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Abstract

The notion of optimality naturally arises in many areas of applied
mathematics and computer science concerned with decision making.
Here we consider this notion in the context of three formalisms used
for different purposes in reasoning about multi-agent systems: strategic
games, CP-nets, and soft constraints. To relate the notions of optimal-
ity in these formalisms we introduce a natural qualitative modification
of the notion of a strategic game. We show then that the optimal out-
comes of a CP-net are exactly the Nash equilibria of such games. This
allows us to use the techniques of game theory to search for optimal
outcomes of CP-nets and vice-versa, to use techniques developed for
CP-nets to search for Nash equilibria of the considered games. Then,
we relate the notion of optimality used in the area of soft constraints
to that used in a generalization of strategic games, called graphical
games. In particular we prove that for a natural class of soft con-
straints that includes weighted constraints every optimal solution is
both a Nash equilibrium and Pareto efficient joint strategy. For a nat-
ural mapping in the other direction we show that Pareto efficient joint
strategies coincide with the optimal solutions of soft constraints.
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1 Introduction

The concept of optimality is prevalent in many areas of applied mathematics
and computer science. It is of relevance whenever we need to choose among
several alternatives that are not equally preferable. For example, in con-
straint optimization, each solution of a constraint satisfaction problem has
a quality level associated with it and the aim is to choose an optimal solution,
that is, a solution with an optimal quality level. In turn, in strategic games,
two concepts of optimality have been commonly used: Nash equilibrium and
Pareto efficient outcome.

Some formalisms proposed in AI employ ‘their own’ concept of an opti-
mal outcome. The aim of this paper is to clarify the status of such notions of
optimality used in CP-nets and soft constraints. To this end we use tools and
techniques from game theory, more specifically theory of strategic games.

This allows us to gain new insights into the relationship between these
formalisms which hopefully will lead to further cross-fertilization among
these three different approaches to modelling optimality.

1.1 Background

Game theory, notably the theory of strategic games, forms one of the main
tools in the area of multi-agent systems since they formalize in a simple
and powerful way the idea that the agents interact with each other while
pursuing their own interests. Each agent has a set of strategies and a payoff
function on the set of joint strategies. The agents choose their strategies
simultaneously with the aim of maximizing one’s payoff.

The most commonly used concept of optimality is that of a Nash equilib-
rium. Intuitively, it is an outcome that is optimal for each player under the
assumption that only he may reconsider his action. Another concept of op-
timality is that of Pareto efficient joint strategies, which are those in which
no player can improve his payoff without decreasing the payoff of some other
player. Sometimes it is useful to consider constrained Nash equilibria, that
is, Nash equilibria that satisfy some additional requirements, see e.g. [12].
For example, Pareto efficient Nash equilibria are Nash equilibria which are
also Pareto efficient among the Nash equilibria.

In turn, CP-nets (Conditional Preference nets) are an elegant formal-
ism for representing conditional and qualitative preferences, see [6, 5]. They
model such preferences under a ceteris paribus (that is, ‘all else being equal’)
assumption. A CP-net exploits the idea of conditional independence to pro-
vide a compact representation of preference problems. Preference elicitation
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in such a framework appears to be natural and intuitive.
Research on CP-nets has been focused on their modeling capabilities

and on algorithms for solving various natural problems related to their use.
Also, computational complexity of these problems was extensively studied.
One of the fundamental problems is that of finding an optimal outcome,
i.e., one that cannot be improved in the presence of the adopted preference
statements. This is in general a complex problem since it was found that
finding optimal outcomes and testing for their existence is in general NP-
hard, see [6, 5]. In contrast, for so-called acyclic CP-nets this is an easy
problem which can be solved by a linear time algorithm, see [6, 5].

Finally, soft constraints, see e.g. [4], are a quantitative formalism which
allow us to express constraints and preferences. While constraints state
which combinations of variable values are acceptable, soft constraints allow
for several levels of acceptance. An example are fuzzy constraints, see [8] and
[21], where acceptance levels are between 0 and 1, and where the quality of a
solution is the minimal level over all the constraints. An optimal solution is
the one with the highest quality. The research in this area has dealt mainly
with the algorithms for finding optimal solutions and with the relationship
between modelling formalisms, see [19].

1.2 Main results

We consider the notions of optimality in two preference modelling frame-
works, that is, CP-nets and soft constraints, and in strategic games. Al-
though apparently there is no connection among these different ways of
modelling preferences, we show that in fact there is a strong relationship.
This is surprising and interesting on its own. Moreover, it might be exploited
for a cross-fertilization among these three frameworks.

In particular, we start by considering the relationship between CP-nets
and strategic games, and we show how game-theoretic techniques can be
fruitfully used to study CP-nets. Our approach is based on the observation
that the ceteris-paribus principle, typical of CP-nets, implies that an optimal
outcome is worsened if a worsening change (to some variable) is made. This
is exactly the idea behind Nash equilibria and the desired results easily
follow once this observation is made formal by introducing an appropriate
modification of strategic games. In this modification each player has at his
disposal a preference relation on his set of strategies, parametrized by a
joint strategy of his opponents. We call such games strategic games with
parametrized preferences.

The cornerstone of our approach are two results closely relating CP-

3



nets to such games. They show that the optimal outcomes of a CP-net are
exactly the Nash equilibria of an appropriately defined strategic game with
parametrized preferences. This allows us to transfer techniques of game
theory to CP-nets, and vice-versa.

In strategic games techniques have been studied which iteratively reduce
the game by eliminating some players’ strategies, thus obtaining a smaller
game while maintaining its Nash equilibria. In [11], for example, interesting
results concerning the order in which such reductions are applied are de-
scribed. We introduce two counterparts of such game-theoretic techniques
that allow us to reduce a CP-net while maintaining its optimal outcomes.
We also introduce a method of simplifying a CP-net by eliminating so-called
redundant variables from the variables parent sets. Both techniques simplify
the search for optimal outcomes in a CP-net.

In the other direction, we can use the techniques developed to reason
about optimal outcomes of a CP-net to search for Nash equilibria of strategic
games with parametrized preferences. We illustrate this point by introducing
the notion of a hierarchical game with parametrized preferences and by
explaining that such games have a unique Nash equilibrium that can be
found in linear time.

In the final part of the paper we consider the relationship between strate-
gic games and soft constraints, such as fuzzy, weighted and hard constraints.
The appropriate notion of a strategic game is here that of a graphical game,
see [13]. This is due to the fact that (soft) constraints usually involve only a
small subset of the problem variables. This is in analogy with the fact that
in a graphical game a player’s payoff function depends only on a (usually
small) number of other players.

We consider a natural mapping that associates with each soft constraint
satisfaction problem (in short, a soft CSP or an SCSP) a graphical game.
This mapping creates a direct corresponce between constraints and players’
neighbourhoods. We show that, when using such a mapping, in general no
relation exists between the notions of optimal solutions in soft CSPs and
Nash equilibria in the corresponding games. On the other hand, for the
class of strictly monotonic SCSPs (which includes in particular weighted
constraints), every optimal solution corresponds to both a Nash equilibrium
and Pareto efficient joint strategy. We also show that this mapping, when
applied to a consistent CSP (that is, a satisfiable hard constraint satisfaction
problem), defines a bijection between the solutions of the CSP and the set
of joint strategies that are both Nash equilibria and Pareto efficient.

The latter holds in general, and not just for a subclass, if we consider
a mapping from graphical games to soft CSPs which is independent of the
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constraint structure. This mapping, however, is less appealing from the
computational complexity point of view since it requires that one considers
all possible complete assignments, the number of which may be exponential
in the size of the SCSP.

None of these two mappings are surjective, thus they cannot be used to
pass from a generic graphical game to an SCSP. We also consider a mapping
which goes in this direction. This mapping creates a soft constraint for each
player, by looking at his neighbourhood. We show that this mapping defines
a bijection between Pareto efficient joint strategies and optimal solutions of
the SCSP.

The study of the relations among preference models coming from differ-
ent fields such as AI and game theory has only recently gained attention.
In [10] a mapping from the graphical games to hard CSPs has been defined,
and it has been shown that the Nash equilibria of these games coincide with
the solutions of the CSPs. We can use this mapping, together with our
mapping from the graphical games to SCSPs, to identify the Pareto efficient
Nash equilibria of the given game. In fact, these equilibria correspond to
the optimal solutions of the SCSP obtained by joining the soft and hard
constraints generated by the two mappings. The mapping of [10] leads to
interesting results on the complexity of deciding whether a game has a pure
Nash equilibrium or other kinds of desirable joint strategies.

In [14] a mapping from distributed constraint optimization problems
(DCOPs) to graphical games is introduced, where the optimization criterion
is to maximize the sum of utilities. By using this mapping, it is shown that
the optimal solutions of the given DCOP are Nash equilibria of the generated
game. This result is in line with our finding regarding strictly monotonic
SCSPs, which include the class of problems considered in [14].

1.3 Organization of the paper

The paper is organized as follows. In Section 2 we introduce CP-nets, soft
constraints, and strategic games. Next, in Section 3 we introduce a modifi-
cation of the classical notion of strategic games considered in this paper. In
Section 4 we show how to pass from CP-nets to so defined strategic games,
while in Section 5 we deal with the opposite direction.

Then in Section 6 we show how to apply techniques developed in game
theory to reason about CP-nets, while in Section 7 we study the other di-
rection. Next, in Section 8 and 9 we study the relationship between soft
CSPs and strategic games by relating optimal solutions of soft CSPs to
Nash equilibria and Pareto efficient joint strategies. Finally, in Section 10
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we summarize the main contributions of the paper.
Preliminary results of this research were reported in [2] and [3].

2 Preliminaries

In this section we recall the main notions regarding CP-nets, soft constraints,
and strategic games.

2.1 CP-nets

CP-nets [6, 5] (for Conditional Preference nets) are a graphical model for
compactly representing conditional and qualitative preference relations. They
exploit conditional preferential independence by decomposing an agent’s
preferences via the ceteris paribus assumption. Informally, CP-nets are
sets of ceteris paribus (cp) preference statements. For instance, the state-
ment “I prefer red wine to white wine if meat is served.” asserts that, given
two meals that differ only in the kind of wine served and both containing
meat, the meal with a red wine is preferable to the meal with a white wine.
On the other hand, this statement does not order two meals with a different
main course. Many users’ preferences appear to be of this type.

CP-nets bear some similarity to Bayesian networks. Both utilize directed
graphs where each node stands for a domain variable, and assume a set of
features (variables) F = {X1, . . . , Xn} with the corresponding finite domains
D(X1), . . . ,D(Xn). For each feature Xi, a user specifies a (possibly empty)
set of parent features Pa(Xi) that can affect her preferences over the values
of Xi. This defines a directed graph, called dependency graph , in which
each node Xi has Pa(Xi) as its immediate predecessors. A CP-net is said
to be acyclic if its dependency graph does not contain cycles.

Given this structural information, the user explicitly specifies her pref-
erence over the values of Xi for each complete assignment on Pa(Xi). In
this paper this preference is assumed to take the form of a linear order over
D(Xi) [6, 5].1 Each such specification is called below a preference state-
ment for the variable Xi. These conditional preferences over the values of
Xi are captured by a conditional preference table which is annotated with
the node Xi in the CP-net. An outcome is an assignment of values to the
variables with each value taken from the corresponding domain.

1In this we follow [5], where ties among values are initially allowed, (that is linear pre-
orders are admitted) but in presentation only total orders are used. If ties are admitted,
the notion of an optimal outcome of a CP-net has to be appropriately modified.

6



As an example, consider a CP-net whose features are A, B, C and D,
with binary domains containing f and f if F is the name of the feature, and
with the following preference statements:

d : a ≻ a, d : a ≻ a,
a : b ≻ b, a : b ≻ b,
b : c ≻ c, b : c ≻ c,
c : d ≻ d, c : d ≻ d.

Here the preference statement d : a ≻ a states that A = a is preferred to
A = a, given that D = d. From the structure of these preference statements
we see that Pa(A) = {D}, Pa(B) = {A}, Pa(C) = {B}, Pa(D) = {C} so
the dependency graph is cyclic.

An acyclic CP-net is one in which the dependency graph is acyclic. As
an example, consider a CP-net whose features and domains are as above
and with the following preference statements:

a ≻ a,
b ≻ b,
(a ∧ b) ∨ (a ∧ b) : c ≻ c, (a ∧ b) ∨ (a ∧ b) : c ≻ c,
c : d ≻ d, c : d ≻ d.

Here, the preference statement a ≻ a represents the unconditional preference
for A = a over A = a. Also each preference statement for the variable C

is a actually an abbreviated version of two preference statements. In this
example we have Pa(A) = ∅, Pa(B) = ∅, Pa(C) = {A, B}, Pa(D) = {C}.

A worsening flip is a transition between two outcomes that consists
of a change in the value of a single variable to one which is less preferred
in the unique preference statement for that variable. By analogy we define
an improving flip. For example, in the acyclic CP-net described in the
previous paragraph, passing from abcd to abcd is a worsening flip since c is
better than c given a and b. We say that an outcome α is better than the
outcome β (or, equivalently, β is worse than α), written as α ≻ β, iff there
is a chain of worsening flips from α to β. This definition induces a strict
preorder over the outcomes. In the acyclic CP-net described in the previous
paragraph, the outcome abcd is worse than abcd.

An optimal outcome is one for which no better outcome exists. So an
outcome is optimal iff no improving flip from it exists. In general, a CP-
net does not need to have an optimal outcome. As an example consider
two features A and B with the respective domains {a, a} and {b, b} and the
following preference statements:

a : b ≻ b, a : b ≻ b,
b : a ≻ a, b : a ≻ a.

It is easy to see that then
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ab ≻ ab ≻ ab ≻ ab ≻ ab.

Finding optimal outcomes and testing for optimality is known to be NP-
hard [6, 5]. However, in acyclic CP-nets there is a unique optimal outcome
and it can be found in linear time [6, 5]. We simply sweep through the
CP-net, following the arrows in the dependency graph, assigning at each
step the most preferred value in the preference relation. For instance, in the
CP-net above, we would choose A = a and B = b, then C = c and then
D = d. The optimal outcome is therefore abcd.

Determining whether one outcome is better than another according to
this order (a so-called dominance query) is also NP-hard even for acyclic CP-
nets, see [9]. Whilst tractable special cases exist, there are also acyclic CP-
nets in which there are exponentially long chains of worsening flips between
two outcomes [9].

Hard constraints are enough to find optimal outcomes of a CP-net and
to test whether a CP-net has an optimal outcome. In fact, given a CP-net
one can define a set of hard constraints (called optimality constraints)
such that their solutions are the optimal outcomes of the CP-net, see [7, 20].

Indeed, take a CP-net N and consider a linear order ≻ over the elements
of the domain of a variable X used in a preference statement for X. Let ϕ

be the disjunction of the corresponding assignments used in the preference
statements that use ≻. Then for each of such linear order ≻ the correspond-
ing optimality constraint is ϕ → X = aj , where aj is the undominated
element of ≻. The optimality constraints opt(N) corresponding to N con-
sist of the entire set of such optimality constraints, each for one such linear
order ≻.

For example, the preference statements a ≻ a and (a∧ b)∨ (a∧ b) : c ≻ c

from the above CP-net map to the hard constraints A = a and (A = a∧B =
b) ∨ (A = a ∧ B = b) → C = c, respectively.

It has been shown that an outcome is optimal in the strict preorder over
the outcomes induced by a CP-net N iff it is a satisfying assignment for
opt(N).

A CP-net is called eligible iff it has an optimal outcome. Even if the
strict preorder induced by a CP-net has cycles, the CP-net may still be useful
if it is eligible. All acyclic CP-nets are trivially eligible as they have a unique
optimal outcome. We can thus test eligibility of any (even cyclic) CP-net
by testing the consistency of the optimality constraints opt(N). That is, a
CP-net N is eligible iff opt(N) is consistent.
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2.2 Soft constraints

Soft constraints, see e.g. [4], allow us to express constraints and prefer-
ences. While constraints state which combinations of variable values are
acceptable, soft constraints (also called preferences) allow for several levels
of acceptance. A technical way to describe soft constraints is via the use of
an algebraic structure called a c-semiring.

A c-semiring is a tuple 〈A, +,×,0,1〉, where:

• A is a set, called the carrier of the semiring, and 0,1 ∈ A;

• + is commutative, associative, idempotent, 0 is its unit element, and
1 is its absorbing element;

• × is associative, commutative, distributes over +, 1 is its unit element
and 0 is its absorbing element.

Elements 0 and 1 represent, respectively, the highest and lowest prefer-
ence. While the operator × is used to combine preferences, the operator +
induces a partial order on the carrier A defined by

a ≤ b iff a + b = b.

Given a c-semiring S = 〈A, +,×,0,1〉, and a set of variables V , each
variable x with a domain D(x), a soft constraint is a pair 〈def, con〉,
where con ⊆ V and def : ×y∈conD(y) → A. So a constraint specifies a
set of variables (the ones in con), and assigns to each tuple of values from
×y∈conD(y), the Cartesian product of the variable domains, an element of
the semiring carrier A.

A soft constraint satisfaction problem (in short, a soft CSP or
SCSP) is a tuple 〈C, V, D, S〉 where V is a set of variables, with the cor-
responding set of domains D, C is a set of soft constraints over V and S

is a c-semiring. Given an SCSP a solution is an instantiation of all the
variables. The preference of a solution s is the combination by means of
the × operator of all the preference levels given by the constraints to the
corresponding subtuples of the solution, or more formally,

×c∈Cdefc(s ↓conc
),

where × is the multiplicative operator of the semiring and defc(s ↓conc
) is

the preference associated by the constraint c to the projection of the solution
s on the variables in conc.
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A solution is called optimal if there is no other solution with a strictly
higher preference.

Three widely used instances of SCSPs are:

• Classical CSPs (in short CSPs), based on the c-semiring 〈{0, 1},∨,∧,

0, 1〉. They model the customary CSPs in which tuples are either al-
lowed or not. So CSPs can be seen as a special case of SCSPs.

• Fuzzy CSPs, based on the fuzzy c-semiring 〈[0, 1], max, min, 0, 1〉.
In such problems, preferences are the values in [0, 1], combined by tak-
ing the minimum and the goal is to maximize the minimum preference.

• Weighted CSPs, based on the weighted c-semiring 〈ℜ+, min, +,∞
, 0〉. Preferences are costs ranging over non-negative reals, which are
aggregated using the sum. The goal is to minimize the total cost.

A simple example of a fuzzy CSP is the following one:

• three variables: x, y, and z, each with the domain {a, b};

• two constraints: Cxy (over x and y) and Cyz (over y and z) defined
by:

Cxy := {(aa, 0.4), (ab, 0.1), (ba, 0.3), (bb, 0.5)},

Cyz := {(aa, 0.4), (ab, 0.3), (ba, 0.1), (bb, 0.5)}.

The unique optimal solution of this problem is bbb (an abbreviation for
x = y = z = b). Its preference is 0.5.

2.3 Strategic games

Let us recall now the notion of a strategic game, see, e.g., [17]. A strategic
game for a set N = {1, . . ., n} of n players (n > 1) is a tuple

(S1, . . ., Sn, p1, . . ., pn),

where for each i ∈ [1..n]

• Si is the non-empty set of strategies available to player i,

• pi is the payoff function for the player i, so pi : S1 × . . . × Sn →R,

where R is the set of real numbers.
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Given a sequence of non-empty sets S1, . . ., Sn and s ∈ S1 × . . . × Sn

we denote the ith element of s by si, abbreviate N \ {i} to −i, and use
the following standard notation of game theory, where i ∈ [1..n] and I :=
i1, . . ., ik is a subsequence of 1, . . ., n:

• sI := (si1 , . . ., sik),

• (s′i, s−i) := (s1, . . ., si−1, s
′
i, si+1, . . ., sn), where we assume that s′i ∈ Si,

• SI := Si1 × . . . × Sik .

A joint strategy s is called

• a pure Nash equilibrium (from now on, simply Nash equilibrium)
if

pi(s) ≥ pi(s
′
i, s−i) (1)

for all i ∈ [1..n] and all s′i ∈ Si,

• Pareto efficient if for no joint strategy s′, pi(s
′) ≥ pi(s) for all

i ∈ [1..n] and pi(s
′) > pi(s) for some i ∈ [1..n].

Pareto efficiency can be alternatively defined by considering the following
strict Pareto order <P on the n-tuples of reals:

(a1, . . ., an) <P (b1, . . ., bn) iff ∀i ∈ [1..n] ai ≤ bi and ∃i ∈ [1..n] ai < bi.

Then a joint strategy s is Pareto efficient iff the n-tuple (p1(s), . . ., pn(s)) is
a maximal element in the <P order on such n-tuples of reals.

To clarify these notions consider the classical Prisoner’s Dilemma game
represented by the following bimatrix representing the payoffs to both play-
ers:

C2 N2

C1 3, 3 0, 4
N1 4, 0 1, 1

Each player i represents a prisoner, who has two strategies, Ci (cooper-
ate) and Ni (not cooperate). Table entries represent payoffs for the players
(where the first component is the payoff of player 1 and the second one that
of player 2).

The two prisoners gain when both cooperate (with a profit of 3 each).
However, if only one of them cooperates, the other one will gain more (with
a profit of 4). If none of them cooperates, both gain very little (a profit
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of 1 each), but more than the ”cheated” prisoner whose cooperation is not
returned (that is, 0).

Here the unique Nash equilibrium is (N1, N2), while the other three joint
strategies (C1, C2), (C1, N2) and (N1, C2) are Pareto efficient.

A natural modification of the concept of strategic games, called graphical
games, was proposed in [13]. These games stress the locality in taking
decision. In a graphical game the payoff of each player depends only on the
strategies of its neighbours in a given in advance graph structure over the
set of players.

Formally, a graphical game for n players with the corresponding strat-
egy sets S1, . . ., Sn is defined by assuming a neighbour function neigh that
given a player i yields its set of neighbours neigh(i). The payoff for player i

is then a function pi from ×j∈neigh(i)∪{i}Sj to R.
By using the canonic extensions of these payoff functions to the Cartesian

product of all strategy sets one can then extend the previously introduced
concepts, notably that of a Nash equilibrium, to the graphical games. Fur-
ther, when all pairs of players are neighbours, a graphical game reduces to
a strategic game.

3 Strategic games with parametrized preferences

In game theory it is customary to study strategic games defined as above,
in quantitative terms. A notable exception is [18] in which instead of payoff
functions the linear quasi-orders on the sets of joint strategies are used.

For our purposes we need a different approach. To define it we first
introduce the concept of a preference on a set A which in this paper denotes
a strict linear order on A. We then assume that each player has to his
disposal a preference relation ≻(s−i) on his set of strategies parametrized by
a joint strategy s−i of his opponents. So in our approach

• for each i ∈ [1..n] player i has a finite, non-empty, set Si of strategies
available to him,

• for each i ∈ [1..n] and s−i ∈ S−i player i has a preference relation
≻(s−i) on his set of strategies Si.

In what follows such a strategic game with parametrized prefer-
ences (in short a game with parametrized preferences , or just a game)
for n players is represented by a tuple

(S1, . . ., Sn,≻(s−1), . . .,≻(s−n)),
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where each s−i ranges over S−i.
It is straightforward to transfer to the case of games with parametrized

preferences the basic notions concerning strategic games. In particular the
following notions will be of importance for us (for the original definitions
see, e.g., [18]), where G is a game with parametrized preferences specified
as above:

• A strategy si is a best response for player i to a joint strategy s−i of
his opponents if si ≻(s−i) s′i, for all s′i 6= si.

• A strategy si is never a best response for player i if it is not a best
response to any joint strategy s−i of his opponents.

• A strategy s′i is strictly dominated by a strategy si if si ≻(s−i) s′i,
for all s−i ∈ S−i.

So according to this terminology a joint strategy s is a Nash equilib-
rium of G iff each si is a best response to s−i. Note, however, that in
our setup the underlying preferences are strict, so the above notions of a
best response and Nash equilibrium correspond in the customary setting of
strategic games to the notions of a unique best response and a strict Nash
equilibrium. In particular, note that s is a Nash equilibrium of G iff for all
i ∈ [1..n] and all s′i 6= si

si ≻(s−i) s′i,

because to each joint strategy s−i a unique best response exists.
To clarify these definitions let us return to the above example of the

strategic game that models the Prisoner’s Dilemma. To view this game as a
game with parametrized preferences we abstract from the numerical values
and simply stipulate that

≻(C2) := N1 ≻ C1, ≻(N2) := N1 ≻ C1,
≻(C1) := N2 ≻ C2, ≻(N1) := N2 ≻ C2.

These orders reflect the fact that for each strategy of the opponent each
player considers his ‘not cooperate’ strategy better than his ‘cooperate’ strat-
egy.

It is easy to check that:

• for each player i the strategy Ci is strictly dominated by Ni (since
Ni ≻(C3−i)Ci and Ni ≻(N3−i)Ci),

• for each player i the strategy Ni is a best response to the strategy
N3−i of his opponent,
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• (as a result) (N1, N2) is a unique Nash equilibrium of this game with
parametrized preferences.

The framework of the games with parametrized preferences allows us to
discuss only some aspects of the customary strategic games. In particular
it does not allow us to introduce the notion of a mixed strategy, since the
outcomes of playing different strategies by a player, given the joint strategy
chosen by the opponents, cannot be aggregated. Also the notion of a Pareto
efficient outcome does not have a counterpart in this framework because
in general two joint strategies cannot be compared. For example, in the
above modelling of the Prisoner’s Dilemma game we cannot compare the
joint strategies (N1, N2) and (C1, C2).

In the field of strategic games two techniques of reducing a game have
been considered — by means of iterated elimination of strategies strictly
dominated by a mixed strategy or of iterated elimination of never best re-
sponses to a mixed strategy (see, e.g., [18].) These techniques can be easily
transferred to the games with parametrized preferences provided we limit
ourselves to strict dominance by a pure strategy and never best responses
to a pure strategy.

First, given such a game

G := (S1, . . ., Sn,≻(s−1), . . .,≻(s−n)),

where each s−i ranges over S−i, and sets of strategies S′
1, . . ., S

′
n such that

S′
i ⊆ Si for i ∈ [1..n], we say that

G′ := (S′
1, . . ., S

′
n,≻(s−1), . . .,≻(s−n)),

where each s−i now ranges over S′
−i, is a subgame of G, and identify in the

context of G′ each preference relation ≻(s−i) with its restriction to S′
i.

We then introduce the following two notions of reduction between a game

G := (S1, . . ., Sn,≻(s−1), . . .,≻(s−n)),

where each s−i ranges over S−i and its subgame

G′ := (S′
1, . . ., S

′
n,≻(s−1), . . .,≻(s−n)),

where each s−i ranges over S′
−i:

• G →NBR G′

when G 6= G′ and for all i ∈ [1..n] each si ∈ Si \ S′
i is never a best

response for player i in G,
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• G →S G′

when G 6= G′ and for all i ∈ [1..n] each s′i ∈ Si\S′
i is strictly dominated

in G by some si ∈ Si.

In the literature it is customary to consider more specific reduction re-
lations in which, respectively, all never best responses or all strictly domi-
nated strategies are eliminated. The advantage of using the above versions
is that we can prove the relevant property of both reductions by just one
simple lemma, since by definition a strictly dominated strategy is never a
best response and consequently G →SG′ implies G →NBRG′.

Lemma 1 Suppose that G →NBRG′. Then s is a Nash equilibrium of G iff
it is a Nash equilibrium of G′.

Proof. ( ⇒ ) By definition each si is a best response to s−i to G. So no si

is eliminated in the reduction of G to G′.

( ⇐ ) Suppose s is not a Nash equilibrium of G. So some si is not a best
response to s−i in G. Let s′i be a best response to s−i in G. (s′i exists since
≻(s−i) is a linear order.)

So s′i is not eliminated in the reduction of G to G′ and s′i is a best response
to s−i in G′. But this contradicts the fact that s is a Nash equilibrium of
G′. 2

Theorem 1 Suppose that G → ∗
NBRG′, i.e., G′ is obtained by an iterated

elimination of never best responses from the game G.

(i) Then s is a Nash equilibrium of G iff it is a Nash equilibrium of G′.

(ii) If each player in G′ has just one strategy, then the resulting joint strat-
egy is a unique Nash equilibrium of G.

Proof.

(i) By the repeated application of Lemma 1.

(ii) It suffices to note that (s1, . . .sn) is a unique Nash equilibrium of the
game in which each player i has just one strategy, si. 2

The above theorem allows us to reduce a game without affecting its
(possibly empty) set of Nash equilibria or even, occasionally, to find its
unique Nash equilibrium. In the latter case one says that the original game
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was solved by an iterated elimination of never best responses (or of strictly
dominated strategies).

As an example let us return to the Prisoner’s Dilemma game with para-
metrized preferences defined above. In this game each strategy Ci is strictly
dominated by Ni, so the game can be solved by either reducing it in two
steps (by removing in each step one Ci strategy) or in one step (by removing
both Ci strategies) to a game in which each player i has exactly one strategy,
Ni.

Finally, let us mention that [11] and [22] proved that all iterated elim-
inations of strictly dominated strategies yield the same final outcome. An
analogous result for the iterated elimination of never best responses was es-
tablished in [1]. Both results carry over to our framework of games with
parametrized preferences by a direct modification of the proofs.

4 From CP-nets to strategic games

Consider now a CP-net with the set of variables {X1, . . ., Xn} with the
corresponding finite domains D(X1), . . .,D(Xn). We write each preference
statement for the variable Xi as XI = aI : ≻i, where for the subsequence
I = i1, . . ., ik of 1, . . ., n:

• Pa(Xi) = {Xi1 , . . ., Xik},

• XI = aI is an abbreviation for Xi1 = ai1 ∧ . . . ∧ Xik = aik ,

• ≻i is a preference over D(Xi).

We also abbreviate D(Xi1) × . . . ×D(Xik) to D(XI).
By definition, the preference statements for a variable Xi are exactly all

statements of the form XI = aI : ≻(aI), where aI ranges over D(XI) and
≻(aI) is a preference on D(Xi) that depends on aI .

We now associate with each CP-net N a game G(N) with parametrized
preferences as follows:

• each variable Xi corresponds to a player i,

• the strategies of player i are the elements of the domain D(Xi) of Xi.

To define the parametrized preferences, consider a player i. Suppose
Pa(Xi) = {Xi1 , . . ., Xik} and let I := i1, . . ., ik. So I is a subsequence
of 1, . . ., i − 1, i + 1, . . ., n and consequently each joint strategy a−i of the
opponents of player i uniquely determines a sequence aI . Given now an
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arbitrary a−i we associate with it the preference relation ≻(aI) on D(Xi)
where XI = aI : ≻(aI) is the unique preference statement for Xi determined
by aI .

In words, the preference of a player i over his strategies, assuming the
joint strategy a−i of its opponents, coincides with the preference given by
the CP-net over the domain of Xi, assuming the assignment to its parents
aI (which coincides with the projection of a−i over I). This completes the
definition of G(N).

As an example consider the first CP-net of Section 2. The correspond-
ing game has four players A, B, C, D, each with two strategies indicated
with f , f̄ for player F . The preference of each player on his strategies will
depend only on the strategies chosen by the players which correspond to his
parents in the CP-net. Consider for example player B. His preference over
his strategies b and b̄, given the joint strategy of his opponents s−B = dac,
is b ≻ b̄. Notice that, for example, the same order holds for the oppo-
nents joint strategy s−B = d̄ac̄, since the strategy chosen by the only player
corresponding to his parent, A, has not changed.

We have then the following result.

Theorem 2 An outcome of a CP-net N is optimal iff it is a Nash equilib-
rium of the game G(N).

Proof. ( ⇒ ) Take an optimal outcome o of N . Consider a player i in the
game G(N) and the corresponding variable Xi of N . Suppose Pa(Xi) =
{Xi1 , . . ., Xik}. Let I := i1, . . ., ik, and let XI = oI : ≻(oI) be the corre-
sponding preference statement for Xi. By definition there is no improving
flip from o to another outcome, so oi is the maximal element in the order
≻(oI).

By the construction of the game G(N), each outcome in N is a joint
strategy in G(N). Also, two outcomes are one flip away iff the correspond-
ing joint strategies differ only in a strategy of one player. Given the joint
strategy o considered above, we thus have that, if we modify the strategy
of player i, while leaving the strategies of the other players unchanged, this
change is worsening in ≻(o−i), since ≻(o−i) coincides with ≻(oI). So by
definition o is a Nash equilibrium of G(N).

( ⇐ ) Take a Nash equilibrium s of the game G(N). Consider a variable
Xi of N . Suppose Pa(Xi) = {Xi1 , . . ., Xik}. Let I := i1, . . ., ik, and let
XI = sI : ≻(sI) be the corresponding preference statement for Xi.

By definition for every strategy s′i 6= si of player i, we have si ≻(s−i) s′i,
so si ≻(sI) s′i since ≻(s−i) coincides with ≻(sI). So by definition s is an
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optimal outcome for N . 2

5 From strategic games to CP-nets

We now associate with each game G with parametrized preferences a CP-net
N (G) as follows:

• each variable Xi corresponds to a player i,

• the domain D(Xi) of the variable Xi consists of the set of strategies
of player i,

• we stipulate that Pa(Xi) = {X1, Xi−1, . . ., Xi+1, . . ., Xn}, where n is
the number of players in G.

Next, for each joint strategy s−i of the opponents of player i we take
the preference statement X−i = s−i : ≻(s−i), where ≻(s−i) is the preference
relation on the set of strategies of player i associated with s−i.

This completes the definition of N (G). As an example of this con-
struction let us return to the Prisoner’s Dilemma game with parametrized
preferences from Section 2.3. In the corresponding CP-net we have then two
variables X1 and X2 corresponding to players 1 and 2, with the respective do-
mains {C1, N1} and {C2, N2}. To explain how each parametrized preference
translates to a preference statement take for example ≻(C2) := N1 ≻ C1.
It translates to X2 = C2 : N1 ≻ C1.
We have now the following counterpart of Theorem 2.

Proposition 1 A joint strategy is a Nash equilibrium of the game G iff it
is an optimal outcome of the CP-net N (G).

Proof. It suffices to notice that G(N (G)) = G and use Theorem 2. 2

The disadvantage of the above construction of the CP-net N (G) from
a game G is that it always produces a CP-net in which all sets of parent
features are of size n − 1 where n is the number of features of the CP-net.
This can be rectified by reducing each set of parent features to a minimal
one as follows.

Given a CP-net N , consider a variable Xi with the parents Pa(Xi),
and take a variable Y ∈ Pa(Xi). Suppose that for all assignments a to
Pa(X) − {Y } and any two values y1, y2 ∈ D(Y ), the orders ≻(a, y1) and
≻(a, y2) on D(Xi) coincide.
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We say then that Y is redundant in the set of parents of Xi. It is easy
to see that by removing all redundant variables from the set of parents
of Xi and by modifying the corresponding preference statements for Xi

accordingly, the strict preorder ≻ over the outcomes of the CP-nets is not
changed.

Given a CP-net, if for all its variable Xi the set Pa(Xi) does not contain
any redundant variable, we say that the CP-net is reduced .

By iterating the above construction every CP-net can be transformed to a
reduced CP-net. As an example consider a CP-net with three features, X, Y

and Z, with the respective domains {a1, a2}, {b1, b2} and {c1, c2}. Suppose
now that Pa(X) = Pa(Y ) = ∅, Pa(Z) = {X, Y } and that

≻(a1, b1) = ≻(a2, b1), ≻(a1, b2) = ≻(a2, b2),
≻(a1, b1) = ≻(a1, b2), ≻(a2, b1) = ≻(a2, b2).

Then both X and Y are redundant in the set of parents of Z, so we can
reduce the CP-net by reducing Pa(Z) to ∅. Z becomes an independent vari-
able in the reduced CP-net with the order over its domain which coincides
with ≻(a1, b1) (which is the same as the other three orders on the domain
of Z).

In what follows for a CP-net N we denote by r(N) the corresponding
reduced CP-net. The following result, depicted in Figure 1, summarizes the
relevant properties of r(N) and relates it to the constructions of G(N) and
N (G).

reduced
N

(N)GN ( )

(N)G G (N’)=

r G

r

N’
not reduced

N

G

Figure 1: Relation between a CP-net N, its reduced form and corresponding
games

Proposition 2
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(i) Each CP-net N and its reduced form r(N) have the same order ≻ over
the outcomes.

(ii) For each CP-net N and its reduced form r(N) we have G(N) = G(r(N)).

(iii) Each reduced CP-net N is a reduced CP-net corresponding to the game
G(N). Formally: N = r(N (G(N))).

Proof.

Statements (i) and (ii) easily follow from the definition of function r and
from from the construction of the game corresponding to a CP net. We will
thus write explicitly only the proof of statement (iii).
(iii) Given a reduced CP-net N , consider the CP-net N (G(N)). For each
variable Xi, Pa(Xi) in N is a subset of Pa(Xi) in N (G(N)), which is the
set of all variables except Xi. However, by the construction of the game
corresponding to a CP-net and of the CP-net corresponding to a game, in
each conditional preference table, if the assignments to the common parents
are the same, the preference orders over Xi are the same.

Let us now reduce N (G(N)) to obtain N ′ = r(N (G(N))). Then Pa(Xi)
in N ′ coincides with Pa(Xi) in N . Indeed, suppose there is a parent of Xi

in N which is not in N ′. Since N is reduced, such a parent is not redundant
in N . Thus the reduction r, when applied to N (G(N)), does not remove
this parent since the orders in the conditional preference tables of N and
N (G(N)) are the same.

Further, suppose there is a parent of Xi in N ′ which is not in N . Since
N ′ is reduced, such a parent is not redundant in N ′. Thus it is also not
redundant in N (G(N)). By the construction of N (G(N)), this parent is not
redundant in N either. 2

Part (i) states that the reduction procedure r preserves the order over the
outcomes. Part (ii) states that the construction of a game corresponding to
a CP-net does not depend on the redundancy of the given CP-net. Finally,
part (iii) states that the reduced CP-net N can be obtained ‘back’ from the
game G(N).

6 Game-theoretic techniques in CP-nets

Thanks to the established connections between CP-nets and games with
parametrized preferences, we can now transfer to CP-nets the techniques
of iterated elimination of strictly dominated strategies or of never best re-
sponses considered in Section 2.3. To introduce them in the context of
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CP-nets consider a CP-net N with the set of variables {X1, . . ., Xn} with
the corresponding finite domains D(X1), . . .,D(Xn).

• We say that an element di from the domain D(Xi) of the variable Xi

is a best response to a preference statement

XI = aI : ≻i

for Xi if di ≻i d′i for all d′i ∈ D(Xi) such that di 6= d′i.

• We say that an element di from the domain of the variable Xi is a
never a best response if it is not a best response to any preference
statement for Xi.

• Given two elements di, d
′
i from the domain D(Xi) of the variable Xi we

say that d′i is strictly dominated by di if for all preference statements
XI = aI : ≻i for Xi we have

di ≻i d′i.

By a subnet of a CP-net N we mean a CP-net obtained from N by
removing some elements from some variable domains followed by the removal
of all preference statements that refer to a removed element.

Then we introduce the following relation between a CP-net N and its
subnet N ′:

N →NBR N ′

when N 6= N ′ and for each variable Xi each removed element from the
domain of Xi is never a best response in N , and also introduce an analo-
gous relation N →S N ′ for the case of strictly dominated elements. Since
each strictly dominated element is never a best response, N →S N ′ implies
N →NBR N ′.

The following counterpart of Theorem 1 then holds.

Theorem 3 Suppose that N → ∗
NBRN ′, i.e., the CP-net N ′ is obtained by

an iterated elimination of never best responses from the CP-net N .

(i) Then s is an optimal outcome of N iff it is an optimal outcome of N ′.

(ii) If each variable in N ′ has a singleton domain, then the resulting out-
come is a unique optimal outcome of N .

2
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To illustrate the use of this theorem reconsider the first CP-net from
Section 2, i.e., the one with the preference statements

d : a ≻ a, d : a ≻ a,
a : b ≻ b, a : b ≻ b,
b : c ≻ c, b : c ≻ c,
c : d ≻ d, c : d ≻ d.

Denote it by N .
We can reason about it using the iterated elimination of strictly domi-

nated strategies (which coincides here with the iterated elimination of never
best responses, since each domain has exactly two elements).

We have the following chain of reductions:

N →SN1 →SN2 →SN3 →SN4,

where

• N1 results from N by removing a (from the domain of A) and the
preference statements d : a ≻ a, d : a ≻ a, a : b ≻ b,

• N2 results from N1 by removing b and the preference statements a :
b ≻ b, b : c ≻ c,

• N3 results from N2 by removing c and the preference statements b :
c ≻ c c : d ≻ d,

• N4 results from N3 by removing d from the domain of D and the
preference statement c : d ≻ d.

Indeed, in each step the removed element is strictly dominated in the
considered CP-net. So using the iterated elimination of strictly dominated
elements we reduced the original CP-net to one in which each variable has a
singleton domain and consequently found a unique optimal outcome of the
original CP-net N .

Finally, the following result shows that the introduced reduction relation
on CP-nets is complete for acyclic CP-nets.

Theorem 4 For each acyclic CP-net N a subnet N ′ with the singleton do-
mains exists such that N → ∗

NBRN ′. The outcome associated with N ′ is a
unique optimal outcome of N and hence N ′ is unique.

Proof. First note that if N is an acyclic CP-net with some non-singleton
domain, then N →NBRN ′ for some subnet N ′ of N . Indeed, suppose N is
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such a CP-net. By acyclicity a variable X exists with a non-singleton domain
with no parent variable that has a non-singleton domain. So there exists in
N exactly one preference statement for X, say XI = aI : ≻i, where XI is the
sequence of parent variables of X. Reduce the domain of X to the maximal
element in ≻i. Then for the resulting subnet N ′ we have N →NBRN ′. Since
N ′ is also acyclic and has one variable less with a non-singleton domain, by
iterating this procedure we obtain a subnet N ′ with the singleton domains
such that N → ∗

NBRN ′.
The claim that the outcome associated with N ′ is a unique optimal

outcome of N is a consequence of Theorem 3(ii). 2

The singleton domains obtained via the use of the →NBR reduction
correspond to the unique optimal outcome of an acyclic CP-net, as defined
in [6, 5].

7 CP-net techniques in strategic games

The established relationship between CP-nets and strategic games with
parametrized preferences also allows us to exploit the techniques developed
for the CP-nets when studying such games.

One natural idea is to consider a counterpart of the notion of an acyclic
CP-net. We call a game with parametrized preferences hierarchical if the
CP-net r(N (G)) is acyclic.

We can introduce this notion directly, without using the CP-nets, by
considering a partition of players 1, . . ., n in the game

(S1, . . ., Sn,≻(s−1), . . .,≻(s−n)),

where each s−i ranges over S−i, into levels 1, . . ., k such that for each player
i at level j and each s−i ∈ S−i the preference ≻(s−i) depends only on the
entries in s−i associated with the players from levels < j.

So a game is hierarchical if the players can be partitioned into levels
1, 2, . . . , k, such that each player at level j can express his preferences with-
out taking into account the players at his level or higher levels (lower levels
are more important).

We have then the following counterpart of Theorem 4.

Theorem 5 For each hierarchical game G a subgame G′ with the single-
ton strategy sets exists such that G → ∗

NBRG′. The resulting joint strategy
associated with G′ is a unique Nash equilibrium of G and hence G′ is unique.
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Proof. By an analogous argument as the one used in the proof of Theorem
4. 2

Given a hierarchical game G, by definition the CP-net r(N (G)) is acyclic.
Thus we know that it has a unique optimal outcome which can be found
in linear time. This means that the unique Nash equilibrium of G can be
found in linear time by the usual CP-net techniques applied to r(N (G)).

Hierarchical games naturally represent multi-agent scenarios in which
agents (that is, players of the game) can be partitioned into levels such that
each agent can determine his preferences without consulting agents at his
level or lower levels. Informally, agents at one level are ‘more important’
than agents at lower levels in the sense that they can take their decisions
without consulting them.

A more general class of games is obtained by analogy to graphical games.
We define a graphical game with parametrized preferences as follows.
Given a neighbour function neigh we assume that for each player i and a
joint strategy si of his opponents, the preference ≻(s−i) depends only on
the entries in s−i associated with the players from neigh(i). Equivalently,
we may just use the preference relations ≻i

s for each player i and each joint
strategy s of the neighbours of i. Hierarchical games are then graphical
games with parametrized preferences with acyclic neighbour graphs.

Given a CP-net N and the corresponding game G(N), the dependency
graph of N uniquely determines the neighbour function neigh between the
players in G(N). This allows us to associate with each CP-net N a graphical
game with parametrized preferences. Conversely, each graphical game G

with parametrized preferences uniquely determines a CP-net. It is obtained
by proceeding as in Section 5 but by stipulating that the parent relation
corresponds to the neighbour function neigh, that is, by putting

Pa(Xi) := {Xj | j ∈ neigh(i)}.

The counterparts of Theorems 1 and 2 then hold for CP-nets and graph-
ical games with parametrized preferences.

Note that we arrived at the concept of a hierarchical game through the
analogy with the acyclic CP-nets. To see a natural example of such games
consider the problem of spreading a technology in a social network, inspired
by the problems studied in [16] for the case of infinite number of players.
We assume that the players (users) are connected in a network, which is
a directed graph, and that there are k technologies (for example mobile
telephone companies) t1, . . ., tk. Assume further that each user, given two
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technologies, prefers to use the one that is used by more of his neighbours
in the network (for instance to cut down on the telephone costs).

We model this situation as a graphical game with parametrized prefer-
ences. We assume that each player i has k strategies, t1, . . ., tk, and for each
joint strategy s of the neighbours of i we define the preference relation ≻i

s

by putting

tk≻
i
stl iff |s(tk)| > |s(tl)| or (|s(tk)| = |s(tl)| and k < l), (2)

where s(X) is the set of components of s that are equal to the strategy X.
So we assume that in the case of a tie player i prefers a technology with the
lower index.

We can now analyze the process of selecting a technology by exploiting
the relation between hierarchical games and CP-nets. Namely, suppose that
the above defined graphical game G with parametrized preferences is hier-
archical. Then by virtue of Theorem 5 G → ∗

NBRG′, where in G′ each player
has a single strategy, t1. The resulting joint strategy is then a unique Nash
equilibrium of G. Additionally, by the corresponding order independence
result mentioned at the end of Section 3, G′ is a unique outcome of iterating
the →NBR reduction.

This corresponds to an informal statement that when the neighbour
function describes an acyclic graph, eventually technology t1 is adopted by
everybody. Because of the nature of the preference relations used above, this
result actually holds for a larger class of graphical games with parametrized
preferences.

They correspond to the following class of directed graphs. We call a
directed graph well-structured if levels can be assigned to its nodes in
such a way that each node has at least as many incoming edges from the
nodes with strictly lower levels than from the other nodes. Of course, each
directed acyclic graph is well-structured but other examples exist, see, e.g.,
Figure 2.

We have then the following result.

Theorem 6 Consider a graphical game G with parametrized preferences in
which each player has k strategies, t1, . . ., tk, the preference relations ≻i

s are
defined by (2), and the neighbour function describes a well-structured graph.
Then G → ∗

NBRG′, where in G′ each player has a single strategy, t1, and the
resulting joint strategy is a unique Nash equilibrium of G.

Proof. We prove by induction on the level m that

G → ∗
NBRG′, (3)
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Figure 2: A well-structured graph that is not acyclic

where in G′ each player of level ≤ m has a single strategy, t1. This yields
then the desired conclusion about Nash equilibrium by Theorem 1.

The claim holds for the lowest level, say 0, as then each player of level
0 has no neighbours and hence his strategies t2, . . ., tk can be eliminated as
never best responses.

Suppose (3) holds for some level m. So we have G → ∗
NBRG′, where in

G′ each player of level ≤ m has a single strategy, t1. Consider the players
of level m + 1 in the game G′. Each of them has at least as many neigbours
with the single strategy t1 than with other sets of strategies. So each joint
strategy of his neighbours has at least as many t1s as other strategies. Hence
G′ → ∗

NBRG′′, where in G′′ each player of level ≤ m+1 has a single strategy,
t1. Consequently G → ∗

NBRG′′, which establishes the induction step. 2

The above example shows that graphical games with parametrized pref-
erences can be used to provide a natural qualitative analysis of some prob-
lems studied in social networks. Expressing the process of selecting a tech-
nology using games with parametrized preferences, Nash equilibria and elim-
ination of never best responses is more natural than using CP-nets. On the
other hand we arrived at the relevant result about adoption of a single tech-
nology by searching for an analogue of Theorem 4 about acyclic CP-nets.

8 From SCSPs to graphical games

In this and the next section we relate the notion of optimality in soft con-
straints and graphical games. To obtain an appropriate match we assume
that in graphical games payoffs are elements of a linearly ordered set A in-
stead of the set of real numbers. (This precludes the use of mixed strategies
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but they are not needed here.) We denote then such games by

(S1, . . . , Sn, neigh, p1, . . . , pn, A),

where neigh is the given neighbour function.
In this section we define two mappings from SCSPs to a specific kind of

graphical games. In what follows we focus on SCSPs based on c-semirings
with the carrier linearly ordered by ≤ (e.g. fuzzy or weighted) and compare
the concepts of optimal solutions in SCSPs with Nash equilibria and Pareto
efficient joint strategies in the graphical games. In both mappings we identify
the players with the variables. Since soft constraints link variables, the
resulting game players are naturally connected, which explains why we use
graphical games.

8.1 Local mapping

Given a SCSP P := 〈C, V, D, S〉 we define the corresponding graphical game
for n = |V | players as follows:

• the players: one for each variable;

• the strategies of player i: all values in the domain of the corresponding
variable xi;

• the neighbourhood function: j ∈ neigh(i) iff the variables xi and xj

appear together in some constraint from C;

• the payoff function of player i:

Let Ci ⊆ C be the set of constraints involving xi and let X be the set
of variables that appear together with xi in some constraint in Ci (i.e.,
X = {xj | j ∈ neigh(i)}). Then given an assignment s to all variables
in X ∪ {xi} the payoff of player i w.r.t. s is defined by:

pi(s) := Πc∈Ci
defc(s ↓conc

).

We denote the resulting graphical game by L(P ) to emphasize the fact
that the payoffs are obtained using local information about each variable,
by looking only at the constraints in which it is involved.

One could think of a different mapping where players correspond to
constraints. However, such a mapping can be obtained by applying the
local mapping L to the hidden variable encoding [15] of the SCSP in input.
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8.1.1 General case

In general, the concepts of optimal solutions of a SCSP P and the Nash
equilibria of the derived game L(P ) are unrelated. Indeed, consider the
fuzzy CSP defined at the end of Section 2.2. The corresponding game has:

• three players, x, y, and z;

• each player has two strategies, a and b;

• the neighbourhood function is defined by:

neigh(x) := {y}, neigh(y) := {x, z}, neigh(z) := {y};

• the payoffs of the players are defined as follows:

– for player x:

px(aa∗) := 0.4, px(ab∗) := 0.1, px(ba∗) := 0.3, px(bb∗) := 0.5;

– for player y:

py(aaa) := 0.4, py(aab) := 0.3, py(abb) := 0.1, py(bbb) := 0.5,

py(bba) := 0.5, py(baa) := 0.3, py(bab) := 0.3, py(aba) := 0.1;

– for player z:

pz(∗aa) := 0.4, pz(∗ab) := 0.3, pz(∗ba) := 0.1, pz(∗bb) := 0.5;

where ∗ stands for either a or b and where to facilitate the analysis we use
the canonical extensions of the payoff functions px and pz to the functions
on {a, b}3.

This game has two Nash equilibria: aaa and bbb. However, only bbb is
an optimal solution of the fuzzy SCSP.

One could thus think that in general the set of Nash equilibria is a super-
set of the set of optimal solutions of the corresponding SCSP. However, this
is not the case. Indeed, consider a fuzzy CSP with as before three variables,
x, y and z, each with the domain {a, b}, but now with the constraints:

Cxy := {(aa, 0.9), (ab, 0.6), (ba, 0.6), (bb, 0.9)},
Cyz := {(aa, 0.1), (ab, 0.2), (ba, 0.1), (bb, 0.2)}.

Then aab, abb, bab and bbb are all optimal solutions but only aab and
bbb are Nash equilibria of the corresponding graphical game.
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8.1.2 SCSPs with strictly monotonic combination

Next, we consider the case when the multiplicative operator × is strictly
monotonic. Recall that given a c-semiring 〈A, +,×,0,1〉, the operator ×
is strictly monotonic if for any a, b, c ∈ A such that a < b we have
c×a < c×b. (The symmetric condition is taken care of by the commutativity
of ×.)

Note for example that in weighted CSP × is strictly monotonic, as a < b

in the carrier means that b < a as reals, so for any c we have c + b < c + a,
i.e., c × a < c × b in the carrier. In contrast, the fuzzy CSPs × are not
strictly monotonic, as a < b does not imply that min(a, c) < min(b, c) for
all c.

So consider now a c-semiring with a linearly ordered carrier and a strictly
monotonic multiplicative operator. As in the previous case, given an SCSP
P , it is possible that a Nash equilibrium of L(P ) is not an optimal solution
of P . Consider for example a weighted SCSP P with

• two variables, x and y, each with the domain D = {a, b};

• one constraint Cxy := {(aa, 3), (ab, 10), (ba, 10), (bb, 1)}.

The corresponding game L(P ) has:

• two players, x and y, who are neighbours of each other;

• each player has two strategies, a and b;

• the payoffs defined by:

px(aa) := py(aa) := 7, px(ab) := py(ab) := 0,

px(ba) := py(ba) := 0, px(bb) := py(bb) := 9.

Notice that, in a weighted CSP we have a ≤ b in the carrier iff b ≤
a as reals, so when passing from the SCSP to the corresponding game,
we have complemented the costs w.r.t. 10, when making them payoffs. In
general, given a weighted CSP, we can define the payoffs (which must be
maximized) from the costs (which must be minimized) by complementing
the costs w.r.t. the greatest cost used in any constraint of the problem.

Here L(P ) has two Nash equilibria, aa and bb, but only bb is an optimal
solution. Thus, as in the fuzzy case, we have that there can be a Nash
equilibrium of L(P ) that is not an optimal solution of P . However, in
contrast to the fuzzy case, the set of Nash equilibria of L(P ) is now a
superset of the set of optimal solutions of P . In fact, a stronger result
holds.
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Theorem 7 Consider a SCSP P defined on a c-semiring 〈A, +,×,0,1〉,
where A is linearly ordered and × is strictly monotonic, and the correspond-
ing graphical game L(P ). Then

(i) Every optimal solution of P is a Nash equilibrium of L(P ).

(ii) Every optimal solution of P is a Pareto efficient joint strategy in L(P ).

Proof.

(i) We prove that if a joint strategy s is not a Nash equilibrium of game
L(P ), then it is not an optimal solution of SCSP P .

Let a be the strategy of player x in s, and let sneigh(x) and sY be, respec-
tively, the joint strategy of the neighbours of x, and of all other players, in
s. That is, V = {x} ∪ neigh(x) ∪ Y and we write s as (a, sneigh(x), sY ).

By assumption there is a strategy b for x such that the payoff px(s′) for
the joint strategy s′ := (b, sneigh(x), sY ) is higher than px(s). (We use here
the canonical extension of px to the Cartesian product of all the strategy
sets).

So by the definition of the mapping L

Πc∈Cx
defc(s ↓conc

) < Πc∈Cx
defc(s

′ ↓conc
),

where Cx is the set of all the constraints involving x in SCSP P . But the
preference of s and s′ is the same on all the constraints not involving x and
× is strictly monotonic, so we conclude that

Πc∈Cdefc(s ↓conc
) < Πc∈Cdefc(s

′ ↓conc
).

This means that s is not an optimal solution of P .

(ii) We prove that if a joint strategy s is not Pareto efficient in the game
L(P ), then it is not an optimal solution of SCSP P .

Since s is not Pareto efficient, there is a joint strategy s′ such that
pi(s) ≤ pi(s

′) for all i ∈ [1..n] and pi(s) < pi(s
′) for some i ∈ [1..n]. Let us

denote with I = {i ∈ [1..n] such that pi(s) < pi(s
′)}. By the definition of

the mapping L, we have:

Πc∈Ci
defc(s ↓conc

) < Πc∈Ci
defc(s

′ ↓conc
),

for all i ∈ I and where Ci is the set of all the constraints involving the
variable corresponding to player i in SCSP P . Since the preference of s and
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s′ is the same on all the constraints not involving any i ∈ I, and since × is
strictly monotonic, we have:

Πc∈Cdefc(s ↓conc
) < Πc∈Cdefc(s

′ ↓conc
).

This means that s is not an optimal solution of P . 2

To see that there may be joint strategies that are both Nash equilibria
and Pareto efficient but do not correspond to the optimal solutions, consider
a weighted SCSP P with

• two variables, x and y, each with domain D = {a, b};

• constraint Cx := {(a, 2), (b, 1)};

• constraint Cy := {(a, 4), (b, 7)};

• constraint Cxy := {(aa, 0), (ab, 10), (ba, 10), (bb, 0)}.

The corresponding game L(P ) has:

• two players, x and y, who are neighbours of each other;

• each player has two strategies: a and b;

• the payoffs defined by: px(aa) := 8, py(aa) := 6, px(ab) := py(ab) := 0,
px(ba) := py(ba) := 0, px(bb) := 9, py(bb) := 3.

As above, when passing from an SCSP to the corresponding game, we
have complemented the costs w.r.t. 10, when turning them to payoffs. L(P )
has two Nash equilibria: aa and bb. They are also both Pareto efficient.
However, only aa is optimal in P .

8.1.3 Classical CSPs

Note that in the classical CSPs × is not strictly monotonic, as a < b implies
that a = 0 and b = 1 but c∧ a < c∧ b does not hold then for c = 0. In fact,
the above result does not hold for classical CSPs. Indeed, consider a CSP
with:

• three variables: x, y, and z, each with the domain {a, b};
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• two constraints: Cxy (over x and y) and Cyz (over y and z) defined
by:

Cxy := {(aa, 1), (ab, 0), (ba, 0), (bb, 0)},

Cyz := {(aa, 0), (ab, 0), (ba, 1), (bb, 0)}.

This CSP has no solutions in the classical sense, i.e., each optimal so-
lution, in particular baa, has preference 0. However, baa is not a Nash
equilibrium of the resulting graphical game, since the payoff of player x

increases when he switches to the strategy a.
On the other hand, if we restrict the domain of L to consistent CSPs,

that is, CSPs with at least one solution with value 1, then it yields games in
which the set of Nash equilibria that are also Pareto efficient joint strategies
coincides with the set of solutions of the CSP.

Theorem 8 Consider a consistent CSP P and the corresponding graphical
game L(P ). Then an instantation of the variables of P is a solution of P

iff it is a Nash equilibrium and Pareto efficient joint strategy in L(P ).

Proof. Consider a solution s of P . In the resulting game L(P ) the payoff
to each player is maximal, namely 1. So the joint strategy s is both a Nash
equilibrium and Pareto efficient. Conversely, every Pareto efficient joint
strategy in L(P ) corresponds to solution of P . 2

There are other ways to relate CSPs and games so that the CSP solutions
and the Nash equilibria coincide. This is what is done in [10], where a
mapping from the strategic games to CSPs is defined. Notice that our
mapping goes in the opposite direction and it is not the reverse of the one
in [10]. In fact, the mapping in [10] is not reversible.

8.2 Global mapping

The mapping L is in some sense ‘local’, since it considers the neighbour-
hood of each variable. An alternative ‘global’ mapping considers all con-
straints. More precisely, given a SCSP P = 〈C, V, D, S〉, with a linearly or-
dered carrier A of S, we define the corresponding game on n = |V | players,
GL(P ) = (S1, . . . , Sn, p1, . . . , pn, A) by using the following payoff function
pi for player i:

• given an assignment s to all variables in V

pi(s) := Πc∈Cdefc(s ↓conc
).
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Notice that in the resulting game the payoff functions of all players are
the same. Then the following result analogous to Theorem 8 holds.

Theorem 9 Consider an SCSP P over a linearly ordered carrier, and the
corresponding graphical game GL(P ). Then an instantiation of the variables
of P is an optimal solution of P iff it is a Nash equilibrium and Pareto
efficient in GL(P ).

Proof. An optimal solution of P , say s, is a joint strategy for which all
players have the same, highest, payoff. So no other joint strategy exists for
which some player is better off and consequently s is both a Nash equilibrium
and Pareto efficient. Conversely, every Pareto efficient joint strategy in
GL(P ) has the highest payoff, so it corresponds to an optimal solution of
P . 2

The global mapping GL has the advantage of providing a precise rela-
tionship between the optimal solutions and joint strategies that are both
Nash equilibria and Pareto efficient. However, it has an obvious disadvan-
tage from the computational point of view, since it requires to consider all
the complete assignments of the SCSP.

9 From graphical games to SCSPs

Next, we define a mapping from graphical games to SCSPs. To define it
we limit ourselves to SCSPs defined on c-semirings which are the Cartesian
product of linearly ordered c-semirings (see Section 2.2).

9.1 The mapping

Given a graphical game G = (S1, . . . , Sn,neigh, p1, . . . , pn, A) we define the
corresponding SCSP L′(G) = 〈C, V, D, S〉, as follows:

• each variable xi corresponds to a player i;

• the domain D(xi) of the variable xi consists of the set of strategies of
player i, i.e., D(xi) := Si;

• the c-semiring is

〈A1 × · · · × An, (+1, . . . , +n), (×1, . . . ,×n), (01, . . . ,0n), (11, . . . ,1n)〉,

the Cartesian product of n arbitrary linearly ordered semirings;
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• soft constraints: for each variable xi, one constraint 〈def, con〉 such
that:

– con = neigh(xi) ∪ {xi};

– def : Πy∈conD(y) → A1×· · ·×An such that for any s ∈ Πy∈conD(y),
def(s) := (d1, . . . , dn) with dj = 1j for every j 6= i and di =
f(pi(s)), where f : A → Ai is an order preserving mapping from
payoffs to preferences (i.e., if r > r′ then f(r) > f(r′) in the
c-semiring’s ordering).

To illustrate it consider again the previously used Prisoner’s Dilemma
game:

C2 N2

C1 3, 3 0, 4
N1 4, 0 1, 1

Recall that in this game the only Nash equilibrium is (N1, N2), while the
other three joint strategies are Pareto efficient.

We shall now construct a corresponding SCSP based on the Cartesian
product of two weighted semirings. This SCSP according to the mapping
L′ has:2

• two variables: x1 and x2, each with the domain {c, n};

• two constraints, both on x1 and x2:

– constraint c1 with def(cc) := 〈7, 0〉, def(cn) := 〈10, 0〉, def(nc) :=
〈6, 0〉, def(nn) := 〈9, 0〉;

– constraint c2 with def(cc) := 〈0, 7〉, def(cn) := 〈0, 6〉, def(nc) :=
〈0, 10〉, def(nn) := 〈0, 9〉;

The optimal solutions of this SCSPs are: cc, with preference 〈7, 7〉, nc,
with preference 〈10, 6〉, cn, with preference 〈6, 10〉. The remaining solution,
nn, has a lower preference in the Pareto ordering. Indeed, its preference
〈9, 9〉 is dominated by 〈7, 7〉, the preference of cc (since preferences are here
costs and have to be minimized). Thus the optimal solutions coincide here
with the Pareto efficient joint strategies of the given game. This is true in
general.

2Recall that in the weighted semiring 1 equals 0.
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Theorem 10 Consider a graphical game G and a corresponding SCSP L′(G).
Then the optimal solutions of L′(G) coincide with the Pareto efficient joint
strategies of G.

Proof. In the definition of the mapping L′ we stipulated that the mapping f

maintains the ordering from the payoffs to preferences. As a result each joint
strategy s corresponds to the n-tuple of preferences (f(p1(s)), . . . , f(pn(s)))
and the Pareto orderings on the n-tuples (p1(s), . . . , pn(s)) and (f(p1(s)), . . . ,
f(pn(s))) coincide. Consequently a sequence s is an optimal solution of the
SCSP L′(G) iff (f(p1(s)), . . . , f(pn(s))) is a maximal element of the corre-
sponding Pareto ordering. 2

We notice that L′ is injective and, thus, can be reversed on its image.
When such a reverse mapping is applied to these specific SCSPs, payoffs
correspond to projecting of the players’ valuations to a subcomponent.

9.2 Pareto efficient Nash equilibria

As mentioned earlier, in [10] a mapping is defined from the graphical games
to CSPs such that Nash equilibria coincide with the solutions of CSP. In-
stead, our mapping is from the graphical games to SCSPs, and is such that
Pareto efficient joint strategies and the optimal solutions coincide.

Since CSPs can be seen as a special instance of SCSPs, where only 1, 0,
the top and bottom elements of the semiring, are used, it is possible to add
to any SCSP a set of hard constraints. Therefore we can merge the results
of the two mappings into a single SCSP, which contains the soft constraints
generated by L′ and also the hard constraints generated by the mapping in
[10], Below we denote these hard constraints by H(G). We recall that each
constraint in H(G) corresponds to a player, has the variables corresponding
to the player and it neighbours and allows only tuples corresponding to the
strategies in which the player has no so-called regrets. If we do this, then
the optimal solutions of the new SCSP with preference higher than 0 are
the Pareto efficient Nash equilibria of the given game, that is, those Nash
equilibria which dominate or are incomparable with all other Nash equilibria
according to the Pareto ordering. Formally, we have the following result.

Theorem 11 Consider a graphical game G and the SCSP L′(G) ∪ H(G).
If the optimal solutions of L′(G)∪H(G) have global preference greater than
0, they correspond to the Pareto efficient Nash equilibria of G.
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Proof. Given any solution s, let p be its preference in L′(G) and p′ in
L′(G)∪H(G). By the construction of the constraints H(G) we have that p′

equals p if s is a Nash equilibrium and p′ equals 0 otherwise. The remainder
of the argument is as in the proof of Theorem 10. 2

For example, in the Prisoner’s Dilemma game, the mapping in [10] would
generate just one constraint on x1 and x2 with nn as the only allowed tuple.
In our setting, when using as the linearly ordered c-semirings the weighted
semirings, this would become a soft constraint with

def(cc) := def(cn) := def(nc) = 〈∞,∞〉, def(nn) := 〈0, 0〉.

With this new constraint, all solutions have the preference 〈∞,∞〉, except
for nn which has the preference 〈9, 9〉 and thus is optimal. This solution
corresponds to the joint strategy (N1, N2) with the payoff (1, 1) (and thus
preference (9, 9)). This is the only Nash equilibrium and thus the only
Pareto efficient Nash equilibrium.

This method allows us to identify among Nash equilibria the ‘optimal’
ones. One may also be interested in knowing whether there exist Nash
equilibria which are also Pareto efficient joint strategies. For example, in
the Prisoners’ Dilemma example, there are no such Nash equilibria. To find
any such joint strategies we can use the two mappings separately, to obtain,
given a game G, both an SCSP L′(G) and a CSP H(G) (using the mapping
in [10]). Then we should take the intersection of the set of optimal solutions
of L′(G) and the set of solutions of H(G).

10 Conclusions

In this paper we related three formalisms that are commonly used to reason
about optimal outcomes: strategic games, CP-nets and soft constraints.
To this end we modified the concept of strategic games to games with
parametrized preferences and showed that the optimal outcomes in CP-nets
are exactly Nash equilibria of such games. This allowed us to exploit game-
theoretic techniques in search for the optimal outcomes of CP-nets. In the
other direction, we showed how the notion of an acyclic CP-net naturally
leads to the concept of a hierarchical game. Such games have a unique Nash
equilibrium.

We also considered the relation between graphical games and various
classes of soft constraints. While for soft constraints there is only one notion
of optimality, for graphical games there are at least two. In this paper we
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have considered Nash equilibria and Pareto efficient joint strategies. We
showed that for a natural (local) mapping from soft CSPs to graphical games
in general no relation exists between the notions of optimal solutions of soft
CSPs and Nash equilibria. On the other hand, when in the SCSPs the
preferences are combined using a strictly monotonic operator, the optimal
solutions of the SCSP are included both in the Nash equilibria of the game
and in the set of Pareto efficient joint strategies. In general the inclusions
cannot be reversed. We have also exhibited a (global) mapping from the
graphical games to a class of SCSPs such that the Pareto efficient joint
strategies of the game coincide with the optimal solutions of the SCSP.

For the reverse direction we showed that for a natural mapping from
the graphical games to a class of SCSPs the optimal solutions coincide
with Pareto efficient joint strategies. Moreover, if we add suitable hard
constraints to the soft constraints, optimal solutions coincide with Pareto
efficient Nash equilibria.

The results of this paper clarify the relationship between various notions
of optimality used in strategic games, CP-nets and soft constraints. These
results can be used in a number of ways. One obvious way is to try to exploit
computational results existing for one of these areas in another. This has
been pursued already in [10] for games versus hard constraints. Using our
results this can also be done for strategic games versus CP nets or soft
constraints. For example, finding a Pareto efficient joint strategy involves
mapping a game into a soft CSP and then solving it. Similar approach can
also be applied to Pareto efficient Nash equilibria, which can be found by
solving a suitable soft CSP.
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