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CHAPTER 6

RIEMANNIAN GRADIENT ALGORITHMS FOR
RECURSIVE IDENTIFICATION

6.1. Introduction

In previous chapters we have seen that the set of stochastic linear systems of
fixed McMillan degree n, which have no zeroes on the unit circle, forms a
differentiable manifold. In chapter 4 we have seen that it is not possible to
use only one parametrization.

There are several possibilities to handle this. One approach is to identify
the structural indices (Kronecker indices) first and then to identify the
parameters within the set of all stochastic systems with those structural
indices. (Even then the set of parameters is not a coordinate chart in
general, but only some open subset of Euclidean space). Another approach is to
use socalled overlapping parametrizations. (cf.[Glo-Wi], [Ove-Lj], [Gui 811,
[cla]l, i.a.).

Especially for recursive identification this is an important approach because
one does not have to decide a priori which structure to fix: one can switch
on-line from one parametrization to another. In this chapter we will present
an algorithm that uses overlapping parametrizations. It is desirable in such
an algorithm that its behaviour does not depend, or at least not very much, on
the actual choice of the parametrization at each time. Elsewhere we have
started to work out a version of the algorithm that is completely independent
of the choice of the parametrization at each time (cf. [Hnz 85b]).

In this chapter we will construct and analyze an algorithm that is (only)
asymptotically independent of the choice of parametrization, and apart from
that it does not depend very much on the choice of the parametrization at each
time, especially if the stepsize is small. We obtain this property by using a
socalled Riemannian gradient. As is well-known, on a differentiable manifold a
gradient is only defined with respect to a Riemannian metric. It is obtained
by premultiplying the gradient in terms of local coordinates (i.e. a chosen
parametrization) with the inverse of the Riemannian metric tensor. (see e.g.
[Ab-M]). However, for us this is not the basic argument to use a Riemannian
gradient. The basic argument is that it has the steepest ascent property: it
optimizes the increment of the objective function over all steps of fixed

(small) length over all possible directions. The length of such a step should be
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measured in the model space, and not in the arbitrary parametrization at hand,

because the parametrization is only an instrument to describe the model space,
and nothing more. We will try to clarify this argument by way of an example.

Consider a (standard) gradient method

(6.1-1) bey1 = B¢ ~ 3¢ %’

for a stochastic linear model with parameters 6. The criterion function V
depends on the parameters only in so far as V depends on the covariances {Fk}
(otherwise the problem would not be identifiable). If a parametrization is
such that at certain points, the {Fk} will be (rather) insensitive to certain
parameter changes, one can expect in general, that V will also be rather
insensitive to such parameter changes. This can be so even if V is not
insensitive to changes of the {Tk} in the corresponding directions! As a

simple example, consider the following scalar maximum likelihood problem:

X4l ax, + bwt,

(6.1-2) =x +d.v
t t’

<
|

vy,w, standard white noise. The log-likelihood of the observations

{Yoayls---,yT} is equal to
(6.13) V= 30| T(D |=5(3 7 s+ s3I T (y ooy
2 270712 T [ IO
where
1 a a2 ce. @
b2 . T-1 )
- - a a ... a
(6.1-4) T(T) 1—32 . . : +d IT+1'
aT e e e e . 1
Then
v _ 1 -13I(T)
3 = -'ztr[r(T) —'a—b—‘] +
(6.1-5)

1 -13T(T) -1 T
+ 5(Y 5T s s Yp)I(T) 5 T(T) (YT seeesyp)
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The partial derivative %%—is given by a similar formula. Now consider these

formulas at a = 0: then

_ ar(T) _ ar(T) _
(6.1-6) 3 " 2bIT+l and —3d - 2dIT+l'

Therefore the partial derivative of V in the direction (a,b,d) = (0,d,-b)

at a = 0, is

oV LY
(6.1-7)  dgy = byg = 0.

It follows that in a neighbourhood of a point (ao =0, bo,do), V will be
rather insensitive to parameter changes in the direction (a,b,d) = (O,do—bo).
Therefore the gradient method described above is not likely to go in such a
direction even if V increases substantially in such a direction as a function
of the covariances. A solution to these problems is obtained by using a

Riemannian gradient.

Our basic objective in this chapter is to show that one can construct a

recursive identification algorithm on a manifold of stochastic linear systems,
which has asymptotic properties similar to those of corresponding algorithms
on an open (or at least with non-empty interior) Euclidean parameter space
(i.e. €R x R x...x R). Or to put it concisely our basic objective is to show
that 'one can do system identification on a manifold'. As our point of
departure we have chosen for Ljung's prediction error algorithm for recursive
identification. For a description see e.g. [Lj 81], [Lj-S6d]. We have chosen
for the simplest version. Once it is understood how such an algorithm can be
transformed to a Riemannian gradient algorithm on a manifold, it should not be
very difficult to generalize to less simple versions. To be sure, the simplest
version is already quite complicated.

One assumption that we make is rather crucial, especially for the convergence
analysis of the algorithm, namely that our manifold is compact (and without
boundary in the sense of manifold theory, cf. [Boo], p.l1 and around p. 250).
For manifolds this assumption is often made, and there are many examples of
such manifolds, e.g. a sphere (of any dimension). Although compactness appears
to be rather crucial for the algorithm and its convergence properties, this
appears not to be the case for the assumption that the manifold has no

boundaries. If one has a compact manifold with boundaries, analogous results
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are expected. The only problem.is that the algorithm for such a case has to be
constructed such that if the algorithm reaches the boundary of the manifold,
then the next change in parameter is constrained and must not point outside
the manifold with boundary. This gives rise to some technical problems that we
do not want to go into here. Therefore we assume there are no such boundaries.
Because of this, we do not need to have an analogue of the 'projection
facility' that is needed in Ljung's prediction error algorithm, and which
complicates the algorithm and its analysis (cf. [Lj-S&d]).

The major part of this chapter is taken up by the convergence analysis of the
algorithm. One of the reasons for the length of the analysis is that it turned
out not to be easily possible (at least for this author) to simply generalize
the proofs that exist for the non-manifold case. Instead we had to come up
with a new complete proof. It is based on the socalled o.d.e.-method (see e.g.
[Lj 771, [Lj-S6d]). In this method of analysis the asymptotic properties of
the algorithm are shown to be related to the properties of an ordinary
differential equation (o.d.e). To obtain the object that satisfies the o.d.e.
we follow the method of [Ku-Cl], (esp. chapter II). Their main idea is to
apply a well-known theorem from topological analysis known as the Arzela-
Ascoli theorem ,to a set of interpolation curves of‘the parameterpoints
produced by the algorithm. It is a limit point of this set of interpolation
curves that satisfies the o.d.e. In [Ku-Cl], p. 19, it is stated that 'the
basic idea is simply an extension of the compactness technique as used to
construct solutions to ordinary differential equations (cf. [Co-Lel, pp. 42-
45)'. Kushner and Clark treat some applications of their methods to system
identification ([Ku-Cl), pp. 88-98). Once we have established the o.d.e. we
can draw rather strong conclusions, thanks to the construction of the solution
of the o.d.e. It turns out that our algorithm converges to a compact connected
set of critical points of the objective function Vg. Of course the objective
function is constant on such a set. This implies that if the critical points
of Vg are all isolated, then the algorithm converges to a critical point. In
distinction to the theorems of [Lj 77] there are no assumptions needed about

the actual behaviour of the algorithm to reach this conclusion. To be more

specific: [Lj 77) requires the sequence of parameter points generated by the
algorithm to return to a certain set infinitely often, and only under that
assumption guaranteed convergence is obtained. We do not need such an

assumption.
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In section 6.2 the algorithm is presented. In section 6.3 we present a
refinement of the cover of the manifold which is needed for the analysis. In
section 6.4 the asymptotic behaviour of the stepsizes and the times of
coordinate-change is analyzed. In section 6.5 some spaces of interpolation
curves are presented, their topological and metrical structure are treated and
the relation with the algorithm is explained. One of the main difficulties we
found on our way was to deal with probability-one convergence, and the sets of
exceptional events of measure zero. All this is discussed in section 6.6. One
of the important properties of the algorithm and of the system—to-be-
identified is the asymptotic stability of the dynamic matrices involved.
Because of this, the behaviour of the algorithm at points of time that lie far
apart tend to be almost independent. To make this precise we define certain
so—called 'exponential decay' properties, and prove some theorems about them.
We hope that these concepts will turn out to be useful for other analyses as
well. Together with its implications for convergence of the algorithm, this is
treated in section 6.7. In section 6.8 we finally arrive at the associated
ordinary differential equation, and in section 6.9 we draw the conclusions
that follow from the o.d.e. for the convergence properties of the algorithm,

We end the chapter with some final remarks in section 6.10.

6.2. Description of the algorithm
6.2.1. The model set
From theorem (4.8-8) we know that the set of all stochastic systems (4.8-1),

with fixed McMillan degree and a fixed number m of output components, which
have an innovations representation with asymptotically stable inverse, forms a
differentiable manifold, diffeomorphic to Mm,a,f

m,n,m
diffeomorphism of theorem (4.8-8), we will identify a stochastic system with

x Pos(m). Fixing the

the corresponding element of Mﬁ’i’i x Pos(m), if there 1s no danger of

confusion. Our model set will be of the form M x Pos(m), with M a compact

submanifold of Mm,a,f. To avoid additional technical complications we assume M

3

’
to be a manifold without boundary (in the sense of manifold theory, cf. e.g.

[Boo]). An example of such a space is a sphere (but not a ball). The true

model (8,Q) will be assumed to lie in the model set:

(6.2.1-1)  (8,8) € M x Pos(m).
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Our attention will focus on ideritifying % e M. (In fact, once B is identified,
one can estimate § by standard procedures, see (6.2.2-4)). Together with M
there exists the corresponding (induced) state bundle E and a corresponding

principal fibre bundle L. These are defined as follows:

_ e m,a,f
(6.2.1-2) E := {y ¢ Ml,m’n’mlw(y) e M},
m,a,f
(6.2.1-3) L := {(A,B,C) ¢ Lm:n,m[[(A,B,C)] e M}

(cf. section 4.6, esp. remark 4.6-7).

The manifold M is made into a Riemannian manifold by defining a Riemannian
metric on its tangent bundle TM. This can be done as described in chapter 5,
although the constructions and results in this chapter hold for an arbitrary
Riemannian metric.

The problem to be considered is to constructNand analyze a recursive

identification algorithm to identify 8 (and Q) in the model set M(x Pos(m)).

6.2.2. Prediction error algorithms.

The algorithm that will be constructed is a generalization of the well-known
prediction error algorithm (cf. [Lj 81], [Lj~-S&6d1, [Lj 78]). Before describing
the generalization in the following subsections, let us briefly review the
standard prediction error algorithm.

To be able to apply it, one has to choose, and therefore be able to specify a
parameter set 0 ¢ Rd, and a smooth mapping

£

(6.2.2-1) o » L::”: oo O—>(A(8),B(8),C(0))

s

with the following two properties:

(i) 6 is an open subset of Rd, or has at least a non-empty interior. If 0 has

a non-empty boundary in Rd, the standard prediction error algorithm has built-
in a socalled projection facility to see to it that the sequence of parameter

estimates that is produced by the algorithm remains within 6. However, because
this will not be needed in our algorithm, we will not go into that here.

(ii) The composition of the mapping (6.2.2-1) with g, i.e. the mapping
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o—>[(A(8),B(8),C(0))] € M3+ f is injective.
m,n,m

If 8 € © is believed to be the true parameter value, then the corresponding
prediction yt(e) of ¥y will be given by the filter

(6.2.2-2) ,{xtflfe) = (A(8)-B(8)C(8))x,(8) + B(B)y,,

y,(8) = C(8)x,(8).

The corresponding prediction error is

(6.2.2-3) et(e) =y, - ;t(e).

Note that the covariance matrix @ does not occur in these formulas. If
6 = 3, the true parameter value, then © can be estimated consistently by the

sample covariance matrix

-~

(6.2.2-4) Q :=

e B ]

e, (e (O

1
T a1

t

The idea behind the prediction error algorithm is to try to minimize with

respect to 6 the expected sum of squares V of the prediction errors:

(6.2.2-5) v(8) = %Eﬂst(e)ﬂz.

From the properties of the steady state Kalman filter it follows that V(8)
has a unique global minimum at ¢ = § (cf. [An-M]). So if V(9) were known, a
method to find the minimum would be the well-known gradient algorithm

=g -
(6.2.2-6) 6, = 8, = 35(8,),

or more generally

6 =60

-1 3v
ki1 = O T R (8) T 558y,

where Rk(ek) is some nonsingular (weighting) matrix, usually positive definite
symmetric. The gradient is given by
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] , v aeI(e) :
(6.2.2-7) —aE=E—ae—.Et(e)-

The expectation, both in (6.2.2-5) and (6.2.2-7), is taken with respect to the
true probability measure, which depends on § and %. They are unknown,

so V(8) and %%—are unknown.

A technique to handle such a situation is the socalled stochastic
approximation method (cf. e.g. [Ku-Cl], [Lj 81], [Lj-Séd], and the references
given there). The idea of this method is to replace (6.2.2-6) by

_laeg<ek)
(6.2.2-8) ek+1 = ek - akRk(ek) *-sg"*et(ek),
where {ak}k:k is a sequence of positive numbers, tending to zero and adding
o

up to infinity. One lets {ak} converge to zero to help 'asymptotically cancel'
the noise effects; having the sequence sum to infinity is usually necessary
for convergence to the 'right' point or set. ([Ku-Cl], p.6). (The role of the
parameter t in (6.2.2-8) is perhaps somewhat obscure but we will return to
that shortly). From the filter (6.2.2-2), (6.2.2-3), for et(e) one can derive
the filter equations for the d x m matrix of partial derivatives

Bez(e)

EL]
(compare (6.2.2-2), to keep the notation more transparent we drop the

. Let ei, i=1,2,...,d, denote the components of the vector §. One has

argument 9)

,

= (A- +
X (A BC)xt Byt,
X 9x
t“iLl - —a—i(A—BC).xt + (A-BC).—F + 33—1-.yt,
30 30 ; 30 38
(6.2.2-9) <
=-Cx +
e. e T Ve
aet . aC . - c th
) el t Th

This can be written in vector/matrix notation, as follows. Let

9x, 9X 9x e
gT = (x ,——E,——E,...;——E), the extended state vector; V¥ :=-——E,
t t 1 2 d it i

36~ 236 36 a6

T T T

T T
i=1,2,...,d, then (Et’wlt’WZt""’wdt) is the (extended) output vector of
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T - Bef(e)
the f o= =
e filter, and wt : [Wlt WZt ee wdt] YH
Furthermore let
r A-BC 0 e e e e 0 ]
315:%91 A-BC :
36 :
(6.2.2-10) F(8) := —9“‘———'—}239 0 :
96 : :
. 0
3(A-BC
-S——:;—l 0 S 0 A-BC
L 38 J
- B
9B I
= o]
96
(6.2.2-11) G(8) :=| . y K :=| .|, and
9B (0]
d
- 38
-C 0 0 see (o]
-2 0 .
391
(6.2.2-12) H(B) := *
N ;
EL:) . T
° 0
aC
-3 0 cee 0 ~-C
L 86 -

Note that F(9) is asymptotically stable, because A — BC = A(9) - B(8)C(8) is
asymptotically stable, for all 6 ¢ 0. The filter (6.2.2-9) in vector/matrix

notation is:

Epl = F(e)gt + G(e)yt,
€t
AR
1t |
(6.2.2-13 || v ) H(e)gt + Ky, -
2t
¥
Ldt
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6.2.2-14. Remark. The state space dimension of this filter is n(d+l). In
[Gu-Me] it is shown that the McMillan degree of this filter is in general
smaller than or equal to n(m+l). So if d > m the representation (6.2.2-13) is
not minimal, and could in principle be replaced by a minimal representation.

We will not go further into this here.

Now if we take (6.2.2-8) as it stands, then the filter (6.2.2-13) has to be

run over and over again, once for each ek’ to compute et(ek) and WE(ek), for a

fixed value of t, and with different input sequences {yT}E (preferably
independent) in each run. However, we want a recursive progedure, that adapts
the parameter estimate on-line. Therefore one proceeds, more or less
heuristically, in a 'diagonal' fashion by putting t = k in the formulas. In
this way the following algorithm is obtained called the recursive prediction

error algorithm

=F +
€t+l (et)it G(et)yt’
1
€t
y
1t
¥y |= H + Ky ,
(6.2.2-15) || ¥2¢ (008, + Ky,
.
y
dt |
.. =6 -a R.(8) ‘v
Opq1 T B 73 Re(8) ¥y
L Oe+1 = Op41o

with unspecified initial conditions on gt and 5t . Note that we have
o o

replaced €, in (6.2.2-13) by e, in (6.2.2-15) to make absolutely clear that it
is not a prediction error under the hypothesis of some parameter point, but

just an auxiliary quantity in the algorithm.

6.2.2-16. Remarks. (i) Usually {at} is taken such that, besides the conditions
mentioned before, it is square summable. The standard example for such a

sequence is



(6.2.2-17) a B >0, 8>0, t> to:

-
t  (t-t )+
(o]

If the contrary is not explicitly stated, we will assume that {at} satisfies

this extra condition.

(ii) The coupling equation 6, = 6, is introduced here explicitly for two

reasons: (a) in the convergence analysis of the algorithm, it will be

necessary to 'delete' the coupling equation and to investigate the resulting
(data-dependent) map
mk—) )
{6,), — 16,1,
o o
(b) the coupling equation will be generalized (see section 6.2.9).

6.2.3. Differences between the new r.p.e. algorithm and the standard one

In this section we want to list the changes in the algorithm that will be made

to obtain what we call a Riemannian gradient recursive prediction error

algorithm that uses overlapping parametrizations, or, alternatively, a

Riemannian gradient r.p.e. algorithm for manifolds of linear stochastic

systems. In the introduction (section 6.2.1) we already mentioned some of the
arguments and ideas that are used in the construction of this algorithm.

The equations in the new algorithm deviate from the one presented in the
previous section in several respects. Because our parameter space is a
manifold, the parameter points will be described by local coordinates. In fact
we need local coordinates of the state bundle, because we use the state space

in our algorithm. Because of all this the following must be done.

(i) It must be described when and how the algorithm has to change from
operating in one coordinate chart to another, and what the topological
structufe of the coordinate charts has to look like. This will be
treated in section 6.2.4. ) )

(ii) The algorithm equations have to be written down in local coordinates.
This is treated in section 6.2.5.

(iii) Furthermore, because we work on a manifold, we have to use a more
general definition of the concept 'gradient', namely the so-called

Rieﬁannian gradient. This is worked out in section 6.2.6.
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(iv) 1If a coordinate change takes place, then a transformation of all
relevant variables has to take place. The rules of transformation have
to be described. This will be done in section 6.2.7.

(v) For several reasons we need to make sure that the stepsizes of the steps
taken in the algorithm are bounded. In practice this will usually be the
case, because of the 'physical bounds' of the problem under
consideration. Therefore this is mainly a theoretical problem. On the
other hand we want to stick to our assumptions and construct the
algorithm such that the stepsizes are bounded indeed. We do not want to
'assume away' the problems by making alternative assumptions about the
true model. Therefore we are led into an, alas (and hopefully only for
the moment) somewhat unelegant way to assure that the stepsizes are
bounded. The reason for the way in which this is done is that this
affects the probabilistic structure not too much. (Otherwise the proofs
would become (even) more complicated). This will be treated in section
6.2.8. (The proof that the procedure presented indeed leads to a bounded
stepsize will be given in section 6.4).

Having treated (i) - (v), we will be able to write down the complete set of

equations of the new algorithm. This will be done in section 6.2.9.

6.2.4. The structure of the coordinate charts and the coordinate changes in

the algorithm.
By definition, any manifold is covered by a set of coordinate charts. In our

algorithm we shall make use of such a cover. However, we shall need a cover
with a special structure. Making use of the compactness of the manifold M we
will be able to show that there will always exist a cover with the required
structure.

There are four conditions that we require for the cover {C.|j€J} of the
manifold M. Thé first condition is that the cover is finite, i.e. |J] < w. The
second one is that it consists of coordinate charts of M, i.e. there are
smooth injective coordinate maps ¢j: Cj > Rd. The third one is that it
consists of coordinate charts of the state bundle over M, or, equivalently, of
the corresponding principal bundle L over M, cf. (6.2.1-3). This third
condition means that for each chart Cj in the cover, there will exist a

smooth, injective coordinate map zj of the bundle L:
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¢j: Cj X Gzn(R) + L

(e,T)F—a(TA(e,j)T_l,TB(e,j),C(B,j)T-l).

Taking T = I, one obtains a smooth cross section

C,»L
J

e*—>(A(B,j),B(B,j),C(e,j)),

that will be useful. The fourth condition is somewhat more complicated. We

first state a definition.

” 1
6.2.4-1, Definition. A set {(Cj,cj,c,)lj e J} will be called a nucleus—double-
shell (n.d.s.) cover of the manifold M if

Al
(1) Cj, Ci and Cj are open for all j e J,

1
(ii) uv C, =M, UC,=Mand U C, =M,
jeJ d jeJ J jed J
- ’ -t
(iii) C, € C, € C, € C, or each j ¢ J.
1= 3= 3= 1
"
For each j ¢ J, CJ is called the nucleus, C \ CJ is called the first or inner
shell and CJ\ CJ is called the second or outer shell.
The fourth condition is that there exists an n.d.s.-cover
{(C C ,C. )'J € J}. Note that because the cover {C,. |J € J} satisfies the
previous three conditions, the same holds for the covers {C |] e J} and
{C |J e J}.
We will show that there always exists a cover which satisfies these four
conditions. We need the following lemma. (This is standard topology and holds

in fact for all paracompact manifolds).

6.2.4~2. Lemma. Let {C,Ij € J} be an open cover of coordinate charts of the
compact manifold M. Then there exists an open cover {C;‘j e J} of M with the

property:

-
6.2.4-3 C.cC, Vjeld.
( ) i= % J €
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Proof. For each x ¢ M there exists a j € J such that x € Cj and there exists

an open neighbourhood N(x) of x, such that N(x) € C.. Of course {(N(x)|x e M}

is an open cover of M. Because M is compact there egists a finite subcover
{N(xk)lk € K}, lK] < =, Let

K, = {k|N(x) < C,},
J.{kagj}

then
K= UK,.
jeJ J
. Let
' '
;= kléKjN(xk), then szCj = kiKﬁ(xk) = M.

Because each Kj is finite, it follows that

- —_—
C.= U Nx)ccC..
J keKj " J

Q.E.D.

6.2.4-4. Corollary. Let {Cj|j € J} be an open cover of coordinate charts of
" 1

the compact manifold M. Then there exists an n.d.s. cover {(Cj,cj,cj)|j e J}

of M.

Proof. Apply the previous lemma twice.

6.2.4-5. Proposition. Let M c Mﬂ’i o' be a compact manifold. There exists a
cover {C,|j e J} that satisfies Ehé four condition mentioned before, namely:
(1) |J] < =5 (ii) the Cj are coordinate charts of M; (iii) the Cy are
coordinate charts of the principal bundle L over M, (iv) there exists an

n.d.s. cover {(cj,cj,cj)|j e J}.

Proof. Because M is a manifold there is an open cover of coordinate charts
{Ca} of M and because L is a (principal) fibre bundle over M, there exists an
open cover of bundle-coordinate charts {C_} of M. Then the cover {Ca n CB} of
M clearly satisfies (ii) and (iii). Because M is compact there is a finite
subcover which we denote by {Cj|j € J},|J| < ». This cover satisfies (1), (i1)
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and (iii). Apply corollary 6.2.4~4 to obtain a corresponding n.d.s.-cover
” 1
{(Cj,Cj,Cj)|j e J}. So (iv) is also satisfied.
Q.E.D.

6.2.4-6. Notation. (i) Let ¢j: Ci *> Rd, j € J, denote coordinate mappings
N " '

corresponding to the coordinate neighbourhoods. Because cj c Ci c Cj’ ¢1 is

" ] N N

also defined on C, and C..

(ii) For each point 6 e M, let

(6.2.4-7) I ()

"
{j eJloeec.}

3
and

(6.2.4-8) I (8) :

-t
{(j eJ|ee Cj}.
Clearly
" A
J (8) € J (8) ¢ J.

6.2.4-9. Prescription. Let 6(r), r e [a,b) be a continuous curve of M. We
assign a coordinate chart C;, with index j = j(r), to each r ¢ [a,b). We
prescribe j(r) to be piecewise constant and left continuous,
and j(a) € J'(8(a)). A change of coordinates takes place at r ¢ [a,b) if and
only if 6(r) € ac;. If so, then j(r+) := 1lim j(r+e), has to be an element of
3"(8(x)). evo
The prescription is such that a certain 'inner shell' has to be crossed
completely between any two coordinate changes. It is clear that this implies
that at least a certain fixed positive distance has to be covered between any
two coordinate changes. One could call this a form of hysteresis. The
procedure can be considered as a generalization of the procedure of [Cla]. For
our results it is immaterial which nucleus CT is chosen at a change of
coordinates, provided ¢ ¢ Ct holds. To finish this subsection we give a

related proposition for later reference.

6.2.4-10. Proposition. There exists a finite cover {Ui} of M with the

following property. Let 6(r), r ¢ (a,b) ¢ R, be a continuous curve in M.

\J
Suppose we assign a coordinate chart Cj with index j = j(r) e J(6(r)) to each
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r, such that the prescription (6.2.4-9) is satisfied. [I.e. j(r) is piecewise
constant and changes at r, only if e(ro) € BCj(r ) and changes to
o
1
ield (e(ro)).] Then, if (c,d) c (a,b) is such that for some i,
{e(r)lc<r<d} c Ui’ i.e. 8(r) remains within U; for r e (c,d), then at most

one coordinate change occurs on (c,d).

Proof. Let 6 € M. Consider the compact set

u ac;) u( v 'acg).
6¢3C3 e¢ac5
Clearly, this set does not contain 6, and therefore there exists an open,
(connected) neighbourhood U of 6 in the complement of this set. It follows
that if, for some j ¢ J, U n Cg # @ then (using the connectedness of U)

" " _n ' '
Uc Cj Ve e QCj, so 6 ¢ Cj' This implies g ¢ 3C, and so U N acj = p. The

h|
conclusion is that U has the following property

"
(6.2.4=11) Vj e J: (UN cj P =>0Un ac; = 0).

(Note that 6 does not occur in this implication). The sets U = U(6), 6 ¢ M
form a cover of M. Because M is compact there exists a finite subcover that
will be denoted by {UilieI}. Each U; has the property (6.2.4-11) and therefore
if 31 € I: Vr € (c,d): 6(r) € Ui’ then at most one change of coordinates can

occur. Q.E.D.

6.2.5. On the use of local coordinates in the algorithm

First we have to introduce some notation. As described in (6.2.4-6),

¢j: Cj > Rd, j € J, denotes the coordinate mapping of the coordinate
neighbourhood Cj' If the value of j is clear from the context, we will drop
the lower index j and write ¢. With some abuse of notation,

¢j = (¢§,¢§,...,¢§)T will not only denote the mapping, but also the local
coordinates themselves. Furthermore, using a similar abuse of notation, we
will denote the smooth section defined just before (6.2.4-1), in local

coordinates by

d
$.(C.) (¢ R) » 1L,
(6.2.5-1){ 33
¢P'—’(A(¢)j))B(¢aj)) C(d),j))'
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Using this, one can take derivatives with respect to ¢1,¢2,...,¢d and define

F(é,3), G(¢,3), H(¢,3j) (and K) in complete analogy with the definitions
(6.2.2-10,11,12). The only changes are that 6 has to be replaced by ¢(eRd)
and that the index j has to be added to the notation, to replace

F(6) by F(¢,3), A(8) by A(¢,j) etc. Corresponding to this, the algorithm-
state vector Et is replaced by its local coordinates version £(t,j) (and Wt by

¥(t,j) and e(t) by e(t,j)). In fact, £(t,j) is the representation in local
coordinates of an element of the tangent bundle TE of the state bundle E (in
which, as is standard (cf. e.g. [Ko-N]) the state-vector space is identified
with its corresponding part of the tangent space TE). This element will be
denoted by Et € TE. This will play a role in the transformation formulas of a
coordinate change, that will be treated in section 6.2.7.
Now consider the equations (6.2.2-15). To generalize them to the manifold
case, we have to replace the parameter update equation, because the parameter
update equation of (6.2.2-15) makes use of addition, which is possible because
of the vector space structure of the parameter space there. Two possible
solutions to this problem present themselves. (a) One is using the geodesics
structure of the manifold (once the Riemannian metric is defined). This is
worked out, along with other things, in [Hnz 85b]. The disadvantage of this
approach is that it requires propagation of a differential equation in most
cases, instead of a simple addition. So it is more complex and it may be
computationally burdensome. (b) The other solution is simply to do the
addition in the local coordinates. In that case the parameter update equation
will be of the form

(6.2.5-2) 8504y

= ¢j(6t) - "proxy for the gradient",
at least if the right-hand side is an element of ¢j(63)' This equation will be
worked out further in the next subsections.

-

6.2.5-3. Remark. In fact, by generalizing the coupling equation et = et’
to one of the form

(6.2.5-4) 8 e B(8,,8,),

for some sequence of positive numbers {Gt}, (which has to satisfy certain
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conditions that will be specified in section 6.2.9), not only the possibility
(b) will be captured by the algorithm, but - as it appears — also possibility
(a), although this will not be shown here.

6.2.6. The Riemannian gradient

Because the parameter space in our new set-up is a manifold and not a
Euclidean space, a more general definition of the concept of the gradient of a
function will be used. For the gradient of a real valued differentiable
function to be well-defined, one needs a Riemannian metric on the manifold
(cf. e.g. [Ab-M], pp. 127-128, especially Def. 2.5.14). In chapter 5 several
Riemannian metrics on Mﬂ:i,m' were presented. By restriction to M ¢ Mz::’m,,
(which is assumed to be a smooth embedding) one obtains a Riemannian metric on
M. Which (smooth) Riemannian metric on M is chosen is immaterial for the
construction of the algorithm, as presented here, and for the theorems about
the convergence behaviour of the algorithm, that will be presented in sections
6.3 - 6.9. With respect to the local coordinates of chart Ci’ j e J, the
Riemannian metric tensor at a point & € C, is a positive definite matrix that
will be denoted by R(6,j). The Riemannianjgradient of a differentiable real-
valued function V on M is an element of the tangent bundle of M, that is given

in local coordinates by

(6.2.6-1) R(8,7) " n,
¢
J

where %!— = EYT3...,QYEJT denotes the vector of partial derivatives of V
AETE TR T

considered as a function of the local coordinates (¢§,...,¢§)T € ¢j(C§) c Rd.

It is remarkable that in the standard parameter update formula (see (6.2.2-
15)), one already finds the expression rR-! x 'proxy for vector of partial
derivatives of V'. However, the meaning of the matrix R in the standard case
is not completely clear. In the present algorithm R will be taken equal to the
Riemannian metric matrix R(68,j). In fact, one (and probably more) of the
standard choices for R in the literature can be interpreted as a Riemannian
metric tensor asymptotically (cf. [Hnz 85al).

6.2.7. The transformation rules for a coordinate change

A change of coordinates in fact means a change of coordinates of the state
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bundle, or equivalently, of the corresponding principal fibre bundle.

Therefore such a coordinate change involves the following:

(a) A change in the local coordinates representation of the parameter point

6 € M. In section 6.2.4 it is described which changes of local coordinates
are allowed in the algorithm. Suppose the change that takes place is from

63 (so 6 ¢ ac&) to CI(so eeC;), j,i € J. Then, if x = ¢j(e) € Rd denotes the

old local coordinate vector, then
(6.2.7-1) 'y =4, o ¢ (x)
i h|

is the new one, representing 6 in the new local coordinates.
To give an impression of how ¢i o ¢f1 may look, consider the

space M2 . (Of course M # M™?@  because M™2 is not compact. This is
m,n,m ,n,m m,

b
only meant as an impression, nothing more). In secticas 4.4 and 4.5 local

coordinates are constructed for this space, using a set of local, continuous

canonical forms {ca} . For a coordinate change corresponding to a change

o nice
from nice selection o to nice selection B the equivalent of the mapping in

(6.2.7-1) is the composition of mappings
(6.2.7-2)

-1 -1
z evg_gAJzLBszch» eW?—#Q A (2)0,0 B _(2),C_(2)Q) ew2H»

m

({R(Q'lAa(z)Q,Q'IBa(z)) Cy(2)Q) € Vg,

m
s(8,3))5=1°
where Q = R(Aa(z)’Ba(Z))B’ invertible, because z ¢ V;m n V;m (if not, this
coordinate change would of course be impossible). How (6.2.7-1) will look like
in detail in our case of the (compact) manifold M will depend on the specific
choice of M and on the choice of the coordinate neighbourhoods.

(b) A change of the local section of the principal fibre bundle L of the state
bundle w: E + M. In other words: instead of the mapping

Cj + L,
(6.2.723) { (806, 9),B(6,3),C(4, ),
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the mapping

(6.2.7-4)

> L,

is be going to be used.
From (a) we can see that (a) and (b) will be intimately related. In fact,
often the local coordinates ¢, for the parameter point 6 € ¢.(C,) are certain
specified entries of the matrix triple (A(6,j),B(08,3j),C(8,3j)). This is the
case for the local coordinates of M"

m,n,m
(a)). However, this is not necessarily so, and therefore we make this clear

, as specified in chapter 4 (and in
distinction.

The effect of the change from (6.2.7-3) to (6.2.7-4) can be described by a
nonsingular matrix T(6), which describes the state space basis change involved

at 0, as follows

(6.2.7-4)

(A(e,1),B(8,1),C(8,1)) = (T(e)A(e,j)T(e)-l,T(e)B(e,j),C(e,j)T(e)_l)-

To derive the transformation rule for the local coordinates representation

of £ € TE we proceed as follows. Consider a smooth local section

N(eo) cM-~+E, 0—>x(08). Its derivative with respect to 6 at eo is an element
of TE. On the other hand each element of TE can be represented by such a
section, in a coordinate independent way. In local coordinates (of the state
bundle) x(8) can be represented by x(¢j,j) € Rn, j e J(8), (formally together
with ¢j itself). Its derivative with respect to ¢j = (¢;,...,¢§)T can be
computed and ¢j, x(¢j,j)

0x (¢4, 3)

and ——3—— together represent an element in TE. The same element of TE is
3¢T
h

represented with respect to the coordinates corresponding to Ci

ax(44,1)
by ¢,,%x(¢;,1) and ————, where

3¢i

(6.2.7-5) x(¢i,i) = T(e)x(¢j,j), and so
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ax(¢,,1) : ax(¢.,3)
i’ i s
(6.2.7-6) e = 1) ]axCoy, D+ TC0) il =
3¢i 3¢i a¢i
B ' 3x(¢.,3) 3¢, B
= -E~{T(6)].x(¢j,3) + T(e).—~——ﬂir—-~—£—3 k =1,2,3,...,d.
20 205 24
3¢ .
Because ¢i,¢j and T(6) are known, the Jacobian — and the derivatives
3¢1
AT(B) | - .
X =1,...,d, can be computed. As an alternative to direct computations
8¢i
3aT(8) _ . .
one can also compute T k =1,...,d using Lyapunov equations and the
3¢,
i

Jacobian. This is treated in appendix 6A. There also a method is given to

compute the Jacobian, in case one does not know the transformation mapping
¢i o ¢gl explicitly as a function of the parameter.

From (6.2.7-5) and (6.2.7-6) it follows that the vector

T AT

T 8x(¢i,i) 3x(¢i,1) T

(X(¢i,i) T e —~——-7;-~) at ¢; = ¢;(6), is a-linear
304 305
transformation of the vector

p 6D G, g

(x4, 9T, ——, ..., —L— 3 &B).
J 36 345 w00
] J N

Let the matrix of this linear transformation be denoted'by S(e;i,j). This
matrix is completely specified by (6.2.7-5) and (6.2.7-6). Then the

transformation rule for £ e€ TE is

(6.2.7-7)  E(t,i) = S(83i,i)e(t,3).

6.2.8. Bounding the stepsize

As motivated in section 6.2.3 (v) we will construct the algorithm such that
its stepsizes in the parameter space are uniformly bounded. The boundedness of
the stepsize will be crucial in our convergence proof for the algorithm. The
uniform boundedness is obtained in a perhaps somewhat unelegant way, but it is
done such that it does not complicate the probabilistic structure of our

algorithm too much.
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There are two parts to this socalled boundary provision.

‘(a) Let 8 € M. For each j such that 0 ¢ Cj’ i.e. j € J(8), consider the

spectrum of A(6,j)-B(6,3)C(0,j). It is obvious to show that this spectrum is
the same for all j € J(8). Indeed this follows directly from the state-space
basis change transformation rule (6.2.7-4). Let us denote it by o(6), and let

AM(G) be an element of ¢(9) with the maximum modulus.

(6.2.8-1) IAM(6)| = Ama?e)lﬂ < 1.
€0

Consider [AM(9)| as a function of ¢ ¢ M.

This is a continuous function of 6. This can be shown in three steps.

(i) The coefficients of the characteristic polynomial depend continuously on
8,

(ii) the set o(6) of roots of the polynomial depends continuously on its

coefficients (cf. [Mar], p.4) and

(iii) |AM(6)| depends continuously on the set od(8).

(The details are left to the reader).

Because M is compact, one can define

(6.2.8-2) A := max|A ()] € (0,1).

6eM
Choose Al € (Ao,l), and define recursively the nonnegative variables v, as
follows
Ve 41 0,
(6.2.8-3) °

Ve = AV Iyl b=t Lt e

Note that v, depends only on the observations y, and on the choice of AI; it
does not depend on any quantities computed in the algorithm.

Next choose a ('large') constant K' > 0 and define the function

1if v, <K',

(6.2.8-4) g1= [0,0) + {0’1}’g1(vt) = I{VSK'} ={0 if vt > K'.
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The idea behind this is to measure with g; whether there are outliers in the
observations. If vy > K' then the update equation is 'turned off', and the
parameter estimate is kept constant in the algorithm, because otherwise these
outliers could destabilize the algorithm. This is comparable to e.g. the
method in [Ku-Cll, p. 94 (2.6.8), (2.6.9). They have a simpler scheme which we
found, however, harder to analyze than ours, because of the dependency on the
current parameter estimate.

(b) Let {Kt}: be a sequence of nonnegative numbers such that

(i) 1lim K = » and
troo t

(ii) lim a K = 0.
t>o

({at} is as in (6.2.2-8) and (6.2.2-16)).

Such a sequence (Kt}: certainly exists, because 1lim a, = 0. For example, one
o t>oo

-1
can take K. := at2 if a, > 0 and Ky :=t if ap = 0.
If the algorithm at time t operates in the j-th coordinate chart, the

parameter update equation will be of the following form, if the right-hand

side is an element of ¢j(6j):
- _ - -1
(6.2.8-5) ¢j(et+1) = ¢j(et) + atgl(vt)gz(t)R h,

with R = R(et,j) and h = W(t,j)Te(t,j). The function g,(t) will be defined as

follows:

1 if ngl(vt)R'lhuR

gl(vt)hTR_lh <K,
(6.2.8-6) g, (t) =

0 1f g, (vOR hu, = g (vOR'R > K .

Here uqu H xTRx denotes the Riemannian length of x, considered as an element
of the tangent space TM at 6.

Because Kt + o for t » », the effect of gy is vanishing asymptotically.

In fact it is only needed to prevent that the algorithm is destabilized if the
a, are too big compared to the sizes of the coordinate charts. Because

lim at = 0, g2 plays a role only during a finite time. For more details we
t >0
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refer to the proof of the uniform boundedness of the stepsize in section 6.4.

6.2.9. The complete set of update equations of the algorithm

Two more things have to be settled before we can write down the complete set
of update equations of the algorithm.
(a) If the right-hand side of the parameter update equation (6.2.8-5) lies

outside of ¢j(63)’ then 6 will be defined to be the point where 'the

t+1
boundary of ¢j(63) is hit' using linear interpolation in the coordinate chart.

Define At e (0,1] by

(6.2.9-1) A, := min{1} v [A ¢ (o,1)|¢j(§t) + xatgl(vt)g2<c)k’1he¢j(363)},

and let et+1 be defined by

(6.2.9-2)  4.(8,,)) = 6,(8)) + Aa g (v,)g, ()R 'h.

jUt+l
Then e +1 is well-defined in all cases. Of course if A < 1 then e e+1 € 85;.
I1f et+1 € aC then a change of coordinates will take place. Note that Xt +# 0

because ¢ (e ) e ¢ (BC ) in (6.2.9- 1). The reason is that if

¢ (e ) € ¢ (ac ), then a coordinate change will take place immediately,
before the parameter update equation is formed.
(b) In (6.2.2-15) the socalled coupling equation e = e was introduced
explicitly. This equation will be generalized as follows. Let {5 }

be a sequence of nonnegative numbers that converges to zero and let
(6.2.9-3) § :=aé t=¢t , t +1,t +2,... .
t o’ o o

Instead of requiring et to be equal to at’ we allow et to be chosen
arbitrarily from the (nonempty) intersection of

(i) a closed ball E(et,st) with centre Bt and radius Gt and

~ -t -t
(ii) the set Cj’ if et € Cj’ and Cj is the coordinate chart in which the
algorithm operates at time t. One needs 6§ e C,, because one must be able to
represent et in the local coordinates ¢j = ¢j(et). So the coupling equation

is:
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(6.2.9-4) et € B(et,at) n cj.

~ ) -t . ]
Note that, because et € Cj’ Cj compact and Cj open, Cj c Cj’ it follows that
for St small enough

(6.2.9-5)  B(s,,6,) < C;-

Because Gt converges to zero, it follows that for the asymptotic analysis one

can assume without loss of generality that the coupling equation is

(6.2.9-6) 6 ¢ E(ét,at).

For the metric that goes into the definition of B(ét,st) one can choose

(i) the inner metric of M, (ii) the Euclidean metric in the local coordinate
chart in which the algorithm operates at time t. Those two metrics are, of
course locally equivalent around 6t. This will be shown in section 6.3.4. It
can be shown that if option (ii) is chosen, there exists a data - independent
sequence {3;}, (which satisfies the conditions), such that {et,ét} satisfies
(6.2.9-4) with option (i), too. Therefore without loss of generality in the
analysis we will work with option (i), unless otherwise is stated.

Note that one is allowed Eo take 6; =0 for all t > to. Then the coupling
equation reduces to et = et. As an example of how the more general coupling

'equation' can be used, one can take the following parameter update scheme:

— ~ O

(6.2.9-7) o 1 8% if 8, € B(81,6,,y) " Cs
i t+1 1 ° =" o
Opyr 1F 0, ¢ B(O 158,,)) 0 Cys

where j now indicates the coordinate chart in which the algorithm operates at
time t+l. This has the advantage that if the parameter estimate 8t+1 is close
enough to et then the parameter g in the computations of the algorithm can be
kept constant.

Let us now summarize the update equations of the algorithm

(6.2.9-8)  g(t+1,3) = F(¢,5)e(t, ) + G(¢,j)yt;
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e(t,j) _

(6.2.9-9) | ¥ (t>3) [= HCe,DE(E,3) + Ky,
@d(t,j)

where

(6.2.9-10) ¢ = ¢j(et);

(6.2.9-11) ¢j(6t+1

_ - -1
) = ¢j(0t) + 12,88,k h,

with At as in (6.2.9-1), g) as in (6.2.8-4), gy as in (6.2.8-6), and R and h
as in (6.2.8-5);

(6.2.9-12) 6. .. < B(s

41 ), €2t -1, (cf. (6.2.9-4)).

t+1’6t+1

If g
Ot
with the property

-1
€ acj then a coordinate change has to take place to a chart i ¢ J

LLE

-~ ”
(6.2.9-13) o eC,, i.e. i €J (0

t+1 1’ )

t+1

¢j(et+l) has to be replaced by

(6.2.9-14) ¢i(5 ),

t+l

_1 ~
) = ¢; © ¢j (¢j(et+1

and g(t+l,j) has to be replaced by

(6.2.9-15) g(t+1,i) = S( i,3)E(t+1,35).

Oer1’
As soon as Ve is known, the calculation (6.2.9-8) = (6.2.9-11) can be made,
and the choice (6.2.9-12) can be made. If necessary, a change of coordinates
can be made. If all this is done, the algorithm can wait till Y¢4+1 becomes
available and do all this again, but now with t replaced by t+l (and if a
coordinate change from j to i has taken place, with j replaced by i). This
specifies the algorithm except for the initial conditions. Any choice

" -
of jed, 8, €C, 0, B8 ,6 )nC,, E(t,3) e R+ 0411 do 1n
[o] J [o] o o J

principle. As a standard choice for g(to,j) one can take g(to,j) = 0, and this
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is the case that will be analyzed. If g(to,j) # 0, then the definition of v,

has to be changed somewhat. We will not go into this.

This finishes the description of the algorithm, or better, the class of
algorithms, because many choices can be made within the class of algorithms:
the manifold M, the Riemannian metric, the precise decision rule for a
coordinate change (as long as it meets our requirements) and the precise

coupling equation (as long as it meets our requirements) etc.

6.3. A refinement of the cover of the manifold

6.3.1. Introduction

'I would rather discover one proof, then to earn the throne of Persia' -

Democritos

In the following sections, 6.3-6.10, the asymptotic behaviour of the algorithm
presented in section 6.1 and section 6.2 will be analyzed. In the analysis we
will make use of a refinement of the n.d.s. cover {(C"_,C',,Cj)}jEJ of M. The
refinement is introduced only for the sake of the analysis, the algorithm will
not be changed. In section 6.3.2 the structure of the refinement, that is
needed for our purposes, is described. By choosing a refinement we can make
sure that certain properties hold within each coordinate chart. This is
applied in section 6.3.3 and section 6.3.4. In section 6.3.3 it is applied to
establish asymptotic stability of arbitrary products of dynamic F-matrices
occurring in the coordinate neighbourhood involved. In section 6.3.4 it is
applied to establish equivalence in each coordinate neighbourhood between the
inner metric of the Riemannian manifold and the metric defined by using the

Euclidean metric of the local coordinates.



6.3.2. The structure of a refinement of the n.d.s. cover of the manifold

The refinements we will consider will again have a "nucleus-double-shell"
(n.d.s.) structure just as the cover {(Cg,CB,Cj)Ij e J}. Consider a finite
open cover {Eili e I} of M, |I| < =,

Let

(6.3.2-1) Eij := E1 n Cj for all i ¢ I, j ¢ J.

Then {Eij} forms a finite open cover of M and for fixed j, {Eijli e I}
-t
forms a finite open cover of C., and therefore C.c UE, ..
i - iel 13

6.3.2-2. Proposition. Let {E |i € I,j € J} be any finite open cover of M with

the property C c UE,,. Then there exists an n.d.s. - cover

i- iel 13
{(E ij )|i € I, j € J} of M such that
” 1
(6.3.2-3) 121E1j = Cy, Vi e J.

6.3.2-3. Remark. This is also standard topology; note that some of
" 1
the E,.,E,. and E,. may be empty sets. Let

13°71j ij
(6.3.2-4)  I(§) := {i e IIEIj + 0.

" L
Then {(Eij,Eij,Eij)Ii € I(j),j e J} will again be an n.d.s. cover of M!

Proof of proposition (6.3.2-2) (sketch).

This is analogous to the proofs of lemma 6.2.4-2 and corollary 6.2.4-4. First
-t
one shows that if {Eijli e I} covers Cj in the sense that

-t
(6.3.2-5) C, c UE,.
I7 qer 13
then there exists a nucleus-shell (n.s.) cover {(E 13’ E )|i e I} of C
analogous to lemma (6.2.4-2) and its proof, using the fact that CJ is compact.
This means that E .S E,.,vi € I and that
ij - 13

(6.3.2-6) C.c uE
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'
Then by applying the same argument to {Eij}’ (compare corollary (6.2.4-4)) one
concludes that for each j e€ J there exists also an open n.d.s. cover

~|| A
{(Eij’Eij’Eij)li € I} such that

"

(6.3.2-7) T . c u¥

L
" M t _n 1
Now let E,, := E,, n C,. Then E,, € E clearly. It follows furthermore that
ij ij 3 ij - 1]
" T
(6.3.2-8) UE = C,
ier 4
and
"
(6.3.2-9) v U E P =M
jeJ iel
” T
and so {(Eij’Eij’Eij)li € I,j € J} is indeed an open n.d.s. cover of M with

the required property. Q.E.D.

Now let for all i € I(j), all j e J

” " \] \] | 1
(6.3.2-10) Dy = Bygp Dyy = Eyg 0 Cpo D= Eyjpn Co

" ]
6.3.2-11. Proposition. (a) {(Dij’Dij’Dij)Ii € I(j),j € J} has the following
properties

]
(i) Dij’Dij’Dij are open sets for each i,j,

n

" 1
(i1) Dij < Dij < Dij holds for all i,j,

" Al

(iii) u Di' Cj for all j ¢ J and
ieI(j) 3

]

1
(iv) for each i ¢ I(j), j € J there exist open sets Nij’ Nij c Cj’ such that

\ ]
P13 S Ny

(6.3.2-12) _,
Dij c Nij and Nij nc

1

€ D,,., and

]
and Nij n cC 15

In

D

e = Lae =

13°
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n
(b) 1f {(DiJ’ iJ’ iJ)|i € I(J), j € J} has the properties (i), (ii), (iii),
(iv) mentioned in (a), then there exists an n.d.s. cover
" 1]
{(Eij,Eij,Eij)li € I(j),3 € J} of M, such that for all i ¢ I(j), j e J:
(@Y) E,.cC,
i3 - 73’
" " 1 1 ] L
(2) Eyj=Dys5 Eg5=Dyy 0 Cy5 Ejy=Dyon G
Before we go to the proof of this proposition we give a definition and some

remarks.

" ]
6.3.2-13. Definition. {(Dij,Dij,Dij)[i € I(j),j e J} having properties (i),
(ii), (iii), (iv) of the previous proposition, will be called a second order

n.d.s. cover.

6.3.2-14. Remarks (i) It is called a second order n.d.s. cover because it is a
refinement of the n.d.s. cover {(Cj C ,C. )|J ¢ J} with respect to the n.d.s.
cover {(Ei 2 ij iJ)Ii e (), j e J}

(ii) {p

15 ,D 15 D )|i € 1(3),j € J} is itself not an n.d.s. cover because

A
Dij c D1j etc. does not necessarily hold. On the other hand for

all i ¢ I(J), j e J:

1 1 -1

- 1
6.3.2-15) D,.nC,<D,., D,,n C, cD,..
( ) ij j- "1y Tij j=- i3
However, these inclusion are not sufficient for a second order n.d.s. cover.
The reason behind it is that (6.3.2-15) does not exclude shells with
'thickness' vanishing at certain points, while definition (6.3.2-13) does
exclude this, as will be shown after the proof of the proposition.

Proof of proposition 6.3.2-11.

(a) (i), (i1), (iii) are trivial; (iv) can be shown simply by taking
\] 1
Nij 1= Eij and Nij 1= Eijr for all 1 ¢ 1I(j), all j ¢ J.

- A .
(b) Let C% be an open set such that C % C% c C,. Let N,. and Nij be as

€55 652 ¢ ij
in (6.3.2-12). Because Dij c Nij’ there exists an open set Nij such that
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n

_n 1 -3 ' ' o s
Dij < Nij < Nij c Nij' Define (for all i e I(j), j € J)

" "

E,. =D

E = N% up and

ij ij ij
\]
Eij = Nij u Nij u Dij'
Then
" - % 1
Eij = Dij c Nij < Eij and
-1 _% — 1
Egq = Nyg UDgy S Njg uNjycE ..
Furthermore, one has:
” 1 ”
(6.3.2-16) Eij n Cj = Dij’
n " 1
because E,, = D,. < C.;
ij ij - 73
6 1] \J 1
(6.3.2-17) Eij n Cj = DiJ’
b E' N% D' d N% C' N' C' D' C'
ecause = Y . an n . C n . C . c .
ij ij ij ij j- i ij=- 13-
6.3.2-18 '
(6.3.2-18) Eij n Cj = Dij’
1 \] A 1
because Eij = Nij u Nij u Dij and Nij n Cj c DiJ c Nij and

Q.E.D.
For a cover with this structure we have the following important property.

6.3.2-19. Proposition. There exists a constant ¢ > 0 such that for all j e J
and for all i e I(j), one has

n 1 A
(6.3.2-20) d(D, ;,3D; ;\8C,) > e,
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where the distance d between sets A and B is defined as

d(A,B) = inf d(a,b) and d(A,B) = = if A= or B = f.
aecA,beB

Proof. Because enlarging the sets can not increase the distance, omne has

" [] ' _n 1
d(Dy 4,3D; ;\3C,) > d(Ey 4, 9E, ),

" 1
(the {(Eij’Eij’Eij)} are as in proposition 6.3.2-11(b)). Here it is used that
D..=E  and D, = C. n E., which implies aD., < 3C. U 3E. d
: = . an = n . Wwhic m es c . U .» and so
13 7 M3 137730 M3 P 13- %50 Ty
1 ] A 1 1
aD C, c© 3E, . C. c o
13 \ 9 i< 3 13 \ 9 5 < aEiJ
_n [ [ _n ] _n
Because Eij c Eij’Eij open, it follows that Eij n BEij = f). Furthermore Eij
v _n v
and aEij are closed and therefore compact, so d(Eij’aEij) is positive, say:
(__u 1
d(E,,,9E,.) = d,. > 0. Now let ¢ = min d,, > O.
137713 ij 1€1(3) ij
jeJ

Q.E.D.

For the sake of the analysis of the algorithm we will associate not only a
coordinate chart Cj, but also a subchart Dij c Cj’ with each stage of the
algorithm. The rules of changing from D;; to Dy are a generalization of those

of changing from Cj to Cz. Furthermore, for the sake of the analysis, we will
-t
generalize the prescription somewhat, such that curves that enter aDij but do

-
not leave Dij are allowed to go without a change of coordinates. One could

generalize the prescription (6.2.4-9) likewise, in which case the algorithm

itself would be generalized. However, for the sake of definiteness of the rule

for changing coordinate charts in the algorithm, we choose not to do so.

6.3.2-21. Prescription. (Compare (6.2.4-9))

Let 6(t), r € [a,b) be a continuous curve of M. We assign a coordinate chart
B;j with index pair (i,j) = (i(r),j(r)), to each r ¢ [a,b). We prescribe
(i(r),j(r)) to be piecewise constant and left continuous and (i(r),j(r)) has
to be such that
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vr ¢ [a,b): o(r) ¢ Bifr),j(r)‘

A change of coordinates is allowed to take place at r ¢ [a,b) only if

A}

o(r) € aDi(r),j(r)'

If it takes place then (i(r+),j(f+)) := lim(i(r+e), j(r+e)) has to be such that
€Yo

"
then j(r+) such that 6(r) € C, and i(r+) such that

L}
if o(r aC.
(r) €03 i(

8(r) € D

(r) f+

1M, 5¢eH’

)

if o(r) € aD

' [ sy L +
. 1(r),j(r)\ acj(r), then j(r") = j(r) and i(r") such that
8(r) €D

oL,
i(r),i(r)
It is very important that for j(r) this prescription is a generalization of
1 1
the one given before in (6.2.4-9). (Note that 3C, c U aDi.). To conclude
1eI(j3)

this subsection we state the analog of (6.2.4-10).

6.3.2-22. Proposition. There exists a finite cover {Uk}'of M with the
following property. Let 6(t), t ¢ (a,b) be a continuous curve in M. If an
interval (c,d) < (a,b) is such that for some value of k and for

all t € (c,d), 6(t) € Uk’ then at most two coordinate changes occur on the
interval (c,d). I.e. (i(r),j(r)) takes on at most three values for r ¢ (c,d).

”
Proof. Let {(Eij j)l i € 1(j),j € J} be an n.d.s. cover of M such that

|
Ey 0By

" " ] 1 \J ]

Dij = Eij n Cj; Dij = Eij n Cj and Dij = Eij’ as before. Let § ¢ M. Consider
the compact set

aEij) u( U aEij).

A ”
( u 3CH)u( v 3C)u( u
J 1 J ”
edaEij

A} 1
8¢aC e¢acj 6¢3E

3 1]

Clearly this set does not contain 6, and therefore there exists an open
connected neighbourhood U = U(6) of 6 in the complement of this set.
Just as in the proof of (6.2.4-10) U has property (6.2.4~11):
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"
(6.3.2-23) VijeJ: Un C

; #P=>UnN acj =9

and similarly

\]
#0 =>Un 3E

"
(6.3.2-24) Vi e 1(j), j € J: Un E 15

13 = 0.
We claim that if 6(r), r ¢ [a,b) 1s a continuous curve which takes its values
in U, then at most two coordinate changes (in the sense of the prescription
(6.3.2-21)) can take place. According to the prescription, after a first

+
coordinate change at r = r; (say) we have e(r ) € D with i = i (r ),

ij
i= J(r ). Because e(r ) € U and niJ (6 3.2-24) implies that
Uun aEij 0. A second coordinate change can only take place at aD 15 n U,
We know that an c aC n aE . It follows that
ij - 773 ij

' v '

aD,. n U c 9C, n U < 9C,.
1] -3 -3
Therefore a second coordinate change at r, can only take place

1
if e(rz) € acj. In that case j will be changed. According to the prescription

we will have

+ +
e(rz) €D, NCy with k = 1(r2), L= j(rz).
It then follows from (6.3.2-23), (6.3.2-24) that

1
=@ and U n 3E

'
U n 3C 1j

j = 9.

So U N BD;j cuUn (aC; v BE;.) = .
Therefore after a second coordinate change no more coordinate changes will
take place for 6(r).

It is clear that {U(e)|e € M} is an open cover of M. Because M is compact
there is a finite subcover {Uk} of M, and each U, has the required property.

Q.E.D.

6.3.2-25, Remark. According to the proof {Uk} can be chosen such that if two
coordinate changes take place then the first one will leave j constant, while
the second one changes j. I.e. the first one will be within Cj’ while the

"

second one will be a coordinate change from C to C



258

6.3.3. Application to the question of asymptotic stability of products

of asymptotically stable matrices

Let us consider the problem of possible instability of a product of
asymptotically stable matrices., If Ay and Ay are asymptotically stable
matrices, then the product does not have to be asymptotically stable. For

example, let

_ 0.5 0 _,T
(6.3.3-1)  A; = (57 .50 Ay = Ap.
Then
_ (0.25 5
(6.3.3-2) a4 = (757 100.25)

which is unstable.

This implies that a time varying linear system

X Ax_ + B.u
(6.3.3-3) { t+1 tt tt
Ve = Ce¥e

with Ay an asymptotically stable matrix for each t (i.e. Vt: c(At) < D(0,1)),
can be unstable. An example is obtained by taking A2t+1 i= A1 and A2t = A2,
for all t, with Al and A2 as above.

In our algorithm the dynamic matrix is F,, which is asymptotically stable (for
each t) but time-varying. So the question arises whether the resulting time-
varying system is stable. To treat this problem we will investigate the
relationship between asymptotic stability and asymptotically stable norms.

6.3.3-4. Definition (cf. [Gan]).
The right norm-of a matrix A is AA" and the left norm A*A.

It is well-known that AA* and A*A have the same nonzero eigenvalues (they are
the squares of the nonzero singular values of A); and we will say that A has

asymptotically stable norm(s) if AA* and A*A are asymptotically stable, i.e.

if their eigenvalues are smaller than one, or, equivalently, if all the
singular values of A are smaller than one. Clearly a has asymptotically stable

norm if and only if nAﬂs <1 (I,HS denotes again the spectral norm).
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6.3.3-5. Proposition. Let A be square and let AM denote the eigenvalue of A

with maximum modulus:

IAMI = max |Ai|.

Aieo(A)

Then

(a) [x,| < vaig.

(b) For each ¢ > 0 there exists a nonsingular matrix T and an open

neighbourhood N of A such that for all A ¢ N
~—1
(6.3.3-6)  ITAT "ng < |p,]| + e.
Before going to the proof let us state a corollary.

6.3.3-7. Corollary. Let A be square.

(a) If A has asymptotically stable norm then A is asymptotically stable.

(b) If A is asymptotically stable then there exists a nonsingular matrix T and
an open neighbourhood N of A such that for all X e N, TZ’I‘--1 has asymptotically
stablé norm. (and especially TA’I"'1 has asymptotically stable norm).

Proof of proposition (6.3.3-5). (a) Let Axo = AMXO’ nxou =1, Xy € c® then it
follows that Al = max IAXI > IAx I = |x |.
Ixi=1 2 P\ | MI

(b) Because nTKT_luS is continuous in the entries of X, it suffices to show
that for each € > 0 there exists a nonsingular matrix T such that
-1
ITAT “1g< [ay| + €.
Let S be an invertible matrix such that
(6.3.3-8) J := sas™!
is in Jordan normal form. Then J; is block-diagonal with n

x ng blocks
J(li)’ i= 1’2’.”’10 (say), of the form

i

(6.3.3-9) 3\ - A
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Let Ju, with p > 0, be defined by

-1
6.3.3-10 J = A "J.A
( ) u p Tl

where Au 1= diag(l,u,uz,...,un--1

). Then Ju has the same block structure as J;,
with as its 1tP block

u
0 Y

Clearly lim J(i) diag(A,,A,5eee5A,), and J  := 1im J 1is a diagonal matrix
u 1’71 i o
uyo u¥o

with the eigenvalues of A on its main diagonal. Therefore HJOHS = IAM|.
Because the spectral norm depends continuously on the entries of the matrix,
it follows that for each ¢ > 0 there exists a number M > 0 such that

g o< |A | 4+ €. So let T = A"ls and (b) follows,

My S M u

° Q.E.D.

This will now be applied, as follows. Let 6 € M and j such that 0 € Cj.
Consider F(¢j(e),j) as defined in section 6.2. Its eigenvalues are the same as
those of A(6,j) - B(6,3j)C(8,j) (compare (6.2.2-10)), but with higher
multiplicity. Therefore its eigenvalue with maximum modulus is AM(G) (cf.
(6.2.8-1)), and Vo ¢ M: |xM(e)| <A <1 (ef. (6.2.8-2)). Let ¢ € (0,1-2 ) be
fixed. According to the previous proposition there exists a neighbourhood

N ¢ Cj of 9 and a (constant, nonsingular) matrix T such that

Ve € N: uTF(¢j(§),j)T'1uS < ag+ e (< D).

-t
The neighbourhoods cover M. Because each Cj is compact and |J| < =, there is a

finite subcover {Eaj} with the property E; c g Eaj' At the end of the next

subsection this cover will be used to obtain a second order n.d.s. cover

n p] ” \]
{(Dij’Dij’Dij)li € I(j), j € J} corresponding to {(Cj,Cj,Cj)|j € J}, such
that for each set Dij there exists a nonsingular matrix Tij such that for all

0 € Dij
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(6.3.3-11) F(4,(0)51,3) &= Ty F(4,(), DTy}

has spectral norm smaller than Ao + €. In accordance with this we will define
(compare (6.2.9-8) and (6.2.9-9))

(6.3.3-12) G(6,(8)31,3) = T, ,6($,(8),9)

and

(6.3.3-13) H($,(8)51,3) = H(4,(0)31, )T}

and

(6.3.3-14) g(t;i1,3) = Tijg(t,j).

Equations (6.2.9-8) and (6.2.9-9) can then be rewritten as
(6.3.3-15)  g(t+1;1,3) = Fl¢;1,3)g(t51,3) + 6(¢431,3)y,,

e(t, i)
(6-3-3_16) \yl(t,j) = H(¢;i,j)€(t;i,j) + Kyt’

Wd(t,j)
if ¢ = ¢j(6), where 0 ¢ Dij'

6.3.4., Local equivalence of the coordinate chart metrics with the inner

metric
(This is of course standard differentiable geometry, included for completeness
sake). Within a coordinate chart (Cj,¢j) one can make use of the Euclidean

metric dj of the coordinates. To be precise, dj is given by:

(6.3.4=1)  d;(8.,8)) = 14,(9)=¢,(6 )1 for all 6,6, € C,.

The length of a differentiable curve y: [0,1] + C in this metric, is given

j’
by the formula
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1 (Y(t)
(6.3.4-2) Ij(y) fn——ndt.

Let F(eo,el,U) denote the set of all differentiable curves y: [0,1] + U with
v(0) = 90, y(1) = 91
between ¢j(e°) and ¢j(e1). Then clearly

. Suppose ¢.(U) contains the straight line segment

(6.3.4-3) d.(e ,0,) = min I.(y).
3ol Yer(eo,e ,U) 3

The length of a curve vy ¢ F(eo,el,U) with respect to the Riemannian metric
with Riemannian metric tensor R(8,j) is given by the formula

do, (y(£))T d¢.(v(t)) 4
(6.3.4-4)  I(y) = f{——i——————-R(Y(t) j)—-l—————-} dt

o

For each pair of points eo’el € Cj the inner metric d (with respect to the

Riemannian metric) is given by

(6.3.4-5) d(eo,el) = inf I(3).
YEP(SO,Gl,M)

Recall the well-known definition of equivalence of metrics.

6.3.4—-6, Definition. Two metrics d',d" on a space S are called equivalent, if

there exists a constant Ke € R+ such that
(] " " ]
(6.3.4-7) V¥x,y € S: d (x,y) £ Ked (x,y) and d (x,y) £ Ked (x,¥).

-1
6.3.4-8. Proposition. Let 6 ¢ Cj' There exists an open neighbourhood

N = Ne j < Cj’ 6 € N, such that dj and d are equivalent on N.
b

Proof. Let Cﬁ‘be an open set such that

(6.3.4-9) E ctcitco,.
j“J j

Because R(9,j) is a positive definite matrix depending smoothly and hence

continuously on 6 in C,, it follows that on the compact set E§ this matrix has

a maximum eigenvalue AM > 0 and a minimum eigenvalue Am > 0. It follows that

if y lies entirely in E§ then
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(6.3.4-10) Aij(y) I < QL.

-1
Consider a fixed 6 ¢ Cj and an open neighbourhood Nl of 9, N

c C?, such that
¢j(N1) c Rd is convex. It follows that

1

6.3.4-11) Vo eN_ : d = min I B

( ) V6,6 €N, j(eo,el) yerCone ) j(Y)
According to a theorem from Riemannian geometry there exists an open
neighbourhood N ¢ Nl’ 8 ¢ N and a number ¢ > 0, such that any two points in N
can be joined by a unique geodesic of length < e. This geodesic lies entirely
in N; (cf. [Boo], chapter VII, theorem (6.9) pp. 336-337). It follows that

(6.3.4-12) VSO,G e N: d(eo,e ) = min I(y).

1
Y€T(60,01,N1)

It follows that for all 60,61 € N:

-1
(6.3.4-13) dj(eo,el) < Ay (e, ,0))
and

(6.3.4-14) d(e_,6,) < dej(eo,el).

Taking K, := max(A;l,AM) gives the desired result.
Q.E.D.

The set {Ne’j|eeE;E'forms an open cover of E;, and so there is a finite
subcover, because Cj is compact. This holds for each j ¢ J. Taking the union
of the finite subcovers for the different values of j € J, one obtains a
finite cover of M, which we will denote by {Eﬁj}' Of course

1
(6.3.4-15) C, c VE

3=, ey

and for each B8 and j there exists a positive constant KBj such that

(6.3.4-16) veo,el € EBj: d(eo,el) < KBjdj(eo,Bl) and dj(eo,el) < KBjd(eo,el).
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Take

Ke :=max K_, > 0.
BsJ

It follows that

(6.3.4-17)

VB,Vj,Veo,el € Esj:d(eo,el) < Kedj(eo’el) and dj(eo’el) < Ked(eo,el).

In the previous subsection a finite cover {E j} was found with the property
a

-t
(6.3.4-18) C,cUE ..
J- aj
o
Now let us consider the finite cover {E ; n EBj} of M, which we shall denote
a
by {Eij'i € I(j))J € J}’

-t
(6.3.4-19) Tic v By
1eI(j)

According to proposition (6.3.2-2) there exists an n.d.s. cover

" 1
{(Eij’Eij’Eij)Ii € I(j), j € J} of M with the property

(6.3.4-20) u E = C..
ter(y 3

1
ij’Dij’Dij)|i € I(j),j € J} as in (6.3.2-10). According to

proposition (6.3.2-11) this is a second order n.d.s. cover. Summarizing this

Now form {(D
section 6.3, we have found the following result

”" L}
6.3.4-21. Theorem. Let {(Cj,Cj,Cj)|j ¢ J} be an n.d.s. cover of M consisting
of coordinate charts. Let ¢ € (O,I—Ao) be fixed. Then there exists an n.d.s.

"
cover {(E Eij)|i € I(j), j € J} of M with the properties

1
ij’Eij,
(a) Eij < Cj for all 1 ¢ I(j), j € J,
" 1

(b) u E,, = C, for all j ¢ J,
ter¢y) 3 3

(c) for each i ¢ I(j), j € J there exists a nonsingular matrix Tij such that
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(6.3.4-22) Vo ¢ Eij: F(¢j(e);i,j) = TijF(epj(e),j)T;;

has spectral norm smaller than Ao + e(K 1),

(d) there exists a positive number K, such that for all i ¢ I(j), j e J,

(6.3.4-23) Ve ,0) € By : d (6,0 < K.d(6 ,6,) and d(8 ,0,) < K d,(8 ,0))

There exists a corresponding second order n.d.s. cover

” 1 ” n \] 1 1
{(Dij’Dij’Dij)li € I(j),j € J} with Dij = Eij’ Dij = Eij n Cj and
L
Dij = Eij n Cj' A fortiori, properties (a), (b), (c), (d) hold with
” 1] 1 d " 1
(Eij’Eij’Eij) replaced by (Dij’Dij’Dij)'

6.4. On the asymptotic behaviour of the stepsize and the coordinate
change times

One of the main problems in analyzing algorithms like the one under

investigation is the data-dependence of the parameter sequence {et}. If one
fixes the sequence of parameters {et}tft and a corresponding sequence of
coordinate chart indices {it’jt}t=to’ it € I(jt)’ jt € J, then the state
equation of the algorithm (cf. (6.2.9-8)) becomes linear (time-varying), which
makes it more tractable. From the algorithm state vector g(t,j) one can

R 'h
182
(compare (6.2.9-11). However, in general, the equation (6.2.9-11) no longer

compute e(t,j) and ¥(t,j) as in (6.2.9-9) and one can compute a.g

makes sense, because the right-hand side may be outside the image

¢j (Cj ) € Rd, and then 6t+ is no longer well-defined by (6.2.9-11). Also,

t t 1

of course, the so-called coupling equation (6.2.9-12) and the rules for

coordinate change that follow (6.2.9-12) no longer make sense because the
parameters {et} and the coordinate charts are fixed a priori. The set of
equations that compute g(t,j), e(t,j), ¥(t,j) and a.g8 R

2
-
fixed sequence {et’it’jt}t=to with o ¢ D(it,jt), i, € I(j) and j, € J, will

h in the case of a

t

be called the decoupled algorithm. If equation (6.2.9-11) happens to define a

sequence {et}, i.e. if the right-hand side of (6.2.9-11) happens to be
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in ¢j (Cj ) for each t > tos then and only then, the equation (6.2.9-11) will
t t

be considered as part of the decoupled algorithm.

Our approach will be to derive results for the decoupled algorithm, in which

special types of parameter/index sequences {6 are used, and to

t’it’jt}t:t
o

show what the implications are for the 'coupled' algorithm.

In this subsection we want to analyze the stepsizes and the number of steps

minimally taken in each coordinate chart. Because the asymptotic behaviour is

investigated, the estimates on the stepsizes etc. do not have to be sharp,

they only have to be sufficient for our purposes.

The different types of parameter sequences will be described in the form of

numbered properties.

' -]
6.4-1. Property 0. There exists a sequence {at}t— with the properties
[ ' e
a) for all = :
(a) fo t<t , a ato,

1
(b) {at} is monotonically non-increasing;
A}
(c) ve: a > 0 and

(d) T a_ = o,

such that the parameter sequence {e+}

@ + _ . +
tHpmme With 6, = (8,»1,,3,) € @ for each
t, satisfies the following:

+ +
(i) vt < to. et = et ,

. o !
(11) Ve >t :d(e,, ,00) < a,

(iii) a coordinate change can take place only if et is close enough to the
1

boundary of D to be precise:

bl
itjt
. 1 ]
Ao deyy) * Ui = d(et,aDit’jt) < aps
(iv) a coordinate change has to take place before et is too far from D; 5
to be precise: et
-t 1
vt d(et,D1 j ) € a,
t't
(v) if a coordinate change takes place then et+1 has to be close enough to
_n
Di . ; to be precise:

t+1° t+1
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: _n '
(it+1’3t+l) # (it’jt) 4 d(et+l’Di 3 ) < at'
t+17t+1

| ]
6.4-2. Notation. lim a, =t a_.

©
tro

' -]
6.4-3. Property 1. Property O holds and the sequence {at}t—t has the extra
o

1
property a_ = 0.

6.4-4. Notation.

Before we proceed let us first introduce a useful notation. The matrices that
we encounter, like G, H, K, Rl etc. are all smooth functions of the local
coordinates and therefore their spectral norm takes on a maximum on each B;j'
Because the number of indices i,j is finite it follows that for each of the
matrices there is an over—all upper bound for the norm. Without loss of
generality this upper bound can and will be taken greater than or equal to
one. Let it be denoted by i(G),i(H), etc.,

6.4-5. Theorem. The sequence (et} that is produced by the (coupled)

tHt
algorithm satisfies property 1. -

Proof. This is mainly a consequence of the use of gy in the parameter update
equation in the algorithm (cf. (6.2.9-11) and (6.2.8-6)). It can easily be
shown that
(6.4-6) la, g.g R < a k RGR7Y.

t°1°2 - tt

Consider the curve y given in local coordinates of Cj by

05(Y(N) = 4508, + dayg (vE(OR b, A € [0,),]

-

Clearly, by definition of At (cf. (6.2.9-1)), Y(At) =0, and
-
VA € [O,At], Yy(A) € C..

j It follows that the Riemannian length of y is bounded
from above by athi(R—l)i(R). A fortiori one has

.. L
408,y 158,) < 3K KR DKR).

Using the coupling equation (6.2.9-12), one finds
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d(0,4156,) € d(0,,1,6,,1) + d(B ;,6.) + d(e,,8.)

)

- =1.=
< 8ppy + 8K KR DKR) + 6.

Recall that lim ét =0 and lim ath = 0. Therefore one can take
t>e [

1
a, := max{$

- =] =
S+1+asKsK(R )K(R)+Gs},
s>t

to obtain a monotonically non—-increasing sequence with
"

A} A}
a_ = lim a, = 0, a

] '
¢ ¢ > 0 for all t and Eat = =, Using this sequence {at} it
tro .

follows that the parameter sequence {e:}tft

from the (coupled) algorithm satisfies d(et+1,6t) < a;. Using the fact that

\]

]
a, 2 6t and a, > 8 it can easily be checked that also the other

t+1°
conditions of property 1 are satisfied. (This is left to the reader).

Q.E.D.

The idea is now to show results for the decoupled algorithm with parameter
sequences satisfying property 0 with a; > 0 'small enough' or property 1.
Property 1, i.e. a; = 0 will be the most important case but the results will
be needed also for a; > 0 now and then. Using the previous theorem, one can
then draw conclusions for the coupled algorithm.

Of course one of the main problems is to estimate the effects of the
coordinate changes. It has to be demonstrated that these effects do not
destabilize the algorithm. One of the main results of this subsection will be
that lf_the“sequfnce {Bt} is well-defined by the decoupled algorithm, then the
stepsize d(et+1’et) is bounded by ati for some positive constant K which is
independent of t and the data.

In the algorithm at each time instance t there is a coordinate chart Dij in
which the algorithm operates. Let the indices 1i,j at time t be denoted by 1,

and j.. Consider the following indicator functions of coordinate changes

Xy(8) ={1 1f Jeyp # Jp
0 elsewhere, and

X, () ={ VAF Joyy = Jpand 1, # 14,
0 elsewhere.

(6.4-7)
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As a first step we present a lemma which gives a sequence {atsz} of upper
bounds for the stepsizes.

" 1]
6.4-8. Lemma. Let Ay € (Ao,l) be fixed. Let {(Dij’Dij’Dij)Ii € 1(3),3 € J}
be as in theorem (6.3.4-21) with 0 < ¢ < AZ—AO. There exist positive data-

independent constants c¢g,cy,¢o such that if a sequence {it}t” is defined by

(1) Ve o1 = 0, and
(6.4-9) °

(ii) Vel = A2{1+clxl(t) + czxz(t)}vt + co“yt+l“’Vt 2 to—l,

then

(6.4-10) ve >t ¢ d(et+1’et) < a

2 -
o Ve if {et} is well-defined,

-1 =2
(6.4-11) ve > £ g (VR Thig < v, and

(6.4-12) ve 2t I N V.

Here the quantities are quantities of the decoupled algorithm.

6.4-13. Remarks. (i) Recall that g(to,j) = 0 is assumed, this 1s of importance
here.
(ii) It is not necessary to assume in this lemma that the parameter sequence

{et} in the decoupled algorithm satisfies property O or property 1.

Proof of the lemma. The two-vector (xl(t),xz(t)) can take three values, namely
(0,0), (1,0) and (0,1). Each of these cases will be treated separately.

(a) (x;(t),x,(t)) = (0,0).

Consider the algorithm equations (cf. section 6.2.9 and section 6.3.3)

g(t+i,1,3) = F(e31,3)e(t;1,3) + G(d’;i’j)yts
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e(t,1) -
z(t’j) = ‘l’l(t,j) = H(¢;i,j)£(t;i,j) + Kyt:’

Wd(t,j)

with ¢ = ¢ (6., and if {ét} is well-defined,
. - -1
¢j(9t+1) = ¢j(et) + AtatgngR )

with At = 1, as no coordinate change takes place in the case considered here.

Taking norms, one obtains

(6.4-14) he(e+1;1, )0 < nF(¢;i,j)nSng(t;i,j)n + nG(¢;i,j)usnytu,
(6.4-15) nz(t,j) < IlH(¢;i,j)I|S|l5(t;i,j)|| + IIKIISIIytII,

and if {8t} is well-defined,

(6.4-16) u¢j(§t+1) - ¢j(5j)n < atuR'lnsuhu.

From theorem (6.3.4-21) it follows that the spectral norm of F is bounded from
above by Ayt e < Ay and furthermore that d(eo,el) < Kedj(eo,el) for all

60,61 € Eij' Applying this to (6.4-14,15,16) one obtains

(6.4-17) 1gCe+131, )0 & (AFe) gCesd, )0 + E(G)nytn,
(6.4-18)  wz(t, )0 < KM IECE;1,3) 0 + R(K) My, 1,
and if {gt} is well-defined,

- - = -1
(6.4-19) d(8.,1,8,) < K, a, K(R )uhi.

Because h = W(t,j)Te(t,j) and z(t,j)T = [e(t,j)T,Wl(t,j)T,...,Wg(t,j)] it

follows that
d
thi < I
= -

(=9

¥, (e, ) eCt, )0 < T onv, (e, e, i <
1 1 g 1 -
(6.4-20) d ,
< Lonz(e,3ymiz(e, 0 = diz(t, i) 0%

i=1



So
. - = -1 iy 2 o, =103 ) oy 12
(6.4-21) d(0,,158,) < a K KR Hdiz(t, 1" = a {KK(R ) d nz(t, I},

if {et} is well-defined.
Also,

(6.4-22)  1g (v)R 'hu < k& DHmr ¢ ke Hiaace, ik

() (x,(£),x,(t)) = (1,0).
In this case j(t+1) = j(t) and 1(t+l) # 1(t). Let 1 = i(t+l), i = i(t). Then
¢ is premultiplied by a matrix Tyr; (representing the change of basis of the

state space of the algorithm). Because there are only a finite number of

indices i, i.e. | U I(j)| < =, there exists a finite upperbound for the
ieJ

\]
spectral norms of all the matrices Tyry. Let ¢ > 0 be such that 1+c1 is such

an upperbound. Then

ng(t+134 < (1+c;)ug(t+1;itfjt)u <

t+1° Je+1
(6.4-23) . v o
< (e FedNE(esd L300 + (14e DR(G) Iy 1.

(C) (Xl(t)»xz(t)) = (091)-

\J
In this case j, is changed into . Let = j, and = j i=1_ and
. t g jt+1 j Jt j Jt+l’ t

i = it' In general ¢ = g(:+i;it,jt) will now be premultiplied by three

matrices, to obtain g(t+i;it+ ):

l’jt+1

1) By a matrix T{(j) to transform back to the C.-state space basis of the

J
algorithm. -

]
2) By a matrix S(8;j ,j), cf. (6.2.7-7).
| - 1] 1]
3) By a matrix Ti'(j ) 1 to transform to the D(i ,j )-state-space basis of the
algorithm.

\]
O0f course, 1 and 3 can be treated analogously to (b). Because S(8;j ,j) is
”"

continuous, a constant cy > 0 can be found such that

] " _n ] ]
(6.4-24) 18€0;3,3) g < l+c,, VO € €N 8Cy, V3,3 € J.
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L}

Combining (1), (2) and (3) it can be concluded that a constant ¢y >0
exists such that

1
(6.4-25) ||g(t+1;it+1,3t+l)n < (1+c2)llg(t+1;it,jt)l|.
Let Et 1= g(t;it,jt). Combining (a), (b) and (c) one obtains
] A 1 | R
(6.4-26) 161 € (A Fe)(lhe x (8) + eox(E))IEL N + (1) (14c,)R(G) Iy I+
First, let ut Z 0 satisfy

(6.4-27) u = 0

and

(6.4-28)  u | = (A te)(Tre xy(6) + ey (8)u, + (I+e))(1+e JR(G) Iy, 1.

Then clearly u > “gtu for all t > to (recall Et =0).

Next consider °

u, = Ke%E(R_l)%d%{E(H)ut + K(R) Iy, I},ve > ¢,
(6.4-29) | _
u, -1 := 0,
o
Then
U 2 Ke%i(R'l)%d%{i(H)ngtu + K(K) Iy 1} 2
(6.4-30)
> K%R(R_l)%d%ﬂz(t,j)n, veE >t ,
Z e ]
SO

- ~ -2 ~ _
(6.4-31) d(et+1’et) < atut,Vt > to’ if {et} is well-defined, and

2
t

2
t

-1 -2 -1-, -1.-% -
(6.4-32) Hgl(vt)R hHR <u Ke K(R ) < u.
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Now {u,} ® can be considered as the output of a linear system with inputs

t't=t -1
[e]

{"yt+1“}to—1’ and zero initial conditions, as follows:

\} ] | L -
r (
Ui \X°+€)-(1+C1X1(t)+C2X2(t)) (1+cl)(l+c2)K(G)
(6.4-33) = x
L 1Y ey ! 0 0
[u
t }+(O)uyt+ln, ve > e -1,
AL
with uto_1 = 0, yto_1 := 0 and Xl(to—l) = 0, xz(to-l) = 0 by convention. The

output equation is (6.4-29). Let T be a nonsingular matrix such that

Ate  (l+e ) (1+e)R(E)] _
T [ o 1 2 T 1

0 0

has spectral norm smaller than or equal to Az (recall that AZ > Ao+e; such a T
exists according to proposition (6.3.3-5)). Let ¢; > 0, ¢y > 0 be such that

the spectral norm of

T[(Ao+e).(l+clx1(t) + c,yx(6) (1+c ) (1+c,)R(G)
0 [0}

is bounded from above by A2(1+c1x1(t)+c2x2(t)) for all t > to.
Let

Ue

(6.4-34)  u_ := 17(4y )05
t

¢ ve >t -1,

then
(6.4-35) Ui < A2(1+c1x1(t) + C2X2(t))ut + HTHSHyt+1H, vt > to-l
and from (6.4-29) it follows that

(6.4-36) 5. < KR Hidhi®m, koorhE, vy e

Now let
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(6.4-37) ¢ := KiR(R'l)*d*u(i(n),i(x))T'luuTuS

and 3 = 0 and

Vil = A2(1+c1xl(t) + czxz(t))vt + e MY pyq s vt > to—l,

then ;t <V vVt > t_ and so from (6.4-31) one has

-t - o
“ N =2 -
(6.4-38) d(et+1’et) < avi, if {et} is well-defined,
and
(6.4-39)  1g (v )R ‘hi, < ¥2
1"t R- t°

Furthermore, combining the inequalities: vt > to: ugtn < U, ug < ;t

(this follows from (6.4-29)) and ;t < 3t’ it follows that

(6.4-40) N SV, VED €L

Q.E.D.

6.4-41. Lemma. Consider the decoupled algorithm and assume its parameter
sequence {e:} satisfies property 0 with a; > 0 sufficiently small or property l.
Then

(a) there exists a data-independent positive constant cq such that

vt > to: v, <c Ve and

3
(b) Vcl,c2 > 0, V6> O,Ein1 such that

t+k-1
ve >t ,Vk > ng: T (e x (1) +c

> (1) < (+)k.
=t

2X2

Proof. The idea of the proof is the following. Due to property O the number of
times that a coordinate change takes place in some given phase of the
algorithm is bounded.

The proof of (a) will be given in seven steps, of which we first give an
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overview.

T
1. Because the parameter sequence {6:} satisfies property 0 with a_ > 0

small enough or property 0, the step-length d(et+ ’et) has a small nonnegative

1
limes superior for t + =, Define {kt}, kt + k°° € R U {=»}, such that on the

time interval [t,t+kt], X, = 1 occurs at most once and Xy = 1 occurs at most

once.
t+k-1

2. For t large enough, t > tl’ the product I {A2(1+c1x1+c2x2)} is majorized
=t

by the expression {(1+c1)(1+c2)}1—k/£.xg, for a certain g¢.

3. On [tl,t1+£) n Z one has 3t < ;t x constant, where ;t = co(1+c1)(1+c2)vt.
4, For a certain m, it can be shown that on [t1+m,t1+m+2) n Z the inequality
v, 2 Xt hoids. )
5. If v 2 Ve then Vs

g 2 Verg
6. Combination of 4 and 5 gives
vt 2> tytm: v > V..

7. It can be concluded that for some cq > 0, 3t <c

3V for all t > toe

ad 1. From proposition (6.3.2-19) it follows that at least a distance ¢ > 0
has to be covered between any two occurrences of X, = 1. A similar result
holds for Xy as can be shown easily. For notational simplicity let us denote
the minimum of the two distances (again) by c.

Let

(6.4-42) kt := max{n € N: n < (c/a;)—Z} v {0}.

Then {kt} is monotonically nondecreasing and lim kt =k_ € RU {«}, It follows
tH>oo

from property 0 that on the time interval [t,t+kt] ’Xp = 1 can occur at most

once and Xy = 1 can occur at most once.

ad 2. Fix Az € (AO,AI) (cf. (6.2.8-2,3)) and A3 € (xz,xl). Define the natural
number % by

_ 3.1 4 4
(6.4-43) % = min{ieNI(K—) > max[(l+c,) ", (l+e,) "1},
2
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: \]
Because A3/A2 > 1, 2 is we%l—defined. By taking a_ > O small enough
km > 2 will hold and if a_=0, thenk == > £.
Let

(6.4-44) t1 o= min{t:kt > 2}. This will be well-defined.

The following inequality will be shown,

(6.4-45)

t+k-1
ve > t,vk e N: Tft {0, (Te x (1)+e, x, (1)} < (1+e))

1-k/ % 1-k/2 ,k

(1+c2) .A3.
Note that the right-hand side of (6.4~45) is always smaller than or equal to

(1+c1)(1+c2)A§ and that if k > £, then the right-hand side is smaller than or

equal to A3.
The proof of (6.4-45) is straightforward. It is mainly a matter of counting
how often xl(r) = 1 resp. Xz(r) = 1 can occur on [t,t+k~1] n Z. This is no

more than 1 + [k/kt] times, where [k/kt] denotes the entier of k/kt Because

kt > 4 for t > tl’ [k/kt] < [k/2], and so

t+k-1
(6.4-46) g A2(1+c1x1(r)+c2x2(r)) <
1=t
t+k-1 t+k-1
+ +
< f /Ké(l clxl(r)) I /ié(l czxz(r)) <
=t =t
< A§/2(1+c1)1+k/2.x§/2(1+c2)1+k/1 _
k_ k
L 2,29 L 2,24
= (1+c1)[A2(1+c1) ] .(1+c2)[A2(1+c2) 17 <
2 k L k
X 57 A 57
< (e | 20— [ Pitey | 2— |2,
(14c)) (1+c,)

where we make use of the definition of 2.
This shows (6.4-45).
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ad 3. Let v, = co(l+c1)(1+c2)vt, vt > to. Let
Xz tl-to+2‘1
p o= max[l,{xz(l+c1+c2)} ]

Then

(6.4=47) pv. > v, for all t e [t ,t +2) n 2,
t -t 1’71

because

_ t—to j

. 2 -2 Alcoﬂyt_ I

j=o

and

- t-to i

Ve < jio {A2(1+c1+c2)} coﬂyt_jﬂ.

A
ad 4. Let m := min{k € lexl)k > unand k > 2}; m is well-defined because
Al > A3. It will now be shown that

+mHg) 0 Z: v, D V..

(6.4-48) vt e [t +m,t £ 2V

1
The proof of this inequality is an application of (6.4-45). For each
t e [t),t;+2) n2, v with v ; then (6.4-47)

is applied:

is compared with 3t and v

t+m t+m

v + n 2:
t € [tl,tl L) n 2

- t+m -
Vesn = { n Ap(lte x (1) + coxy () }vy +
=t+l
m { t+m }
L I A (e x (1) + e x, (xN}le 1y .1 <
Pt Dl b 2%2 oty -
m
_ m = m-j
(apply (6.4-45)) < A3 v, + j£1A3 (l+c1)(1+c2)couyt+j“ <
(apply definition of m) < Amu_l.z + 2 Am_j(1+c Y(14c,))e ly .1 £
S e o 1 27%Vers! S
m = n m—j
(apply (6.4-47)) < Ap Vet TN (1+c1)(1+c2)co“yt+ju =

j=1
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by defi v =v. . .
(by definition of vt+m) Verm

ad 5. It will now be shown that if for any t, one has ;t > 3t, then

Vers > Ve holds. The proof is again an application of (6.4-45), )
also used:

3<>\lis

L
Vegg = T {A2(1+clxl(1) + czxz(r))}vt +
T=t+1

L t+2
+ 2 { nm A (e x (e x (tN}e 1y 0 <

j=1 T=t+j+l 171 272 o “t+ji -

L = Yogmge1 -
< Al .vj + j:lxl (1+c1)(1+c2)conyt+jﬂ = Veig'

ad 6. Combining 4 and 5 gives

Hm: v, > V..

(6.4-49)  ve > t, e 2,

ad 7. Let ty) 1= t; + m and let

' )\2 tz—to
(6.4-50) y := {max[l,;—(1+cl+c2)]} c,
1

Then, just as in (6.4-47), one finds

= []
Vt ¢ [to,tz] nz: v, < T

1
Let ¢y i= max [u ,co(1+c1+c2)]. Then it follows that

(6.4-51) vt > to: v, < A

(b) This is a direct consequence of what was shown in step 2 above. Let

§> 0, ° > 0 and ¢y > 0 be given. Take Ay € (Az,xl) n (AZ,A2(1+6)).
Then (6.4~45) implies:

t+k-1 Ak 5
ve > t,, Yk > 2, T (l+c,x, ()+e x, (1)) < (=) < (1+8)".
2 h 2 =t 1X1 2X2 A,



279

Let n1 2 % be such that

n, A, n ) t, -t

1.%2\™M L 1 0
(148) (XEJ > (l4c +c,) .
Then
t+k-1
vVt with t t t vk H 1+ + <
s o ST, 2 Tft (e x) (D¥e x, (1)) <

£t t +k~-1
(l+c +c2) il (1+clxl(r)+czx2(1')) <

1
(1+c +c,) 1 oﬁxl)k < (1+6)k, and so
2

t+k-1
vk > n,: I (l+c,y,(t)+c
- =t 171

(1) < (1)
this follows directly from the inequality above.
Q.E.D.

6.4-52, Theorem. There exists a constant K, independent of time t and
independent of the data with the following property. If {e } is well-defined
by the decoupled algorithm with parameter sequence {f } which is such that it
satisfies property 0 with a > 0 small enough or property 1, then the
following inequality holds

vt > to: d(°c+1’°c) < a.lkK.

Proof. Suppose {et} is well-defined. Combining the previous two lemmas one

obtains the inequality

" " 22
ve > to: d(et+1,et) < a,CqV .
If vy > K' then gy(v,) = 0 (cf. (6.2.8- 4)) and therefore e 1= % (cf.

(6.2.9-11)). It follows that, if K = ¢ (K ) ,
ve >t d(e,,,,6,) < a K.

Q.E.D.
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6.4-53. Corollary. Consider the cdugled algorithm. There exists a positive
number K such that

+
(6.4-54) vt > ty d(et+1,et) < atK .

Proof. Because the coupled algorithm satisfies property 1 (cf. theorem

(6.4-3)) the previous theorem applies. One has

d(6t+1,9t) < d(et+l’et+l) + d(et+1,et) + d(et,et) <

- 1 - [
<84 taK+8 =als  +K+8).

A
Because {at}tft converges to zero for t +» « (by assumption, cf. section
o

- \]
6.2.9), the sequence {K+6t+6t+1

converges to K. Therefore it has a

Yeat
maximum K (say). °

Q.E.D.

6.4-55. Corollary. Consider the decoupled algorithm and assume that property
\]
0, with a_ > 0 small enough or property 1 is satisfied. There exists a

t3 > t , t_ data-independent, such that
- o

3

(6.4-56) vVt > ty: g,(t) = L.

Proof. It suffices to show that “gl(vt)R—lh"R is bounded by a data-independent
constant (cf. (6.2.8-6) and recall lim Kt = ), Lemma (6.4-8) states

t>o
1g, (v OR Thi, <32 forall t >t
g, (v, R S v, fora 2 t..
Analogously to the proof of theorem (6.4-52) it follows that
1g, (v.)R ‘hi, < K for all t >
g, (v, Iy £ or a 2t -

Q.E.D.

6.4-57. Theorem. Consider the decoupled algorithm and assume property O is
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. .
satisfied with a_ > 0 small enough or assume property 1. The following
inequality holds:

ugtu L c,v, forallt 2 to.

3t

Proof. This follows immediately by combining the inequality (6.4-12) of lemma
(6.4-8), with lemma (6.4-41).

Q.E.D.

Using the results of this subsection a smaller class of parameter sequences
{9:} can be used. This will be the class of parameter sequences that satisfy
property 2 below.

Let
-— - - oo
(6.4-58) a, i=maxa, anda = {a.},___.
s>t
- At - -
Then 1lim a = 0, I a = and {at} is monotonically non-increasing.
too t=to

6.4-59. Property 2. There exists a data-independent constant ﬁ+ > 0 such that
v -
property 1 holds with a, = atﬁ+ for all t.

6.4-60. Theorem. The sequence {e:} that is produced by the (coupled)

t>t
=70

algorithm satisfies property 2 (with = k" as 1n corollary (6.4-53)).

Proof. From corollary (6.4-53) and the fact that a, < Et for all t, it follows
that

-+
ve 2t d(8,,0,) < aK.

' -
So condition (ii) of property 1 with a = atK+ is satisfied. It can easily be
checked that also the other conditions are satisfied.

Q.E.D.

This theorem can be compared with theorem (6.4-3). Notice that property 2

implies property 1 and therefore the results presented under the assumption of
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1 .
property O with a_ > 0 small enough or of property 1, also hold under the

assumption of property 2.

6.5. Spaces of interpolation curves of parameter sequences and their

topologies

In the following sections use will be made of interpolation curves of

parameter sequences. In this section the topological and metrical structure of
several spaces of interpolation curves and parameter sequences will be
treated, and their relation to the algorithm.

To be able to handle coordinate chart changes in the analysis, consider the
following parameter space

(6.5.1) 0" = ((8,1,3)]3 €, 1 € I(3), 0 e ﬁ;j}'

The topology will be such that e+ consists of different components

_'+ -t
Dyy = {(8,1,3)]6 € D; 5}
(for the definition of a component, cf. e.g. [Dug], p. 111). So each 5;; is

'+ -t
1 f
13 the topology o Dij

-
is used: {(e,i,j)le e Nc Dij} is open iff N is open in the relative topology

open and closed in this topology. Within each set D

of B;j' This specifies the topology of e+ completely. The projection
+ .
p: © » M, (8,i,j)—6 is continuous.

o
Next, consider for a given constant ¢ > 0, the topological space LC of curves

in M with global Lipschitz constant c:

(6.5-2) L= {X: R > M|vt,s e R: d(X(t),X(s)) £ c|t-s]|},

with the compact-open topology (cf. e.g. [Dugl], chapter XII).

Now consider curves r—(X(r),i(r),j(r)) € 9+ which have the "Lipschitz'-
property X ¢ ic' The set of all suchacurves provided with the compact-open
topology, forms a topological space LZ.

If the curves are defined on.an interval [a,b] € R, the corresponding sets
will be denoted by ic[a,b], resp. i:[a,b], and if they are defined on an
interval (-=,b] or [a,») the corresponding sets will be denoted by



283

L (-~,b] resp. L [a,=). If the constant ¢ is clear from the context the
index c will be dropped An important subset of L will be the set L of all
curves in L that satisfy the prescription (6.3.2- 21) (Similarly the notation

[a b], (—w 0] etc. will be used).
Other important subsets of L = L are the sets LiJ of all curves in L: that
have a fixed coordinate chart index (i,3j). They are in fact also subsets of

°

(no coordinate change takes place and the curve remains within D so

s
the prescription (6.3.2-21) is satisfied). Furthermore, it is not dif%gcult to
see that i:j is topologically equivalent to its natural projection iij on i.
Similarly L [a b] is topologically equivalent to its natural projection,
ij[a’b]’ on L[a bl.
A basic idea of [Ku-Cl] is to associate a parameter curve with each parameter
sequence, in such a way that the parameter curve forms an interpolation of the
parameter sequence on a shrinking time scale. This time scale is adapted to
the stochastic approximation coefficients {at}; instead of time instants t,

t-1
one uses the r = I a as 'time parameter'. We will use linear interpolation
s T

=t
)
in each local coordinate chart ¢j(D ) c Rd in accordance with section
6.2.9(a). The linear interpolation curve in e that is produced by the coupled
algorithm will be denoted by (6(r),i(r),j(r)). Because of the shrinking time
scale, one has
t-1 t-1 t-1
(o(z a),i(z a),j(z a))=1(o ,i,3), Vt>t.
_ T T T t t 't - 0
=t 1=t 1=t
[ [) o
6.5~3. Theorem. The curve (8(r), i(r),J(r)), r > 0, that is produced by the

(coupled) algorithm is an element of L [O,w), with ¢ = kt.

Proof. The curve satisfies the prescription (6.3.2-21) by construction of the
algorithm (cf. also section 6.2.9 (a)). The Lipschitz property with ¢ = xt
follows from corollary (6.4-53).

Q.E.D.

This theorem gives some indication of the relevance of the space L:P[O’w) and

similar spaces for our problem. Next we will present some properties of these
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spaces.

6.5-4. Notation. Let X' € L resp. L+[0,w). Then vVt > to’X: will denote the
translated curve
+ + t-1
Xt(r) := X ( T aT+r), with r € R resp. r >_0.
=t
o

+ o o
Clearly Xt € L+ resp. L+[O,w).

6.5-5. Remark. We will also use 'backward interpolation curves' of the form

t-1
Y+(—r) = X+( I a-r)s= X+(—r).
T t
=t
o
Then Y+(O) = (0.,1,3); Y(-a_ ) = (o i i)
g2 e ) t-1 t-1""t-1"Je-17"
Y(-a,_-a,_) = (8,_,0i,_,,3. )
Ap17@p-2? T Opgslips ) ete.

Clearly if x € L , then el € L.
A fundamental fact for the analysis is the following application of the

Arzela—-Ascoli theorem.

6.5-6. Theorem. (a) Va,b ¢ R with a < b, L[a,b] is compact.
(b) Any subset of L[a,b] is relatively compact. (i.e. has compact closure).

Proof. The equicontinuity of i[a,b] and therefore of any subset follows easily
from the Lipschitz property. Therefore, according to the theorem of Arzela-
Ascoli, i[a,b] and any subset of i[a,b] is relatively compact in Co([a,b],M),
the set of all continuous curves X: [a,b] + M. It now suffices to show that
i[a,b] is closed in Co([a,b],M). This is not difficult, and is left to the

reader. Q.E.D.

6.5-7. Theorem (a) Any connected component of L+[a,b] is compact (and
therefore each subset of such a component is relatively compact).

(b) For each index (i,3j), LIj[a,b] ~ Lij[a’b] is compact.

Proof. (a) With any curve X+ e L[a,b], X+(r) = (X(r),i(r), j(r)) is associlated
the 'index curve' (i(r),j(r)), r ¢ [a,b]. If any two curves X+,§+ € L+[a,b]
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have different index function then they lie in different components. This can

be seen as follows. Suppose ro ¢ [a,b] is such that i(ro) = io + T(ro). The
sets

iz

(2(1),1(r),3(r)) € L'la,b]|i(r ) = 1.}

and

iz

(2(),1(r),3(r)) € L'la,bl]i(r) # 1.}

are both open in L+[a,b], and their union is L+[a,b]; X+ is element of the
first set and §+ is element of the second set.
Because of this, it suffices to show that each subset of all curves X+(r) with

a fixed index curve (i(r),j(r)) is compact. Such a subset is given by

{(X,1i,3) € £+[a,b]|X € i[a,b], vr € [a,b]: X(1) € Bi(r)j(r)}'

This set 1s homeomorphic to

{X e i[a,b]|Vr e [a,b]: X(r) € Bi(r)j(r)}

which is a closed subset of i[a,b]. (It is easily seen that the complement of
this set is open). Because i[a,b] is compact, the same holds for any closed
subset.

(b) A special case of a fixed index curve is a constant index curve
(i(r),j(r)) = (i,j). Using this, the result follows directly from the proof of
(a). Q.E.D.

°
Let t > to, t € Z. Then to each curve Y+ € L+(—m’01 corresponds a parameter

t-t
sequence {(et-r’it—T’jt-r)}r=Oo according to the ('backward') formula
vH(0) if t =0,
(6.5-8) (o »1 3.0 ) = t-1
t=1 t-r Tt Y- a,), 1f 1 =1,2,...,t-t
. j o
j=t-1

o+ + t-t0+1
(cf. remark (6.5-5)). Let m: L (-=,0] » (0) be the mapping which maps
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-+

o4 t-t
Y e L'(=,0] to {(8. ,1i °
t-1

t-r’Jt—r)}T=0
given by (6.5-8).
Let us formally extend the definition of the sequence {at} toall t < t, by

— L]
taking a, = ato for all t < t,. Let a = {at}t=—w denote the resulting

sequence. Then ni can be defined as:

13: L (~=,0] » (D"
(6.5-9)
+ . © h
Y H_§{et—r’it—t’3t—1}1=0 wit
+
Y (0) if t =0,
(et-r’it-r’jt-r)= t-1
Y (-1 a,), if v =1,2...
jet-1 -
t-t +1

6.5-10. Remarks. (i) The sets (6+) °  and (0+)N will be considered as
topological spaces with the topology of pointwise convergence. This coincides
with the compact—open topology, of course.

(ii) In ni, the sequence a = {at} can Ee replaced by any sequence

a= {gt} with gt > 0, Vt. Notation: ni.

It is not difficult to show:

6.5-11. Theorem. For each t and each a = {St} with ;t > 0 for all t, Hi

is continuous.

The topological spaces L(-w,O],L+(-w,0], ON and (e+)IN can be provided with a

metric in the following manner.

6.5-12. Definition. Let d denote the metric on M.

(a) Let d+: 0+ x O+ + [0,=] be the mapping given by

+ o a(e,8) if 1 = 1 and j = 3,
d [(e’i’j),(e’isj)] = o -
o if1#Torj=*7.
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(b) Let P L(=~,0] x L(-=,0] + [0,1] be given by

pc(X,i) = sup[min{%, sup d(X(r),i(r))}].
neN re[—n,O]

(¢) Let pz: LY (==,0] x L¥(==,0] » [0,1] be given by

+, 4+ ot 1 N T
pc(X LX) = sup[min{;, sup d (X (1),X (r))}].
neN re[-n,o]
No No
(d) Let p: M "x M ~ » [0,1] be given by

1
p(a,8) = sup[min{—=, sup d(o,,B8,)}].
>0 n+1 o<i<n i’71

N N
(e) Let p+: (e+) ° (O+) °, [0,1] be given by

+ + 1 +, 0+ +
p(a ,8 ) = sup[min{—=7, sup d (a;,8,)}].
n>0 0<i<n
6.5-13. Theorem. pc,pz,p,p+ are metrics of L(—m,O],L+(—w,0], M and 0+
respectively, and these metrics are compatible with the given topologies of
these spaces (i.e. the corresponding metric topology coincides with the

original topology of each space).
Proof. For LI cf. [Dug], chapter XII, p. 272, 8.5. The other cases are
straightforward modifications of the case with p . This is left to the reader.
c
Q.E.D.

Using these metrics, theorem (6.5-11) can be strengthened:

6.5-14. Proposition. Let > max{l,max Et}. Then for each t ¢ Z:
tez

R

x5

X € LH(m, 011 p(r20xh), BED) < anp (5D,

[ad

Proof. It suffices to show the inequality for all o > max{l,sup al.

One has teZ

pc(X+,§+) = sup[min{%, sup d+(X+(r),§+(r))}] 2
neN -n<r<0
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t-1 t-1
> sup[min{l, supremum d+(x+(— b 3,),§+(- t a.))}]-
neN t-1 _ j=t-t J j=t-t J
{>0] I a_.el0,n]}
j=t-1 J
To simplify the notation let
+ 4o 1 +
0., =X (- £ 2.))eo
j=t-
and
ot t-1
) =X(- £ 3,)eco.
t-1
j=t-1
It follows that
1 5t
Pe (X ,X ) > sup[min{n sup d (e B ) 2
neN 0<Latén

sup[min{ ! » sup a (6
neN [ ]+1 0<T<[ ]

QI

2 t-t t—r)}]’

where as before [%] denotes the entier of 3. This last expression is equal to

1 1 ~t 1 + ot
5 sup[min{=, sup a (et_T et_T)}] = ap{nt(X ,X)}.
neN 0<t<n~1
Q.E.D.
]
6.5-15. Remark. Because Vt < t ol ¥ T 3 by definition, and because
1 '

1lim a  =a_ce R, {at}t__°° has a finite Maximum. So the proposition can be

[

applied to {a;}.

The connection between some of the spaces of interpolation curves treated here

and the classes of parameter sequences that were presented in the previous
section will be treated next.

The mapping H , defined earlier on the space L (—w O], can also be defined on
L:, as follows. Let H be the mapping which maps X € L to {6 }T:_m given

by (compare (6.5-8))
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+ t+1-1
X( & 3,) if T > 0,
j=t
xt(0) if T =0,
of, =1 t-1
(6.5-16) T IxT(- z &) if -t < 1<0, and
j=t+1 J
Lt
X(-z a,) if 1 <t -t.
L N ] o
=t

Notice that, because of the shift—-invariance of L:, the image Ht(Lt) is the
same for each t € Z. A similar conclusion holds for any shift-invariant

subspace of L+ like L+ .
c cP

6.5-17. Property 3. The parameter sequence {e }

a, +
£ tmmo is an element of nt(LcP)'

6.5-18. Theorem. Property 3 implies property 2.

Proof. Let a be as in (6.4~58). Let X+ be such that {e }S__°° = Hi(X+).
Using (6.5-16) and the Lipschitz property of X one finds that for s > t
] s-1 _
d(e_, ;58 = d(X(iftaj), X(jztaj)) ca  ca.

A similar formula holds for s { t. This shows that {e } satisfies condition
(ii) of property 1 with a = cas. Condition (i) of property 1 follows directly

from the definition of ni. A coordinate change in the parameter sequence takes

+

+
place from es to es+1

iff a coordinate change in X' takes place on the

s-1 s
interval from I a, to I a,_.

=t J 3=t J
The interval has length a, < a and because of the Lipschitz property of X,
the points e and e +1 lie at a distance less than ca (= a ) from the point
on the curve X at which the coordinate change takes place. Because X € L P it
satisfies the prescription (6.3.2-21). This implies that conditions (iii),

' -

(iv) and (v) of property 1 hold for {et} with a = caS,Vs.

Q.E.D.
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The following theorem can be compared to theorem (6.4-60).
6.5-19. Theorem. The sequence {e:}t>t that is produced by the coupled
)

algorithm satisfies property 3 (with ¢ = K' as in corollary (6.4-53)).

Proof. This follows from theorem (6.5-3), using a, < Et.
Q.E.D.

6.6. On a problem of P-a.s. convergence

6.6.1. Introduction
In this introduction we try to explain the main ideas concerning the relations
between P-a.s. properties in the decoupled case and the coupled case by way of

some illustrative propositions.

6.6.1-1. Example. Consider a probability space (Q,H,P) and a function

F: T xQ=+29¢
(Y)W)HF(YN”))

with T and ¢ topological spaces, I separable (i.e. I' is a Hausdorff space

which contains a countable dense set). Then

6.6.1-2. Proposition. Suppose that for each w € Q, F is continuous as a

function of y € T. Let S € ¢ be a closed set such that for each y € T:

(6.6.1-3) F(y,w) € S, P-a.s.

Let G: Q@ » T be arbitrary. Then

(6.6.1-4) F(G(w),w) € S, P-a.s.

Proof. Let {yl,yz,...} be a countable, dense subset of I'. Then for each
ieN, F(yi,w) € S, P-a.s. Therefore, for each i ¢ N there exists a set

E,cQ of 'exceptions', with P(Ei) = 0 and

Yu € Q\Ei: F(Yi,m) € S.
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Let E := U E, . Then P(E) = 0 and
i
ieN

Vi € N: Vo € Q\E: F(Yi,m) € S.

Now let y be arbitrary. Because {Yi} is dense in I', there exists a subsequence

}

that converges to y. It follows that

5 oy ke

Yo € Q\E: F(y,w) = lim F(y
ko

n(k)’w) €S,
because S is closed. So
(6.6.1-5) Vy e I': Vo € Q\E: F(y,w) € S.
This implies clearly
Vo € Q\E: F(G(w),w) € S,
and so
F(G(w),w) € S, P-a.s.
Q.E.D.

This theorem is meant to give an idea of the kind of reasoning that is
involved; it will not be used. In our application of this kind of idea, Yy
will be a sequence or curve in the parameter space and F will be a sequence,

while w represents the data {yk}.

Now consider the following situation. Let {Fk(y,m)}k:1 be a sequence of

functions

(6.6.1-6) Fk: I x Q+ 9,

where T is now a compact topological space, ¢ is a normed linear space with
norm I,I. (Q,H,P) is a probability space, like in the example above. Consider
the following set of functions of y.
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(6.6.1-7)  {F, (.30)|k € N, w € Q}.

Suppose it is equicontinuous on ', i.e. for each Y, € I and for each ¢ > 0

there exists a neighbourhood N of Yo such that
Vk € N,V € @, Vy € N: lle(Y,m) - Fk(Yo,w)Il <e.

(For the general definition of equicontinuity, cf.e.g. [Dug]). Then the
following holds.

6.6.1-8. Proposition. Suppose that for each y € T,

lim Fk(y;w) = 0, P-a.s.
k>oo

(a) Then 3N c @, with P(N) = 0 such that

Yw € Q N, V{Yk|yk € Thop® lim Fp(yp,0) = 0.
koo

(b) Let {Gk}keN be a sequence of (arbitrary) mappings Gk: Q + ¢. Then

lim F (G, (w);w) = 0, P-a.s.
om kK ’

Proof. (b) follows directly from (a), so it suffices to prove (a).
It will be shown that

(6.6.1-9) Ve > 0: 3N € Q such that VYu e Q\N,

for all sequences {y, |y, € T, k € N}: limsuplF, (y ,uw)l < €.
KMk UL S St

Once this is established the result follows easily: Let E <  denote the
e -
exceptions set for a given ¢ > 0, then P(E ) = 0. Let
€

E= UE

’
neN 1/n

then P(E) = 0 and

Yw € Q\E: V{yk]yk € r}k:1: lim Fk(yk,m) = 0.
ko
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Now (6.6.1-9) will be shown. Let € > 0 be fixed. Because the set of functions
in (6.6.1-7) is equicontinuous, for each Y, € I' an open neighbourhood NY can

be found such that °

€
(6.6.1-10) Vk € N,VmeQ,VYENYO: “Fk(Y,w)—Fk(Yo,m)H < 3¢

Clearly {NY |Yo € I'} forms an open cover of T, Because T is compact there
o

exists a finite subcover, say N 1,N 2,...,N n’ For each i ¢ {1,2,...,n}
Y Y

(6.6.1-11) 1im F,(y',u) = 0, P-a.s.
k+o

Let for each i ¢ {1,2,...,n}, E; be the exceptions set, P(E;) = 0. Let

E
1

=11
[}
B

’
i i

then P(E) = 0. For each y ¢ Q\E and for each i ¢ {1,2,...,n} there exists a
ki(m) such that

(6.6.1-12) vk > k (w): 1F, (Y, )1 < €/2.

Let k (w) := max k,(w). Then one has for each y ¢ Q\E:
o i
1<i<n

(6.6.1-13) vk > ko(w),Vi € {1,2,...,n}:qu(Yi,w)H < e/2.

Let {Yk}T be an arbitrary sequence in T'. Because U N
iy

1 = I, for each k € N

there exists an i(k) ¢ {1,2,...,n} such that Yk e N 1)
(6.6.1-10) and (6.6.1-13), Y
Vo € O\E, Vk 2k (w):

Therefore applying

qu(Yk,m)H < HFk(Yk,m) - Fk(Yi(k),m)u + an(yi(k),m)u < g + g = g.

So

P(E) = 0 and Yo € Q\E, V{Yklyker}k:l: limsuplFy (yp,0)l £ €,
ko
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i.e. (6.6.1-9) is shown.
Q.E.D.

6.6.2. On (equi-)continuity of some variables in the algorithm

To be able to apply the ideas of section 6.6.1 in the analysis of the
algorithm, one needs to establish equicontinuity of several variables in the
algorithm. More precisely each of these variables will be considered to be a
family of functions. The family of functions is obtained by considering the

decoupled algorithm, and considering the variable involved as a function of a

parameter interpolation curve, for each time t and each data sequence w. By

letting t and w vary over all possibilities one obtains a family of functionms.

6.6.2-1 Notation. Let w = {y_}

¢ tft denote the data sequence, and let
o

.\l
Ve 2 tr b= b = g (v g (OR(B,5) h
(compare (6.2.8-5)).
So if {et} is well-defined and Xtat + 0,
-1 2 . S,

Ve 2 ety o= (a) TG0 53,0608, 3,))
(cf. also (6.2.9-2)).
For each t and w, btm can be considered in the decoupled algorithm as a

function bt (a) of the sequence of past parameter values
W

+ +,
a = {et-r €0} o

Now if {6:} satisfies property 3 then

+ a, ’+
(6.6.2-2)  {o,_ } _ € M(L_p(-=,0]).
So bt o ni is a function of the elements of sz(—w’O] for each t > t, and
o z
each w. To show equicontinuity of the bt o ni the following technical lemma
w

is needed.
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6.6.2-3. Lemma. Let tg be as in corollary (6.4-55). For each ¢' > 0 there
exists a § > 0 such that for each w ¢ @, for all t > t3 and for all

° N
a,B € Hi(L:P(—m,O]) < (O+) ® the following implication holds:

ot(a,b) <5 = b, (@)=b, (B)N < e'.

Proof. In fact the following will be shown.

A}

Ve > 0,38 > 0 such that Vw ¢ Q,Vt > tqs

a,°+ + !
Ya,B € Ht(LcP(-w,O]): (p (a,B) < 6 = Hbtm(a)-btm(B)M <e)

where a = (...a «es) with t,

t ’;t ’;t ’;t +1’;c +2""’;t —I’Et ’;t
o o o o o 4 4 4

sufficiently large such that ;t > 0 is sufficiently small to be abl? to apply
the results derived before unde% the assumption of property O witha > O
sufficiently small.

The proof consists of three parts. Part (i) shows that 'what happened long ago
does not have much effect' and part (ii) shows the continuity with respect to
the 'recent past'. Part (iii) combines (i) and (ii). Let e' > 0 be fixed.
Choose A € (xo,xl) (compare (6.2.8-3)), and let {(D;j’D;j’Dij)} be as in
theorem (6.3.4-21) with ¢ = A - Ao.

A "
Define § and § as follows

4 -1

(6.6.2-4) & :=¢ 2" d'lﬁ(u)‘2(1+c3) &H MR ),
1. 31 1
(6.6.2-5) & -= ()22 % & kwYy 2.

A
According to lemma (6.4-41) there exists for § = (ilj% - 1 (and

c1 Z 0, c2 Z 0 as in the proof of lemma (6.4-8)) a number n., ¢ N such that

1
t+k-1 K Al
Ve >t , Vk>n,: I (l+c (T)+c2x2(r)) < (1) = (==

2 X
o LA, 1X1 X

bl

)klz

and so
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t+k—-1

T2 A zk/2
(6.6.2-6)  ve >t , Vk 2 npr T {(§7)(he x  (D+e (1)} < ()77
=t 1 1
Now let ng with n > n, and n > (cat4)_1 be such that
n /2 Al "
(6.6.2-7) (%_J "% min(§ :6 ).
1 2c3K

This is possible because 0 < A < Al. Here cq is as in lemma (6.4-41).
(i) The following will be shown. Let t Z t3 be fixed. If the first n, + 1

components of a,B € Hi(L:P(—w,O]) are equal, i.e. a, = Bi’ i=0,1,2,...,n

i o’

Al
then nbtw(a)—btw(s)ﬂ < e /4.

Al
Of course, if for some , v > K then gl(vt) = 0, hence btw(a) = 0 and so
Ilbt (a) - bt (B)I = 0 in this case. Therefore for this case the assertion is
w w

1
correct. Now suppose w is such that v < K . It then follows easily from the

't a .+
definition of Ve that vt > 0: Vt—r <K Al . Because @,8 € nt(LcP(-w,o]),

one can assume without loss of generality that property O 1s satisfied with
Al

a_ > 0 small enough or property 1 is satisfied, so theorem (6.4-57) is

applicable. One obtains ‘

(6.6.2-8) vVt > 0: IE__ I < c K A

(where by convention, one takes gt =0 if t < to).

Now consider the difference

t""!'(a) - Et-T(B),

in an obvious notation. Now notice that if < < no then, because

aT = BT’ Agt—r depends only on Agt—no and on the a, = BT’ T = 0""’“0’ and

not on the data yt_T, T = 0,...,no. In a manner, completely analogous to the

derivation of equation (6.4-26) in the prcof of lemma (6.4-8), one can derive
6.2~ ooy : + - + — .
(6.6.2-9) Vvt e {1,2, no} nAgt_T+1u < a1 clxl(t T) czxz(t T))HAEt_TH

and therefore
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n
- o - -
(6.6.2-10) nag, < 121 x(1+clxl(t t)+c2x2(t r))nAet_n ne.

If t < no then Et—no = 0 and so Agt_no = 0, which implies that Ag, = 0.

Consider the case t > nge Because
hag _ n<ug _ (adn+omg (B,
o o [
application of (6.6.2-8) to (6.6.2-10) leads to the inequality:

n r T
(o] o
(6.6.2~-11) nag < 1 x(1+c1x1(t—r)+c2x2(t—r)).2c3K .

=1 1

Applying (6.6.2-6) and (6.6.2-7) leads to
1 ”
(6.6.2-12) nAgtn < min(8 ,8 ).
Now Agt will be related to Abtw = btm(a)—btw(s).
-1 '
This can be done as follows; Abtw = gngR Aht’ so

= -1
(6.6.2-13) 1ab, 1 < R(R )IAh 0.

From the definition of h it follows that

[N

T T T
(6.6.2-14) 1ah 1 < izl{|mpitet| + |v e |+ |avg ae ]}

(]

+ +

= 1 .
From z, H(et)gt it follows that Azt H(et)Aet
So making use of theorem (6.4-57),

- - - A
(6.6.2-15) nz I < K(IE N £ K(H)egv, < K(H)e K ,

and
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(6.6.2-16) 1Az 1 < K(H) nAg 1.

This implies

2 e 2e k'8 + decy a2
18h 1 < 2d0Az Wiz I+ dBAz 17 < 2dR(H) e K & + dR(H)T(8 )” <

(6.6.2-17) v
(5 + %—)i(a'l)'l.

IN

Combining this with (6.6.2-13) gives
\]
(6.6.2-18) 1ab, I < g /4.
tw

(i1) Fix all but the first n,+1 components of the parameter sequence. I.e. Let
+ ©

{et- } on +1 be fixed. Then b, can be considered as a function of
T T=n; w
+ T
{6, __} _~. The domain of this function is
t-1"1=0
° +  To,, 4+ | 3o+
(6.6.2-19) b, := {(o,_ ) _ |(6,_ ) ~ e N (L (-=,0D)},

° n +1
so Db c (6+) ° .

Note that Db is closed and therefore compact. The following property will be

"
shown. For a given e' >0 a § ' > 0 can be found such that for all

+,.0 ° °
a,B € (0) with (ao,ul,...,ano) € Db,(Bo,Bl,...,Bno) € Db and

© © +

B ..} =10 o

{ . = _ 1
i=1 no+i i=1 t-no—i i=1

} the following implication holds

0"n +1
[e]
(6.6.2-20) (V1e{0,1,...,n }: d'(a ,8) < 6 ) = (Vo:ib, (a)=b. (81 < Le),

o T tw tw 2

L}

”
with d* as in (6.5-12). Note that § may depend on the choice of the fixed

+
part {et—r}r=no+l of the parameter sequence.
_ -
Because e+ is a disjoint union e+ = u D + of compact subsets D+,,
ij ij
ie1(3)
n +1 jed

the Cartesian product (9+) ° isa disjoint union of Cartesian products
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1 -t -
i+ Di+j XaooX D;+ . with
odo  Tid) ndn
n0+l
{(io,jo)’(il’jl)’.'.’(iﬂo’jno)} € {(i’j)li € I(j),j € J} ’
° _|+ __l+
and this last set is finite. Each set Db n (Di XaoaX Di . ) is compact and
ojo o “ng

so continuity of a function on each such set implies uniform continuity. Let

1
((io,jo),...,(in ,jn )) be fixed. Just as in (i), if , is such that Ve > K
o o

then b (Y) 0 for all vy, so b, (a) b (s)u =0< %e' in this case.
Now consider the case Ve < K . Then the 1nequality (6.6.2-8) holds.

It implies
' -nO
(6.6.2-21) Vvt ¢ {0,1,...,no}: ngt_Tu < c3K Ao
h b d b o
So the vectors gt,gt_l,...,gt_n are uniformly bounde y c3K Al R

o

independently of t,w (provided Ve < K ) and independently of the choice of the
parameter sequence. A similar argument can be set up for the observations Ve -
Because v, < K one has by definition of v, Iy i < v, < K , and more
generally

v _
<K AT

(6.6.2-22) ||yt ||<vt>.1 < 1

s, T=0,1,2,...

and so

[

o
(6.6.2-23) V71 € {0,1,2,...no}. Hyt_TH < K2

1 bl

independently of t,w (provided Ve < K'). From this the property (6.6.2-20) can
be proved in a straightforward manner, by writing out the formula for b in

tw

terms of e e 1,...,9 and

-n > e Ye-100 Ve
[ o
(Et’gt-l’""Et-no+1)’gt—no' Using the fact that gz(t) =1, vt > ty (so 89

cannot cause discontinuities here) and using the upperbounds for the HEt_

and the llyt h, T = 0,1,2,...,n° and using compactness of the parameter space,
-1
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(6.6.2-20) follows. The details aré left to the reader.

(iii) Combining (i) and (ii) can be done as follows:

+ _1 "y '5 o+
Suppose p (a,8) < min((l+n ) °,6 ) =: §, with a,B € I (L p(==,00).
+ + + + o+

Consider a = (ao,al,az,...,an 20 +l,...),
% = (ahot ot + o+ o+ )
a : A L L LT
o o
+ + + o+ 4+ o+
Y 1= (B sByseeesB 5o sa sa .el),
o o o o
+ + + o+
and B" (80)81’00'anoano+1,"')'

a0+ ~ 3.0+
Because g ¢ nt(LcP(—w,O]) it follows easily that ¢ ¢ nt(LcP( «,0]).

Now recall that n, has been chosen, by definition, such that n;l < ca

, SO
ta
§ < n_1 < ca. . It follows that d+(d+ ,B+ ) < ca, and that u+ ,B+ lie in
o - t n ’"n t n ’"n
4 [¢) o 4 o o
the same coordinate chart 5;;.
Using also that ¢,8 ¢ HE(E+ (- 0]) it follows that y ¢ ng(£+ (- o])'
’ t \ cP ’ t\ cP ’ :
Therefore (i) and (ii) can be applied to the pairs a, a;a,y, and v,B:
b, (a)-b, (BN < Ib. (o) = b, (a)h + b (a) = b ()N +
\] \] 1 .
- & L E L E -
“btm(Y) btw(s)u N i € . Q.E.D.

6.6.2-24. Theorem. Let tq be as in corollary (6.4-55).

The set of functions

°+
{b o Hi: ch(-m,O] > Rdlt > t3,m e Q}

tw

is equicontinuous.

Proof. This follows immediately from lemma (6.6.2~3) and proposition (6.5-14).
Q.E.D.
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Let S_,, T >0 be the shift defined by

+ °+
S_r: LCP(—WaOI > LCP(_N’O]’

(S Y)(s) = Y(s-1).
-r

6.6.2-25. Corollary. Let [b,c] c [0,») be an arbitrary closed interval. The
set of functions

a + d
{b,, © Mo S__: L (-=,0] >R |t > ty, T e [b,cl,u € 0}

tw

is equicontinuous.

Proof. This follows from lemma (6.6.2-3) and proposition (6.5~14), using the
fact that for all s > 0 and all r ¢(0,s) the following implication holds

+, .+ 1+ o+ + 1

pc(Yl’Y2) < s pc(Yl e S—r’ 2 ° S—r) < r°
The details are left to the reader.

Q.E.D.

Next the accumulated effects of the steps taken by the algorithm will be

investigated. Consider sums of the form

(6.6.2-26) Iab,
TENk T
where the Ni are intervals such that the sums = a_ are approximately equal
TGNk
to a constant independent of k. Sums like (6.6.2-26) can and will be

considered as integrals of piecewise constant functions, defined on the

t-1
'contracted time scale'. Let the partial sums of the series I a be denoted
t -1 T=to
o
by s¢, t > t, and let s, = 0 and s, =~ I a if t < ty. Let the piecewise

o =t
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constant function b%(r) be given by

o
b (r) bt if S = 0<r< st0+1 =a, ,

(6.6.2-27) ° ° °

b (r) = b, if s, {r< St41 for some t > t .

6.6.2-28. Proposition. Let N = {t|st e [x,y]}, for some x,y ¢ R, x < y.
Let t' = min N, t" = max N. Then

y
(6.6.2-29) [ b°(r)dr

/ = TiNaTbT + (St'_x)bt'-l - (y—st"+1)bt".
Proof. y Ser Serel St
[ v%(x)dr = [ v%(r)dr + [ b%r)dr - [ b°(r)dr =
X X s y
t'
= (st,—x)bt,_1 + I a_l_bT - (st"+l—y)bt".

TeN
Q.E.D.

To study the asymptotic behaviour use will be made of sequences of intervals,
to be more precise: sequences of disjoint intervals in [0,«), with
monotonically increasing sequence of right endpoints, of equal interval length
q and such that the distance between any two intervals is greater than or
equal to § for some predetermined § > 0. Each such sequence of intervals can
be associated with a triple S = (S,q,8) with 0 < § < q and § = {rk}k:1 a

monotonically increasing sequence of positive numbers such that

T 2 q, and
(6.6.2-30)
vk > 2: L > Ti-1 + §.
|"1 [o] l',‘ r2 -q 7}

6.6.2-31, Notation. The set of all such triples § will be denoted by S.

6.6.2-32, Definition. Let {et = (et’it’jt)}tz— be a parameter sequence with
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6, € 0+ for each t, and T ¢ Zor T = ». Let S e S. If £ € N is such that

+, T
Soe1 > Tos then the coordinate-chart-index set Il(g’{et}t=—w) is defined by

(6.6.2-33) 1,(8,{6/3 ") = ((1,,3)s € [r

l_q’rﬂ,]}'

If T = » then the coordinate-chart-index set I(§,{6:}_:) is defined as

(6.6.2-34)

Let YV ¢ Lt

, then Y+(r)

13, (6]1_0)

~ +. o
v 1,(8, 601 -
feN

(Y(r),i(r),j(r)). Let § ¢ s; I£(§,Y+) is defined by

L,(3,¥) = ((1,9)]3r elr~q,r,] such that (1,3) = ((r), (1))

and

1(3,vH = v I£(§,Y+).

=1

6.6.2-35. Remarks. (i) If one deals with a parameter sequence

{é:}z , (T > to,T € Zor T = w) one can formally extend it to -« by taking
o

+
t t
o
sequence.

6, = 6+ for all t < t, and apply the previous definition to the resulting

(ii) 1(§,{e:}) and I(§,Y+) can be interpreted as the set of all the 'relevant'
coordinate-chart indices for the combination (§,{et}) resp. (§,Y+).

6.6.2-36. Definition. Let § ¢ S be fixed. For each k ¢ N, for each w ¢ Q and

+. T
for each {et}t=—w

with T € Z or T = « such that Sr+1 > Ty,

+.T
let £, = fkm({et}—w) be given by

k

(6.6.2-37)

0

£ =
k

k

/

if |5 | > 1, and

b°(r)dr, 1f |1 | = 1,

rk-q+6

w T
where T, = T,(S,{6,}_ ).

k

For fixed §,w and k, fk can be considered as a 'function' of the interpolation
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curve Y+ € L:P(—w,o] (just like the variables btw)' To state this precisely,

let 1° (or H: with a = {at} if we want to stress the dependence on the

sequence a) be defined by

o N
r + +, 0
I: LCP(_w’O] > (0 )

(6.6.2-38)
+ L _ ot _
} ° with et_T =Y (s r)

r, +
I (Y ) = {et_T T= t-T1

and t such that 0 < r-s, < a (compare (6.5-9)). Analogously to (6.5-11) one

has

6.6.2-39. Theorem. For each r and each a = {gt} with Et > 0 for all t, H:

is continuous. a
The proof is left to the reader.

Tk ot po
Now fkm ol is a function on LCP(—w,o] for each k and ¢ (for fixed S).

The following result is a basic one of this section

6.6.2-40. Theorem. Let S ¢ S be fixed. The set of functions

T

(£, 0T k, L":P(-m,o] SRk eN, wen

is equicontinuous.

T

Proof. For each k e N, f, o I k(Y+) is a weighted sum of d-vectors

k

s
bl oI 1(Y+) o sS -r of which the (positive) weights are adding up to q-6
2k

(= the length of the 1gterval of integration). Therefore it is sufficient to
show that these b, o I . oS are equicontinuous. Here § is the shift
2 sz-rk sl—rk

over a length rk—sl. This length is bounded, because

0<r ~8, < q-§ + max a

K holds for all g for which b
k

appears with a positive

k L

weight in the definition of f). Therefore corollary (6.6.2-25) applies and the
result follows. Q.E.D.
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It will be importantrfor our purposes to show that asymptotically, for k + o,
the functions fk ol k(Y+) depend only on the behaviour of the interpolation
function Y' on the interval [-q,0].

6.6.2-41. Theorem.
Let S = (S,q,8) € S. Then Ve > 0, k. e N such that Vk > k_,Vu € &

' °4 2 - _%
the fol n, H Y Y I - nd Y =Y h
e ollowi g holds if € P( ,O] and ll[ ,C] 2|[ ,0]) then

1’72
r

r
ol k(Y-'l-) - f

£ ol k(Y;)n < e

k k

Proof. Let ¢ > 0 be given. From lemma (6.6.2-3) it follows that there exists
ann e N such that for all t > t, and for all y ¢ Q,

°+ 3
Va,B € Ht(LcP(—w,O]) with a, = B

i i-= O,l,2,3,...,n°, one has

i

(6.6.2-42) 1b_ (a)-b, (B < eq L.

Now let ky be such that for all k > k2 the following three conditions hold
simultaneously. Let T, := min{rls > r -q+6}.
k - k

(1) T > t3 (i.e. rk—q+6 > st3).
(i1) Sup a_ < min(g,q—s)
t 2
tZTk-l

(this implies r

-q+ -q+ .
K4 8/2 < STk- < r,-q+§ and sT <r)

1 k K k

- 8
(iii) Srk-l STk_l_“o < 2 (this implies, using (ii),

T 1=

that s n > rk—q)-
(o]
+ o+ C+
It follows that for all k > k, if Y,,Y, € L_p(-=,0]

+ ) h
and Yll[ then for all t with s, € [rk 2,rk], the

+
=Y
~q,01 = Y2l(-q,01°
sequences II_ o S (Y+) with ¢ = 1,2 have equal first n, terms:
t —(rk-st) [} o

t-1
Y (- ag#s-r)},> = {Y+(s )b
¢ L j=t—1j t k’/’i=o eV t-1 "k’ 7i=0’

+y i +(
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according to (6.5-9) and the definition of s, (just before (6.6.2-27)).
Because s, € [rk-q+§,rk], it follows from (i), (ii) and (iii) that for
is= 0,1,...,n0, one has s
+ +
V(s = Ypl8eny™
t with S, € [rk-q+5,rk],

e=1"Tk € [-q,0], and so for all i = 0,1,2,.0.,n,

r. ). Combining this with (6.6.2-42) one obtains for all

»

+ + -1
(6.6.2-43) "btm o Ht ) S_(rk_st)(Yl) - btm o Ht o S-(rk—st)(YZ)“ < eq .

r r

What does all this imply for the expression If, o I k(Y-ll—) - fk ol k(Y-;)Il'!

k
v Tk, & Tk,

First notice that Ik(S,H (Yl)) = Ik(S,n (Yz)) because

YTI[—q,Ol = YZI[—q,O]' Therefore there are only two possibilities, namely

(a) lIkI > 1 in both cases (i.e. for v and Y;) or (b) lIkl = 1 in both cases.

In case (a), according to (6.6.2-37),

1

T | o
k, + k,oby o
nfk ol (Yl) - fk ol (Yz)" = 0,

and in case (b), combining (6.6.2-37) with (6.6.2-43),

r r
k, + k, +

ka ol (Yl) - fk ol (YZ)" =

o 2 -1

[ (b (r)-b°(r))dri < (q-8)eq = < ¢,

-q+6

]

Ty

where bz(r), 2 = 1,2 is defined just as b°(r) in (6.6.2-27), with as parameter
Tk, o+
sequence II (Yz), 2 = 1,2 respectively.
Q.E.D.
6.6.3. On the relation between the coupled and the decoupled algorithm.

Having derived- the necessary equicontinuity properties of the relevant
variables in the previous subsections, we are now ready to apply the ideas

that were introduced in section 6.6.1.

6.6.3-1, Definition. The probability measure P on (Q,ﬁ) (i.e. on the data)
induces a probability measure on the variables of the decoupled algorithm
(described at the beginning of section 6.4) and all variables derived from
those, like {fk} and {bl}. This probability measure will be denoted by P. The
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corresponding expectation operator will be denoted by E.

6.6.3-2. Remarks., (i) Because the decoupled algorithm is only well-defined if
the parameter sequence {e:|et € O+} is specified the same holds for P and E.
(ii) In the coupled algorithm, P and E are still well-defined. Because the
result of taking expectations with respect to P depends on the sequence of
parameters and this sequence of parameters is now data—-dependent, an expected

value with respect to P is also data-dependent (in general).

6.6.3-3. Theorem. Let S ¢ S be fixed. The set of functions

T

(e, o1 L:P(-«»,O] sk en, e ql

is equicontinuous.

Proof. This follows directly from theorem (6.6.2-40). Indeed let ¢ < 0. There

exists a § > 0 such that if p:(YT,Y;) < §, then for all k and for all w € Q:

r T,

k, + k, +
"fkw ol (Yl)_fkm ol (YZ)“ < €.

This implies that for all k and for all w € Q:

r r
~ k, + ~ k, +
Il Efk ol (Yl) - Efk ol (YZ)" =

r r
~ k, o+ k, +
= | E{fk ol (Yl) - fk ol (Yz)}u <
r r

< EIf, ol k(YJI') -f ol k(Y;)n < Be=e.

k
Q.E.D.

6.6.3-4, Corollary. Let S ¢ S be fixed. The set of functions

(g, -Bf : LY (-=,0] » IRdIkeIN weQ}
kw  k° TcP ’ >

is equicontinuous.

The proof follows immediately from theorems (6.6.2-40) and (6.6.3-3).

In this section the result will be derived that if for each parameter sequence

{et} satisfying property 3 (cf. (6.5-17)) - with interpolation function
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Y+ € L:P such that 6: = Y+(St) for all t € Z - and for each § for which

18, | = 1 (and hence |1(5,{6{})| = 1), one has

1lim fk - Efk = 0, 5—a.s.,
k o+

then for the coupled algorithm one has

(¥8es with |1(5,Y")| = 1, 1in £
k-)oo

k_Efk = 0), P-a.s.
First let us formulate precisely the hypothesis concerning P-a.s. convergence
of £ . (The hypothesis will be proven to be true in section 6.7.2. Here

kK
we are only dealing with its implications for the coupled algorithm).

6.6.3-5. Hypothesis. For all parameter sequences {6 } satisfying property 3
- with interpolatlon function Y € L P such that e Y (s ),Vt € 2 - and for
all § « S such that |I(S,Y )I = 1, there exists a subset N of Q with P(N) = 0,

such that for all w e Q\N,

l1(1:[; £, = Ef, = 0.
6.6.3-6. Theorem. Let S ¢ g be fixed. Suppose the hypothesis (6.6.3-5) holds.
Then there exists a subset N of Q with P(N) = 0 such that for each parameter
sequence {e } satisfying property 3 - with interpolation function
Y+ € L such that e =Y (s ) for all t ¢ 2 - and for each

cP
subsequence S = of § = {rk}k=1 for which

k(j) :i=1

|1((5,q,68), YH]| =

one has

Vw € @Q\N: lim f
j-)oo

k(i) " B T °

Proof. The proof is rather long. Let {fk}kzl be defined by

if Vi e Nt k(§) # k,

0
(6.6.3-7) fk ={
fk(j) if 35 € N2 k(j) =
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It is clear that

- A~—

lim £, - Ef, = 0 iff 1im f Ef , .. = 0.
kow K k- PR k(3) ~ k(1)
Because |I((§,q,6),Y+)| = 1 there is only a finite number of possibilities for

I((§,q,6),Y+). Therefore it is sufficient to prove the result for a fixed
index (i,j) = I((§,q,6),Y+), because a finite union of null sets (i.e. sets of
measure zero) is a null set.

In section 6.5 we saw that the spaces L [a b], with [a,b] c R, are compact

(theorem (6.5-7)(b)). The idea of the proof is now to relate the functions
= k o+ d " d

fk ol LcP + R to functions fk’fk i .[-9,0] » R using theorem
(6.6.2-41), and then to use theorem (6.6.1-8).

The functions fk’ k ¢ N, are defined as follows. To each Y ¢ L:j[—q,O]

1]
associate Y € L (—°° 0], defined by

¥ l[‘Q.Ol - YI[-q’O] and
(6.6.3-8)

\]
Y (s) = Y(-q) for all s < -q.

1
Note that indeed Y ¢ L J(—w ,0]; 1i.e. it does satisfy the Lipschitz condition
and it remains in the coordinate chart Dij' So Y € L (--°° 0] < L (—w 0].
Now let

o

(6.6.3-9) fl'((Y) = £ o Ky, vk e N

The functions f k € N, are defined as follows. With each element

k? n o
Y ¢ L [ q,0] associate an element Y € LIj as follows.

Let Y-‘1 denote the 'reverse' of Y

Y l(t) = Y(-q-t), Wt e [-q,0].

Let
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Y(s—r ) if k is odd,

(6:6.3710 Y (S)l[r k3 k] —{:Y (s-t ) if k is even,

[

¥ Y(q) if k is odd,

Y(0) if k is even and

[I‘ = constant ={

1 Tiea1~

= Y(0).

¥ l(—oo’rl—q]

”
Note that lndeed Y ¢ L+ (the Lipschitz condition holds and
Y (s) € D for all s ¢ R) Let

r

” ” Py k "
(6.6.3-11) fk(Y) i= fk({Y (St)}t=—m) = fk oll "o (S_rk(Y ))l(—m’O]’ vk € N.
Consider the following four assertions
(i) vY € L:j[-q,O]: IN,P(N) = 0 such that
Vw € Q\N: lim f (Y) - Ef (Y) = 0,
k k
ko
(i1) W e L*;j[-q,O]: 3N, P(N) = 0 such that
l
Vw € Q\N: lim f ) - (Y) = 0,
k k
ko
(iii) 3N,P(N) = 0 such that \-/{Yle € L [ q,O]}k_l, Yo € Q\N:
] ~ '
11(im £, () - EE (V) =
>0
(iv) IN,P(N) = O such that for all w ¢ Q\N, for all {e:} satisfying

property 3 and for all subsequences S of S such that

1((35,q, 8), {9 D = {1,D}:

lim fk - Efk = 0.
koo
The following sequence of implications will be shown (making use of theorems

derived before):
Hypothesis (;)(1) (ﬁ)(u) (g)(iii) (3)(1\')

(a) For arbitrary Y ¢ L J[ q,0], consider the parameter sequence
{e =y (s )|t € Z}. From (6.6.3-11) it is clear that
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" ~ + ~ +
£,(0) - B (V) = £ ({6]D) - EE, ({6 D).
The hypothesis implies that there exists a set N ¢ Q with P(N) = 0, such that

Vw € Q\N: lim f ({e b - Ef ({6 D = 0.
ko
(Note that the coordlnate chart index (i,j) is constant and equal to (i,J) for
all t). So VY ¢ L J[—q,O] ,IN,P(N) = 0 such that Vuw e Q\N: fk(Y) - Efk(Y) = 0,
so the hypothesis implies (i) indeed.

(b) Let Y ¢ L:j[-q,o] be arbitrary.
Because
"
Y (s+rk) if k is even, and

Y(s) = Y (s)

Vs e[-q,0]

Us) = ¥ (s) = Y (r-q-s) =

1 n
= h (str) if k is odd.

Application of theorem (6.6.2-41) gives us

Yw € Q,VY € L:j[-q,O]:

(6.6.3-12) " -1
iim ka(Y) - f! k(Y) = 0 and lim ka 1(Y) 2k—1(Y ) =0,
+>00 ko
and
W e Lij[ q,0]:
(6.6.3~13) _ _ _
lim Ef (Y) Eka( Y) = 0 and lim Eka 1(Y) Eka 1(Y )
ko k >0

So (i) implies (taking for each Y ¢ :J
and Y'l, which results in another null set) VY ¢ L [ q,0],3IN,P(N) = 0 such

-q,0] the union of the null sets for Y
that

1
Vw € Q\N: lim f (Y) - Efk(Y) = 0.
ko
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So indeed (i) implies (ii).
(c) Corollary (6.6,3—4) states that the set of functions
{f—ﬁf-i+(-w0]+kd|kew,mesz}
k k® Tepr ?
is equicountinuous. The same holds a fortiori if the domain of the functions is
restricted to a subset of L (-w 0]. Let us restrict the domain to the set of

all Y with Y ¢ Lij[—q,O] From the equicontinuity of the resulting set of
functions it follows that the set of functions

{f —Ef Lij[—q,O] > nedlk e Nyw € 9}
is equicontinuous as well. The space L:j[—q,O] is compact (cf. theorem
(6.5-7)(b)). Therefore theorem (6.6.1-8)(a) is applicable; it tells us that
(ii) implies (iii).

(d) Let {et} be a sequence satisfying property 3, and let Y+ € L:P be an

interpolation curve, i.e. 9 = Y (s ), vt e Z. Let S = k(J) =1
be a subsequence of S such that I((S,q,G) Y Y = {(i,3)}. Let for each

keN Y e LCP(-m,O] be defined by
Y, (r) = Y(r +r), Vr ¢ (-=,0]
KHET O AT TR € AT L

Then Y.

wei lfoq 0] € Lygl-a,01 for each 3 ¢ n

By construction of the Y., one has

=, o= o - Tk - Tk
(6.6.3-14) fk({et}) - Efk({et}) = fk ol (Yk) - Efk ol (Yk), vk € N.

Now (iii), together with theorem (6.6.2-41) implies
IN,P(N) = 0, such that Vw e Q\N:

(6.6.3-15) e _ T — 2N
1im £, -Ef, = 1im £, o I (Yk) - Ef ol (Y

) =
K >eo k Tk Koo k k

= 11(im fk(Y [[ -q, 0]) Efk(Ykl[_q’O]) =0

Q.E.D.
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The problem that is left is tﬁat the exceptions sets in the previous theorem
depend on the choice of the sequence S ¢ ;= And as the set ; is uncountable,
one can not conclude directly that there exists one exceptions set N with
P(N) = 0, which contains all the exceptions for all possible choices of 3.

It will, however, be shown that such a set exists.

6.6.3-16. Theorem. The hypothesis (6.6.3-5) implies: JE c Q with P(E) = 0,
such that for all {e } satisfying property 3 - with an interpolation curve

+

Y ¢ L P such that e = Y (s ),Vt € 2 - and for all S ¢ S such that

lI(g,Y+)| = 1, one has
Vw € Q\E: lim fk - Efk = 0.
k+o

Before giving the proof let us state a corollary.

6.6.3-17. Corollary. The hypothesis (6.6.3-5) implies the following. Suppose
{6 (w)} is an m—dependent parameter sequence, satisfying property 3 and with

1nterpolation curve Y as in the previous theorem. Then

3E,P(E) = 0,Ve ¢ E,¥8 € S with |I(§,Y:)i =1, ln £f_- ¥, = 0.
k-)ao

Proof of the theorem.

Let P = {(pl,pz)lp1 € Q,pz‘e Q, Py > Py > 0} . Then P is countable. For each
P € ?, let us define

(6.6.3-18) 5 = (5.,pspy) = ({(py+py)2},_15P sPy)-

Then {S [p € P} forms a countable subset of S. Application of theorem
(6.6.3- 6) to Sp leads to an exceptions set that will be denoted by E (in the
theorem it is denoted by N), with the property P(Ep) = 0. Now let

(6.6.3-19) E= UE.
peP

Then P(E) = 0 because P is countable. Note that the intervals corresponding to
S are
P
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(6.6.3-20) [(p1+p2)(£—1) + 2p2.(p1+p2)2], 2 € N

Let {6+} be a parameter sequence satisfying property 3 and Y+ e L
corresponding interpolation function as before. Let

= (8,q,8) = ({r },q9,6) be some element of S such that II(S Y )|
Let ¢ > 0. It will clearly be sufficient to show that

(6.6.3-21) Vw € Q\E: limsupif
k+oo

k-Ef I < €.

Fix p € P, in order to derive an inequality.
For each k e N, let

(6.6.3-22) 1, := {zeN|[(p1+p2)(£-1)+2p2,(p1+p2)£] < [r-ats,r 1}
notice that
(6.6.3-23) (q-6-2p,)/(p;+p,) < [Ly | < (a=6+2p,)/(p;+p,) .

Let for all ¢ ¢ Lk

(6.6.3-24) H = [(p +p,)(4=1)+2p,,(p +p,) 1],

and

(6.6.3-25) Hk = U Hkl'
ReLk

Let A denote Lebesgue measure. One has
(6.6.3-26) A([r ~q+8,r, INB) < (a-8) = [L [(p +p,) <

Py Py
q-5-2p, <q-6>263;)+p1(1-E;;))

)(pl-p2 = <

P
2
L*f;;)

I

(q=6) - ( P,

IN

P
(@=6)2(2) + -
1

cP

a
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Ps
Note that this is small if-sZ and p; are small enough.
1

Let §p = {(p1+p2)£(i)}4fl be the subsequence of Sp with the property

(6.6.3-27) {2(1)]|1 ¢ N} = v L .

k=1 K
Let {f?}i:1 denote the corresponding f-sequence, i.e.
(6.6.3-28) f? = [ b%C0)do with k such that g(i) L -

LEYED)

For each k ¢ N, one has

I
nE -EE 1= 5 [°()-Eb°(0) 1dat <
rk-q+6
(6.6.3-29) ~
< i (b°Co)-Eb°(o)1don + £ 1 [ [b°C0)-Eb°(0)]dol.
[rk—q+6,r ]\Hk fely H

Let ik = max{ilk(i)eLk} for each k. From section 6.4 (see e.g. the proof of
corollary (6.4-55)) it follows that bo(o) is bounded by a data-independent
constant, because the parameter sequence satisfies property 3 and so a
fortiori property 1. Let this constant be denoted by Ky. Then it follows that
~ ik ~
(6.6.3-30) £, ~Ef 1 < 2K .A([r -q+8,r, \NH ) + z 1£P-E£Py.
kol - k i=i -|L, |+1 t
]
Applying theorem (6.6.3-6) to Sp, and using Ep € E, P(E) = 0, we find that the
hypothesis (6.6.3-5) implies:

Vo € Q-E: limif}-EE51 = 0.
i-ron
Because {lLkl}kfl is bounded (cf. (6.6.3-23)), and applying (6.6.3-26), one
finds

(6.6.3-31) Vw € Q\E: limsupnfk—ﬁf
k-)-eo

P2
k" < ZKb{(q—6)2;;+pl}.

This is the inequality mentioned right after (6.6.3-21). It is now trivial to
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see that p = (pl,pz) ¢ P can be chosen such that the right-hand side of
(6.6.3-31) is smaller than € > O.

Q.E.D.

6.7. Exponential decay properties of the algorithm and the implications

for convergence

6.7.1. About some exponential decay properties

The main purpose of this section 6.7 is to prove that the hypothesis (6.6.3-5)
holds. To do this, our main tools will be the 'exponential decay properties'
of the algorithm. In this first subsection definitions of several decay
properties will be given and some results will be derived. Applications to the
algorithm will be treated in sectiop 6.7.2.
Let us start with defining exponential decay. In the following let B denote a
d-dimensional vector space (d € N) with inner product <,> and norm I,I and let
the vectors of B be represented with respect to some orthonormal basis.

@
6.7.1-1. Definition. (1) A sequence {bk|bk € B}k:1 converges exponentially to
zero or, equivalently, decays exponentially if the following holds

(6:7.1-2) 3¢ > 0,3n € (0,1): Vk € N: Ib I < eak,

(i1) Let N = {(k,2)|k € N, £ € N,k > ¢}. A double sequence {bk2|bk£€B}(k,£)eﬁ

is said to be exponentially decaying if

(6.7.1-3)  3c > 0, 3 € (0,1): W(k,8) € N,Ib,1 < okt

Remark. In this definition A € (0,1) can be replaced by e * with o > 0. This

explains the word 'exponentially'.

6.7.1-4. Notation. If {bk}T satisfies (6.7.1-2) (i) we will say that
'{bk}: has e.d.' (exponential decay) or that ' {bk}? is an e.d. sequence’

(exponentially decaying sequence?. Similarly, if {bkz[(k,z) € N} satisfies

(?.7.1-2) (i1) we will say that {bk£|(k,£) € N} has e.d.' or that
{bkl|(k,2) € N} is an e.d. double sequence’.

6.7.1-5. Theorem. (1) Let {b } 7, {ck}kzl’{dij)}k:1’ jeN, be e.d.

sequences. Then
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(a) b, + k}

1 is an e.d. sequence,

() (e

K k}1 is an e.d. sequence,

(c) {kbk}; is an e.d. sequence,
1 k‘ ©
(d) vxl e (0,1): {bk = jﬁ Albk j is an e.d. sequence,

(e) if the b, are nonnegative scalars and p > 0 is arbitrary, then {bk}k 1

is an e.d. sequence, and
(f) if p(x(l),... x(n)) is a polynomial in n variables without constant term,

(1) (n))}
yeeesd k=1

i.,e. p(0y44..,0) = 0, then the sequence {p(d has e.d.

(11) Let (b, |k, DN}, {ey, |0, 0) N}, (a83) (e, ) e}, 3 € N, be e.d. double
sequences. Then

(a) {bk¢+ck2|(k,£)eN} is an e.d. double sequence,

(b) {bkz kxl(k’l) € N} is an e.d. double sequence,
(c) {(k- l)bkll(k,ﬁ) e N} is an e.d. double sequence,
R _
(d) VA, € (0,1): {b, = I Ay b .](k,z) € N} is an e.d. double sequence,
1 ke T 0 kg
(e) if the b are nonnegative scalars and p > 0 is arbitrary, then

k2
{b£l|(k,£) € ﬁ} is an e.d. sequence, and

(f) if p(x(l),...,x(n)) is a polynomial in n variables without constant term
i.e. p(0,40.,0) = 0, then the double

sequence {p(dii),déi),...,dﬁz)ﬂ(k,l) e N} has e.d.

Proof. We will give the proof of (i); the proof of (ii) is completely
analogous.

(a) is trivial

(b) is trivial in the scalar case; the vector case follows easily by applying
repeatedly (a) and the scalar case of (b). .
(c) {b } has e.d., so 3c > 0, 3x € (0,1) such that Vk e N: Ib I < cA® which
implies Wk € N: Ikb I < cka®.



318

k

Take A, € (,1). Then lin <2 = 0, so 3k, € N such that vk » k;: 0" < A5
ko )
Now let 2

k
(6.7.1-6) c, 3= max (¢, max c.k:AE),
Igkek, A

then

k
(6.7.1-7) vk e N: ﬂkka < czkz.

(d) Because {bk} has e.d., 3c3 > 0, 3
k € N. Consider

€ (0,1) such that kuﬂ < c3xk for all

3 3

k-1 k-1

' —L s
- h| 3 k-
Iy ujﬁoxlbk_ju < TN

j k
) Cy < k.max(kl,k3) c
j=o

3!

A oo
and {k max(xl,xa)kc is an e.d. sequence according to (b). So {bk}l is an

3}k=1
e.d. sequence.

(e) In this case one has
k
Je > 0, IX € (0,1), Vk € N2 0 < bk < ch.
It follows that for arbitrary u > O

vk e N0 < bY < c*(A™), and ¢¥ > 0, A € (0,1) of course, so {b}} is an
e.d. sequence.

(f) This follows easily by repeated application of (a) and the scalar case of
(b). Q.E.D.

Let us now consider e.d. sequences of matrices. First let us show that for the
definition it ‘does not matter whether the spectral norm or the Frobenius norm
is used.

6.7.1-8, Lemma. {A } ® is an e.d. sequence of d, x d, matrices with respect
—_— k=1 2

1
to the spectral norm iff it is an e.d. sequence with respect to the Frobenius

norme.

The proof follows easily from the fact that for any matrix A,
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(6.7.1-9) uAns < uAnF < Yn. uAuS,

where "’“S is the spectral norm and I,ll, the Frobenius norm, as before. By

F
convention, with an e.d. sequence of matrices {AR}T will be meant an e.d.
sequence with respect to the Frobenius norm or equivalently with respect to
the spectral norm (i.e. {HAkHF} or equivalently {nAkHS} is an e.d. sequence of

numbers) .

Remark. In the following the real case will be considered. The results for the
complex case are analogous.

6.7.1-10. Lemma. {Ak}k:I is an e.d. sequence of d, x d2 (real) matrices iff

1
for each d,-vector, {Akx}1 is an e.d. sequence of d;-vectors.

2

Proof. If {Ak}kfl is an e.d. sequence then 3Jc > 0,3 ¢ (0,1): “Ak"S < ckk,
- k

and so if c1 2 clxl > 0, then uAkxﬂ Sm"Ak"S"x" < clx , which shows that {Akx}
has e.d. On the other hand, if {Akx}k=1 has e.d. for each dz—vector x, then it
follows easily that each component-sequence {eiAkej}kzl, where ey denotes the
ith unit vector, has e.d. and therefore {Ak} is an e.d. sequence. The details
are left to the reader.

Q.E.D.
6.7.1-11. Lemma. Let A be a square dxd matrix. {Ak}k:1 is an e.d. sequence iff
A is asymptotically stable.

Proof. If {Ak} is an e.d. sequence then clearly lim Ak = 0, and so all
eigenvalues have modulus less than one, so A is Eg;mptotically stable.
On the other hand if A is asymptotically stable then its eigenvalues lie in
the open unit disk, Let X ¢ (0,1) be larger than the largest modulus of any

eigenvalue of A. Then

(6.7.1-12) 1imHAkHS/Ak 0,

k-)uo

and so {IIAkuS/)‘k}k:1 is bounded by some positive number c (say).

So Yk € N: nAkHS < cxk, and so {Ak} is e.d. Q.E.D.
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Remark. Notice that '{Ak} is an e.d. sequence' is definitely a weaker
1
statement than 'HAHS <1 . As a simple example, consider A = [3 i }

for some A € (0,1). Then I1ANg > 1+)\2 > 1.

6.7.1-13. Lemma. Let A be a real square asymptotically stable matrix and T an
arbitrary square matrix of the same size as A. Then {AkI‘(AT)k}k:1 has e.d.

Proof. Consider ﬂAkr(AT)kns < nAkngnrns and apply the previous lemma.
Q.E.D.

6.7.1-14. Lemma. Let {Ak}kfl be a sequence of dxd real positive semi-definite
symmetric matrices. Then {Ak}k:1 is an e.d. sequence iff {tr Ak}k:1 is an e.d.

sequence.

Proof. If A is (real) positive semi-definite symmetric, its largest eigenvalue
is lAlg, and 1Alg < tr A < d.1Al
inequality.

g° The lemma follows easily from this

Q.E.D.
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6.7.1-15. Remarks. (i) Similar results hold for double matrix-sequences
{Ak£|Akl ad; x d2 matrix, (k,2) e N}.
(ii) Theorem (6.7.1-5) can be generalized to the matrix case in a

straightforward manner.

For stochastic vectors let us introduce the concept of exponential decay of

dependence.

6.7.1-16. Definition. Let {x,}]
values in B. It will be said to have the property of exponential decay of

be a sequence of random variables taking their

dependence if the following holds.
(i) For each p € N the sequence {Ellxkllp}k:1 is bounded and

(i1) for each pair (k,8) ¢ N there exist random variables x and € such

k& ke

that

(@) x = X+ epps
(b) Xkl is stochastically independent of XpsXy 15X _gseee and

(c) Vp e N: {Eneklnpl(k,z) e N} is an e.d. double sequence.

6.7.1-17. Notation. If {xk}T has this property we will say that '{xk}T has
e.d.d.' or that '(xk}kfl is an e.d.d. sequence'.

For those cases in which the ekl are Gaussian, condition (c) of definition
(6.7.1-16) simplifies considerably. To show this, the following lemma will be

used.
6.7.1-18. Lemma. There exists a sequence of polynomials {qp(u,cz)}p:1 in the
(scalar) variables  and 02, with the following property. If x is a scalar
Gaussian variable with mean y ¢ R and variance 02 > 0, then

P 2
(6.7.1-19) Ex = qp(u,o ).
Furthermore for each p ¢ N, qp(0,0) = Q.

Proof. This is a standard result from statistics. (It can easily be shown by

making use of the characteristic function of the Gaussian distribution with
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mean p and variance 02 > 0).

Q.E.D.

6.7.1-20. Theorem. Let {xk}k:1 be a sequence of random variables taking their
values in B. It has e.d.d. if

(i) for each p ¢ N the sequence {Ellxkllp}k:1 is bounded and

(ii) for each (k,2) € N there exist random variables Xeg and €1q such that
@) x = X * e

(b) xkz is stochastically independent of x
() ®is has a Gaussian distribution and

(d) {E“ekg“zl(k’l) e N} is an e.d. double sequence.

2' l,xl PIRRRE

Proof. Let the mean and covariance matrix of e = be denoted by Mg and L

2 kg kL
i =

respectively and let O tr Zkz. Because
(6.7.1-21) iy, I < Ele, I < (Ele “2)5

ke = ke = kL
and

2 2 2 2
(6.7.1-22) Oeg = Elg 17 = My 17 < Eligy 0

and {E"Ekzuz} is an e.d. double sequence, it follows that {“kz}’{°§£} are e.d.
double sequences. Using lemma (6.7.1-13) it follows that {Zkz} is an e.d.
double matrix sequence.

Because the conditions (i), (ii)(a) and (ii)(b) of definition (6.7.1-16) are
assumed to be fulfilled, it remains to show (i1i)(c) of definition (6.7.1-16),

i.e. that for all p € N, {Eﬂskzﬂp|(k,£) ¢ N} is an e.d. double sequence. From
the well-known inequality

_ 342 2j
(6.7.1-23)  (Eley ,17)" < EClgy )77)

it follows easily that it suffices to consider only even values of p. So let
P=2j, j eN. First consider the scalar case d = 1. Then

Eeiz qZJ(ukz’okz)’ according to lemma (6 7.1-18). Because {ukl} and {c }
have e.d., the same holds for {qzj(pkl,o Y[(k,8) € N}, for each j e N,
according to theorem (6.7.1-5)(i1)(f).

Now consider the vector case. Use will be made of the following inequality. If
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x(l),x(z),...,x(d) are arbitréry scalar random variables then

d d-1 ,1-d
(6.7.1-24) E[xPxP D) ¢ p e 92

—

This inequality follows by induction from the well-known inequality for

arbitrary scalar random variables a and b:

(6.7.1-25) E|ab| < (Ea® (EpD)?.

(1)
k2
One has for each j e N

Let ¢ denote the i-th component of €1g? ie {1,2,...,d}.

) d
(6.7.1-26) Ene, 123 = 5[ 5 ({1243 -

ke o k2
d d . 1-d

j i)y2 42

<z (LY oy EeE?)
OSjiSj JI’JZ’-..’Jd i=1 kl ’

53 =i
Ji J

where (6.7.1-24) is used. From the scalar case it follows that for

i;))Zdl(k,l) € N} has e.d. It
follows from theorem (6.7.1-5)(ii)(f) that the double sequence that is
obtained by taking the right-hand side of (6.7.1-26) and letting (k,4) take
all possible values in ﬁ, has e.d. And therefore {EuekQHZjl(k,l) € ﬁ} has e.d.

Q.E.D.

each i ¢ {1,2,...,d} the double sequence {E(e

It is perhaps not so surprising that the covariance matrix sequence of an
e.d.d. sequence {xk} has e.d. This is what will be shown next.
Let cov(xk,x2)~:= E(xk—Exk)(xz—Exl)T. (As stated before we restrict ourselves

to the real case, for the complex case similar results hold).
6.7.1-27. Theorem. Let {xk}k:1 be an e.d.d. sequence of vectors taking their
values in B. The double sequence of covariance matrices

{cov(xk,x£)|(k,£) e N} has e.d.

Proof. For all (k,8) € ﬁ, one has
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cov(xk,xz) = E(xk-Exk)'(xl—Exz)T =
(6.7.1-28) T T
= E(xkz_Exkl)(xl_Exl) + E(ekl-Eskl)(xl—Exk) .

Because X and Xl are stochastically independent they have vanishing

covariances. It follows that

_ - _ T
(6.7.1-29) cov(xk,xg) = E(Eki Eekl)(xl Exl)

Let us now take the Frobenius norm.

T
Ilcov(xk,xl)llF = "E(Ekﬁ_Ekl)(xl_Exl) "F <
(6.7.1-30) T
El(ey ,~Eey ) (x ~Ex )7 I = E{lle, ;~Eey Mo Ix ~Ex 1} <

(Euskl-Eeklnz)%(EHxl—Exluz)% < (quklnz)%(Enxzuz)%.

Now {E“Ekz"z}km is an e.d. double sequence and {Euxluz}z is a bounded
sequence, so {(E"Ekz"z)%(E“xzuz)%}kz is an e.d. double sequence, hence
{ncov(xk,xl)uFl(k,l) € ﬁ} is an e.d. double sequence and the theorem follows.
Q.E.D.

6.7.1-31. Corollary. If {x }, has e.d.d., then {tr cov(xk,xz)l(k,l) e N} has
e.d.

In many important cases, taking a function of an e.d.d. sequence gives another

e.d.d. sequence. This is treated next.

is an e.d.d.

6.7.1-32. Theorem. Suppose {xk = (xil)’x§2),...’ (d))}k:1

sequence of random vectors taking their values in B.

(a) Suppose p = p(x(l),x(z),
1 2 d

ﬁ ),xé ),...,x( ))}k:I has e.d.d.

(b) Consider F: B + B, B another finite dimensional vector space with inner

...,x(d)) is a polynomial in d variables, then the

sequence {p(x
product. Suppose F satisfies a global Lipschitz condition

(6.7.1-33) 3Jc > 0 Vx,y e B: IF(x)-F(y)I £ ctx-yl.



Then {F(xk)}k‘:1 has e.d.d.
(c) If F: B » B is a Cl mapping with compact support then {F(xk)}k:1 has
e.d.d.

(d) 1f {Fk}k:1 is a sequence of mappings satisfying a uniform Lipschitz

condition
(6.7.1-34) 3c > 0, Vx,y € B,Vk € N: qu(x)—Fk(y)n < clx-yl.

Then {Fk(xk)}ki"l has e.d.d.
(e) If F: B x B » B, (8,x)—>F(6,x) is a continuous mapping with continuous
partial derivatives with respect to the components of the x-vector, and F has

compact support, then for each sequence {ek € g}kzl’ the sequence

{F(ek,xk)}k=l has e.d.d. el | 3
(£f) If A € (0,1) then {y, = I Ax,_ .} has e.d.d.
k . k-3°1
j=o
(g) 1f {Aj}T is a sequence of linear mappings Aj: B + B, and if a » € (0,1)
k-1
exists such that ﬂAju < X for all j, then {yk = jioAkAk-l"'Ak—j+lxk-j} has

e.d.d.

Proof. (a) First consider the case of two variables x: = (uk,vk), with

T _ T _ ,u v
Xeg = (upavigy) and gy = Ceppneg ).

(1) p(u,v) = u + v and (ii) p(u,v) = uv.

The simplest cases are

v

= - e z _ u
ad(i) Let z, = p(uk,vk) U + Ve Let Zyg P Uy + Vig and €1 €xy + €rg”
The: zkl isuclearlyvstochasticaliy independent of Z)5Z) 13Zg oreces and _

"skl" < "ekl“ + "eklﬂ and so {gkz} is an e.d. double sequence ((k,%2) e N)

This shows (i).
ad(ii) Let z, = p(uk,vk) A Let Zig *T UeVig then Zig is stochastically

ind dent of z , vee o Let 2 = -
ndependent o zz z , e € LA

-1"%9-2 Yeg kg !

Then one has

z _ _ _.u _V,y_.u v _u v
(6.7.1-35) €rp = VK (uk ekz)(vk ekl) €k + €10 ~ €rafka

and so for each p € N



z p v u v .P
(6.7.1-36) Ilekzll < {leigllvkl + Iekgllukl + Iekgilekgl} .

The right-hand side is a polynomial in the three
u v u v

variables Isklllvkl’lekllluk‘ and Isklllekzl’ without constant term. Using
(6.7.1-24) one can find un upper estimate for E"eil“p in terms of positive
(but nzt neiessarily integer) powers of moments of leﬁlllvkl’ |€Z£||uk|
and ey [leg, -
Similarly as is done in the proof of (6.7.1-20) one can show that for each p,

{Eﬂeiznp} is an e.d. double sequence.
The arguments used for (i) and (ii) can be extended without problems to the
case of d variables and to the case of polynomials p of any finite degree in

those d variables (or one can use inductions). The details are left to the

reader.

o= o= z = -
(b) Let z : F(xk) and Zyg t F(xkl),zthen ekz z, Zkl' Then zkl is
independent of z ,z z ... and = - - =

penden -1 %0-2° nd dg o IF(x, ) F(sz)" < eixex ol
= cle, 1.
ke
This implies
z p P P
E"ekﬂ," S c Ellekzll ’

so {Eueizupl(k,l) € N} is an e.d. double sequence for each p ¢ N and so {zk}
has e.d.d.

(c) F satisfies a Lipschitz condition, so (b) is applicable.

(d) Let zp = F(x)) and Z,
the proof of (b).

¢ = F(xkl)' The proof is now completely similar to

(e) F satisfies a Lipschitz condition with respect to x that is independent
of 0.

Therefore this case reduces to case(d).

k=21

(f) Let t= T ij then is stochastically independent of
Yke k-3,8° Yke
j=o
xl’xl-l"" and therefore of VA FIRES FICTETTRE One has
y k-2-1 i k-1 3
(6.7.1-37) ¢ =y -y, , 6 = I Xeg . ,+ I A so
L N T -3

It follows that
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k=2-1 . o k=l Lo
(6.7.1-38) el 1< 1z Adne, , u+ E g a3k l)uxk P
ke = . k-3,2 . =]
j=o j=k-2
Because {xk} has e.d.d., there exists a ¢y > 0 such that vk e N: Eﬂxku < )
and there exists a c, > 0 and a Ay € (A,1) such that Eﬂeklu < czxk—z for all

(k,2) € N. Substituting this one obtains

-1 . . -1
j . k=j-2 k-2 i
xzxz c2 + Az I Azcl

o i=o

_ y
(6.7.1-39) Elg <

i k-2 !
. <Ay {kg=De+ 751

g
z
: -1,

J
The right-hand side is the general term of a (k,%)-double sequence,
with (k,2) e N, which has e.d., according to theorem (6.7.1-5) (ii) (c) and
(a). It follows that {Eneiznl(k,l) ¢ N} has e.d.
Similarly as in the proof of (a) and of (6.7.1-20) this argument can be
extended to show that for_gggh p €N, {Eugilup[(k,z) € ﬁ} has e.d., and so
{yk} has e.d.d. The details are left to the reader.

k-2-1

:= A oo
(g) Let ykl jio kAk—l Ak—j+lxk—j,£ then Vieg is stochastically

independent of XosXo poeee and therefore of YgrYgoprere * One has
k-2-1 k-1

- y -y - -
(6.7.1-40) €xs = Yk Vig jzo AkAk-l"'Ak—j+lek—j,£ + j=i_£Ak'°'Ak—j+lxk—j'

Because for all j, A I < X it follows that
J

k-2-1 k-1

(6.7.1-41) 1d 1< 1 e . a1+ oz Aix L.
k4 suo o T A, M- 3

This is equal to the inequality (6.7.1-37) with AZ instead of A. From here the
proof is identical to the proof of (f).
Q.E.D.

The previous theorem shows that the concept of an e.d.d. sequence of random
variables is a rather flexible one. This will be useful in the analysis of the
algorithm. However, a somewhat more general concept will in fact be needed,

which is introduced next.

6.7.1-42. Definition. Let N = {Ni}i:1 be a sequence of disjoint intervals
f ith N i.e. N

of N wit Ni < i+1 (i.e. Vx € i,VyeN

going to infinity for i + «» and let

141°% < y) and with interval lengths
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=4
]
c
-4
[
=]
o
=4
[}

{(e,2) [k > 2,k € N, 2eN, }.

(a) Let {bk£|(k,£) €U ﬁi} be a deterministic double sequence of elements of

B. Then {b, |(k,2) € U Ni} is said to have the property of exponmential decay

kll o
with respect to the interval sequence N (abbreviated as 'e.d.i-N', or 'e.d.i'

if N is clear from the context), if the following holds:

k-4

3¢ > 0, 3 ¢ (0,1) such that Wk,2) ¢ u N,: 1Ib JI<ea

i k

(b) Let {xklk € No} be a sequence of random variables taking their values in

B. Then {xk[k € No} is said to have the property of exponential decay of

dependence with respect to the interval sequence N (abbreviated as 'e.d.d.i-
o o

N' or 'e.d.d.i' if N is clear from the context), if the following holds

v(k,2) € U ’ﬁi, such that

Iy grxg
(i) X = X + €17 V(k,2) € Ni,Vi e N,

(ii) xkl is stochastically independent of

{lej €Ny, J<e), Wk,8) e f\ri, vi ¢ N, and
(iii) Vp € N,Ecp >0, 3x € (0,1) such that

P
=5, p k-2
Vi € N, W(k,8) € Ni' Ele 1“ < cpx .

k P

6.7.1-43. Theorem. Let {xk|k € No} be an e.d.d.i.-N sequence. The properties
(a) - (g) of theorem (6.7.1-32) hold if

(i) 'e.d.d.' is replaced by 'e.d.d.i-N' and
(ii) 1in (f) and (g) the summation is replaced by summations that are going
back only to the beginning of the relevant interval in N. I.e. in the
analogon of (f)
k-minN

= 1,3
{yk .Z A xk—j‘i such that k ¢ Ni}keN
j=o o
is the sequence that has e.d.d.i. and in the analogon of (g),
k-minN

_ i
{yk - z

a Ak"'Ak—j+1xk—jli such that k € Ni}keNo

is the sequence that has e.d.d.i.

The proof is completely analogous to the proof of theorem (6.7.1-32).



6.7.1—44; Lemma. If {xk}1 is an e.d.d. sequence, then {Xk}keNo has
e.d.d.i-N.

This is an obvious but useful result.

6.7.1-45. Lemma. If {x, } is a sequence of random vectors such that

k“keN
o

(1) x, = 0 if, for some 1 ¢ N, k « h& and k # min (Ni)’
(1ii) for each p € N the sequence {E"xk"p}keN is bounded,
g o

then {xk}keNo has e.d.d.i-N.

This can be shown simply by taking x, = 0 for all (k,%) e v ﬁi. The details

kg i

are left to the reader.

6.7.2. Applications to the algorithm

First it will be shown that several quantities that appear in the algorithm
have e.d.d. or e.d.d.i, especially {bk}. This result will then be used to show
P-a.s. This implies

that {fk_Efk} converges to zero for k + =
that the hypothesis (6.6.3-5) is true.

6.7.2-1. Theorem. The sequence of outputs {yt} of the system to-be-identified

is an e.d.d. sequence.

Proof. By assumption (cf. section 6.2.1) the 'true' model has an innovations
representation (cf. section 2.4 and (4.8-1)) with D = I (without loss of

generality this may be assumed) and, for notational reasons, w, instead of Vet

J'xt+1 = Axt + Bw
(6.7.2-2)

Te

Cxt + L

with A asymptotically stable etc. (cf. sections 2.4 and 4.8). For simplicity
of notation assume in this proof that t, = 1, and consider {yt}tzl. It is
clear that

(6.7.2-3) 'y, =CA" 'x, + I CA" 'Bw__ +w_.
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Now for (t,s) e N, let

t-s=1 ;- »
(6.7.2-4) Yes ril CA” "Bw,__ +w, if t > s,
0 otherwise.

Then y,, is stochastically independent of WosWo 1sWg_ ogseee and therefore of
ys’ys—l’ys—z"" .
Let
t-1
_ Yy o oo - t-1 r-1
(6.7.2-5) €rs = Ve Vg CA X + I CA Bw,
r=t-s
It follows that
T t-1__ T, t-1.T.T , ! -1 T, r-1,T.T
(6.7.2-6) Estsets = CA Exlxl(A )CC+ T CcA "BI B(A T)C.
r=t-s

From lemma (6.7.1-13) it follows that {CAr'lenT(Ar'l)TcT}rf1 is e.d. Let the

sequence {cr}T be defined by

1 r-1,T.T
’

(6.7.2-7) ¢ = tr eat1s 5 8Ta" HTe

r=1,2,3,...

Then {cr} has e.d.; this follows from lemma (6.7.1-13) and theorem

(6.7.1-5) (i) (a), making use of the fact that fr is a linear combination of
the entries of Ar_lB L BT(AT)r_l.

It follows that

t -1
I ¢ =
r=t-g T (t,s)eN

is an e.d. double sequence, as can easily be shown. The sequence

{tr CAt_lExlx}‘(At-l)TCT}t:1 is e.d. (same proof as for the fact that

{cr} has e.d.). It follows easily that {Eustsﬂz} = {tr Estsezs} is an e.d.
double sequence. Because the e are all Gaussian, theorem (6.7.1-20) tells us
that {yt} has e.d.d.

Q.E.D.
6.7.2-8. Corollary. {Hyt“} has e.d.d.

Proof. F(y) = Iyl is mapping with Lipschitz constant 1:
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(6.7.2-9)  |F()-F(x)| = |1yn = uxi1| < iy-xI.

Therefore theorem (6.7.1-32) (b) is applicable and the corollary follows.
Q.E.D.

6.7.2-10. Theorem. {vt} has e.d.d.

Proof. Let t, = 1 to simplify the notation (without loss of generality). From
the definition (6.2.8-3) of v, it follows that

t-1 r
(6.7.2-11) v = I A\ly __I.

r=o
Corollary (6.7.2-8) and theorem (6.7.1-32) can now be applied to conclude that

{vt} has e.d.d.
Q.E.D.

Next we want to show that {gl(vt)} has e.d.d. To be able to do this we need
the following technical lemma.

6.7.2-12. Lemma. Let for all (t,s) e N

t-s-1
Z A
r=o

r
1nyt_r’su if t > s,

0 if t = s.
The following holds: let v > 0, then
(6.7.2-13) 3c > 0,3 > 0,¥(s,t) € N,Ve « (0,e): P(v=e < v < V) < c.el.
The proof will be given in appendix 6B.
6.7.2-14. Theorem. {gl(vt)} has e.d.d.

Proof. Let
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15) B s - |
(6.7.2-15) e/ := g (v)) - g (v, ),

where v, . is as defined in lemma (6.7.2-12). Clearly Vs and therefore gl(vts)
is stochastically independent of Ygs Vg1 and therefore of VgsVg qaeee and
of gl(vs)’gl(vs—l)"" . It is clear that 558 ¢ {-1,0,1}. One has (cf.
(6.2.8-4) for the definition of gl)

Vp € N: E|s§slp = E|e§s| = P[gl(vt) # gl(vts)] =

(6.7.2-16) , , , .
=Plv,>K and v, <K ]+Plv, <K andv, >K].
v
Let ¢ = v -v_ . Then
ts t ts
6.7.2-17 ' ' Vs '
(6.7.2-17) P[vt >K and v, <K ]= P[ets >K-v, and v <K ]-
Let F(Vts) denote the distribution function of Vigs then
K'
(6.7.2-18) P[eV_ > K-v,__andv,_ <K ]= [ Plel_ >K-v_|v, ]dF(v_) =
ol s ts ts = ts ts!'ts ts
v, =0
ts
el 1y
K (E‘Etsl) E(Iezs”"ts) K'
= —ts__ts 4 +
vf -0 K'—vts F(Vts) v =K'{(Elev |)%dF(VtS) S
ts ts ts
el 1y
K (E|ets|) E(|e: llvt ) v i
< S =2 4r(v,__) + P[K'-(E|e} |D? < v, < K']
= ) (E|ev l)} ts ts = “ts -
ts
<@l P+ el P <, <k,
= ts ts = Tts =
According to theorem (6.7.2-10) {Vt} has e.d.d. and therefore
v
- od. . foll that
{Elatsl}(t,s)eN is an e.d. double sequence. It follows tha
{(E|€Zsl)}} is an e.d. double sequence too. And making use of lemma
6.7.2-12) it follows that —(ele’ Dt ' - is an e.d.
( ) ontow at {P[K (Eletsl) < Vts <K ]}(t,s)eN s

double sequence. Combining (6.7.2-17) and (6.7.2-18), it follows
that {P[vt > K' and Vs < K']|(t,s) ¢ N} is an e.d. double sequence. In a

completely similar fashion, by interchanging the roles of v, and Ves and
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replacing e:s by —SZS one can show that {P[vt < K' and Vig > K']I(t,s) ¢ N} is
an e.d. double sequence. Equation (6.7.2-16) now implies that for
each p € N, {Eleislp} is an e.d. double sequence, and therefore {gl(vt)} is
e.d.d.
Q.E.D.

Now consider the decoupled algorithm, and let {et} satisfy property 3 with

interpolation curve Y+ € sz such that e: = Y+(st),Vt e 2. Let
§ € 5,8 = ({r,)7,4,8), be such that |1(8,¥")| = 1, say 1(3,¥) = {(1,))} and
let N = {Nk}k:1 be the corresponding sequence of intervals defined by

= {t - .
N = {t]s_ e [r-q,r 1}

~

6.7.2-19. Theorem. {gt} has e.d.d.i.-N (with respect to P).

Proof. Combining the inequality (6.4-12) of lemma (6.4-8) with
lemma (6.4-41) (a) one finds there exists a cy > 0, cy data-independent, such
that

Ve > £ s IE N K cyv, -
Because {vt} has e.d.d. (theorem (6.7.2-10)), it follows that {Engtnp}t:t is
bounded for each p € N.
Now, according to theorem (6.3.4-21) one can choose (and we assume that this
has been taken care of) the refinement of the coordinate-charts—cover of the
manifold such that within each chart Dj 4 the spectral norm of F(¢j(e);i,j) is
smaller than Ao + g(< 1). Now consider equation (6.3.3-15). If t+1, t ¢ N

k’
then g(t+1;i,j) can be decomposed as the sum of a vector due to £(min Nk;i,j)
and the rest, which depends only on y ,y yoeosy . The first part has

t T t-1 min(Nk) —_—

e.d.d.i.—& according to the combination of lemma (6.7.1-45)

(with X, = g(t;1,3) if t = min Ny for some k and x, =0 otherwise) with
theorem (6.7.1-43) (g) (with F(¢j(et)ii’j) instead of A.). Because {yt} has
e.d.d., {?(¢j(9t);i,j)} has e.d.d.i.-N and therefore the second part has
e.d.d.i.~N according to theorem (6.7.1-43) (g) (again with F(¢j(et);i,j)
instead of At)' Applying (6.7.1-43) (a) one fin@s that {gt} has
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e.d.d.i.-N (w.r.t.P).
Q.E.D.

6.7.2-20. Theorem. {bt} has e.d.d.i.-N (w.r.t. P).

Proof. Consider the definition of b, in (6.6.2-1). Substituting for h(gt,j)
according to (6.2.8-5), one finds

(6.7.2-21) b, = gl(vt)gz(t)R(et,j)'lw(t,j)Te(t,j)-

Consider (6.3.3-16); the matrix H(¢,(68);1,3j) is bounded on ﬁ;j; {g(t;1,3)} has
e.d.d.i.-N (theorem (6.7.2-19)) and {yt} has e.d.d. (theorem (6.7.2-1)).
' Therefore {z(t,3)} has e.d.d.i.-N, where

26,9 = (e(t, D, ¥ (6, D, .00, ¥, (5,9,

as before. Applying theorem (6.7.1-43) (a) (or in fact a slight generalization
of this, namely to the case of a vector of polynomials instead of one
polynomial) one finds that {W(t,j)Te(t,j)} has e.d.d.i.—&. From corollary
(6.4-55) it follows easily that {gz(t)} has e.d.d. Theorem (6.7.2-14) states
that {gl(vt)} has e.d.d. And {R(et,jt)'l} is a sequence of bounded
nonstochaftic matrices. It follows from theorem (6.7.1-43) (a) that {bt} has
e.d.d.i.-N.

Q.E.D.

6.7.2-22. Corollary. The double sequence

°

~ ~ T ~ -
{E(bt_Ebt) (bs—Ebs)|(t,s) € UN;} has e.d.i-N,

i.e. 3¢ > 0, Ix € (0,1) such
= o Eer w2 T t-s
that V(t,s) € v N :|E(b -Eb ) (b -Eb )| < c.a™ ~.

The proof is analogous to that of corollary (6.7.1-31), the only difference is
that here it concerns 'e.d.d.i.-N' instead of instead of 'e.d.d.', and 'e.d.i'
instead of 'e.d.'. The details are left to the reader. From this corollary the

following important lemma can be derived. (Let {et}, S, N etc. be again as
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described just before theorem'(6.7.2—19)).

6.7.2-23. Lemma. I BIf -Ff 12 < w.

k=1 k k
Proof. Consider the definition (6.6.2-37) of f,. Because |I(§,Y+)| =1 it
follows that ]Ik| =1 for each k € N; in fact I, = {(i,j)} for each k.

So for each k € N:

k

r

£, = f v0(ryar.
r,-q+§
K4
It follows that
~ Tk o ~ 0
(6.7.2-24) f -Ef, = [° {b (o) - Eb (0)}do
rk—q+6

and

©

~ ~ T ~
(6.7.2-25) © E(f —Efk) (fk—Efk) =

k=1 k

® rk rk ~..0 ~ 0 T, o ~ 0

b f f E{b (Ul)-Eb (01)} {b (02)—Eb (02)}d01d02.
k=1 rk—q+6 rk—q+6

Consider the definition (6.6.2-27) of bo(o). Using the previous corollary one

can derive

(6.7.2-26)
"k " ~0 ~ T, o0 o |t-s]
[ E0°0)-Eb%(0 )} °(0,)-Eb%(0,) Mo do, < I ,a.ach ,
r,-q+s 1, —q+s (t,8)eN

with ¢ > 0, A € (0,1) as in corollary (6.7.2-22).
A fortiori, it follows that

¥ <ex atasxlt'sl.
et

s>t

- 0

(6.7.2-27) Ellfk—Efk

For simplicity of notation, take t, = 1. Now consider
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(6.7.2-28) c & aa Alt_sl {2 I aa At <2z (2 a,. )Aj <
t>1 © s>l © ° j=o s=1 &I ®
s>1
<2ez(rai)d=2_5a?<a.

s 1- s
j=o s=1 s=1

The lemma follows.

Q.E.D.

To show that from this it follows that the hypothesis (6.6.3-5) is true the

following lemma is needed.

6.7.2-29. Lemma. Let {xk}k:1 be an arbitrary sequencewof random vectors

xk € B with mean zero and covariance matrix I'' . If I tr I < o,

then 1lim X = 0 with probability one. k=1
ko
Proof. Let ¢ > 0 and apply Chebyshev's inequality
Exzxk tr rk
(6.7.2-30) PCix I > €) £ 5 = T3 .
€ €
Therefore
- - 2
(6.7.2-31) Ve > 0: I PUIx I >e) < Itrl/e <=
k=1 k=1

According to the lemma of Borel-Cantelli it follows that lim xk = 0 with
probability one. e

Q.E.D.

Combining lemmas (6.7.2-23) and (6.7.2-29) one finds the main result of this

section.
6.7.2-32. Theorem. The hypothesis (6.6.3-5) is true.
6.7.2-33. Remark. It follows of course that those results in section 6.6 (cf.

especially theorem (6.6.3-16) and (6.6.3-17)) that are derived under the
condition that the hypothesis 1s true, are all true!
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6.8. The associated differential equation

6.8.1. An integral formula for the decoupled algorithm

In the second part of this section (section 6.8.2) the ordinary differential
equation (o.d.e) that is associated with the algorithm will be derived. The
construction of the function that satisfies the o.d.e. was an idea of [Ku-Cl].
However, in section 6.9 it will turn out that this function is constant, and

its value is in fact an equilibrium point of the o.d.e. Therefore any claim

that the algorithm will eventually follow or approximate a nonconstant
solution curve of the differential equation seems unjustified, or is at least
not justified by the approach followed here.

In this section (6.8.1) an integral formula will be derived for the decoupled
algorithm, which is needed for the derivation of the o.d.e. in section 6.8.2.
To start with, two sorts of variables that depend on a parameter point

(instead of a parameter curve or sequence) will be defined.

6.8.1-1. Notation. Let e+ = (0,1i,3) € 6+ and consider the decoupled algorithm

with constant parameter sequence {e: = 6+}t:t . Then in the notation of the

variables occurring in the decoupled algorithg, {e:}t:t will be replaced by
6+. For example, bt(e+) = bt({e+}t:t ). °

Now consider the vector of all random’variables that occur in the decoupled

algorithm at time t, or are derived from it. It is
(6.8.1-2) (yt,vt,gl(vt),E(t+1;i,j),e(t,j),‘l’(t,j),h,bt)-

If the parameter sequence has constant value e+, then the probability

distribution of this vector converges to a steady state distribution for

t + », (From corollary (6.4-55) it follows that go(t) = 1 for t large enough

and it can be considered as nonrandom for t + «. Therefore it can be left out

of our considerations concerning the asymptotic behaviour of the algorithm).

6.8.1-3. Definition. Let (y,v,g (v),£(8'),c(0),%¥(6,3),h(6,3),b(8,1)) be a
random vector with as its probability distribution the steady state

distribution of (6.8.1-2). The components of the vector will be called steadz

+
state random variables for the decoupled algorithm at the parameter point 6 .

Note that €(6) does not depend on j. That this is correct follows from the
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construction of the prediction erfor algorichm (cf. section 6.2, esp. section
6.2.2); €(6) is the steady state random variable corresponding the prediction
error et(e) defined in (6.2.2-3). To be able to work with local coordinates,

instead of e(8) also the notation e(¢;j) will be used, where ¢ = ¢ ,(8) stands
for the local coordinates of 6 in C, (as before). Because the random variables

in the definition correspond to the decoupled algorithm their expectation will

be denoted by Fe(o'),Fe(o;4) ete.

6.8.1-4, Remarks. (1) One way to construct formally a steady state random
vector for the decoupled algorithm is by taking a constant parameter sequence
in the algorithm and starting formally at t = -, which makes it into an
asymptotically stable time-invariant filter. Because the true system is
asymptotically stable, the result is mathematically well-defined and the
resulting variables have the steady-state probability distribution at each
time t.

(ii) 1f e+ = (8,1i,j) then b(e+) = b(e,i,j) will denote the same as b(8,j),
this also holds for h, ¥,R etc. The algorithm is constructed such that the

following equality holds (cf. section 6.2 especially section 6.2.2).
+ . +
6.8.1-5. Theorem. Let § = (9,i,j) € © . One has
~ . DU - -1 T
(6.8.1-6)  Eb(e,3j) = -R(8,]J) 3% Eg (v)e(¢53) "e(¢33)/2,
i.e. Eb(e,j) equals minus the Riemannian gradient of the function
(6.8.1-7 Lz T
.8.1-7) Vg(e) 1= EEgl(V)E(e) e(9),

in terms of the local coordinates of the chart (C.,¢.).

If K' in the definition of g1 is taken large enough, the probability that
g1(v) equals zero will be very small, and vg(e) will be close to V(8). There
is an asymptotic relation between the value of by for a varying parameter
sequence and its value for a related constant parameter sequence. The same
holds for ﬁbk. But asymptotically by with constant parameter sequence has the
same distribution as b and thus one obtains an asymptotic relation

between ﬁbk with a (specific type of) varying parameter sequence and Eb. The

precise formulation, in terms of interpolation curves, is as follows.
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6.8.1-8. Theorem. Let the coordinate-chart index (i,j) be fixed and let (q,§)
with q > § > 0, be fixed. (a) For each ¢ > 0 there exists a tp such that if

+
Y ¢ L (—w 0] and Y' |[ -q,0] € L [ q,0] then

a + +
vt > tz,VweQ,Vae[O,q—G],llbtont o S_U(Y )—bt(Y (o)) < €,

where by abuse of notation Y+(—c) denotes the parameter sequence with constant

value Y'(=0) (cf. (6.8.1-1)).

(b) For each e > 0 there exists a tg such that if Y € L:P(-N,O] and
Y l[ -q, 0] € L [ q)O]’ then

~ + ~  +
VE > tg,Vo e [0,q-6],1Eb, o Ty o S__(Y) - Eb(Y (-))0 < e.

(c) Let {Y 1>

ete= t be a sequence such that

+ 4+
(1) Ve > to: Y oe L (-=,0],

+ °+
(ii1) vt > to: Ytl[—q,O] € Lij[—q,O] and

(iii) lim(Y:l[_q O]) (convergence in the topology of L [ q,0],
i)

-+
=Y l
t oo [_q’O]

cf. section 6.5).
Then for each € > 0 there exists a ty such that

(6.8.1-9) vt > t,,Vo € [0,q-6]: n}“ﬂ'bt o ni o S_U(Y:) - Eb(Y+(-a))u < .

7’

Let {r(t)}t:t be a sequence of nonnegative numbers with limit zero. Then for
0.

each ¢ > 0 there exists a tB such that

(6.8.1-10) vt > t8,Vo e [0,q-0]: Hﬁbt o H: oS )(Yt) - Eb(Y+(-0))H < €.

-o-1(t
Proof. (a) Because of lemma (6.6.2-3) it is sufficient to show that for each
§'" >0 there exists a ty such that if Y+ € L:P(—m,O] and

+
h
Y I[—q,O] € L [ q,0], then
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VE > £,V € [0,q-8]: o (I 0 5_ (YD), (X(-)}) <5 .

This property can be shown as follows.Let no € N be such
-1 ' t-1 5
that n < min(8§ ,1). Let t) be such that vt > tz: T ag < mln(s,z—) (where

s=t-n
o]

c is the Lipschitz constant!). From the definition of p+ (cf. (6.5-12)) it
follows that

p(12 o s__ (¥, 17 (-)}) ¢

(6.8.1-11) - t-1 + 1
<max{ sup [ supd (Y (- I as—c),Y (-0))]; sup (;;T)} <
OSnSno—l 1<j<n+1 s=t-j nZno
t-1 1
< max{c I as'?TTFI} < max{§,8} = §.
s=t-n_ o

(b) Because
IE(by 0 Ty 0 S_ (Y = by(Y (-0 ¢ Eib o I 0 5_(¥) - b(¥ (-1,

it follows from (a) that for each ¢ > 0 there exists a t) such that if

+ o+ + +
Y € LcP(-w,O] and Y I[—q,O] € Lij[—q,O],

(6.8.1-12) vt > t,,Yo € [0,q-8]:1Eb_o T o S_G(Y+) - Ebt(Y+(-c))ﬂ < ef2.

Therefore it suffices to show that for given € > 0 there exists a tg such that

(6.8.1-13) vt > t,,v6'e 5;;- 1Eb, (6")-Eb(e")1 < e/2.

Once this has been shown then taking e+ = Y+(0), tg = max(tz,tG) and combining
(6.8.1-10) and (6.8.1-11) the result follows. Now consider (6.8.1-11).
According to remark (6.8.1-4), b(e+) may be taken to be b: if b: is defined as
the bt that results if the algorithm is started (formally) at t = - (instead
of t = to) and a constant parameter sequence {e+} is employed. The difference
of bt with the b, that results if the algorithm is started at t = t, and the
same constant parameter sequence {6+} is used, is caused (only) by the fact
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* : *
that Et has a nonzero value while Et = 0. (The notation is obvious: Et is
o o

the vector £(t;i,j) that results if in the decoupled algorithm starting
at t = -o the constant parameter sequence {et} is applied, Et is the

vector g(t;i,j) that results if in the decoupled algorithm starting at t = t

the constant parameter sequence {e+} is applied). The difference

* -t t-t .
Agt =& & is equal to F Ag, =F Ep Using the fact that |Fi, is

S
o o

-
bounded by a number smaller than one, uniformly for all e+ € Di; (cf. theorem
(6.3.4-21)) it follows that E(bt_bt) has exponential decay, uniformly for

_1
all e+ € Dig’ and the result follows.

(c) First (6.8.1-9) will be shown. Consider the following inequality

~ +y oot
IEb_ o M. o S—c(Yt) - Eb(Y (o)) £

[n )

~ a + ~ a +
(6.8.1-14) < IlEbt o Ht o S-U(Yt) - Ebt o Ht [) S_O(Y Yi o+
~ a + ~ o+
+ IEb, o I o S_ (Y,) = Eb(Y (=o))I.
Let us consider separately each of the two terms in the right-hand side

starting with the first. Let € > O be given. According to lemma (6.6.2-3)
\]
there exists a § > 0 such that

a ’+
Vo € ,Vt 2 tq,Ya,B8 € N (L p(-=,0]):

+ A
p (a,B) < § = Hbtw(a) - btm(B)“ < e/2,
and so, a fortiori
vE > t,,V na(i+ (-»,01):
- 3 @,B € t' cP ’ :

(6.8.1-15)
+ v~ ~
p (a,8) < 8§ = IEb (a) - Eb.(B)I < e/2.
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+ + '
Because ii:(Yt][_q’O]) =Y |[—q,0]’ there exists a t > t_ such that for all
1 Al
t>t, sup d+(Yt(r),Y+(r)) < § and therefore
-q<r<0
Al

Fe-0), Y (o)) < 6 .

+
Yo € [-q+6,0]: sup d (Yt

-6<r<0

Now consider proposition (6.5-14) (b) and the no(t) defined there. Because

”

lim a_ = 0, one has 1im n_(t) = =, and so there exists a t > t_such that
tro t>ow o
” |
ve >t ;77%3:i-< § . Application of proposition (6.5-14) (b) gives:
o

(6.8.1-16) vt > max(t ,t ): o' (X3(s_ (YD), 13(s_ (¥9))) < 6.

Combination of (6.8.1-15) with (6.8.1-16) gives:

(6.8.1-17)

' ~ a +, o~ a + €
vt > max(t ,t ,t3),Vo € [—q+6,0]:||Ebt oI o S—a(Yt)—Ebt olm o SO(Y i< 5

According to (b) there exists a ts such that

(6.8.1-18) vt > ts,Voe[~q+6,O]:||§bt o H: o S_O(Y+) - Eb(Y+(—o))n < %.
Let ty = max(ts,t',t",tB). Then substitution of (6.8.1-17) and (6.8.1-18) into
(6.8.1-14) leads to the desired result.

It remains to show (6.8.1-10). Let t'" be such that for all

t> t'", t(t) < 8/2. For all t > t'" let Yt 1= S_T(t)(Y:). Then, using (i)
and (ii) and the Lipschitz condition:

ve e [-q83,01: (T, Yi(r) = d (Y(r-(£)),Yo(r) < eu(D).

Therefore 1im ?:I = Y+ 5 . Replacing in (6.8.1-9) q by q—g

8, L8y 5
troo [-q+§] [_q°+—2,0]

and Yt by ?t, and t; by (t8:=)max(t7,t'"), one obtains (6.8.1-10).

Q.E.D.
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6.8.1-19. Theorem. Let {et} be a parameter sequence satisfying property 3 with
interpolation function vt e L:P such that e: = Y+(st)’ for all t ¢ 2. There
exists a set E, E ¢ Q, P(E) = 0 with the following property. Let § ¢ S be such
that

(1) II(§,Y+)I = 1; let {(i,j)} denote I(§,Y+), and

. + © o4 + 4
(ii) {Srk(Y )I[-q,O]}k=1 converges in Lij[—q,O], let X ¢ Lij[-q’O] denote the

limit.
Then the following holds

lim f, = lim Bf, = 1im [ Eb%(r)dr =

k k

ko ko ko rqu+5
(6.8.1-20) q-6

= [ Eb(X(-0))do, Vu € Q\E.

o

Proof. Equation (6.8.1-20) contains three equalities that have to be verified
The last one will be treated first. From the definition of b° (cf. (6.6.2-27))
it follows that

o _ +
(6.8.1-21) b (rk—c) = bt o Ht o Ss (Y)

t

if t = t(k) is such that st <r-og<s and t > t .
- - o

+ k t+1
Let Y, := Sr (Y ) and 1(k) = -0 for all k. Then 1lim(Y
Kk >0

k

= X

St (k) kl1-q,017

and

(6.8.1-22) b°(r,-0) =b_o T oS )(Y;), with t = t(k).

-o-1(k
It is not difficult to conclude from theorem (6.8.1-18) (c) that the result
L
presented there holds equally well for a sequence {t(k)}k=1 instead of all
t Z to. Applying this one finds that {ﬁbo(rk—g)} converges uniformly for all
o € [0,q-68] to Eb(x+(—c)). Therefore

q-8

8, o ~ o+
(6.8.1-23) 1lim [ Eb°(r,~0)do = | Eb(X'(=0))do.
o

k+o o

(The existence of the integral on the right-hand side follows from the
continuity of ﬁb(X+(—o)) as a function of o). Thus the last equality of
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(6.8.1-20) has been shown to hold.
The second equality of (6.8.1-20) follows directly from the definition of fj
and condition (i) on S (cf. (6.6.2-37)). The first equality holds for all

w ¢ E and féllows from theorem (6.6.3-16) in combination with theorem

(6.7.2-32).

Q.E.D.
From this theorem together with theorem (6.8.1-5) one finds
6.8.1-24. Corollary. Under the conditions of the previous theorem (6.8.1-19),

Vo ¢ E: lim £, = - & q_GR(x“(— 1L 2 (vIels.(X(-0)); ) 112%d
w ¢ E: lm £ = 5 [ o T g, (Ve ¢j 0)); R

koo o

6.8.2. The o.d.e. for the (coupled) algorithm

Consider the 'coupled' algorithm. This means that apart from the equations of
the decoupled algorithm (cf. section 6.4) one has equations (6.2.9-11),
(6.2.9-12) and the rules for coordinate change that follow (6.2.9-12). For the
'coupled' algorithm one has the following equality.

6.8.2-1. Theorem. Let w € Q be fixed. Let {6+} ®  and {9-:}t

be the two
t t=t°

oo

=t
o

parameter sequences that are produced by the algorithm (as described in

+

section 6.2.9). Let vt € ﬁZP be an interpolation curve such that Y+(St) = et

for all t > to (such a curve exists according to theorem (6.5-19)). Let
3= ({rk}T,q,s) € S be such that |I(§,Y+)| =1, say 1(8,Y) = {(1,}.
Then for all k e N:

(6.8.2-2) £, = $5(¥(xp)) = ¢,(¥(ry-at+e)) + x),
and

(6.8.2-3) lim T(k) = 0.
koo
Proof. The proof is given in four steps. In each step a sequence is defined

which converges to zero. The sum of those four sequences 1is {?(k)}kzl and it

then follows that 1lim t(k) = 0.
ko
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(i) Let
Al ”n
Ny i= {t|st € [ry-q+s,r 1},t (k) := min N and t (k) := max Ny.

Applying proposition (6.6.2-28) to the definition of fy (6.6.2-37) one finds

T

k
fom ] +6b°(c)dc = zN ab, + 1,(k),
rk q te k
with
10 = L8414y~ (R at O T 4y H IS a1 1 Pen iy -
Now 0 < St'(k) - (rk—q+6) < at'(k)"l and 0 < rk—St..(k)_H < at"(k)-{-l.

Because a > 0 for k + » and because {bt} is bounded by a data-independent
constant (this follows from corollary (6.4-55)), 1lim ¥l(k) = 0.
k>
(ii) Because in the 'coupled' algorithm, {at} is well-defined one has (compare
6.6.2-1)) for all . = (0 —(0 - 1.
( )) for all t ¢ UN, :a b ¢(et+1,j) o(8,,3) if A, = 1
Now At # 1 occurs only if in the next step a coordinate change takes place

(cf. (6.2.9-1)ff). Therefore At =11if t ¢ Nk\{t (k)}.

So
t"(k)-1 N R
z ab = z {¢(9 ,j)—¢(e aj)} + a " b " =
teN, Bt (k) t+1 t t"(k) t"(k)

= ¢(et"(k)’j)_¢(et'(k)’j) + ;Z(k)’

where ?z(k) = Clearly lim ?2(k) = 0, according to similar

ko

at"(k)bt"(k)'
arguments as given in (i) above.

(1ii) Let (for k sufficiently large such that et"(k) € Cj’et'(k) € Cj)

?B(k) = {¢(et"(k)’j)—¢(et"(k)’j)} - {¢(et'(k)’j) - ¢(et'(k)’j)}'

From the coupling equation (6.2.9-12) (if also (6.2.9-4) ff), the fact

that lim st = 0 and the equivalence of the inner metric with the local
t>oo

coordinate metric (cf. (6.3.4-23)), it then follows that 1im ?3(k) = 0.

ko
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(iv) Let

T, (k) = {008 ngpy»3) = S(XEY = (80010153 = $(X(ry=a+s)) ]
Because Y(r) is an interpolation curve,

Y(s and Y(s

ey T Cevci e ) T e

Because r, -s -(rk—q+6) + 0, and because Y satisfies a

0
") T B
Lipschitz condition (and again using the equivalence of inner metric and

(k) = 0. Now take

~

local-coordinates-metric), one has lim T
ko
(k) = ;l(k) + ?z(k) + ?3(k) + ?A(k) and the theorem follows.
Q.E.D.

The combination of this theorem with corollary (6.8.1-24) leads to the
differential equation associated with the algorithm.

6.8.2-4, Theorem. There exists a set E, P(E) = 0, with the following property.

Let w € Q\E. Let {et}: and {et}: be the two parameter sequences that are
o [

produced by the algorithm (for this w). Let Y+ € L:P be an interpolation curve
such that Y+(S:) = e: for all t > t . Let for all
§ € (0,q), § = ({rk},q,G) € S be such that

(1) |I(§,Y+)| = 1; let {(i,3j)} denote I(§,Y+) and
+ @ o4 + %+
(ii) {Srk(Y )l[—q,O]}k=l converges in Lij[ q,0]; let X ¢ Lij[ q,0] denote the
limit. :
Then the following holds

V8 € (qu): ¢J(x(0)) - ¢j(X(-Q+6)) =

(a) 0
=-3 T RO & B (v 1el6,(xX(6)) 5511 do.
-q+5

~

(b) For all t € (-q,0)i= Sop.(X(1)) = RN ™ L Fa (I elo x(x))3 4107
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(¢) For all r ¢ (-q,0)

(6.8.2-5) X(r) = - VRVg(X(r)),

where VRVg denotes the Riemannian gradient of the function Vg (cf. section
6.2.6 and (6.8.1-7)).

1 \}
Proof. First remark that if § is such that ({rk},q,s ) satisfies (i) and (ii)
then the same holds for all ({rk},q,G) with § ¢ (0,q).

(a) Let § ¢ (0,q) be arbitrary. Application of theorem (6.8.2-1) gives

lim f 11 Y - Y(r, - =
k*: k*z ¢j( (rk)) ¢j( (rk q+6))

¢j(X(0)) - ¢j(X(-q+5))-

Now corollary (6.8.1-24) gives the result.

(b) Let r = -q+§ with q fixed and § varying over (0,q). Then r ¢ (-q,0).
Substitution of § = q+r in (a) and differentiation with respect to r gives

- . x(0) = RN

9 ~ iy, 2
p EEEgl(v)“e[¢j(X(r));J]“ /2.

(c) The vector %;¢j(x(r)) is the expression in local coordinates of the

tangent vector X. As explained in section 6.2.6, the vector

RO 55 By (V) 1elo (X(x))5311°/2

is the expression in local coordinates of the Riemannian gradient vector of

the function Vg (defined in (6.8.1-7)). In a coordinate free notation, (b) can

be expressed as
vr e (-q,0): -X(r) = VRVg(X(r)),

from which (6.8.2-5) follows by multiplication of both sides with -1.
Q.E.D.
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6.8.2-6. Remark. Part (c) of this theorem is a basic result about the
asymptotic behaviour of the algorithm from which all (other) results about the
asymptotic behaviour will be derived.

Part (c) of this theorem will now be generalized in the sense that condition

(1) will be dropped, and (ii) will be changed accordingly.

6.8.2-7. Theorem. There exists a set E, P(E) = 0, with the following property.
Let w € Q\E. Let {et} and {Bt} be the two parametsr sequences that are
produced by the algorithm (for this w). Let Y+ € L:P be an interpolation curve
such that Y+(St) = e: for all t > to.

(As usual let Y denote the projection of Yt in Lc)' Let § = ({rk},q,s) € S be

converges in Lc[—q,o] and let X ¢ Lc[—q,O] denote

such that {Srk(Y)ll—q,O]}k=1

the limit. Then Vr e (-q,0):

(6.8.2-8)  X(r) -V V(X(D).

+ + + °+
Proof.oLet Xk(r) Y (rk r) for al} r ¢ [-q,0], then Xk € LcP[ q,0] and
Xk € Lc[-q,O]. Then lim X

k4o

k=X e Lc[-q,o]. The following three remarks,

labeled (A), (B) and (C) will be useful.
-] -]
(A) For each subsequence {k(!,)}£=1 of {k}k=1 one has ii: Xk(k) = X.

A subsequence of {k(ﬁ)}lzl is of course also a subsequence of {k}kzl' In order
not to complicate the notation further, all such subsequences will also be

denoted by {k(l)}zzl.

(B) Because X ¢ L_[-q,0], X is continuous. Also V,

differentiable). Therefore it suffices to show that the differential equation
(6.8.2-8) holds on (-q,0)\F, F some finite set. This can be shown by

is continuous (it is even

considering the corresponding integral equation in local coordinates. To make

this clear consider an o.d.e. in R": %(t) = f(x(t)), Vt € (O,tl) u (tl’tz)'
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If x is continuous on [0,t,] and f is continuous then it follows that

t
YVt ¢ [O,tl]: x(t)-x(0) = [ f(x(t))dr, and
o

t
vVt € [tl,tz]: x(t) - x(tl) [ £(x(1))dr.

1
But then clearly
t
vVt € [0,t2]: x(t) - x(0) = [ f(x(t))dr.
o

The right-hand side is differentiable, so the left-hand side is differentiable

as well and
Ve € (0,t,): x(t) = F(x(t)).

(C) For € > 0 let Ne(F) denote the e-neighbourhood of F, i.e.

Ne(F) = {xld(x,F) < e}. Clearly, if the differential equation holds on
(-q,0)\N (F) for each € > 0, then it holds on (-q,0)\F. According to (B) this
is sufficient.

The proof will now be given in three steps.

(1) As noted before, X € ic[—q,O], so X is continuous. Consider the finite
cover {Up} of M from proposition (6.3.2~22). Using the compactness of [-q,0]
it is not difficult to show that there exists a finite partition of [-q,0],
namely -q = —q(o) < —q(1)<...< —q(N) = 0, such that for each n = 1,2,...,N,
there is a p, such that X([—q(n_l),-q(n)]) € U_. According to (B) it is
sufficient to show that the differential equatgon (6.8.2-8) holds on each
interval (q(nhl),q(n)), n=1,2,...,N. For each n the proof will be the same,
therefore the proof will only be given for (—q(N'l),O). To simplify the
notation, (-q,0) will be used instead of (-q(N_l),O). One has now (without
loss of generality) X([-q,0]) < Up.

(ii) Now consider {X, ([-q,0])} ® . Because 1im X, = X in L [-q,0], and
k k=1 K k c

X([-q,0] < Up’ with X([-q,0]) compact and Up open, there exists a k; such
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that for all k > kl’ Xk([—q,O]) S‘Up. According to proposition (6.3.2-22),

X; (which is an element of izp[-q,O]) can have at most two coordinate changes
occurring on [-q,0]. So three cases can be distinguished, namely: (a) no
coordinate changes occur, (b) one coordinate change occurs and (c) two
coordinate changes occur. In case (a) one has a finite number of possibilities
for the coordinate chart index (i,j); because

(i,5) € T := {(1,3)|jeJ,1€1(3)}, the number of possibilities is in fact |T|.
In case (b) one can distinguish again a finite number of possibilities, namely
a first coordinate chart index, (il,jl) on an interval [—q,—ql(k)) (for some
appropriately chosen —ql(k)) and a second one (iz,jz) on the interval
(-q(k),0]. So the number of possibilities is in fact smaller than or equal to

lf[z. Similarly in case (c), the number of possibilities is smaller than or
equal to ]T[3. The total number of possibilities is therefore smaller than or
equal to |T| + |T|2 + |'f|3 < =, Because the number of possibilities is finite,
at least one of them must occur infinitely often. Choose a subsequence

{k(l)}lzl such that X:(l) has the same possibility for its coordinate chart
indices for all & € N.

(iii) If (a) is the case, then there is an (i,j) ¢ I such
+ .
that Xk(l) = (Xk(l),i,J) for all £ ¢ N. Then the previous theorem can be

applied, with {r instead of {r and it follows that X satisfies

k(2 e=1 k=1
the differential equation. If (b) is the case, —ql(k(z)) € [-q,0] is the

number at which a coordinate change takes place in X:(l)'

[-q,0] is compact, {—ql(k(l))}!:1 has a convergent subsequence.

Because

As explained in (A) this subsequence will again be denoted by {—ql(k(l))}kfl'
Let its limit be -q;. For each ¢ > 0 there exists an 11 such that for all

2 Z 3 —ql(k(l)) 2 —ql—e and therefore for all g > 2

+
1 e 1-q,-q ¢
has only one coordinate chart index. Therefore the previous theorem can be

applied to X| and so X| satisfies the differential
[-q,-q,-¢] (-9,-q,-¢€)

equation in this case. A similar argument shows that X'(—q +e,0) satisfies the
differential equation in this case (b). Because € > 0 was chosen arbitrarily,
according to (C) the proof is complete for this case (b). If (c) is the case
one can use a similar argument as in case (b).

Q.E.D.
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From this theorem the following main result of this section can now easily be

derived.

6.8.2-9. Theorem. There exists a set E,P(E) = 0, with the following property.
Let w € Q\E. Let {et} and {St} be ths parameter sequences that are produced by
the algorithm (for this w). Let Y ¢ Lc[o,w) be an interpolation curve such
that Y(St) = et for all t 2 to. Let {rk} be a monotonically increasing
divergent sequence of positive real numbers.

(a) Let 9159, € R, q, < ys and let k; be such that e

+q, > 0. Let
1 1T

Xk = S (Y)|[ ] for all k > kl.
Tk 9109
1f {Xk} converges to X in ic[ql,qz] then
X(r) = -V.V (X(r)) for all r ¢ (q_,q.).
Rg 172

(b) Let Xk = Srk(Y)I[O,w) for each k € N. If {xk} converges to X in LC[O,m),
then

X(r) = V.V (X(r)) for all t e (0,%).
R'g

Proof. (a) This follows directly from the previous theorem by taking

q = q9-q;, by taking a subsequence {r } such that r > q+§

k(1) 2=1 k(2+1) Tk(2)

for each g (such that § = ({ §8) € S) and by shifting the curves

Ty e=17 9
over a length q,.

(b) Take q; = 0. For each q, > 0, it follows from (a), by restricting the X
and X to the interval [0,q], that
X(r) = -V.V (X(r)) for all r ¢ (0,q_).
Rg 2
Because this holds for each q, > 0O, one can conclude that

X(r) = -V V (X(r)) for all r > 0.
Rg

Q.E.D.



352

6.9. The asymptotic behaviour of the algorithm

In this section the results of the previous section will be used to derive
convergence results for the algorithm. To start with consider the following
definition.

6.9-1. Definition. Let M, be a metric space with metric d.
(a) Let {xk}k:k be a sequence of points in M,. A point x ¢ My will be called
o

a limit point if for each € > 0 and for each k1 Z ko there exists a k > k
such that d(xk,x) < €.

1

(b) Let X: [0,») » Mo be a function. A point x € Mo will be called a limit

point at infinity if for each ¢ > 0 and for each rl > 0 there exists
an r > r such that d(X(r),x) < €.

6.9.2. Remarks. (i) In case (a), x is a limit point of {xk} iff there exists a
subsequence of {xk} with limit x.
(ii) In case (b), x is a limit point at infinity iff there exists a sequence

{r } with 1lim r, = « such that 1lim X(r,) = x.
k k
ko k+o

Now let {et}tft and {et}trt be the parameter sequences produced by the
o o

algorithm (for given w) and let Y ¢ Lc[o,w) be an interpolation function with
Y(St) = et for all t > to (such an interpolation function exists, cf.
(6.5-19)).

6.9-3. Lemma. (a) The set X of limit points of {et}t N

limit points of {et}t=t and equal to the set of limitopoints at infinity of

Y. °

(b) The set V of 1imit points of {V (6 )} is equal to the set of limit

points of {V (e )} and equal to the set 8f limit points at infinity of
o

V oY.
g

is equal to the set of

Proof. (a) Because of the coupling equation, d(e e ) + 0 for t » « and
therefore any limit point of {6 } is a limit point of {e } and vice versa.
Because Y(st) et for all t > to, any limit point of {et} is a limit point at
infinity of Y. On the other hand if x is a limit point at infinity of Y then

there exists a sequence {r with r, » « for k + =, such that

Kl K
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Y(rk) + x for k + «», For each k let t(k) be such that Ist(k)_rkl < k)

Because of the Lipschitz condition, one has d(Y(rk), Y(st(k))) < c.at(k).

Because a + 0 for k » =, one has Y(s ) » x for k + =,

t(k) t(k)

But Y(St(k)) = et(k) and it follows that x is a limit point of {et} (cf.
remark (6.9-2)).

(b) Because Vg is continuous on M and M is compact, V_, is uniformly

g
continuous. One can now proceed analogously to the proof of (a). The details

are left to the reader.

Q.E.D.

Because M, the manifcld of parameter points, is compact and V, continuous, one

g
has in fact

6.9-4. Lemma. (a) V = vg(x), (b) V # p and (c¢) V is compact.

Proof. (a) Because Vg is continuous it is clear that V_(X) ¢ V. On the other

hand if v ¢ V then there exists a sequence {t(k)}k‘f1 such that vg(et(k)) > v

Because 6 e M and M is compact, {6 } has a convergent subsequence, with

t(k) t(k)
some limit B e X. Clearly Vg(e) =vand so Vv ¢ vg(x). This shows that

°

v ev (x) and so V v (X)

(b) Because M is compact X # 0, so V 0.
o
(c) X is closed and X S M, so X is compact. Therefore V Vg(X) is compact.
Q.E.D.

Because V is also the set of limit points at infinity of the continuous

function Vg o Y one can show the following.
6.9-5. Lemma. V is convex.

Proof. It has to be shown that if VsV, € v, vy < vy and v € R such that

vy < v < vy, then v ¢ V. So assume vl,v2 eV, v < v, and ) <v < Ve Then

€ [0,=) for
each k € N, such that V o Y(r2k+1) + v1 and V o Y(er) +> v2 for k + =, Becausg
vy <v< vy it follows that there exists a kl such that for all

k> Kk, Vo Y(ry,,

follows that for each k > k1 there exists a number sk e (r

there is a monotonically increasing divergent sequence {rk}T’t

) < vand Vo Y(ry) > v. Because V o Y is continuous it

ok Ton) WEED
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Vo Y(sk) = v. Therefore v ¢ V.
Q.E.D.

6.9.6. Corollary. V is a nonempty, compact interval [vl’VZ] < R, with

v1 S vz.

Similar results can be obtained for X.
6.9-7. Theorem. The set X is nonempty, compact and connected.

Proof Because M is compact, the sequence {e } must have a limit point, so

X £ 0. The set X c M of limit points of {e, } is closed and therefore compact.,
Suppose X is not connected, to obtain a contradiction. Then there are two
disjoint open sets U; and Ugy that cover % in a nontrivial way, 1.e.

; €U, vuU, and i nu, 0 fnd i nuU, #f. Let W= M\(Ul U Uy), then W is

1 2 o 1 2
compact. Because X n U, and X n U, are nonempty, for each ¥ > 0, the

interpolation curve Y(%+r), r 2 0? must switch back and forth between U; and
U2 (infinitely often). Therefore for each T > 0 the curve Y(;+r), r>0,
enters W (infinitely often). Because W is compact it follows that Y must have
a limit point at infinity in W, i.e. X nW#P. This is in contradiction with
; c Ul u U2. Therefore X is connected. Q.E.D.
Notice that the differential equation has not been used yet. This will be done

next. Let {rk}T be a divergent monotonically increasing sequence of positive

real numbers. Let
X = Srk(Y)l[O,w)’ i.e. xk(r) = Y(rk+r),Vr > 0,vk € N.
{Xk} will be called a sequence of translations of the interpolation curve Y.
6.9-8. Lemma. Let E cQ with P(E) = 0 be as in theorem (6.8.2-9) and let
w ¢ E. Let X ¢ Lc[O,m) be the limit of a sequence of translations of the

interpolation curve, as just described. Then Vg o X: [0,») > R is

monotonically nonincreasing.

Proof. According to theorem (6.8.2-9) (b) X is a solution of the differential
X ==YV (X).
equation R g( )



Therefore one has

(6.9-9) %;Vg(x(r))

where <,>R denotes the

the tangent space at a

= <vRvg(x(r)),X(r)>R =

355

~X(£),X(£)>, < 0,

inner product corresponding to the Riemannian metric in

given point of the manifold.

Q.E.D.

A critical point of Vg is (of course) by definition any parameter point ¢ such

that VRVg(e) =
critical point 6 exists
vV (8) for
point!). It wil% now be

value and v =

Vg o X(r) is a critical

6.9-10. Theorem. Let E,
w € E. Let X ¢ LC[O,w)

interpolation curve, as

is a critical value of V_.

0. A critical value of V_, is a number v ¢ R for which a

g
such that v = vg(e). (Of course if v is a critical
some @, one cannot conclude that g is a critical
shown that if X is a limit curve as before, then

value of V for each r > 0.

with P(E) = 0, be as in theorem (6.8.2-9) and let
be the limit of a sequence of translations of the

described before. Then for each r > 0, Vg o X(r)

g

Proof. Distinguish two cases.

(i) v
(ii) v
g
ad(i) Because Vg o X(r)
d
O—H;Vgo

and therefore

so V.V (X(r)) = -X(r) =
R'g

r > 0 and by continuity, X(r) is also a critical point for r =

o X(r), r ¢ [0,»), is constant,

o X(r), r ¢ [0,») is not constant.

is constant, one has

X(r) = <vRvg(x(r)),x(r)>R =

—<X(r),X(r)>R, for allr > 0

X(r) = 0 for all r > 0, and

0 for all r > 0, so X(r) is a critical point for all
0. Therefore Vg

o X(r) is a critical value of Vg for each r > 0. This proves the theorem in

case (1i).
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ad(ii). Now suppose V, o X(r), r ¢ [0,») is not constant. From lemma (6.9-8)

8

it is known that Vg o X is monotonically nonincreasing. It follows that there
must be numbers r),ry with 0 < 13 < T, such that Vg () X(rl) > Vg () X(rz). Let

61 > 0, 52 > 0 be such that

- + € .
Vg o X(rl) € > Vg o X(rz) €

Consider the open sets (relatively to M)

N, = {8 € M]Vg(e) >V, 0 X(r)) = el
and
= + .
N, {6 € M|vg(e) < vg o X(r,) + e,}
Then
X(rl) € N, and X(rz) € N, and N NN, = p.

Now consider the interpolation curve Y and the corresponding real function
Vg o Y. Because X(r;) and X(rj) are limit points at infinity of Y, Y(r) enters
and leaves N; and N, infinitely often. Therefore there exists a monotonically

increasing divergent sequence of real numbers {qk such that

he=1

(a) Y(q2k+l) € 9N and Y(q2k) € oN, for all k € N, and so

1 2

Vg o Y(q2k+1) =Vo X(rl) - €
k € N, and

and Vg [ Y(qZk) = Vg ) X(rz) + g, for all

1 2

(b) the image of the open interval (q2k,q2k+1) is outside N; and N,, i.e.
c c
Y(app,9941)1 S Ny 0 Npe

So at each q,, Y leaves N, and at each q,.4;, Y enters Ny.
Now define

(6.9-11) T Vk € N.

kT Yo T Yok



Two cases will be distinguished:

(1) 3T € R: 1liminf T

k-)on

k= T, and

(2) 1im T, = =,
ko k

ad(1) There exists a subsequence of {Tk} that converges to T. It is not
difficult to see that without loss of generality it may by assumed that

lim Tk = T. Consider the sequence of translation curves {Zk}k:I with
koo

(6.9-12) vk € N, Z, = Y(q2k+r)|[_%’T+%] € ic[—%,T+%].

From the compactness of Lc[-%,T+%] (cf. theorem (6.5-6)) it follows that the
sequence has a convergent subsequence, with 1limit Z, say. According to theorem
(6.8.2-9)(a), Z(r), with -4 < r < T+}, is a solution of the differential
equation

2(r) = -V (2(r)), -} < r < T+}.
R'g

Therefore, according to the analog of lemma (6.9-8), Z is monotonically

nonincreasing, so

(6.9-13) Z(0) > Z(T).

On the other hand, by construction,
2

Zk(O) = Vg [ X(rz) + g, for each k ¢ N

and

for each k € N,

Zk(Tk) = Vg o X(rl) )

from which it follows easily (using the Lipschitz condition) that
2

Z(0) = Vg o X(rz) + €

and
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Z(T) = Vg o X(rl) -

Therefore Z(0) < Z(T), which contradicts (6.9-12)! The conclusion is that this
case cannot occur!
ad(2) In this case consider the sequence of translation curves {Zk}k:l with

(6.9-14) zZ, = Y(q2k+r)|[0’w) € Lclo,m).

According to the Arzela-Ascoli theorem {Zk} has a convergent subsequence, with
limit Z, say. Z satisfies the differential equation and according to lemma

(6.9-8), Vg o Z is mcnotonically nonincreasing. On the other hand, for each
k € N,

Vg o Zk(r) > Vg o X(rz) + €, Vr € [O’Tk]
and
Vg o Zk(O) = Vg o X(rz) + €y
From this it follows easily that
Vg o 2(0) = Vg o X(rz) + €y
and
vr > 0.

Vg o Z(r) > Vg o X(rz) + ey

But Vg 0 Z is monotonically nonincreasing and therefore V_, o Z(r) is constant

g
for all r > 0. Similarly as in (i) it follows that Z(0) is a critical point of
Vg and Vg o Z(0) = Vg o X(rz) + €y is a critical value of Vg. Because

52 can be chosen arbitrarily from the open interval

(O,Vg o X(rl)—vg o X(rz)) it follows that each number in the open interval

(Vg o X(rz), Vg g

values of Vg is compact (it is the image of the set of critical points, which
1

o X(rl)) is a critical value of V_, Now the set of critical

is a closed set in M, because Vg ec” c C’, and therefore compact; it follows
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that the set of critical values is compact). It follows that the closed

interval
[vg o X(rz), vg o X(rl)]

consists of critical values of Vg.

Now {rl,rz} is an arbitrary pair for which r <1y and
V oX(r)) <V oX(r).
g 2 g 1

It follows that for each r > 0, Vg o X(r)is a critical value of Vg.
Q.E.D.

6.9-15. Corollary. Let E be as before and w ¢ E. The set V consists of

critical values of Vg.

Proof. Let v ¢ V. Then there exists a monotonically increasing divergent
sequence {rk}kf1 such that V o Y(rk) + v for k + =, Let Xk(r) = Y(rk+r)|[0 )

= o ?m
for each k ¢ N. Then {Xk}k_1 has a convergent subsequence with limit

X e L [0,0) and V_ o0 X(0) = 1im V_ o Xk(O) = v. From the previous theorem it
c 8 Kow B
follows that v is a critical value.

Q.E.D.

This corollary can be combined with corollary (6.9-6) to show that V consists

of one point only, by using the well-known theorem of Sard.
6.9-16. Theorem. Let w ¢ E. The set V consists of one critical value of Vg.

Proof. Because Vg: M +> R is Cm, it follows from the theorem of Sard (cf. [Ch-

Ha], p. 54ff) that the complement of the set of critical values of Vg is dense

in R. Because V is a closed interval [VI’VZ]’ v, £ v, (according to corollary

1

g’
hold and V is a one-point-set. So V consists of one critical value of Vg.

Q.E.D.

(6.9-6)) and V consists of critical values of V_, it follows that vy = vy must

6.9-17. Corollary. Let w ¢ E. Let v ¢ R be such that V = {v}. The sequences
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{vg(et)}to and {Vg(et)}to converge to v and ii: vg o Y(r) =

Proof. Because V, is continuous and M is compact, Vg(M) is compact. For each t
vV (o ) € V (M). Because {V (6 )} has only one limit point v, it follows that
{V (e )} converges to v. Similarly to the proof of lemma (6.9-3) it can be

shown that from vg(e ) v for t + » it follows that V (e ) v fort +oand
Vg o Y(r) + v for r + =,

Q.E.D.

This corollary constitutes already one important result about the asymptotic

behaviour of the algorithm. Next, the set X will be investigated further.

6.9-18. Theorem., Let w ¢ E, E as before. The set X consists of critical points
of Vg.
Proof. Let 6 ¢ X. There exists a monotonically increasing divergent sequence
{r, } such that 1lim Y(r ) = 8. Let X, (r) = Y(r, +r)| then {X,} contains a
k k4o k [0,=)° k
convergent subsequence with limit X, and X(0) = 8. It follows from the

previous corollary that for each r > 0, Vg o X(r) = v. Therefore, for all
r > 0,

o
|

- %; v, o X(x) = <vRvg(x(r)),§((r)>R -

—<X(r),X(r)>R = —<VRVg(X(r)),VRVg(X(r))>R-

So 0 = i(r) = VRV (X(r)) for each r > 0. It follows that X(r) is constant,
equal to X(0) = g and VRVg(O) = 0, i.e. 9 1s a critical value of Vg.
Q.E.D.
6.9-19. Corollary. Let ¢ ¢ E. Let X € ic[O,w) be the limit of a sequence of
translations of the interpolation curve. Then X is a solution of the equations
= i(r) = VRVg(X(r)), r ¢ (0,»). This implies that X is constant and equal
to a critical point g of Vg such that vg(e) =

So the differential equation has now been replaced by a static(critical-

point-) equation.The main conclusion can now be stated

6.9-20. Main theorem. There exists a subset E € Q, P(E) = 0, with the
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following property. Let w ¢ Q E. Let {et}t:t and {et}t:t be the sequences
o o

produced by the algorithm.
(a) The sequences {Vg(et)}t=to and {Vg(et)}t=t converge to a critical value v

of Vg. °

(b) The sequence {et}t:t (and {et}t:t as well) converges to its set of limit
o o

points X. X is a nonempty, compact, connected subset of the set of critical

points corresponding to the critical value v of Vg.

6.9-21. C:rollarz. Let w g E; If all the critical points of Vg are isolated
then {et}to (as well as {et}to) converges to a critical point g of vg and

{Vg(et)}: converges to the critical value v = Vg(e).
o

6.9-22. Remarks. (i) Whether or not all critical points of Vg are isolated
depends on the choice of M. For a given M it could in principle be
investigated whether or not Vg has this property. From Morse theory it is
known that generically functions have isolated critical points (cf. [Mi])

(ii) From the properties of the steady state Kalman filter it is known that it
is the unique filter that leads to the minimal prediction error covariance
matrix. Because it has been assumed here that the true system is an element of
M, it follows that the criterion function V has a unique global minimum at the
true system, Because for large values of K', Vg is only a slight perturbation
of V, one may expect Vg to have the same property for large K'. In that case

the point eo at which V_, has its global minimum is an isolated critical point

8

of Vg and Vg(eo) is of course a critical value. It follows that

15_{vg(et)} converges to Vg(eo) then {et} converges to eo.

Further remarks and comments will be given in the next section.
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6.10. Some final remarks

6.10.1. On the question of global convergence to the true parameter point

In the previous section it was found that the parameter sequence {et} (as well

as {et}) converges to some connected set of critical points of Vg, while one
would like to have convergence to the true parameter point i.e. 'consistency'
of the algorithm. With respect to this two remarks can be made.

(i) The true parameter point 8 is the unique global minimum of V (this follows
from the properties of the steady state Kalman filter). Vg can be considered
as a perturbation of V. The size of this perturbation depends on the choice of
K' in the definition of g; (cf. (6.2.8-4)), especially in relation to the true
innovations covariance matrix ¥, By choosing K' large enough in relation

to ¥, the point(s) eo at which Vo take(s) its global minimum can be put
arbitrarily close to §. This is shown in Appendix 6C. In the further
discussion it will be assumed that eo is close to § and - for linguistic
simplicity - that 8s is unique. (If eo is not unique the points where Vg takes
its global minimum will all be close to § for K' large enough and therefore
they will be close together. The discussion remains essentially the same if
one excludes this possibility).

(ii) The set of critical points of V_, can be split up in (a) the global

minimum point eo, (b) other 1local miiima and (c) all other critical points,
like saddle points and local maxima.

ad(b). It is not clear whether there will be local minima other than the
global minimum. The choice of the manifold M of course plays a role in this
question. It is in principle possible to check whether one has (almost)
arrived at the true parameter value, by comparing the sample covariances
(which can be computed on-line) with the theoretical covariance matrices that
correspond with the estimated parameter point. (If it becomes more or less
clear that the algorithm converges to a non-global, local minimum - or to any
other critical: point(s) - one might consider the possibility of restarting the
algorithm at another parameter point. To this end a variety of random restart
procedures familiar from global optimization theory could be employed).
Investigation of V() = V(e;g,f) as a function on M x M x Pos could perhaps
reveal more about the occurrence of non-global local minima.

ad(c) In this case the situation is in some sense somewhat more hopeful than
for the non-global, local minima. Each critical point eC of this kind has the
following property. In each open neighbourhood of the critical point there are

points with lower value of the criterion function V_ than Vg(e).

g
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Especially if the Hessian of V, at such a point is nonsingular, it might very

well be possible to show, thatgthe parameter sequence {et} produced by the
algorithm will not converge to ec. Results in this direction have been treated
by Ljung (cf. [Lj 75]). The underlying idea is that because of the noise in
the system the parameter sequence will not 'get stuck' on such a critical
point. However, there are technical difficulties in the proof and I have so
far not succeeded in resolving them., But even if one could show such a result
then still in practice one should expect the algorithm to behave rather poorly
in the neighbourhood of such a critical point, because the gradient is close
to zero. Perhaps a solution to this problem can be found by taking second
order information into account. Compare e.g. [Lich] for a comparable situation
in the theory of optimization over a manifold. This requires future research.
The point of avoiding convergence to critical points of this kind is
especially important in the light of the results of [Del 82], which state that
'in most cases', a smooth function on a manifold of fixed McMillan degree must
have more than one critical point. This follows from an investigation of the
topological structure of such manifolds. The topological theory does not
necessarily imply that there will be non-global local minima. But there are
results on the minimal number of saddle points and local maxima. These results
should warn us that saddle points and local maxima will indeed play a role in
the problem of identification within such manifolds. On the other hand, this
discussion shows that the claims made by [De - By] that algorithms like the
one treated here cannot be globally convergent are (at least) stated in a
confusing manner. The problem of global convergence is still open and not

settled by their approach.

6.10.2. Some remarks on applications and possible extensions of the algorithm

(i) It should perhaps be stressed again that the algorithm is well-suited for
many constrained identification problems. The manifold M is the set of all
parameter points that satisfy the constraints. An advantage of this algorithm
over other methods like those described in [Ku-Cl] is that one does not need
any projection facility, the constraints are satisfied automatically, by
construction. Of course, the requirement that M is compact and is a
differentiable manifold without boundaries is rather restrictive. Cf. also (v)
below, however.

(ii) Due to the rather tolerant formulation of the coupling 'equation'
(6.2.9-6) many algorithms, which look rather different at first sight, fall
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into the presented class of algorithms (or only small modifications are

needed). Examples are the coordinate-free prediction error algorithm presented

in [Hnz 85b], and the (generalized) Gauss-Newton algorithm discussed in

[Hnz 85a]. (We hope to give more details about these algorithms and their
analysis in the near future).

(1ii) If M could be allowed to have a nonempty boundary, this would be an
important extension of the algorithm. Two kinds of boundaries have to be
distinguished. (a) A boundary in the sense of differentiable manifolds, as
treated e.g. in [Boo]. The boundary is then itself a manifold (without
boundary!) of dimension d-1 (where d is the dimension of M, as usual) and the
coordinate charts are homeomorphic to a relatively open subset of the closed
half-space {x = (xl,...,xd)lx € Rd,xl > 0}. In this case the extension ?f the
algorithm appears to be rather straightforward. If the parameter point et is
at the boundary then, in terms of the local coordinates, one computes the
antigradient (i.e. minus the Riemannian gradient) and if it points into the
closed half-space it can be used right away, if it points out of the closed
half-space then it has to be projected first on the closed half-space, or,
equivalently, on the space {x=(x1,...,xd)|xl=0}, in terms of local
coordinates. The practical problem, however, is to find such coordinates. This
is in many cases quite difficult, and future research is needed.

(b) A boundary in the topological sense, if M is embedded in some larger
topological space. (Case (a) can be regarded as a special case of this one).
In this case one allows boundaries of varying dimension (< d). This type of
problem will appear for certain constrained identification problems. It also
appears if one considers a manifold M ¢ Mﬁ’i’i which has lower McMillan-degree

sy
systems in its (topological) boundary. As a simple example one can think of

,a
»1,1°
chapter 5) in which the origin (i.e. the zero system) forms the boundary. This

the case MT which is a double, infinite sheeted Riemann surface (cf.

is clearly not an example of case (a), because the dimension of the manifold
is two and the dimension of the boundary is zero. How to handle such cases
requires more research.

(iv) A rather straightforward extension is the one to systems with exogenous
inputs. One will have to formulate some kind of persistency-of-excitation
condition to obtain identifiability of the relevant parameters. There is
apparently no conceptual problem to work out this case along the same lines as
is done here for the case without exogenous inputs.

(v) Perhaps it will turn out to be possible to generalize the algorithm of
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(iv) to the socalled 'external variable' representation of linear systems. In
that case the algorithm has to identify the inputs and the outputs from the
given external variables. A change in the set of input variables and the set
of output variables would then correspond to some kind of change of
coordinates. Whether this can be worked out has to be investigated.

(vi) It will also be interesting to consider other probability distributions
for the innovations. In many cases the algorithm and the analysis are expected
to work the same. A special case is a 'chopped-off' Gaussian distribution. In
that case, there seems to be no need to use g) and gy, which simplifies the
algorithm. In practice one should in fact use 'chopped-off' Gaussian
distributions in many cases, to remain consistent with the available knowledge
about the variables under consideration. This is because in many (all?) cases
one knows (perhaps rough) upper-and lower bounds for the variables. As a
simple example, take the length of a human. This is often presented as a
Gaussian variable., But it is clear that zero is a lower bound, and 10m (or the
length of the equator,or the diameter of the known universe!) is an upperbound
that is clearly sufficient for all practical purposes.

(vii) Another possible way to extend the algorithm (which is also related to
(iii)(a) and (b)) is to a more general geometry than the Riemannian geometry
used here. Especially one may define a socalled Finsler metric on the space of
systems. This means that on each tangent space one has a norm, but not
(necessarily) an inner product. In that case it still seems possible to define
a gradient direction, and to formulate an analogous algorithm. Also the
extension of the analysis may be tractable.

(viii) Recursive identification is closely related to 'tracking', i.e. on-line
identification of (slowly) varying systems. To make the algorithm presented
here into a tracking algorithm, one just has to change the requirement

lim a, = 0 into 1lim a, = a, > 0 (or perhaps limsup a, > 0). It will be
tro t>oo tro

interesting, but probably quite a bit more difficult, to find the asymptotic
properties of such an algorithm.
(ix) An advantage of the algorithm is that it can also be considered as an

adaptive filtering algorithm. If the parameter sequence converges to the true

parameter point, then the algorithm contains the steady state Kalman filter
for the system under consideration.
(x) An extension to the continuous time case appears to be quite feasible. In

fact, the differential geometric set-up that is used here, 1s very well suited
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for the continuous time case.

(xi) Finally, of course, the proof of the pudding is in the eating and
algorithms like this should prove their value in practical applications. Much
remains to be done, to implement this kind of algorithm and to compare it with

others. This will also be, I hope, the subject of future work.
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3¢
Appendix 6A. Computation of T(e),—al(-—gl and ——%.
99 99;

Suppose one does not know (or does not want to compute) the transformation

¢i o ¢31 explicitly, nor T(8) as a function of §. Then for the computation

3T(8) 344
of T(s), N k=1,2,...,d, and — one can apply the following method,
3¢j 305

which makes use only of the knowledge of

. . . m,a
(A(¢:J)’B(¢:J);C(¢73)) € Lm’n’

o 3t 6= ¢j(e), its partial derivatives with

respect to the components ¢k, k=1,2,...,d, at ¢ = ¢j(e),

(AC$,1), B($,1),C(4,1)) L$’i . at ¢ = ¢,(8), and its partial

m
derivatives with respect to the components ¢k, k=1,...,d at ¢ = ¢i(e). There
is no claim that the following method is computationally very efficient. The
main reason to include it is to show explicitly that knowledge of the
quantities just described suffice for the computations at hand.

The method is as follows:

3¢
(i) The Jacobian ——% can be computed as follows. Consider
9¢.
J
6,61,62 € Cj n Ci’ 0 being the parameter point at which the change of
coordinates has to take place. Consider the difference system
ACBy,3) 0 B(0,, )
(6a-1) [( ) ( )s (cCoy, 1), - Clo,,1)]]
0 AC8,,1) " B(8,,1)

(compare chapter 5, (5.2-6)).

Compute the Riemannian metric tensor Q of this set of models at 61 = 62 =0,
with respect to the tangent vector (¢§,¢€)T (see chapter 5, (5.2-38) (a)); one

obtains Q from the formula

to'ty.2 0T STy | Y
(6A-2) u(¢j ¢1)" = (¢j ¢1)0 .

.

i
Partition Q as Q = [Q1 QZ]’ Qi: 2nxn, i = 1,2. Then the Jacobian is given by

the formula
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3.
— - —(qTo,) To,.
3¢T 171 172

1

(6A-3) J :=

This can be shown by using the fact that the kernel of Q is the set

((D1y < &)

One can also partition Q as

(6A-4) Q= (Q11 Q12)~ Q .t nxn, 1,5 € (1,2}
0y Q77 43 ’
then
-1
(6A-5) 3 = =Q}[0,,-

(ii) For o ¢ Mz’: o'’ T(8) can be calculated as follows: Recall the notation
’ ’
for the reachability matrix from section 4.4. From (6.2.7-4) it follows that

(with local coordinates ¢ for @)
(6A-6) R[ACo,,1),B(4,,1)] = T<e)R[A<¢j,j),B(¢i,j)].
From this it follows that

T(8)

[}

R[ACo;,1),B(,,1) JR[ACH,,3),B(45,3)] T

. . . 1T1—1
(6A-7) {R[A(¢j)3)aB(¢j)J)]R[A(¢j’3)aB(¢j;J)] } =

-1
L,.L..
13733

where Lij denotes the unique solution (for given ¢i,¢j) of the Lyapunov

equation

AT T
(6A-8) Ly = ACe» DLy jACe;, 37 = B(oy,1)B(45, D),
for all i and j. (So this also defines ij).

From the formula for T(8) one can compute the derivative of T(8) with respect

to the local coordinate ¢::



369

-1 1 2
a(L, L. ) (L ) 3¢,
(6A-9) dT(e) _ ikaj + 13133 ___1%___
déy 3¢ 2 3¢ 304
2 2
iy BLyj _p d0; p Ly _q 2905
PO O P € 1 F IRt E
3¢5 L 93¢ 3, 2 L 3¢
aL, . oL, . L., .
and 11(3 ,—113- (now with i # j) and —Jil are the unique solutions of
36; 3¢5 I
respectively, the Lyapunov equations
AL, . AL, . 3B( ¢, ,1) 3A(4;,1) T
(6A-10) —-él-— ACo, , i)—dace. , T = — 2 " B(o., )T+ ———1 ACe., D,
i k 3j k j k ij j
3y 305 30y 303
T
oL, oL, . T aB(¢.,j)T 3A(4.,3)
(6a-11) — 2 - A(¢i,i)———1A(¢j,j) = B¢y, i)—p— + A(¢i,i)Lij————1E———,
3¢ 3¢ 39 3¢
and
3L oL 3B(¢.,3) 3B(¢ j)T
. AL, K. ‘s K. ) ‘s
(6a-12) —H - Ao4, 305,39 = ———B(45,1) " + B(y,3 e+
39 3¢ 3 3¢
3A(¢.,3) 3A(¢.,3)
LACh., ) + 3L .
Lj808553) + ACe4, 3Ly 5 "

29, 20,
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Appendix 6B . Proof of lemma (6.7.2—12)

The idea of the proof is to fix all the components of all the innovations,

except one. It will then be shown that a ¢ > 0 and an € > 0 can be found as

required in the lemma, independent of the values of the fixed innovation-

components. From this the result follows directly.
i
Let wi ) denote the i-th component of the innovations vector wg.

(cf. (6.7.2-2)). Let F, with F < H, be the g-algebra generated by
w(2) w(3) (p) (1) (2) (p) (1) (p)
S

t e W W W e W (oW osee e W oseees i.e. all components

(1)

of W Wp_1>Wp_9s e+, €Xcept the component Wy
v > 0 fixed)

. It will be shown that (with

(6B-1) 3c > 0,3e, > 0,Ve € (0, ),¥(s,t)e N,V € Q: P[v-e 5vtsSv|F] < ce%.
From this it follows, by taking the expectation, that

_ . - F i
(6B~-2) ve > 0,350>0,Vs€(0,e°). P(v—eSvtSSV) = EP[V'CSVtSSVIF] < ce?,

and the lemma follows. So it remains to show (6B-1). Let for any real number

X,

(6B-3) (x)+ := max(x,0).

If t = s one has Veg = 0, so if € is taken smaller than v, then
(6B-4) P[v-eSvtgv|§] = 0< cel.

So it remains to prove (6B-1) for s > t (instead of s Z t).

For s > t, consider

(6B-5) P[v—eSvtS§v|F] = P[v-e-xlvt_l’ss “yts" < v—Alvt_l,SlF] =
= Pllv=emhyvy g Dy € Mg SV-Ave ) GfFT <
2 2 2,:
< Pl(v-¢ Alvt—l,s)+ Sy 07 < (v xlvt_l’s) |F1.
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From (6.7.2-4) it follows that for t > s, y.o can be decomposed as follows
(1)
t 1
(6B-6) y.. =y, + 0 ,
0

e ()

where y, is F-measurable, and w ~ n(O,o2 ), where ¢,, is the (1,1)-element

11 11
of & (cf. (6.7.2-2)). It follows that, conditional on F,

2 2 2
(6B-7) Iy I = 7+ x5,
where f is F—measurable and chosen to be nonnegative and x ~ n(x ,011), with
Xq F—measurable (x = (1) + X in fact). Substituting this one obtains
2 2 2,5, _
P[(v—s—)\lvt_1 Sy Sy 17 < (v—Alvt_l’s) |F] =
(6B-8) o
_ 2 2 2 2 _ 2y
= P[(v-e- MV 1, s)+ £ <% < (v MVelr S) £°|F]
2.4 2 2.4
= PI{Cv-e=nvy ) Oy = £ < |x| < {(v-r vy -1,e) ~ f 1 |FT.

Because x ~ n(x y0 the probability density function of x exists and this
2 -4
11)

probability density function of |x| exists and is smaller than or equal to

2(2m0° )'%
‘rI'(I].1 .

11),

function is smaller than or equal to (2o for all x. Hence the

P[{(v-e-A,v 2

1 t-1,s )

2 .2 2 °

-0 < x| <ty 07 - ) ¢
(6B-9)
: 12623} - ((v-em y2-£211] =1 aco.

2(2moy, Viel,s MVe-1,s

[{(v AV

Three disjoint possibilities can be distinguished.

(a) (v-e- A Ve 1, ) > £ (20),
(b) (v—e—klvt 1, ) < f and (v—)\lvt_1 ) > f,
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or

(c) (v—-}\lvt_l,s)+ < f.

ad(a) (v—e—Alvt_l’s)+ > f implies (v—)\lvt_l’s)+ > f, and v > f. In this case
) _%(v—klvt~1,s)+ 2 2
(6B-10) Ale) = 2(2w011) f k(k™=£f7) *de <
AV, s

f+e
22102 )7 [ etP-eH e = 202002 ) H(Ere) 262y
f

I

z(znofl)"%e*(2f+e)* < 2(2w0f1)_%e%(2v+eo)%.

So in this case:

(6B-11) Ve € (0,6 ): Ale) < 2(2no§l)_%(2v+eo)%.e%.
ad(b) (v—-)\lvt_l’s)+ > f implies v > f. ) o
Furthermore, in this case {(v—e~x1vt_1,s)+—f }+ = 0, so
_ 2 =%, 2 _ 2.3
ACe) 2(2n011) {v Alvt—l,s)+ £7}
(6B-12) =MV g 64 fre

t-
= 202n? )7 T kD e < 202m? 07 [ e-eD
f f

and one can proceed as in (a) and obtain (6B-11) for this case too.
ad(c) (v—)\lvt_l’s)+ < f implies (v—e—Alvt_l’s)+ < f and so A(e) = 0 in this
case, and (6B-11) follows trivially in this case. So (6B-11) holds in all
cases. Combining (6B-11) with (6B-9, and (6B-5) one finds

2

1 1)_%( 2v+€°)%€% .

(6B-13) Plv-e < v, < vl%] < ACe) £ 2(2m0

Taking €, € (0,v) arbitrary and ¢ = Z(Zwail)—%(2v+eo)%, (6B-1) follows.
Q.E.D.
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Appendix 6C. On the relationship between V and V
©

The function Vg depends on K' because g; does. For fixed % and T, the function

Vg converges to V in supnorm over M, as K' » o, This will first be shown.

6C-1. Lemma. V6 > 0,3K' such that VK' > K': sup|V (8)-V(8)]| < §.
° T 0 peM B

Proof. The proof will consist of three steps.

(i) First it will be shown that the set of functions {VglK')O} u {V} is

equicontinuous. Let el € M be fixed. Consider

f(el,ez) = E{ue(el)nz—ue(ez)uz}. This is a continuous function of 92 € M and

it is zero if 02 is equal to al. Let N(K') = {w € Q|v > K'}, then, by

definition of g, one has w € N(K') iff gl(v) = 0. Let N(w) = . Then one has

v () = / 1e(6) 12dP(w) and V(o) = / 1e(0) 12dP () .
N(K")€
It follows that for arbitrary 61,92 € M and for each X' > 0,
_ 2 2,45 ¢
|vg(el)—vg(62)| = | [ {neCop)n™=ne(8,)) 17 dP(w) | £
N(K")€
< f o IreCepi® - neCo,) i [aB(w) < £(o,,0,)-

N(K")€

And similarly

[v(e)) - v(s)| < £ ,8,).
Because f(el,ez) is continuous as a function of 62 and f(el,ez) = 0, it
follows that {V IK' > 0} v {V} is an equicontinuous set of functions.

(ii) Next it will be shown that for each fixed o, vg(e) + V(8) as K' + o,

Consider

V(o) - V,(0) = 4Ere(e)1’ - g (M neCo)t” =

¥ 1eCo) 12dB(w) .
N(K")
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Because K' > K' implies N(K ) c N(K'), because P( n N(K')) = 0 and because

K'>0
the integral f He(e)nzdP(w) is convergent (it is eq%al to V(8)), it follows
that

lim % [ reCo)nidb(w) =
K" > N(K')

so
lim V_(8) = V(8).

K"+

(iii) From (i) and (ii) and the compactness of M it follows that Vg + V in

supnorm. (Suppose this is not so. Then there is a § > 0 and there are

sequences {K and {x } such that V& e N: |V(xl) -V . (xz)l > 6.
2

l}l 1 27 e=1 g(v;KY)

Because M is compact, {x } has a convergent subsequence with limit x e M.

Using the equicontinuity it can then be shown that limsup]V(x) -V (x)l > 8,
K"+

which contradicts the pointwise convergence shown in (ii)).

Q.E.D.

It can now rather easily be shown that, (due to the fact that V has its unique

global minimum at the true parameter point 5) V, has its global minimum at a

g
point (or at points) arbitrarily close to B if K' is large enough (for fixed

8 and E).

6C-2. Theorem. (Let 8 and ¥ be fixed). Let ¢ > 0O be given. Then there exists a

Ké > 0 with the following property. If K' > Ké and Vg has its global minimum
at eo € M, then d(eo,ﬁ) < €.

Proof. V takes on its global minimum value at only one point, namely §. Let
Be(g) = {8 € M|d(9,§) < eg}. Let V(8) + & be the global minimum of V on the
(compact) set M\B (8). Then 6§ > 0, (because 8 ¢ M\B (E)) Take K' > 0 such
that for all K' > K', su§|V—Vg| < 6/2. This is possible accordlng to the
6e

previous lemma. Then for all

8 ¢ M\B (e), v (e) > (V(B)+68) - 8/2 = V(B) + §/2, while V (e) < v(®)

§
* 2
Therefore Vg takes on its global minimum in the set B (e) Q.E.

D.
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6C-3. Remark. In choosing K' one has to reckon with the scale of the process.
If all outputs are multiplied by a constant scaling factor A, then T is
multiplied with AZ and § remains the same (!). To obtain the same asymptotic
results, K' should be multiplied by A.
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