair abstraction, but in a
slightly different way. Without this modification, we cannot allow internal actions
to have any priority relation with ordinary actions. In order to make this
statement concrete, we must give a precise definition of the intuition "the
priority of internal actions." Our intuition is that the priority operator e should at
least obey the following laws (also when a orb are T-actions):

-e (ax) = a e(x), that is, e distributes over sequential composition.

-e (ax + by) = e (ax) if b < a, that is, in a context where a has a higher
priority than b, b can never be chosen over a.

The first of the following two examples shows that under these assumptions
Milner's observation equivalence does not allow internal actions to have priority
over ordinary actions. The second example shows that internal actions can also
not have lower priority than ordinary actions. This second example does apply
equally well to our setting and provides one of the reasons why we disallow
visible actions to have priority over internal actions (cf. discussion before
Theorem 6.6).

Example 2.5. Let = denote observation equivalence in the sense of Milner,
and let T* denote the process that can execute T an arbitrary number of times
(formally: T{;}(X), with X ~ i · X + e E E). According to KFAR, we have
aT*b = ab and aT*S = aB. Then T > b leads to ab = e(ab) = e(aT*b) =
e (a T* B) = e (a B) = a B, which should not be valid in any reasonable
equivalence.

Example 2.6. Consider the following consequence of the second tau law
T(a + b) = a + T(a + b) that is valid in both Milner's observation equivalence
and van Glabbeek's equivalence. Assuming that T has lower priority than a, and
a and bare independent, we find T(a + b) = fJ(T(a + b)) = e(a + T(a + b))
= a, which should not be valid in any reasonable equivalence.

Negative Premises in Transition System Specifications 871

3. Transition relations for TSSs

We have introduced TSSs as a formalism for specifying transition relations. Thus,
a most fundamental question is, which transition relation is actually defined by a
TSS? In this section we outline some answers proposed in the literature for
several classes of TSSs. Then we show that these techniques are not capable of
handling our running example satisfactorily. In the next sections we show how to
solve this problem.

As a first step, a link between the transitions in a transition relation and the
literals in TSSs is established.

Definition 3.1. Let -)o be a transition relation. A positive ground literal i.f;
holds in -)o or lfJ is valid in -)o, notation -)o I== ijf, if the transition i.f; E -)o_ A
negative ground literal t ¥> holds in -)o, notation -)o I== t ¥> , if for no t' E T(2.)
the transition t 4 t' E -)o_ For a set of ground literals qr, we write -)o I== qr iff Vl/J
E W': -)o I== i.f;.

Remark 3.2. Suppose we have two transition relations -)o1 and ~2 such that
-)o1 ~ -)o2• For any set of positive literals qr it is clear that -)o 1 I== qr implies -)o2 I==
¥. However, if'¥ is a set of negative literals, then -)o2 I== qr implies ~1 I= qr_ We
shall often use this kind of reasoning.

What is the transition relation defined by a TSS? At least one may require that
a transition relation associated with a TSS P obeys the rules of P, that is, if the
premises of a ground instance of a rule in P are valid in -)o' then the conclusion
is also valid in --?. (In terms of logic: the rules of P, interpreted as implications,
are true in -)o).

Definition 3.3. Let P = (2., A, R) be a TSS and let -)o <:;;-; Tr(l., A) be a
transition relation. -)o is a model of P if:

l-)o I= prem(cr(r)) and
lf; E --? {:: ::Jr ER and ::Jcr: V -)o T(l.) such that:

conc(cr(r)) = i.f;.

On the other hand, a transition ijJ should not be incorporated in the transition
relation -)o of a TSS P unless there is a good reason to do so, namely a rule in P
with valid premises in -)o concluding i.f;.

Definition 3.4. Let P = (2., A, R) be a TSS. Let -)o <:;;-; Tr(2., A) be a
transition relation. -)o is supported by P if:

l-)o I= prem(cr(r)) and
lfJ E -)o ::} ::Jr ER and 3cr: V-)o T(l.) such that: (())

cone er r = If!.

Combining the previous definitions, we get:

Definition 3.5. Let P = (2., A, R) be a TSS. Let -)o <:;;-; Tr(l, A) be a
transition relation. -)o is a supported model of P if -7 is supported by P and -)o is
a model of P.

The notion of -)o being a supported model of P was introduced in Bloom et al.
[1995] as '-7 agrees with P'. Although the transition relation associated with a
TSS should certainly be a supported model of it, the notion of supportedness is

872 R. BOL AND J. F. GROOTE

generally not sufficient to exclude all superfluous transitions from the transition
relation. This is shown by the following example:

Example 3.6. Suppose we have a TSS P with one constant f, one label a and
the following rules:

f ~f
f ~f

We would like P to define the transition relation --'> p = 0. We feel that there
is not enough reason to add f ~f to --'> P as it can only be 'derived' by assuming
that it is already in --'>p.

However, both 0 and {f ~f} are supported models of P.
For positive TSSs this shortcoming is easily remedied by associating with a TSS

P the least transition relation (with respect to set inclusion) that is a model of P.
The existence of this least model follows from the model intersection property
stated below.

LEMMA 3.7 (MODEL INTERSECTION PROPERTY). Let P be a positive TSS and
let CG be a collection of models of P. Then n CG is a model of P.

PROOF. Let r be a ground instance of a rule of P. If n <~ i= prem(r), then for
every.....;. EC€:;. i= prem(r), thus for every.....;. E C€: --'> i= conc(r), as'{£ is a
collection of models. Thus n <-€, i= conc(r). D

Thus, we have the following definition:

Definition 3.8. The transition relation -;.P associated with a positive TSS P is
the least model of P with respect to set inclusion.

Traditionally [Groote and Vaandrager 1992; Hennessy and Plotkin 1979;
Plotkin 1981], a different definition of the transition relation associated with a
positive TSS was given, based on the provability of transitions. We show that
these two characterizations are equivalent.

Definition 3.9. Let P = (2:, A, R) be a positive TSS. A proof of a positive
literal l/J from P is a well-founded, upwardly branching tree of which the nodes
are labeled by literals t ~t' with t, t' E lr (:2:) and a E A, such that:

-the root is labeled with l/J,
-if x is the label of a node q and {x;li E I} is the set of labels of the nodes

directly above q, then there is a rule { 'P;li E I} I cp in R and a substitution er: V
--'> lr(:2:) such that x = cr(cp) and X; = cr(cp;) for i E J.

A proof is closed if it only contains closed literals. A positive literal tf1 is
provable in P, notation P I- l/J, if there exists a proof of tf1 from P.

THEOREM 3.10. Let P = (2:, A, R) be a positive TSS, --'>p the transition relation
associated with P and l/J E Tr(2:, A). Then

PROOF

~ By straightforward induction on the proof of l/J from P.

Negative Premises in Transition System Specifications 873

{:: It is straightforward to show that { t/!IP f- t/J} is a model of P. As --"' P is the
least model of P, it follows that -"'p ~ { t/JIP f- t/!}. D

From this theorem it also follows that the least model of a positive TSS is
supported by it.

For TSSs with negative premises it is much more difficult to find an appropri
ate associated transition relation as is shown by the following example:

Example 3.11. Suppose we have a TSS P with one constant f, two labels a
and b and the following rules:

t+
-b--

f-"' f

We would like P to define the transition relation _,.P = {f ~f}. However, P
has exactly two minimal models, {f ~f} and {f ~f}, which are both supported.

Thus, in the presence of negative premises, there may be several minimal
models, some of which may be supported. So other characterizations for
associated transition relations must be sought. The notion of provability also
needs a revision, as it is not a priori clear how the negative premises of a rule
must be proved.

Similar problems concerning negative premises have been studied in the
context of logic programming. The correspondence between TSSs and logic
programs is treated in Appendix A. A first solution proposed there introduced
the notion of (local) stratification. Here we follow Groote [1993], where this
notion was tailored for TSSs.

A TSS P is stratified if there exists a stratification of the transitions with
respect to the rules of P. The stratification guarantees that the validity of no
literal depends on the validity of its negation.

Definition 3.12. Let P = (:k, A, R) be a TSS. A function S: Tr(I, A)_,. a,
where a is an ordinal, is called a stratification of P if for every rule r E R and
every substitution a: V _,. T(2.,) it holds that:

for all lj! Epprem(a(r)): S(t/!) :s; S(conc(a(r)) and

for all t J> E nprem(a(r)) and t' E T(2.,): S(t ~ t') < S(conc(a(r))).

If P has a stratification, we say that P is stratified. For all ordinals f3 < a, S f3 =
{cp!S(cp) = {3} is called a stratum.

Example 3.13. The TSS of Example 3.11 can be stratified by a stratification S

as follows:

a h
S (f _,. f) = 0 and S (f ~ f) = l.

Each positive transition system specification is trivially stratified by putting .all
positive literals in stratum 0. In Groote [1993] it is shown that BPAes with
priorities and renaming but without abstraction is stratified under some appro

priate conditions.

874 R. BOL AND J. F. GROOTE

We now define how a transition relation -'!>p,s is constructed from a TSS P
with stratification S, rephrasing a corresponding definition in Groote [1993]. The
idea of the construction is that one first considers the positive literals in stratum
0. As each literal in stratum 0 can only fit the conclusion of a rule without
negative premises, one can determine which of these literals hold and which do
not hold in -'!>p s in the same way as is done for positive transition system
specifications. u' a literal in stratum 1 fits the conclusion of a rule, then this
instance of that rule can only have negative premises in stratum 0. If these
negative premises hold (which has already been determined), they can be
discarded. If they do not hold, the rule cannot be applied. Then we can prove the
literals in stratum 1 in the ordinary way and we proceed with stratum 2, etc.

Definition 3.14. Let P = (I, A, R) be a TSS with a stratification S:
Tr("l,, A) ---'!> a for some ordinal a. The transition relation -'!>P,s associated with P
(and based on S) is defined as:

-'i>p,s = U ~P,,
0:.-Si<a

where ~P; is defined by the (positive) TSS P; = (I, A, R;) with R; given by:

R; = {r'l:Jr ER and :Ja: V-'!> T(I):

U -'!>p t= nprem(a(r)) U {cp Epprem(o-(r))IS(cp) < i},
I

Osj<i

S(conc(a(r))) = i and

{cp Epprem(o-(r))IS(cp) = i}
r' = } .

conc(u(r))

THEOREM 3.15 (SEE LEMMA 2.5.4 IN GROOTE [1993]). Let p be a TSS that is
stratified by stratifications S and S'. Then ~P.s = -'!>P,S'·

This theorem allows us to write -'!>p for the transition relation associated with
a stratified TSS P. Note that the definition of -'!>p based on the notion of
'stratification' extends the definition of ~P for positive TSSs.

THEOREM 3.16 (SEE THEOREM 2.5.3 IN GROOTE (1993] AND THEOREM 4 IN

PRZYMUSINSKI [1987]). Let P be a stratified TSS. Then -'!>p is a minimal and
supported model of P.

Thus, we have the scheme of characterizations depicted in Figure 1, where A
~ B means that characterization A implies characterization B. For positive
TSSs, the characterizations marked by a * coincide.

Although the stratification technique is often applicable, there are examples of
TSSs that have an intuitive meaning while not being stratified. One such example
is BPA6ET with priorities.

Example 3.17. Suppose we have an instance P 8 of BPA6ET with priorities
based on a set of actions Act containing at least two elements a and b such that
a < b. Consider for arbitrary terms t and u the following instances of rules:

Negative Premises in Transition System Specifications

Suppmcud / . ~'"'"'"""'"inn

Supported m~ · / . ~ • Minim~ mndol

Suppnrt<d =d mi"""'1 m~ ./ ~ • L•M' mod•I

~ * Model based on stratification

FIG. 1. Relations among several models.

a h

R5.l:
f----">U t +

a
B(t)----">B(u)

a

R7.2:
8(t)----">B(u)

R9.3:

b T

t----"> T{a)(e(t)) T{a)(B(t))----"> T{ai(B(u))
b

t----"> T{al(B(u))

For any stratification S of P e it should thus hold that

(RS.l)
a

S(e(t) ____,. e(u)) ~ (R7.2)

S(T{a)(B(t)) ~ T{a}(e(u))) ~ (R9.3)
b

S(t----"> T{a}(e (u))).

Of course, such a stratification cannot exist.

875

Again, this problem has been recognized earlier in logic programming, and
several more powerful techniques were introduced there (see Apt and Bo! [1994]
for an overview). In the following two sections we adapt Gelfond and Lifschitz
[1988] and van Gelder et al. [1988] for TSSs.

4. TSSs and their associated transition relations

So far no meaning has been given to TSSs that are not stratified. There are,
however, TSSs, like BPA8.,. with priorities, that seem to be perfectly meaningful
while not being stratified. This brings us back to the fundamental question of
what transition relation should be associated with a TSS. Our answer is essen
tially that the transition relation must be the unique stable model in the sense of
logic programming [Gelfond and Lifschitz 1988]. We strongly believe that any

876 R. BOL AND J. F. GROOTE

TSS that has no unique stable transition relation does not have a proper
meaning.

The definition of a stable transition relation is intuitively as follows. Our first
observation is that positive and negative premises in a rule of a TSS P have a
different status. In order to prove the conclusion of a rule, the positive premises
of the rule must be proved from P. However, as P contains only rules defining
which literals hold, but not which literals do not hold, negative premises must be
treated differently.

Conceptually, t !fr holds by default, that is, if for no t': t ~ t' can be proved.
But we are still trying to determine which literals can be proved. So instead of an
immediate characterization of the set of provable literals -, we have an equation
with this set both on the left and on the right side, namely,

- equals the set of literals that are provable by those rules of the TSS of
which the negative premises hold in ""°'·

This equation does not give us a means to compute the transition relation ""°'• but
we can easily check whether a given transition relation satisfies our criterion.

We now formalize these ideas. In Sections 4, 5, and 6 we use only ground
TSSs, that is, we identify a set of rules R with the set of ground instances of R.

Definition 4.1. Let P = (I, A, R) be a TSS. Let - ~ Tr(I, A).

Strip(P, """') =(I,, A, Strip(R, -))

where

l pprem(r))
Strip(R, ""°') = r' I 3r ER: ""°'I= nprem(r) and r' = .

conc(r)

Given a transition relation ""°'• the function Strip removes all rules in R that have
negative premises that do not hold in ""°'· Furthermore, it drops the negative
premises from the remaining rules. The following lemma is therefore obvious.

LEMMA 4.2. Let P = (I, A, R) be a TSS and let - ~ Tr(I., A) be a transition
relation. Then Strip(P, """')is a positive TSS.

Using the fact that the notion of provability is already captured in the
definition of the transition relation associated with a positive TSS, we can now
easily formalize the previously stated equation.

Definition 4.3 (Stable transition relation). Let P = (I, A, R) be a TSS. A
transition relation"""' ~ Tr(I., A) is stable for P if""°' = -Strip(P,-+)'

Remark 4.4. In general, for a TSS P there may be 0, 1 or more transition
relations that are stable for P, for example:

Negative Premises in Transition System Specifications 877

t+
0: a

f __,,. f
a b

1: !+ !__,,.!
a

f __,,. f
[->;>=0]

a b

2: !+ f+
-b- --.-
! __,,. f f __,,. f

We do not have any idea as to which transition relations should be associated
with the first TSS, nor do we know which one of the two transition relations of
the third TSS should be preferred. In fact we think that there are no satisfying
answers to those questions. Thus, we propound the following definition:

Definition 4.5. Let P be a TSS. If there is a unique transition relation ~
stable for P, then __,,. is the transition relation associated with P.

In order to avoid confusion, we do not again introduce the notation ~p: until
Section 7 this notation remains reserved for stratified TSSs.

Remark 4.6. If P is positive, then for every transition relation ~. Strip(P,
_,,.) = P, thus _,,.P is the unique transition relation that is stable for P. Hence,
this definition of 'associated with' coincides with the previously given definition
for positive TSSs. In Section 6, we show that our choice also extends the
definition of 'associated with' for stratified TSSs.

The following lemma will be used implicitly in almost every proof to follow.
Moreover, it shows that our choice that a transition relation must be stable for a
TSS is also a refinement of the requirement that a transition relation must be a
supported and minimal model of it.

LEMMA 4.7. Let P = (k, A, R) be a TSS and let~~ Tr("i, A) be a transition
relation. If__,,. is stable for P, then

(1) ~is a model of P,

(2) ~ is supported by P,
(3) __,,.is a minimal model of P (cf [Gelfond and Lifschitz 1988; Theorem l]}.

PROOF. Let __,,. be a transition relation that is stable for P.

(1) Suppose r E R and __,,. F= prem(r). Hence

pprem(r)
---E Strip(R, __,,.).
conc(r)

As__,,. = ~Strip(P,-·>) is a model of Strip(P, __,,.) and~ I= pprem(r), __,,. I=

conc(r).
(2) Suppose <p E __,,., Hence, ~ F= <p and thus _,,.strip(P,->) I= <p. This mean~ that

there is a proof for q; using the rules in Strip(R, __,,.). Assume rule r is the
last rule used. So conc(r) = q;. Hence, Strip(P, __,,.) f- prem(r) and thus~
F= prem(r). As r E Strip(R, ~) there is a rule

878 R. BOL AND J. F. GROOTE

prem (r) U nprem
r' = ··ER

conc(r)

where nprem is a set of negative premises such that--+ \= nprem. Hence, for
this ruler' E R it holds that <p = conc(r') and --+ \= prem(r'). Hence, ~
is supported by P.

(3) We must show that--+ is minimal among the models of P. Suppose --+* ~ ~
is also a model of P. We show that--+* is a model of Strip(P, --+).Let r be
a rule of Strip(P, --+).This means that there is some

prem(r) U nprem
r' = · · -- ER

conc(r)

for some set nprem of negative premises. As--+* ~ --+and--+\= nprem, ~*
\= nprem. As--+* is a model of P, we have

if-+* \= prem(r) U nprem, then~* \= conc(r).

Knowing that --+* \= nprem, this reduces to

if~* \= prem(r), then--+* \= conc(r).

Thus --+* is a model for every rule r in Strip (P, --+). As --+ is the least model
of Strip(P, --+), it follows that --+* = --+. D

We show how the notion is stable for can be applied to our running example.
What we in fact show is that in general there is no stable transition relation for
BPA5,T with priorities instantiated with a set of process declarations where the
abstraction operator T1 is allowed in process terms.

Example 4.8. Consider P 1J with at least two actions a and b such that a > b
and a process name X with the recursive definition

Now assume that there is a relation --+ that is stable for P e· We show that this
assumption leads to a contradiction. For a more convenient notation, we use
t ~ as an abbreviation of 3u E T("i. 8): --+ \= t -"--7u(t E T(l8), a E A 8). We distin
guish three cases but we do not present them in full detail. In particular, not all
possible applications of R9.2 and R9.3 are considered explicitly.

- T{hl(X) ~- As --+ is a model of P e, we have that T{ol(X) ·a ~ (by rule R4.2)
and hence T(bl(X)·a + b~ (by rule R3.1). Thus B(T{bJ(X)·a + b)~ and

--+\= 8(T{bf(X)·a + b)~ (by rule RS.1). So --+\=X~. As obviously
--+ \= X~ (X must perform at least an a or b action), it follows that ~\=
T{b }(X)"\1'4. Contradiction.

- --+ \= T(hJ(X) ~ and --+ \= T(bJ(X) ~- Then obviously --+ \= T{hl(X) ·a + b .P,
so --+\= 8(T{bl(X)·a + b)!:_,8(E) (using R2, R3.2 and RS.1). Hence,

--+I= X ~8(E), so --+I= T(bl(X) ~ T{bl(8(8)) (using RS, R7.2, Rl, RS.2, R7.2
and R9.2). Contradiction.

Negative Premises in Transition System Specifications 879

- -7 I== T{&}(X) ~ and T{nl(X) ~t for some t E T('2:,B). This can also not be the
case as there is no proof for Strip(P 0, -7) I- T{n}(X) ~t. In order to prove
T{bl(X) ~t, we must show that X ~, and in order to show this we need
T(bl(X) ·a ~- In combination with the assumption that T(bl(X) '!fr, this requires
T(bl(X) ~ again. Thus the most 'reasonable' attempt to construct the required
proof loops. All other attempts to prove T{n}(X) ~t, for example, via R9.3:

a T

T(b}(X) -7 u u -7 t

also loop.

5. Reducing TSSs

We now present a technique that can be useful for proving that a certain TSS has
a unique stable transition relation. This technique is inspired by the well-founded
models that are introduced in van Gelder et al. [1988]. First we construct a
3-valued 'interpretation' for a TSS P, partitioning the set of transitions in three
groups: those that are certainly true, those of which the truth is unknown and
those that are certainly not true. We apply this information to reduce P to
another TSS with exactly the same stable transition relations as P. In this new
TSS, the truth or falsity of more literals may become certain. Repeated reduction
may lead to complete information: the unique stable transition relation.

If in the next definition -7true contains transitions that certainly hold and -7pos
contains all transitions that possibly hold, then rules with certainly wrong
premises are removed and in the remaining rules all premises that certainly hold
are dropped.

Definition 5.1. Let P = (2., A, R) be a TSS. Let -71rue' -7pos \::; Tr('k, A) be
transition relations.

Reduce(P, -71nw -7poJ = (2., A, Reduce(R, -7trun -7pos)),

where

Reduce(R, -71n1e, -7p0 s) = {r'l::Jr ER: -71me F= nprem(r), -7pos I== pprem(r) and

{lj!Epprem(r)l-7rrue FF l/I} U {lj!Enprem(r)l-7pos FF l/I}
r' = -- ----- ----~} .

conc(r)

Thus, the reduction of a rule consists of two phases. First, it is checked that the
premises are possibly true. For positive premises, this is straightforward: t ~ t' is
possibly true if t ~t' E -7pos· Hence, the condition -7pos I== pprem(r). A
negative premise t ~ is possibly true if it is not certain that t can perform an
a-step, that is, for no t' it is certain that t ~t' holds. Thus, t ~ is possibly true if
for not', t ~t' E -7true· Hence the condition -71rue F= nprem(r).

If indeed the premises of the rule are possibly true, then the premises that are
certainly true are removed. A positive premise t ~t' is certainly true if t ~t' E
--;,. A negative premise t ~ is certainly true if t cannot possibly perform an true· T'

880 R. BOL AND J. F. GROOTE

a-step, that is, for no t': t ~t' is possible. Thus t ~ is certainly true if ~pos F=

t ~-We shall always use Definition 5.1 with ~true k ~pos (cf. Lemma 5.5).

Remark 5.2. Note that Reduce(R, ~, ~) differs from Strip(R, ~). In
Strip (R, ~) only negative premises are checked, yielding a positive TSS; in
Reduce(R, ~, ~) all premises are checked, resulting in a TSS consisting solely
of rules without premises.

The 3-valued interpretation required is obtained by means of two positive
TSSs: True(P) and Pos(P). True(P) determines the transitions that are cer
tainly true: the transitions that can be proved with positive rules only. Pos(P)
determines the transitions that are possibly true, that is, true or unknown. These
are the transitions that can be proved ignoring negative premises. Thus, Pos(P)
is obtained from P by removing all negative premises of the rules.

Definition 5.3. Let P = (k, A, R) be a TSS.

-True(P) = (2:, A, True(R)) where True(R)

-Pos(P) = (2:, A, Pos(R)) where

Pos(R) = r'[3 r E R:r'

{r E R[nprem(r)

pprem(r)

conc(r)

0}.

Because after the reduction of P the truth or falsity of more literals may become
certain, it is worthwhile to iterate the reduction process; if necessary even
transfinitely many reduction steps may be considered.

Definition 5.4. Let P = (2:, A, R) be a TSS. For every ordinal a, the
a-reduction of P, notation Red°'(P), is recursively defined as follows:

- Red0 (P) = (2:, A, Rground) where Rground is the set of all ground instances of
rules in R,

- Red"'(P) = Reduce(P, u {3<a ~True(Red~(P))' n f3<a ~Pos(Red~(P))).

Thus, in contrast with van Gelder et al. [1988] and general practice in logic
programming, our operator maps TSSs to TSSs rather than interpretations to
interpretations; for details see Appendix A. This allows us in Section 6 to
combine reduction with stratification: as soon as the reduced TSS is stratified, no
further reduction is needed.

The following lemma plays an important role in a number of proofs to follow.
It shows that the reduction process can never make a certainly true (or false)
literal become unknown. Thus reduction is monotonic in this sense.

LEMMA 5.5 (MONOTONICITY OF REDUCTION). Let P = (k, A, R) be a TSS.
For all ordinals f3 and a such that (3 < a and for every ~ k Tr('L, A):

~True(Red~(P)) k -!>True(Reda(P)) ~

-!>Strip(Reda(P),-+) ~

~ ~Pos(Red~(P))·

Negative Premises in Transition System Specifications 881

PROOF

(1) First we show that -?True(Red"(P)) k -?Strip(Red"(P),-) k -?Pos(Red"(P))• For
every TSS P' = (l, A, R'): True(R') k Strip(R', -) k Pos(R'). As
these TSSs are all positive, -?True(P') ~ -Strip(P',-..) k -Pos(P')· Now
taking P' = Red°'(P) proves this case.

(2) Here it is shown that -?Pos(Red"(P)) k -?Pos(Red~(P))· Suppose Pos(Red"'(P))
f- cp. Then there is a ruler' E Pos(Red"'(P)) such that conc(r') = cp and
Pos(Red°'(P)) f- prem(r'). Hence, there is a ruler E R such that conc(r)
= cp and

Now

U -?True(Red>(P)) F nprem(r),
y<a

n -?Pos(Red>(P)) F pprem(r).
y<a

U<,, -?True(Red>(P)) ~ U -?True(Red>(P))•
'Y " y<a

n,, -?Pos(Red>(P)) d n -?Pos(Red>(P))·
y<,, y<a

Hence, Uy<a -?True(Red'(P)) F nprem(r) implies that u'Y</3 -True(Red'(P))

F nprem (r). Conversely, n y<a -?Pos(Red'(PJ) F pprem.(r) implies ,,n y</3

-?Pos(Red'(P)) I= pprem(r). Hence Pos(Red (R)) contams a rule r such
that prem(r") ~ pprem(r) and conc(r") = cp. As also ny<a -Pos(Red'(P))

F= pprem(r) implies -?Pos(Red~(P)) F= pprem(r), it holds that -Pos(Red~(P))
F= prem(r"). Thus, Pos(Redf3(P)) f- cp.

(3) We are left to show -?True(Red~(P)) k -True(Red"(P))• We show this by
induction on a. By induction we may assume that:

for all ':S Y < a: -?True(Red•(P)) k -?True(Red>(P))·

Suppose True(Redf3(P)) f- cp. Then, there is an instance r of a rule in R such
that conc(r) = cp,

n -?Pos(Red>(P)) F nprem(r)
y</3

(all negative premises of r must be removed by reduction) and

U -?True(Red>(P)) F pprem(r)
y:S/3

(all positive premises of r must be removed by reduction or proved in
True(Redf3(P))). From this, using the induction hypothesis (i.h.) and (1)
and (2) above, we can infer the following two facts:

- n'Y</3 -?Pos(Red'(P)) F nprem(r) :::}
(2)

n'Y:S/3 -?Pos(Red'(P)) I= npmrz(r)'=*'
-?Pos(Red~(P)) F= nprem(r)=;> (l)

Vy(J3 s y <a): -?Pos(Red'(P)) F= nprem(r)'=;> .
(z.h.)

Vy(J3 :::;; y < a): -?True(Red'(P)) F= nprem(r):::}

Vy< a: -?True(Red'(P)) I= nprem(r) :::}

882 R. BOL AND J. F. GROOTE

Uy<a -""True(Red,(P)) F nprem(r): (1)
(i.h.)

- Us.a --?True(Red,(P)) i= pprem(r) =?
(i.h.)

--?True(Red~(P)) F= pprem(r) =?
(1)

Vy(/3 :$ 'Y < a): --?True(Red,(P)) F= pprem(r)=?
(2)

Vy(/3 :5 'Y < a): --?Pos(Red,(P)) i= pprem(r)=?

Vy< a: --?Pos(Red,(P)) F pprem(r) =?

n y<a --?Pos(RedY(P)) i= pprem(r).

(1) and (2) imply

Furthermore,

3 r'
prem(r) -

'P
E Red"'(R).

n~</3 --?Pos(RedY(P)) i= nprem(r) =?

n~<a-""Pos(RedY(P)) i= nprem(r) =?

nprem(r') = 0 =?

r' E True(Red"(R)).

(2)

As for every tfi E prem(r'), the proof of tfi in True(Red.B(P)) is less deep
than the proof of cp in True(Red 13(P)), we may conclude by induction that
prem(r') s; --?True(Red"(P))· Hence, conc(r') = cp E --?True(Red"(P))· 0

In order to apply this reduction process, we also need the following lemma.

LEMMA 5.6. Let P = (k, A, R) be a TSS and let---? s; Tr(k, A). For all ordinals a

U -""True(Red~(P)) s; ---"" S: n --?Pos(Red~(P))
/3<a {3<"

implies

PROOF

---?Strip(P,->) s; --?Strip(Red"(P),->)' Let tfi E --?Strip(P,->)· Hence, Strip(P, ---?) f
tjf. We use induction on this proof. There is a ruler' in Strip(P, ---?) such that
conc(r') ijJ and --?Strip(P,_..) F= prem(r'). Hence, there is a ruler ER such
that

pprem(r)
r' =----

conc(r)

and---? F= nprem(r). By induction on a and Lemma 5.5 it follows that

and hence,

Negative Premises in Transition System Specifications

--'>I= nprem(r))
::}U13<a -'>rrue(RedP(P)) F nprem(r),

U13<a -'>rrue(RedP(P)) k: --'>

-'>s1rip(P,->) F= pprem(r))
=?n13<a -'>Pos(RedP(P)) F= pprem(r).

-'>s1rip(P,->) k: n{3<a -'>Pos(RedP(P))

So there is a rule

r=

883

{l/J' Epprem(r)ln/3<a -'>rrue(RedP(P)) l=;6 lf!'}U{l/J' E nprem(r)I nf3<a -'>Pos(RedP(P)) l=;6 l/J'}
conc(r)

ERed"(P).

Furthermore, --'> F= nprem(r") ~ nprem(r). So

{o/' Epprem(r)IU{3<a -'>rrue(RedP(P)) 1#: lf!'}
r"' = E Strip(Red"(P), --'>).

conc(r)

By induction on the depth of the proof of lf! from Strip(P, --'>) we may
assume that prem(r') ~ -'>strip(Red"(P),-)' so ~Strip(Red"(P),-> F=
prem(r') = pprem(r) ~ prem(r'"). Hence, it follows that Strip(Red"(P), --'>) I=
conc(r") = lf!.

--'>strip(P,_,,) ~ -'>scrip(Red"(P,-+))· Let lf! E -'>strip(Red"(P),->)' Hence, it must be
that Strip(Red°'(P), --'>) f- lf!. So there is a ruler' in Strip(Red°'(P), --'>) such
that cone (r') = lf! and -'>srrip(Red"(P),-+) I= prem (r'). Then, there is a rule
r E R such that

{o/' Epprem(r)jUJ3<a -'>rrue(RedP(P)) l=;6 !/I'}
r' =~~~~~~~~~~~~~~~~

conc(r)

and--'> F= {t/1 1 E nprem(r)ln/3<oi -'>p0 s(RedP(P)) l=;6 !/I'}.
__.,.. F= nprem(r): Let t/1' E nprem(r). If n/3<oi ~Pos(RedP(P)) l;i: l/J', then~ I=
l/J'. If n(:l<oi -'>Pos(RedP(P)) F l/J', then also --'> F l/J', as ~ ~ n{3<a
__.,.. Pos(RedP(P)) ·
So in Strip(P, --'>)we have the rule

pprem(r)
r" = .

conc(r)

By induction on the depth of the proof of !/!from Strip(Red"(P), ~)we may
conclude that ~Strip(P,-+) F= prem(r') = { l/I' E pprem(r)I U f3<a
-'>rrue(RedP(P)) l;i: lf!'}. By the induction on a and Lemma 5.5, 'df3 < a:
-'>rrue(RedP(P)) ~ ~Strip(RedP(P),-+) ~ -'>strip(P,-)• Hence, if U f3<a
-'>rrue(RedP(P)) I= lf!', then -'>strip(?,-+) I= t/I' · Thus -'>strip(P,-.) I= prem(r") =
prem(r') U {t/I' E pprem(r)IU(:l<a ~True(RedP(P)) I= t/1'}. So -'>s1rip(P,-.) F=
conc(r") = tfl. 0

884 R. BOL AND J. F. GROOTE

Our hope is that after sufficiently many reductions we obtain a positive TSS. If
this is the case, then our method has succeeded: the transition relation of this
positive TSS is the unique transition relation that is stable for the original one.
(Example 8.14 shows that the converse is not true: a TSS having a unique stable
transition relation need not reduce to a positive TSS.)

THEOREM 5.7 (SOUNDNESS OF REDUCTION). Let P = (2.,, A, R) be a TSS and
let ~ <;;:; Tr(-S., A). For all ordinals a we have:

-? is stable for P ~ -? is stable for Red"(P).

PROOF

=?) Let -? = ~Strip(P,->)·
We prove by induction that for all ordinals a:

-? = -?Strip(Red"(P),--+)>

-?True(Red"(P)) ~ ~ h -?Pos(Red"(P))·

By Lemma 5.5, always (1) ::} (2), so we must prove (1).

Basis. -? = ~Srrip(P,->) = -?Strip(Red"(P),->) is given.

Induction. By induction, it follows from (2) that for all /3 < a:

-?True(Red~(P)) h -? ~ -?Pos(Red~(P))> SO

U13<a -?True(Red~(P)) h -? h n,B<a ~Pos(Red~(P))' so by Lemma 5.6

-? = -?Strip(?,->) = -?Strip(Red•(P),-.)·

<:::) Let-? = ~Strip(Red"(P),-.)·

(1)

(2)

Then by Lemma 5.5 for all /3 < a: ~True(Red~(P)) h -? hPos(Red~(P))• So
again

f3~a -?True(Red~(P)) <;;:; -? <;;:; /)" ----7Pos(Red~(P))

and by Lemma 5.6 ----7 = ~Strip(P,->) = ~Strip(Red"(P),->)" 0

COROLLARY 5.8 (CF. VAN GELDER ET AL. [1988, COROLLARY 6.2]). If P
reduces to a positive TSS, that is, Red°'(P) is positive for some a, then ~Red"(P) is
associated with P.

6. Reduction and stratification

We now have two independent methods for associating a transition relation with
a TSS with negative premises: reduction and stratification. Three questions arise:

- if both methods are applicable, is their result the same?
- is one method (strictly) stronger than the other?
- is it useful to combine the two methods?

In this section, we shall answer these questions affirmatively. We show that for
a stratified TSS P, the relation -?p as defined in Section 3 is stable for P.

Negative Premises in Transition System Specifications 885

Furthermore, we show that repeatedly reducing a stratified TSS yields a positive
TSS. Thus, -'>p is the unique transition relation that is stable for P. This is also
the answer to our second question: reduction is indeed stronger than stratifica
tion (that it is strictly stronger is easily seen by the second TSS in Remark 4.4).

So it seems that there is no point in combining the two methods: the result
could not be stronger than reduction alone. However, for practical purposes the
combination appears to be valuable, due to the fact that the existence of a
stratification is generally easier to demonstrate. Therefore, we show in this
section that the methods can be used cooperatively, rather than being alterna
tives for each other.

Finally, we use this amalgamation to demonstrate that the TSS BPAse-r with
priorities has an associated transition relation under some conditions.

THEOREM 6.1. If P is stratified, then -'>p is stable for P.

PROOF. Let P = (I, A, R) and let S: Tr(I, A) -'> a be a stratification of P.

(1) We show that -'>sirip(P,-+p) ~ -'>p. Suppose Strip(P, -'>p) 1- IJ!. We use
induction on the structure of the proof of tfi. As Strip(P, -'>p) I- 1/1, there
exists a ruler' E Strip(R, -'>p) such thatprem(r') ~ -'>strip(P,-+p) and tf; =
conc(r'). So ::Jr ER: pprem(r) = prem(r'), conc(r) = conc(r') and -'>p
F= nprem(r). By induction pprem(r) ~ -'>p. Hence, -'>p I= prem(r). As by
Theorem 3.16, -'>p is a model of P, tf; = conc(r) E -'>p.

(2) Here, it is shown that -'>p ~ -'>strip(P,-->p)· Recall that -'>p = U 0 ,s;<"' -'>p,.
We show by induction that for every i, 0 :s i < a: -'>pi ~ -'>strip(P,--+p). Let
tf; E -'>p; hence, P; I- tf;. With induction on the proof of ljJ from P; we show
that Strip(P, -'>p) I- 1/1. Suppose the last rule used to prove tf; from P; is r'.
This means, according Definition 3.14, that there is a rule r E R and a
substitution er: V -'> T(I) such that

U -'>p I= nprem(cr(r)) U {cp Epprem(a(r))IS(cp) < i},
I Q,;;,j<i

{cp E pprem(cr(r))IS(cp) = i}
r' = -----------

conc(cr(r))

and conc(r) = 1/1. As P is stratified, for all t p E nprem(cr(r)) and
t' ET(I):S(t~t') < S(tf;) =i. Thus, Uo:Sj<i -'>pi I= nprem(cr(r)) implies
-'>p I= nprem(a(r)) and therefore there is a rule

pprem(a(r))
r" = E Strip(P, -'>p).

conc(u(r))

For all x E prem(r") with S(x) < i: -'>p5 I= x, so by induc
tion -'>sirip(P,-->p) I= X· For all x E prem(r") wUh S(x) = i, it follows
with induction on the proof tree that -'>strip(P,-+p) I= X· Hence, Strip(P, ~p)
I- prem(r") and hence, Strip(P, -'>p) I- conc(r") = ip. 0

THEOREM 6.2. Let P = (I, A, R) be a TSS with stratification S: Tr(I, A) -'> ex.
Then Red°'(P) is a positive TSS.

886 R. BOL AND J. F. GROOTE

PROOF. We show that u /3<<> -?True(Red~(P)i = n f3<cx -'i>Pos(Red~(P))• Accord
ing to Remark 5.2, this is sufficient.

i;;;;. This implication follows immediately from Lemma 5.5.
;;2. We claim that for any ljl E Tr(2., A):

If! E -?Pos(RedSi.;)(P));;? If! E -?True(RedSl<b)(P))·

Using the claim, we can easily finish the proof: as S (If!) < a, we have

If! E n13<cx -?Pos(Red#(P)) =?

l/J E -?Pos(ReJS(<bl(P)) =?

t/J E U {3<cx -?True(RedSi<bl(P))·

We prove our claim by transfinite induction on S(If!). Assume the induction
hypothesis holds for all 'Y < {3. Take some If! E Tr(2.., A) with S(lf!) = {3.
Furthermore, assume If! E -?Pos(Red#(P))· Hence, there is a proof of If! from
Pos(Redf3(P)). With induction on this proof, we show that True(Redf3(P)) 1-
t/J. As Pos(Redf3(P)) I- t/;, there is a rule r E Pos(Redf3(R)) such that
conc(r) = t/l and Pos(Redf3(P)) I- prem(r). Hence, there is some ruler' E
Red 13 (R) such that conc(r') = conc(r) = l/J and pprem(r') = prem(r). We
show that nprem(r') = 0. In order to obtain a contradiction, assume
t !!fr E nprem(r'). As r' E Redf3(P), we know:

a

U -">rrue(Redi(P)) F t -fr ·
l</3

So for every t' E T(l:): t !!...,,t' €/=. U l</3 -?True(Red'(P))· In particular, as
S(t !!...,,t') = /" < S(l/J) = {3, t .!!...,,[' '/=. -?True(Red>'(P))· By induction, t ::._,,.t' $.
-?Pos(Red'°(P)) and sot !!...,,t' '/=. n,</3 -?Pos(Red'(P))· Therefore,

a

n -">Pos(Red•(P)) F t + .
i:</3

Hence, tp f/=.nprem(r'). As nprem(r') = 0, r = r' E True(Redf3(R)). By
induction (on the depth of the proof tree of Pos(Redf3(P)) I- l/J), we know
that True(Red 13 (P)) I- prem(r) and thus True(Redf3(P)) I- t/J. So we can
conclude l/J E -?True(Red~(P))· D

COROLLARY 6.3 (CF. GELFOND AND LIFSCHITZ (1988, COROLLARY 1] AND VAN
GELDER ET AL. [1988, THEOREM 6.3]). Let P = (l, A, R) be a TSS with
stratification S: Tr('i., A) -? a. Then -?p = -?Red"(P) is associated with P.

PROOF. Directly using Theorem 6.1, Theorem 6.2, and Corollary 5.8. 0

LEMMA 6.4. Let P be a TSS.

Red"(Redf3(P)) = Red"'+f3(P).

PROOF. Straightforward with induction on a, using Lemma 5.5. O

Negative Premises in Transition System Specifications 887

COROLLARY 6.5 (COMBINING REDUCTION AND STRATIFICATION). Let P =
(I, A, R) be a TSS and suppose that for some ordinals a and (3, S: Tr(I, A) ~a is
a stratification of Red13(P). Then Reda+f3(P) is a positive TSS and -")Red•+P(P) =
-")Red~(P) is associated with P.

PROOF. By Theorem 6.2 and Lemma 6.4 it follows that Reda(Redf3(P)) =
Reda+f3(P) is a positive TSS. Using Corollary 6.3 and Lemma 6.4 we have that

is the transition relation associated with Red 13(P). Now by Theorem 5.7 ~RedP(P)
is associated with P. 0

In the remainder of this section, we apply this corollary to show that a
transition relation is associated with an instance P e of BP Ase-r with priorities,
provided that two conditions hold:

(1) The abstraction operator T1 does not occur in process terms. The reason for
this condition was already shown in Example 4.8. This is standard practice in
process algebra.

(2) There is no a E Act such that T < a. The motivation for this second
condition is threefold (cf. Vaandrager [1990] where it is argued that T > a
for all actions a seems the most 'intuitive' choice).

- It is essential that T-actions are not observable. Thus between two
observable actions, any number of T-actions can take place, and must be
possible in any process specification. Indeed, the T-rules R9.1-R9.3 ensure
that (in BPAaeT) every specification satisfies this property. However,
allowing T < a would destroy this property, as in this case, that is,
e (a · a) specifies a process performing two a -actions, with no T-actions in
between (assuming there is no b > a):

True(P 6)'r8(a ·a)~ B(e·a) ~B(e),

but for no t, t' E T(I 8):

Pos(Red 1(P 8))f-8(a ·a) ~t ~t'.

(If e(a ·a) ~t E ~Pos(Red'(P,))' then t == e(u) for some u such that
True(P 6) I- u ~ e; every rule in P 9 with a conclusion of the form
B(u) ~t' has a premise B(u) ~u' (R9.2 and R9.3) or u !!fr (R5.l)).

- As a consequence, the axiom e (a • x) = a · 8 (x), which is part of the
complete axiomatization of BPAea with priorities (without T, Cf. Baeten et
al. [1986] axiom THl and TH2), is no longer valid: when T <a, B(a · a)
cannot perform T after a although a • 8 (a) can.

- We conjecture that there is only one transition relation stable for P 9, even
for instances with T < a. However, we have no proof for this. In
particular, we do not know whether such an instance of BPAae-r with
priorities always reduces to a stratified TSS. The problem is caused by the
fact that we do not reduce one TSS (with (Act, <) and (E, E) fixed), but

888 R. BOL AND J. F. GROOTE

try to reduce the whole class of instances of BP A8€7" with priorities
(satisfying condition 1) at once.

THEOREM 6.6. If for all (X {:: tx) E £: TJ(-) does not occur in tx and for all a E
Act it does not hold that T < a, then there is a transition relation associated with P e·

PROOF. We show that P e is stratified after one reduction step. To this end we
formulate a useful property of Red 1(P 8). Define N: T(2.e) - N as the depth of
nestings of T1(·)s by:

N(a) = N(e) = N(8) = N(T) = N(X) = 0 (XE 2 and a EAct),

N(x + y) = N(x · y) = N(x <J y) = max(N(x), N(y)),

N(fJ(x)) = N(x),

N(TJ(x)) = N(x) + 1.

We show that the nesting of T1s does not increase by performing an action.

FACT 6.7. For all a E Ae we have:

t-'!.,. U E -Pos(P,) => N(t) 2 N(u).

PROOF OF FACT 6.7. It can be shown for every ground instance r of a rule in
P 8 that if for every literal t.£4uEpprem(r)N(t) ;:::: N(u) holds, then N(t') 2

holds, where conc(r) = t' ~u'. Instead of giving a detailed treatment of each
rule, we only prove the most important ones here:

R4.1 N(x · y) = max(N(x), N(y)) ;:::: N(x) ;:::: N(x') and max(N(x), N(y)) 2

N(y). This implies that max(N(x), N(y)) ;:::: max(N(x'), N(y)) =
N(x' · y).

R8 N(X) = 0. So we must prove N(y) = 0. Indeed N(y) s N(tx) = 0 as by
assumption tx does not contain Troperators. D

For example, the literal t..!:.,,T{al(fJ(t)) used in Example 3.17 to make
t ..!:.,,T{al(fJ(u)) depend negatively on itself is not possible. Based on this definition
of N we define the preorder s on pairs of literals by:

a b
(t-u) :5 (t' --'i>U 1) [

N(t) < N(t') or
iff

N(t) = N(t') and (a = T, V), a > b, or a =b.

For some ordinal a we can now define a function S: Tr(2.e, A 8) - a obtained
by transforming the preorder :::; into a complete well-founded ordering, which is
guaranteed as < on natural numbers is well founded and > on actions is
backwardly well founded (see Example 2.4):

'P = t/J iff 'P :::; t/J and t/J :::; 1.p,

'P = t/J => S(cp) = S(tfi),

'P ::s t/J and not 'P = t/J => S(t/J) < S(tfi).

Negative Premises in Transition System Specifications 889

(We do not need a more precise definition of S; as such a definition necessarily
depends on the size of the set Act, we omit it).

FACT 6.8. S is a stratification of Reduce(P 6, -'>True(Po)' -'>Pos(Po))·

PROOF OF FACT 6.8. Let r be a ground instance of a rule in Reduce(P 6 ,

-'>-rrue(P,)o -'>Pos(P.))· We must show that for every 1/1 E pprem(r): S(lfi) :S:

S(conc(r)). Furthermore, it must hold that for every 1fJ = t3.f Enprem(r) and
for every t' E T(l): S(t .::_,,.t') < S(conc(r)). For most rules this is trivial, as the
unreduced instances of the rule already satisfy the requirement. We only
consider the most interesting cases:

RS.1 N(e(x)) = N(x) implies that S(e(x) .::,,.e(x')) = S(x.::_,,.x'). For
each b > a it holds that S(x ~t') < S(x .::_,,.x') for any t' E
T(l 0).

R6.l N(x) s N(x <J y), so S(x .::_,,.x') ::; S(x <J y ~x'). Also N(y) ::;

N(x <J y), so for each b > a and t' E T('l8): S(y ~t')
< S(x <J y .::_,,.x').

R7.2 N(r1(x)) = N(x) + 1 > N(x). So S(x .::_,,.x') < Sh(x) ~rix')).

R9.2 and R9.3 By the first fact Reduce(P 8, -'>True(Pe)' -'>Pos(Po)) contains only
those instances of these rules for which N(x) :::.=::: N(y) ;:::: N(z).
We need N(x) ;:::: N(y) to prove, for example, (y ~z)
:s: (x ~z), hence S(y ~z) :s: S(x .::_,,.z). D

Using Corollary 6.5 -?Reduce(P,,-----?True(P,),-?Pos(P,o) = -'>-Red'(P,) is associated
with P 11 • D

7. Bisimulation relations

We have defined the meaning of a TSS as its associated transition relation and
shown how to arrive at this transition relation. Now we switch to the study of
properties of transition relations as consequences of properties of their defining
TSSs.

An important question (for example, in process verification) is whether two
terms denote the 'same' process. Many process equivalences based on transition
relations have been proposed [van Glabbeek 1990; 1993b], of which strong
bisimulation equivalence is often used [Milner 1980; Park 1981]. In this and the
subsequent sections, some relations between TSSs and strong bisimulation
equivalence are studied.

Definition 7.1. Let P be a TSS with associated transition relation -'>p. A
relation R is a strong bisimulation relation based on P if it satisfies:

- whenever tRu and t .::_,,.Pt', then, for some u' E T(l), we have u .::_,,. p u' and
t'Ru',

- whenever tRu and u !:..,. p u', then, for some t' E T(l.), we have t !:..,. P t' and
t'Ru'.

Two terms t, u E T(l) are (P-)bisimilar, notation t ~ p u, if there is a strong
bisimulation relation R based on P such that tRu. Note that ~p, the strong
bisimulation equivalence induced by P, is an equivalence relation.

890 R. BOL AND J. F. GROOTE

In the next section, we prove that under specific conditions on P, ~ p is a
congruence relation. To this end we shall approximate --'>p by other transition
relations __,,Q, and use the notion of P=?Q-bisimulation, .meaning t.hat .if t can do
some step in --'>p, u can do a 'similar' step in __,,Q (and vice versa, 1.e. if u can do
a step in --'>p, t can do a 'similar' step in --'>Q)· In the end, the approximation ~Q
will be equal to --'>p. It may be readily checked that in this case, P=?Q
bisimulation is exactly P-bisimulation. Thus showing that for every approxima
tion,.Q P=?Q-bisimulation is a congruence is sufficient to show that P
bisimulation is a congruence.

Formally, we have the following definition.

Definition 7.2. Let P = ('2,, A, Rp) and Q = ("Z, A, RQ) be TSSs with
associated transition relations --'>p and __,,Q· A relation R is a strong P=?Q
bisimulation relation if it satisfies:

-whenever tRu and t ~Pt', then, for some u' E T(2,), we have u ~ Q u' and
t'Ru',

- whenever tRu and u ~Pu', then, for some t' E T(l), we have t ~Qt' and
t'Ru'.

We say that two terms t, u E T('2,) are P=?Q-bisimilar, notation t ~P=?Qu, if
there is a strong P=?Q-bisimulation relation R such that tRu. Note that like ~ p,

....,. P=:;,Q is symmetric. In contrast with ~ p, ~ P=?Q need not be transitive or
reflexive.

8. The ntyft/ntyxt-fonnat and the Congruence Theorem

A desirable property for TSSs is that the induced strong bisimulation equivalence
is a congruence. In Groote and Vaandrager [1992], this led to the observation
that if a (positive) TSS is in the so-called tyft/tyxt-format then this is the case. In
Groote [1993], this result was extended to stratified TSSs. In order to express the
fact that negative premises are allowed, ns were added to the name of the
format, obtaining the ntyft/ntyxt-format. In this section we show that even for
TSSs that are positive after reduction, bisimulation is a congruence if the TSS is
in ntyft/ntyxt-format. In the end of this section we show that 'positive after
reduction' is a necessary requirement for the Congruence Theorem: we give a
TSS in ntyft/ntyxt-format with a unique stable transition relation for which
strong bisimulation is not a congruence.

Definition 8.1. Let 2, = (F, rank) be a signature. Let P
TSS. A rule r E R is in ntyft-format if it has the form:

{tk ~Yklk EK} U {t/f>Jl EL}

f(x1' · · ·, Xrank(f)) ~t

(l, A, R) be a

with Kand L (possibly infinite) index sets,yk> x; (1 :Si :S rank(!)) all different
variables, ak, b1, a E A, f E F and tk, t1, t E lf(l). A rule r E R is in
ntyxt-fonnat if it fits:

Negative Premises in Transition System Specifications 891

a
x -'>t

with K, L (possibly infinite) index sets, Yk> x all different variables, ak, b1, a E
A, tk, t 1 and t E T(l). P is in ntyft-format if all its rules are in ntyft-format and
P is in ntyft/ntyxt-format if all its rules are either in ntyft- or in ntyxt-format.

It may be useful to point out why this format is called the ntyft/ntyxt-format.
As stated above, the 'n' was added to indicate the possibility of negative
premises. The letters tyft can be found if one reads first the (positive) premises
and then the conclusion from left to right: t represents a term in the left hand
side of a premise, y the variable in the right hand side; f is the function name in
the left hand side of the conclusion and t the term in the right-hand side.
Similarly, the other format is called ntyxt.

As in Groote [1993] and Groote and Vaandrager [1992], we use a well
foundedness condition in order to prove the Congruence Theorem. However,
this restriction is not essential, as it is proven in Fokkink and van Glabbeek
[1995] that every transition system in ntyft/ntyxt-format that is positive after
reduction can be transformed into an equivalent well-founded transition system
in the same format which is also positive after reduction.

Definition 8.2 (Well-foundedness). Let P = (l, A, R) be a TSS. Let
S = {tk ~ t.£1k EK} ~ u(l) x A x Li(l) be a set of positive literals over l
and A. The variable dependency graph of S is a directed (unlabeled) graph VD G
with:

-Nodes: U kEK Var(tk ~ tk),

-Edges: {(x,y)~ E Var(tk),y E Var(tk) for some k EK}.

S is called well founded if any backward chain of edges in the variable
dependency graph is finite. A rule is called well founded if its set of positive
premises is well founded. A TSS is called well founded if all its rules are well
founded.

Definition 8.3. Let P = (l, A, R) be a TSS. Let r ER be a rule. A variable
x is called free in r if it occurs in r but not in the source of the conclusion or in
the target of a positive premise. The rule r is called pure if it is well founded and
does not contain free variables. P is called pure if all rules in R are pure.

In what follows, we state a number of technicalities needed for the proof of
Theorem 8.13. At first reading it is advised to skip the remainder of this section
except for this theorem.

Definition 8.4. Let S be a set of positive literals which is well founded and let
VDG be the variable dependency graph of S. Let Var(S) be the set of variables
occurring in literals in S. Define for each x E Var(S): nvna(x) =

sup({nvvo(Y) + l[(y, x) is an edge of VDG}) (sup(0) = 0).

Remark 8.5. If S is a set of positive premises of a rule in ntyft/ntyxt-format
then nvvc(x) E N for each x E Var(S): Every variable Yk occurs only once in
the right hand side of a positive literal in the premises. As the term t k is finite, it
contains only a finite number ofvariablesx. Therefore, the set U = {nvvc(x) +

892 R. BOL AND J. F. GROOTE

l [(x, Yk> is an edge of VDG} is finite. Hence, nvDdYk) = sup(U) is a natural
number.

The following lemma states that any TSS in ntyft!ntyxt-format is 'equivalent'
to a pure TSS in ntyft-format. This allows us to only study ntyft-rules.

LEMMA 8.6. Let P be a well founded TSS in ntyft/ntyxt-format and let .--,) be the
transition relation associated with P. Then there is a pure TSS P' in ntyft-format
such that .--,) is also associated with P'. Moreover, P' is positive after reduction if! P
is positive after reduction.

PROOF. Assume P = (l, A, R) and!. = (F, rank). First we construct a TSS
P" = (l, A, R") which is pure and in ntyft/ntyxt-format. R" contains a rule u(r)
iff r is a rule in R and O': V .--,) lf (l) is a substitution such that for each variable
that is free in r: a(x) E T(l) and for each variable x that is not free in r u(x)
= x. From P", we construct P' as follows: P' = (!.,A, R') where for each f E
F, a rule O'fi_r) E R' iff r is a rule in R" and <J'/ V .--,) lf'(!.) is a substitution
satisfying:

if r is in ntyft-format, then <J'1(z) = z for all z E V,

if r is in ntyxt-format, then a°J(z) = z

for all z E V\{x} and a-jx) = f(zi. ... , Zrank(f)).

Here, z; (1 ::;:; i ::;:; rank(!)) are variables that do not occur in r. It is easy to
see that P' is a pure TSS in ntyft-format. Observe that the ground instances of
the rules in R, R', and R" are the same. Also note that 'stable for' and 'positive
after reduction' are defined with respect to these ground instances. Therefore, ~
is also the unique transition relation stable for P' and P". Furthermore, P' and
P" are positive after reduction iff P is positive after reduction. D

The relation Rp that is defined now forms the backbone of all remaining
proofs in this section.

Definition 8.7. Let l = (F, rank) be a signature and let P = (!.,A, R) be
a TSS with an associated transition relation. The relation RP ~ T(!.) x T(!.) is
the minimal relation satisfying:

-~p C: Rp,

-for all function names f E F:

'11'1 $ k ::5 rank(!): ukRPvk::} f(ul> ... , Urank(f))Rpf(vl> ... , Vrank(f)).

Note that this definition is in fact saying that Rp is the minimal congruence
relation that includes ~P· This explains the following lemma, which is a standard
fact about congruence relations.

LEMMA 8.8. Let P = (l, A, R) be a TSS with an associated transition relation.
Let t E lf (!.) and let <J', <J' 1

: V ~ T(l) be substitutions such that for all x in Var(t)
<J'(x)Rpa-'(x). Then, <J'(t)Rp<J''(t).

PROOF. Straightforward with induction on the structure oft. D

LEMMA 8.9. Let P be a pure TSS in ntyft1ormat. Suppose that ~P is the
transition relation that is associated with P. Then for all ordinals a ;:,::: 0: Rp is a

Negative Premises in Transition System Specifications

(1) P~Pos(Red"'-(P))-bisimulation relation.
(2) True(Red"'-(P))~P-bisimulation relation.

893

PROOF. Assume P = (2., A, R) and I = (F, rank). We show the two
statements in the lemma by mutual transfinite induction on a.

(1) For reasons of symmetry it is enough to show that:

if uRpv and -"p I= u ~ u',

then 3 v' E T(I) such that -'J>Pos(Reda(P)) I= v ~ v' and u I Rpv'.

We prove this by induction on the proof of u 4 u' from Strip(P, -'i>p). As
uRpv, two cases arise:

-u ~pv. Then -'I>p I= u ~u' implies 3v' E T(I): -"p I= v~v' and u' +-»p v'.
By Lemma 5.5 and Theorem 5.7 -'>p ~ -'i>Pos(Reda(P))· So -'i>Pos(Red"(P)) I=
v ~ v'. Furthermore, u' ~ pv' implies u 'Rpv'.

-For some function name f E F, u = f(u 1, •.. , urank(f)), v = f(v1, ... ,
vrank(f)) and u;Rpv; for 1 ::5 i ::5 rank(!). Then there is a rule:

{tk ~Yklk EK} U {t/~/ EL}
r= ER

f(x1' · · ·, Xrank(f)) ~t

and a substitution <r such that <r(x;) = u; (1 ::5 i ::5 rank(!)), <r(t) = u',
-'I>p I= prem(<r(r)) and

pp rem (O'(r))

conc(O'(r))

is the last rule of the proof of u ~u' from Strip(P, -"p). Thus the proof
of <r(tk ~Yk) (k EK) from Strip(P, -'I>p) is less deep. As P is pure,
{x1, ... , Xrank(f)} U {yklk E K} = Var(r).

CLAIM 8.10. There is a closed substitution 0'1 such that for all x E

Var(r):

(a) <1'(x)Rp<1' 1 (x),
(b) if x = X;, then 0' 1 (x) = v;,

(c) if x = Yk (k EK), then <r'(tk~Yk) E -'i>Pos(Red"(P))•

(d) for all l E L and for all f3 < a: -'i>True(Redl'(P)) I= O''(tz)"!fr.

PROOF OF CLAIM 8.10. We prove the first three points of the claim by
inductively constructing a' (x) for every x E Var(r), using induction on
the degree of x in the VDG ofpprem(r).

For x E {x1, ... , Xrank(f)}, <r'(x;) = V; is prescribed. Also a(x;) =
u;Rpv; = <r' (x;) is satisfied.

For x = Yk (k E K), we have t/4yk Epprem(r). For ally E Var(tk),
nvDa(Y) < nvDo(x), so by induction O'(y)Rp<r'(y). As Rp is a congru
ence, O'(tk) Rp<J'' (tk)· As the proof of O'(tk ~yk) is less deep than the proof
of u~u' from Strip(P, -'I>p), by induction 3w E T(I): <r'(tkt~·~w E

894 R. BOL AND J. F. GROOTE

~Pos(Red"(P)) and u(yk)Rpw. Thus, we take u' (Yk) = w. Note that the
first three points of Claim 8.10 are satisfied which finishes the first part of
the proof.

It remains to be shown that V f3 < a: ~True(Red~(P)) I=
u'(t1) ':!f> (l EL). Again u(t1)Rpu' (t1). Assume to generate a contradiction
that 3{3 < a: -'?True(Red~(P)) I= u' (t1) ~ s for some s. By simultaneous
induction \:::1{3 < a: u(t1) ~ True(Red~(P)):?Pu' (tz). So -'?p I= u(t1) ~ s' for
some s'. This contradicts the fact that -'7p I= prem(u(r)). Hence, for all
l E L and for all {3 < a: ~True(Red~(P)) I= a' (t1) f7. D

According to Claim 8.10, there is a substitution a' with the properties
(a), (b), (c), and (d).
Consider

V= Pos(Red"({a'(r)})

=Pos(Reduce({a'(r)}, U -'?True(Red~(P))' n -'?Pos(Red~(P)))).
(3<a (3<a

First we show that 3r' E V. It follows immediately from clause (d) in the
claim that

LJ ~True(Red~(P)) F nprem(a'(r)).
(3<a

Furthermore, by clause (c) and Lemma 5.5:

n -'?Pos(Red~(P)) F pprem(a'(r)).
{3<0I

Hence, there is some r' E V. It follows from clause (c) in Claim 8.10 that
~Pos(Redo(P)) F pprem(u'(r)) and therefore, We have that ~Pos(Redo(P))
I= pprem(r') = prem(r'). Thus ~Pos(Red"(P)) I= conc(r')
conc(<r'(r)) = v~cr'(t) and u' = u(t)Rpu'(t) = v'.

(2) For reasons of symmetry it is enough to show that:

If uRpv and ~True(Red"(P)) I= u ~ u I'

then 3 v' E TC:£) such that ~P I= v ~ v' and u 'Rpv'.

As ~True(Red"(P)) I= u ~u', there is a proof tree of u ~u' from
True(Red"(P)). We use induction on the depth of this proof. As uRpv, we
can distinguish two cases:

-u ~pv. As by Lemma 5.5 and Theorem 5.7 -'?True(Red"(P)) i;;;;; -'7p, P I=
u~u'. So, 3v' E T(l) such that ~PI= v~v' and u' ~ p v'. Hence,
u'Rpv'.

-For some function name f E F, u = f(u 1 , •.. , urank(f)), v = f(v1, .•. ,

vrank(f)) and u;Rpv; for 1 :Si :s rank(!). In this case the final (ground)
ruler E True(Red"'(R)) of the proof of u ~u' from True(Red"'(P)) is
also present in Red"'(R) and has no negative premises.

Negative Premises in Transition System Specifications

Red"(R)

= f Reduce(Rground' U13<" -'>True(Red~(P)), nJl<a -'>Pos(Red~(P)))
l Rground

895

if a > 0,

if a= 0.

Thus, there is a rule r' E R and a substitution O": V-'> T(l) such that

O"(r') is reduced to r. This means that conc(r) = conc(<r(r')) and

prem(r) ~ pprem(O"(r')). Moreover, all negative premises of CT(r') and

all premises in pprem(CT(r')) - pprem(r), which are removed, are
redundant:

U13<" -'>True(Red~(P)) I= pprem(<r(r')) - pprem(r),

nil<" -'>Pos(Red~(P)) I= nprem(CT(r')).

As P is in ntyft-format, r' is of the form

{tk~YklkEK} U {t/74!ZEL}

f(Xi, · · ·, Xrank(f)) ..::._,.(

and CT(x;) = U; (1 :s i :s rank(f)), hence a(f(x 1, ••• , Xrank(f))) = u,

and a(t) = u '. As P is pure, {x1, ... , Xrank(f)} U {ykik E K} =

Var(r').

CLAIM 8.11. There is a closed substitution CT' such that for all x E Var(r'):

(a) a(x)Rpa'(x),

(b) if x = X;, then a'(x) = v;,

(c) ifx = Yk(k EK), then a'(tk)"..4a'(yk) E -'>p,

(d) for all l E L: -'>p I= a' (t1t1-fr.
PROOF OF CLAIM 8.11. We prove the first three points of the claim by

giving a construction of CT 1 (x) for every x E Var(r'), using induction on

the degree of x in the VDG of pprem(r').

For x E {x1, •.. , Xrank(fl}, CT 1 (x;) = v,. is prescribed. Also a(x,.) =

u,.Rpv; = CT 1 (x;) is satisfied.

For x = Yk(k EK), we have tk "..4yk Epprem(r'). For ally E Var(tk),

nvDdY) < nvDa(x), so by induction a(y)RpO"'(y). As Rp is a congru

ence, a(tk)Rpa'(tk)· Two cases arise.

(i) CT(tk ~yk) E pprem(r). Then there is a proof of CT(tk ~Yk) from

True (Red"'(P)) that is less deep than the proof of u ~u'. As

CT(tk ~yk) E -'>True(Red"(P)) and CT(tk)RpCT'(tk), it follows by induction

that 3w E T(~): a'(tk) ~w E -'>p and a(Yk)Rpw.

(ii) a(tk ~Yk) f/:.pprem(r). Hence 3{3 < a: -'>True(Red~(P)) I= O"(tk ~Yk). As

also O'(tk)Rpcr'(tk), it follows by induction that 3w E T(2'-):

a'(tk) ~w E -'>p and O"(Yk)Rpw.

In both cases, we take CT' (y k) = w. Note that the first three points of

Claim 8.11 are satisfied, which finishes the first part of this proof.

896 R. BOL AND J. F. GROOTE

We are left to show that -'>p F= cr'(t1trU EL). As a-(t1)Rpu'(t1), it
follows from point (1) of this lemma that u(t1) <c--'>P?Pos(Red"(P)) u'(t1). In
order to obtain a contradiction, assume that --'> p F= a' (t,) ~s' for some s'.
Then -'>Pos(Red"(P)) F= a-(t1) ~s for some s. So by Lemma 5.5 for all f3 <
a: --'>Pos(Red~(P)) F= cr(t1) ~s. This cannot be the case, as n/3<a

--'>Pos(Red~(P)) F cr(t,) "*· 0

From Claim 8.11, it follows that there is a substitution cr' such that --'>p l=
prem(a'(r')). Hence, -'>p F= conc(cr'(r')) = v~a'(t). Finally, as for all
x E Var(r'): a-(x)Rpa'(x), u' = cr(t)Rpcr'(t) = v'. 0

LEMMA 8.12. Let P be a pure TSS in ntyft-format that is positive after reduction.
Then Rp = <c--'>p.

PROOF. As P is positive after reduction for some ordinal a, Red°'(P) is
positive. It follows using Corollary 5.8 that:

--'>p = --'>Red"(P) = --'>Pos(Reda(P))·

Now, it follows using Lemma 8.9, the introduction of Definition 7.2 and the
definition of Rp that:

D

THEOREM 8.13 (CONGRUENCE THEOREM). Let P be a TSS in ntyft/ntyxt-format
that is positive after reduction. Then ~P is a congmence.

PROOF. Assume P = (2:, A, R). According to Section 5.1 of Fokkink and van
Glabbeek [1996] and Lemma 8.6 there is a pure TSS P' = (2:, A, R') in
ntyft-format that is positive after reduction such that ---'> p = ---'> P" Hence, ~ p =
<c--'>P" By Lemma .8.12 <c--'>p, = RP'. As RP' is a congruence with respect to 2.,
~ p is also a congruence with respect to 2:. 0

The next example shows that the requirement in the Congruence Theorem
8.13 is that the TSS P must be positive after reduction is really needed. We give
a TSS in ntyft/ntyxt-format that has a unique stable transition relation but that is
not positive after reduction and for which bisimulation is not a congruence.

Example 8.14. Let P = (l, A, R) be a TSS where 2: contains constants c 1

and c 2 and a unary function f. The actions in A are a, b 1 , b 2 and the rules are
the following:

El:
a

E2:
a

C1--'>C1 Cz--'>Cz

a b1 b2 a bi bi

E3:
x ---'> y f(x) + f(c1) + X--'>Y f(x) + f(cz) +

E4:
b'

f(x) ~ Cz
b1

f(x)---'> C1

Note that P is pure and in ntyft-format. Red 1 (P) is a TSS with the following
rules:

El': E2':

Negative Premises in Transition System Specifications 897

b1 b2 b1 b2

E3':
f(ci) + f(c1) +

E3":
f(cz) + /(c1) +

b>
f(c1) ~ C2

b2
f(cz) -? Cz

b' b1 b> b1

E4':
/(c1) + /(c2) +

E4":
/(cz) + f(c2) +

b1
f(c1)-? C1

b1
f(c2)-?C1

Further reduction of P is not possible. However, we observe that both in E3'
and E4" the conclusion denies the second premise. Therefore, a transition
relation that is stable for P must deny the first premise of E3' and of E4", that is,

it must contain f(c1) ~t1 and f(c2) ~t2 for some t 1 and t2 • The only candidates

that might be provable are /(c 1) ~c1 and f(c 2) ~Cz. Indeed they are provable

from E3" and E4' (as blocking E3' and E4" implies /(c1/=-fa. and f(c2)b*), so

{c1 ~ci, c2 ~c2,/(c 1)b4c 1 ,f(c2)b4c2} is the unique transition relation that is
stable for P. Now it is obvious that c 1 ~pc 2, but not f(c 1) ~ pf(c 2), so ~ p is not
a congruence.

9. Conservative extensions of TSSs

It can be useful to enrich a given language with additional language constructs
(as in our running example, where BPA8eT is enriched with the priority and unless
operator). For these new constructs, operational rules are devised which are
added to the operational semantics of the basic language. In this section, we
study how an operational semantics can be extended and especially how we can
guarantee that transitions between terms in the basic language are not effected
by the extension.

In this section, we assume that the operational semantics of the basic language
is given by a TSS P 0• All extensions, that is, the added signature, label set and
operational rules are given in a TSS P 1 . The extension of P 0 with P 1 is written as
P 0 E9 P 1 [Groote and Vaandrager 1992]. Due to the symmetric nature-we could
as well extend P 1 with P 0-this is called the sum of P 0 and P 1.

Definition 9.l. Let l; = (F;, rank;) (i = 0, 1) be two signatures such that
for all f E F 0 n F 1: rank0(f) = rank 1 (f). The sum of l 0 and l 1, notation 1 0

E9 l 1, is the signature:

l 0 EB !q = (F0 U Fi. A.f. if/ E F 0 , then rank0(f), else rank1(f)).

Definition 9.2. Let P; = (l;, A;, R;) (i = 0, 1) be two TSSs with l 0 EB l 1

defined. The sum of P0 and P 1, notation P 0 E9 P 1, is the TSS:

If P 0 is extended with P 1 such that 'the properties' of P 0 are maintained,
P 0 EB P 1 is said to be a conservative extension of P 0 . By 'properties' of P 0 we
mean transitions that can be performed by terms over the signature of P 0• To be
more precise:

898 R. BOL AND J. F. GROOTE

Definition 9.3. Let P; = (2-;, A;, R;) (i = 0, 1) be two TSSs such that P0 has
associated transition relation - Po· Let P 0 EEl P 1 with associated transition
relation -Po©P, be defined. We say that P 0 EEl P 1 is a conservative extension of P 0

and that P 1 can be added conservatively to P 0 if

-PoG!P, n (T(:ko) x (A 0 u A 1) x T(2-o EB 21])) = -Po·

An alternative formulation of the same definition has been given in Groote
and Vaandrager [1992]. Adapting that definition to our terminology, it says that
P = P 0 EB P 1 = (:k, A, R) with associated transition relation -P is a
conservative extension of P 0 (2- 0, A 0 , R0) if for all t E T(:k0), a E A and
t' E T(:k):

a , a 1

-p I= t - t Q -Po I= t - t ,

where -Po is associated with P0 .

We now head for a theorem that gives conditions under which P 1 can be added
conservatively to P 0 • It turns out that this is the case if P 0 is pure and each rule
in P 1 contains a function name in the source of its conclusion that does not
appear in the signature of P 0 . This theorem considerably extends the results in
Groote [1993] in which a comparable theorem was proved for TSSs in
ntyft!ntyxt-format. If our result is restricted to this format, both results coincide,
except that here, we deal with TSSs that are positive after reduction while in
Groote [1993] only stratified TSSs were considered.

LEMMA 9.4. Let 2-0 = (F0 , rank0) be a signature. Let P0 = (2-0, A 0 , R 0) be a
pure TSS and let P1 = (2-1 , A 1, R1) be a TSS such that P0 EEl P 1 is defined and for
each ruler E R1: source(conc(r)) $. lr(:k0). Then, for each ordinal a:

-Pos(Red"(l'oG!P,)) n (T(:ko) x (Ao u A1) x T(:ko EB 2:1)) = -Pos(Red•(Po)) (1)

-True(Red"(l'oG!P,)) n (T(:ko) x (Ao u Ai) x T('io EB 2:1)) = -Tnte(Red•(Po)) (2)

PROOF. We prove clauses (1) and (2) by simultaneous induction on a.

(1) ~ For this case it is sufficient to show the following:

Pos(Red°'(P0 EB P 1)) I- t .::_,. t' and t E T(:k0) implies

Pos(Red°'(P0)) I- t .::_,. t', a E A 0 and t' E T('i. 0).

So assume that Pos(Red"'(P0 EB P 1)) I- t~t' and t E T(2: 0). We use
induction on the depth of this proof. Let the last rule of this proof be r E

Pos(Red"'(R0 EEl R 1)). Then conc(r) = t~t'. Hence, as t E T(:l- 0) and
all rules in R 1 contain a function name f $. 2. 0 in the source of their
conclusions, r is derived from a rule a-(r') with r' E R 0 . So a E A 0 .

CLAIM 9.5. For all x E Var(r'): a-(x) E T('i. 0).

PROOF OF CLAIM 9.5. As r' is pure, it is well-founded, so pprem(r')
has a variable dependency graph VDG. We prove the claim by induction
on nvva(x). Consider some x with nvDa(x) = 'Y and assume the claim
holds for all x' such that nvDa(x') < 'Y· As r' does not contain free
variables, one of the following two cases must hold:

Negative Premises in Transition System Specifications 899

(1) x E Var(source(conc(r')). As a(source(conc(r')) E T(:k), a(x)

E T(2 0).
0 ·

(2) x E Var(u ') and u ~u' Epprem(r'). For all x' E Var(u): nvoa(x')

-::- .nvo.c(x) and therefore a(x') E T(40). Hence, a(u) E T(l 0).

D1stmgmsh the following two cases:

(a)

/3~a -"'True(Red#(PofllPi)) F a(u) _::,,. a(u I).

Then by (2),

u -"'True(Red#(Pn)) F u(u) _::,,. a(u I)
/3<ct

and this means that a(u') E T(2: 0). Therefore, asx E Var(u'),

u(x) E T(2: 0).

(b)

Then, u(u) ~a(u') Epprem(r) and therefore,

Pos(Red"(P0 EB P 1)) I- a(u) _<:,_. a(u').

By induction (on the proof tree), it follows that:

Pos(Reda(P0)) I- a(u) ~ a(u ')

and a(u') E T(2: 0). Hence, u(x) E T(2: 0). 0

As r is derived from reducing u(r'), we have the following:

n[3<a -"'Pos(Red#(PoffiPi)) F pprem(a(r')),

U13<a -"'rrue(Red#(PoffiPi)) F nprem(cr(r')),

U13<a -"'True(Red#(PofllP,)) F pprem(cr(r')) - prem(r).

As by Claim 9.5 u: Var(r') --"' T(2 0), it follows using the outermost

induction hypothesis that:

n/3<a -"'Pos(Red#(Po)) F pprem(u(r')),

U13<a -"'True(Red#(Po)) I== nprem(u(r')),

U,a<a -"'True(Red#(Po)) I= pprem(u(r')) - prem(r).

Or in other words r E Pos(Red"(R 0)). By induction on the proof tree

and Claim 9.5, it follows that Pos(Red"(P0)) I- prem(r) and therefore

Pos(Red"(P0)) I- t ~t' = u(conc(r')) E Tr(:ko,Ao).

(1) ;;;? For this case it is sufficient to prove (using induction on the proof tree for

Pos(Red"(P0)) I- t ~t') that:

Pos(Red"(P0)) I- t~t'=}Pos(Red"(P0 EB P1)) 1- t_::,,.t'.

900 R. BOL AND J. F. GROOTE

So assume r E Pos(Reda(R0)) is the last rule used in the proof for
t .!!..:.t'. Hence, there is a ruler' E R 0 and a substitution u: Var(r') __,.
T(I 0) with conc(cr(r')) = conc(r), prem(r) ~ pprem(u(r')). More
over:

n13<a ~ Pos(Red~(Po)) F pprem(cr(r')),

u IJ<a ~ True(Red~(Po)) F nprem (<T(r'))'

LJtJ<a ~ True(Red~(Po)) I= pprem(cr(r')) - prem(r).

As for each premise ijJ E prem(a(r')), source(iJ!) E T(I0), we have by
induction:

n tJ<a ~ Pos(Red~(PoE!lPi)) F pp rem (a(r'))'

utJ<a ~ True(Red~(PoEllP,)) F nprem(cr(r')),

U.a<a __,. True(Red~(PoEllP,)) I= pprem(a(r')) - prem(r).

Hence, r E Pos(Reda(R 0 $Ri)). As Pos(Reda(P0)) f- t.!!..:.t',
Pos(Red 0 (P0)) f- I/I for each I/I E prem(r). By induction Pos(Reda
(P0 $Pi)) f- ijJ and hence, Pos(Reda(P0 E9 Pi)) f- t.!!..:.t'.

(2) This case can be shown in the same way as (1). D

THEOREM 9.6 (CONSERVATIVITY). Let lo = (Fo, ranko) be a signature. Let
P0 = (l0, A 0, R0) be a pure TSS and let Pi = (Ii, Ai, Ri) be a TSS such that each
rule r E Ri contains at least one function name f $. F0 in the source of its
conclusion. Furthermore, assume that P0 E9 Pi exists and is positive after reduction.
Then P 0 E9 Pi is a conservative extension of P 0.

PROOF. As P0 E9 Pi is positive after reduction, there is some ordinal a such
that Reda(P0 E9 Pi) is a positive TSS. Hence, P 0 E9 Pi has an .associated
transition relation _,.PofI~P,· LetA = A 0 U Ai and I = l 0 E9 Ii. By Lemma 9.4,
we have:

-'i>Pos(Reda(PoE!lPi)) n (T(Io) x A x T(l)) =

-'i>True(Reda(PoE!lPi)) n (T(lo) x A x T(I)) =

Hence, by Remark 5.2, Reda+i(P0) is a positive TSS. Therefore, P0 also has an
associated transition relation _,.Po· Moreover, using Corollary 5.8 and Lemma
9.4, we have:

-'i>True(Reda+l(P0)) =

Negative Premises in Transition System Specifications

TABLE II. THE AxIOM SET BPAg.T (a, b E Act, AND c E Act).

x + (y + z) = (x + y) + z
x+y=y+x
x+x=x
(x+y)z=xz+yz
(xy)z = x(yz)
x+8=x
8x = 8
€X = X

X€ = X

€<lX=€

X<le=x
8<lx=c5
X<l8=x
ax <J by = c5 if (a < b)
ax <J cy = ax if -.(a< c)
ax <1 ry = ax <l y if -i(a < r)
x<l(y+z) = (x<1y)<1z
(x + y) <1 z = x <l z + y <1 z

Al
A2
A3
A4
A5
A6
A7
A8
A9

PEl
PE2
PDl
PD2
Pl
P2
P3
P4
P5

ar =a
TX + X = TX

a(rx + y) = a(rx + y) + ax

B(e) = e
8(8) = c5
B(ax) = aB(x)
B(x + y) = B(x) <Jy + B(y) <Jx

rr(e) = e
TJ (8) = 8
rI(a) = a if a (/. I
r1(a) = r if a EI
r1(x + y) = r1(x) + r1(y)
r1(xy) = r1(x)r1(y)

Tl
T2
T3

THE
THD
THl
TH2

TIE
TID
Tll
TI2
TI3
TI4

901

Remark 9.7. From the alternative definition of conservativity it is immedi
ately obvious that if P 0 EB P 1 is a conservative extension of P 0 = (2: 0, A 0 , R0)

then for all t, u E T(I0): t~p0u ~ t~p01£Bp 1 U.

Example 9.8. We can apply the Conservativity Theorem to show that the
priority operator and the unless operator form a conservative extension of
BPAaeT' We can also conservatively add the parallel operator which is character
ized by the following rules:

x~x'
10.1 a

xlly~x'llY

y~y'
10.2 a

xllY ~xllY'
to BPAaeT with priorities. In fact in almost all cases the addition of new operators
to an existing TSS turns out to be conservative.

10. An axiomatization of priorities with abstraction

This last section is devoted to our running example. We consider an instance
P 9 = (~ 9, A 0, R 0) of BPA8e,. with priorities such that for all (X {: t x) E
E: rk) does not occur in tx and for all a E Act it does not hold that 'T <a. By
Theorem 6.6 P 0 has an associated transition relation ~Pe·

In Table II, we list the axiom set BPAieT for strong bisimulation equivalence
induced by P 9 • This axiom system consists of a straightforward assembly of

902 R. BOL AND J. F. GROOTE

existing axioms [Baeten et al. 1986; Milner 1980], adding only the axiom P3
showing the interaction between <1 and -r. Nevertheless, as far as we know, this
straightforward compilation has not been justified in bisimulation semantics.
Only in Vaandrager [1990] -r and e have been combined using an isomorphic
embedding.

This section is added to show how an axiom system can be proved sound and
complete with respect to an operational semantics, even if this semantics is
defined using negative premises. We give all essential lemmas and theorems but
only some insightful parts of the proofs. Most proofs apply induction on proof
trees (standard for positive TSSs) of the 'stripped' TSS. This leads to a more
general observation: induction on proof trees derived from a 'stripped' TSS is a
powerful proof tool for TSSs with negative premises.

Definition 10.l. Let l = (F, rank) be a signature and let Eq be a set of
axioms over l. Let R Eq C T(l) x TCl) be the smallest congruence relation
satisfying that tREqu if t = u is a ground instance of an axiom in Eq. For terms
t, u E T('i.), we say that Eq proves t = u, notation Eq I- t = u, if tREqu.

The following lemma says how behavior of a complex term can be explained in
terms of necessary behavior of its components. This lemma is first used in
Vaandrager [1990] to prove the soundness of the axioms. Due to rules R9.2 and
R9.3, the proof of this lemma is lengthy.

LEMMA 10.2 (STRUCTURING LEMMA). Lett, u, v E T("lf1) and a E A 8•

If t + u ~ v, then one of the following must hold:

(1) t ~v,

(2) u ~v.

If t · u ~ v, then one of the foil owing must hold:

(1) t ~t', v = t' · u and a ;f, y for some t' E T(l 8),

(2) t 4t 1 and u ~v for some t' E T(2. 8),

(3) t ~t', t' 4t11 , u _;_,,.v and a =I= v for some t', t" E

If O(t) ~u, then one of the following must hold:

(1) t~t', u = 8(t'), a =I= v and Vb > at~forsome t' E T('i. 8),

(2) t.:!:..+t', t' ~t", u = B(t"), a =I= v and Vb > at' '2fr for some t', t" E T(l 8),

(3) t4t', u = e(t') and a =I= v for some t' E T(2. 8).

If t <1 u ~ v, then one of the following must hold:

(1) t ~v, a =I= v and Vb > au~'
(2) t .:!:..+t', t' ~ v and a =I= v for some t' E T(l. 11),

(3) t4v and a = y.

If -rJ(t) ~u, then one of the following must hold:

Negative Premises in Transition System Specifications 903

(2) ~ ~ ~ - d - fi I t t1 • • • tn, a = Tan u = Tr or some a 1, .. , an E , t1, • • , t,, E
T("'ifl) and n 2:: 1.

PROOF. As an illustration, we give the proof for 8(t) ~u in case a '4= y. All
other proofs can be given in the same way.

If 8(t) ~u, then this is equivalent to saying that Strip(Pe, -7p0) I- 8(t) ~u.
We show with induction on the proof tree that Strip(P 8, -7 P) I- 8(t) ~u implies
that one of the following holds:

(1) t~t',u = e(t') and 'lib> at~forsomet' E T(~e),
(2) t ~t', t' ~ t", u = e (t") and 'lib > a t' ~for some t', t 11 E TC!. e).

Suppose Strip(Pe, -7p,) I- 8(t) ~u. The last rule that is used in this proof
must either be R9.2, R9.3 or a stripped version of R5.l. Suppose a simplified
version of rule RS.1 has been used. In this case the premises of RS.l, t ~t' and
'lib > at~, hold in -7p0 Furthermore, u = fJ(t'). So case (1) of e in the
Structuring Lemma must hold.

If rule R9.2 has been used, we know that Strip(Pe, -7p_) I- 8(t) ~u' and
Strip(P e' -7p0) I- u' ~u. By induction one of the following four cases must hold:

(1)

(2)

(3)

(4)

t ~t', t' ~t", \lb > at'~ and u = e (t"),

t ~t' t' ~t11 t" ~t111 'lib > at'' /J_[,__ and u = e (t 111)

' ' ' 7" '

t ~t' t' ~t" t" ~t111 '\lb > at" /J_[,__ and u = e (t 111)
' ' ' T" '

t~t' t 1 ~t11 t 11 ~t111 t111 ~t1111 '\lb> at111 b__Landu - B(t 1111).
' ' ' ' T"

In all cases, it must hold that for some v and v':

'T a b
t-7v, v-7v 1 , 'llb>av+ andu=8(v').

Suppose rule R9.3 has been used as last step in the proof. As the premises of
R9.3 are derivable, we have:

Strip(Pe, -7p.) I- 8(t) ~u', Strip(P 8, -7p,) I- u' ~u.

By induction one of the following four cases must hold:

(1) t ~t', t' ~t", \lb > at~ and u = e (t"),

(2) t~t',t 1 ~t11,t11 ~t111,'\/b > atb+andu = e(t"'),

(3) t ~t', t' ~t11 , t 11 ~t111 , '\lb > a t'b+and u = e(t 111),

(4) t ~t', t' ~t11 , t 11 ~t111 , t 111 ~t1111 , 'lib > a t'b+ and u = fJ(t"").

From cases (1) or (2), it follows that (for appropriate v E T(~ 8)):

t~v, '\lb >a/+ andu = e(v)

which is case (1) fore in the Structuring Lemma. From cases (3) or (4), it follows
that (for appropriate v, v' E T(!- 8)):

t ~ v ~ v', '\lb > a v b-1--7, and u = e (v')

which is case (2) for e in the Structuring Lemma. 0

904 R. BOL AND J. F. GROOTE

With the Structuring Lemma it is rather straightforward, but unpleasantly
lengthy, to prove the soundness of the axioms.

THEOREM 10.3 (SOUNDNESS OF BPA~.,,.). Lett, u E T(l 8):

PROOF. We must show that RBPAL ~ <Hp 0 where RBPA~., is the smallest
congruence relation containing (t, u) if t = u is an instance of an axiom in
BP A~.,,.. As by Theorem 8.13 +-'> P 0 is also a congruence relation, it is sufficient to
show that

t = u is an instance of an axiom in BPA~" => t<Hp 0u.

Suppose t = u is an instance of an axiom. We will only consider axiom P3. All
other axioms can be dealt with in the same way. Hence, t = at' <J TU', u =
at' <J u'(t', u' E T(l 8)) and--., (a< T). In order to show that at' <J TU 1 ~Pe

at' ·1 u', it suffices to show that if at' <J ru' !:..,,.v, (b EAe) then at' <J u' .!:..,.v
and vice versa, at' <J u' !:..,,.v implies at' <J ru' !:..,,.v. So suppose at' <J ru' !!..:.v.
By the Structuring Lemma, one of the following cases must hold:

(1) at'!:..,,. v, b =/= V and 'efc > b ru' f>,
(2) at' .!....,,t", t" !:..,,.v and b '=/= \!for some t" E T(l 8),

(3) at' '{,,v and b =' \!.

Note that case (3) is impossible. So either case (1) or case (2/ must hold. If
case (2) holds, it is immediately clear that at' <J u' ~t" and t" -->;v, Therefore,
at' <1 u' !:..,,. v. If case (1) holds, then Ve >b u' ~. If this were not the case, that
is, 3c > b u' ~u", then m' ~u" contradicting that Ve > b m' p. Hence, at'
<J u' !:..,,. v.

The other implication can be proved likewise. D

We now show completeness of the axioms. This is done in three stages. First
the class of basic terms is introduced. This class is a subset of all closed l 8-terms,
but it is still powerful enough to denote all recursion free processes. This is in
fact shown in Lemma 10.6.

Then operational characteristics are linked to the syntactic forms of terms
using the operational soundness and completeness lemmas. In the last lemma, all
results are gathered together and completeness is shown.

Definition 10.4. The set of basic terms is the smallest subset of T(l 8)

satisfying:

- o and e are basic terms,

- if t is a basic term, then at (a E Act,,.) is a basic term,
- if t, t' are basic terms, then t + t' is a basic term.

Note that a e and a e + b o are basic terms but a and (a + b)c are not.

LEMMA 10.5. Lett, t' be basic terms. Then there is a basic term u such that:

(1) BPA~e,,. I- tOt' = u(D = +, ·, <J),

Negative Premises in Transition System Specifications 905

(2) BPA~.T 1- D(t) = u (D = Tu e).

PROOF. As an example we show the proof for <.For a basic term t define #t

as t_he number of f~nction names in t. Define the depth of a term t ·~ t' with t, t'

basic terms by (w is the first infinite ordinal):

D(t <l t') = w · #t' + #t.

We prove this case with induction on D (t <J t'). Distinguish the following cases:

t = e, 8 Apply PEl or PDl.

t' = e, 8 Apply PE2 or PD2.

t au 1, t' = bu 2 , Apply Pl or P2.
(b ~ T)

t' TU2

t' U 1 + u 2

Apply Pl if a < T. If....., (a < T), then BPA~ _I- au 1 <
P3 oe,

TU2 = au1 <J u 2 . As D(au 1 ·~ u 2) < D(au 1 'l Tu 2), it

follows with induction that BPAg.T I- au 1 < u 2 = v for

some basic term v.

We have that t <1 t' = t < (u 1 + u 2) ~ (t <J u 1) < u 2 .

As D(t <J u1) < D(t <J (u 1 + u2)), it follows that

BP Ag.T I- t <J u 1 = v for some basic term v. As D (v <

u2) < D(t <J (u 1 + u 2)), it follows that BPAt.,. I- (t <

u 1) <l u 2 = v <J u 2 = v' for some basic term v'.

It follows that t <J t' = (u 1 + u 2) <J t' ~ u 1 < t' + u 2

<J t'. As D(u 1 <J t') < D((u 1 + u 2) <J t') and D(u 2 <1

t') < D((u 1 + u 2) <J t'), there are basic terms v, v'

such that BPAg.T I- u 1 <J t' = v and BPAg<T I- u 2 < t' =

v'. Hence, BPAt.,. I- t <J t' = v + v'. 0

LEMMA 10.6. Let t E T('k 9) be a recursion free term. Then there is a basic term

u such that:

BPA~ET I- t = u.

PROOF. Apply induction on the structure of t. If t = E, 8, a (E Act.,.) then

the basic terms are respectively: E, 8 and at:. If t = t 1Dt2 (0 = +, ·, <1), it

follows with induction that t 1 and t 2 are provably equal to basic terms ui. u 2 .

Then Lemma 10.5 yields BPAtT I- u 1Du 2 = u with u a basic term. For the unary

operators e and Tb a similar argument can be applied. D

The following notation is an abbreviation that turns out to be useful.

Notation 10.7 (Summand Inclusion). We write t ~ t' fort + t' = t'.

The following lemmas relate summand inclusion to the operational rules in

Table I. They state that if a process t can perform an a-step (t ~t') then it is

provable that at' is a summand oft. A weak variant of the converse also holds.

LEMMA 10.8 (OPERATIONAL SOUNDNESS). Let t, t' E T(!e) be recursion free

terms and let a E Act.,.:

906 R. BOL AND J. F. GROOTE

BPA~.T I- a· t' C t::} 3t": t ~ t" and t" ~Pt,

BP 0 ...::.._::JI \j I A 8,T I- E C t -r ::it : t ~ t .

PROOF. Directly using the Soundness Theorem 10.3. 0

LEMMA 10.9 (OPERATIONAL COMPLETENESS). Let t, t' E T(''J. 8) be recursion
free and e, <1-free terms and let a E Act.,.:

t ~ t' :::} BPA~er I- at' C t,

v
t ~ t I :::} BP Ai.T I- E c t.

PROOF. Straightforward induction on the proof of t ~t' and t 4t' from
Strip(P 0, ~PJ 0

LEMMA 10.10. Lett be a basic term. If t ~t' (a E Act.,.), then t' = E • u or t' =
r · u for some basic tenn u. Moreover, t' contains at most as many function names
as t.

PROOF. Use induction on the proof oft ~t' from Strip(P 8, ~PJ 0

Notation 10.11. Lett, u E T('Z. 8) be recursion free. t~p. u stands for:
t ~ t' implies :Ju' u ~ u' and t' ~ p .u'. Note that this condition resembles clause
1 in the definition of bisimulation.

LEMMA 10.12. Lett and u be basic terms over BPA~.'T· Then:

(1) If t~p. u, then BPAg.'T I- t C u,
(2) If t~p. u, then BPAt'T I- t = u.

PROOF. We use induction on the number of function names in t and u, that
is, #t + #u. The proof employs the operational soundness and completeness
lemmas.

Basis. First (1) is proved. Suppose that t == E and u E T('Z. 8). E ~P.U :::}

u 4u 1 ::} BPAg.'T I- E f;;;; u. Suppose t = 8. This case is trivial using axiom A6. In
case (2) t~p.u implies t~p.u and u~p/, so it follows by (1) that BPAg.'T I- t C
u and BP Ag.T I- u C t. Hence, BP AgET I- t = t + u = u + t = u.

Induction. First consider (1). Suppose t = (t 1 + t 2)~p. u. This implies that
t 1 ~P. u and t 2~P.U· Using (1) inductively yields: BPA~.'T I- t 1 ~ u and BPA~ • .,.
I- t2 C u. Now using axiom Al leads to BPA~ • .,. I- t 1 + t2 ~ u.

Now suppose that t = at 1 ~p.u. Note that #t1 < #t. There is a t 2 (e.g., Et 1)

such that t ~ti!±ph. As t ~P. u, it follows that there is a u 1 such that
u ~ui. t 1 ~p, t 2~p.u 1 • By Lemma 10.10, u 1 is a basic term and #u 1 ::::; #u.
With the induction hypothesis, conclude that BPA~.T I- t 1 = u 1 • By operational
completeness, it follows that BPAg,'T I- au 1 ~ u. Therefore, BPA~ • .,. I- at 1 ~ u.

In case (2), t~p u implies t~p u and u~p t, so it follows by (1) that
BPAe ' e • e•

8 • .,. I- t C u and BP Aa.'T I- u f;;;; t. Hence, BP A 8 • .,. I- t = t + u = u + t = u.

THEOREM 10.13 (COMPLETENESS OF BPA~ • .,.). Let t, u E T("le) be recursion
free. It holds that:

Negative Premises in Transition System Specifications 907

t~p, u :::} BPA~ET f- t = u.

PROOF. Suppose t~p, u. Then there are basic terms t' and u' that
are provably equivalent to t and u. With soundness, it follows that t' ~P,u '.
An application of Lemma 10.12 yields BPA~ET f- t' = u' and thus BPA~eT f
t = u. 0

Appendix A. The relation between TSSs and logic programs

Throughout this paper, techniques from logic programming are applied to TSSs.
This raises the question of whether TSSs can be viewed as logic programs. It
appears that there indeed exists a straightforward translation from TSSs to logic
programs.

Definition Al. Let P = (I, A, R) be a TSS. We define the translation:£ as:

for every positive literal t ~ t': :i(t ~ t') = transition(t, a, t'),

for every negative literal t '!.fr : X(t~) = -,possible(t, a),

for every ruler ER: :i(r) = :i(conc(r)) ~ :i(prem(r)), 2

and finally

X(P) = :f(R) U {possible(T, A)~ transition(T, A, U)}

where T, A, and U are variables.

For an introduction in logic programming, we refer to Lloyd [1987]; for
negation in logic programming, we refer to Apt and Bol [1994]. We must point
out some small differences between the two formalisms.

First of all, logic programs are usually untyped, whereas a TSS P = (I, A, R)
has clearly two types, namely terms (from T(l)) and labels (from A). Thus, the
translation :i(P) must also be treated as a typed program, its Herbrand base
being

HBp = {transition(t, a, t')lt, t' E T(I), a EA}

U {possible(t, a)lt E T(I), a EA}.

Secondly, a traditional logic program consists of a finite set of finite clauses. A
TSS may have an infinite number of rules and each rule may have infinitely many
premises. The main reason for this is that, in TSSs, only variables ranging over
terms are used, and no variables ranging over labels. Thus, instead of one rule
like

x~x'
z ' x + y --;.x'

this rule must be incorporated for every action z separately. Usually rule schemes
with meta-variables ranging over A are given, as, in this case, rule R3.l of the

2 As usual !i(X) abbreviates {.:f(x)lx EX}.

908 R. BOL AND I. F. GROOTE

running example. Translating a TSS yields a possibly infinite set of possibly
infinite clauses. Of course, having an infinite number of clauses is not a problem:
the set of ground instances of clauses from a traditional logic program is
normally infinite as well. Having infinitely many premises seems harmless too.

In order to formulate the intended correspondencies between the TSS P and
the logic program :£(P), we also need a translation on the semantical level, that
is between transitions relations and (well-typed) Herbrand interpretations.

Definition A.2. Let -? be a transition relation.

a

JM,(-?)= {transition(t, a, t')it-?t' E -?}

U {possible(t, a)[.3t': t ~ t' E-? }.

According to this definition, only interpretations M satisfying for all t and a:

possible(t, a) EM iff 3t': transition(t, a, t') EM

are translations of a transition relation. The clause possible(T, A) ~ transi
tion(T, A, U) is obviously incorporated in the translation of every TSS to
enforce this property. As long as only supported models of the resulting logic
programs are considered, the addition of this clause is indeed sufficient. (See
Figure 2.) The following example shows that a weaker choice of semantics (in
this case, minimal models) can produce certain anomalous models.

Example A.3. Consider the TSS P with one constant c and one unary
function f, one action a and the following rules:

c .fr a
C -?X

a
c-'> c

For all n 2:: 0, the transition relation {c ~Ji(c)[i 2:: n} is a model of P; P has no
other models. As n increases, the model decreases (with respect to h), thus P
has no minimal model. Now consider

:£(P) = {transition(c, a, c) ~ -.possible(c, a)

transition(c, a, f(X)) ~transition(c, a, X)

possible(T,A) ~transition(T,A, U)}.

The corresponding models are (for all n 2:: O):

{transition(c, a, Ji(c))[i 2:: n} U {possible(c, a)}.

But :£(P) has one more model, namely just {possible(c, a)}, which is the least
model of :£(P), but not supported by :£(P).

As we concentrate on the stable and well-founded model semantics, which
generate only supported models, anomalous models will no longer arise.

In the rest of this section, we establish the relationships between TSSs and
their translations into logic programs. For the definitions regarding logic pro
gramming we refer to Apt and Bo! [1994]. As these definitions are always similar

Negative Premises in Transition System Specifications

P (a TSS)

associated
transition

relation

M

.C(P) (a logic program)

associated
Her brand
interpretation

M(~p)

FIG. 2. The relation between TSSs and logic programs.

909

to the definitions regarding TSSs as presented in this paper, it is straightfoiward
to prove the following propositions.

PROPOSITION A.4. Let p be a TSS.

-P is positive if! ;E(P) is positive.
- P is stratified if! ;E(P) is locally stratified (see Przymusinski [1987]).

For a positive logic program P, M p denotes its least Herbrand model.

PROPOSITION A.5. Let P be a TSS and ~ be a transition relation.

- ~is stable for P if! .M(~) is a stable model [Gelfond and Lifschitz 1988] of
;E(P).

In particular,

- if P is positive, then .M(~p) = M ~(P) and
- if P is stratified, then .M(~p) is the unique perfect model [Przymusinski 1987] of

;E(P).

Many slightly different, but equivalent, definitions of well-founded models for
logic programs have been given. Here we follow Przymusinski [1989].

Definition A.6 (Well-Founded Model). Let P be a logic program.

-A 3-valued interpretation for P is a pair I = (T, F), where T and Fare subsets
of the Herbrand base HBp (but not necessarily T n F = 0).

-Let A be a ground atom. Then, (T, F) F= A iff A E T and (T, F) F= --,A iff
A E F.

-Tp(l) = {A E HBpl there exists a clause A ~Li, ... , Ln E ground(P)
such that IF= Li and··· and IF= Ln}. Fp(I) = {A E HBpl for every clause
A ~ L 1, ••• , Ln E ground(P): I F= --,L 1 or··· or IF= --,Ln}.
(If L is a negative literal --, B, then, L denotes B.)
T p(l) defines the ground atoms that are immediately true given P and/, F p(I)
defines the ground atoms that are immediately false.

-Let T, F ~ HB P and let I be a 3-valued interpretation for P.

<ffr(T) = Tp(I U (T, 0)).

'!Fr(F) =Fp(I U (0,F)).

9'p(l) =I U (U n<w <f!j(0), n n<w '!F'](HBp)). (Note: U denotes pointwise union.)

910 R. BOLAND J. F. GROOTE

3, p(l) defines the ground atoms that are certainly true respectively false given
P and/.

-For a limit ordinal a: Jex= u 13 <,Jf3 (in particular: / 0 = (0, 0)).
For a successor ordinal a + 1: I ex+ 1 = !J p(l ex).

-Let 8 be the smallest countable ordinal such that I 8 = 9 (/ 5). Then I a is the
well-founded (partial) model of P. If 1 a is 2-valued, that is, 1 a = (T, F) is a
partitioning of HB p, then I 8 is the well-founded (complete) model of P.

An alternative definition of the well-founded model, based on the reduction of
logic programs, can also be given.

Definition A.7. Let P be a logic program and I a 3-valued interpretation for
P. Then:

Reduce(P, I)= Uceground(P) Reduce(C, I),

where

Reduce(A ~s,1) = (~ ~s'} if for some literal L E S: 11= ---,

otherwise, where S' ={LE Sil~ L}.

Furthermore:

True(P) ={A~ SE PIS contains only positive literals} and

Pos(P) ={A ~s'lthere is a clauseA ~s E P such that

S' is the set of positive literals in S}.

LEMMA A.8. Let P be a logic program and I a 3-valued interpretation for P.

U 217(0) = MTrue(Rcduce(P.1))>
n<w

n ?:F7(HBp) = HBp - MPos(Reduce(PI))·
n<w '

Thus, an alternative definition of the well-founded (partial) model of a logic
program is obtained by replacing Un<w 217(0) by MTrue(Reduce(P,I)) and
nn«v 'ffe'J(HBp) by HBp - MPos(Reduce(P,i)) in Definition A.6. The proof of
Lemma A.8 is beyond the scope of this paper.

Using this alternative definition, it is straightforward to link the reduction of a
TSS P and the sequence of interpretations leading to the well-founded (partial)
model of 5£(P).

LEMMA A.9. Let P =(~,A, R) be a TSS and let --""true' --'i>pos ~ Tr(~,A). Then:

-5£(True(P)) = True(5£(P)),
-5£(Pos(P)) = Pos(5£(P)),

- 5£(Reduce(P, ~true, --""pos)) = Reduce(5£(P), (.Ail(~true), HB p - Ai(--""pos))).

THEOREM A.10. Let P be a TSS. Let for all ordinals a, !ex be defined with
respect to 5£(P) as in Definition A.6. Then:

5£(Red"'(P)) = Reduce(5£(P), Ja),

Negative Premises in Transition System Specifications 911

J Di = < /JYa .A;t(---';, True(Redl'IP)i), /lYa HB p - ,t{(--';,Pos(Red#(f')))).

PROOF. Straightforward.

COROLLARY A.11. Let P be a TSS. If :£(P) has a well founded complete model
!,"', then Red"'(P) is a positive TSS and/" = JU(-';,Red"(!')). If Red"(P) is a positive
TSS then :£(P) has a well founded complete model I<>+ 1 = At(~Red"(PJ)·

The change from a to a + 1 in the second implication is caused by the fact
that it is possible that at the end of the iteration first the interpretation I"
becomes 2-valued (making Reduce(:£(P), la) positive), but also that a partial/"
results in a positive Reduce(:£(?), I"), in which case only I"+' is 2-valued.

Apart from its theoretical merits, the translation of TSSs into logic programs
has also more practical implications. For logic programs interpreters and compil
ers are available. Thus, in order to find out whether a term t can perform an
a-step according to --';,p, the TSS P is translated into the logic program :£(?),
and the query ~ transition (t, a, X) is presented to it.

This poses only one problem: The depth-first strategy of most programming
systems tends to result in nontermination of the program without finding all
solutions. The rules R9.2 and R9.3 of the running example are typically rules
leading to nontermination. More advanced query evaluation strategies, such as
SLG-resolution [Chen and Warren 1993] might partly solve the problem, but as
even for positive TSSs __c;,P need not be recursive, nontermination can never be
ruled out completely. In the presence of negation __c;,P is in general not even
recursively enumerable.

Thus, the translation into logic programming cannot be expected to produce
the associated transition relation as a whole. But in our opinion the interactive
use of a logic programming environment for proving that a certain transition
holds (or does not hold) is an attractive alternative to generating this proof by
hand, especially for larger TSSs.

On the bright side is that for pure TSSs (see Definition 8.3) the problem of
floundering (the necessity to resolve a non-ground negative literal) does not occur
for queries of the form+--- transition(t, a, X) (with t E T(2.) and a EA). This
can be shown by annotating the program (in the sense of Dembinski and
Maluszynski [1985]) by transition(!, ! , j) and possible(!, !), meaning that
the first and second argument of both predicates are considered to be input, and
the third argument of transition is output. (Due to the fact that TSSs have no
variables ranging over labels, the annotations of the second (label) arguments are
inessential.)

PROPOSITION A.12. Let P = (2., A, R) be a TSS. Lett E T(2.) and a EA. If P
is pure then :£(P) U { +--- transition(t, a, X)} is well formed (see Dembinski and
Maluszynski [1985]) with respect to the above annotation.

The well-formedness of a logic program and a query implies that during the
computation every predicate is called with ground terms on its input arguments.
In particular, every call -,possible(t, a) will be ground: In a more gene.ral
setting, this annotation gives insight in the data-flow of the act of provmg
transitions from pure TSSs.

912 R. BOL AND J. F. GROOTE

ACKNOWLEDGMENTS. We thank Krzysztof Apt, Jos Baeten, Jan Bergstra, Rob
van Glabbeek, Alban Ponse, Chris Verhoef and Fer-Jan de Vries for their
valuable comments.

REFERENCES

ACETO, L. 1994. Deriving complete inference systems for a class of GSOS languages generating
regular behaviours. In Proceedings of CONCUR '94, B. Jonsson and J. Parrow, eds. Lecture Notes
in Computer Science, vol. 836. Springer-Verlag, New York, pp. 449-464.

ACETO, L., BLOOM, B., AND VAANDRAGER, F. w. 1994. Turning SOS rules into equations. Inf
Comput. 111, 1, 1-52.

ACETO, L., AND INGOLFSDOTIIR, A 1994/1995. CPO models for a class of GSOS languages. In
TAPSOFT '95, 6th International Joint Conference on Theory and Practice of Software Development,
(Arhus, Denmark), P. D. Mosses, M. Nielsen, and M. I. Schwartzbach, eds. Lecture Notes in
Computer Science, vol. 915. Springer-Verlag, New York, 1995, pp. 439-453. (Full version appeared
as CPO Models for GSOS Languages-Part I: Compact GSOS Languages, BRICS research report
RS-94-10, Department of Mathematics and Computer Science, Aalborg University, 1994.)

APT, K. R., AND BoL, R. N. 1994. Logic programming and negation: A survey. J. Logic Program.
19-20, 9-71.

BAETEN, J. C. M., AND BERGSTRA, J. A 1988. Processen en procesexpressies. Informatie 30, 3,
177-248 (in Dutch).

BAETEN, J. c. M., BERGSTRA, J. A., AND Kl.OP, J. w. 1986. Syntax and defining equations for an
interrupt mechanism in process algebra. Fund. Inf. IX, 2, 127-168.

BAETEN, J. C. M., AND VERHOEF, C. 1993. A congruence theorem for structured operational
semantics with predicates. In Proceedings of CONCUR '93, E. Best, ed. Lecture Notes in Computer
Science, vol. 715. Springer-Verlag, New York, pp. 477-492.

BAETEN, J. C. M., AND WEIJLAND, W. P. 1990. Process Algebra. Cambridge Tracts in Theoretical
Computer Science 18. Cambridge University Press, Cambridge, Mass.

BEST, E., AND KOUTNY, M. 1990. Partial order semantics of priority systems. Tech. Rep. 6/90.
Univ. Hildesheim, Institut fiir Informatik.

BLOOM, B. 1995. Structural operational semantics for weak bisimulations. Theoret. Comput. Sci.
146, 25-68.

BLOOM, B., lSTRAIL, S., AND MEYER, A. R. 1995. Bisimulation can't be traced. J. ACM 42, 1 (Jan.),
232-268.

BoLOGNESI, T., LUCIDI, F., AND TRIGILA, S. 1990. From timed Petri nets to timed LOTOS. In
Proceedings of the JOth IFIP WG6.l International Symposium on Protocol Specification, Testing and
Verification, (Ottawa, Ont., Canada). North-Holland, Amsterdam, The Netherlands, pp. 395-408.

CAMILLERI, J. 1989. An operational semantics for OCCAM. Int. J. Parall. Prog. 18, 5, 149-167.
CHEN, W., AND WARREN, D. S. 1993. Query evaluation under the well founded semantics. In

Proceedings of the 12th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (Washington, D. C., May 25-28). ACM, New York, pp. 168-179.

CLEAVELAND, R., AND HENNESSY, M. 1988. Priorities in process algebra. In Proceedings of the 3rd
Annual Symposium on Logic in Computer Science, (Edinburgh, Scotland). IEEE Computer Society
Press, New York, pp. 193-202.

D'ARGENIO, P. R. 1995. A general conservative extension theorem in process algebras with
inequalities. In Proceedings of ACP'95, A. Ponse, C. Verhoef, and S. F. M. van Vlijmen, eds.
Computing Science Reports 95-14, Department of Mathematics and Computer Science, Eindhoven
University of Technology.

DEMBINSKI, P., AND MAl:.USZYNSKI, J. 1985. And-parallelism with intelligent backtracking for
annotate logic programs. In Proceedings of the 7th Symposium on Logic Programming, (Boston,
Mass.). pp. 29-38.

FOKKINK, w. J. AND VAN GLABBEEK, R. J. 1996. Ntyft/ntyxt rules reduce to ntree rules. lnf.
Comput., to appear.

FOKKINK, W. J., AND VERHOEF, C. 1995. A conservative look at term deduction systems with
variable binding. Computing Science Reports 95-28, Dept. of Mathematics and Computing Science,
Eindhoven University.

VAN GELDER, A., Ross, K. AND SCHLIPF, J. S. 1988. Unfounded sets and well-founded semantics
for general logic programs. In Proceedings of the 7th ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, (Austin, Texas, March 21-23). ACM, New York, pp. 221-230.

Negative Premises in Transition System Specifications 913

GELFOND, M., AND LIFSCHITZ, V. 1988. The stable model semantics for logic programming. In
Proceedings of the 5th International Conference on Logic Programming, (Cambridge, Mass.), R.
Kowalski and K. Bowen, eds. MIT Press, Cambridge, Mass., pp. 1070-1080.

VAN GLABBEEK, R. J. 1987. Bounded nondeterminism and the approximation induction principle
in process algebra. In Proceedings of STACS 87, F. J. Brandenburg. G. Vidal-Naquet, and M.
Wirsing, eds. Lecture Notes in Computer Science, vol. 247. Springer-Verlag, New York, pp.
336-347.

VAN GLABBEEK, R. J. 1990. The linear-branching time spectrum. In Proceedings of CONCUR90,
(Amsterdam, The Netherlands), J. C. M. Baeten and J. W. Klop, eds. Lecture Notes in Computer
Science, vol. 458. Springer-Verlag, New York, pp. 278-297.

VAN GLABBEEK, R. J. 1993a. Full abstraction in structural operational semantics. In Proceedings of
AMAST '93, Workshops in Computing. Springer-Verlag, New York, pp. 77-84.

VAN GLABBEEK, R. J. 1993b. The linear time-branching time spectrum II (The semantics of
sequential systems with silent moves). In Proceedings of CONCUR93, E. Best, ed. Lecture Notes in
Computer Science, vol. 715. Springer-Verlag, New York, pp. 66-81.

VAN GLABBEEK, R. J. 1995. The meaning of negative premises in transition system specifications
II. Technical Note CS-95-16, Stanford University, Available by anonymous ftp at ftp: I I
boole.stanford.edu/pub/DVI/negative.dvi.gz.

GROOTE, J. F. 1993. Transition system specifications with negative premises. Theoret. Comput. Sci.
118, 2, 263-299.

GROOTE, J. F., AND VAANDRAGER, F. W. 1992. Structured operational semantics and bisimulation
as a congruence. Inf Comput. 100, 2 (Oct.), 202-260.

HENNESSY, M., AND PLOTKIN, G. D. 1979. Full abstraction for a simple programming language. In
Proceedings of the 8th Symposium on Mathematical Foundations of Computer Science, J. Beevat, ed.
Lecture Notes in Computer Science, vol. 74. Springer-Verlag, New York, pp. 108-120.

HENNESSY, M., AND REGAN, T. 1990. A temporal process algebra. Report 2/90, Computer Science
Department, Univ. Sussex, Sussex, England.

HOWE, D. J. 1996. Proving congruence of bisimulation in functional programming languages. Inf
Comput. to appear.

ICHIKAWA, H., YAMANAKA, K., AND KATO, J. 1990. Incremental specifications in LOTOS. In
Proceedings of the JOth IF/P WG6.J International Symposium on Protocol Specification, Testing and
Verification, (Ottowa, Ont., Canada), North-Holland, Amsterdam, The Netherlands, L. Logrippo,
R. L. Probert, and H. Ural, eds. pp. 183-196.

JANICKI, R. 1987. A formal semantics for concurrent systems with a priority relation. Acta. Inf 24,
33-55.

LANGERAK, R. 1989. A testing theory for LOTOS using deadlock detection. In Proceedings of the
9th /PIP WG6.l International Symposium on Protocol Specification, Testing, and Verification,
(Enschede), E. Brinksma, G. Scollo, and C. A. Vissers, eds.

LLOYD, J. W. 1987. Foundations of Logic Programming, 2nd Ed. Springer-Ver!ag, New York.
MILNER, R. 1980. A calculus of communicating systems. Lecture Notes in Computer Science, vol.

92. Springer-Verlag, New York.
N!COLUN, X., RICHIER, J.-L., SIFAKIS, J., AND VOIRON, J. 1990. ATP: An algebra for timed

processes. In Proceedings of the /PIP TC2 Working Conference on Programming Concepts and
Methods (Sea of Gallilea, Israel), M. Broy and C. B. Jones, eds. pp. 402-429.

PARK, D. M. R. 1981. Concurrency and automata on infinite sequences. In Proceedings of the Sth
GI Conference, P. Deussen, ed. Lecture Notes in Computer Science, vol. 104. Springer-Verlag, New
York, pp. 167-183.

PLOTKIN, G. D. 1981. A structural approach to operational semantics. Report DAIMI FN-19.
Computer Science Department, Aarhus Univ.

PNUELI, A. 1985. Linear and branching structures in the semantics and logics of reactive systems.
In Proceedings of the 12th ICALP (Nafplion). Lecture Notes in Computer Science, vol. 194.
Springer-Verlag, New York, pp. 15-32.

PRZYMUSINSKI, T. C. 1987. On the declarative semantics of deductive databases and logic pro
grams. In Proceedings of the Foundations of Deductive Databases and Logic Programming, Jack
Minker, ed. Morgan-Kaufmann Publishers, Inc. (Los Altos, Calif.), pp. 193-219.

PRZYMUSINSKI, T. C. 1989. Every logic program has a natural stratification and an iterated least
fixed point model. In Proceedings of the 8th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (Philadelphia, Pa., Mar. 29-31). ACM, New York, pp. 11-21.

914 R. BOL AND J. F. GROOTE

REITER, R. 1980. A logic for default reasoning. Artif lnt. 13, 81-132.
V AANDRAGER, F. W. 1989. Specificatie en verificatie van communicatieprotocollen met procesal

gebra. Unpublished (in Dutch).
V AANDRAGER, F. W. 1990. Algebraic techniques for concurrency and their application. Ph.D.

dissertation. Centrum voor Wiskunde en Inforrnatica, Amsterdam, The Netherlands.
VERHOEF, C. 1994. A general conservative extension theorem in process algebra. In Proceedings of

PRO-COMET '94. IFIP Transactions A-56. Elsevier, Amsterdam, The Netherlands.
VERHOEF, C. 1995. A congruence theorem for structured operational semantics with predicates

and negative premises. Nord. J. Comput. 2, 2 274-302.

RECEIVED NOVEMBER 1991; REVISED MARCH 1995; ACCEPTED SEPTEMBER 1995

Journal of the ACM, Vol. 43, No. 5, September 1996.

