
Regularity for a Large Class of Context-Free
Processes is Decidable

D.J.B. Bosscher1 * W.O.D. Griffioen1 '2 **

1 CW!
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

{doeko,griffioe}©cwi.nl
2 Computing Science Institute, University of Nijmegen

P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

Abstract. Regularity of context-free processes has been proved to be
decidable for BPA systems by [MM94] and normed context-free processes
by [Kru95). In this paper the decidable class of regular context-free pro­
cesses is enlarged to that of context-free processes over so-called NRD
specifications (definition in the paper). Furthermore an upper bound is
given for the number of states modulo bisimulation.

1 Introduction

A classical result from formal language theory is that language equivalence is
undecidable for context-free grammars. In [BH64] the correspondence Lemma of
Post (Pos46] is used to prove this and the undecidability of regularity of context­
free languages. The picture changes if these grammars are studied as process
specifications modulo a given equivalence for process graphs.

A well-known equivalence for process theory, bisimulation equivalence is de­
cidable for context-free processes (BBK93, CHS92]. This leads one to believe
bisimulation is a sufficiently strong equivalence to allow decidability of regular­
ity of context-free process graphs. In this paper decidability of regularity for a
large class of context-free process graphs is proved.

A process graph is regular iff it is (strongly) bisimilar to a process graph
with finitely many states. Context-free process graphs are denoted by "guarded
recursive specifications" over Basic Process Algebra (BPA) [BW90]. Below three
examples of BPA specifications for a process name X are given.

X=a·Y+c·Z
(l)Y=d·X+e·Y

z = c

(2) X =a· X · Y + c
Y = b·Y

* Research supported by Esprit BRA 7166 CONCUR 2.

X=a·Y·Z

(3) Y = a · Y · B + c
z = b· z
B = b

** Research supported by the Netherlands Organization for Scientific Research (NWO)
under contract SION 612-316-125.

183

All three specifications define a regular process graph for X. The process graph
for X is regular with respect to first specification because the specification is
linear. It is folklore that the class of regular processes is the same as the class
of processes which can be denoted by a linear specification. In fact one of the
reasons for using regular processes is that these can be described precisely by
such specifications, which allow easy implementation and checking of modal and
temporal properties [Hol89].

The second specification defines the process graph for X also as a regular
process, but to see this is already more difficult, since the specification is not
linear (X has summand a· X · Y in the defining equation). In the paper by
[MM94] it is proved that specifications which do not define "normed stackings"
define only process names with regular process graphs. The same result is proved
for normed process graphs by [Kru95]. Both papers give a method to generate
the linear specification for a process graph, provided it is regular.

In this paper we extend the class of specifications further by allowing speci­
fications such as 3. The specification is not linear and allows a normed stacking
for Y. However X, which depends on Y defines a regular process graph: the idea
is that the "context-free behavior" of process name Y is somehow neutralized
by Z. Furthermore we give an explicit upper bound for the number of states
of the process graph modulo bisimulation and a method to generate the linear
specification.

As was pointed out by Didier Caucal our method does not work for every
context-free process graph. We must restrict ourselves to specifications which
have only so-called weakly deterministic process names in normed repeats (see
Section 3 for the definition), so-called process graphs over NRD specifications
(process Names occurring in a weakly Normed Repeat are weakly Deterministic).

The plan of the paper is as follows. In the second section we introduce
(context-free) processes and process graphs formally and give some preliminary
definitions. In the third section we prove the decidability result. We conclude
with a remark on generating a linear specification for a regular process graph.

2 Context-free Processes and Regularity

As usual we refer to context-free processes as processes over specifications in
Basic Process Algebra. Therefore, in this section we define the basic notions
of BPA. We start by giving the syntax and semantics of BPA. Next we define
process graphs and bisimulation equivalence as used throughout this paper. For
a detailed description of the relation between language and process theory we
refer the interested reader to [HM96).

The abstract syntax of BPA is given by

p::=alXlp+plp·p

where a ranges over a finite set Act of atomic actions and X over countable

184

infinite set Names of process names. The+ is the usual process algebraic nota­
tion for choice and · for sequential composition. We look at recursive processes
processes where the meaning of process names is given by a (finite) set of equa~
tions of the form

where i, k E N, the Xi are distinct process names and the process names used in
Pi are those defined in {X1, ... ,X,1:}. In the sequel we will only look at guarded
recursive equations, i.e. every summand of the processes Pi in the equations
Xi =Pi starts with an action.

The operational semantics of a BPA expression, given a specification Ll, is
the smallest transition relation -+a C BPA x Act x (BPA U { e}) containing the
transitions provable by the following rules:

p~p'

p+q ~ p'

p~p'

q~ q'

p+q ~ q'

p~p'

X~p'

where a E Act, X = p E Ll and e is a special state not in BPA which denotes
the empty or terminated state. For convenience we identify the states e · p and
p · e with p.

We will use Va for the set of process names defined in Ll. We use v, p, <I to
range over V.a. * and \v\ as the length of a sequence v of process names. We use vk
as an abbreviation for a sequence v · ... · v of length k. Notice that we thus identify
string concatenation with sequential composition and use that concatenation is
associative. We speak of the head and the tail of a sequence in the obvious way.
As a convention we use that v0 is equal to E.

Most of the time we omit actions in transitions. We use the Greek letter <P
to range over transition sequences starting with a process name in Va. cp(O) de­
notes the first state in transition sequence, cp(i-1) the i-th state in cp. The Greek
letters x and 1/l are used to range over transition subsequences, i.e. choppings
off of transitions sequences. We mean by l<PI the length of a transition sequence
given by the number of transitions. We say that a process-expression p is weakly
normed, also denoted by p !, if there is a transition sequence p -+.a. ... -+.a. E 3 .

A process-expression p is perpetual, also denoted by p j if it is not weakly
normed. By IV.a. I we mean the size of the set Va. If no confusion can arise we
use \v\, 14'!, \Viii without stating which kind of length or size is used.

3 Notice that a weakly normed process can arrive after one or more transitions in a
state which is not weakly normed, i.e. it is not normed in the usual meaning.

185

In rest of this paper we mostly look at process graphs of pro " ·

defined in ..'1 in the context of bisimulation equivalence As c~ssal-expresls1fions
process graphs as rooted, labeled transition systems.

. . usu we c e ne

Definition 2.1 Let Act be a given set of actions.

1. A labeled transition system over Act is a pair (S,-+) where Sis a set of states
and ~ ~ S x Act x S is the transition relation

2. A pr~c.ess graph over Act is a triple g = (r, S,-+) with (S,-+) a labeled
trans1t1on system over Act and r E S is the root state.

~n this paper the equivalence between process graphs is strong bisimulation
eq u1valence.

Definition 2.2 Let g = (r,S,-+) and g' = (r',S',-+) be process graphs.

1. R <;;; S x S' is a bisimulation iff for all (p, q) E R it holds that

(a) If p ~ p', then there is a q' such that q ~ q' and (p', q1) ER,

(b) If q ~ q', then there is a p' such that p ~ p' and (p', q') E R.

2. g and g' are bisimilar iff there is a bisimulation relating the roots of g and
g'.

Now we are ready to define what we mean by regularity.

Definition 2.3 A process p is regular iff the process graph (p, BPA u { t},--. .:l)

is bisimilar to a process graph with a finite number of states.

3 Decidability of Regularity

In this section we prove that regularity for a large class of context-free processes

is decidable.

For the proof we can restrict ourselves to BPA systems in restricted Greibach

Normal Form (rGNF), i.e. systems of the form

L1 = {Xi = ail· O'i1 + ... + a;n, · O';n,ll ~ i ~ m}, where O';j is a process

name sequence containing at most two process names. It is folklore that any

guarded BPA specification specification can effectively be represented in re­

stricted Greibach Normal Form (rGNF)4 maintaining bisimulation equivalence

of the process graphs of the defined processes. We have the following useful

properties.

Proposition 3.1 Let Ll be a BPA system in rGNF and X E l'.1·

1. Let cp = X -+ L1 ... be a transition sequence. For every i E N, 1>(i) is a

sequence of process names in v.,:1,
4 For context-free processes see e.g. [BBK87, BP95]. Similar result for context-free

languages and language equality [HU79].

186

2. If u --; ti p, then IPI :::;; lo-I + 1.

Remark 3.2 Notice that Proposition 3.1 gives that the states reachable from
a process name are sequences of process names.

Definition 3.3 Let X = p E '1. An action is a ·unique in X, iff p has only one
summand starting with a.

Definition 3.4 A transition (sub)sequence x is weakly deterministic iff for every

transition x(i)..::. x(i + 1), a is unique in the head of x(i).

Definition 3.5 Let W0 , W 1 , · · • s;; Vti be sets inductively defined as follows

1. Wo = 0,
2. X E W;+ 1 iff either X E W; or X = p E d and there is an action a such that

a is unique in p, and the summand starting with a has all process names in
W;.

Let W; = W;+l for some i E N. Then W; is the smallest set of weakly determin­
istic process names for '1, denoted as W .1 ·

In Lemma 3.17 we prove that elements of W .1 all start a weakly deterministic
and terminating transition (sub)sequence.

Remark 3.6 Notice that WL\ can be effectively computed (as Wiv4 1)·

We define weakly normed repeat invariance as the criterion for regularity.
Informally it states that looping through a specification while stacking does not
result in infinitely many non bisimilar states.

Definition 3.7 Let '1 be a specification in rGNF. Let cf; be a transition sequence
</>(O) ~°-1 c/;(1) ~'ti

1. The transition sequence c/;(O) -;.1 ... -;L\ </>(i) is a repeat iff </>(i) = </>(O) · o-.

(a) which is cyclic iff </>(i) = </>(0),
(b) which is perpetual iff c/;(i) T and </>(i) ~ </>(O),
(c) which is weakly normed iff </>(i) land c/;(i) ~ </>(O),

2. The transition subsequence x(O) --; .1 ... --; .1 x(i) corresponds to the repeat
</>(O) --; .1 ... --; Ll </>(i) iff x(O) = </>(O). O", ... , x(i) = </>(i) . O",

3. A transition sequence uses a repeat when it has a transition subsequence
that corresponds to a repeat,

4. A repeat c/;(O) -;_a ... -;.1 </>(i) is lonely iff c/;(O) -;_a ... -;L\ </>(i) uses no
other repeats,

5. A transition sequence</> is a possible entry to a weakly normed repeat, entry
for short, iff
(a) </> starts in the root r,
(b) uses no weakly normed repeats and,
(c) passes only through pair-wise non bisimilar states,

187

'· An entry</> is weakly normed repeat invariant for a (subsequence correspond­
ing to a) lonely weakly normed repeat x iff
(a) the last state of </> is equal to the first state of x,
(b) the first and last state of x are bisimilar.

i. r is weakly normed repeat invariant iff every entry to a (subsequence corre­
sponding to a) lonely weakly normed repeat is weakly normed repeat invari­
ant.

>efinition 3.8 Let Li be a specification in rGNF. A process name Y occurs in
weakly normed repeat <P(O)--* ... --* </>(i), iff </>(i) = </>(O) · !J and Y occurs in <J.

In the sequel we assume a fixed but arbitrary system of equations Ll in
estricted Greibach Normal Form with the root process namer in VL1 in a process
raph (r,BPA U {f},-*L1), all as defined in the previous section.

Finally we are able to define the class of process for which the decidability
1roof holds.

)efinition 3.9 We say that the specification Li is NRD (weakly Normed Repeat
·ariables are weakly Deterministic) iff the set of process names of VLl occurring
n a weakly normed repeat is a subset of W L1.

:lemark 3.10 Note that it is decidable if a specification is a NRD specification.

E:xample 1. Let Li be defined as

Li= {X =a· Y,
Y = a·Y ·B+d,
B = b}

where X is the root process name. The transition sequence x :::::: Y ..'.'... Y · B is
a weakly normed repeat, because Y · B l and Y :/=. Y ·B. Furthermore x is a
lonely repeat. Contrast this with x' = Y ..'.'... Y · B ..'.'... Y · B · B which is a weakly
normed but not a lonely repeat, because it uses X·

The transition sequence </> = X ..'.'... Y is an entry, because it uses no weakly
normed repeat and X ~ Y. </> is not weakly normed repeat invariant for x
because the last state Y of</>, is not bisimilar to the last state Y · B of X·

The root process name X is not weakly normed repeat invariant, because
the entry </> is not weakly normed repeat invariant for the lonely, weakly normed
repeat X· The reader can verify easily that the specification is NRD. It allows
only process names from W L1 in a weakly normed repeat: the process name B
occurring in the weakly normed repeat Y ..'.'... Y · B, is in W1 .

The first part of the proof establishes that a weakly normed repeat invariant
root cannot start an infinite transition sequence of pair-wise non bisimilar states.
This implies regularity with the following well-known fact.

Proposition 3.11 If r is not regular, then there exists an infinite transition
sequencer ~L1 ... where all states are pair-wise non bisimilar.

188

Lemma 3.12 The length of a transition subsequence x = u -+ Ll. ..• which uses
no repeats is maximally lul.(21V4 I - 1).

Proof. By a well-founded simultaneous induction on the number of different
process names h that occur left-most in states of x and the length l of lul. Now
assume the Induction Hypothesis holds for all tuples which are lexicographically
smaller than tuples (h, l). Distinguish the following cases in the Induction Step.

1. If l = 1, then x = X -+ L1 p -+ L1 ... for some X E V.a. We only prove it for the
case that p "¥= E, for p = e the result is immediate. The Induction Hypothesis
holds for 'I/; = p -+ Ll ... because X cannot occur left-most in states of 'I/; any
more, otherwise 'I/; uses a repeat starting with X. By Proposition 3.1 IPI::; 2
and so lxl = 1+l'l/11::;1+2.(21VL1.-{X}I -1) = lul.(21V.<1I - 1),

2. If l > 1, then X := X · p -+L1 ... , for some X E V.a,p E V.a+. By the
Induction Hypothesis any transition sequence without using repeats X -+ Ll

... e has a length not exceeding 21VL1.I -1 and so does the associated transition
(sub)sequence X · p-+ Ll. •.. -+.a p, which does not use the presence of the tail
p. Also by the Induction Hypothesis the transition (sub)sequence p -+.a ...
has a maximal length of jpj.(2IVL1.I - 1), which gives a total maximal length
of luj.(2IV4 I - 1).

We use that a perpetual repeat passes through a state with a perpetual
process name at the first or second position.

Lemma 3.13 If <P is a perpetual repeat, then there is a state p in <P so that
p := P · u or p := Y · P · u, where Y,P E V.a, Y land Pi-

Proof. Let N Ll. and P L1 be the subsets of weakly normed and perpetual
process names of V.a respectively. Suppose </>(i) is the last state of the perpetual
repeat </>. By definition </>(i) is of the form X · p with X · p perpetual. It is easily
verified that either X is perpetual, in which case we are finished, or there is a
P E P Ll. so that p = v · P · u with v E N .a+. Let </>(j) be the first state so that P is
present in the process name sequence. Suppose the preceding state </>(j - 1) has
the process name Y E N Ll. at the first position in the process name sequence.
Using the definition of Y in ..:1, P is introduced. Because ..:1 is in rGNF, this
implies that the perpetual process name P is introduced at the first or second
position.

Lemma 3.14 The length of a transition sequence, which uses no weakly normed
repeat and passes only through pair-wise non bisimilar states is maximally
jV,aj2.21V.<1I.

Proof. Let N Ll and P Ll. be as in the previous proof. Suppose </> = X -+.a .•.

is a transition sequence which uses no weakly normed repeat. With Lemma 3.12
we know that after 21VL1.I transitions </>has used at least one cyclic or perpetual
repeat. This repeat cannot be cyclic, because </> has then at least two bisimilar
states. So</> has used a perpetual repeat in the first 2IVL1.I transitions. By Lemma

189

3.13 it has either passed through a state p of the form (1) p ::: P . u or (2)
p = X · P · u, where X E N 1l and P E P il ·

In case (1) in the state p' following p in </>, there is a perpetual process name
at the first or second position. Because P is perpetual the tail u cannot shift
left-most in the transition from p to p'. L1 is in rGNF and therefore p' is of the
form p' = v · u and 1 S lvl S 2. Every transition from P is to another perpetual
state, so v has one perpetual process name. But then p1 has a perpetual process
name at the first or second position.

In case (2) </> passes through a state with a perpetual process name at the
first or second position in z!VA I transitions. If</> does not use the presence of the
tail of p, then this implies with the previous argument that in z!VAI steps from
p, </> passes through a state with a perpetual process name at the first or second
position. If</> does use the presence of the tail of p, then by Lemma 3.12 in 2!VAI
transitions X and its reducts have disappeared and is P the left-most process
name. So in the gaps between perpetual states with a perpetual process name at
the first or second position in </>there are at most 21VAI connecting transitions.

Notice that there are maximally !Pill+ INlll-IPlll of such non bisimilar per­
petual states in</>, because P·v ti P·u and X ·P·v ti X ·P·u for every PE P.c.,
v and u. If INlll = 0 we have a maximal length of IVlll -1, see Remark below.
If IN ll I > 0 simple arithmetic gives us that I Pill+ IN .c.l-IP .c.I :5 !V.c.1 2 -1. Hence
the maximal length is the number of different perpetual states with a perpetual
process name at the first or second position plus one times the maximal length
f . IV 12 z!VAI o a gap, i.e. 1l . .

Remark 3.15 Actually we conjecture the maximal length to have an upper
bound of 21VAI -1. The reader can verify this in the two simple cases that either
no process names are perpetual (Lemma 3.12) or all process names in Vil are
perpetual. In the last case the maximum number of states modulo bisimulation
is even IV"11 and hence the maximal length !Vlll - 1.

We show the soundness of the criterion by proving that for all context-free
processes, not only over NRD specifications, it disallows infinite transition se­
quences passing through pair-wise non bisimilar states and hence implies regu­
larity.

Theorem 3.16 If r is weakly normed repeat invariant, then r is regular.

Proof. Assume that r is weakly normed repeat invariant, and suppose r is
not regular. The non regularity implies with Proposition 3.11 that there is a
transition sequence </> starting in r passing through infinitely many pair-wise
non bisimilar states.

First suppose </> uses no weakly normed repeat. By Lemma 3.14 we conclude
that </> has a finite length. Contradiction. Therefore </> uses a weakly normed
repeat.

Let x be the first (subsequence corresponding to a) weakly normed repeat
used in </>. x cannot use a cyclic repeat, because then it would have two bisimilar

190

states. Also it cannot use a perpetual repeat, because then the last state of x
would be perpetual. Therefore x is a (subsequence corresponding to a) lonely,
weakly normed repeat.

Let ,P' be the part of ,P until the first state of the first lonely weakly normed
repeat x. rj; (and therefore q/) starts in the root and passes only through pair­
wise non bisimilar states. So q/ is a entry for x and by assumption </>' is weakly
normed repeat invariant for x as well. But then x has two bisimilar states, i.e.
its first and last state and hence rj; too. Contradiction.

Unlike Theorem 3.16 we do not prove for every process that is regular, that it
is weakly normed repeat invariant. Here we do need that the specifications allow
only process names in W Ll occurring in weakly normed repeats. Without this
restriction Lemma 3.18 does not hold. In [BCS95] an ingenious counter example
to that extent is given. Based on it, Bernhard Steffen supplied us a specification
of a process name which is not weakly normed repeat invariant, i.e. specification
{S = a· X · Z, X = b + c · X - Y, Y = d + d · Y + d · Z, Z = e · Z}. As the
reader can verify S has a regular process graph, but X · Y · Z ± X · Z, i.e. S
is not weakly normed repeat invariant and the cancellation property does not
hold: Y · Z t:r Y · Y · Z # Y · Z !::! Z.

Now we begin with a proof of the completeness of the criterion.

Lemma 3.17 If v E W Ll +, then there is a weakly deterministic transition sub-
a.o an

sequence v --+ Ll ... --+ Ll E.

Proof. Assume without loss of generality that v = X · p. First we prove that
a weakly deterministic subsequence from v to p exits. Then by induction on the
number of names in v we are done.
With each variable we associate the smallest i such that it is a member of the
set W; in Definition 3.5.

Now the sequence is constructed as follows: For each transition we pick the
a summand a· X · Y (a and a· X likewise) such that the initial action is unique
and the process names Y, Z are in "lower" W;.

Lemma 3.18 Let v, p, a E VLl • and v weakly deterministic. If v · p !::? v ·a, then
ptia.

Proof. Because v is weakly deterministic, from Lemma 3.17 follows that a
weakly deterministic transition subsequence from v · p top exists. A correspond­
ing transition subsequence starts in v ·a and ends in a, because each transition
is labeled with an unique action (unique with respect to the head process name
in the state). By Definition of bisimulation we conclude that p !::? a.

In the proof we need the Approximation Induction Principle (AIP), which
states that if the unfolded graphs of processes are bisimilar down to an arbitrary
depth, then the processes are bisimilar. The principle and its proof are described
in [BBK87].

191

Proposition 3.19 Let 7r; : BPA --+ BPA, i E N* be the projection operators
defined as follows. Let a E Act, p,p1,p2 E BPA,

7r1(a·p) =a
7r;(a) =a
7r;+1(a·p) =7r;(p)
7r;(p1 + P2) = 7r;(p1) + 7r;(p2).

If 7rm(Pi) !::::' 7rm(P2) for all m E N*, then P1 t:? P2·

The completeness of our criterion is proved by showing for a regular process

that the first and last state of a (subsequence corresponding to) a lonely, weakly
normed repeat have to be bisimilar.

Theorem 3.20 If r is regular, then r is weakly normed repeat invariant.

Proof. Suppose efJ is an arbitrary entry and x a connecting transition sub­

sequence corresponding to a lonely, weakly normed repeat. Suppose that the

last state X · p of efJ is equal to the first state of x and the last state of x is
X · v · p. It is easily verified that x can be extended with a transition subse­

quence X · v · p --+Li ... --+Li X · v2 • p ... etc .. Because X is weakly normed, r

can reach states vn · p for every n E N. By assumption v E W Li+ and hence

vm E W Li+ for m > 0. Because r is regular, the pigeon hole principle gives that

there are smallest k, l E N, k > l so that vk · p t:? v 1 · p. A (repeated) appli­

cation of Lemma 3.18 gives that ,_,k-I · p t:? p. This implies that for every m E
N, (1) X · v · v(k-l).m · p t:? X · v · p and (2) X · ,_,(k-l).(m.+l) ·pt:? X · p. Be-

cause v is weakly normed, by Lemma 3.17 there exists a terminating transition

(sub)sequence X =: vm --+Li ... --+Li E. Because v "¥. E, x has at least length m and

so (3) for all m, k E N*, 7rm(vm+l · p) t:? ?Tm(vm+l+k · p). Therefore for all m E N*,
(1) (3) (2)

7rm(X·v·p) !::::' 7rm(X·v·v(k-l).m.p) t:? 7l'm(X·v(k-l).(m+1).p) t:? 7rm(X·p).

An application of AIP (Proposition 3.19) now gives that the last states of efJ and

x are bisimilar. So efJ is a weakly normed repeat invariant entry for X·

It remains to be proved that the criterion is decidable.

Theorem 3.21 It is decidable if r is weakly normed repeat invariant.

Proof. BPA is finitely branching and the maximal length of an entry is

bounded (Lemma 3.14). It is easily verified that the length of a lonely, weakly

normed repeat is bounded too. Therefore there are only finitely many possible

connecting combinations and they are of bounded length too. Verifying that such

a transition sequence is weakly normed repeat invariant for a (transition subse­

quence corresponding to a) lonely weakly normed repeat can be done effectively,

using that bisimulation equivalence is decidable for all context-free processes

[CHS92].

Now we can finish with the decidability result.

192

Corollary 3.22 The regularity of context-free processes over NRD specifica­
tions is decidable.

Proof. Immediate from Theorems 3.16, 3.20 and 3.21.

Lemma 3.23 The number of non bisimilar states of a regular process graph
IV 12 2IV"'l .

given by a process name over a NRD specification is bounded by :Ei=~ · bf',
where bf is the branching factor 5 .

Proof. Let R be such a process name. Each state can be reached from R
passing only through pair-wise non bisimilar states with some transition sequence
</>. Lemma 3.14 gives that the maximal length of</>, if it uses no weakly normed
repeats is IVLll2 .2IV"'I. If</> is one longer,</> has to use a weakly normed repeat. By
Theorem 3.20 and the regularity of the process graph, R is weakly normed repeat
invariant. Therefore there are at least two bisimilar states in </>. This gives rise to
a tree with branching factor bf and a maximal depth bounded by IVL112 .21V"'1.

4 Con cl us ions

Difference with the previously mentioned papers [MM94, Kru95] 6 is that we
distinguish a root process name and allow the process to have perpetual "sub
processes". Whereas the criterion for regularity for the classes in [MM94, Kru95]
is relatively cheap to check, our criterion has a substantial computational com­
plexity. If we want to use our criterion of weakly normed repeat invariance,
this involves checking bisimulation equivalence between perpetual context-free
processes 7 . Checking bisimulation equivalence of normed processes is known to
have a polynomial time complexity [HM95], whereas the complexity of checking
bisimulation of arbitrary context-free processes is (doubly) exponential [BCS95].

In principle our proof also gives a method to generate the equivalent linear
specification for a given specification satisfying our constraints. The nai:ve way
is simply to "list" all non bisimilar states. Start with the root process name and
generate new non bisimilar states using the specification and the algorithm in
[BCS95]. Lemma 3.23 tells us that this could be very expensive.

Acknowledgements. We thank Jan Friso Groote, Alban Ponse and Frits
Vaandrager for proof-reading. Olaf Burkhart, Didier Caucal, Bernhard Steffen,
Faron Moller, Sjouke Mauw and Colin Stirling are thanked for advice.

5 i.e. the maximum number of summands in a definition for a process name in the
specification.

6 We refer to the results in BPA, in the last paper is also dealt with parallelism, but
this is not treated in this paper.

7 Note that in our criterion we have to check if entries are repeat normed invariant
for lonely normed repeats. This comes down to checking if X · p the last state of the
entry and X · er • p, the last state of the lonely normed repeat are bisimilar. This
implies that x . p l and x . er . p r.

193

References

[BBK87] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. On the consistency of

Koomen's fair abstraction rule. Theoretical Computer Science, 51(1/2):129-
176, 1987.

[BBK93J J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Decidability of Bisimulation

Equivalence for Processes generating Context-free Languages. Journal of the
ACM, 40(3):653-682, 1993.

[BCS95] 0. Burkart, D. Caucal, and B. Steffen. An Elementary Bisimulation Decision
Procedure for Arbitrary Context-Free Processes. In MFCS '95, volume 969
of Lecture Notes in Computer Science, pages 423-433. Springer-Verlag, 1995.

[BH64] Y. Bar-Hillel. Language and Information. Series in Logic. Addison-Wesley,
1964.

[BP95J D.J.B. Bosscher and A. Ponse. Translating a Process Algebra with Symbolic
Data Values to Linear Format. In Uffe H. Engberg, Kim G. Larsen, and Arne
Skou, editors, Proceedings of the Workshop on Tools and Algorithms for the
Construction and the Analysis of Systems, volume NS-95-2 of BRIGS Notes
Series, pages 119-130, 1995.

(BW90] J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in
Theoretical Computer Science 18. Cambridge University Press, 1990.

[CHS92] S. Christensen, H. Hiittel, and C. Stirling. Bisimulation is Decidable for all
Context-free Processes. In W.R. Cleaveland, editor, Proceedings of CON­

CUR 92, volume 630 of Lecture Notes in Computer Science, pages 138-147.
Springer-Verlag, 1992.

[HM95] Y. Hirshfeld and F. Moller. Deciding Equivalences in Simple Process Alge­
bras. In A. Ponse, M. de Rijke, and Y. Venema, editors, Modal Logic and
Process Algebra, volume 53 of CSL! Lecture Notes, pages 151-169. CSLI Pub­
lications, Stanford, 1995.

[HM96] Y. Hirshfeld and F. Moller. Decidability Results in Automata and Process
Theory. In Logics for Concurrency: Automata vs Structure, Springer Lecture
Notes in Computer Science, 1996. To appear. Previously presented as lecture
notes at the VIII-th Banff Higher Order Workshop "Theories of Concurrency:
Structure vs Automata "in 1994.

[Hol89] Uno Holmer. Translating Static CCS Agents into Regular Form. PMG re­
port 51, Department of Computer Science, Chalmers University of Technology
and the University of Goteborg, 1989.

[HU79] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, 1979.

[Kru95) A. Krucera. Deciding Regularity in Process Algebras. Technical Report RS-
95-52, BRICS (Basic Research in Computer Science, Centre of the Danish
National Research Foundation), 1995.

(MM94] S. Mauw and H. Mulder. Regularity of EPA-Systems is Decidable. In Bengt
Jonsson and Joachim Parrow, editors, CONCUR '94: Concurrency Theory,

volume 836 of Lecture Notes in Computer Science, pages 34-47. Springer­
Verlag, 1994.

[Pos46] E.L. Post. A variant of a recursively unsolvable problem. Bulletin of the

American Mathematical Society, 52:264-268, 1946.

