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Abstract. In this paper, we develop an algorithm to compute under-
and over-approximations to the discrete dynamics of a hybrid automaton.
We represent the approximations to the dynamics as sofic shifts, which
can be generated by a discrete automaton. We restrict to two-dimensional
systems, since these give rise to one-dimensional return maps, which are
significantly easier to study. Given generic non-degeneracy conditions,
the under- and over-approximations computed by our algorithm con-
verge to the discrete dynamics of the hybrid automaton. We apply the
algorithms to two simple nonlinear hybrid systems, an affine switching
system with hysteresis, and the singularly forced van der Pol oscillator.

Key words: hybrid automata, symbolic dynamics, interval computa-
tion, van der Pol equation

1 Introduction

Hybrid automata are dynamic systems which combine both discrete and contin-
uous behaviour. Hybrid automata are frequently used to modelling systems in
which dynamics occurs on different time scales, such as a slow-moving physical
object controlled using a fast-switching digital controller. In many cases, the
exact details of the continuous dynamics is relatively unimportant, and only the
qualitative behaviour given by the discrete dynamics is of interest. It is there-
fore of interest to have numerical methods for computing approximations to the
discrete dynamics of a hybrid automaton.

Existing work on finding discrete abstractions to hybrid automata has mostly
focused on bisimulation by discrete automata [1]. However, since the class of
systems admitting nontrivial finite bisimulations is highly restricted (generali-
sations of timed automata), this approach can only be used for simple classes
of system. More complex classes of systems can only be studied by comput-
ing discrete abstractions which either simulate, or are simulated by, the exact
discrete dynamics of the hybrid automaton. Sequences of discrete abstractions
simulating the hybrid automaton were constructed in [2] for polynomial hybrid
automata using first-order logic over the reals. Discrete abstractions simulating
the hybrid automaton based on quantising the state space were given by [3] and
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used for reachability analysis, and by [4] and used for supervisory control. Two-
dimensional hybrid systems have been studied in [5], and the singular limit of
the van der Pol oscillator was studied in [6, 7].

In this paper, we present a method for computing both over- and under
approximations to the discrete dynamics. In the language of symbolic dynamics,
we construct sofic shifts over- and under approximating the exact shift of the
hybrid automaton. In the language of transition systems, we construct discrete
automata simulating of the hybrid automaton, and discrete automata simulated
by the hybrid automaton. Our method is generically optimal in the sense that
under certain nondegeneracy conditions the shift maps obtained converge to the
exact discrete dynamics as the accuracy in increased. In the current work, we
concentrate on two-dimensional hybrid systems, since these can be reduced to
one-dimensional return maps which are easier to analyse.

The results of this paper extend the validity of existing methods by con-
structing under-approximations as well as over-approximations to the discrete
dynamics, by applying to general nonlinear systems, and by being convergent
for generic systems.

The paper is organised as follows. In Section 2, we give technical preliminaries
on hybrid systems, shift spaces symbolic dynamics and interval methods which
we need later. In Section 3, we present algorithms for computing over- and
under-approximations to the symbolic dynamics and prove their convergence.
In Section 4 we demonstrate the effectiveness of the method by computing the
discrete dynamics of an affine switching hybrid automaton and the singular limit
of the Van Der Pol oscillator. Finally, in Section 5 we give some conclusions and
suggestions for further research.

The main mathematical techniques used in this article include interval anal-
ysis and validated solution of differential equations, one-dimensional dynamical
systems and symbolic dynamics. Good references to these topics are include the
books [8–13].

2 Theoretical Preliminaries

We now introduce the basic definitions, terminology and results on hybrid au-
tomata, symbolic dynamics and interval analysis which we will need. Through-
out, we write f :⊂ X → Y to denote a function from a subset of X to Y , and
f : X ⇒ Y to denote a multivalued function from X to Y .

2.1 Hybrid Automata

A hybrid automaton is a dynamic system in which continuous-time evolution is
interspersed with discrete jumps.

Definition 1 (Hybrid automaton). A hybrid automaton is a tuple H =
(Q,E, X, G, φ, r) where Q is a finite set of modes, E is a finite set of events,
X =

⊔{Xq | q ∈ Q} is the state space, G =
⋃{Ge ⊂ X | e ∈ E} is the guard
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set, φ :⊂ X × R → X is the continuous dynamic, and r :⊂ G × E → X is the
reset map. We write re : Ge → X for the reset map corresponding to event e.
Typically, φq is defined by a differential equation ẋ = χq(x) for x ∈ Xq.

An execution of a hybrid automaton is an alternating sequence of continuous
and discrete transitions:

ξ : x0

φt0−→ y0

re0−→ x1

φt1−→ y1

re1−→ x2 · · · (1)

Often the quantitative behaviour of a hybrid automaton is unimportant, and
only the qualitative behaviour given by the sequence of discrete locations visited
and the sequence of discrete events which occur.

Definition 2 (Discrete dynamics). The discrete dynamics of a hybrid au-
tomaton H is the set of all transition sequences

q0
e0−→ q1

e1−→ q2 · · · (2)

such that there exists an execution ξ given by (1) with yi ∈ Xqi
for all i.

In order to compute the discrete dynamics we need only look at the state just
before each transition, giving rise to the return map.

Definition 3 (Return map). The return map f of a hybrid automaton H is
the transition system f :⊂ G× E ⇒ G with fe :⊂ Ge ⇒ G given by

fe(x) := {y ∈ G | ∃ t ∈ R+ s.t. y = φt(re(x))}. (3)

In other words, fe is defined by the transitions φt ◦ re, where the continuous
evolution φt proceeds until the state enters a guard set.

If we ignore the discrete-event labels, the return map is a dynamical system
f :⊂ G ⇒ G defined by

f(x) := {y ∈ G | ∃ e ∈ E, t ∈ R+ s.t. y = φt(re(x))}. (4)

Note that the return map need not be everywhere defined since a point need not
have any further discrete transitions. As shown in Figure 1, the return map may
also be discontinuous and multivalued if the initial state starts on the boundary
of two guard sets (a) or the continuous evolution grazes the guard set and returns
to the interior of the state set X before later hitting the guard set (b).

Typically, the return map is piecewise-continuous on the guard set. We there-
fore need to develop an algorithm for computing discrete dynamics for piecewise-
continuous maps.

2.2 Shift spaces and finite automata

If A is a finite alphabet of symbols, recall that the sequence space Aω is compact
under the product topology defined by the metric d(~s,~t) = 2−m where m =
min{n ∈ N | sn 6= tn}. In other words, two sequences are “close” if they agree
on a long initial subword.
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Fig. 1. Discontinuities of the return map. (a) Discontinuity at the boundary of a guard
set. (b) Discontinuity caused by tangential contact with a guard set.

Definition 4 (Shifts). Let A be a finite alphabet. The shift map σ on sequences
Aω is defined by (σ~s)i = si+1 for i ∈ N. A shift space on A is a compact subset
Σ of Aω which is invariant under σ. A shift is the restriction of the shift map
σ to a shift space Σ.

A shift σ|Σ is a subshift of σ| bΣ if Σ ⊂ Σ̂. Since shift spaces are compact subsets of
a metric space, we can measure the difference between two shift spaces using the
Hausdorff distance. If Σ ⊂ Σ̂, an alternative measure of the difference between
Σ and Σ̂ is the difference in the topological entropies of σ|Σ and σ| bΣ .

A shift is sofic if it is generated by a finite automaton (as the sequence. Since
the set of sofic shifts is dense in the space of all shifts on an alphabet A, sofic
shifts are a convenient way of approximating arbitrary shifts.

2.3 Symbolic dynamics of piecewise-continuous maps

Symbolic dynamics is a powerful tool to analyse discrete-time dynamical systems.
The basic idea is to compute the itineraries of orbits in terms of the regions of
state space. The main complicating factor is that there is no nontrivial partition
of a connected space M into compact pieces, so we instead use open sets whose
closures cover the space.

Definition 5 (Topological partition). A topological partition of a space M
is a finite collection P = {P1, P2, ..., Pn} of mutually disjoint open sets such that
M =

⋃n
i=1 P i. The boundary points of P are elements of ∂P :=

⋃
P∈P ∂P .

Given topological partitions P and Q, we say that P is a refinement of Q if
for all P ∈ P, there exists Q ∈ Q such that P ⊂ Q. The join of P and Q is
defined by P ∨Q = {P ∩Q | P ∈ P, Q ∈ Q and P ∩Q 6= ∅}.
We shall consider piecewise-continuous functions defined as follows:

Definition 6 (Piecewise-continuous map). Let P be a topological partition
of M . A function f : M → M is P-continuous if for all P ∈ P, f |P is continuous
and extends to a continuous function over P . system

We define f◦P = f |P , f̄P to be the continuous extension of f |P to P , f◦ :⊂
X → X by f◦(x) =

⋃
P∈P f◦p (x) and f̄ =

⋃
P∈P f̄p(x).
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We can use a topological partition to define an encoding of sequences in the
space M .

Definition 7 (Itinerary). Let Q = {Qs | s ∈ S} be a topological partition of
M , and ~x = (xi)i∈N a sequence in M . A sequence ~s is a Q-itinerary of ~x if
xi ∈ Qsi for all i ∈ N, and a Q-itinerary of ~x if xi ∈ Qsi

for all i ∈ N.

Given a topological partition, we can define the symbolic dynamics of a piecewise-
continuous function f .

Definition 8 (Symbolic dynamics). Let Q = {Qs | s ∈ S} be a topological
partition, P a refinement of Q, and f : M → M a P-continuous function.

– The lower symbolic dynamics Σ(f) of f is the closure of the set of all Q-
itineraries of orbits of f◦.

– The upper symbolic dynamics Σ(f) of f is the closure of the set of all
Q-itineraries of orbits of f̄ .

The lower symbolic dynamics is a subshift of the upper symbolic dynamics. Intu-
itively, the lower symbolic dynamics consists of itineraries which are “robustly”
present, and the upper symbolic dynamics excludes those itineraries which are
“robustly” absent.

In order to prove that an itinerary ~s is not part of the upper shift, we use
the following trivial result, which is valid in any dimension.

Proposition 1. If there is an orbit ~x of f̄ such that xi ∈ Psi for all i, then
f̄(Psi) ∩ Psi+1 6= ∅ for all i.

Symbolic dynamics for one-dimensional maps is substantially easier than
in higher dimensions. The partition elements P are intervals, so can easily be
represented by their boundary points. The symbolic dynamics can be computed
using the kneading theory of [14] or by the following result.

Theorem 1. Suppose (R0, R1, . . .) is a sequence of compact intervals such that
f is continuous on each Ri and f(Ri) ⊃ Ri+1 for all i. Then there is an orbit
(x0, x1, . . .) of f such that xi ∈ Ri for all i.

For general piecewise-continuous functions, the lower symbolic dynamics may
differ considerably from the upper symbolic dynamics. Under certain conditions,
the lower symbolic dynamics Σ(f) and the upper symbolic dynamics Σ(f) co-
incide.

Theorem 2. let Q be a partition of M , let P be a refinement of Q, and let
f be a P-continuous map satisfying assumptions (A1-2) below. Then the lower
symbolic dynamics Σ(f) equals the upper symbolic dynamics Σ(f).

A1. The image under f◦ of every open subset of M contains an open set.
A2. The forward orbits of all boundary points of Q, all discontinuity points of

f , and all critical points of f are disjoint from the boundary points of Q.

Assumption A1 is valid for any non-constant analytic map, and assumption A2
is valid for generic continuous functions.
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2.4 Interval arithmetic

Since we typically cannot compute the return map of a hybrid system exactly,
we resort to numerical approximation. In order to ensure that we can obtain
rigorous conclusions from approximate numerics, we compute error bounds for
all quantities. Hence a numerical approximation to a real number x is represented
by an interval bxe = [x, x] such that x < x < x.

If f is a continuous function, then an interval extension [f ] of f is a function
from intervals to intervals such that:

1. if x ∈ bxe, then f(x) ∈ [f ](bxe),
2. if bx2e ⊂ bx1e, then [f ](bx2e) ⊂ bx1e, and
3. if bye is any interval containing y = f(x) in its interior, then there exists an

interval bxe containing x such that [f ](bxe) ⊂ bye.
When computing an interval extension of f in practice, we set an a-priori nu-
merical precision ε, and perform all computations to that precision. If the results
are not sufficiently accurate, then we increase the precision and repeat the com-
putations.

If f is n-times differentiable, we also assume that an interval extension is
available for derivatives f (i)(x) for i = 1, . . . , n. If f is piecewise-continuous,
then an interval extension to f consists of:
1. interval approximations bdie to the discontinuity points d, and
2. an interval extension of f̄P over all continuous branches P .

If [x, x] is an interval containing x, and bye and bze are intervals such that
[f ](bye) < x and [f ](bze) > x, then there is a point w in bwe = [y, z] such
that f(w) = x. By using a modified version of the bisection algorithm, we can
therefore compute preimages of points under f . We have the following result.

Lemma 1. If f is strictly monotone on an interval P , then it is possible to
compute an interval extension of (f |P )−1 from an interval extension of f .

3 Algorithms for computing the discrete dynamics

In this section we present a numerical algorithm for computing the discrete dy-
namics of a two-dimensional hybrid automaton with one-dimensional guard sets,
under assumptions which ensure that the return map is piecewise-continuous.
We first briefly outline how to rigorously compute the return map and its deriva-
tives arbitrarily accurately. We describe the algorithms to compute the symbolic
dynamics of the return map, and finally state some convergence results.

3.1 Numerical computation of the return map

We now outline the numerical procedure to compute approximations to the
return map. We consider hybrid automata such that:
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B1. The state space X is a two-dimensional manifold with piecewise-differentiable
boundary, and the guard set G is a subset of ∂X.

B2. The reset maps re are differentiable on their domains Ge.
B3. The continuous dynamics φ is given by a Lipschitz differential equation

ẋ = χ(x).

We will also need a mild regularity assumption on the crossings of the continuous
dynamics with the guard set. The following condition is sufficient:

B4. Whenever the continuous evolution ξ(t) hits the guard set G, it either
crosses G transversely, or touches G at a corner point or a quadratic tan-
gency and continuous within X.

Under the assumptions (B1− 4), the return map is piecewise-differentiable,
though may not be everywhere defined on G. Locally, we can represent the guard
set G as {x ∈ X | g(x) = 0} for some differentiable function g. The return map
is then given by y = f(x) = φt(r(x)) under the constraint g(y) = 0. Using
a rigorous high order integration scheme, such as Lohner’s method or Taylor
methods [15–17],it is possible to compute f(x) and f ′(x) to arbitrary accuracy
away from corners of the guard set and grazing points of the flow.

We obtain a numerical discretisation of the return map f in terms of interval
arithmetic. More specifically:

Theorem 3. Let H be a hybrid system satisfying hypotheses (B1-4). Let f be
the return map of H. Then it is possible to compute an interval extension of f
and its derivative f ′.

In the subsequent analysis, we shall only use information about the numerically-
computable interval extension [f ], and not assume that we have an analytic
description of the map itself.

3.2 Computing the discrete dynamics

In this section we show how to compute the symbolic dynamics of a map f
which is piecewise continuous on branches C relative to a partition Q. The basic
strategy is outlined in the following procedure:

Algorithm 4 Let Q be a partition of X, E be a topological partition of X and
f be a piecewise-continuous function with nondegenerate critical points.

1. Fix a numerical precision ε and a maximum number of steps n.
2. Compute an approximate topological partition C refining Q and E such that

f is continuous on each piece of C
3. Refine the partition C to obtain an approximate topological partition M such

that f is monotone on each partition element.
4. Refine the partition M by repeating the one of the following partitioning

strategies at most n times to obtain a partition R.
– Forward refinement: Refine a partition P by introducing new partition

boundary points at f(p) for boundary points p ∈ ∂P.
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– Backward refinement: Refine a a partition P by introducing new partition
boundary points at f−1(p) for p ∈ ∂P

In either strategy, do not introduce any new points bye which overlap existing
boundary points bpe.

5. For each pair R,R′ ∈ R, compute whether f̄(R) ∩ R
′ 6= ∅, f(R) ⊃ R′ or

f(R) ⊂ R′.
6. Define the under-approximation Λ = Λε,n and the over-approximation Υ =

Υε,n to the symbolic dynamics to consist of all sequences (Q0, Q1, . . .) for
which there exists (R0, R1, . . .) ∈ Rω with Ri ⊂ Qi and

Λ: ∃ k ∈ N ∪ {∞} s.t. f(Ri) ⊃ Ri+1 ∀i < k, and f(Ri) ⊂ Ri+1 ∀i ≥ k.

Υ : f̄(R) ∩R
′ 6= ∅ ∀i ∈ N.

The data type representing a boundary point p of a partition P has two fields, a
value field which is an interval approximation bpe to p, and a image field which is
a reference or pointer to the object representing f(p). If p is a discontinuity point,
then we store two image points, namely the image of p under both branches of
f̄ at p.

To compute the critical points, we need information on the derivative f . A
point c is a critical point if f ′(c) = 0, and the zeros of f ′ can easily be computed
to arbitrary accuracy by a bisection strategy.

In certain degenerate cases, we may not be able to distinguish two discon-
tinuity points of f , or a discontinuity point and a critical point. Although it is
possible to handle these cases in a consistent way, in this paper we assume for
simplicity that these cases do not arise.

The forward refinement of a partition P can be easily computed, since we
need simply compute the images of all boundary points of P. The boundary
points of the backward refinement of P can be computed using Lemma 1. The
main advantage of the forward refinement strategy are that better results can
usually be obtained with fewer partition points, but convergence to the symbolic
dynamics using forward refinement need not be monotone.

If P is a partition with monotone branches, then the n-step backward re-
finement of P consists of sets Pi0,i1,...,in−1 defined recursively by Pi0 ∈ P and
Pi0,i1,...,in−1 = Pi0 ∩ f−1(Pi1,...,in−1). For any x ∈ Pi0,i1,...,in−1 , we have fk(x) ∈
Pik

, so each partition element of an n-step backward refinement of P determines
the first n elements of a P-itinerary.

In order to determine whether f(R) ⊃ R′ or f̄(R) is disjoint from R
′
, we

need to know the relative ordering of the boundary points i.e. whether ri < rj ,
ri = rj or ri > rj , and the image point rk of ri under f . As long as the interval
approximations to the boundary points do not overlap, we can determine the
relative ordering. Further, since when refining we compute each bri+1e as an
image or preimage of some pi ∈ brie, we have exact information about the
images by construction.
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3.3 Convergence to the discrete dynamics

We now describe how the sofic shifts computed by Algorithm 4 approximate the
symbolic dynamics of f , and give sufficient conditions under which the approx-
imations converge.

Theorem 5. Let Λ and Υ be the shifts obtained by Algorithm 4. Then Λ is a
subshift of Σ(f) and Σ(f) is a subshift of Υ .

The following result shows that if the upper symbolic dynamics and the lower
symbolic dynamics are equal, then the algorithm converges.

Theorem 6. Suppose f is a piecewise-continuous map satisfying assumptions
(A1-2). Then the under- and over-approximations Λε,n and Υε,n to the discrete
dynamics computed by Algorithm 4 using backwards refinement converge to the
symbolic dynamics of f as the accuracy 1/ε and maximum number of steps n
increase.

The proof is technical and will be published elsewhere. The main observation is
that under condition A2, there is essentially no difference between an algorithm
using interval arithmetic, and an algorithm using exact values. Under weaker
assumptions, it is possible to prove that lower approximations Λε,n and upper
approximations Υε,n converge to the lower shift Σ and the upper shift Σ.

3.4 Representing the symbolic dynamics by discrete automata

We can represent the discrete dynamics of the hybrid automaton by a discrete
automaton whose states are the elements of R, with two types of arrows. We
draw a solid arrow R → R′ if f(R) ⊃ R, and a dashed arrow R−→R′ if
merely f̄(R) ∩ R

′ 6= ∅. Further, if there is a sequence (Rs0 , Rs0 , . . .) such that
f(Rsi) ⊂ Rsi+1 for all i, then we replace all dashed arrows Rsi−→Rsi+1 with
solid arrows Rsi → Rsi+1 . The shift Γ is generated by the solid arrows, and Υ
is generated by both dashed and solid arrows.

We can label an arrow starting in R with the event e if R ⊂ Ge. If ~s is a
sequence of symbols and there is a solid path:

Rs0

e0−→ Rs1

e1−→ Rs2 · · · (5)

then there must be an orbit ~x = (x0, x1, . . .) of the return map f such that
xi ∈ Ri for all i and fei(xi) = xi+1. Hence there is an exectution of the hybrid
automaton with itinerary:

q0
e0−→ q1

e1−→ q2 · · · (6)

where Rsi ⊂ Xqi for all i. From the construction of Υ and Proposition 1, we see
that if there is an orbit of the return map with xi ∈ Ri for all i, then there must
be a broken path (which may consist of both dashed and solid arrows):

Rs0

e0−→ Rs1

e1−→ Rs2

ek−→ Rs3 · · · . (7)
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4 Case studies

In this section, we present two case studies: a simple hysteresis system and the
singular limit of the van der Pol equation.

4.1 A hysteresis switching system

We now consider a piecewise-affine model of a system governed by hysteresis
switching [18]. We let H(x) be the hysteresis map H(x) = 0 for x ≤ 1, the first
mode, and H(x) = 1 for x ≥ 0, the second mode, and consider the system:

ẋ = y + a1H(x/b) (8)
ẏ = −x− 2σy + a2H(x/b).

The return map is defined on the set P = {(x, y) ∈ R2 | x = 0, y > 0} and
maps a point p ∈ P to a point q ∈ P such that q belongs to the same orbit
of p, and q is the next intersection after p in forward time of this orbit with
P in the first mode. We have computed symbolic dynamics for the return map
with parameter values a1 = −1, a2 = −1, b = 0.3 and σ = −0.2. The graph of
the return map is shown in Fig. 2. We take an initial partition Q which are the
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Fig. 2. The return map for the hysteresis system (9).

domains of the monotone branches. The partition elements are Q0 = [p0, p1],
Q1 = [p1, p3], Q2 = [p3, p5], Q3 = [p5, p7] and Q4 = [p7, p8] where the boundary
points are

p0 = 0.0, p1 ≈ 0.20894, p3 ≈ 0.39278, p5 ≈ 0.73329, p7 ≈ 0.92580, p8 = 1.0.

The associated symbolic dynamics is in Fig. 3(a). The two points of discontinuity
are p1 and p5 and they can be proved to have the same left and right images. The
partition after one iteration of forward refinements has the following additional
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(a) (b)

Fig. 3. Lower and upper approximation of symbolic dynamics for the hysteresis sys-
tem (9) for (a) the initial partition and (b) the forward refinement of the initial partition

endpoints:

p2 = f(p7) ≈ 0.33792, p4 = f(p+
1 ) = f(p+

5 ) ≈ 0.59890,

p6 = f(p−1 ) = f(p−5 ) ≈ 0.75340.

The symbolic dynamics generated by this partition is approximated by the
graph in Fig. 3(b).

We notice that the lower approximation of the dynamics of the refined par-
tition misses some sequences of the lower approximation of dynamics of the
initial partition. This is due to the fact that although region Q1 = [p1, p3] covers
Q0 = [p0, p1] under one iterate of the return map, neither of the subdivided
regions P1;0 = [p1, p2] and P1;1 = [p2, p3] cover Q0. Hence the convergence of the
lower approximations to the symbolic dynamics computed using forward refine-
ment is not monotone. With backward refinement the convergence can be shown
to be monotone, but backward refinements have the disadvantage of being slower
to compute than forward refinements.

The lower shift for the initial partition can be written as the regular expres-
sion

(q∗0q2)∗(qω
0 + qω

1 ) + (q∗0q2q0)∗(qω
1 + qω

2 ) + (q∗0q2)ω.

We can see for instance that the periodic sequence (q0q3q2q1)ω belongs to the
upper shift but not to the lower shift. From the two shifts we can show that
the topological entropy lies in the interval [0.80958, 1.27020]. The topological
entropies obtained for further refinement are shown in the table :

steps entropy
3 [0.97494,1.26249]
5 [1.02407,1.18582]
7 [1.04636,1.16493]
12 [1.06873,1.15087]
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4.2 The van der Pol equation

The forced van der Pol equation is a nonlinear ordinary differential equation
modeling oscillation in a vacuum tube triode circuit. Bifurcations in the singular
limit of the forced van der Pol oscillator have been studied in [19]. In this paper
we analyse the following version of the equation:

ẍ + µ(x2 − 1)ẋ + x = a(x2 − 1) sin(2πντ) (9)

in the singular limit as µ →∞. To obtain a form more convenient for analysis, we
rescale time t = τ/µ, introduce new parameters ε = 1

µ2 , ω = νµ and θ = ωt, and
define the new variable y = ẋ/µ2+x3/3−x. We obtain the following autonomous
system:

εẋ = y + x− x3/3; (10)
ẏ = −x + a(x2 − 1) sin(2πθ); (11)
θ̇ = ω.

The fast subsystem is defined by (10), since the dynamics of the fast variable x
occurs on a time scale which is fast relative to the evolution of the slow variables
y and θ.

We see that on the critical manifold y + x − x3/3 = 0 the system evolves
on a time scale of order t. However, the critical manifold is unstable for the fast
system if |x| ≤ 1, and that when this occurs, the value of x jumps instantaneously
to one of the stable fixed points of (10).

We can therefore view the singular limit as a hybrid system in which the
continuous dynamics is given by the slow flow on the stable sheet of the critical
manifold, and the reset map is given by the fast flow. By eliminating y, we obtain
the following dynamics for the slow subsystem:

ẋ = −x + a(x2 − 1) sin(2πθ) (12)
θ̇ = ω(x2 − 1)

The fast dynamics is described by the guard set and reset map

G = {(x, θ) | |x| = 1}; r(x, θ) = (−2 sgn(x), θ). (13)

In other words, when the guard condition |x| = 1 becomes satisfied the state
jumps to x = ∓2.

Since the dynamics is symmetric under the transformation T (x, θ) = (−x, θ+
1/2), we can post-compose the return map from the guard set x = 1 to the guard
set x = −1 with T to obtain the half return map f taking {(r, θ) | r = 1} into
itself. The graph of the half return map for parameter values a = 5 and ω = 3
is shown in Fig. 4. We have computed the lower and upper symbolic dynamics
with respect to the partition given by the continuous branches using forward
refinement.
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Fig. 4. The half return map for the singular limit of the forced van der Pol oscilla-
tor (12).

In the return map there are 5 discontinuity points:

p2 ≈ 0.05816, p3 ≈ 0.25226, p5 ≈ 0.69356, p6 ≈ 0.81553, p7 ≈ 0, 98495.

and 2 critical points, a local maximum p1 ≈ 0.02183 and a local minimum
p4 ≈ 0.47872. These points with the extremes of the interval p0 = 0 and p8 = 1
generate an initial partition of 9 pieces. After one forward iteration we obtain
11 pieces.

q0 = f(p0) ≈ 0.15520, q1 = f(p1) ≈ 0.17825, q2 = f(p4) ≈ 0.29017,

The lower and upper discrete automata are not included for reasons of space.
After one step of refinement, the discrete automaton representing the symbolic
dynamics separate into two strongly connected components. Both the lower and
upper shifts include the component with the highest entropy, while the lower
shift does not include the smallest.

Therefore the topological entropy of the lower and upper shifts are equal and
can be computed exactly yielding a numerical value of approximately 1.55705.
From Fig. 4 we could already infer the entropy is at least log(3) ≈ 1.09861
because there are 3 continuous pieces of the partition which map the whole in-
terval. From numerical computation we can deduce the existence of an attracting
periodic orbit close to the local minimum. This let us infer the existence of a
chaotic invariant Cantor set, every point non belonging to this set converges to
the attracting periodic orbit.

5 Conclusion

In this paper, we have presented a method for computing the discrete dynamics
of a hybrid automaton with a two-dimensional state space. We obtain sequences
of sofic shifts which approximate the actual discrete dynamics from above and
below. We have given nondegeneracy conditions under which the method is op-
timal, in the sense that the resulting shift spaces converge to the actual shift
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space. In future work, we plan to remove the nondegeneracy conditions on the
method, and extend the method to hybrid automata in higher dimensions.

References

1. Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.J.: Discrete abstractions of
hybrid systems. Proc. IEEE 88 (2000) 971–984

2. Tiwari, A., Khanna, G.: Series of abstractions for hybrid automata. In Tomlin,
C.J., Greenstreet, M.R., eds.: Hybrid Systems: Computation and Control. Volume
2289 of Lecture Notes in Computer Science., Springer-Verlag (2002) 465–478

3. Lunze, J., Nixdorf, B.: Discrete reachability of hybrid systems. Internat. J. Control
76(14) (2003) 1453–1468

4. Moor, T., Raisch, J., O’Young, S.: Discrete supervisory control of hybrid systems
based on l-complete approximations. Discrete Event Dyn. Syst. 12(1) (2002) 83–
107 WODES ’98 (Cagliari).

5. Guckenheimer, J., Johnson, S.: Planar hybrid systems. In: Hybrid systems, II
(Ithaca, NY, 1994). Volume 999 of Lecture Notes in Comput. Sci. Springer, Berlin
(1995) 202–225

6. Grasman, J., Nijmeijer, H., Veling, E.J.M.: Singular perturbations and a mapping
on an interval for the forced van der Pol relaxation oscillator. Phys. D 13(1-2)
(1984) 195–210

7. Bold, K., Edwards, C., Guckenheimer, J., Guharay, S., Hoffman, K., Hubbard, J.,
Oliva, R., Weckesser, W.: The forced van der Pol equation. II. Canards in the
reduced system. SIAM J. Appl. Dyn. Syst. 2(4) (2003) 570–608 (electronic)

8. Moore, R.E.: Interval analysis. Prentice-Hall Inc., Englewood Cliffs, N.J. (1966)
9. Jaulin, L., Kieffer, M., Didrit, O., Walter, É.: Applied interval analysis. Springer-
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