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Abstract. We consider the following questions: 
1. Can one compute satisfying assignments for satisfiable Boolean for

mulas in polynomial time with parallel queries to NP? 
2. Is the unique optimal clique problem (UOCLIQUE) complete for 

pNP[O(logn)J? 

3. Is the unique satisfiability problem (USAT) NP hard? 
We define a framework that enables us to study the complexity of gen
erating and checking proofs of membership. We connect the above three 
questions to the complexity of generating and checking proofs of mem
bership for sets in NP and pNP[O(logn)J. We show that an affirmative an
swer to any of the three questions implies the existence of coNP checkable 
proofs for pNP[O(Iogn)J that can be generated in FPfiP. Furthermore, we 
construct an oracle relative to which there do not exist coNP checkable 
proofs for NP that are generated in FPfiP. It follows that relative to this 
oracle all of the above questions are answered negatively. 

1 Introduction 

We give more background for the questions mentioned in the abstract. 

1.1 Generating Satisfying Assignments 

Satisfiability - SAT for short - is the set of satisfiable Boolean formulas. In the 
early seventies Cook and independently Levin [Co71, Le73] showed that SAT is 
NP complete. In order to prove P different from NP, many researchers have tried 
to reveal the computational complexity of SAT. 

However, SAT is a decision problem and in most practical circumstances we 
are not only interested in the knowledge that a solution exists, but we want 
to compute the solution, in this case a satisfying assignment, as well. There
fore, another fundamental task in computational complexity is to determine the 
complexity of the construction problem for NP complete sets. 

* Part of this research was done while visiting the Univ. Politecnica de Catalunya 
in Barcelona. Partially supported by the Dutch foundation for scientific research 
(NWO) through NFI Project ALADDIN, under contract number NF 62-376 
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As an upper bound, it is known that such solutions can be computed in 
FPNP, the class of functions computable in polynomial time with access to an 
oracle in NP. This can be achieved by either doing a binary search or a prefix
computation on the solution space using an appropriately chosen set in NP as 
an oracle. 

Is there a better way to compute solutions for sets in NP? Consider the 
following subclasses of FPNP. 

- FPr, the class of functions in FPNP that can be computed by making 
nonadaptive queries to NP, that is, all the queries must be written down 
before any answers are received from the oracle, and 

- NPSV, the class of functions that can be computed by single-valued non
deterministic polynomial-time bounded transducers, that is, on each path 
where the transducer produces some output, it produces the same output. 

Hence, we are especially asking whether it is possible to compute some solution 
for a given NP complete set in FPfiP or in NPSV. Note that NPSV ~ FPriP. 

Define the function class Faat by 

f F J( ) _ {some satisfying assignment of cp, if r.p E SAT, 
E sat {:::::? 'P - l.. otherwise 

' ' 
where l.. means that the function is undefined at that point. 

As already mentioned, Fsat n ppNP # 0. In fact, Krentel [Kr86] showed that 
the lexicographically smallest satisfying assignment is complete for FPNP. One 
of the main open problems [WT93, HNOS94, Og95, BKT94] at this point is the 
following question: Can satisfying assignments be computed with nonadaptive 
queries to NP. In other words, is Fsat n FPriP = 0? 

Some progress has been made. Hemaspaandra et.al. [HNOS94] showed that 
one cannot compute satisfying assignments in NPSV, unless the Polynomial 
Hierarchy collapses, This result has been improved recently by Ogihara [Og95] 
who showed that Fsat n FPNPSV[c log(n)) = 0, for c < 1, unless the Polynomial 
Hierarchy collapses. It is conjectured that an analog result holds with respect 
to FPriP. In this paper, we construct an oracle where FPriP n Fsat = 0. On the 
other hand, Fortnow [Fo94], extending a result of Watanabe and Toda [WT93], 
constructed an oracle relative to which FPriP n Faat # 0, and the Polynomial 
Hierarchy is infinite. This indicates that non-relativizing techniques are needed 
to settle this question. 

1.2 Completeness of UOCLIQUE and USAT 

pNP and pNP(O(log n)) are the classes of sets that can be recognized with polyno
mial, respectively log(n), many queries to an NP oracle. For many optimization 
problems, deciding certain properties of an optimal solution is complete for either 
pNP[O(logn)) or pNP [PZ83, W86, W90]. 

Consider the UOCLIQUE problem, where, for a given graph G, one has to 
decide whether G has a unique optimal (that is, largest) clique. UOCLIQUE 
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is clearly in pNP[O(logn)J. Papadimitriou and Zachos [PZ83] asked whether UO
CLIQUE is complete for pNP[O(logn)J, and this is still an open problem. The 
problems whether a given graph has a unique maximum independent set (UOIS) 
or a unique minimum vertex cover (UOVC) are easily shown to be many-one 
equivalent to UOCLIQUE, and hence, the precise complexity of all these prob
lems is also open. 

Another well studied set is USAT, the set with formulas that have exactely 
one satisfying assignment. As an upper bound, USAT is in DP, the class of sets 
that are the difference of two NP sets. But it is not known to be complete for DP. 
Blass and Gurevich (BG82] showed that USAT is complete for DP if and only if 
it is hard for NP. Furthermore, they constructed an oracle such that USAT is not 
complete for DP. Note, however, that Valiant and Vazirani (VV86] showed that 
USAT is NP hard under randomized many-one reductions. As a lower bound, 
USAT is coNP hard, but it is not known to belong to coNP. In fact, USAT is 
not in coDP, unless the Polynomial Hierarchy collapses [CKR95]. It is widely 
conjectured that USAT is an "intermediate" problem with respect to coNP and 
DP, i.e., that it is not complete for DP and does not belong to coNP. 

In this paper, we will give some evidence that all the above problems are 
not complete for the respective classes, pNP[O(log n)] and DP. We will do this by 
connecting these problems to a general tool: Proof Systems. 

1.3 Proof Systems 

A satisfying assignment for a Boolean formula is, in some sense, a proof that 
the formula is satisfiable. That the assignment indeed is a satisfying one can be 
checked in polynomial time. Furthermore, such assignments can be computed in 
FPNP. In the definition below, we essentially allow to vary the complexity of the 
checking process. 

Definition 1. Let C be a class of sets and :F be a class of functions. A set L has 
(polynomially) bounded C-checkable proofs in :F, if there exist a polynomial p, 
a set C E C, and a function f E :F such that IJ(x)I ~ p(lxl) for all x, and 
furthermore 

x EL ==} (x,f(x)) EC 

x ~ L ==} Vy (IYI ~ p(lxl)) (x, y) ~C. 

The pair ( C, :F) is called a proof-system for L. A class of sets JC has a ( C, :F) 
proof-system if every set in JC has a (C,:F) proof-system. 

As a first example, clearly NP has a (P, ppNP) proof-system. In Section 1.1, 
we asked whether Fsat n FP~P # 0. A positive answer clearly implies that NP 

has a (P,FP~P) proof-system. However, it is not even known whether NP has a 

(coNP, FP~P) proof-system. 
Intuitively, we have the following trade-off: a more powerful function class 

can put more information into a proof of membership which makes this proof 
easier to check. Symmetrically, a more powerful class for checking proofs can 
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compute more information by itself and hence a weaker kind of function class 
suffices to generate these proofs. 

In Section 3, we will construct an oracle relative to which NP does not have 
a ( coNP, FPriP) proof-system. Hence, relative to this oracl~ Fsat n FPriP = 0 · 

In Section 4 we make a connection to the completeness issue of UOCLIQUE 
' NP (and UOIS and UOVC). We will see that UOCLIQUE has a (coNP,FP11 ) proof-

system. Thus, if UOCLIQUE is complete for pNP(O(logn)J, then pNP[O(logn)J, 
and hence NP, has a (coNP,FPrip) proof-system, violating the above oracle. 
Moreover, when considering sets known to be pNP(O(logn)] complete, we observe 
the following trade-off: 

1. For a natural candidate :F of proofs that can indeed be checked in coNP, we 
show that F n FPriP -:/= 0 if and only if Fsat n FPftP i= 0 (Theorem 13). 

2. The proofs generated by FP~P complete functions can be checked in DP, 
but not in coNP, unless NP= coNP (Theorem 14). 

Both results add some more evidence to the incompleteness of UOCLIQUE. 
In Section 5, we show that USAT has a (coNP,NPSV) proof-system. There

fore, if USAT is complete for DP then NP has a (coNP,FPriP) proof-system. 
This again violates the above oracle 

We conjecture that pNP[O(logn)] does not have a (coNP, FPrip) proof-system, 
and hence, that Fsat n FPriP = 0 and that UOCLIQUE and USAT are not com
plete for pNP[O(logn)] and DP, respectively. However, non-relativizing techniques 
are necessary to finally settle these questions. 

2 Preliminaries 

We follow the standard definitions and notations in computational complexity 
theory (see, e.g., [BDG-I&II, HU79]). We fix an alphabet to E = {O, l}; by a 
string we mean an element of E*, and by a language we mean a subset of E*. 
For a language L, we denote Las the complement of L, and for a class C of 
languages, coC ={LILE C }. For any string x, let lxl denote the length of x. 
The standard lexicographical ordering of E* is used. We consider a standard one
to-one pairing function from E* x E* to E* that is computable and invertible 
in polynomial time. For inputs x and y, we denote the output of the pairing 
function by (x, y); this notation is extended to denote every n tuple. 

For our computation model, we consider a standard Turing machine model. 
P (NP) denote the classes of languages that are accepted by a polynomial-time 
deterministic (nondeterministic) Turing machine. E and NE are the analogous 
classes for exponential time 20(n). FP is the class of polynomial-time computable 
functions. By using oracle machines, one can define relativized classes like pNP 
and ppNP, where the P, resp. FP machine has in addition some NP oracle it can 
query. We consider several restriction of the oracle access mechanism. In general, 
a polynomial-time bounded machine can ask polynomially many questions (with 
respect to the input length) to its oracle. By pNP[O(Iog n)] and FPNP[O(log n)J, we 
denote the classes where the P, resp. FP machine asks only logarithmically many 



79 

questions to its oracle. By PfiP and FPfiP, we denote the classes where the P, 
resp. FP machine makes the queries non-adaptive, i.e. queries may not depend 
on answers to previous queries. For the language classes these two restrictions 
yield the same class, i.e., pNP[O(logn)] = Pfip (H89]. For the function classes, 

we only have an inclusion, namely ypNP[O(log n)] ~ FPfiP and equality seems 
unlikely unless the Polynomial Hierarchy collapses [Be88, Se94, To91]. 

The Polynomial Hierarchy is defined as NP U NPNP U NPNpNP U ... . 

The Exponential Hierarchy is defined as E U NE U NENP U NENpNP u ... . 
The Boolean Hierarchy is the closure of NP under the Boolean operations 

union, intersection, and complement. A subclass of the Boolean Hierarchy is 
DP [PY84]. 

L E DP <==> 3A, B E NP : L = A - B. 

When considering reductions between sets, we take the standard many-one 
reduction. Hard and complete sets (for some class) are also defined via many-one 
reductions. 

Reductions between functions can be defined as follows. Krentel [Kr86] in
troduced the metric reduction. Let f, g be functions. 

This clearly captures the idea of being able to compute f(x) from one call to g. 
We extend this definition to classes of functions F and G. Note that there are 

many possibilities for such an extension (see [BKT94, CT91, FHOS93, WT93]). 
We take the following. 

This is a weak reduction because we don't require that all functions in F can be 
computed with the help of some function from G. There only have to be some 
FP transducers that, no matter which function from G is used, compute some 
function in F. 

3 Proof-Systems for NP 

In this section, we address the question whether NP has a (coNP,FPfiP) proof
system. We observe first that NP cannot have a (coNP,FPNP[O(logn)]) proof
system, unless NP = coNP. Suppose an NP set L has such a proof-system, then 
a coNP machine can accept L by first enumerating all the (polynomially many) 
potential proofs of membership of the ypNP[O(log n)] function (i.e., without asking 
the oracle) and then check whether one of them actually is a proof of membership. 

Proposition2. If NP has a (coNP,FPNP[O(Iogn)]) proof-system then NP = 
coNP. 
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Next, we will show the existence of an oracle relative to which NP does not 
have a ( coNP, FPfiP) proof-system. We do this by studying properties of the Ex
ponential Hierarchy. This hierarchy behaves strange in various ways (compared 
with, say, the Polynomial Hierarchy). It is for example not known whether it 
possesses the downward separation property, that is, whether E = NE implies 
that the whole hierarchy collapses to E. Another unresolved issue is the follow
ing. Suppose that NE is contained in E/lin3• Does this imply that NE = coNE? 
We have the following connection: 

Lemma3. If NP has a ( coNP, FPfiP) proof-system and NE ~ E/lin then NE = 
coNE. 

However, there exists an oracle such that NE~ Eflin but still NE f:. coNE. 

Theorem4. There exists an oracle A such that NEA ~ EA /1 and NEA 'I 
coNEA. 

Proof. (Sketch) We will borrow techniques from lmpagliazzo and Tardos [IT89]. 
We use the following test language. LA ={on I 'Vy,yl <I. A, IYI :$ 2n}. LA E 
coNEA for all A. We have to construct A such that LA <J. NEA. We will use the 
information theoretical lower bound on the X -search problem to do this. We 
take a setting of the y 's of length 2n in such a way that no strategy that searches 
for one y can do this with a small number of parallel rounds [IT89]. Next we code 
in o<:i:,e,l>2 EA if and only if< x, e, l >E KA = { < x, e, l >I M: accepts x in l . 
steps }, a NEA complete set, assuming that the odd strings yl of length 2n are 
in A, according to this setting. However we will not lyet) put these strings, ie the 
yl's, in A. Next we diagonalize against the nth NE machine M:(on). Suppose 
M:(on) rejects. In this case we have diagonalized since on ELA. However KA 
might not be coded correctly. We will see below that this is not a problem. On 
the other hand if M:(on) accepts, then we put in yl's according to the setting 
of the lower bound of the X-search problem. The lower bound guarantees that 
the leftmost accepting path of M:(on) can not query .one of the yl's put into 
the oracle. Hence this path will keep accepting, but on <j. LA. It remains to show 
that NE ~ E /1. The one bit of advice for strings of length n will code what 
action we took in stage n (i.e., whether we put in the strings ly or not). Suppose 
we want to know whether < x, e, l >E KA. If we put in the strings yl then KA 
is coded correctly and we can query whether the code for < x, e, l > is in A. On 
the other hand if we did not put in the yl's the coding of KA may be wrong. 
However for every oracle machine e there exists another oracle machine e' such 
that e' simulates e but whenever it queries a string of the form yl (of length 
2n) it assumes that this string is not in the oracle. Morover we can generate e' 
from e in exponential time. Hence in this case we query whether the code for 
< x, e', l > is in A. A complete proof will appear in the final version of this 
paper. 

Since the proof of Lemma 3 relativizes, we conclude that, relative to the 
oracle constructed in Theorem 4, the first assumption in Lemma 3 cannot hold. 

3 Eflin is the class of sets that can be recognized in exponential time with a linear 
amount of advice for all strings of length n 
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Corollary 5. There is an oracle relative to which 

1. NP does not have a ( coNP, FPriP) proof-system. 

2. NP does not have a (P, FPfiP) proof-system, and 

If one could compute satisfying assignments within FPriP, this would pro

vide a (P, FPriP) proof-system for NP. Hence, a (sloppy) way of putting Corol
lary 5 (2) is that there is an oracle relative to which one cannot compute satis
fying assignments within FPrip. 

Finally, we observe that in order to show that NP does not have a 
(coNP,FPfiP) proof-system, it suffices to show that pNP(O(logn)) does not have 

a ( coNP, FPriP) proof-system. 

Theorem6. NP has a (coNP,FPriP) proof-system if and only if pNP(O(logn)) 

has a (coNP,FPr) proof-system. 

Proof. Suppose that NP has coNP checkable proofs in FPfiP. Let L = L(MA) 

for some P machine M and some set A in NP, and let f E FPfiP be a proof 
genera.ting function for A. 

We define a function g E FPriP that generates proofs for L that a.re coNP
checkable. Let x E E* and let Y1, ... , Yk E E* be the queries of machine M on 
input x to its oracle A. Then we define 

where Wi = f (Yi), if Y• E A, and Wi = O, if Yi (j. A, for i = 1, ... , k. (We assume 
w.l.o.g. that f is always different from o.i 

Since f E FPriP, we also have g E FP 11 P. Furthermore, for each i = 1, ... , k, 
we can check in coNP whether Yi E A, if Wi f:. 0 by assumption, and also whether 
Yi (j. A, if Wi = 0. Therefore, the set C = { (x, w) ix E Land g(x) = w} is in 
coNP. Thus C and g show that Lhasa (coNP, FP11 P) proof-system. 

4 On the Completeness of UOCLIQUE 

Optimization problems such as computing the shortest traveling salesman tour 
or the size of the largest clique are known to be complete for FPNP and 
FPNP[O(logn)l, respectively [Kr86]. Papadimitriou considered a decision version 
by asking whether those optimal solutions are unique. The motivation for this 
might be that in order to decide uniqueness there is no way a.round to solve, 
somehow implicit, the underlying optimization problem. Hence, these decision 
problems are expected to be hard for the corresponding complexity classes, i.e., 
pNP and pNP(O(logn)J. In fact, Pa.pdimitriou [P84] showed that the Unique Op
timal Traveling Salesman Problem is complete for pNP. Papadimitriou and Za
chos [PZ83] asked whether the Unique Optimal Clique Problem (UOCLIQUE) 
is complete for pNP(O(log n)J. However, this is still an open problem. Since Unique 
Optimal Independent Set (UOIS) and Unique Optimal Vertice Cover (UOVC) 
are many-one equivalent to UOCLIQUE, this question can be extended to these 
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two problems. In contrast, Krentel [Kr86] and Wagner [W86] showed that Odd
CLIQUE, i.e., the problem to decide whether the maximum clique of a graph 
has an odd number of vertices, is complete for pNP[O(logn)J. 

Definition 7. UMaxSAT is the set of Boolean formulas in conjunctive normal 
form with the property that all assignments that satisfy the maximum number 
of clauses happen to satisfy the same set of clauses. 

Kadin [Ka88] showed that UMaxSAT is complete for pNP[O(logn)J. Consider 

the standard reduction from SAT to CLIQUE (see for example [HU79)). Sup
pose, for some CNF formula cp E UMaxSAT, that at most k clauses are satisfiable 
at the same time. Note that there can be several assignments satisfying those 
k clauses. But each such assignment will give a different k clique in the con
structed graph. Hence, this construction doesn't provide necessarily a unique 
optimal clique. When we restrict UMaxSAT even further by requiring that there 
is exactly one such optimal assignment, then the reduction works. 

Definition 8. UMaxASAT is the set of Boolean formulas in conjunctive normal 
form that have one assignment that satisfies strictly more clauses than any other 
assignment. 

We have already seen that UMaxASAT s,;:. UOCLIQUE. But in fact, these 
two problems are equivalent. 

Theorem 9. UMaxASAT =:;:, UOCLIQUE. 

Hence, we are asking whether UMaxASAT is complete for pNP[O(Iog n)J. We 

will show that we can distinguish UMaxASAT and UMaxSAT by the complexity 
of the proof-systems for these sets. Let us start with UMaxASAT. 

Definition 10. 

{ 
the assignment that satisfies 

fuMaxASat(cp) = most of the clauses of cp, if x E UMaxASAT, 
..L, otherwise. 

First of all, we note that f UMaxASat is computable with parallel queries to NP, 
i.e., f UMaxASat E FPfiP. Moreover, whether some given assignment for a formula 
cp is indeed the unique one satisfying most of the clauses of cp can be checked in 

coNP, i.e., the set C = { (cp,a) I cp E UMaxASAT and fuMaxASat('P) =a} is in 
coNP, in fact it is coNP complete. 

Proposition 11. UMaxASAT and UOCLIQUE have a ( coNP, FPriP) proof
system. 

Recall that relative to the oracle constructed in Theorem 4, pNP[O(Iogn)J does 
not have a (coNP,FPriP) proof-system. Loosely speaking, it follows that UO

CLIQUE and UMaxASAT are not complete for pNP[O(Iog n)J relative to that 
oracle. 

FuMaxSat, the class of functions that give some assignment that satisfies the 
unique maximum number of clauses of a given formula, is the natural class for 
generating proofs for UMaxSAT. For UMaxASAT, we have 
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Proposition 12. UMaxSAT has a (coNP,FuMazSat) proof-system. 

It is not clear what the complexity of FuMazSat is. Especially, it is not known 
whether there is some function in FuM=Sat that is computable with parallel 
queries to NP, i.e., whether FuMa:i:Sat n FPfiP -:f. 0. 

Since UMaxSAT is complete for pNP[O(Iogn)] it follows 
that FuMaxSat n FPfiP I 0 implies that pNP(O(logn)J, and hence NP, has a 

( coNP, FPfiP) proof-system. Therefore, relative to the oracle of Theorem 4, we 

have FuMa:i:Sat n FPrip = 0. 
It follows from the next theorem that FuMa:i:Sat n FPriP =f. 0 not only im

plies a ( coNP, FPfiP) proof-system for pNP(O(log n)J, but even a (P, FPfiP) proof
system for NP, and, by Theorem 6, for pNP(O(Iogn)J. 

Theorem 13. FuMaxSat n FPrip =f. 0 -{::::::} Fsat n FPrip =f. 0. 

The above results indicate the difference between UMaxASAT (and UO
CLI QUE) on one side and UMaxSAT on the other: it seems that we need a 
more powerful function class to compute proofs for UMaxSAT than for UMax
ASAT in order to have these proofs coNP checkable. At least in some relativized 
world, this in fact holds. On the other hand, when we restrict the proof generat
ing functions to be in FPriP, we will see below that there exist proof systems for 
which the checking can be done in DP. In fact, the checking will be DP complete. 

If some Boolean formula 1.p is in UMaxSAT, it is not clear how to compute 
such a maximum assignment with parallel queries to NP. But the weaker infor
mation, which clauses are satisfied by such a maximum assignment can indeed 
be computed in FPfiP. Let r.p consist of m clauses Ci, i.e., r.p = /\"::_1 Ci. Then 
we define 

{

(i1 1 ••• ,ik),if1.pEUMaxSAT, l:'.S:i1 <···<ik:'.S:m, and 
h _ some assignment that satisfies most of the 

UM=SAT('P) - clauses of r.p satisfies exactly clauses Ci1 , •• ·, Ci,,, 
1-, otherwise. 

huMaxSAT captures the whole power of FPfiP: it is FPfiP complete. Fur
thermore, the proofs generated by huMaxSAT can be checked in DP, but not in 
coNP unless the Polynomial Hierarchy collapses. It follows that UMaxSAT has 
a (DP, FPfiP) proof-system. 

Theorem 14. (1) huMaxSAT is FPriP complete, 

(2) C = { (ip, y) I 1.p E UMaxSAT and huMaxSAT('P) = y} is DP complete. 

We will present similar results for other pNP(O(Iogn)] complete sets in the full 
version of the paper. In summery, whenever some function in FPfiP generates 
proofs of membership for one of the known pNP(O(Iog n)J complete sets, checking 
such a proof requires the computational power of DP. On the other hand, proofs 
for UMaxASAT can be checked within coNP, we take this fact as some more 
evidence that UMaxASAT and UOCLIQUE are not complete for pNP(O(logn)J. 
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5 On the Completeness of USAT 

We connect the question whether NP and pNP[O(logn)] have a (coNP,FP~P) 
proof-system with the question whether USAT is complete for DP. We start by 
considering some classes that indeed have such proof-systems. 

Definition 15. A set A is in UP if there exists a nondeterministic polynomial
time bounded Turing machine M that has at most one accepting path for each 
input and L(M) =A. A function f is in FUP if there exists a nondeterministic 
polynomial-time bounded Turing transducer that has at most one accepting path 
for each input x and outputs f(x). 

Proposition 16. (1) UP has a (P, FUP) proof system, 
(2) USAT has a (coNP,FP~P) proof system. 

As already mentioned in Section 1.2, USAT is complete for DP if 
SAT~!:, USAT. It follows from Proposition 16 ~) that SAT 5'!:, USAT im
plies that NP has coNP-checkable proofs in FPfl . Recall that the latter is not 
true relative to the oracle in Theorem 4. 

We show below that the assumption that SAT~!:, USAT even implies that 
NP has coNP-checkable proofs in NPSV. Assume the stronger hypothesis on 
the reduction from SAT to USAT, that there is a function h E FP that many
one reduces SAT to USAT in such a way that from any cp E SAT and the 
unique satisfying assignment of h(cp) one can compute in polynomial time some 
satisfying assignment of cp. We show that under this hypothesis NP = UP which, 
by Proposition 16, is equivalent with NP having a (P,FUP) proof system. Note 
that FUP ~ NPSV. 

Theorem17. (1) SAT~!:, USAT ==> NP has a (coNP,NPSV) proof-system, 
(2) Fsa.t ~f~ f usat ==> Fsat n FUP =/:- 0 ==> NP= UP. 

Proof. We show (2). The proof of (1) is an easy modification. We show the first 
implication, the second one is trivial. Let ti, t2 E FP reduce Fsat to f US at, i.e., 
the function t2 ( cp, f US at ( ti ( cp))) is in Fsa.t. 

Consider the nondeterministic polynomial-time transducer M in Figure 1. 
We describe M on input r.p. 

We claim that M outputs exactly one satisfying assignment on some path, 
if cp E SAT, and makes no output, if cp ft SAT. To see this, let us first assume 
cp r;f. SAT. Since M will not find a satisfying assignment for cp, M will reject 
on all paths in line 4. Now, assume that cp E SAT. Then there exist satisfying 
assignments, say { ai, ... , ak} for r.p, for some k ~ 1. First, M will find all the ai 's 
on different computation paths and then compute t 1(cp). Note that ti(cp) is in 
USAT, since otherwise fusat(t1(cp)) = ..L; but this is not possible since t 2 (r.p, ..L) 
is not a satisfying assignment for cp as already checked in line 1. Hence, for each 
of the k paths where M found some a., there will be exactly one path where 
M will find the unique satisfying assignment b of t 1(cp). Now, by assumption, 
t2(cp, b) =a; for some j E {1, ... , k}. Finally, M will output a; in line 9 on the 
unique path where a; was found in line 3 and reject on all other paths in line 
10. Hence, Mis a FUP transducer for SAT. This proves the theorem. 



85 

M(r.p) 

1 if tz(r.p, 1-) is a satisfying assignment of <p then output t2(r.p, 1-) 
2 else 
3 guess an assignment a for r.p 
4 if a does not satisfy r.p then reject 
5 else 
6 guess an assignment b for t 1 ( r.p) 
7 if b does not satisfy t1 ( r.p) then reject 
8 else 
9 if tz(r.p, b) =a then output a 

10 else reject. 

Fig. 1. FUP transducer computing satisfying assignments. 

Since FUP ~ NPSV, we conclude from [HNOS94] that the assumptions 
Fsa.t ::::;[_~ fusa.t and Fsa.t n FUP ::j:. 0 both imply that the Polynomial Hier
archy collapses. Note, however, that it is not known whether the assumption 
NP = UP implies a collapse of the Polynomial Hierarchy. Therefore it would be 
interesting to know whether some of the implications in Theorem 17 are in fact 
equivalences. 

Corollary 18. If Fsa.t s;f ,!r f USa.t, then the Polynomial Hierarchy collapses. 
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