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Abstract 

We consider a certain type of algorithm designed to construct the multiplication table of al
gebras given by generators and relations. These computations may be performed for various 
classes of (not necessarily associative) algebras, such as Lie (super )algebras, Jordan algebras, 
associative algebras; in general, for any class of algebras axiomatised by suitable polynomial 
identities. The type of algorithm considered is based on straightforward computations in the 
free non-associative algebra on the generators, which do not depend in an essential way on 
the axioms of the class of algebras, in particular no concept of "representation" of the algebra 
is used. The algorithm itself is only partially specified: it proceeds by repeatedly taking steps 
chosen from a limited repertoire of very simple possibilities, but no fixed strategy for select
ing steps is assumed. We study the question whether termination of the algorithm is guaran
teed for those inputs that actually describe a finite-dimensional algebra (the question whether 
some arbitrary input has this property is not algorithmically decidable). We prove under certain 
assumptions about the strategy that termination is indeed guaranteed in this case. © 1997 
Elsevier Science B.V. 

1991 Math. Sub}. Class.: 17-04, 17Bxx 

1. Introduction 

We consider some class of algebras over a field k, characterised by a set of axioms 

that are multivariate polynomial identities to be satisfied by all elements of the algebra. 

One such class is that of associative algebras, another one that of Lie algebras, which 

will be the running example in most of this paper. In the case of Lie algebras the 

product of x and y is traditionally written as [x, y] to stress non-associativity of the 
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product, and called a commutator; here the axioms are 

[x, x] = 0 (anti-commutativity), 

[x,[y,z]] + [z,[x,y]] + [y,[z,x]]=O (Jacobi identity), 

for all x, y, z. In our discussion we shall fix the class of algebras to that of Lie algebras, 
in order to keep the formulations concrete. However, the same arguments apply to 
other classes of algebras as well with minor modifications: basically, whenever the 
Jacobi identity is mentioned, or the expression Jae (x, y,z) = [x, [y,z]] + [z, [x, y ]] + 
[y, [z,x]], it should be replaced by the relevant axiom(s) or expression(s) for the class 
of algebras at hand. The anti-commutativity axiom of Lie algebras is treated differently, 
and built into the steps of the algorithm itself; while it could be treated in the same 
manner as the Jacobi identity is, this would be needlessly cumbersome. This serves 
as an example of an axiom that is sufficiently simple to be dealt with immediately, 
without requiring explicit processing by the algorithm; note however that in the case of 
associative algebras the associativity axiom cannot be handled in this way, and should 
be treated analogously to the Jacobi identity. The places where anti-commutativity is 
incorporated into our formulations will be clearly indicated, and obviously they should 
be altered as appropriate for other classes of algebras. 

We assume that k is such that exact arithmetic with its elements is possible, e.g., 
k = Q. We shall also need to make an assumption about the sets of polynomial identi
ties figuring as axioms of our class of algebras: they should be such that it is sufficient 
to verify them on a k-basis of the algebra. This will certainly be the case when an ex
pression that is linear in all its indeterrninates, like Jae (x, y, z ), is equated to 0. Axioms 
that do not satisfy this condition can often be made to conform by augmenting them 
with identities obtained from them by polarisation (substituting linear combinations of 
new indeterminates for old ones and simplifying, in order to obtain expressions in more 
indeterrninates, but of lower degree in each one of them). Just as an example, consider 
the anti-commutativity axiom above: it is not sufficient to verify it on a k-basis. By 
polarisation we obtain from it the equation 

[x,y] + [y,x] =0, 

and verifying both identities on a k-basis is sufficient (if char k -:j:. 2 one can even omit 
the original axiom). 

The problem we shall deal with is that of determining a Lie algebra given by gen
erators and relations. So let a finite set G of formal indeterminates be given (the gen
erators), and a finite set R of relations, expressions built up from elements of G using 
the operations of multiplication (the Lie bracket) and formation of linear combinations 
with coefficients in k. We wish to find the Lie algebra specified by the generators G 

and the relations R, i.e., a Lie algebra L with indicated elements corresponding to the 
generators g E G, such that the expressions obtained by substituting these elements for 
their corresponding generators into the relations r E R all evaluate to O in L, and that 
conversely any relation with this property can be deduced in finitely many steps from 
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the given relations R using the axioms of Lie algebras. To give the requested Lie 

algebra L will be taken to mean giving a basis of L as a vector space over k (in the 

form of a set of formal identifiers) while indicating the vectors that correspond to each 

of the generators, and giving a table expressing each product [x, y] of basis elements 

explicitly as a k-linear combination of basis elements. Such a method of describing L 

is, of course, only possible if L is finite dimensional; however, we cannot expect to 

be able to algorithmically decide whether this is the case for given sets of generators 
and relations. 

The purpose of this paper is not to give a detailed description of concrete algorithms 

used in practice to perform these computations; that has been done elsewhere for 

various instances of such algorithms [I, 3, 4, 8]. Rather, we study their termination 

properties. For termination it is necessary that the input specifies a finite-dimensional 

algebra; we shall establish that under certain assumptions about the strategy used by the 

algorithm, this condition is also sufficient. This result is analogous to what is known 

for the Todd-Coxeter algorithm for groups (which is however not an algorithm of 

the type we are considering here). There are various details of the algorithms that 

are important from the point of view of efficiency, but that do not affect termination. 

We shall abstract from such details, and simplify the algorithms to a basic form, in 

which only the most fundamental kinds of steps are performed. This will simplify our 

reasoning, but one should realise the simplified algorithm is not one that would be 

used in practice; yet, the termination result easily carries over to practical versions of 

the algorithm. The simplification also means that our reasoning applies to the various 

algorithms mentioned, despite their mutual differences. Note however that this paper 

does not apply to another type of algorithms that have been studied recently [2, 5-7], 

which deal with similar questions for the special cases of associative and Lie algebras, 

and some of which construct representations for the algebras considered (in our general 

setting, there is no concept of a representation of the algebra). 

The algorithms we consider use the following general scheme to construct a ba

sis and multiplication table for the desired algebra L. Starting with a basis consisting 

of the given set of generators G and an empty multiplication table, one proceeds to 

determine an increasingly large part of that table, by using available relations when

ever possible, or else by adding products that cannot be determined in this way as 

new basis elements. The axioms serve to automatically derive relations for all basis 

elements of L that are introduced, which relations are treated in the same manner as 

those that were originally given in the set R. Therefore, the basic algebraic structure 

in which computations are performed is the free non-associative algebra on the basis 

elements currently constructed, rather than the free Lie algebra on those elements: one 

does not attempt to immediately impose all the consequences of the Jacobi identity 

on the expressions handled by the algorithm. (As mentioned above, we do take anti

commutativity directly into account, so in fact we compute in a free non-associative 

anti-commutative algebra.) Consequently, rewriting of expressions during the compu

tation is very simple, and amounts to replacing any subexpressions that are products 

of basis elements, and for which the multiplication table under construction already 
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gives a value. It may happen that a linear dependency between basis elements appears 
during the computation, in which case one of them has to be eliminated, and the table 

accordingly restructured. 
A concrete algorithm will incorporate a strategy for deciding in which order to extend 

the multiplication table, and in case of linear dependencies, for deciding which basis 
element to eliminate; we do not assume any one particular strategy. The assumptions 
about the strategy needed to obtain our termination result will be mild: essentially, 
one should give preference to introducing monomials of low degree as new basis 
elements (for some suitable rank function on the free algebra), and in case of linear 
dependencies, the element chosen for elimination should be of maximal degree. 

2. A simple example 

In order to give the flavour of the algorithms we are considering, we demonstrate 
a computation for a very simple case. The example is intended merely as an illustration; 
we do not formally define the algorithm that is being used, nor is that algorithm of 
the simplified form that we shall reason about below (that would make the algorithm 
require too many steps, even for this trivial example). 

We wish to compute the Lie algebra L defined by the sets of generators G = { s, t} and 
relations R = { [s, [ s, t]] = 0, [t, [t, [ s, t]]] = 0, [t, [ s, t]] = [s, [t, [ s, t]]]} (for convenience we 
write the relations as equations). Noting that [s, t] occurs frequently in the relations 
we introduce a new identifier a to stand for it, and with that replacement we similarly 
introduce b to stand for [t, a]; therefore, L is equivalently described by generators 
{s,t,a,b} and relations {a=[s,t], b=[t,a], [s,a]=O, [t,b]=O, b=[s,bl}. Together 
with the anti-commutativity axiom this allows us to build a partial multiplication table 
(Table I). 

Now we verify the Jacobi identity for the basis elements. Since Jac(x, y,z) is alter
nating in x, y,z (any permutation of those indeterrninates multiplies it by the sign 
of the permutation) we need only substitute triples of distinct basis elements for 
x,y,z, and each triple only in a fixed order. Using the partial multiplication table, 
Jac(s,t,b)=[s,[t,b]]+[t,[b,s]]+[b,[s,t]] simplifies to [b,a], which allows us to com
plete the table by putting [a, b] = [b, a]= 0. We must still verify the remaining instances 
of the Jacobi identity however; while Jac(s,a,b) and Jac(t,a,b) now reduce to 0, we 
find that Jae (s, t, a)= b, so that b = 0, and b is not a basis vector after all. We therefore 
substitute 0 for b, and remove the row and column of b from the table, and equate all 

Table I 

[, l s a b 

s 0 a 0 b 
-a 0 b 0 

a 0 -b 0 
b -b 0 0 
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Table 2 

[, l s a 

s 0 a 0 
t -a 0 0 
a 0 0 0 

entries that appeared there to 0. Since all these new equations are trivial, we complete 
our computation, producing multiplication Table 2 for the 3-dimensional algebra L. 

3. Definitions 

For a given set X we shall consider the following free structures. The free vector 
space FV(X) over k on X consists of all formal k-linear combinations of elements 
of X (if X is a subset of independent vectors in some other vector space, we shall also 
use the notation FV(X) to denote their linear span). The free magma FM(X) on X 
is a set inductively defined as FM(X) =XU (FM(X) x FM(X)): its elements are 
either elements of X or 2-tuples of elements of FM(X), so that FM(X) corresponds 
bijectively to the set of binary trees with elements of X as leaves. For an element 
z E FM(X) of the form z = (x, y), the elements x and y are called the children of z, 

and z is the parent of x and of y; the reflexive transitive closures of these relations are 
those of descendent and ancestor. The width of x E FM (X) is defined to be I for x EX, 
and otherwise the sum of the widths of the two children of x (this corresponds to the 
number of leaves of a binary tree; we avoid the term "degree" here, as it might cause 
confusion with the filtering defined on certain algebras below). The free algebra FA(X) 
is equal to FV(FM(X)) as a vector space, and it is equipped with a (non-associative) 
algebra structure defined by (x · y) = (x,y) for x, y E FM(X), which is extended by k

bilinearity to general elements of FA(X). Within FA(X) the elements of FM(X) are 
called monomials. The freeness of these structures is expressed by the fact that any 
map from X to a k-vector space (respectively magma, algebra) Y uniquely extends 
to a morphism of k-vector spaces (magmas, algebras) from FV(X) (FM(X), FA(X)) 
to Y. 

Define a partial multiplication table r on X to consist of a subset P of X x X, 
called the domain of r, together with a mapping µr: P-+ FV(X). Since our discussion 
considers computations for Lie algebras, we shall write [x, y ], for µr(X, y ), and our 
partial multiplication tables will be skew-symmetric: for all x, y EX one has (x,x) E P 
with [x,x]r=O, and (x,y)EP holds if and only if (y,x)EP, in which case [y,x]r= 

- [x, y Jr. For the same reason we impose anti-commutativity in the following definition. 
Given a set X and a skew-symmetric partial multiplication table r on X, we define 
the algebra FA(X, r) as the quotient of FA(X) by the (two-sided) ideal generated by 
all elements of the form (x · x) for x E FA(X) (to enforce anti-commutativity), and all 
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elements of the form (x · y )- [x, y Jr for (x, y) in the domain of r. In order to bring the 
monomials in FA(X) into standard form with respect to anti-commutativity, we need 
a total ordering on FM(X); such an ordering is called compatible if x < y implies 
(x,z) < (y,z) and (z,x) < (z,y) for all zEFM(X). 

Proposition 1. Let r be a skew-symmetric partial multiplication table on X, and 
let a compatible total ordering on FM (X) be chosen. Consider the rewrite sys
tem in F A(X) with reductions z-+ z' whenever z' is obtained by replacing a de
scendent (x, y) of a monomial of z in one of the following ways: (a) if x = y it may 
be replaced by O; (b) if' x > y it may be replaced by -(y, x ); (c) if x, y EX and (x, y) 
lies in the domain l'.l T, it may be replaced by [x. y ],. In each case z' is expanded after 
the substitution by k-bilinearity of the product (in cases (a) and (b) this means that 
the indicated monomial of z is killed or negated). This rewrite system is confluent 
and strongly normalising. 

Recall that confluence of a rewrite system means that if a term ex rewrites in two 
different ways to x and y, then these can be further rewritten to a common term w; 
strong normalisation means that no infinite sequences of rewriting are possible. The 
combination of these properties obviously ensures that each term ex can be rewritten to 
a normal form w (a term that cannot be further rewritten), which is uniquely determined 
by ex (Newman's lemma). 

Proof. Since r is skew-symmetric, we may save the reductions of type (a) and (b) until 
none of type ( c) are possible; since the rewrite system consisting only of the reductions 
of type (a) and (b) is evidently confluent and strongly normalising, it will suffice to 
prove the proposition for the rewrite system with only the reductions of type ( c ). In 
such a reduction a monomial m is replaced by monomials whose width is one less than 
that of m, and it follows that the rewrite system is strongly normalising. Furthermore 
observe that if a monomial has two different descendents (x, y) and (x', y' ), both in the 
domain of T, then these are disjoint subtrees of width 2, from which confluence easily 
follows. D 

Note that the essential point in the proof is the disjointness of reducible subex
pressions, which is due to the non-associativity of the algebra we compute in. If we 
would replace FA(X) by the free associative algebra on X, whose monomials are 
words over X rather than binary trees, then we would not have this disjointness, and 
the proposition would fail. In fact, because of the unsolvability of the word problem 
for semigroups, no strongly normalising rewrite system can determine all consequences 
of the relations imposed by an arbitrary partial multiplication table on an associative 
algebra. By contrast, the proposition shows that the implications of anti-commutativity 
can be incorporated into the rewrite system. It is this distinction that allows us to 
handle anti-commutativity immediately, whereas axioms like associativity or the Jacobi 
identity require the iterative approach of the algorithm presented below. This is not to 
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say that special properties of (free) associative or Lie algebras cannot be built into an 

algorithm (this is in fact what is done in [2, 5-7 ]), but some form of postponement 

of implications of the partial multiplication table is inevitable. 

Denote by NT : F A(X)-+ FA (X) the map that sends each tenn x to its normal form w 

in the rewrite system of the proposition. Then N,- 1 ( O) is equal to the kernel of the 

canonical projection n, : F A(X)-+ F A(X, r ), so that the restriction of n, to the image 

Im(N,) of NT is an isomorphism of k-vector spaces. That image is spanned by the 

monomials that are ordered increasingly (every descendent (x, y) has x < y ), and that 

have no subtrees of width 2 lying in the domain of r. It can serve as a model for 

computation in F A(X, r ), since the restriction of n, to Im(N,) becomes an isomorphism 

of algebras when Im(N,) is equipped with the multiplication (x. y) f-t N,(x · y ). We 

shall therefore treat FA (X, r) as if computation with its elements and equality tests 

are directly possible, like for free algebras; in doing so, appropriate applications of the 

normal form algorithm N, are implicitly assumed. Since the image of FV(X) in FA(X) 

clearly lies inside Im(N,), we shall consider it to be a subspace of FA(X, r). Like for 

Lie algebras, the product in FA(X, r) will be denoted by [x,y], and so the expression 

Jac(x, y, z) is meaningful for x, y,z E F A(X, r ); it is a non-trivial expression, since the 

product [x, y] in FA (X, r ), though anti-commutative, does not satisfy the Jacobi identity. 

4. Basic steps of the algorithm 

We shall now indicate the data structures maintained by the simplified algorithms 

considered in this paper, and the basic operations that are performed on these data. 

An intennediate state of the computation will be characterised by a 4-tuple (S, m, r, Q) 

where S is a finite set, m is a map from S to FM(G) (recall that G is the set 

of generators specified in the input to the algorithm), r is a skew-symmetric partial 

multiplication table on S, and Q is a finite subset of F A(S, r ). The set S consists of 

formal indetenninates parametrising the part of the basis of L constructed so far, and 

m tells how each basis element is related to the original generators (we only introduce 

basis elements that correspond to some product of original generators, i.e., to an element 

of FM(G)); r is the part of the multiplication table of L that has been constructed so 

far, and Q is a collection of relations that still have to be processed. The initial 4-tuple is 

(G, idc, r 0(G),R UJac(G, G, G)), where r0(G) is the map with domain { (9,g) I g E G} 

and image { 0}, and Jae (X, Y, Z) denotes the set { Jae (x, y, z) I x EX, y E Y, z E Z } . The 

algorithm will terminate when a state is reached in which the domain of r is S x S, 

and Q = 0. We shall now consider two different kinds of steps that can be taken to 

transform the state into a new one; each of these steps is parametrised by values that 

specify the precise transformation to be performed. 

Step A: Parameters. s, s' ES for which (s, s') does not lie in the domain of r. Action: 

the 4-tuple (S, m, r, Q) is replaced by (S', m', r', Q'), defined as follows. Put S' =SU { c} 

where c is an indeterminate not occurring in S; define m' (s) = m(s) for all s ES and 

m'(c)=(m(s),m(s')). The domain of r' is that of r united with {(s,s'),(s',s),(c,c)}; 
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define,, by [x,y],,=[x,y], for all (x,y) in the domain oft, and furthermore [s,s'k = 

c= - [s',s]r', and [c,c],, =0. Finally put Q'=QUJac(S,S,c)\{O}, where Q denotes 
the image of Q under the algebra morphism FA(S, t)--> FA(S', 7:1 ) that is the identity 
on S. 

The indicated algebra morphism clearly exists, as every relation imposed by ' is also 
imposed by t'. The effect of step A is to introduce a new indeterminate c to fill the 
empty slot [s, s'] of,, and to substitute c for all occurrences of [s, s'] within Q. Because 
the basis is being extended, new Jacobi identities have to be taken into account as well; 
since Jae (x, y,z) is alternating with respect to permutations of x, y, z, it suffices here to 
use c in one fixed position only. 

In itself this step does not contribute to obtaining a complete multiplication table, 
but its main purpose is to simplify the relations in Q by substituting indeterminates for 
commutators, so that eventually these relations can be used to fill in open places in the 
table'· This happens when only a single commutator (monomial of width 2) is left in 
the relation, and the remainder is linear (monomials of width l only): the commutator 
can be singled out as left hand side of the equation, and the right-hand side gives the 
linear expression to fill into the corresponding position of the multiplication table. It 
may however happen that a relation skips this point and directly becomes completely 
linear; in that case it must be used to eliminate one of the elements of S, and remove 
it from the table. Although the latter possibility appears to be unattractive (it implies 
that some previous extension of the basis was unnecessary), it is impossible to rule 
out beforehand. 

On the other hand, suppose a relation is simplified to the point that it allows a 
place in the table to be filled, then instead of doing that, one could choose to make 
it completely linear by means of one more step A, and then use it to immediately 
eliminate the new indeterminate; in this roundabout fashion one achieves essentially 
the same result as by filling the place in the table directly. For this reason we decide 
to simplify the description of the algorithm by omitting the obvious step of using a 
relation to fill in the table, while retaining the less obvious but unavoidable step of 
using a linear relation to eliminate a variable and reducing the table correspondingly; 
that will be step B below. This is a simplification only from the theoretical point 
of view (by reducing the number of different steps our proofs will be simpler): the 
actual execution of the algorithm will become more complicated by omission of the 
indicated kind of step, and certainly less efficient. Therefore practical implementations 
of this type of algorithm do not omit the step, and possibly even include other kinds 
of steps to efficiently handle certain situations; as long the effect of these additional 
steps matches that of some combination of steps A and B, our results remain valid for 
such improved algorithms. 

Step B: Parameters. An element r E Q that lies in FV(S), and some s ES that 
occurs in r with non-zero coefficient. Action: the 4-tuple (S, m, ,, Q) is replaced by 
(S', m', 7:1, Q'), defined as follows. Put S' = S \ {s }, and define m'(s') = m(s') for all 
s' ES'. Write r as o:(s - v) with o: Ek* and v E FV(S'). The domain of r' is the 
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intersection of that of r with S' x S', and [x. y] r' = subss :~ ,.( [x, y Jr) for all (x, y) in the 

domain of r', where the operator subss := v denotes substitution of v for s. Define T as 

set of all expressions [x, s Jr - [x, v] E F A(S, r) with x ES' and (x, s) in the domain of r; 

then Q' = subss:=v(Q U T)\ {O}. 

The element s is eliminated from S by substituting the linear combination v of 

remammg elements for it, both in the entries of the table r and in the set of re

lations Q (the relation r itselt~ used to eliminate s, becomes 0, and is excluded 

from Q' ). Any table entries for s should not be forgotten about, so for each entry 

[x, s lr disappearing from the table, a relation equating it the to the linear combina

tion [x, v] of products that remain inside the table is added to Q (because of anti

commutativity, we need not repeat this for the entries [s,x]r that also disappear from 

the table). Since the result is interpreted in FA(S', r' ), such a relation will be linear (i.e., 

in FV (S')) if entries are defined in r' for all those products; therefore, eliminating one 

linear relation may create new linear relations, allowing further reduction of the table. 

5. Soundness 

The algorithms we shall consider proceed by applying steps A and B to the initial 

data in some order, until a state is reached in which the algorithm terminates. In that 

state, the set S is supposed to be a basis for the desired Lie algebra L, and i its 

multiplication table. Our first goal is to prove that this is indeed the case, i.e., that the 

definitions of the steps are correct. 

Lemma 2. Let (S', m', r', Q') be obtained from (S, m, r, Q) by an application of step A 

or of step B. Then the Lie algebra with generators S and relations [x, y] = [x, y lr for 

all (x, y) in the domain of i, and r for all r E Q, is isomorphic to the Lie algebra 

similarly defined .fi1r S', r', and Q'. 

Proof. Strictly speaking, the relations r E Q should be lifted from FA(S, r) to F A(S), 

but since we are imposing all relations coming from r as well, it does not matter how 

this is done. Any relations of the form Jae (x, y, z) or [x,x] may be ignored, since these 

are automatically satisfied in a Lie algebra. Then step A amounts to introducing an 

extra generator c and an extra relation [s,s'] - c; it is obvious that the resulting Lie 

algebra is isomorphic to the original one, with c corresponding to [s, s']. Similarly, the 

reverse of step B amounts to introducing an extra generator s, and an extra (linear) 

relation s - v, while replacing some occurrences of v in the relations by s; here too it 

is obvious that an isomorphic Lie algebra is obtained. D 

This lemma shows that upon termination we have a set of generators and relations 

(in the form of a multiplication table) that is equivalent to the ones originally given, 

but not that the multiplication table actually defines a Lie algebra. This point is settled 

by another simple lemma. 
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Lemma 3. Let (S,m,r,Q) be obtained from the initial state defined by (G,R) by steps 

of type A and B, then Jac(S,S,S)~±QU{O}. 

Proof. By induction on the number of steps taken. In step A all additional expressions 
Jac(x,y,z) in Jac(S',S',S') are (up to a sign) explicitly included in Q', while the ones 
already in Q either have a counterpart in Q', or become 0 in FA(S', r'). For step B 
the situation is even simpler, since all elements of Jac(S',S',S') are directly obtained 

from elements of Jac(S,S,S). D 

Theorem 4. If from an initial state (G,idG,To(G),RUJac(G,G,G)) a state (S,m,r,0) 
is reached by a series of steps A and B, with the domain of T equal to S x S, then 
the Lie algebra defined by generators G and relations R is isomorphic to the algebra 
defined on the space FV(S) by the multiplication table T. D 

6. Termination 

We shall now consider the question whether the fact that the Lie algebra defined 
by the generators G and relations R is finite dimensional is sufficient to guarantee 
termination of the algorithm for those input data. This will depend on the strategy for 
choosing between steps A and B and, more importantly, choosing the parameters for 
these steps. In this section we shall consider an arbitrary algorithm that successively 
applies instances of steps A and B according to some strategy, and shall make a 
sequence of assumptions about the strategy; when all assumptions are satisfied, we 
shall answer the above question affirmatively. Each statement that appears will apply 
to algorithms whose strategy satisfies all the assumptions stated up to that point, without 
explicitly mentioning so each time. 

Consider at each stage of the algorithm the map Pr: FA( G) -+ F A(S, -r) describing 
how expressions in the original generators would be rewritten, if they were to undergo 
the sequence of transformations that that are applied to the elements of Q in the 
preceding steps (we shall use a subscript T for quantities that depend on the state of the 
computation, rather than the full state (S, m, T, Q) ). For reasoning about the algorithm 
it is important that Pr be an algebra morphism; this is not necessarily always the case, 
however. The problem is that the maps FA(S, r) __.., FA(S', r') describing the rewriting 
for each individual step are not always algebra morphisms; in particular, this fails 
for of step B if the set subss := v( T) of new relations added to Q' contains non-zero 
elements. If r = subss := v( [x, s ]r - [ x, v]) is such a relation, then any element e E FA( G) 

with pr(e)=[x,s-v]=[x,s]r-[x,v] will have Pr'(e)=r i= 0, but of course Pr'(e')=O 
for any e' E p; 1 (s - v ). The difficulty is of transient nature, because when eventually 
r is removed from Q by another step B, then e will be rewritten to 0, as it should. 
Moreover, if all the relations r of this kind produced by the original step B are linear, 
then we can perform the steps B to eliminate these relations immediately after that first 
step, and then any similarly further implied steps B; if this entire sequence of steps B 
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starts in state (S,m,r,Q), and ends in a state (S",m",r",Q") in which no further steps B 
are implied, and then there will be an algebra morphism FA(S, r)--+ FA(S", r"). 

Assumption 1. For any step B that transforms the state (S,m,r,Q) into (S',m',r',Q'), 
one has subss:=v(T)~FV(S') for the set T~FA(S,r) of new relations added to Q; 

also, for any non-zero r E subss := ,,( T), the step B with parameter r that could be 
taken immediately afterwards, recursively satisfies the same requirement. Moreover, 
such newly introduced relations r E Q' (and any relations obtained later by rewriting 
them) are marked as urgent; while Q contains urgent relations, no step is taken that is 
not a step B with parameter r that is urgent. 

This assumption may appear to be hard to live up to in practice, but the situation 
is not so bad. First of all, we have seen that to get T ~ FV(S') for a step B that 
eliminates s by substituting v E FV(S') for it, it suffices that whenever (x, s) is in the 
domain of r, then so is (x,s') for any basis elements' occurring in v. The latter may 
be achieved by first performing steps A for any such pairs (x,s') that are not yet in the 
domain of r; alternatively, some strategies may avoid the problem altogether by the 
order in which they fill entries in the table (step A), and their selection of variables to 
eliminate in step B. Secondly, the assumption is certainly not a necessary condition for 
ensuring termination of the algorithm for finite-dimensional algebras. Indeed it can be 
seen that finitely many interchanges of steps will not affect termination of the algorithm, 
so in practice there is no objection to postponing the steps A indicated above until after 
the initial step B, to linearise a relation that was not linear when it was first added to Q. 
Similarly, it is not really a crime to perform a non-urgent step while urgent steps are 
still possible, as long as the latter will still be taken eventually. We do need to make 
the assumption here however, in order to have sufficiently many algebra morphisms Pr 
available; once termination is proved for strategies that satisfy the assumption exactly, 
it will follow for other strategies that are close enough to them. 

Proposition 5. For a state (S, m, r, Q), if Q contains no urgent relations, Pr is an 
algebra morphism. 

Proof. Call a state transient if Q contains urgent relations, and stable otherwise. Our 
assumption ensures the existence of an algebra morphism FA(S, r)-+ FA(S', r') for 
every pair of successive stable states, which is given for step A by the identity on S, 
and for a sequence of steps B by the corresponding sequence of substitutions subss := ,,: 

by construction every relation given by an entry of r also holds when the elements 
of Sare replaced by their images. The map FA(S,<)-+FA(S',<') describing rewriting 
clearly coincides with this morphism, and by definition Pr is the composition of such 
rewriting maps. 0 

In the sequel, whenever we mention Pr. we shall implicitly assume that that corre
sponding state is stable; since any transient state is followed after finitely many steps B 
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by a stable state, this will not affect the validity of our argument. For stable states we 
define L, = p; 1(FV(S)), the subspace of FA(G) of expressions that would be rewrit
ten to linear ones in FA(S,7:), and K,=p; 1(0), the ideal of expressions that would 
be rewritten to 0. Since an expression that is rewritten to a linear one or to 0 will 
subsequently remain linear respectively 0, these sets are weakly increasing as the com
putation progresses. Now a necessary condition to guarantee termination is that the 
strategy be such that the union of all L,, taken over a possibly infinite computation, is 
all of FA( G); without this property there could be relations r E Q that never become 
eligible as parameter for step B because they fail to become linear, and yet they might 
by essential for obtaining a finite-dimensional algebra. The following will be useful to 
ensure such a property. 

Assumption 2. A rank function rk: FM(G)-; N is defined such that only finitely many 
monomials of any given rank exist, and such that rk(x, y) = rk(y,x) and rkx ::::; rky :::} 

rk(x,z)::::; rk(y,z). 

Examples of such rank functions are taking the width of monomials (the number 
of leaves when viewed as a tree), or the maximal nesting level (depth of the tree). 
The precise nature of the rank function is not very important; one need not even have 
rkg = 1 for all g E G. 

Proposition 6. If m,n E FM(G) are such that m is a proper descendent of n, then 
rkm < rkn. 

Proof. Assume to the contrary that rkm ~ rkn. Then consider the infinite sequence of 
monomials mo = m, mi= n, m2, m3 ... , where m;+i is obtained from n by substituting 
m; for the subterm m. Then clearly all m; are distinct, and by induction one has 
rkrn; ~ rkm;+1, which contradicts the fact that only finitely many monomials can have 
the same rank.. 0 

The rank function defines a filtering of FA( G) by finite-dimensional subspaces 
FA ( G ); , spanned by { x E FM ( G) I rkx ::::; i } . There is an induced rank function on 
the basis of FA(S,7:) represented by FM(S)nim(N,) (the monomials that are in nor
mal form for N,): for such a monomial x define rkx=rkx', where x' EFM(G) is 
obtained by substituting m(s) for s in x for every s ES. Again this defines a filtering 
of FA(S,7:) by subspaces FA(S,7:);, spanned by {xEFM(S)nim(N,) I rkx::::; i}. 

Assumption 3. Whenever step B is taken, with as parameters a relation r and a basis 
element s that occurs in r with non-zero coefficient, s has maximal rank among such 
basis elements. 

Proposition 7. One has pr(FA(G);)<;FA(S,"C);for all iEN. 
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Proof. It suffices to show that for each step, rewriting of elements maps each FA(S, r); 

into FA(S',r');. For step A this is certainly the case, since m'(c)=(m(s),m(s')) when 

[s, s'],1 =c. For step B, rewriting consists of substituting for s ES the linear combination 

v E FV(S' ); because s was chosen with maximal rank by Assumption 3, we have 

vEFA(S',r')rks, and due to the properties of the rank function, this implies that we 

have subss = v(x) E FA(S', r')rkx for every monomial x E FM(S) n Im(N, ). D 

Now let r EN be such that for all s, s' ES with [s, s'] E FA(S, r )r, the pair (s, s') 

lies in the domain of r. Then by Proposition 6 we have FA(S,r)r r;;;;FV(S), and by 

Proposition 7 also p,(FA(G)r) r;;;; FV(S). Consequently, for the union of all L, to be 

all of FA( G), it suffices that for arbitrarily large r the stated condition will eventually 

be satisfied (i.e., for some r ). This can be achieved by selecting in step A pairs (s, s') 

with minimal possible value of rk([s, s']), or at least ensuring that all such elements 
are chosen within a finite number of steps. 

Assumption 4. While there exist eligible pairs (s, s') for step A that have rk([s, s']) = i, 

the strategy will not infinitely often select step A for parameters (t, t') with rk( [t, t']) > i 
instead. 

Assumption 5. While a relation r E Q eligible for step B exists, the strategy will not 

infinitely often select other steps instead. 

Corollary 9. RUJac(FM(G),FM(G),FM(G))r;;;;LJ,K,. 

Proof. Let r ER U Jac(FM(G), FM(G),FM(G)), then r EL, for some r, by Lemma 8. 

If r =Jae (x, y, z ), then also x, y,z EL,, so by Lemma 3, p,(r) lies in the k-subspace 

of FA(S, r) generated by Q n FV(S); for r ER this holds as well. Therefore, p,(r) is 

a linear combination of elements of Q that are eligible for step B; by Assumption 5, 

these will eventually all be selected. Then, for the state (S', m', r', Q') obtained after the 

last of these relations is selected for step B, we have r EK,,. 0 

This establishes that the ideal LJ, K, is the kernel of the algebra morphism p : 

FA(G)---+ L, where l is the Lie algebra defined by the generators G and relations R. 

Theorem 10. If the lie algebra L defined by (G,R) is finite dimensional, and the 

strategy satisfies the given assumptions, the algorithm terminates. 

Proof. Since p: FA(G)-+L is surjective and Lis finite dimensional, there is some 

d EN for which the restriction of p to FA( G)J is already surjective; we may as

sume that moreover Gr;;;; FA(G)d. The set { m EFM(G) I rkm:::; d} is finite, so we 

may write it as {m 1, ... ,mn}; by the assumed surjectivity, there exist coefficients 

c~J for l ::; i,j, k::; n such that [p(m; ), p(mj )] = L,k c~J p(mk ). Then the elements 
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r;,; = [m;, mi] - L:k c~J mk lie in the kernel of p, which is the ideal generated by 
RUJac(FM(G),FM(G),FM(G)). As there are only finitely many r;,J, they already lie 
in the ideal generated by some finite subset F of RUJac(FM(G),FM(G),FM(G)). 
From Lemma 8 and Corollary 9 it follows that the computation will reach a state 
for which both FA(G)dr;;;_Lr and Fr;;;.K,, which implies p.(FA(G)d)~FV(S) and 
p,(r;,1)=0 for all i,j. Now p,(FA(G)d)~FA(S,r)d by Proposition 7, so every sES 
occurring with non-zero coefficient in some element of p.(FA( G)d) has rks :::; d, so 
that sEp,(FA(G)d); therefore p.(FA(G)d)=FV(I) for some l:~S. From the van
ishing of p,(r;,;) it follows that I: x I: is contained in the domain of r, and that FV(I) 
is a subalgebra of FA(S, r); since this subalgebra contains p.(G) is must be equal to 
all of FA(S,r), and 'L=S. Then Tisa complete multiplication table, and no further 
steps A are possible; the algorithm will therefore terminate, after possibly taking a 

finite number of steps B to obtain Q = 0. D 

7. Other classes of algebras 

To conclude, we summarise the points that should be altered in the steps of the 
algorithm and the proofs above to adapt them to classes of algebras other than Lie 
algebras. As stated earlier, we assume that such a class of algebras is axiomatised by 
a set of polynomial identities with the property that if each instance of these identities 
obtained by substituting elements from a given k-basis for all variables is satisfied, then 
all instances obtained by substituting arbitrary vectors for the variables are also satisfied. 
Any axiom that, like anti-commutativity, is such that the corresponding variation of 
Proposition 1 is valid, can be given a similar special treatment as we gave to anti
commutativity; however, this is never necessary, and we shall assume that all axioms 
are handled similarly to the Jacobi identity. 

The definition of F A(X, r) is modified by removing the assumption that r is skew
symmetric, and the quotient is taken for the ideal generated by elements of the form 
(x · y) - µ,(x,y) only. Proposition 1 is simplified by omitting the reduction steps of 
types (a) and (b ), and a compatible total ordering on FM(X) is no longer required. 
The algorithm itself is modified as follows: the data are the same, except that again r 
is no longer assumed to be skew-symmetric; the initial table r0 is completely empty; 
for the initial value of Q we adjoin to R all instances of all axioms obtained by 
substituting elements of G for the variables; in step A only [s,s'],, = c is defined in 
addition to the values copied from r, and the set of identities joined to Q consists of all 
instances of all axioms with c substituted at least once for a variable, and elements of S 
substituted for the remaining variables; in step B the set T consists of all expressions 
µ,(x,s)-(x·v) and µ,(s,x)-(v·x) withxES and (x,s), respectively, (s,x) in the domain 
of T. The soundness proof remains valid, with the term Lie algebra replaced by the 
class of algebras under consideration; in Lemma 3 the '±' may even be omitted. The 
termination proof can be similarly retained, replacing Jac(FM(G),FM(G),FM(G)) 
by the set of all instances of all axioms obtained by substituting elements of FM(G) 
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for the variables; the requirement rk(x, y) = rk(y,x) for the rank function is no longer 
needed. 
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