
Near-Optimal Distributed Edge Coloring *

Devdatt Dubhashi1** and Alessandro Panconesi2***

1 BRICS***, Department of Computer Science, University of Aarhus, Ny
Mw:ikegade, DK-8000 Aarhus C, Denmark

2 Centrum voor Wiskunde en Informatica 413 Kruislaan, 1098 SJ, Amsterdam,
Holland

Abstract. We give a distributed randomized algorithm to edge color a
network. Given a graph G with n nodes and maximum degree Ll, the
algorithm,

- For any fixed,\> 0, colours G with (1+.A)Ll colours in time O(log n).
- For any fixed positive integer s, colours G with Ll + (lo:.<l)" = (1 +

o(l))Ll colours in time O(logn +log• L1 log log .::1).
Both results hold with probability arbitrarily close to 1 as long as .::1(G) =
J?(logi+d n), for some d > O. The algorithm is based on the ROdl Nibble, a
probabilistic strategy introduced by Vojtech ROdl. The analysis involves
a certain quasi-random phenomenon involving sets at the vertices of the
graph.

1 Introduction

The edge coloring problem is a basic problem in graph theory and combinatorial
optimization. Its importance in distributed computing, and computer science
generally, stems from the fact that several scheduling and resource allocation
problems can be modeled as edge coloring problems [9, 11, 14, 17). In this paper,
we give a distributed randomized algorithm that computes a near-optimal edge
coloring in time O(logn). By "near-optimal" we mean that the number of colors
used is (1 + o(l))Ll where Ll denotes the maximum degree of the network and
the o(l) term can be as small as 1/log8 Ll, for any s > 0. Both performance
guarentees - the running time and the number of colours used - hold with high
probability as long as the maximum degree grows at least logarithmically with

* A preliminary version of this work was presented at the 15th International
Symposium on Mathematical Programming, August 1994, Ann Arbour, Michigan,
USA.

** dubhashi!Ddaimi.aau.dk. Work done partly while at the Max-Planck-Institute fiir
Informatik supported by the ESPRIT Basic Research Actions Program of the EC
under contract No. 7141 (project ALCOM II).

*** pucklOmath.tu-berlin.de. Supported by an Ercim postdoctoral fellowship. Current
address: Fachbereich Mathematik, MA 6-1, TU Berlin, Str. des 17 Juni 136, 10623
Berlin.

*** Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

449

n. Our algorithm can be implemented directly in the PRAM model of compu­
tation.

Motivation and Related Work. The edge coloring problem can be used to mod­
el certain types of jobshop scheduling, packet routing, and resource allocation
problems in a distributed setting. For example, the problem of scheduling I/O
operations in some parallel architectures can be modeled as follows [9, 6]. We are
given a bipartite graph G = (P, n, E) where, intuitively, P is a set of processes
and n is a set of resources (say, disks). Each processor needs data from a subset of
resources R(p) ~ n. The edge set is defined to be E = {(p, r): r E R(p),p E P}.
Due to hardware limitations only one edge at the time can be serviced. Under
this constraints it is not hard to see that optimal edge colorings of the bipartite
graph correspond to optimal schedules that is, schedules minimizing the overall
completion time. Clearly, if a graph G has maximum degree L1 then at least L1
colors are needed to edge color the graph. A classical theorem of Vizing shows
that L1+1 colors are always sufficient, and the proof is actually a polynomial time
algorithm to compute such a coloring (see for example (4]). Interestingly, given a
graph G, it is NP-complete to decide whether it is L1 or ..d + 1 edge colorable [8],
even for regular graphs [7]. Efforts at parallelizing Vizing's theorem have failed;
the best PRAM algorithm known is a randomized algorithm by Karloff & Shmoys
that computes an edge coloring using very nearly L1+ JLl = (1 +o(l))..d colors.
The Karloff & Shmoys algorithm can be derandomized by using standard de­
randomization techniques [3, 16]. In the distributed setting the previously best
known result was a randomized algorithm by Panconesi & Srinivasan that uses
roughly l.58L1+logn colors with high probability and runs in O(logn) time with
high probability. For the interesting special case of bipartite graphs Lev, Pip­
pinger & Valiant show that L1-colorings can be computed in NG, whereas this is
provably impossible in the distributed model of computation even if randomness
is allowed (see [18]).

Our solution. To state our results precisely, we reproduce below our main theo­
rem:

Theorem 1. For any fixed .A > 0, given a graph with n vertices and maximum
degee L1, we can edge colour the graph with (1 + .A)L1 colours in time O(logn)
where n is the number of vertices in the graph. For any fixed positive integer
s, we can edge colour it with L1 + L1 / lore L1 = (1 + o(1)) L1 colours in time
O((log L1)8 log log L1 + log n). The results hold with failure probability decreasing
to O faster than any polynomial (inn) provided that L1 = n(logl+d n) for some
d >0.

Our algorithm is based on the Rodl Nibble, a beautiful probabilistic strategy
introduced by Vojtech Rodl to solve a certain covering problem in hypergraphs
[2, 20]. The method has subsequently been used very successfully to solve other
combinatorial problems such as asymptotically optimal coverings and colorings
for hypergraphs [2, 10, 19, 21]. In this paper, we introduce it as a tool for the

450

design and analysis of randomized algorithms. 4 Although the main component
of our algorithm is the Rodi nibble and the intuition behind it rather compelling,
the algorithm requires a non-trivial probabilistic analysis of a so called quasi­
random process. To explain what this is, it is perhaps best to give a brief outline
of our algorithm. Starting with the input graph Go the algorithm generates a
sequence G0 , G1, ... , Gt of graphs. One can view each edge e as possessing a
palette of available colors, starting with the whole set of (.d] colours initially. At
an arbitrary stage, a small € fraction of uncolored edges is selected, and each
selected edge chooses a tentative color at random from its current palette. If the
tentative color is not chosen by any neighboring edge it becomes final. Palettes
of the remaining uncolored edges are updated in the obvious fashion- by delet­
ing colors used by neighboring edges. The process is then repeated. Like other
proofs based on the same method our proof hinges on two key features of the
Rodl nibble. The first key idea of the method is that if colors are chosen inde­
pendently, the probability of color conflict is roughly €2 , a negligible fraction of
all edges attempting coloring at this stage. If the same "efficiency" is maintained
throughout, the overall "wastage" will be very small. The second aspect of the
ROdl nibble is a deeper mathematical phenomenon called quasi-randomness (see
[2]). In our context, quasi-randomness means that the palettes of available colors
at the edges at any stage are "essentially" truly independent random subsets of
the original full palette. The crux of the analysis is to show that despite the po­
tential of a complicated interaction regulated by the topology of the underlying
graph, the "nibbling" feature of the coloring process ensures that the palettes
are evolving almost independently of each other. In all applications of the nibble
method, it is the quasi-random aspect which is mathematically challenging and
which usually requires a quite laborious probabilistic analysis.

2 Preliminaries

A message-passing distributed network is an undirected graph G = (V, E) where
vertices (or nodes) correspond to processors and edges to bi-directional commu­
nication links. Each processor has its unique id. The network is synchronous, ,
computation takes place in a sequence of rounds; in each round, each processor
reads messages sent to it by its neighbors in the graph, does any amount of local
computation, and sends messages back to all of its neighbors. The time com­
plexity of a distributed algorithm, or protocol, is given by the number of rounds
needed to compute a given function. If one wants to translate an algorithm for
this model into one for the PRAM then computation locally done by each pro­
cessor must be charged for. An edge cnloring of a graph G is an assignment of
colors to edges such that incident edges always have different colors. The edge

4 This research was originally prompted by a conversation that the second author had
with Noga Alon and Joel Spencer, in which they suggested that the nibble approach
should work. Noga Alon has recently informed us that he is already in possession of
a solution with similar performance [1). However, at the time of writing, a written
manuscript was not available for comparison.

451

coloring problem is to find an edge coloring with the aim of minimizing the num­
ber of colors used. Given that determining an optimal (minimal) coloring is an
NP-hard problem this requirement is usually relaxed to consider approximate,
hopefully even near-optimal, colorings. The edge coloring problem in a distribut­
ed setting is formulated as follows: a distributed network G wants to compute
an edge coloring of its own topology. As remarked in the introduction such a
coloring might be useful in the context of scheduling and resource allocation.
The set {l, 2, ... , n} will be denoted by [n]. Given a graph G and a set of edges
F, G[F] denotes the subgraph of G whose edge set is F. In the paper we will
use the following approximations repeatedly: (1 - l/n)n ~ e-1 , and e€ :::::l 1 + E

or e€ :::::l 1 + E + E2 /2, for small values of E. Whenever such an approximation is
in effect, we will use the sign ~ in place of the equality sign. We will make use
of a slight modification of a well-known vertex coloring algorithm by Luby [13].
Luby's algorithm computes a (.:1 + 1)-vertex coloring of a graph in expected
time O(logn), where n is the number of vertices of a graph of maximum degree
..:1. The running time of the algorithm is O(logn) with high probability [12, 13].
When applied to the line graph of G the algorithm computes a (2..:1 - 1)-edge
coloring. In the original algorithm each vertex is initially given a palette of ..:1+1
colors; it can be easily verified that the algorithm still works in the same fashion
if each vertex u is given a palette of deg(u) + 1 colors instead, where deg(u) is
the degree of u. This modification is introduced for explanatory purposes.

3 The Algorithm

The algorithm is in two phases. The first phase is an application of the Rodl
nibble and has the goal of coloring most of the edges using a palette of .:1 colors.
By the end of this phase we will be left with a graph whose maximum degree
is at most "'..:1 with high probability. In the second phase the modified Luby's
algorithm is used to color the remaining graph with at most 2K..:1 fresh colors. As
we shall see in section 4.1, the number of iterations needed to bring the degree
down from .:1 to KLl is O(log(l//'\:)/ax:2), where a = t:(l - E)e-4€ • Hence, in
order to get a (1 +)1)..:1, where >. > 0 is any fixed constant, the first phase takes
constant time. To get a (1 + o(l)).:1 coloring takes O((log.:1)28 loglog..:1) time,
where the o(l) term is 1/ (log ..:1)8 , for any s > 0. This holds with high probability.
The exact probability of success will be determined in the section devoted to the
analysis. We note here that an assumption on the maximum degree of the graph
is needed, namely ..:1(G) = !l(logl+dn), for some d > 0 (n denotes the number
of vertices of G). Phase 2 takes O(logn) time, with high probability. The basic
idea underlying the first phase of the algorithm is for each vertex to select a
small "nibble" of edges incident upon it and assign tentative colors to them
independently at random. Most of these edges are expected to avoid conflicts
with other edges vying for coloring, and get successfully colored at this stage.
This is because the nibble keeps the "efficiency" of the coloring close to 1 at each
stage. To describe the algorithm more precisely, we introduce some definitions
that will also be used later in the analysis. At any stage k 2: 1, we have a graph

452

Gk(V, Ek)- Initially, Go(V, Eo) := G(V, E), the input graph. By ..dk we denote
the maximum degree of the graph Gk (note .do= ..d(G) initially). Each vertex
has a palette of availablecolors, Ak with Ag= [maJCwec5(uu{u} deg(w)]. (This can
be arranged in one round with each vertex communicating its own degree to each
of its neighbours.) The set of edges successfully colored at stage k is denoted by
Ck. Then, Gk+l := Gk[E-Ck] is the graph passed on to the next stage. In the
algorithm, t(c, /'i,) denotes the number of stages needed to bring the maximum
degree of the graph from ..d to K..d with high probability, and has value

I ln(l/K) l t € 7 /'i. = · () c(l - c)e-4eK

The algorithm is more precisely described as follows

Phase 1. RonL NIBBLE

For k = 1, 2, ... , t(c, K) stages repeat the following:
- Each vertex u randomly selects an c fraction of the edges incident on

itself, and independently at random assigns them a tentative color from
its palette Ak of currently available colors. If an edge e = { u, v} is
selected by both its endpoints, it is simply dropped and not considered
for coloring at this stage.

- Let e = {u, v} be a selected edge, and c(e) its tentative color. Color c(e)
becomes the final color of e unless one of the following two conflict types
arises: i) some edge incident on e is given the same tentative color, or
ii) c(e) tJ. Ak n Ak, the tentative color given to e is not available at the
other endpoint of e.

- The graph is updated by setting

Ak+l =Ai: - {c: e incident on u, c(e) = c is the final color of e}

and Gk+l = Gk[Ek - Ck], where Ck is the set of edges which got a final
color at stage k.

Phase 2.
Color Gt(E,1<.) with fresh new colors by using the modified Luby's algorithm.

4 Analysis

4.1 Intuitive Outline

Suppose for a start that the graph is ..d-regular. Intuitively, the palettes Ai: are
more-or-less random subsets of the base set [..d]. Let us assume they are indeed
truly random subsets of [..d], so precisely, let us assume that the palette of each
vertex at stage k 2: 0, is a uniformly and independently chosen random subset
of [..1] of the same size Llk. Then, at stage k (with high probability), the size
of the common palette between any two vertices is LlV .d. So the probability
that a colour chosen by a vertex as a tentative colour for an incident edge is
also valid at the other end-point is ..dk/ .d. Hence, the probability that an edge

453

is successfully coloured at stage k is roughly, e~ and we have the following
recurrence for the vertex degree,

This recurrence implies that given a fixed 0 < >. < 1, the vertex degree drops to
>.L1 within a constant number of stages, or that for any positive integer s > 0, the
degree drops to L1/ (log L1)8 in a poly-logarithmic (in L1) number of stages. This
yields the required time complexity analysis for the algorithm. Unfortunately,
neither of the two assumptions above are in fact valid. First, because the graph
G can have a very complex, irregular topology, it is not true that vertex degrees
and palettes are uniform, at the outset, and they are even less likely to remain
so at subsequent stages. In addition, the palettes are not truly independent
random subsets either, as they can interact over the stages in a potentially
complicated fashion governed by the topology of the graph. However, we show in
§ 4.2 below, that despite the possibility of a complex interaction in the graph, the
''nibbling" feature of the colouring process leads to an essentially local interaction
of the palettes. So, while the palettes are not truly random subsets, they behave
essentially as such, specifically, with regard to the relative size and composition
of the common palettes and the palettes themselves. Given this one simple, but
crucial feature of the interaction of the palettes,it follows that the decay law is
essentially as given above. To highlight the essential ideas, we start with some
simplifying assumptions and progressively, we remove the assumptions and refine
the argument. First we give an analysis under the assumption that the initial
network is L1-regular. This will bring out to both the nature of the interaction
of the palettes due to the "nibbling" feature of the colouring, and how that
determines the decay law. With a high probability analysis using a martingale,
we show that the concerned random variables are sharply concentrated around
their means. Thus the graph continues to remain almost L1k-regular at each
stage k ~ 0. Finally, we indicate how to remove the assumptions of uniformity
made at the outset.

4.2 The Regular Case

Let us start by assuming that the graph is initially L1-regular, and that it retains
symmetry between vertices at each stage. Thus, at each stage k ~ 0, each vertex
has some degree Llk which is also the size of its palette, and the common palette
between any two neighbouring vertices also has the same value uniformly, which
we denote by ek. The probability that an edge is successfully coloured at stage
k is

ek 4 ek
Pk = 2E(l - e) Llk e- e = a Llk ·

where we define o = a(E) : = 2e (1-E)e-4£. (The factor 2e(1-e) is the probability
that the edge is chosen by exactly one endpoint. The fraction ek/ Llk is the
probability that the tentative color chosen is present at the other endpoint and,

454

e-4< is the probability that there is no color conflict.) Hence, we have fork 2: O
and any vertex u,

" ek E[Llk+l I Llk, ek] = Llk - L.J a Llk
wENk(u)

= Llk-aek
ek = Llk(l-a-)
Llk

= Llk(l - arJk)

(1)

where we put 'r/k := t·
To compute E[Bk+iiLlk, ek] we make use of the "nibbling" feature of the

colouring process. For each edge (u, v) and color c,

Pr[c E Ak+l n A%+1 IL1k, Bk] = 1 - Pr[c t/. Ak+i n A%+1 IL1k, Bk]
= 1 - (Pr[c t/. Ak+i IL1k. ek] + Pr[c tJ. A%+1 IL1k, ek])

+Pr[c tJ. AJ:+1 , c t/. A%+1IL1k, ek]
>:::! 1 - (Pr(c t/. Ak+i ILlk, ek] + Pr(c tJ. A%+1 IL1k, ek])
~ (1- Pr[c r/. Ak+ilL1k, ek])(l - Pr(c <f. Ak+1IL1k, Bk])
= Pr[c E Ak+1IL1k, Bk]Pr[c E A%+iJL1k, 8k]

(since Pr[c t/. Ak+l•c t/. Ak+ilL1k,ek] = 0(E2) = Pr[c t/. Ak+ilLlk,ek]Pr[c tJ.
A%+ilL1k, ek]). Thus, the "nibbling" feature of the colouring process is such
that the common palette Ak+l n A%+1 evolves as if it were the intersection of
two palettes evolving independently of each other. Thus for an edge (u, v) at
stage k? 0,

It is important to note here the factor (~)2 - this arises because when a colour
is selected for an edge neighbouring (u, v), it must be in the common palette of
both edges. Then, z.from (2) it follows that

E[ek+i] = E[E[ek+1 I Llk, ek]]
= (1 - 2aryk)E[8k]
::::: e-2a11k E[Bk]· (3)

Let us write 'f/k := ~ >:::! ~f ~:J; we will justify this shortly by showing that the
r.v.s Llk and ek are sharply concentrated at their means. Thus from (1) and (3),

455

if follows that 5

This recurrence is well-studied, see for instance [5, § 8.5]. We have that

E[Llk] = L1 exp(-a L T/i)
i~k

(4)

It can be verified that E[Llk] S .:\Ll whenever k 2 ko := (1°g£1j.Xl). In computing
the expectations above, we assumed that the graph was Llk-regular at stage
k. Even if we assume the initial graph is Ll-regular, it will not remain regular
at later stages due to statistical fluctuations. However, we shall now refine the
argument by a high-probability analysis and show that the random variables
Llk (denoting the size of the palette of vertex u and also its degree) and e~,v
(denoting the common palette size IA/: n A}.;j) are each sharply concentrated
around their means computed in the last section. Thus, the graph does remain
"almost" regular at each stage. We shall let Eek and ELlk be the recurrences
determined by

and
ELlo := Ll, ELlk+l = e-a11k ELlk·

where, as before, T/k is the sequence determined by the recurrence (4) (with
110 := 1). We will show that for each vertex u and each edge (u, v), with high
probability,

and
(1 - ok)Eek s ek :::; (1+8k)Eek,

(for a sequence Ok to be specified). In this sense, if we start with a graph which
is Ll-regular, it remains "almost" regular as we progress through the stages. We
shall prove these statements by induction on k; they are trivially true at the start
fork= 0. The number of edges coloured at any stage around a given vertex or
edge is the sum of indicator random variables which are 1 with the probability
computed earlier. We would like to use large deviation bounds to show that this
sum is sharply concentrated around its mean. However, these random variables
are manifestly not independent, and we cannot employ the usual Chernoff bound.
However due to the nature of the association of the r.v.s in our case, we are able
to salvage the Chernoff bound nevertheless. The most efficient way of doing this
is to to use the following martingale argument sometimes called "the method of
bounded differences" [15]:

5 We use here our approximation that t=~ ~ 1 + y - x and so strictly should write ~­
However, since e-(l+€):t :=; 1 -x :$ e-x for any E > 0 if x is sufficiently small, we can
use = with the tacit understanding that one can substitute these exact inequalities
if required.

456

Proposition2 (Method of Bounded Differences). Let X := X1, ... , Xm
be independent random variables with Xk taking values in a set Ak. Suppose the
measurable function f : fh Ak -+ R satisfies

lf(X) - f(X')I $Ck,

whenever X and X' differ only in the kth co-ordinate for each k E (m] and for
some constants ci, .•• , Cm· Then, for any t > O,

Pr(l/(X) - E(J(X)]I > t] $ 2exp(-2t2 / I:c%).
k

To apply this proposition to compute the palette size of a given vertex or edge
after an arbitrary stage k ~ 0, we proceed as follows. Let us consider the edge
palettes. Fix a certain order of considering the vertices, and think of the random
colouring process at stage k as determining the tentative colour assignments
to edges in order corresponding to the vertices they are incident on. For an
edge e incident on a fixed vertex u, let Xe be the tentative colour it is assigned
at this stage, provided it is also available at the other endpoint and suffers
no conflict at that endpoint (we can think of each Xe being a special colour
J_ at the start, thus the sets Ak in the proposition are each [L\] U {j_}). By
the properties of the algorithm, these variables (which are IA~I in number) are
indeed independent. The function f, we choose is the size of the resulting edge
palette, under these choices at stage k. It can be verified that this function has
the "bounded difference" property with each Ck := 2. Given L\k, ek, we have
computed the expectations before. Now, applying the Chernoff bound shows
that given L\k, ek, we have with high probability (namely that given above), for
any 0 < 5 < 1,

e-2aek(l - 5) $ ek+l $ e-2aek(l + 5),

and inductively assuming high probability bounds on ek, this implies that

or,
E8k+le-51c-5 $ 8k+1 $ E8k+1e61c+5•

So, taking Ok :== ko verifies the inductive claim. Similarly for L\k, with high
probability,

EL1k(l - ok) $ L\k $ EL\k(l + ok)·

The analysis is exactly the same for the vertex palettes. The failure probability
is pessimistically estimated as kon times the failure probability at a vertex at the
last stage ko. This in turn is given by Proposition 2. We are interested only in
vertices which have degree at least >.Ll at this stage. Noting that L\k+l ~ e-2€ .Llk
for any k ~ 0, we get that the failure probability is at most

2nko exp(->.2 L\).

The statement on the failure probability in Theorem 1 follows ifrom this (recall
that we assume L1 == .O(logl+d n) for some d > 0).

457

4.3 Removing the Regularity Assumption

In this section, we outline how to remove the assumption that the graph is
initially Ll-regular. Note that because we want our algorithm to work in a truly
distributed fashion, we cannot assume that the maximum degree is known to all
vertices. As we shall demonstrate below, the essential feature of the interaction
of the palettes (namely the locality) and the decay law obeyed by the palettes
continues to hold without the regularity assumption. Let 17"f1ax be determined
by the recurrence relations

and
11f+~ = 11lnax exp(-a771,llax).

Similarly, let 77min be determined by the corresponding recurrence with max
replaced by min. It is easy to verify by induction that for each k 2'.: 0,

1 :S rt"ffax / rtr1in :S 17-g:iax / 17g-iin.

Let us now write down the equation corresponding to (2) in the non-regular
setting (with ek, Lik denoting the vector of the random variables at stage k).
Recall that the algorithm sets LJ.0 = IDaJCwEN(u)u{u} deg(w) initially and that
8~,v = min(L10, .<l~).

eu,W et<,W 811,W ev,W
E[B~~l I ek, L1k] = e~·"' - a L (~u) 2 + (~w) 2 - a L (~v) 2 + (~w) 2

wENk(u) k k wEN•(v) k k

= e:·" - a :L (11:·w)2 + (r1~,t<? - a E (TJ"·w)2 + (TJw.v)2

wENk(u) wEN•(11)

Now, once again, inductively, we have for any two edges (u, v) and (u', v'),
min 71u,v max

!1Q__ < _. ,_k - < !!Q___
ma.x: - u',v' - min.

710 11k 110

Using this in the previous equation, we get:
max max

e~·"-o:T/~1in E (11~·")2+(11~"')2-a7)~nin L (7Jv,u)2+(7J"''")2 s; E[B~~l I L1k,ek]·
T/o wEN•(u) 7Jo wEN,(v)

and
min min

E[e~~l I ..1k,ek] s e~·"-aTJTJ?nax L (11~'")2 +(11~·")2-a~~ax L (TJ"'")2+(ry"·")2.
o ~~W o ~~M

Thus,
e~·v(l - a'):::; E[8~:;'1 I Llk, ek] ::; e~·v(l - et'').

We are thus back in essentially the same situation as before and we can refine
the calculation of expected values into a high probability argument as before.
Finally we have proved:

458

Theorem3. For any foxed A.> 0, given a graph with n vertices and maximum
dege,e. L1, we can edge colour the graph with (1 + A.)Ll colours in time O(logn)
where n is the number of vertices in the graph. For any foxed positive integer
s, we can edge colour it with Ll + Ll / lor: Ll = (1 + o(1)) L1 colours in time
0((log L1)8 log log L1 + log n). The results hold with failure probability decreasing
to 0 faster than any polynomial (in n) provided that L1 = il(log1+d n) for some
d>O.

REMARK: It is unlikely that one can improve the above analysis to get a colour­
ing better than the L1 + Ll/(logLl)8 bound above, while still retaining a poly­
logarithmic running time {in n and L1). To see this, recall from the intuitive
outline in§ 4.1, that even if we assume that the initial graph is regular and that
the palettes evolve as truly random independent subsets, the decay law has the
form

Llk
L1k+l ~ exp(-€Lf)L1k.

If 1Jk is the determined by the recurrence

then one can show (see for instance, (5, § 8.5]) that 'f'/k ~ 1/k. So, if the shrinking
of a vertex degree is governed by an equation of the form 1'/k+l := e-0tttT'/1c 'f'/k the
number of iterations needed to bring the degree down to Ll/g(Ll) is k(L1) =
il(g(L1)).

Acknowledgments

We are indebted to Noga Alon and Joel Spencer for their suggestion that the
ROdl nibble should work, and to Noga Alon for pointing out a mistake in a
previous draft of this work and for several suggestions. We are grateful to Jirka
Matousek who independently also suggested the use of the ROdl Nibble and who
gave us a nice explanation of the swift working of the nibble. Kurt Melhorn
provided, as usual, insightful remarks. We also thank Sem Borst and Marco
Combe for useful discussions. The first author is grateful to the CWI and the
Altec project for making possible an extended visit to CWI. The second author
acknowledges the generous hospitality of MPI and BRICS.

References

1. N. Alon. Private Communication.
2. N. Alon, J. Spencer, and P. Erd&. The Probabilistic Method. Wiley-lnterscience

Series, John Wiley & Sons, Inc., New York, 1992.
3. B. Berger and J. Rompel. Simulating (loge n)-wise independence in NC. J. Assoc.

Comput. Mach., 38(4):1026-1046, 1991.
4. B. Bollobas. Graph Theory. Springer Verlag, New York, 1979.
5. N.G. de Bruijn. Asymptotic methods in Analysis. Number 4 in Bibliotheca Math­

ematics. North Holland Publishing Co., 1958.

459

6. R. Jain D. Durand and D. Tseytlin. Distributed scheduling algorithms to improve
the performance of parallel data transfers. Technical Report 94-38, DIMACS,
1994.

7. z. Galil and D. Leven. NP-completeness of finding the chromatic index of regular
graphs. J. of Algorithms, 4:35-44, 1983.

8. I. Holyer. The NP-completeness of edge coloring. SIAM J. Comp., 10:718-720,
1981.

9. R. Jain, K. Somalwar, J. Werth, and J.C. Browne. Scheduling parallel i/o oper­
ations in multiple bus systems. Journal of Parallel and Distributed Computing,
16(4):352-362, 1992.

10. J. Kahn. Coloring nearly-disjoint hypergraphs with n + o(n) colors. J. Comb.
Theory, Series A, 59:31-39, 1992.

11. H. J. Karloff and D. B. Shmoys. Efficient parallel algorithms for edge coloring
problems. Journal of Algorithms, 8:39-52, 1987.

12. R. M. Karp. Probabilistic recurrence relations. In Proceedings of the ACM Sym­
posium on Theory of Computing, pages 190-197, 1991.

13. M. Luby. Removing randomness in parallel computation without a processor
penalty. In Proceedings of the IEEE Symposium on Foundations of Computer
Science, pages 162-173, 1988. To appear in a special issue of Journal of Computer
and System Sciences, devoted to FOCS 1988.

14. N. A. Lynch. Upper bounds for static resource allocation in a distributed system.
Journal of Computer and System Sciences, 23:254-278, 1981.

15. C. McDiarmid. On the method of bounded differences. In J. Siemons, editor,
Surveys in Combinatorics, volume 141 of London Math. Soc. Lecture Notes Series,
pages 148-188. Cambrideg University Press, 1989.

16. R. Motwani, J. Naor, and M. Na.or. The probabilistic method yields deterministic
parallel algorithms. In Proceedings of the IEEE Symposium on Foundations of
Computer Science, pages 8-13, 1989.

17. A. Panconesi and A. Srinivasan. Fast randomized algorithms for distributed edge
coloring. In Proceedings of the A CM Symposium on Principles of Distributed Com­
puting, pages 251-262, 1992.

18. A. Panconesi and A. Srinivasan. Improved distributed algorithms for coloring and
network decomposition problems. In Proceedings of the ACM Symposium on The­
ory of Computing, pages 581-592, 1992.

19. N. Pippinger and J. Spencer. Asymptotic behaviour of the chromatic index for
hypergraphs. J. Combinatorial Theory, Series A, 51:24-42, 1989.

20. V. ROOL On a packing and covering problem. European Journal of Combinatorics,
5:69-78, 1985.

21. J. Spencer. Asymptotically Good Coverings. Pacific Journal of Mathematics,
118(2):575-586, 1985.

