
The Complexity of Generating and Checking
Proofs of Membership

Harry Buhrman*1 and Thomas Thierauf

1 CWI. PO Box 94079, 1090 GB Amsterdam, The Netherlands
E-mail: buhrman@cwi.nl

2 Abt. Theoretische Informatik, Universitii.t Ulm, 89069 Ulm, Germany
E-mail: thierauf@informatik.uni-ulm.de

Abstract. We consider the following questions:
1. Can one compute satisfying assignments for satisfiable Boolean for

mulas in polynomial time with parallel queries to NP?
2. Is the unique optimal clique problem (UOCLIQUE) complete for

pNP[O(logn)J?

3. Is the unique satisfiability problem (USAT) NP hard?
We define a framework that enables us to study the complexity of gen
erating and checking proofs of membership. We connect the above three
questions to the complexity of generating and checking proofs of mem
bership for sets in NP and pNP[O(logn)J. We show that an affirmative an
swer to any of the three questions implies the existence of coNP checkable
proofs for pNP[O(Iogn)J that can be generated in FPfiP. Furthermore, we
construct an oracle relative to which there do not exist coNP checkable
proofs for NP that are generated in FPfiP. It follows that relative to this
oracle all of the above questions are answered negatively.

1 Introduction

We give more background for the questions mentioned in the abstract.

1.1 Generating Satisfying Assignments

Satisfiability - SAT for short - is the set of satisfiable Boolean formulas. In the
early seventies Cook and independently Levin [Co71, Le73] showed that SAT is
NP complete. In order to prove P different from NP, many researchers have tried
to reveal the computational complexity of SAT.

However, SAT is a decision problem and in most practical circumstances we
are not only interested in the knowledge that a solution exists, but we want
to compute the solution, in this case a satisfying assignment, as well. There
fore, another fundamental task in computational complexity is to determine the
complexity of the construction problem for NP complete sets.

* Part of this research was done while visiting the Univ. Politecnica de Catalunya
in Barcelona. Partially supported by the Dutch foundation for scientific research
(NWO) through NFI Project ALADDIN, under contract number NF 62-376

76

As an upper bound, it is known that such solutions can be computed in
FPNP, the class of functions computable in polynomial time with access to an
oracle in NP. This can be achieved by either doing a binary search or a prefix
computation on the solution space using an appropriately chosen set in NP as
an oracle.

Is there a better way to compute solutions for sets in NP? Consider the
following subclasses of FPNP.

- FPr, the class of functions in FPNP that can be computed by making
nonadaptive queries to NP, that is, all the queries must be written down
before any answers are received from the oracle, and

- NPSV, the class of functions that can be computed by single-valued non
deterministic polynomial-time bounded transducers, that is, on each path
where the transducer produces some output, it produces the same output.

Hence, we are especially asking whether it is possible to compute some solution
for a given NP complete set in FPfiP or in NPSV. Note that NPSV ~ FPriP.

Define the function class Faat by

f F J() _ {some satisfying assignment of cp, if r.p E SAT,
E sat {:::::? 'P - l.. otherwise

' '
where l.. means that the function is undefined at that point.

As already mentioned, Fsat n ppNP # 0. In fact, Krentel [Kr86] showed that
the lexicographically smallest satisfying assignment is complete for FPNP. One
of the main open problems [WT93, HNOS94, Og95, BKT94] at this point is the
following question: Can satisfying assignments be computed with nonadaptive
queries to NP. In other words, is Fsat n FPriP = 0?

Some progress has been made. Hemaspaandra et.al. [HNOS94] showed that
one cannot compute satisfying assignments in NPSV, unless the Polynomial
Hierarchy collapses, This result has been improved recently by Ogihara [Og95]
who showed that Fsat n FPNPSV[c log(n)) = 0, for c < 1, unless the Polynomial
Hierarchy collapses. It is conjectured that an analog result holds with respect
to FPriP. In this paper, we construct an oracle where FPriP n Fsat = 0. On the
other hand, Fortnow [Fo94], extending a result of Watanabe and Toda [WT93],
constructed an oracle relative to which FPriP n Faat # 0, and the Polynomial
Hierarchy is infinite. This indicates that non-relativizing techniques are needed
to settle this question.

1.2 Completeness of UOCLIQUE and USAT

pNP and pNP(O(log n)) are the classes of sets that can be recognized with polyno
mial, respectively log(n), many queries to an NP oracle. For many optimization
problems, deciding certain properties of an optimal solution is complete for either
pNP[O(logn)) or pNP [PZ83, W86, W90].

Consider the UOCLIQUE problem, where, for a given graph G, one has to
decide whether G has a unique optimal (that is, largest) clique. UOCLIQUE

77

is clearly in pNP[O(logn)J. Papadimitriou and Zachos [PZ83] asked whether UO
CLIQUE is complete for pNP[O(logn)J, and this is still an open problem. The
problems whether a given graph has a unique maximum independent set (UOIS)
or a unique minimum vertex cover (UOVC) are easily shown to be many-one
equivalent to UOCLIQUE, and hence, the precise complexity of all these prob
lems is also open.

Another well studied set is USAT, the set with formulas that have exactely
one satisfying assignment. As an upper bound, USAT is in DP, the class of sets
that are the difference of two NP sets. But it is not known to be complete for DP.
Blass and Gurevich (BG82] showed that USAT is complete for DP if and only if
it is hard for NP. Furthermore, they constructed an oracle such that USAT is not
complete for DP. Note, however, that Valiant and Vazirani (VV86] showed that
USAT is NP hard under randomized many-one reductions. As a lower bound,
USAT is coNP hard, but it is not known to belong to coNP. In fact, USAT is
not in coDP, unless the Polynomial Hierarchy collapses [CKR95]. It is widely
conjectured that USAT is an "intermediate" problem with respect to coNP and
DP, i.e., that it is not complete for DP and does not belong to coNP.

In this paper, we will give some evidence that all the above problems are
not complete for the respective classes, pNP[O(log n)] and DP. We will do this by
connecting these problems to a general tool: Proof Systems.

1.3 Proof Systems

A satisfying assignment for a Boolean formula is, in some sense, a proof that
the formula is satisfiable. That the assignment indeed is a satisfying one can be
checked in polynomial time. Furthermore, such assignments can be computed in
FPNP. In the definition below, we essentially allow to vary the complexity of the
checking process.

Definition 1. Let C be a class of sets and :F be a class of functions. A set L has
(polynomially) bounded C-checkable proofs in :F, if there exist a polynomial p,
a set C E C, and a function f E :F such that IJ(x)I ~ p(lxl) for all x, and
furthermore

x EL ==} (x,f(x)) EC

x ~ L ==} Vy (IYI ~ p(lxl)) (x, y) ~C.

The pair (C, :F) is called a proof-system for L. A class of sets JC has a (C, :F)
proof-system if every set in JC has a (C,:F) proof-system.

As a first example, clearly NP has a (P, ppNP) proof-system. In Section 1.1,
we asked whether Fsat n FP~P # 0. A positive answer clearly implies that NP

has a (P,FP~P) proof-system. However, it is not even known whether NP has a

(coNP, FP~P) proof-system.
Intuitively, we have the following trade-off: a more powerful function class

can put more information into a proof of membership which makes this proof
easier to check. Symmetrically, a more powerful class for checking proofs can

78

compute more information by itself and hence a weaker kind of function class
suffices to generate these proofs.

In Section 3, we will construct an oracle relative to which NP does not have
a (coNP, FPriP) proof-system. Hence, relative to this oracl~ Fsat n FPriP = 0 ·

In Section 4 we make a connection to the completeness issue of UOCLIQUE
' NP (and UOIS and UOVC). We will see that UOCLIQUE has a (coNP,FP11) proof-

system. Thus, if UOCLIQUE is complete for pNP(O(logn)J, then pNP[O(logn)J,
and hence NP, has a (coNP,FPrip) proof-system, violating the above oracle.
Moreover, when considering sets known to be pNP(O(logn)] complete, we observe
the following trade-off:

1. For a natural candidate :F of proofs that can indeed be checked in coNP, we
show that F n FPriP -:/= 0 if and only if Fsat n FPftP i= 0 (Theorem 13).

2. The proofs generated by FP~P complete functions can be checked in DP,
but not in coNP, unless NP= coNP (Theorem 14).

Both results add some more evidence to the incompleteness of UOCLIQUE.
In Section 5, we show that USAT has a (coNP,NPSV) proof-system. There

fore, if USAT is complete for DP then NP has a (coNP,FPriP) proof-system.
This again violates the above oracle

We conjecture that pNP[O(logn)] does not have a (coNP, FPrip) proof-system,
and hence, that Fsat n FPriP = 0 and that UOCLIQUE and USAT are not com
plete for pNP[O(logn)] and DP, respectively. However, non-relativizing techniques
are necessary to finally settle these questions.

2 Preliminaries

We follow the standard definitions and notations in computational complexity
theory (see, e.g., [BDG-I&II, HU79]). We fix an alphabet to E = {O, l}; by a
string we mean an element of E*, and by a language we mean a subset of E*.
For a language L, we denote Las the complement of L, and for a class C of
languages, coC ={LILE C }. For any string x, let lxl denote the length of x.
The standard lexicographical ordering of E* is used. We consider a standard one
to-one pairing function from E* x E* to E* that is computable and invertible
in polynomial time. For inputs x and y, we denote the output of the pairing
function by (x, y); this notation is extended to denote every n tuple.

For our computation model, we consider a standard Turing machine model.
P (NP) denote the classes of languages that are accepted by a polynomial-time
deterministic (nondeterministic) Turing machine. E and NE are the analogous
classes for exponential time 20(n). FP is the class of polynomial-time computable
functions. By using oracle machines, one can define relativized classes like pNP
and ppNP, where the P, resp. FP machine has in addition some NP oracle it can
query. We consider several restriction of the oracle access mechanism. In general,
a polynomial-time bounded machine can ask polynomially many questions (with
respect to the input length) to its oracle. By pNP[O(Iog n)] and FPNP[O(log n)J, we
denote the classes where the P, resp. FP machine asks only logarithmically many

79

questions to its oracle. By PfiP and FPfiP, we denote the classes where the P,
resp. FP machine makes the queries non-adaptive, i.e. queries may not depend
on answers to previous queries. For the language classes these two restrictions
yield the same class, i.e., pNP[O(logn)] = Pfip (H89]. For the function classes,

we only have an inclusion, namely ypNP[O(log n)] ~ FPfiP and equality seems
unlikely unless the Polynomial Hierarchy collapses [Be88, Se94, To91].

The Polynomial Hierarchy is defined as NP U NPNP U NPNpNP U

The Exponential Hierarchy is defined as E U NE U NENP U NENpNP u
The Boolean Hierarchy is the closure of NP under the Boolean operations

union, intersection, and complement. A subclass of the Boolean Hierarchy is
DP [PY84].

L E DP <==> 3A, B E NP : L = A - B.

When considering reductions between sets, we take the standard many-one
reduction. Hard and complete sets (for some class) are also defined via many-one
reductions.

Reductions between functions can be defined as follows. Krentel [Kr86] in
troduced the metric reduction. Let f, g be functions.

This clearly captures the idea of being able to compute f(x) from one call to g.
We extend this definition to classes of functions F and G. Note that there are

many possibilities for such an extension (see [BKT94, CT91, FHOS93, WT93]).
We take the following.

This is a weak reduction because we don't require that all functions in F can be
computed with the help of some function from G. There only have to be some
FP transducers that, no matter which function from G is used, compute some
function in F.

3 Proof-Systems for NP

In this section, we address the question whether NP has a (coNP,FPfiP) proof
system. We observe first that NP cannot have a (coNP,FPNP[O(logn)]) proof
system, unless NP = coNP. Suppose an NP set L has such a proof-system, then
a coNP machine can accept L by first enumerating all the (polynomially many)
potential proofs of membership of the ypNP[O(log n)] function (i.e., without asking
the oracle) and then check whether one of them actually is a proof of membership.

Proposition2. If NP has a (coNP,FPNP[O(Iogn)]) proof-system then NP =
coNP.

80

Next, we will show the existence of an oracle relative to which NP does not
have a (coNP, FPfiP) proof-system. We do this by studying properties of the Ex
ponential Hierarchy. This hierarchy behaves strange in various ways (compared
with, say, the Polynomial Hierarchy). It is for example not known whether it
possesses the downward separation property, that is, whether E = NE implies
that the whole hierarchy collapses to E. Another unresolved issue is the follow
ing. Suppose that NE is contained in E/lin3• Does this imply that NE = coNE?
We have the following connection:

Lemma3. If NP has a (coNP, FPfiP) proof-system and NE ~ E/lin then NE =
coNE.

However, there exists an oracle such that NE~ Eflin but still NE f:. coNE.

Theorem4. There exists an oracle A such that NEA ~ EA /1 and NEA 'I
coNEA.

Proof. (Sketch) We will borrow techniques from lmpagliazzo and Tardos [IT89].
We use the following test language. LA ={on I 'Vy,yl <I. A, IYI :$ 2n}. LA E
coNEA for all A. We have to construct A such that LA <J. NEA. We will use the
information theoretical lower bound on the X -search problem to do this. We
take a setting of the y 's of length 2n in such a way that no strategy that searches
for one y can do this with a small number of parallel rounds [IT89]. Next we code
in o<:i:,e,l>2 EA if and only if< x, e, l >E KA = { < x, e, l >I M: accepts x in l .
steps }, a NEA complete set, assuming that the odd strings yl of length 2n are
in A, according to this setting. However we will not lyet) put these strings, ie the
yl's, in A. Next we diagonalize against the nth NE machine M:(on). Suppose
M:(on) rejects. In this case we have diagonalized since on ELA. However KA
might not be coded correctly. We will see below that this is not a problem. On
the other hand if M:(on) accepts, then we put in yl's according to the setting
of the lower bound of the X-search problem. The lower bound guarantees that
the leftmost accepting path of M:(on) can not query .one of the yl's put into
the oracle. Hence this path will keep accepting, but on <j. LA. It remains to show
that NE ~ E /1. The one bit of advice for strings of length n will code what
action we took in stage n (i.e., whether we put in the strings ly or not). Suppose
we want to know whether < x, e, l >E KA. If we put in the strings yl then KA
is coded correctly and we can query whether the code for < x, e, l > is in A. On
the other hand if we did not put in the yl's the coding of KA may be wrong.
However for every oracle machine e there exists another oracle machine e' such
that e' simulates e but whenever it queries a string of the form yl (of length
2n) it assumes that this string is not in the oracle. Morover we can generate e'
from e in exponential time. Hence in this case we query whether the code for
< x, e', l > is in A. A complete proof will appear in the final version of this
paper.

Since the proof of Lemma 3 relativizes, we conclude that, relative to the
oracle constructed in Theorem 4, the first assumption in Lemma 3 cannot hold.

3 Eflin is the class of sets that can be recognized in exponential time with a linear
amount of advice for all strings of length n

81

Corollary 5. There is an oracle relative to which

1. NP does not have a (coNP, FPriP) proof-system.

2. NP does not have a (P, FPfiP) proof-system, and

If one could compute satisfying assignments within FPriP, this would pro

vide a (P, FPriP) proof-system for NP. Hence, a (sloppy) way of putting Corol
lary 5 (2) is that there is an oracle relative to which one cannot compute satis
fying assignments within FPrip.

Finally, we observe that in order to show that NP does not have a
(coNP,FPfiP) proof-system, it suffices to show that pNP(O(logn)) does not have

a (coNP, FPriP) proof-system.

Theorem6. NP has a (coNP,FPriP) proof-system if and only if pNP(O(logn))

has a (coNP,FPr) proof-system.

Proof. Suppose that NP has coNP checkable proofs in FPfiP. Let L = L(MA)

for some P machine M and some set A in NP, and let f E FPfiP be a proof
genera.ting function for A.

We define a function g E FPriP that generates proofs for L that a.re coNP
checkable. Let x E E* and let Y1, ... , Yk E E* be the queries of machine M on
input x to its oracle A. Then we define

where Wi = f (Yi), if Y• E A, and Wi = O, if Yi (j. A, for i = 1, ... , k. (We assume
w.l.o.g. that f is always different from o.i

Since f E FPriP, we also have g E FP 11 P. Furthermore, for each i = 1, ... , k,
we can check in coNP whether Yi E A, if Wi f:. 0 by assumption, and also whether
Yi (j. A, if Wi = 0. Therefore, the set C = { (x, w) ix E Land g(x) = w} is in
coNP. Thus C and g show that Lhasa (coNP, FP11 P) proof-system.

4 On the Completeness of UOCLIQUE

Optimization problems such as computing the shortest traveling salesman tour
or the size of the largest clique are known to be complete for FPNP and
FPNP[O(logn)l, respectively [Kr86]. Papadimitriou considered a decision version
by asking whether those optimal solutions are unique. The motivation for this
might be that in order to decide uniqueness there is no way a.round to solve,
somehow implicit, the underlying optimization problem. Hence, these decision
problems are expected to be hard for the corresponding complexity classes, i.e.,
pNP and pNP(O(logn)J. In fact, Pa.pdimitriou [P84] showed that the Unique Op
timal Traveling Salesman Problem is complete for pNP. Papadimitriou and Za
chos [PZ83] asked whether the Unique Optimal Clique Problem (UOCLIQUE)
is complete for pNP(O(log n)J. However, this is still an open problem. Since Unique
Optimal Independent Set (UOIS) and Unique Optimal Vertice Cover (UOVC)
are many-one equivalent to UOCLIQUE, this question can be extended to these

82

two problems. In contrast, Krentel [Kr86] and Wagner [W86] showed that Odd
CLIQUE, i.e., the problem to decide whether the maximum clique of a graph
has an odd number of vertices, is complete for pNP[O(logn)J.

Definition 7. UMaxSAT is the set of Boolean formulas in conjunctive normal
form with the property that all assignments that satisfy the maximum number
of clauses happen to satisfy the same set of clauses.

Kadin [Ka88] showed that UMaxSAT is complete for pNP[O(logn)J. Consider

the standard reduction from SAT to CLIQUE (see for example [HU79)). Sup
pose, for some CNF formula cp E UMaxSAT, that at most k clauses are satisfiable
at the same time. Note that there can be several assignments satisfying those
k clauses. But each such assignment will give a different k clique in the con
structed graph. Hence, this construction doesn't provide necessarily a unique
optimal clique. When we restrict UMaxSAT even further by requiring that there
is exactly one such optimal assignment, then the reduction works.

Definition 8. UMaxASAT is the set of Boolean formulas in conjunctive normal
form that have one assignment that satisfies strictly more clauses than any other
assignment.

We have already seen that UMaxASAT s,;:. UOCLIQUE. But in fact, these
two problems are equivalent.

Theorem 9. UMaxASAT =:;:, UOCLIQUE.

Hence, we are asking whether UMaxASAT is complete for pNP[O(Iog n)J. We

will show that we can distinguish UMaxASAT and UMaxSAT by the complexity
of the proof-systems for these sets. Let us start with UMaxASAT.

Definition 10.

{
the assignment that satisfies

fuMaxASat(cp) = most of the clauses of cp, if x E UMaxASAT,
..L, otherwise.

First of all, we note that f UMaxASat is computable with parallel queries to NP,
i.e., f UMaxASat E FPfiP. Moreover, whether some given assignment for a formula
cp is indeed the unique one satisfying most of the clauses of cp can be checked in

coNP, i.e., the set C = { (cp,a) I cp E UMaxASAT and fuMaxASat('P) =a} is in
coNP, in fact it is coNP complete.

Proposition 11. UMaxASAT and UOCLIQUE have a (coNP, FPriP) proof
system.

Recall that relative to the oracle constructed in Theorem 4, pNP[O(Iogn)J does
not have a (coNP,FPriP) proof-system. Loosely speaking, it follows that UO

CLIQUE and UMaxASAT are not complete for pNP[O(Iog n)J relative to that
oracle.

FuMaxSat, the class of functions that give some assignment that satisfies the
unique maximum number of clauses of a given formula, is the natural class for
generating proofs for UMaxSAT. For UMaxASAT, we have

83

Proposition 12. UMaxSAT has a (coNP,FuMazSat) proof-system.

It is not clear what the complexity of FuMazSat is. Especially, it is not known
whether there is some function in FuM=Sat that is computable with parallel
queries to NP, i.e., whether FuMa:i:Sat n FPfiP -:f. 0.

Since UMaxSAT is complete for pNP[O(Iogn)] it follows
that FuMaxSat n FPfiP I 0 implies that pNP(O(logn)J, and hence NP, has a

(coNP, FPfiP) proof-system. Therefore, relative to the oracle of Theorem 4, we

have FuMa:i:Sat n FPrip = 0.
It follows from the next theorem that FuMa:i:Sat n FPriP =f. 0 not only im

plies a (coNP, FPfiP) proof-system for pNP(O(log n)J, but even a (P, FPfiP) proof
system for NP, and, by Theorem 6, for pNP(O(Iogn)J.

Theorem 13. FuMaxSat n FPrip =f. 0 -{::::::} Fsat n FPrip =f. 0.

The above results indicate the difference between UMaxASAT (and UO
CLI QUE) on one side and UMaxSAT on the other: it seems that we need a
more powerful function class to compute proofs for UMaxSAT than for UMax
ASAT in order to have these proofs coNP checkable. At least in some relativized
world, this in fact holds. On the other hand, when we restrict the proof generat
ing functions to be in FPriP, we will see below that there exist proof systems for
which the checking can be done in DP. In fact, the checking will be DP complete.

If some Boolean formula 1.p is in UMaxSAT, it is not clear how to compute
such a maximum assignment with parallel queries to NP. But the weaker infor
mation, which clauses are satisfied by such a maximum assignment can indeed
be computed in FPfiP. Let r.p consist of m clauses Ci, i.e., r.p = /\"::_1 Ci. Then
we define

{

(i1 1 ••• ,ik),if1.pEUMaxSAT, l:'.S:i1 <···<ik:'.S:m, and
h _ some assignment that satisfies most of the

UM=SAT('P) - clauses of r.p satisfies exactly clauses Ci1 , •• ·, Ci,,,
1-, otherwise.

huMaxSAT captures the whole power of FPfiP: it is FPfiP complete. Fur
thermore, the proofs generated by huMaxSAT can be checked in DP, but not in
coNP unless the Polynomial Hierarchy collapses. It follows that UMaxSAT has
a (DP, FPfiP) proof-system.

Theorem 14. (1) huMaxSAT is FPriP complete,

(2) C = { (ip, y) I 1.p E UMaxSAT and huMaxSAT('P) = y} is DP complete.

We will present similar results for other pNP(O(Iogn)] complete sets in the full
version of the paper. In summery, whenever some function in FPfiP generates
proofs of membership for one of the known pNP(O(Iog n)J complete sets, checking
such a proof requires the computational power of DP. On the other hand, proofs
for UMaxASAT can be checked within coNP, we take this fact as some more
evidence that UMaxASAT and UOCLIQUE are not complete for pNP(O(logn)J.

84

5 On the Completeness of USAT

We connect the question whether NP and pNP[O(logn)] have a (coNP,FP~P)
proof-system with the question whether USAT is complete for DP. We start by
considering some classes that indeed have such proof-systems.

Definition 15. A set A is in UP if there exists a nondeterministic polynomial
time bounded Turing machine M that has at most one accepting path for each
input and L(M) =A. A function f is in FUP if there exists a nondeterministic
polynomial-time bounded Turing transducer that has at most one accepting path
for each input x and outputs f(x).

Proposition 16. (1) UP has a (P, FUP) proof system,
(2) USAT has a (coNP,FP~P) proof system.

As already mentioned in Section 1.2, USAT is complete for DP if
SAT~!:, USAT. It follows from Proposition 16 ~) that SAT 5'!:, USAT im
plies that NP has coNP-checkable proofs in FPfl . Recall that the latter is not
true relative to the oracle in Theorem 4.

We show below that the assumption that SAT~!:, USAT even implies that
NP has coNP-checkable proofs in NPSV. Assume the stronger hypothesis on
the reduction from SAT to USAT, that there is a function h E FP that many
one reduces SAT to USAT in such a way that from any cp E SAT and the
unique satisfying assignment of h(cp) one can compute in polynomial time some
satisfying assignment of cp. We show that under this hypothesis NP = UP which,
by Proposition 16, is equivalent with NP having a (P,FUP) proof system. Note
that FUP ~ NPSV.

Theorem17. (1) SAT~!:, USAT ==> NP has a (coNP,NPSV) proof-system,
(2) Fsa.t ~f~ f usat ==> Fsat n FUP =/:- 0 ==> NP= UP.

Proof. We show (2). The proof of (1) is an easy modification. We show the first
implication, the second one is trivial. Let ti, t2 E FP reduce Fsat to f US at, i.e.,
the function t2 (cp, f US at (ti (cp))) is in Fsa.t.

Consider the nondeterministic polynomial-time transducer M in Figure 1.
We describe M on input r.p.

We claim that M outputs exactly one satisfying assignment on some path,
if cp E SAT, and makes no output, if cp ft SAT. To see this, let us first assume
cp r;f. SAT. Since M will not find a satisfying assignment for cp, M will reject
on all paths in line 4. Now, assume that cp E SAT. Then there exist satisfying
assignments, say { ai, ... , ak} for r.p, for some k ~ 1. First, M will find all the ai 's
on different computation paths and then compute t 1(cp). Note that ti(cp) is in
USAT, since otherwise fusat(t1(cp)) = ..L; but this is not possible since t 2 (r.p, ..L)
is not a satisfying assignment for cp as already checked in line 1. Hence, for each
of the k paths where M found some a., there will be exactly one path where
M will find the unique satisfying assignment b of t 1(cp). Now, by assumption,
t2(cp, b) =a; for some j E {1, ... , k}. Finally, M will output a; in line 9 on the
unique path where a; was found in line 3 and reject on all other paths in line
10. Hence, Mis a FUP transducer for SAT. This proves the theorem.

85

M(r.p)

1 if tz(r.p, 1-) is a satisfying assignment of <p then output t2(r.p, 1-)
2 else
3 guess an assignment a for r.p
4 if a does not satisfy r.p then reject
5 else
6 guess an assignment b for t 1 (r.p)
7 if b does not satisfy t1 (r.p) then reject
8 else
9 if tz(r.p, b) =a then output a

10 else reject.

Fig. 1. FUP transducer computing satisfying assignments.

Since FUP ~ NPSV, we conclude from [HNOS94] that the assumptions
Fsa.t ::::;[_~ fusa.t and Fsa.t n FUP ::j:. 0 both imply that the Polynomial Hier
archy collapses. Note, however, that it is not known whether the assumption
NP = UP implies a collapse of the Polynomial Hierarchy. Therefore it would be
interesting to know whether some of the implications in Theorem 17 are in fact
equivalences.

Corollary 18. If Fsa.t s;f ,!r f USa.t, then the Polynomial Hierarchy collapses.

Acknowledgments

We benefitted from discussions with Manindra Agrawal, Lance Fortnow, Toni
Lozano, and Jacobo Toran.

References

[BDG-I&II] J. Balcazar, J. Diaz, and J. Gabarro. Structural Complexity I & II.
EATCS Monographs on Theoretical Computer Science, Springer-Verlag (1988,
1991)

[Be88] Beigel, R.: NP-hard sets are P-superterse unless R = NP. Technical Report
88-04, Dept. of Computer Science, The John Hopkins University (1988).

[BG82] Blass, A., Gurevich, Y.: On the unique satisfiability problem. Information and
Control 55 (1982) 80-88

[BKT94] Buhrman, H., Kadin, J., Thierauf, T.: On functions computable with non
adaptive queries to NP. Proc. 9th Structure in Complexity Theory Conference
(1994) 43-52

[CKR95] Chang, R., Kadin, J., Rohatgi, P.: On Unique Satisfiability and the thresh
hold behavior of randomized reductions. Journal of Computer and System Science
50 (1995) 359-373.

[Co71) Cook, S.: The Complexity of Theorem-Proving Procedures. Proc. 3rd ACM
Symposium on Theory of Computing (1971) 151-158

86

(CT91] Chen, z., Toda, S.: On the Complexity of Computing Optimal Solutions.
International Journal of Foundations of Computer Science 2 (1991) 207-220

[CT93] Chen, Z., Toda, S.: An Exact Characterization of FPriP. Manuscript (1993)

(FHOS93] Fenner, S., Homer, S., Ogiwara, M., Selman, A.: On Using Oracles That
Compute values. 10-th Annual Symposium on Theoretical Aspects of Computer
Science, Springer Verlag LNCS 665 (1993) 398-407

(Fo94] Fortnow, L.: Personal Communication. In the plane to Madras (India) (De
cember 7, 1994)

(H89] Hemachandra, L.: The strong exponential hierarchy collapses. Journal of Com
puter and System Sciences 39(3) (1989) 299-322

[HNOS94] Hemaspaandra, L., Naik, A., Ogihara, M., Selman, A.: Finding Satisfying
Assignments Uniquely Isn't so Easy: Unique Solutions Collapes the Polynomial
Hierarchy. Algorithms and Compuatation, International Symposium ISAAC '94,
Springer Verlag LNCS 834 (1994) 56-64

(HU79] Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley {1979)

[IT89] lmpagliazzo, R., Tardos, G.: Decision Versus Search Problems in Super
Polynomial Time. Proc. 30th IEEE Annual Symposium on Foundations of Com
puter Science {1989) 222-227

[Ka88] Kadin, J .: Restricted Turing Reducibilities and the Structure of the Polynomial
Time Hierarchy. PhD thesis, Cornell University {1988)

[Kr86] Krentel, M.: The Complexity of Optimization Problems. Proc. 18th ACM
Symposium on Theory of Computing (1986) 69-76

[Le73] Levin, L.: Universal Sorting Problems. Problems of Information Transmission
9 (1973) 265-266

[Og95] Ogihara, M.: Functions Computable with Limited Access to NP. Technical
Report 538, University of Rochester (1995)

[P84] Papadimitriou, C.: On the complexity of unique solutions. Journal of the ACM
31(2) (1984) 392-400

[PY84] Papadimitriou, C., Yannaka.kis, M.: On the complexity of facets. Journal of
Computer and System Sciences 28 {1984) 244-259

[PZ83] Papadimitriou, C., Zachos, D.: Two remarks on the power of counting. 6th GI
Conference on TCS, Springer Verlag LNCS 145 {1983) 269-276

[Se94] Selman, A.: A taxonomy of complexity classes of functions. Journal of Com
puter and System Science 48 {1994) 357-381.

[To91] Toda S.: On polynomial-time truth-table reducibilities of intractable sets to
P-selective sets. Mathematical Systems Theory 24 (1991) 69-82.

[VV86] Valiant, L., Vazirani, V.: NP is as easy as detecting unique solutions. Theo
retical Computer Science 47(1) (1986) 85-93

[W86] Wagner, K.: More complicated questions a.bout maxima and minima and some
closure properties of NP. Proc. 13th International Colloquium on Automata, Lan
guages, and Programming (ICALP), Springer Verlag LNCS 226 (1986) 53-80

[W90] Wagner, K.: Bounded query classes. SIAM Journal on Computing 19(5) {1990)
833-846

[WT93] Watanabe, 0., Toda,S.: Structural Analysis on the Complexity of Inverse
Functions. Mathematical Systems Theory 26 {1993) 203-214

