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FROM LINEAR TO DYNAMIC PROGRAMMING VIA SHORTEST PATHS 

A. Hordijk 

1. INTRODUCTION AND SUMMARY 

213 

Linear programming and dynamic programming are two important branches 

of mathematical programming. In this paper we study some of the relations 

between the both. Especially, we will approach dynamic programming problems 

by converting them to linear programming problems. The intermediate is a 

shortest-paths problem. Shortest-paths problems are basic problems in com­

binatorial optimization which is another main branch of mathematical pro­

gramming. Hence we try in this paper to say something about three main 

streams of investigation in the mathematics of operations research. 

The summary of the contents we will give now is for readers already 

familiar with the topics of this paper. Readers who want to use this paper 

as an introduction might better skip the rest of this section in first 

reading. 

In section 2 a short introduction is given to linear programming: Our 

approach is a geometrical one with emphasis on the theory of duality. The 

theory of linear programming with a finite number of variables and a finite 

number of constraints is well established nowadays. Section 2 is almost en­

tirely taken from the literature, our main sources can be found in the list 

of references. 

In our description of the simplex method we used that the active dual 

variables in vertex x are essentially the projections of the objective 

function on the extreme rays of the dual cone in x. This way of explaining 

the simplex method seems to be new. 

In section 3 the shortest-paths problem is studied. ,It is explained 

how the problem can be solved by using the simplex method for a linear pro­

gramming problem of network-flow type. An algorithmic procedure, derived 

from the simplex method, for solving shortest-paths problems is given, to­

gether with a tight upper bound on the number of "pivot steps" for a spe-
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cialization of this procedure. The relation with the well-known relaxation 

procedure is made. A specialization of this procedure is essentially the 

nonlinear extension of Gausz-Seidel iteration. It seems that with the ex­

ception of the conversion of the shortest-paths problem to a linear pro­

gramming problem the material of this section is new. 

In section 4 the finite horizon dynamic programming problem is intro­

duced. It is shown that the deterministic problem is a shortest-paths prob­

lem in an acyclic graph. Moreover, the stochastic dynamic programming prob­

lem can be seen as finding a shortest stochastic spanning tree. The well­

known optimality principle of Bellman together with the validity of the 

backward recursion of dynamic programming are shown to be consequences of 

the duality theory of linear programming. 

The relation between "existence of pure optimal policies" and "inte­

grality of basic solutions of the corresponding linear programming problem" 

is made. Also these two properties can be seen as consequences of the dual­

ity theory. 

It is well-known that discrete dynamic programming problems can be 

formulated as linear programming problems. Also, dynamic programming is 

often introduced via a shortest-paths problem. However, a systematic inves­

tigation does not seem to have been published before. The fifteenpage limit 

of this paper did not allow us to analyse here dynamic programming problems 

with an infinite horizon. Also for these models, often called Markov deci­

sion chains, well-known properties appear to be consequences of duality 

theory of linear programming. All these results seem to suggest that the 

right title of this paper is: "dynamic programming is linear programming". 

However, this title would disregard the wealth of results in dynamic pro­

gramming which go far beyond the boundaries of linear programming. 

2. GEOMETRY OF LINEAR PROGRAMMING 

The general problem of linear programming is to find a maximal value 

of a linear function, the object function, in a convex region defined by 

linear inequalities, i.e. 

(2 .1) 

where p E :Rn, x E :Rn, A E :Rm x :Rn, b E :Rm and x ;;:: 0 requires that all com­

ponents of the vector x are nonnegative. 
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Any element of R = {x I Ax s b, x ~ O} is called a feasible solution, point 
* T * T or vector. The feasible solution x is optimal if p x ~ p x for any x £ R. 

The set R is a convex polyhedron in lRn ·• 

For any A€ lRm xnf we have a convex polyhedral cone C = {x I Ax s 0}. 

With C we can associate the so-called dual cone: C' = {y I y = ATu, u ~ 0}. 

C' is also a convex polyhedral cone. The outward pointing normals of the 
T 

faces ai.x O of Care the extreme rays of C' and conversily. The dual 

cone of the dual cone is the original cone. 

A fundamental theorem in the theory of linear programming is Farkas' 

theorem (1902): The vector p € lRn makes a non-acute angle with any vector 

of a convex polyhedral cone if and only if p belongs to the dual cone, i.e., 

(2.2) T Vx (Ax s O • p x s O) .,. 3u (p 

A directions is called feasible in the feasible point x if x + AS is fea-
T sible for some A> 0. The directions is usable if in addition p s > 0. It 

is clear that feasible point x is optimal if and only if there exists no 

usable direction in x. From Farkas' theorem we conclude: vertex x of R is 

optimal if and only if p belongs to the dual cone of the cone of feasible 

directions in x. 

For any feasible solution we define the vector of slack variables y 

by y = b - Ax. It is clear that y € lRm and y ~ 0. We denote them x (n+m)­

matrix (A,I) by A and the (n+m)-vector (x,y)T, where y = b - Ax, by x. The 

vector x is feasible if and only if Ax= band x ~ 0. Write 

M(x) {i I a:.x = bi} = {i I yi 0} and N(x) {j xj = o}. 

The feasible solution x is an extreme point or vertex of R if and only 

if the positive components of x correspond to columns of A which are a set 

of linear independent vectors inlRm, i.e., {a ., j i N(x), e., ii M(x)} 
"J l. 

are linear independent. The vertex x is called nondegenerate if x has ex-

actly m positive components. In this case, x is determined as the inter­

section of then linearly independent hyperplanes 

{x. = 0, j € N(x), y, = 0, i € M(x) }. The variables x., j i N(x), y,, 
J l. J l. 

ii M(x) are called the basic variables, hence the hyperplanes are found 

by equating the non basic variables to zero. The cone of feasible direc­

tions in x is: {s Is. ~ 0, j € N(x), a: s s b., i € M(x)}. 
J i• l. 

To check whether vertex x is optimal we have to find out whether the 

object vector belongs to the dual cone of the cone of feasible directions. 

In practice, this is done by computing the projections of p on the outward 
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pointing normals of the faces of the primal cone. Let 

the projection of p on -e. and let u. • II a. 11-l for i 
J i i• 

v. for j E N(x) be 
J 

E M(x) be the projec-

tion of p on ai•" If we take vj = 0 for j i N(x) and ui = 0 for ii M(x), 

then, 

(2. 3) 

and 

(2. 4) 

p 

T 
u y o. 

The components of the vectors u E lR.m and v E lR.n are called the dual 

variables corresponding to x. The variables vj, j E N(x) and ui, i E M(x) 

are the active ones. They are essentially the projections of p on the ex­

treme rays of the dual cone in x. From Farkas' theorem we conclude, vertex 

x is optimal if and only if the corresponding dual variables are nonneg­

ative, i.e., 

(2 .5) U ;,: 0, V ;,: 0. 

The relations (2.3), (2.4) and (2.5) together are called the optimali­

ty conditions. 

If vertex x is not optimal then at least one of the dual variables is 

negative. If ui < O then p makes an acute angle with the extreme ray of the 

cone of feasible directions, found by relaxing yi = O. This extreme ray is 

a usable direction. Similarly, if vj < 0 then making xj positive will in­

crease the object function 

The simplex method, due to G.B. Dantzig, is a class of algorithms. All 

of which have as main subroutine: given vertex x, check the dual variables 

whether x is optimal, if not, go to an adjacent vertex via an edge of the 

polyhedral set R by making positive a primal variable corresponding to a 

negative dual variable, check the dual variables of the new vertex, etc. 

The simplex method is made to an algorithm if it is specified how the 

choice is made on which variable will be made positive. In practice, one 

usually takes the primal variable corresponding to the most negative dual 

variable. 

The actual computation of the new primal and dual variables will not 

be given here. It is enough to state that the computation is called a piv-
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ot operation and that the pivoting is very similar to that of the familiar 

Gausz-elimination procedure to solve a set of linear equations. In this pa­

per we will deal with linear programming problems of a special structure. 

For these problems the primal and dual variables are computed differently. 

EXAMPLE. max{3x1+2x2 j 4x1+x2 ~ 28, 2x1+x2 ~ 16, -2x1+x2 ~ 4, x1 ~ 0, 

x2 ~ O}. 

In this example we have the variables x 1 , x2 with corresponding dual 

variables v 1 , v2 , the variables y 1 , y2 , y3 are the slack variables with cor­

responding dual variables u 1 , u2 , u3 • As initial vertex point we take 

x 1 = 0, x2 = 0, in this point both active dual variables are negative. The 

choice of variable to become positive, mostly called choice of pivot col-

umn, is x 1 , the adjacent vertex is then x2 . 

cone of fea-
vertex basic variables sible directions 

1 Y1, Y2, Y3 xl ~ o, x2 ~ 0 

2 xl, Y2, Y3 Y1 ~ 0, x2 ~ 0 

3 xl, x2, Y3 Y1 ~ o, Y2 ~ 0 

4 xl, x2, Y1 Y3 ~ o, Y2 ~ 0 

= o, Y1 = 0 etc. 

active dual variables 

vl < 0, v2 < 0 

ul ~ 0, v2 < 0 

ul < o, u2 ~ 0 

u3 ~ 0, u2 ~ 0. 

The vertex 4, i.e. y3 = 0, 

y2 = 0 is optimal. In the 

figure we denote ui•llai.u-l 

* by ui, i E M(x). 
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Any linear programming problem has an associated linear programming 

problem, the so-called dual problem. The dual of (2.1) is 

(2 .6) 

with as vector of slack variables v ATu - p and dual feasible region 

R' = {u I ATu ~ p, u ~ O} c lR.m. The dual problem of the dual problem is 

the primal problem. There is a close relationship between the primal and 

dual linear programming problem, as the following theorems show. The weak 

duality theorem says, if (x,y)T is feasible for the primal problem and 

(u,v)T is feasible for the dual problem, then 

(2.7) T 
p X 

With (x,y)T feasible we mean x is a feasible point with y as vector 

of slack variables; similar for (u,v)T. 

since 

The proof runs as follows, 

T 
p X 

T u Ax 
T 

V X 

x ~ o, y ~ 0, u ~ 0 and v ~ o. 

The optimality conditions show that if x is an optimal vertex of the 

primal problem then its corresponding dual variables say u, v are such 

that u is feasible for the dual problem and moreover v are its slack vari­

ables. From (2.4) and the above equality we conclude the strong duality 

theorem, if the primal problem has an optimal solution then its correspond­

ing dual variables are an optimal solution of the dual problem. Suppose 

(x,y)T is a primal feasible and (u,v)T is dual feasible. 

If (x,y)T and (u,v)T are orthogonal, i.e. (2.4) is satisfied then 

(u,v)T are nonnegative dual variables corresponding to (x,y)T. Hence 

(x,y)T is primal optimal and (u,v)T is dual optimal. Conversily, if (x,y)T 

and (u,v)T are optimal then from (2.7) they are orthogonal. This result is 

known as the orthogonality theorem. 

The primal problems of the next section will have equalities instead 
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T 
of inequalities in the constraints, i.e. ai.x = bi, i = 1,2, ..• ,m. By the 

standard trick of replacing any equality by two inequalities it can be 

shown that the dual variables ui, i = 1,2, •.• ,m become unrestricted in 

sign. Since y = 0 the relation (2.4) reduces to 

(2. 8) 
T 

V X 0. 

The relation (2.5) becomes 

(2 .9) V ~ 0. 

In order to keep this introduction short and to avoid complications 

we implicitly assumed that vertices were nondegenerate i.e. the number of 

positive components in (x,y)T is equal to the number of constraints. In 

section 3 all vertices are nondegenerate. In section 4 there are degener­

ate vertices. However, the specialization of the simplex method to the 

problem of section 4 is the backward recursion of dynamic programming. 

There are no complications, as cycling, possible with this algorithm. 

3. SHORTEST PATHS 

In this section we suppose to have a directed graph with 

V = {v1 ,v2 , •.. ,vn} as set of nodes and A as set of arcs. Any arc (v,w) EA 

has assigned to it a real number l(v,w), its length. We make the graph com­

plete by adding those arcs which are not in A giving them a length 00 • A 

path P from node v to node w is a sequence of arcs of the form (v,v1), 

(v1 ,v2) , .•• ,(vk 1 w), its length is l(v,v1) + l(v1 ,v2) + ... + l(vk 1 w). A very 

important problem, having many applications, is to find shortest paths 

from a designated node say v 1 to all other nodes. 

In this section we make the assumption, there are no cycles having 

negative length. A cycle is a path from a node to itself. Suppose Pk is a 

Let x~. denote the number of arcs in Pk 
J.J 

path from v 1 to vk, k = 2,3, .•• ,n. 

which are equal to (v.,v.), then the 
]. J 

following equalities hold 

(3. 1) I x~J-
j 

-1, 0, 

i ,f 1 and i ,f k. 
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The sum x . . 
l.J 

(3.2) 

' x~. satisfies 
lk l.J 

n - 1, I 
j 

x .. 
l.J 

I x .. 
Jl. j 

-1, i 2,3, ... ,n. 

The total length of the paths Pk, k = 2,3, .•. ,n is li,j lij xij' where 

11.·J· is a short notation for l(v.,v.). No.nnegative integers x . . , 
l. J l.J 

i,j = 1,2, ... ,n are called a flow in our graph. If the x .. satisfy the con-
l.J 

straints (3.2) then the flow is called feasible. Any feasible flow is the 

sum of paths Pk from v 1 to vk, k = 2,3, .•• ,n and a number of cycles. The 

way to prove this is similar to the proof that an Euler graph has an Euler 

path, we leave it to the reader. 

Since cycles with negative length do not exist, the total length of 

shortest paths from v 1 to all v f v 1 equals 

over all feasible flows. This is almost a linear programming problem, if 

the condition that the x .. have to be integer valued is relaxed then it 
l.J 

would have been one. 

The matrix of coefficients in the constraints is as follows, 

•11 •12 •13 •1 (n-1) •in •21 "22 •23 

v, -• -• 
v, -I -I 

Y3 -I -1 .. ·• . . 
Yn•I 

-1 -I -1 

Yn -I 

It is precisely the incidence matrix of the complete directed graph 

on n nodes. Any incidence matrix of a directed graph is totally unimodular 

which implies that any square submatrix has a determinant equal to O or ±1. 

The equations (3.2) are dependent, any one can be written as a linear 

combination of the others. In order to make a set of independent equations 

we omit the first one. The extreme points or vertices of the feasible re­

gion are those feasible solutions for which the positive components corre­

spond to a maximal set of linear independent column vectors of the coeffi-
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cient matrix. The column of variable x .. corresponds to arc(v.,v.). If the 
l.) l. J 

arcs of a set of columns contain a circuit then they are dependent. Hence, 

a maximal set of independent columns has (n-1) elements and corresponds to 

a subgraph having no circuits, which is a tree. However, not any tree allows 

a feasible flow. Therefore, it must contain paths from v 1 to any of the 

other nodes. Such a tree is called, directed spanning tree rooted from 

node v 1• There is a one-one-correspondence between the set of these trees 

and the vertices of the feasible region. A theorem of Cayley says, the num~ 
n-2 

ber of undirected spanning trees in a complete graph with n nodes is n 

Assigning to the edges the direction from v 1 we find that the set of all 
n-2 

directed spanning trees rooted from node v 1 has n elements. Hence, there 

are that many vertices in our convex polyhedron of feasible points. 

The n-1 positive components of a vertex point, also called a basic so­

lution, are integer valued. This can be shown using Cramer's rule together 

with the totally unimodularity, or alternatively more directly by using 

that a basic solution corresponds to a directed spanning tree rooted from 

v 1 • Indeed, the feasible flow associated with this tree has components 

which are integer valued. 

A conclusion is that our problem of finding shortest paths can be 

solved by using a simplex algorithm (recall that these algorithms search 

for an optimal basic solution) for the linear programming problem 

(3. 3) min{ I 
i,j 

1 .. x .. 
l.J l.J I I 

j 
X,. 

l.) 
-1, i 2,3, .•. ,n, x ~ O}. 

Another conclusion is that there exists a spanning tree such that for 

all v i v 1 a shortest path from v 1 to vis the path of this tree. Hence, 

if a shorthest path from v 1 to v leads through w then the subpath from v1 
tow is a shortest path from v 1 tow. This conclusion is a deterministic 

analogue of Bellamn's optimality principle, we come back to this point in 

the next section. 

The dual of the problem (3.3) can be written as 

(3. 4) 

The slack variables of the dual problem are v .. = 1 .. + u. - u .. If x 
1:) l.J l. J 

is a basic solution of the primal problem then its corresponding dual vari-

ables have to satisfy (2.8), i.e. the ortogonality relation vTx = 0. 
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Hence, 

x .. > 0 •v .. 0 
1] 1] 

or 

u. u. + 1 ... 
J 1 1] 

Since xij > 0 if and only if the arc {vi,vj) is an arc of the spanning tree 

corresponding to the basic solution, we conclude that u. is exactly the 
J 

length of the path from v1 to vj in this tree, j = 2,3, ••• ,n. 

If basic solution x is optimal then in addition it holds that vij ~ 0, 

Vi~ j. Hence the distances in the corresponding tree satisfy, 

(3.5) u. = min {u.+l .. ) • 
J j~i 1 1] 

These equations from the deterministic analogue of Bellman's optimali­

ty equations of dynamic programming. We have derived these optimality equa­

tions here as a consequence of duality theory of linear programming. 

What kind of algorithms does the simplex method give for the linear 

programming problem (3.3)? Suppose we start with the initial basic solution 

corresponding to the spanning tree with arcs {v1,vj), j ~ 1. The correspond­

ing dual variables are u. = 11 ., j ~ 1 and v.j = 1 .. + u. - u., i ~ j. The 
J J 1 1] 1 J 

routine of section 2 says, choose a negative dual slack variable and make 

the corresponding primal variable positive. Hence if we choose v .. we add 
1] 

the arc {v.,v.) to the spanning tree. The new subgraph then has a circuit. 
1 J 

We have to make one of the xij's zero or in graphlanguage we have to de-

lete one arc. The result has to be a new basic solution or directed span­

ning tree rooted from v 1 • Hence we must delete the arc leading to vj in 

the old tree. Having found the new tree, the new dual variables must be 

computed. Note that only the u's of successors of vj in the new tree 

change their value. 

In pseudo-algorithmic formulation the simplex method for shortest 

paths reads, 

step O (start, distances) 

u 1 := 0, uj := llj' j = 2,3, ••• ,n 

step 1 (start, successors) 

Li := {i}, i = 2,3, ••• ,n 
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step 2 (test inequalities) 

if u. - u. ~ 1 .. , i = 1, 2, ... , n, j 
J J. J.J 

2,3, ... ,n, i I j, stop; the solution 

is optimal. Otherwise find i, j such that u. - u > li.J·· 
J i 

step 3 (change of successors) 

if i E ~ then Lk := Lk u Lj, if i /_ Lk and j E ~ then Lk := Lk \Lj, k=2,3, ..• ,n,k/j. 

step 4 ·(J;lew dual variables) 

Return to step 2. 

If the choice of i, j i.e. the dual variable vij in step 2 is speci­

fied then we obtain an algorithm. 

If step 3 is omitted then the method becomes what is known as the re­

laxation procedure. 

Let us specify the choice of v .. = 1 .. + u. - u. in step 2; 
J.J J.J J. .J 

most negative number of (v1 .,v2 ., ... ,v(. l) .,v(. l) ., ••• ,v .) 
J J J- J J+ J nJ 

cyclically for j = 2,3, ••• ,n,2,3, •.• 

breaking ties arbitrarily if necessary. 

If we pace the simplex algorithm and relaxation algorithm then the 

simplex u's will always be smaller than or equal to the relaxation u's. 

The computation involved in the relaxation algorithm is essentially, 

Gausz-Seidel iteration. 

Initially, set 

1 
u 

1 
u. 

J 
j I 1, 

the (m+l)st order approximations are computed from the mth or­

der as follows 

min{min(um_+1+1 .. ) , m · ( m 1 ) } J' J. J.J UJ. , IDJ.n U. + . . , 
i<j i>j J. J.J 

2,3, ••. ,n. 

We call this algorithm of Gausz-Seidel type since it is a straight­

forward nonlinear extension of the well-known iteration procedure to solve 

a set of linear equations. 

Inductively, it can be shown that u~ is smaller than or equal to the 
J 

shortest path from v1 to vj with at most m arcs. 
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In a spanning tree of shortest paths there are at least k nodes with 

paths from v 1 having at most k arcs. Consequently there are at most (n-1-k) 

· d . . f h . h k+ l k h . 1 mb f . t . in ices J or w ic uj < uj. Hence, t e maxima nu er o improvemen sis 

Lk (n-1-k) = ½(n-1) (n-2). Since the simplex u's are even smaller we conclude 

that an upper bound for the number of pivot operations (returns to step 2) 

for this simplex algorithm is also ½(n-1) (n-2). 

This upper bound is tight as shown by the graph with lln = 1, lj(j-l) = 
= 1, j 

to ""· 

3,4, ... ,n, ljk = 2 (j-k) for 2 ~ k < j - 1 and the other lij' s equal 

For this algorithm we passed cyclically through the indices 

j 2,3, ••. ,n. If we allow any order then the number of pivot steps can 

grow exponentially with n, an example will be published elsewhere. 

4. DYNAMIC PROGRAMMING 

In discrete dynamic programming we study a mathematical model speci­

fied by four objects (I,A(i} ,p .. (a) ,c(i,a)}. We are concerned with a dynam-
iJ 

ic system which at the decision epochs t = 1,2, •.. is observed to be in one 

of the states of state space I. After observing the state of the system, an 

action or decision must be chosen. For any state i EI, the set A(i) de­

notes the set of possible actions in state i. If the system is in state i 

at any decision epoch and action a E A(i} is chosen, then regardless of the 

history of the system, the following happens: 

(i} an immediate cost c(i,a) is incurred; 

(ii) at the next decision epoch the system will be in state j with probabil­

ity p .. (a) where l· Ip .. (a} = 1 for all i EI and a E A(i). 
iJ J E iJ 
A policy TT for controlling the system is any (possibly randomized) rule 

for choosing actions. The objective is to find a policy having minimal ex­

pected cost. In this paper we will only deal with the case that there are 

only finitely many decision epochs, say t = 1,2, •.• ,m; m is often called 

the horizon of the problem, hence we restrict ourselves to finite horizon 

problems. 

We denote by Xt resp. Yt the state resp. the chosen action at the de­

cision epoch t. The conditional expectation given the state at time 1 is i 

is denoted by JE. , where TT is the policy used. The problem can now be 
i,TT 

stated as, find a policy TT such·that 
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• m 
(4.1) L L lE. c (Xt, Y t) is minimal. 

t=l i€I i,,r 

In this paper we want to focuss on the relation between dynamic pro­

gramming and linear programming. Therefore we will skip in first instance 

the stochastics in the dynamic programming model and hence we assume that 

for any pair (i,a) there is exactly one j such that p, .(a) = 1. Hence, if 
l.J 

we take decision a in state i then at the next decision epoch the system 

will be in state j. Let us extend the sets of actions such that to any pair 

of states (i,j) there is an action a with pij(a) = 1, if a is not an ele­

ment of A(i) then define the associated cost c(i,a) as infinite. Let us 

define l.j as c(i,a) if p, .(a) = 1, if there are several actions which lead 
l. l.J 

from i to j then we define lij = min{c(i,a) I pij(a) = 1}. 

The assertion we are going to show is that the above problem of find­

ing a best policy ,r is a shortest-paths problem in an acyclic graph, if we 

restrict the class of policies to the pure policies. 

To this end let us define the directed graph G (V,A) with set of 

nodes V = {vd, vkj' k=l,2, ••. ,m+l, j=l,2, ••• ,n} and as set of arcs A= 

= {(vki' v(k+l)j), k=l,2, ••• ,m, i,j=l,2, ••• ,n, (v(m+l)i'vd), i=l,2, ••• ,n}. 

Moreover, the length of arc (vki'v(k+l)j) is lij and of arc (v(m+l)i'vd) is 

zero. The nodes vtj' j=l,2, ••• ,n correspond to all possible states at time 

t; we take I= {1,2, ••• ,n}. 

Suppose action a is such that p .. (a) = 1. If we choose action a in 
l.J 

state i at decision epoch t then the state at decision epoch (t+l) will be 

j. In our graph we then go from node vti to node v(t+l)j" The associated 

cost is equal to lij" 
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A pure (also called nonrandomized) policy corresponds with assigning 

to any node, with the exception of vd, an outward pointed arc. Jointly 

these arcs are a directed spanning tree with vd as top i.e. from any node 

there is a path to vd. 

The expected cost when starting in state i and using policy TI is then 

the length of the path from v 1i to vd. Hence finding a best pure policy is 

equivalent to finding shortest paths from vlj' j = 1,2, ... ,n to vd. 

Note that while in section 3 we had shortest paths from one designated 

node, we have here the problem of finding shortest paths towards one desig­

nated node vd. It is clear that by reversing directions the problems can be 

converted into each other, in fact we have here another kind of duality. We 

could have posed the dynamic programming problem in the dual way, however 

we preferred the more common backward formulation. What backward does mean 

in this context will be clear below. 

Similar as in section 3 it can be shown that finding shortest paths is 

equivalent to finding a minimal cost flow satisfying 

(4.2) 
, t+l 

1, ~ xij o, t 1,2, ... ,m-1, i 

where the variable xt .. denotes the flow in arc (v v ) iJ ti' (t+l)j . 

1,2, ..• ,n, 

The matrix of coefficients is again the incidence matrix of a directed 

graph. Hence it is totally unimodular and the basic solutions are automa­

tically integer valued. Consequently, in order to solve our dynamic program­

ming problem we can use the simplex method to solve the linear programming 

problem 

(4.3) 
m 

1 t+l 
min{ I I 1~. 

t I I 1, I I t o, t 
~ o, X,, x .. x .. X,, x .. 

t=l i,j iJ iJ j iJ j iJ j Ji Ji 

t 1,2, •.. ,m-1, i 1,2, ••. ,n}, 

where in our stationary dynamic programming problem it was assumed that 

11j = lij for all t. The dual linear programming problem of (4.3) can be 

written as 

max{}: u~ 
j J 

i,j 1,2, .•. ,n}. 

1,2, .•. ,m, 
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Let us analyze how the simplex method works for the primal problem 

(4.3). A basic solution or vertex of the feasible region corresponds to a 

maximal subgraph having no circuits, such that it contains paths from nodes 

vlj' j = 1,2, ••• ,n to vd. Note the difference with the problem in section 

3, where any basic solution there had exactly (n-1) positive variables, 

while here the number of positive variables of basic solutions can vary 

from n+(m-1) to nm. These bounds are found by constructing paths from 

the vlj' j = 1,2,.~.",n to vd having a minimal and a maximal number of arcs, 

don't count the arcs from v(m+l)j' j = 1,2, ••• ,n to vd. 

Let us look at a basic solution which corresponds to a spanning tree 

with paths from all nodes to vd. In the language of dynamic programming it 

is a pure policy. 
t The corresponding dual variable ui is the length of the path from vti 

to vd in this tree, t = 1,2, ••• ,m, i = 1,2., ••• ,n. The corresponding dual 
t t t t+l 

slack variables are vij = lij + ui - uj t The duality theory says, our ba-

sic solution is optimal if and only if vij ~ ~, Vi,j,t. Or equivalently, a 

spanning tree is optimal if and only if the distances to vd satisfy, 

(4. 4) 
t t+l min(l .. +u. ) , i 

j l.J J 

m+l 
where uj = O, j = 1,2, ••• ,n. 

1,2, ••• ,n, t 1,2, ••• ,m, 

This shows that we can find ·an optimal solution by solving the equa­

tions (4.4) backwards. First solve fort= m, then fort= m - 1, etc., 

until we find the u~, i = 1,2, ••• ,n. 

An optimal spanning tree is then found by choosing an arc in node vti 

which minimizes (l~j+u~+l) over j. 
l. J 

The total length of all paths from all vli' i 1,2, ••• ,n is by the 

duality theory equal to (u!+u!+ ••• +u!>. 

The backward recursion is exactly what the simplex method does if we 

choose the dual variables, which point to the primal variables to become 

positive, in the following order, 
t t t most negative number of (v1j,v2j, ••• ,vnj) for all j's in some order, 

successively fort m,m-1, ••• , 1. 

The simplex method will also compute with any improvement new u's for 

all predecessors. But, if the simplex algorithm is started with the tree 

of all arcs from any node to vd, this corresponds to the "big M" method 

with all initial basic variables artificial, then there are never predeces-



228 

sors and hence no extra calculation is involved. 

The backward recursion of (4.4) is the standard method to solve a fi­

nite horizon dynamic programming problem. We conclude that dynamic program­

mi~g can be seen as a specially structured linear programming problem. 

Moreover, the simplex method specified with the proper pivot rule is essen­

tially the standard back.ward recursion of dynamic programming. 

Of course, this does not mean that solving a dynamic programming model 

with a general linear programming code is doing backward recursion. The gen­

eral code will probably not use the proper pivot rule and also at any step 

it will probably compute all dual slack variables. 

In dynamic programming the proof that an optimal policy can be comput­

ed recursively is given by induction to the horizon m. This property of dy­

namic programming is called the optimality principle of Bellman. Here we 

derived the optimality principle from the duality theory of linear program­

ming. 

Dynamic programmers generally, allow also randomized policies. Random­

izing means that instead of choosing one outgoing arc in any node, we make 

a lottery over the outgoing arcs. In node vti there is for any j an arc 

(vti'v(t+l)j), say p1j is the probability of drawing this arc. Then 

lj p1j = 1 for all i,t. Now suppose that for any node a lottery is fixed 

or in dynamic programming language the randomized policy n is given. Let us 
t 

denote the expected number that arc (vti'v(t+l)j) is traversed by xij then, 

(i) generally, the x~. will not be integer valued 
t 1) 

(ii) the x .. satisfy the constraints of the linear programming problem 
1) 

(4.3); hence it is a feasible solution of (4.3) 

(iii) t t (' t ) -1 . f ' t O d f. t Pij = xij• lj xij 1 lj xij > ; e 1ne pii 1 if Ij x1j = o 
(iv) all feasible solutions of (4.3) can be generated in this way; the 

feasible solutions are the expected flows for all pure and random­

ized policies 

(v) the basic solutions correspond to pure policies. 

The backward recursion provides a constructive proof of the existence 

of an optimal policy which is pure. The existence of a pure optimal policy 

for any cost coefficients c(i,a) implies that all basic solutions of the 

linear programming problem (4.3) are integer valued. Indeed, if a vertex, 

say x, of the convex feasible region was not integer valued then by a sep­

aration theorem, there are 1 .. 's such that the unique optimal solution is 
1) 

x. However, any optimal pure policy gives an optimal feasible solution 
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which is also integer valued. 

Hence, the integrality of basic solutions of (4.3) together with the 

existence of pure optimal policies are consequences of the validity of the 

backward recursion. Consequently, also these properties can be seen as cor­

ollaries of the duality theory of linear programming. 

Let us study the stochastic dynamic programming problem. A pure policy 

now means that in any node an action is 

tion a then with probability p, .(a) the 
l.J 

given. Say in node vti 

arc (vti'v(t+l)j) will 

we have ac-

be trans-

versed. Hence, a policy corresponds to a collection of lotteries, in any 

node one, with as outcomes the outgoing arcs in that node. 

For a Markov policy the lotteries are independent experiments, for a 

history-remembering policy the action a and hence the lottery at time t 

may depend on the outcomes and actions at times 1,2, ..• ,t-1. 

The elementary outcome of the composition of the experiments is a 

spanning tree with top vd. 

Any policy induces probabilities for the elementary outcomes of the 

_ sample space of spanning trees. 

Any spanning tree has assigned to it a number say L which is equal to 

the total length of the paths from vlj' j 1,2, •.. ,n to vd. The objective 

in stochastic dynamic programming is to find a policy for which the expec­

tation of Lis minimal. 

In order to formulate the stochastic dynamic programming problem as a 

linear programming problem let us denote the probability of the outcome 

with arcs (v1 . ,v2 . ),(v2 . ,v3 . ), ... ,(v(t-l)' ,vt.) anda1 ,a2 , •• '.,a_t 
].1 ].2 ].2 l.3 ].t-1 ].t 

as actions by 

Then the probabilistic version of the balance equation or constraint 

lj x~;l - lj x~i = 0 of (4.3) becomes 

I 0. 

il ,al, ... ,it,at 

The objective function is 
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If we 

then this linear programming problem can be simplified to 

(4. 5) 
m 

min{ L 
t=l 

L 
i,a 

c(i,a)x~ ILx~ ia ia 
a 

t 1,2, .•• ,m-1, i 1,2, ••• ,n}. 

This simplification is in fact the proof that without loos of value 

the class of policies can be restricted to the Markov policies. Indeed, 

La x1a is the expected flow (flows are not integer valued here) through 

node vtj and this flow also corresponds to the Markov policy with probabil-

ity x~ IL x~ of choosing action a in node v .. 
ia a ia ti 

(4 .6) 

The dual problem of (4.5) can be written as 

max{L u~ 
j J 

a€ A(i), i 1,2, ••• ,n}. 

1,2, ... ,m, 

In the stochastic problem as in the deterministic problem the basic 

solutions correspond to pure policies, backward recursion is a specializa­

tion of the simplex method etc. etc. 

and 

The backward recursion for the stochastic problem is 

m+l 
u. 

]. 

t 
u. 

]. 

0, i 

min 
aEA(i) 

1,2, .•. ,n 

{c(i,a) + L p, .(a) 
j J.J 

t m,m-1, .•. , 1. 

1,2, •.. ,n, 

A pure optimal policy is found by choosing for any node a minimizing 

action. 
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Operator roots play an important role in the study of operator poly­

nomials (see [15]). For example, consider the quadratic operator differen­

tial equation 

(0.1) 

2 and let z1 and z2 be right operator roots of A I+ AA1 + A0 O, that is, 

0 (i 1,2). 

Then the function 

(0.2) u(t) 

where x1 and x2 are given vectors, is a solution of equation (0,1). If, in 

addition, the operator z1-z2 is invertible, then each solution u of equation 

(0.1) is of the form (0.2) and this representation is unique. Moreover in 

that case the polynomial A2I + AA1 + A0 is uniquely determined by the roots 

z1 and z2 , in fact 

Speaking in somewhat more general terms, we are dealing here with a 

monic left multiple L of a given family of monic operator polynomials 

L1 , ••• ,Lr' and we are interested to know to what extent the properties of 

Lare determined by those of its right divisors L1, ••• ,Lr. In other words, 

given the divisors L1, ••• ,Lr can one reconstruct the multiple Lor a "part" 



234 

of L? In this form the problem is related to the following question: Given 

a finite family L1, ••• ,Lr of monic operator polynomials, can one construct 

a monic common left multiple of L1 , ••• ,Lr and describe the properties of 

such multiples in terms of the original polynomials? 

In the past few :years I. GOHBERG, P. LANCASTER and L. RODMAN ([7 ,8,9]) 

have developed a theory of monic matrix and operator polynomials which is 

most useful in the context considered here (cf. [2,3]). The GOHBERG -

LANCASTER - RODMAN theory is based on a careful analysis of the spectral 

properties of the polynomials concerned, in particular, it takes into account 

the full Jordan structure of the polynomials. Recently, I GOHBERG and 

L. RODMAN have carried out a similar analysis for non-monic regular matrix 

polynomials (see [10,11,12]). In this paper we shall give a survey of some 

of the main elements of both theories and show their relevance for the prob­

lems concerning multiples mentioned above·. 

1. PRELIMINARIES 

Consider a matrix polynomial of the form 

(1.1) 

where the coefficients A0 ,A1 , •.• ,At are nxn complex matrices. If At f O, 

then t is called the degree of L. We call L monic if At= I, and Lis said 

to be comonic if A0 = I. If det L(A) is not identically equal to zero, then 

Lis called regular. The study of regular matrix polynomials can be reduced 

to that of comonic polynomials by using the transformation L(a)- 1L(A+a), 

where a has been chosen such that det L(a) f 0. 

The word operator is used for bounded linear operators acting between 

complex Banach spaces. If in (1.1) the coefficients are operators acting on 

the same Banach space B, then Lis called an operator polynomial. By defi­

nition the spectrum of an operator polynomial is the set of all A such that 

L(A) is not two-sided invertible. In the matrix case the spectrum of Lis 

the set of all A such that det L(A) = O. It follows that a matrix polynomial 

Lis regular if and only if L has discrete spectrum. 

If Bis a Banach space, then Bt denotes the direct sum oft copies of 

B endowed with the usual normable topology. Operators from Bt into Ff1 will 

often be denoted by mxt operator matrices whose entries are operators on B. 
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r 
The symbol col(Tj)j=l denotes the one column operator matrix whose entry 

in the j-th row is equal to Tj. Similarly, row(Tj);=l denotes the one row 

operator matrix with Tj in the j-th column. Further, diag(Tj);=l will de­

note the rxr operator matrix (T,o, .)~ . 1 • Sometimes this operator will 
J l.J l.,J= 

also be denoted by T1 e T2 e ... e Tr. Notations of this type will also be 

used to describe partitions of a matrix into sub-matrices. 

2. JORDAN CHAINS, EIGEN PAIRS AND SPECTRAL PAIRS 

9, ' 
Let L(A) = 1 . 0 AJA. be a regular nxn matrix polynomial. A point 

lJ= J 
AO E ~ is called an eigenvalue of L if detL(A0 ) = 0. In that case there 

exists a non-zero vector x0 E ~n such that 

(2 .1) 0 

We call x0 an eigenvector of L. A system (x0 ,x1 , ... ,¾_ 1) of vectors in ~n 

· is said to be a Jordan chain (or Keldysh chain) for L corresponding to AO 

and x0 if 

(2. 2) 0 (0:<;;j :,; k-1) • 

The number k is called the length of the chain, and if x0 t 0 (i.e. the 

vector x0 is an eigenvector), then x 1 , ... ,xk-l are called generalized eigen­

vectors of L. In case L(A) = A0 - AI, the vectors x0 , ... ,xk-l form a Jordan 

chain for L corresponding to AO if and only if 

( 1 :,; j :,; k-1) • 

Jordan chains for Lare intimately connected with solutions of the 

matrix differential equation 

(2 .3) 
d 

L( dt )u 0. 

Aot 
If one looks for a solution of this equation of the form u(t) = e x0 , 

where x0 is a fixed vector in ~n' then automatically one is led to consi­

der the eigenvalue equation (2.1). In general not every solution of (2.3) 
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is of the form u(t) 

too. Put 

u(t) 

;\Qt 
e x0 , because one has to allow for superpositions 

where x0 , ... ,xk-l are in (n. Then it is not difficult to check that such 

a function u is a solution of the equation (2.3) if and only if (x0 , ... ,xk_ 1) 

is a Jordan chain for Lat >- 0 • 

As each x. may be considered as a column vector, a system of vectors 
J 

x 0 , •.• ,~-l defines in a natural way an nxk matrix x 0 : the entry of x 0 in 

the i-th row and j-th column is equal to the i-th coordinate of the vector 

xj. Let J 0 be the kXk Jordan block with >- 0 on the main diagonal. Then it 

follows from the remark made in the previous paragraph that (x0 , ... ,xk_ 1) 

is a Jordan chain for Lat >- 0 if and only if the nxk matrix function 

U(t) 

is a solution of the homogeneous differential equation (2.3). But this 

implies (see [16], Section 2) that (x0 , ... ,xk_ 1) is a Jordan chain for L 

corresponding to >- 0 if and only if 

(2.4) 0. 

This formula plays a fundamental role throughout this paper. 

To organize the spectral data of the eigenvalue >- 0 , we shall follow 

the procedure described in [13]. Let x 0 be an eigenvector of L corresponding 

to >- 0 . By the rank of x 0 we shall mean the maximal length of a Jordan chain 

for L corresponding to >- 0 and x0 . Choose an eigenvector x6l) for L with 
(1). . (1) (1) 

eigenvalue >- 0 such that the rank r 1 of x0 is maximaL and let (x0 , ... ,xr1_1) 

be a corresponding Jordan chain. Let M1 be a direct complement in KerL(>-0 ) 

of the linear space spanned by x~l) Take in M1 an eigenvector x62 ) of 

maximal rank, r 2 say, and let (x~2 >, •.. ,x~2~ 1) be a corresponding Jordan 

chain. Next we let M2 be a direct compleme~t in M1 of the linear space 
(2) 

spanned by x 0 , and we repeat the procedure described above for M2 instead 

f M I th · bt · · 1 1 · 1 · d d t t Cl l < 0 > o 1 . n is way we o ain a maxima inear y in epen en se x0 , ... ,x0•-

of eigenvectors of L with eigenvalue >- 0 and corresponding Jordan chains 
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( 1 ) (1 ) (p) (p) 
(xD ' · · · 'xr -1) ' · · · ' (xo ' · · · 'xr :..1) · 

1 p 

The numbers r 1 , ••• ,rp (which do not depend on the particular choices made 

above) are the so-called partial multiplicities of A0 . Their sum r 1+ .•• +rp 

is equal to the order of A0 as a zero of det L(A). 
. ( j) (j) 

As we have explained above, with each Jordan chain (xo , ..• ,x __ 1) 
(.) (.) rJ 

one can associate in a canonical way a pair of matrices (x0J ,J0J ), namely 

J(j) . th 
Q J.S e 

and X6j) is 
(j) 

xi-l. Put 

single Jordan block of order rj with A0 on the main diagonal 

the nxr. matrix whose i-th column is equal to the column vector 
J 

(j) p 
row (XA ) j=l' 

0 

The pair (XA ,JA) is called an eigenpair of L corresponding to A0 • (The 
0 0 ~ ~ 

name eigenpair will also be used for any pair of matrices (XA ,Jf ), which 

is obtained from (XA ,J, ) by some permutation of the blocks J0(j 0in JA 
Q AQ Q 

and the same permutation of the corresponding blocks in XA .) Note that 
0 

JA is a Jordan matrix with a single eigenvalue A0 , the order of JA is 
0 0 

equal to the order of AO as a zero of detL(A) and 

0. 

i-1 JI, 
Further one can show that the matrix col(X, ,J, ). has full rank. These 

AQ AQ J.=1 

properties completely characterize the eigenpairs of L corresponding to A0 

([12], Theorem 1.1). 

Let A0 ,A 1, .•• ,Am be the different eigenvalues of L, and let (Xj,Jj) 

be an eigenpair of L corresponding to A. (0 ~ j ~ m). The pair of matrices 
J 

(X,J) , where 

X 
m 

row(Xj)j=l' J 

is called a spectral pair of L. It epitomizes all the information about the 

(finite part of the) spectrum of L. 

We shall see that the notion of a spectral pair plays an important 

role in the study of matrix polynomials. As a first application, let us 

mention that the general solution of the homogeneous matrix differential 
d 

equation L (dt ) u = 0 is of the form 
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u(t) 
tJ 

Xe x, 

where (X,J) is a spectral pair of Land x is some vector in ~v with v equal 

to the degree of detL(A) ([16], Theorem 1.1). For other applications to 

(homogeneous as well as non-homogeneous) matrix differential and finite 

difference equations we refer to [16,17,2,4]. For some explicit examples 

of spectral pairs see [10]. 

3. INVERSE PROBLEMS AND STANDARD PAIRS 

A regular matrix polynomial Lis not uniquely determined by a spectral 

pair. 

THEOREM 3.1. ([10], Theorem 5.1). If the regular matrix polynomials L1 
and L2 have a common spectral pair, then L2 (A) E(A)L1 (A), where E(A) 

is an everywhere invertible matrix polynomial. 

Multiplying Lon the left by an everywhere invertible matrix polyno­

mial does not change the (finite part of the) spectrum of L, but it may 

change the spectrum at infinity considerably. As monic polynomials have no 

spectrum at infinity, one might expect that in the monic case a spectral 

pair completely determines the polynomial. This indeed is the case. 

THEOREM 3.2. ([7], Theorem 1). Let (X,J) be a spectral pair of the monic 
i-1 .Q, 

matrix polynomial L, and let .Q, be the degree of L. Then col(XJ )i=l is 

invertible and 

(3 .1) L(A) 
.Q, .Q, .Q,-1 

A I - XJ (V 1+AV 2 + .•. + A V .Q,) , 

In the special case where L(A) = T-A1, the previous theorem is 

nothing else than the reduction of T to Jordan normal form by a similarly 

transformation. 

For the analysis of monic polynomials it has been important to note 

that representations of L, similar to the one of formula (3.1), may also 

be given in terms of pairs more general than spectral pairs. A pair of 

matrices (Q,T) is called a standard pair of degree kif Q is an mxnk matrix, 
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i-1 k 
T is an nkxnk matrix and the matrix col(QT }i=l is invertible. Further 

(Q,T} is said to be a standard pair of the monic nxn matrix polynomial 
- R, ,R.-1 j . L(A} - A. I+ lj=O A Aj if, in addition, its degree is equal to R, and 

(3.2} 

From the definition of a spectral pair (cf. formula (2.4)) and the first 

part of Theorem 3.2 it is clear that a spectral pair for the monic polyno- · 

mial Lis a standard pair of L, but there are many other standard pairs too. 

For example, the pair (Y,CL}, where 

0 I 0 

(3.3} y 

-is a standard pair of L(A} =AR.I+ ,~-01 AjA., which in general is not a 
lJ= J 

spectral pair. Nevertheless Theorem 3.2 remains true if in this theorem 

the spectral pair (X,J} is replaced by any standard pair of L. The reason 

for this is that any two standard pairs (Q 1 ,T1) and (Q2 ,T2) of Lare similar 

in the sense that Q1 = Q2s and T2s = ST1 for some invertible matrix S (see 

[7]}. 

To get a representation theorem as Theorem 3.2 for arbitrary regular 

matrix polynomials, one has to take into account the spectrum at infinity 

too. For comonic polynomials this may be done as follows. 

THEOREM 3.3. ([11]}. Let L be a COllk)nic nxn matrix polynomial of degree R.. 

Put 

Q = [X X00], 
-1 

T = J 81 Joo, 

R, -1 
where (X,J} is a spectral pair of Land (X00 ,J00 } is an eigenpair of A L(A } 

corresponding to the eigenvalue AO= 0. Then (Q,T) is a standard pair of 

degree R, and 

i-1 R, -1 
[col(QT }i=l] • 
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The notion of a standard pair carries over to the infinite dimensional 

case easily and so does the representation theorem for monic polynomials. A 

pair of operators Q: Bk ➔ Band T: Bk ➔ Bk is said to form a standard pair 
i-1 k (Q,T) of degree k whenever the operator col(QT )i=l is two-sided invert-

ible, and, as in the matrix case, the standard pair (Q,T) is called a stan­

dard pair of the monic operator polynomial L(A) = AtI + ':-0
1 AjA. if its 

LJ= J· 
degree is equal to £ and formula ( 3. 2) holds true. Also in the infinite dimen-

sional case the pair of operators given by formula (3.3) provides an example 
£ ,£·-1 j 

of a standard pair of L(A) =AI+ lj=0 A Aj. 

THEOREM 3.4. ([9], Theorem 1). Let (Q,T) be a standard pair of the monic 

operator polynomial L, and let£ be the degree of L. Then 

(3.4) L(A) 

£ 
where row(U.). 1 J J-

The representation (3.4) is the so-called right normal form of L. 

Also a left normal form may be given (see [7,9]). Further, standard pairs 

may be employed to give a "neutral" (neither left nor right) representation 

for the inverse L(A)-l of a monic operator polynomial L (see [8,9]). In fact, 

using the notations of the previous theorem, we have 

L(A)-l 

where R = Ut. This so-called resolvent form for L allows us to see L(A)-l 

as a characteristic operator function associated with a new kind of opera­

tor node (see [1]). 

4. DIVISIBILITY AND JORDAN CHAINS 

The notion of standard pairs is most suitable to describe quotient 

and remainder after division on the right. 

THEOREM 4.1. ([9], Theorem 12). Let L(A) = l~-O 
. k k J-

11Ual, and let L1 (A)= A I - Q1T1 (v 1+AV2 + .•. + 

AjA, be an operator polyno­
J 

Ak-lv) be a monic opera­
k 

tor polynomial in right normal form. suppose k ~£.Then 
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L(A) S (A)L1 (>.) + R(A), 

where 

.Q.-k 
Aj 

,Q, 
Ti-j-lV) (i) S (>.) }: }: A. Ql 

j=O i=j+l 
l. 1 k ' 

k 
Aj-1 

,Q, 
i 

(ii) R(A) }: < }: A. Ql Tl Vj). 
j=l i=O 

l. 

Let Land L1 be operator (or matrix) polynomials. We call L1 a right 

divisor of L whenever there exists an operator (or matrix) polynomial S(A) 

such that 

Now let Land L1 be as in the previous theorem. Then L1 is a right divi­

sor of L if and only if 

(4.1) 0 (l='>j='>k). 

As row(V )k = [col(Q1 Ti-l)k J-1 is invertible, we see that (4.1) is 
j j=l 1 i=l 

equivalent to the requirement that 

(4. 2) o, 

and hence L1 is a right divisor of L if and only if (4.2) holds for an 

arbitrary standard pair (Q1 ,T1) of L1• 

To understand the analytical aspects of this result, let us suppose 

that Land L1 are monic matrix polynomials. In that case we may assume 

that (Q1 ,T1 ) is a spectral pair of L1 . But then it is easily seen that (4.2) 

is equivalent to the statement that each Jordan chain of L1 is a Jordan 

chain of L. It follows that L1 is a right divisor of L if and only if each 

Jordan chain of L1 is a Jordan chain of L. In this form the result carries 

over to the non-monic case. 

THEOREM 4.2. ([11], Theorem 4.2). Let Land L1 be regular nxn matrix poly­

nomials. Then L1 is a right divisor of L if and only if each Jordan chain 

of L1 is a Jordan chain of L corresponding to the same eigenvalue as for 

Ll. 
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To illustrate the previous result, let us consider the following 

theorem, which for the monic case has been proved by H. LANGER in [19]. 

THEOREM 4.3. ([18], Satz 2). Let L(A) = l~=O AjAj be a regular nxn matrix 

polynomial. Then there exists an nxn matrix Z such that 

(4. 3) 

. (j) (j) 
if and only if L has Jordan chains (x0 , ... ,xk _ 1), 1 s j s p, such that 

W k d th t (j) (. 0 k j 1 . lj=l j =nan e vec ors xi i = , ..• , j-; J 1, ... ,p) are linearly 

independent. 

To prove Theorem 4.3, first note that formula (4.3) is equivalent to 

nxk 
j 

the statement that AI - Z is a right divisor of L. Let Xj be the 
(j) 

matrix whose i-th column is equal to the column vector xi-l' and let J. be 
J 

the single Jordan block of order k. with A, on the main diagonal. Here A. 
J J (') (') J 

is the eigenvalue corresponding to the Jordan chain (x0J , ••• ,~J_ 1). Put 
j 

diag(J. )~ 1 . 
J J= 

From our hypothesis on the given Jordan chains it follows that X is invert­

ible. Let Z = XJX- 1• Then (X,J) is a spectral pair for Z, and it follows 

that each Jordan chain of AI - Z is a Jordan chain for L corresponding to 

the same eigenvalue. But then we may apply Theorem 4.2 to show that AI - Z 

is a right divisor of L. The converse statement is trivial. 

Let (Q,T) be a standard pair of the monic operator polynomial L. 

There are many interesting relations between monic right divisors of Land 

certain T-invariant subspaces. First of all there is a one-one correspon­

dence between these so-called supporting subspaces and the monic right 

divisors of L. Further an explicit description of the quotient may be 

given in terms of the corresponding supporting subspaces and the original 

standard pair (Q,T). For details concerning these matters we refer to [7] 

and [9], see also [20]. For the non-monic case similar but less complete 

results have been proved (see [10], [11]). For example, if (X,J) is a 

spectral pair of the regular matrix polynomial L, then all right divisors 

of L may be described in terms of the invariant subspaces of J (cf. [11], 

Theorem 4.1). Here the notion of extension of admissible pairs plays an 

important role (cf. [12]). 
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5. COMMON MULTIPLES AND THE VANDERMONDE OPERATOR 

In this section we return to the questions about multiples referred 

to in the introductory paragraphs. Let L1, ••• ,Lr be monic operator poly­

nomials in right normal form, i.e., 

L (A} 
p 

k /cp /cp-1 
A p I - O T (V 1+AV 2 + • • • + A V k } , 

-PP p p pp 

kp 
where row(V i}. 1 [col(Q T p i= pp 

'-1 kp -1 
}i=l] • From Theorem 4.1 it is clear 

L(A} = ~: 0 AjA. is a common left multiple that the operator polynomial 
LJ= J 

0 (1 s j s k, 1 s p s r}. 
. p 

Now suppose that Lis monic. Then the previous formula may be written 

as an operator matrix identity, as follows: 

(5.1} R. r - row(Q TV} 1 , -pppp= 

- kp where VP - row(Vpi}i=l" The operator matrix, which appears as the second 

factor in the left hand side of (5.1), is called the Vandermonde operator 

of order R. of the polynomials L1 , ••• ,Lr (see [2,3], cf. [14]). It will be 

denoted by VR.(L1, ••• ,Lr) or simply by VR.. 

The definition of the Vandermonde operator does not depend on the 

special choice of the standard pairs. In fact the entries Q T0 v a can be pp p,., 
expressed uniquely in terms of the coefficients of L1, ••• ,Lr ([2], Theorem 

2.2). For example in the special case where L1, ••• ,Lr have degree one, i.e., 

L (A) 
p 

(5 .2) 

AI-Z, we have 
p 

In the scalar case this is just the usual Vandermonde matrix. (The right 

hand side of (5.2) is the Vandermonde operator as used by A.S. MARKUS and 

I.V. MEREUTSA in their study of operator roots [21].) 

If 

(5.3) 
R. r -row(Q TV) 1, pp pp= 
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th t ' i'f L(') ,tI ,t ,jA ' 1 ft lt' 1 f L L a is, A = A + lj=O A j is a common e mu ip e o 1 , ••• , r' 

then we must have 

(5 .4) 
t r 

Ker v 0 c Ker[row(Q TV) 1J. 
IC pppp= 

Now row(Q Ttv )r 1 is the last operator row in V0 1 , and hence it follows 
pp pp= x,+ 

that condition (5.4) is equivalent to the statement Ker v 2 = Ker Vt+l· Put 

inf{m ~ 1 I Ker V 
m 

Ker V 1}. 
m+ 

This number is called the index of stabilization of L1, ••. ,Lr. By definition 

it is infinite whenever Ker V f Ker V 1 for all m. 
m m+ 

From the previous discussion it is clear that finiteness ,of the index 

of stabilization is a necessary condition for the existence of a common left 

multiple. In the finite dimensional case ind(L1, ••• ,Lr) is always finite, 

but in the infinite dimensional case it may be infinite, and hence in the 

infinite dimensional case common monic left multiples do not always exist 

(see [3], Section 2 for explicit examples). In general, finiteness of 

ind(L1, ••• ,Lr) is not sufficient for the existence of a monic left multiple 

([3], Section 6), but in the finite dimensional case it is. This follows 

from the next theorem. 

THEOREM 5.1. ([3], Section 5). Suppose that ind (Ll, ..• ,Lr) ~ t < co and 

v 2 (L1, ••• ,Lr) has a generalized inverse. Then L1, ••• ,Lr have a common monic 

left multiple of degree i. 

Recall that an operator Sis said to have a generalized inverse if 

there exists an operators+ such that s ss+s and s+ = s+ss+. In the 

finite dimensional case each operator has a generalized inverse. So from 

Theorem 5.1 and the previous discussion we see that in the finite dimen­

sional case L1 , ••• ,Lr always have a common monic left multiple and the 

least degree of such a multiple is equal to ind(L1 , •.• ,Lr) ([2], Theorem 

13.1). 

In general some sort of generalized invertibility seems indispensable. 

For example in the Hilbert space case we have the following theorem. 

THEOREM 5.2. Let the coefficients of L1 , ••• ,L2 be operators on a Hilbert 

space, and suppose that the spectra of L1 , ... ,Lr are mutually disjoint. 

Then the left invertibility of v 2 (L1 , •.. ,Lr) is necessary and sufficient 
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for the existence of a common monic left multiple of L1 , •.• ,Lr of degree i. 

If the Vandermonde operator Vi is surjective (or somewhat weaker has 

dense range), then there is at most one common left multiple of L1, .•• ,Lr 

of,degree i. This is clear from formula (5.3). Hence in that case the multi­

ple of degree i, if it exists, is uniquely determined by L1, ••• ,Lr. 

As the Vandermonde operator Vi may be written as an operator matrix 

whose entries can be expressed in terms of sums and products of the coeffi­

cients of L1, ... ,Lr ([2], Theorem 2.2), it follows that Vi will depend 

analytically on E whenever the coefficients of L1, ••• ,Lr are analytic in 

E. This fact is heavily used in [6], where the problem of existence of 

"analytic" multiples is studied for polynomials whose coefficients are 

analytic in a second variable E. In that case the index of stabilization 

ind(L1, ••• ,Lr) has to be replaced by an analytic index of stabilization, 

which is defined in terms of Jordan chains of the Vandermonde operator Vi 

as function of E. 

So far in this section we have restricted ourselves to the monic 

case, but with minor modifications most results hold for non-monic regular 

matrix polynomials too. For example, using the normal form of Theorem 3.3 

a Vandermonde matrix may be introduced for comonic matrix polynomials, and 

its role here is similar to the one described for the monic case (see [5] 

for details). 
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VANISHING SUMS OF ROOTS OF UNITY 
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This paper is a survey of what is known about the magnitude of coeffi­

cients appearing in linear relations between roots of unity. The special 

case of the cyclotomic polynomial is considered in section 1; section 2 is 

devoted to more general relations. Various open problems will be indicated. 

By n and m we shall always mean positive integers, and by pa prime 

number; n is called squarefree if n is a product of distinct primes. By 

mln we mean that m divides n. An n-th root of unity, or simply an n-th root, 

is a complex number a for which an= 1. It is called primitive if there 

exists no m < n with am 1. The ring of integers is denoted by 2Z, and qi 

denotes the field of rational numbers. 

Research for this paper was supported by the Netherlands Organization 

for the Advancement of Pure Research (Z.W.O). Acknowledgements are due to 

the I.H.E.S. for its hospitality and to C.L. Stewart for providing ref. [10]. 

1. Coefficients of the cyclotomic polynomial 

( 1.1) 

The n-th cyclotomic polynomial~ is defined by 
n 

~ 
n 

II (X - 1_;) , 

1_; 

where z.; ranges over the primitive n-th roots of unity. We have 

(1. 2) II . ~ 
din d 

since both sides are equal to II n-l (X - z.;). From (1.2) one deduces, by z.;, 1_; -

induction on n, that ~n has coefficients in lZ. Its degree is $(n), where 

$ is Euler's function: 
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cp (n) J { j: 0 S j < n, (j ,n) = 1} J. 

The cyclotomic polynomials are known to be irreducible in the polynomial 

ring qi[x]. 

( 1. 3) 

By Moebius inversion it follows from (1.2) that 

cj) 
n 

II (Xd-l)µ(n/d)_ 

din 

Hereµ denotes the Moebius-function: 

µ(m) 

µ(m) 0 

if m is the product of r distinct 

primes, r ~ 0, 

otherwise. 

The polynomials cj)n can be determined inductively, using the formulae 

cpl X-1 

( 1. 4) cj) cj) (Xp) if p divides n, 
np n 

(1.5) cj) cj) (Xp)/cjl if p does not divide n. 
np n n 

To prove these relations, use (1.3), or check that both sides have the same 

zeros. In a similar way one proves that 

( 1.6) (-1) cj>(n) .cj) (-X) 
n 

if n is odd. 

For small n, no coefficient of cj)n exceeds 1 in absolute value. In fact, 

this is true for n = p: 

cj) 
p 

(Xp -1)/(X -1) 

and also for n = pq, where p and q are different primes: 

cj) 
pq 

(1-X) (1-Xpq) 

(1-Xp) (1-Xq) 

(1-X) • I 
j=O 

(by ( 1. 3)) 



251 

where a. ranges over the numbers of the form jp + kq, with j ;,, 0, 0 $ k < p; 

it is easily proved that no integer has more than one such representation. 

Multiplying E xa by (1-X) we see that the non-zero coefficients of <P are pq 
alternately +1 and -1. For a different formula for <P , see (2.16). 

pq 
From what we just proved and the formulae (1.4) and (1.6) it follows 

immediately that no coefficient of~ exceeds 1 in absolute value if n has 
n 

at most two distinqt odd prime factors. The smallest number n not satisfying 

this condition is 3a5.7 = 105, and in fact in <P 105 a coefficient -2 appears: 

<PlOS 1 + X + x2 5 6 
2X7 -

8 - xg - X - X X 

+ x12 + xl3 + xl4 + x15 + x16 + X 
17 

- X 
20 

- X 
22 

- X 
24 

- X 
26 . 28 

- X 

+ x31 + x32 + X 33 
+ x34 35 + X + x36 

39 40 
- X - X 2x41 _ x42 _ x43 + x46 + x47 + x48 

It was first proved by Schur (see [13]) that the coefficients of the 

cyelotomic polynomials are arbitrarily large in absolute value. In order 

to present his argument it is convenient to rearrange formula (1.3) as 

follows: 

(1. 7) ~ 
n 

(n > 1), where in ITI the product is over the divisors d of n with µ(n/d) =1, 

and in ITII over those for which µ(n/d) = -1. 

Now let t be an odd integer ;;: 3 , and let p 1 , p 2 , ... , pt be prime numbers 

with 

such primes can be found for every t. We put n = p 1p2 ••. pt and we calcu­

late <P n modulo terms of degree ;,, pt+ 1 using formula ( 1. 7) . The only divi­

sors of n which are< Pt+ 1 are 1,p1 ,p2 , ... ,pt' and since t is odd we 

obtain 
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IP 
n 

P1 p2 pt 2 pt 
- (1-X ) (1-X ) ... (1-X ) (l+X+X + •.. +X ) 

2 pt 
(l+X+X + •.. X ) 

modulo terms of degree ;?:pt+ 1. Multiplying out we find that the coefficient 

at xpt equals 1 - t, thus finishing the proof. 

From (1.7) and the fact that IPn has degree less than n, for n > 1, it 

is clear that any coefficient of IPn is in absolute value less than or equal 

to the corresponding coefficient of 

TI (1 +Xd +X2d + ... +Xn-d). 
din 

Since the coefficients of this polynomial are positive, they are bound­

ed from above by the value of the polynomial in 1, which equals 

TI !!. = n T (n)/2 
din d 

Here T(n) denotes the number of divisors of n. Using the fact that 

T(n) < 2 (1+e:)logn/loglogn 

for all e: > 0 and all n > n0 (e:) (see [9, theorem 317]) we find, after an 

easy manipulation: 

THEOREM (1.8) For every real number e: > 0 there exists an integer n0 (e:) 

such that for all n > n0 (e:) the absolute value of any coefficient of IPn is 

less than 

( (1+e:) log 2 /log log n) 
exp n . 

Notice that this estimate, which is due to BATEMAN [2], is much better 

than the trivial upper bound 

2~(n) 

for the sum of the absolute values of the coefficients of IP , which one 
n 

obtains from (1.1) by using lsl = 1. 

Bateman's estimate is in a sense best possible, since VAUGHAN [19] has 
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shown that there are infinitely many n for which ~n has a coefficient ex­

ceeding 

( log 2 /log log n) exp n 

in absolute value. 

Using Bateman's argument and [9, theorem 432] one finds that for every 

E > 0 the sum of the absolute values of the coefficients of~ is less than 
n 

( (1 ) l+log 2+E) exp og n 

for almost all n. Non-trivial lower bounds valid for almost all n are not 

known. 

Bounds of a different nature have been obtained for numbers n having 

only a few odd prime factors. Using (1.4) and (1.6) we again restrict to 

the case n is odd and squarefree. 

For n = p and n = pq we have already seen that ~n has no coefficient 

exceeding 1 in absolute value. For n = pqr, with p, q and r primes, 2 < p 

< q < r, it was proved by BANG (see [4]) that all coefficients of~ are 
n 

at most 

p - 1 

in absolute value. This bound was improved to 

p - k if p 4k + 1, 

by BEITER [3], and she conjectured that it may further be lowered to 

£!:.!.. 
2 • 

This result, if true, would be best possible, since MOLLER [17] proved that 

for every odd prime p there exist infinitely many prime pairs q, r, with 
1 p < q < r, for which~ has a coefficient -2 (p+1). 

pqr 
For n = pqrs, with p,q,r,s primes, 2 < p < q < r < s, the coefficients 

of ~n are bounded by 

p (p - 1 )(pq - 1) 
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in absolute value, This was proved by BLOOM [4]. He conjectured that, gener­

ally, for 

with p 1,P2 , ••• ,pt primes, 2 < p 1 < p 2 < ••• <pt' t ~ 2, the coefficients 

of ~n are bounded in absolute value by a number depending only on p 1 ,p2 , ••• , 

pt-2" This conjecture was proved by FELSCH and SCHMIDT [8] and JUSTIN [11]: 

THEOREM (1.9) There is a function f on the positive integers, such that for 

all m, and all primes p,q with 

p,;. q, (pq,m) 1, 

the coefficients of~ are less than f(m) in absolute value. 
mpq 

We present Justin's elegant proof of this theorem. 

Define the polynomials f by 
n 

Let m,p,q be as in the theorem. Applying (1.5) twice we get 

(1.10) 

~ 
mpq 

= A•B 

where A is the product of the first four factors in (1.10), and Bis the 

power series 

l xjmp + kmq 

j,k~0 

i i 
If~ = E a.x, f = E b,X, then the sum of the absolute values of the co­

m i i m i i 

efficiencs of A is clearly bounded by 

( 1.11) 2 lb. I) • 
i 
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Further, if B = L 
i 

than mpq has more 

i c.X then c. E {0,1} for all i < mpq, 
l. l. 

than one representation jmp + kmq, j "' 

since no number less 

0, k;:;: 0. Multiply-

ing A and B, and observing 

elude that all coefficients 

Since this number depends 

that the product <I> has degree < mpq, we con-
mpq 

of <I> are bounded in absolute value by (1.11). 
mpq 

only on m the theorem follows. 

An explicit function f for which the conclusion of the theorem holds 

has been given by MOLLER [17]. 

In the next section we shall see that there exists a positive constant 

c1 such that for all squarefree n > 1 the number of non-zero coefficients 

of <I> exceeds 
n 

2 c 1 (log n) /log log n, 

see (2.8). Schinzel has posed the problem to improve this estimate. It is 

known that for every e: > 0 there exist infinitely many squarefree n for 

which <I> has less than 
n 

8 
TI +e: 

n 

non-zero coefficients (see (2.18)). This could be improved to (8n) 112 if it 

were known that for infinitely many primes p, one of 2p + 1 and 2p - 1 is 

prime. It is an interesting problem to construct squarefree integers n for 

which <I> has substantially fewer non-zero coefficients. A question which 
n 

may be related is the following: do there exist numbers n, divisible by 

arbitrarily many distinct primes, for whicn <I>n has only coefficients -1, 

0, 1? 

Finally we mention some results on the behaviour of the i-th coeffi­

cient - i.e. , the coefficient at Xi - of the cyclotomic polynomials, for fix­

ed i. For squarefree n, it is clear from (1.7) that the i-th coefficient 

of <I>n only depends on those primes p ~ i which divide n, and on the parity 

of the total number of primes dividing n. In particular, the i-th coeffi­

cient can assume only finitely many values, and it is easily seen that this 

assertion remains valid if we drop the restriction that n should be square­

free. 

LEHMER [12] has given a table of the i-th coefficient of <I> for i ~10 
n 

and n odd and squarefree, distinguishing 16 cases according to the value of 

!J(n) and the greatest common divisor of n and 105. His table implies that 
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for i ~ 10 the i-th coefficient is one of 1, 0, -1, except if n = 105p1p 2 •.. 

.•. p 2h {pi distinct primes > 7), 

-2. Compare also MOLLER [16]. 

ERDOS and VAUGHAN [7] proved 

is bounded in absolute value by 

in which case the 7-th coefficient equals 

that for all i the i-th coefficient of~ 
n 

here c2 is some constant, and c0 = 2•Il(l - --2--)\ ~ 1.373580. On the other 
p p{p+l) 

hand, they proved that for some constant c3 > 0 and all sufficiently large 

i there exists n for which the i-th coefficient of~ exceeds 
n 

in absolute value. VAUGHAN [19] proved that for infinitely many i this can 

be improved to 

Here c4 denotes a positive constant. 

2. Primitive relations between roots of unity. 

Let {~1 ,~2 , •.. ,~k} be a set of k distinct roots of unity, k > 0, which 

is linearly dependent over~, while no proper subset is; proper means: not 

empty, and not the whole set. Then there is a relation 

{Ai rational, not all zero), and this relation is uniquely determined up to 

a rational multiple. Multiplying by a common denominator we can make the 

Ai into integers, and dividing by their greatest common divisor we arrive 

at a relation 

in which the coefficients ai are non-zero integers with greatest common 
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divisor 1. A linear relation which arises in this way is called a primitive 

relation. It is clear that if E~=l ait;i = 0 is another primitive relation 

between the same t;i, then we have either ai ai for all i, or ai -ai for 

all i. 

If we have Ek a r - 0 and p is a root of unity, then we have also i=l i"i - ' 
E:=l ai (pt;i) = 0; two such relations are said to be similar. Clearly, any 

relation is similar to one with 1; = 1. 

The exponent of a relation E~=l ait;i 0 is the smallest integer n > 0 

for which 1;~ = 1 for all i, and the reduced exponent is the smallest n for 
J. 

which (1;.t;~ 1)n 1 for all i,j. Notice that two similar relations have the 
J. J 

same reduced exponent, and that in the case where 1; 1 = 1 the reduced expon-

ent coincides with the exponent. 

If~ = E c.Xi is the n-th cyclotomic polynomial, and 1; is a primitive 
n J. 

n-th root, then we have 

(2. 1) 
i 

c.1; 
J. 

o. 

This is a primitive relation, since ~n has leading coefficient 1 and is 

irreducible over !Q. The reduced exponent of (2.1) is the product of the dis­

tinct primes dividing n; this follows from (1.4) and the fact that c0 f Of 

f c 1 if n is squarefree (use (1.7)). 

In this section we are interested in the number of terms k and the mag­

nitudes of the coefficients ai in a primitive relation of reduced exponent 

n. The results are much less complete than those known in the special case 

of the cyclotomic polynomial. 

In (2.2) and (2.3) we describe the general technique for dealing with 

vanishing sums of roots of unity, cf. [15, 6]. 

THEOREM (2.2) Let m be the product of the different primes dividing n, and 

let E,1; denote primitive m-th and n-th roots, respectively. Then {Ei~j: 

0 ~ i < m, 0 ~ j < n/m} is the set of n-th roots, and 

m-1 (n/m)-1 i j I l 0 (aij E lZ) l a .. E 1; 
i=0 j=0 J.J 

if and only if 

m-1 
i I 0 l a .. E 

i=0 J.J 
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for every j, 0 s j < n/m. 

This theorem readily follows from the irreducibility of Xn/m - ~n/m 

over the field ~(E); to prove this irreducibility, just notice that 

[~(~):~(E)] = $(n)/$(m) = n/m. For details we refer to [15, 6]. 

Theorem (2.2) reduces the analysis of vanishing sums of n-th roots to 

the case that n is squarefree. It follows in particular, that the reduced 

exponent of a primitive relation is necessarily squarefree. 

Relations of squarefree exponent n can be treated by induction on the 

number of primes dividing n, using the following theorem. 

THEOREM (2.3) Let n = pm, where p is prime and p does not divide m, and let 

E,~ denote primitive m-th and p-th roots, respectively. Then {gi~j: 0 s i < 

< m, 0 s j < p} is the set of n-th roots, and 

m-1 p-1 i j (2.4) I I a .. E ~ 

i=0 j=0 l.J 

if and only if 

m-1 i m-1 
(2.5) I a .. E - I 

i=0 l.J i=0 

for all j, 1 s j < p. 

The proof of this theorem 

+ x2 +x + 1 over {2(E), which is 

p - 1. Compare with [15, 6]. 

0 (aij E ZG) 

i 
aiOE 0 

p-1 depends on the irreducibility of X + ••• + 

a consequence of [~(E,~):~(E)] = $(n)/$(m) = 

If, in (2.4), there exists J0
' with a 

ij' 0 for all i, then (2.5) 

clearly yields 

for all j, 0 s j < p, which means that the vanishing sum (2.4) of n-th 

roots decomposes in vanishing sums of m-th roots. On the other hand, if for 

every j there exists i with aij ~ 0, then (2.4) has at least p non-zero 

terms. In particular, it follows that if E~ 1 a.~. = 0 is a primitive rela-
i= l. l. 

tion of reduced exponentn, then k ~ p, where p is the largest prime divid-



ing n. A more precise result is given by the following theorem, due to 

CONWAY and JONES [6]. In this theorem, we call a relation r:=l ai~i = 0 

minimal if there is no proper subset I c {1,2, •.. ,k} with r a.~.= O; 
iEI l. l. 

clearly, any primitive relation is minimal. 
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k 
THEOREM (2.6) If ri=l ai~i 0 is a minimal relation of reduced exponent n, 

then n is squarefree, and 

(2. 7) k :?: l (p - 2) + 2, 
pin 

the sum ranging over the primes p dividing n. Conversely, for every square­

free integer n there exists a minimal relation of reduced exponent n for 

which equality holds in (2.7). 

For the proof of this theorem we r,;ifer to [ 6]. Conway and Jones used 

(2.6) to classify all linear relations between roots of unity of less than 

10 terms. 

As is remarked in [6], one can deduce from (2.6) that for every C > 1 

there exists C' such that 

l.:i n :;; C' .exp(C(k logk) ) 

for all n, k as in (2.6). It follows that 

(2.8) 
2 k :?: c1 • (log n) /log log n 

for some positive constant c1 . 

(n > 1) 

Various interesting theorems in elementary geometry have been proved 

by the use of the technique described in (2.2) and (2.3). An appropriate 

one to mention at this occasion is a result appearing in G. Bol's "Beant­

woording van prijsvraag no. 17" [5]: 

if n is odd, n:?: 3, then no three diagonals of a regular n­

gon pass through one point, unless they have the same endpoint. 

Let the n-gon have as its vertices the n-th roots of unity in the complex 

plane, and suppose that the diagonals a8, yo,£~ intersect in one point. For 

a complex number x to be on the line through a and 8 it is necessary and 

sufficient that 
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x-et x-et 
a-et = ~-a 

which by et 8-l simplifies to 

et+ a. 

Hence, if x is on all three diagonals etS, yo, £s we must have 

(2. 9) 0. 

Working out the determinant we see that (2.9) is a vanishing sum of twelve 

roots of unity. This observation makes (2.2), (2.3) applicable, and after 

some work we arrive at Bol's result. For more applications of (2.2), (2.3) 

we refer to [6]. 

The following theorem gives a bound for the coefficients appearing in 

a primitive relation. 

THEOREM (2.10) Let L~=l aisi 

of unity. Then 

for i 1,2, ..• ,k. 

0 be a primitive relation between k roots 

In the proof of this theorem we denote by n the reduced exponent of 

the relation. We know that n is squarefree, and we may assume that the si 

are n-th roots. 

LEMMA (2.11) [cf. 18]. Let n be squarefree. Then for every n-th roots 

either s or-sis a sum of distinct primitive n-th roots. Further, the pri­

mitive n-th roots are linearly independent over m. 

PROOF OF (2.11) We first prove by induction on the number of primes divid­

ing n that every n-th roots is plus or minus a sum of primitive ones. For 

n = 1 this is obvious. For n = p, the cases= 1 is dealt with by 
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(a ranging over the primitive p-th roots), and in the cases f 1 the repre­

sentation 

s s 

works. If n # 1, p then we can write n = l•m, with l,m < n, (l,m) = 1. Every 

n-th roots has a unique representations= n8, where n,e are l-th and m-th 

roots, respectively. By the induction hypothesis, we can write 

n e 

where B ranges over a certain set of primitive l-th roots and y over acer­

tain set of primitive m-th roots. Multiplying we find 

s ±}:By. 

Each term By is a primitive n-th root, and no primitive n-th root occurs 

twice. This proves our assertion that every n-th root is± a sum of primi­

tive ones. 

It follows that the </>(n) primitive n-th roots span the (JJ-vector space 

generated by all n-th roots. But by the irreducibility of @n this vector 

space has dimension </>(n). We conclude that the primitive n-th roots are 

linearly independent over~- In particular, for no n-th roots can both 

sand -s be written as a sum of distinct primitive n-th roots. This proves 

lemma ( 2. 11) • 

Continuing the proof of the theorem, we write, using the lemma 

le. a, ia 
a 

$ i $ k, 

with a ranging over the primitive n-th roots and eia = 0 or 1 for all i,a. 

By the primitivity of the relation E a.s. = O, the kx</>(n)-matrix (e. ). 
i l. ia i,a 

has rank k - 1. Choose a kx (k-1 )-submatrix of rank k - 1. If b 1 ,b2 , ••• ,bk 

denote the (k - 1) x (k - 1) determinants of this submatrix in a suitable 

order, and provided with suitable signs, then 

k 

I 
i=l 

b.e. i ia 
0 



262 

for all a, so 

Here the coefficients '!bi are inZl:, and they do not all vanish. Since the 

relation Ek a r - 0 is primitive it follows that ±b ea for some non i=1 i~i - i i -
zero integer c and all i, so 

la. I s lb. (. 
l. l. 

Thus, to finish the proof of the theorem it suffices to prove the follow­

ing lemma. 

LEMMA (2.12) Let B =CS .. ) be a (k-1) x (k-1)-matrix with 31.j 
l.J 1· / 

all i,j, 1 s i,j s k-1. Then ldet B( s 2 -k.kk 2 • 

PROOF. Define the kxk-matrix C = (yij) by 

yij 2S .. 
l.J 

- 1 1 

ykj -1 1 

yik = 1 1 

By elementary column operations, det C 

all i,j, so from Hadamard's inequality 

we get 

ldet cl s kk/2 , 

s 

s 

s 

i,j S k-1, 

j s k-1, 

i S k. 

k-1 
2 •det B. Further y .. 

l.J 

12 1-k·det cl s 21-k.kk/2• 

This proves (2.12) and (2.10). 

It is not known whether theorem (2.10) is best possible. 

0 or 1 for 

±1 for 

If n = p is prime, then the only primitive relation of exponent n is 
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~ ranging over all n-th roots. In the case n = pq, p and q distinct primes, 

all primitive relations have been determined by MANN [15]: 

THEOREM (2.13) Let p and q be primes, p f q, and let A,A',B,B' be non­

empty sets of roots of unity such that 

Au A' ={all p-th roots}, An A' 

B u B' = {all q-th roots}, B n B' 0. 

Then 

L L aB - L o. 
aEA $EB aEA' 

This is a primitive relation of reduced exponent pq, and every primitive 

relation of reduced exponent pq is simi.lar to one of this form. 

For the proof, which is a direct application of (2.3), we refer to [15]. 

Theorem (2.13) suggests a representation for \I> which is different 
pq i 

from the one we have seen in section 1. Let \I> E ciX, and let~ be a 

primitive pq-th 

duced exponent 

i pq 
root. Then E. ~o c.~ = 0 is a primitive relation of re-

1.,c.r l. 

pq, and one may ~onder which sets A,A',B,B' correspond to 

this relation. A few trials suggest that one should take 

(2.14) A { ~jq: 0 $ j < ll}, A' { ~jq: ll $ j < p}, 

(2.15) B = {~ip: 0 $ i < ).} , B' {~ip: ). $ i < q}, 

where the integers A,ll are determined by 

>.p - 1 mod q, 0 <). < q, 

liq - 1 mod p, 0 < ll < p. 

Notice that Ap + liq = 1 + pq, since Ap + liq = 1 mod pq, 1 < >.p + liq < 2pq. Thus, 

the choice (2.14), (2.15) for A,A',B,B' is correct if and only if 
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(2.16) qi 
pq 

:>.-1 
I 

i=O 

µ-1 
\ 
l 

j=O 

ip+jq 
X -

q-1 

I 
p-1 

I ip+jq-pq 
X • 

i=A j=]J 

Once discovered, this formula is easily verified: the right hand side equals 

(1-XAp) ( 1-XJJq) 

(1-Xp) (1-Xq) 

and this simplifies to 

( 1-X) ( 1-Xpq) 

(1-Xp) (1-Xq) 

which is qi , by (1.3). 
pq 

(XAp -Xpq) (Xµq_Xpq) X -pq 

(1-Xp) (1-Xq) 

From (2.16) one sees that the number of non-zero coefficients of qi 
pq 

equals 2AJJ -1. In the case q = 1 mod p we have JJ = 1, A= ((p-1)q+1)/p, so 

(2.17) 2AJJ - 1 2(p-1) (q-1) + 1. 
p 

HOOLEY [ 1 O] has shown that for every E: > 0 there exist infinitely many primes 
(5/8)-E: . 

q for which q - 1 has a prime divisor p with p > q . Putting n = pq 

and using (2.17) we find that for every E: > 0 there are infinitely many 

squarefree n for which qin has less than 

(2.18) 
(8/13)+E: 

n 

non-zero coefficients. This confirms a remark made in section 1. If q = 2p±1, 

then one obtains in the same way less than (Sn)½ non-zero coefficients, 

with n pq. It is unknown, however, whether for infinitely many primes p 

one of 2p + 1 and 2p - 1 is prime. 

Theorem (2.13) implies that primitive relations of reduced exponent pq 

have no coefficients other than ± 1. Combining this observation with theorem 

(1.9) one is led to the following question: 

does there exist a function f on the positive integers, such that for 

all m, and all primes p,q with p f q, (pq,m) = 1, and all primitive 

relations E:=l aisi = 0 of reduced exponent mpq, the coefficients ai 

are bounded in absolute value by f(m)? 

I do not know the answer to this question. Theorem (2.19) gives a partial 
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result. 

THEOREM (2.19) There exists a function f on the positive integers such that 

for all m, all primes p not dividing m, and all primitive relations 

E~ aiti. = 0 of reduced exponent mp, the coefficients ai are less than 
i=l 

f(m) in absolute value. 

PROOF. Let p be an odd prime not dividing m, let R be the set of p-th roots, 

and let B be the set of m-th roots. Any mp-th root a has a unique expression 

as a= ap, with a E B, p ER, so the given primitive relation is similar to 

one of the form 

(2.20) 

where B(p) c B for each p ER, and all aap t 0. Using (2.3) we find that 

(2.21) 

for any two p,p' ER. Thus, if some B(p') were empty, then all these sums 

would vanish, contradicting that (2.20) is a primitive relation of reduced 

exponent mp. We conclude that the B(p) are non-empty. Next we claim that 

(2.22) B(a) = B(a'),. a = a aa aa• for all a E B(a) 

(a,a• ER). In fact, if this would not be true, then by putting 

if p ER, pt a,a', a E B(p), 

if a E B(a) 

if a E B(O) 

we would get a relation 

I ca ap = o, 
aEB(p) ..,p 

which is not plus or minus the original relation (2.20) (here we use p ~ 3), 

contradicting the primitivity. 
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Now let q be the smallest prime larger than 2m, and let T be the set 

of q-th roots. The number of different sets B(p), p ER, is clearly less 

than q, so we are able to choose, for every TE T, a subset C(T) c B such 

that 

{C(T): TE T} {B(p): p E RL 

Define bST for TE T, 8 E C(T) by 

where cr ER is chosen such that B(cr) = C(T); by (2.22) this definition does 

not depend on the choice of cr. By (2.21) we have 

for all T,T' ET, so 

(2. 23) I o. 
TET 

We claim that this is a primitive relation between mq-th roots of unity. 

Obviously the coefficients bST have greatest common divisor 1, so if (2.23) 

is not primitive than there exist subsets D(T) c C(T), not all empty, and 

not all D(T) = C(T), such that {ST: TE T, 8 E D(T)} is linearly dependent 

over~- Reversal of the above procedure would then, as the reader readily 

checks, give rise to subsets E(p) c B(p), not all empty, and not all E(p) 

= B(p), such that also {Sp: p ER, S E E(p)} is linearly dependent over qi, 

and this would contradict that (2.20) is primitive. 

Thus we have proved that any coefficient appearing in a primitive re­

lation of reduced exponent mp, with pan odd prime not dividing m, appears 

in a primitive relation between mq-th roots. But q depends only on m, and 

there are only finitely many primitive relations of given exponent. Hence 

there are only finitely many coefficients, and this conclusion remains 

unaffected if we also allow p = 2. This proves theorem (2.19). 
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A nonzero homogeneous polynomial of degree four in four complex vari­

ables defines a surface in o:P3 • Two such polynomials determine the same 

surface (counting multiplicities) if and only if one is a scalar multiple 

of the other. Thus the quartic surfaces in ~ 3 are parametrised by a pro­

jective space lP of dimension (7) - 1 = 34. A Zariski open subset lP c lP 
4 = 

describes the nonsingular quartic surfaces. It is the base of an algebraic 

fibre bundle 'IT: I; -+- lP ns whose fibre over s e: lP ns is just the quartic sur­

· face Xs it defines. 

As lP ns is connected, the c"" -type of the general fibre is well defined. 

It is not hard to show that this fibre is simply connected and that is 

second integral cohomology group is a free :£-module of rank 22. Endowed 

with the intersection form<,> this :£-module becomes a unimodular lattice 

of signature (3,19). If a polynomial f e: ~[x,y,z] defines (an affine part 

of) a nonsingular quartic X, then it is easy to verify that the meromorphic 

(clf)-1 2-form clx dydz restricts to X as a 2-form which has neither poles nor 

zeroes. If we denote this form by wx, then its de Rham cohomology class 

[wXJ satisfies the familiar relations <[wX],[wX]> = 0 and <[wX],[wX]> > 0. 

Any other holomorphic 2-form on X is a holomorphic function times wX and 

(as the only holomorphic functions on X are the constants) hence a scalar 

multiple of wX. So [wX] spans H210 cx,~). Besides this one-dimensional sub­

space we distinguish the cohomology class hX e: H2 (x,:;r;) which is supported 
3 by the intersection of X with a "general" hyperplane in o:P. We refer to hx 

as the polarisation of X. For elementary geometric reasons we have 

<hx,hx> = 4 and <wx,hx> = o. 

Our first aim is to parametrise the quartic surfaces up to isomorphism. 

For this purpose, the bundle ,r is not very appropriate. For the group 

PGL4 (~) acts in a compatible way on I; and lP ns and an orbit in ll? ns describ­

es surfaces which are projectively equivalent. Conversely, an algebraic 
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isomorphism between two nonsingular quartic surfaces which preserves the 

polarisations is the restriction of some projective automorphism. Hence the 

orbit space lPns/PGL4 (<C) parametrises the polarised nonsingular surfaces in 

an effective manner. However, not all the fibres of the induced map 

~/PGL4 (<C) -+-lPns/PGL4 (<C) are quartic surfaces as each quartic surface is 

mapped to the orbit space of its automorphism group. To remedy this, one 

considers quartic surfaces with some additional structure such that each 

nontrivial automorphism affects this structure. In this case we proceed as 

follows. Fix (once and for all) a lattice L isometric to the second cohomol­

ogy lattice of a nonsingular quartic and an indivisible element h € L with 

<h,h> = 4. Then a marking of a nonsingular quartic X will be an isometry 

~: H2 (x,:1'Z)-+ L which sends hx to h. Each nonsingular quartic can be marked 

and the possible markings of a given quartic are permuted in a simple tran­

sitive manner by the group 

G := {g € Aut(L): g preserves<,> and h}. 

Now it can be shown that the automorphism group of a marked quartic X is 

trivial; in other words, the automorphism group of X acts faithfully on 
2 H (X,ZZ:). The marked quartics are described by an analytic fibre bundle 

i: ~ + lP covering 1T, which is canonically endowed with a Gx PGL4 (<C)-
ns 

action. The actions of G and PGL4 (<C) are free, but the product action of 

G x PGL4 (<C) is not. Now let p: X + S denote the induced map between the 

PGL4 (<C)-orbit spaces. Then X and Sare both nonsingular with dim S = 

dim lPns - dim PGL4 (<C) = 19 and each fibre of p is a marked quartic. Note 

that S/G and lP /PGL4 (<C) are canonical isomorphic. ns 

Next we wish to have a better understanding of the G-manifold s. For 

this, the most powerful tool we have at our disposal is the so-called period 

mapping which I shall now describe. 

Consider the image n of the set 

0, <w,w> > 0, <w,h> = 0} 

in the projective space of L<C. This is clearly an open subset of a nonsin­

gular quatric in a projective space of dimension 20. Moreover, the real Lie 

group 

GlR : = { g € Aut (LlR) : g preserves <, > and h} 

acts in a transitive manner on n and realizes each of the (two) components 

of n as a bounded symmetric domain. We have a canonical G-equivariant map 

(the period mapping) P: s + n which assigns to the marked quartic (X,~) the 



point inn defined by ~(H2 ' 0 (x,~)). In the fifties Kodaira proved that P 

satisfies the local Torelli theorem, i.e. that Pisa local isomorphism 
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(note that dim S = 19 = dim n, indeed). Around 1970 it was shown by 

Shafarevic and Piatetskii-Shapiro that the global Torelli theorem also holds, 

i.e. that P is actually an injection. So what remained was the determination 

of the image of P. This was implicitly done by Shah in his thesis (1973), 

who succeeded in finding for each i;; En a surface "over it" which belongs to 

the same family as the quartics. In order to describe his result more pre­

cisely, we need the (at first sight perhaps somewhat complicated) notion of 

a pseudo-polarised K3 surface of degree four: a KJ surface is a nonsingular 

connected compact surface which is simply connected and possesses a nowhere 

vanishing holomorphic 2-form. An element hX E H2 (X,l:Z), where X is a K3 sur­

face say, is called a pseudo-polarisation if 

(i) it is the class of a divisor, 

(ii) for any positive divisor D we have <[D],hX> ~ O, and 

(iii) <hx,hx> > o. 
The number <hX,hX> is called the degree of the pseudo-polarisation. So any 

nonsingular quartic is in a canonical way a pseudo-polarised K3 surface of 

degree four. 

Now observe that the global Torelli theorem implies that the composite 

map 
P := P/G : JP /PGL4 (a:) ;;;; s/G _.. n/G 

ns 

is injective. A rather general theory, due to Baily and Borel, asserts that 

the orbit space is in a natural way a quasi-projective variety. It can be 

shown that this makes of Pan algebraic map. Since Pisa local isomorphism, 

it then follows that the image of P is Zariski-open in n/G. Suppose we are 

given a i;: 0 E n/G. Then there is a sequence {s. E lP /PGL4 (<t)}~ l such that 
i ns i= 

P(s.) converges to i;:0 . If we choose a representative sequence {s. E lP }~ 1 , 
i i ns i= 

then, after passing to a subsequence if necessary, it will converge to a 

s 0 E lP. Clearly, there is a lot of ambiguity here for if we choose a 

sequence cri E PGL4 (a:), then a limit post of {cri (si)} is in general 

not in the same orbit as s 0 (see the example pictured below) 

However, Mumford developed a theory 

which, roughly stated, tells you what 

sequences to choose. The quartics 

which you get if you follow Mumford's 

prescription have been classified by 

Shah. They fall into three classes: 

'o ~}orbits 

---
1 so 
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1. The nonsingular ones. 

These require no further discussion. 

2. Quartics with only rational double points as singularities. 

These are normal singular points, characterised by the property that af­

ter a minimal resolution the exceptional locus is a union of nonsingular 

rational curves, all having selfintersection -2. This forces the inter­

section matrix of these curves to be the Cartan matrix of a root system 

of type A, D or E. The minimal resolution of a quartic with only such 

singularities is in a natural way a pseudo polarised K3 surface of degree 

four. The set Hof points inn corresponding to such surface is not hard 

to describe. For any t EL, put H(t) := {w En, <w,t> = O} and let Ede­

note the set oft EL with <t,h> = 0 and<£,£>= -2. Then His open and 

dense in U{H(t): t EE}. At each of its points this set is like the union 

of reflection hyperplanes of a complexified root system (with each irre­

ducible component of type A, D or E and determining a rational double 

point of the same type on the corresponding limiting quartic). 

3. The nonsingular quadrics with multiplicity two. 

This looks bad, since all such quadrics are projectively equivalent. The 

reason is that have completely ignored the way this quadric arises as 

a limit: we must not only give s 0 E lP but also a direction in the tangent 

space of lP at s 0 (as being the limiting position of the lines s 0si). 

Geometrically, this amounts to giving a quadric Q and a curve Con Q 

which is the intersection of Q with a quartic surface. "In general" C 

will be nonsingular and then there is a two-fold cover X(Q,C) of Q branch­

ed along C which is nonsingular. It can be shown that this is in a natu­

ral way a pseudo-polarised K3 surface of degree four. (Actually, the cur­

ve C is allowed to have "sinple" singularities, which yield rational dou­

ble points on the branched cover.) If we let E' denote the set of 2 EL 

with<£,£>= 0 and <t,h> = 2, then the set of points in D corresponding 

to the double quadric are open-dense in U{H (£): t E E'}. 

4. The remaining cases. 

These are all a mixture of the cases 2 and 3. They correspond to points 

inn lying on an intersection H(t) n H(t') with t EE and t' EE'. 

As a result we get a very nice description of both Sand s/G. For it 

follows that the period mapping determines an isomorphism 

s ~ n - U{H(t): i E EuZ:'} 



(G equivalently) and hence also an isomorphism 

l(projective) isomorphism} 

classes of nonsingular ·~ S/G =-+ 
quartics in a:p3 
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(11 - U{H(JI,): J/,E I u I'})/G. 

It goes without saying that (to a geometer, say) the right-hand side looks 

much more manageable than the left-hand side. By the way, there is some rea­

son to believe that the space n - U{H (JI,): JI, E I u I'} (or equivalently, its 

G-orbit space) is a K(~,1), in other words, has a contractible universal cov­

ering. 

Actually, Shah classifies all the Mumfordian limits of quartics (not 

only those corresponding to points of 11/G). The ones which have only isolat­

ed singular points are easy to describe: these are the quartics with only 

simple-elliptic and hyperbolic singularities. A normal surface singularity 

is called simple-elliptic if the exceptional locus of its minimal resolution 

is a smooth elliptic curve. The hyperbolic singularites are most convenient­

ly characterised by giving a normal form for their equations: ~ + yq + zr + xyz 
1 1 1 

with - + - + - < 1. Quartics with such singularities must be included if one 
p q r 

wants to construct an algebraic compactification of 11/G which is geometri-

cally meaningful. To illustrate this point, lets E lP represent a quartic 

Xs with only simple-elliptic and hyperbolic singularities. The group of pro­

jective automorphisms of Xs is finite; for the sake of exposition let us as­

sume that it is trivial. Now, choose a transversal slice i: l(r) -r lP with 

i(O) = s, so the PGL4 (a:)-orbit of s, where l(r) = {z E a:19 : lzl < r}. We 
-1 

further put l(r)ns := i lPns Then, if r is small enough, the composed map-

ping 

l (r) c.L lP -r lPns/PGL4 (a:) - S/G cP/G, 11/G 
ns ns 

will be an analytic isomorphism onto an open subset of 11/G. Therefore, with 

a bit of imagination, the diagram l(r) ~ l(r)ns "-- 11/G may be viewed as a 

partial compactification of 11/G. In case Xs has only simple-elliptic singu­

larities this partial compactification admits quite an explicit description 

in terms of n and G only, which, as Mumford observed, is of Baily-Borel type. 

In the presence of hyperbolic singularities this partial compactification 

can be made explicit too (see my Helsinki talk); this one is neither of 

Baily-Borel type nor of Mumford's toroidal type (although probably related 

to it). It is noteworthy that the partial compactification of 11/G thus 



274 

obtained is smooth and canonical, two virtues which are seldom seen together 

in this field. Let me finish with the (perhaps somewhat cryptic) remark that 

the deformation theory of the simple-elliptic and hyperbolic singularities 

can be very well understood by knowing how the period mapping degenerates 

near a quartic with these singularities. This was actually the whole point 

I wanted to make. 
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AUGUSTIN CAUCHY: EIN WENDEPUNKT IN DER GESCHICHTE DER ANALYSIS 

E. Neuenschwander 

EINLEITUNG 

Die gesammelten Werke von Cauchy umfassen 27 dicke Bande. Eine kriti­

sche Wiirdigung seines Gesamtwerkes 1lberschreitet somit den Rahmen dieses 

Vortrages., Im I. Teil wird versucht, Cauchy als Mensch und Mathematiker auf­

grund zeitgenOssischer Dokumente etwas naher zu charakterisieren; im II. Teil 

soll seine Bedeutung fur die Geschichte der Analysis herausgearbeitet werden. 

I. CAUCHYS LEBEN UND WERK 

Augustin-Louis Cauchy wurde am 21. August 1789 in Paris geboren1). Er 

stammte aus einer Familie des oberen Mittelstandes. Sein Vater hatte die al­

ten Sprachen an der Universitat Paris studiert und darauf eine Beamtenlauf­

bahn gewahlt, wobei er im Jahre 1800 Generalsekretar des Senates wurde und 

dadurch in Kontakt mit Laplace und Lagrange kam. Die Mutter von Cauchy war 

sehr religiOs. Augustin, das alteste von sechs Geschwistern, erhielt seine 

erste Ausbildung zusammen mit seinem um drei Jahre jungeren Bruder Alexander 

im Kreise der Familie. Der Vater brachte ihnen damals die Grundlagen der 

Grammatik und der alten Sprachen bei, wartete aber mit der Mathematik noch 

zu. Lagrange hatte namlich die mathematische Begabung von Augustin fruhzei­

tig erkannt und den Vater gewarnt, dem Sohn vor der Vollendung des 17. Al­

tersjahres ein Mathematikbuch in die Hand zu geben, da er sonst zwar Mathe­

matik lernen, jedoch nicht einmal seine eigene Sprache schreiben konnen 

wiirde2). Als die Erziehung zu Hause abgeschlossen war, trat Cauchy in die 

*) Der vorliegende Vortrag wurde wahrend eines langeren Studienaufenthaltes 
in den Niederlanden im Frilhjahr 1978 gehalten. Wir mochten bei dieser Ge­
legenheit dem Mathematischen Institut der Rijksuniversiteit Utrecht noch­
mals recht herzlich fur die erwiesene Gastfreundschaft danken. 
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Ecole centrale du Pantheon ein, wo er als einer der besten Schuler sich ver­

schiedene Auszeichnungen in Griechisch und Latein holte. Anschliessend wurde 

er von Professor Dinet fur den Eintritt in die Ecole Polytechnique vorberei­

tet, welcher ihm im Jahre 1805 nach einer Vorbereitungszeit von nur acht bis 

zehn Monaten gluckte. Vom Jahre 1807 an besuchte er noch die Ecole des Ponts 

et Chaussees. 

Der junge Ingenieur Cauchy arbeitete zunachst am Canal de l'Ourcq und an 

der Brucke von Saint-Cloud. Spater wurde er nach Cherbourg versetzt, da Napo­

leon hier einen neuen Hafen als Basis fur die geplante Invasion von England 

errichten wollte. Cauchys Biograph Valson berichtet, dass Cauchy im Marz 

1810 nach Cherbourg reiste. Im Koffer hatte er die Mecanique celeste von 

Laplace, den Traite des Fonctions analytiques von Lagrange, den "Vergil" 

sowie die De imitatione Christi von Thomas a Kempis3). Die Religion spielte 

eine wichtige Rolle im Leben von Cauchy, ·wie wir spater sehen werden. In 

Cherbourg wartete auf den jungen Cauchy ziemlich viel Arbeit. Daneben fand 

er dennoch Zeit, seine mathematischen Kenntnisse zu vertiefen. Das Ziel sei-
4) 

ner Bemuhungen formulierte er in einem Brief an die Eltern folgendermassen : 

... de repasser par une etude suivie toutes les branches des Mathemati­
ques, en commen9ant par l'Arithmetique et finissant par l'Astronomie; 
eclaircissant de son mieux les endroits obscurs, s'appliquant a simp.Ii­
fier les demonstrations et a decouvrir des propositions nouvelles. 

Auf die Cherbourger Zeit gehen die ersten mathematischen Arbeiten von Cauchy 

zuruck. Dazu gehoren zwei Abhandlungen uber Polyeder aus den Jahren 1812 und 

1813, in denen Cauchy unter anderem beweist, dass ein konvexes Polyeder durch 

die Angabe seiner Seitenflachen bis auf Kongruenz bestimmt ist5). Es folgen 

Arbeiten uber die Zahlentheorie und die Gleichungstheorie6). 

Im Jahre 1813 kehrte Cauchy aus gesundheitlichen Grunden nach Paris 

zuruck, wo er 1814 sein beruhmtes Memoire sur les integrales definies7 ) ver­

fasste. Im nachsten Jahr gewann er den grossen Preis fur Mathematik der 

Academie des Sciences mit seiner Schrift Th<'!!orie de la propagation des ondes 

'1 f d' fl 'd td' f., 'd"f' . 9 ) d' a a sur ace un ui e pesan une pro onaeur in e inie , ie Grundlage 

fur seine spatere Elastizitatstheorie wurde. Schon in den ersten Arbeiten 

von Cauchy offenbarte sich somit die ganze Tiefe und Breite seines Geistes. 

Bereits im Jahre 1813, im Alter von nur ~4 Jahren, stand Cauchy erst­

mals auf der Kandidatenliste fur die Academie des Sciences. Er hatte jedoch 

kein Gluck, da Poinsot ihm damals vorgezogen wurde. Im nachsten Jahr fand 

sich sein Name erneut auf der Liste, wobei seine Kandidatur diesmal unter­

stutzt wurde von Cuvier und Laplace, wie man aus Briefen ersehen kann9). 
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Cauchy war jedoch abermals erfolglos. Sein Biograph Valson bemerkt, bei der 

Wahl hatten eben andere Dinge als die Verdienste eine ausschlaggebende Rolle 

gespielt. Cauchy kam dann zwei Jahre spater dennoch in die Akademie, wenn 

auch nicht gerade un'ter ruhmlichen Umstanden. Nach dem Zusammenbruch des 

Kaisertums wurde die Akademie im Jahre 1816 reorganisiert; dabei wurden Car­

not und Monge aus politischen Grunden ausgeschlossen und an ihrer Stelle 

Cauchy und Breguet ernannt. Dass Cauchy die Ernennung angenommen hatte, wur­

de ihm von vielen zeitgenossischen Gelehrten veriibelt. Cauchy hatte Monge 

jedoch vermutlich nicht personlich gekannt und war zweifellos der Ansicht, 

dass ihm selbst ein Platz in der Akademie seit langem zustehelO). 

Im Jahre 1816 wurde Cauchy Professor an der Ecole polytechnique und 

einige Jahre spater auch an der SorbOnne sowie am College de France. 1818 

heiratete er Aloise de Bure. Bis zum Jahre 1830 verlief nun Cauchys Leben 

ztemlich ungestort. Als Folge seiner VorlesUngstatigkeit entstanden seine 

beruhmten Textbucher: Cours d'analyse de l'Ecole Royale Polytechnique 
lll -(1821) ·, Resume des legons donnees a l'Ecole Royale Polytechnique, sur le 

·calcul infinitesimal (1823) 12 ) usw., die von einer bis dahin unbekannten 

Strenge sind. In denselben Zeitabschnitt fallt sein Memoire sur les integra­

les definies, prises entre des limites imaginaires (1825) 13), das heute von 

vielen als seine beste Arbeit betrachtet wird. 

Im Juli 1830 wird der Bourbonenkonig Karl x. gesturzt und Louis-Philippe 

von Orleans kommt auf den Thron. Bei dieser Gelegenheit sollen samtliche 

Staatsbeamten einen neuen Treueeid ablegen. Cauchy verweigert den Eid, da er 

einerseits als strengglaubiger Katholik seinen alten Eid nicht brechen will 

und andererseits sowieso nur die katholischen Bourbonen als rechtmassige 

Herrscher betrachtet14). In der Folge verliert er seine drei Lehrstuhle15) 

und geht freiwillig ins Exil, zunachst nach Fribourg zu den Jesuiten. Hier 

versucht er, was vielleicht weniger bekannt sein durfte, in Zusammenarbeit 

mit anderen aus Frankreich geflohenen Wissenschaftlern eine Helvetische Aka­

demie der Wissenschaften zu grunden16), an der auf katholischer und konigs­

treuer Basis samtliche Facher gelehrt werden sollen. Um die notwendigen fi­

nanziellen Mittel zu bekommen, schreibt Cauchy an den Papst, den Zaren, den 

osterreichischen Kaiser, sucht in Genua den Konig von Sardinien auf und in 

Modena den dortigen Herzog. Weiter druckt er einen Werbeprospekt, um nach 

Griindungsmitgliedern zu suchen, die pro Jahr 1000 Fr. bezahlen mussten und 

dafur in den Annalen der Akademie verewigt wurden. Offenbar meldeten sich zu 

wenige, denn die Akademie kam aus Geldmangel nie zustande. 
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Durch die Vermittlung der Jesuiten erhalt Cauchy schliesslich einen 

Lehrstuhl in Turin, wo er bis ins Jahr 1833 bleibt17 ). In die Turiner Zeit 

fallt das beruhmte Memoire sur la mecanique celeste et sur un nouveau 

calcul appele calcul des limites (1831-33) 18), in dem man die Cauchysche 

Integralformel und die Potenzreihenentwicklung einer analytischen Funktion 

findet. Von Turin wird Cauchy von dem aus Frankreich geflohenen Bourbonen­

konig nach Prag gerufen, um bei der Erziehung des Kronprinzen mitzuhelfen 19 ). 

Dort bleibt ihm bedeutend weniger Zeit fur wissenschaftliche Arbeit20); 

dafur erhalt er den Titel Baron. 

Nachdem die Ausbildung des Kronprinzen abgeschlossen ist, kehrt Cauchy 

1838 nach Paris zuruck. Er nimmt seinen alten Platz an der Academie des 

Sciences wieder ein; eine Professur kann er jedoch nicht bekommen, da er 

sich weigert, den Treueeid zu leisten. Im Jahre 1839 wird ein Platz frei im 

Bureau des Longitudes. Cauchy wird einstimmig gewahlt und es fehlt nur noch 

die Sanktion des Burgerkonigs Louis-Philippe; doch diese wird wiederum mit 

dem Treueeid verbunden 21 ). Zwei hochstehende Personlichkeiten versuchen 

vergeblich, einen Kompromiss zu erreichen22 ); doch Cauchy ist zu keinerlei 

Konzessionen bereit und so wird abermals nichts aus seiner Wahl. Im Jahre 

1848 wird Louis-Philippe gesturzt. Die neue republikanische Regierung schafft 

den Treueeid ab und Cauchy erhalt wenig spater seinen alten Lehrstuhl an der 

Sorbonne zurilck, den einzigen, der noch freigeblieben ist. Vier Jahre spater 

kommt Napoleon III. an die Macht, der Treueeid wird erneut eingefuhrt und 

Cauchy tritt auch sofort wieder von seinem Lehrstuhl zuruck; er wird jedoch 

nach einigen Monaten vom Erziehungsminister zuruckberufen und mit Arago 

zusammen vom Eid befreit23 ). Vonda an lehrte Cauchy bis zu seinem Tode 

weiter an der Sorbonne. Sein Gehalt verwendete er jedoch nicht fur sich, 

sondern stellte es meist fur wohltatige Zwecke seiner Wohngemeinde Sceaux 

zur Verfilgung. Als der Burgermeister von Sceaux einmal Bedenken ausserte 

gegenuber dieser aussergewohnlichen Grosszilgigkeit, entgegnete ihm Cauchy24 ): 

"Ne vous effrayez pas; ce n'est que mon traitement, ce n'est pas moi, c'est 

l'Empereur qui paye". In Sceaux starb Cauchy am 22. Mai 1857 und wurde dort 

auch begraben. 

Cauchy benahm sich in seinem Leben manchmal schon recht seltsam. Abel 

b . h t "h . . . f 1 d h d b" 25 ) h ezeic nee in in seinen Brie en as ver re tun igott . Hat er rec t, 

oder ist eher Biot und Valson zuzustimmen, die Cauchy bloss als extrem naiv 

h 26 l? · d" . . h d 1 . h . . ansa en . Die Beantwortung ieser Frage ist nic t gera e eic t. Die meisten 

Briefe von Cauchy sind inzwischen verlorengegangen und die ausfilhrliche 
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Biographie von Valson gleicht zu sehr einern "Heldenrornan", urn verlasslich 

zu sein. Zurn Abschluss des biographischen Teiles soll deshalb versucht werden, 

einige der wesentlichen Charakterzilge Cauchys aufgrund zeitgenossischer 

Dokurnente herauszuarbeiten. 

Ein wichtiger Punkt war sicher die religiose Ueberzeugung von Cauchy. 

Als Christ und strengglaubiger Katholik organisierte Cauchy zeit seines 

Lebens wohltatige Werke: Er sarnrnelte Unterschriften gegen illegitirne Ehen, 

schickte eine Petition an den Papst zu Gunsten der Hungerleidenden in Irland, 

grilndete eine Gesellschaft, die die Heiligung des Sonntags zurn Ziel hatte, 

half bei der Grilndung des "Institut catholique" usw~ 7). Cauchy pflegte stets 

gute Beziehungen zu den Jesuiten: Als diese in den letzten Regierungsjahren 

von Louis-Philippe stark angegriffen wurden, verfasste er zwei Verteidigungs­

schriften fur sie28 ). Mit seiner Religiositat stiess Cauchy viele Zeitgenossen 

bereits in jungen Jahren vor den Kopf. Valson zurn Beispiel zitiert einen 

langeren Brief aus dern Jahre 1810, in dern Cauchy seine Mutter von Cherbourg 

aus zu beruhigen versuchte. Cauchy schrieb29 ): 

Ma chere maman, je vous remercie beaucoup de me faire part de tout ce 
que vous entendez dire de moi a Paris, soit en bien soit en mal •.. 

On dit que la devotion me fera tourner la tete. Quelles sont les 
personnes qui disent cela? Ce ne sont pas celles qui ont beaucoup de 
religion; celles-ci .ne m'en ont parle que pour m'encourager a persister 
dans ma ligne de conduite, et tout ce qui m'a ete rapporte ace sujet 
ne me prouve pas qu'elles me blament. Seulement, il y a quelques jours, 
une personne de la societe de ••• me dit amicalement que la religion 
faisait quelquefois tourner la tete aux jeunes gens. Je causai avec elle 
ace sujet et je lui prouvai que je n'avais point la tete tournee. Quant 
aux personnes qui n'ont point de religion, j'ai resolu de ne leur en 
parler jamais le premier, je me contente de leur repondre quand elles 
veulent m'attaquer sur ce point. 

Im Jahre 1826 berichtete Stendhal irn New Monthly Magazine von einern ahnlichen 

Vorfall in der Acadernie des Sciences. Nach dern Vortrag eines Naturalisten 

soll Cauchy rnit den nachfolgenden Worten gegen den Beifall der anderen 

Gelehrten protestiert haben30l: 

Meme en admettant que les chases qu'on vient de nous dire soient aussi 
vraies que je les crois fausses. Il n'est pas convenable de communiquer 
de telles verites au public, etant donne l'etat funeste ou notre 
malheureuse Revolution a jetee l'opinion publique. De tels propos 
pourraient porter prejudice a notre sainte religion. Ils montrent trop 
nettement l'influence des "causes physiques" et ils tendent a affirmer 
les mechantes doctrines de Cabanis. 

Worauf natilrlich alles lachte. Stendhal glaubte, dass Cauchy die Rolle eines 

Martyrers spielen wollte. Wollte Cauchy dies wirklich oder war er nicht 
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einfach ausserst naiv? Eine Notiz aus der Turiner Zeit von Cauchy aus dem 

Tagebuch des Konigs von Sardinien scheint eher das letztere zu bestatigen. 

Am 16. Januar 1832 schrieb der K5nig31 ): 

Je re<,us aujourd'hui la visite de remerciment du celebre professeur 
Cochy [sic]. Lui ayant fait quelques questions sur les sciences, sur les 
Universites, il me repondit cinq fois "J'avais pense que V.M. m'aurait 
i,nterroge ace propos, et je me suis prepar{; par une note a lui repon­
dre". Et chaque fois il sortit alors un memoire de sa poche, dont il me 
faisait lecture. Il manifeste des vues qui me paraissent fort sages et 
que je compte d'approfondir. 

Von der Mathematik war Cauchy besessen. Neu an ihn herangetragene 

Probleme griff er sofort auf. Wenner eine von auswarts der Akademie ein­

gereichte Arbeit beurteilen sollte, so liess er sich die Gelegenheit selten 

entgehen, selbst einige Satze auf diesem Gebiet zu beweisen und erwahnte 

naturlich auch alles, was er fruher schon gefunden hatte. Ueberhaupt 

informierte Cauchy seine Fachkollegen stets uber gegluckte aber auch uber 

samtliche misslungenen Versuche, ein Problem zu 15sen. Er publizierte 

alles und zwar so schnell wie moglich. Als die Comptes Rendus noch nicht 

existierten, gab Cauchy zu diesem Zweck eine eigene Zeitschrift heraus, die 

Exercices Mathematiques. Falls es nicht anders moglich war, publizierte er 

seine Resultate manchmal sogar in Zeitungen. Horen wir auch hierzu wieder 

die Meinung eines Zeitgenossen. Bertrand schreibt in seiner Kritik des 

Buches von Valson32 ): 

Le genie de Cauchy est digne de tous nos respects, mais pourquoi 
s'abstenir de rappeler que la trop grande abondance de ses travaux, en 
diminuant souvent leur precision, en a plus d'une fois cache la force? 
La dangereuse facilit{; d'une publicit{; immediate a ete pour Cauchy une 
tentation irresistible et souvent un ecueil. Son esprit, toujours en 
mouvement, apportait chaque semaine a l'Academie ses travaux a peine 
ebauches, des projets de memoire et des tentatives parfois infructueuses, 
et, lors meme qu'une brillante decouverte devait couronner ses efforts, 
il for<,ait le lecteur a le suivre dans les voies souvent steriles 
essayees et abandonnees tour a tour sans que rien vint l'en avertir. 
Prenons pour exemple la theorie des substitutions et du nombre de 
valeurs d'une fonction... Cauchy a compose plus de vingt memoires. 
Deux d'entre eux sont des chefs-d'oeuvre; que dire des dix-huit autres? 
Rien, sinon que l'auteur y cherche une voie nouvelle, la suit quelque 
temps, entrevoit la lumiere, s'efforce inutilement de l'atteindre et 
quitte enfin, sans marquer aucun embarras, les avenues de ]'edifice 
qu'il renonce a construire. 

Cauchy war in dieser Hinsicht das pure Gegenteil von Gauss. Er war vielleicht 

der fluchtigste von allen grossen Mathematikern. Er hat uber 800 Arbeiten 

veroffentlicht; wovon etwa 400 in der Analysis, 100 in der Algebra, 40 in 

der Geometrie, 200 in der Mechanik und Optik und etwa 70 in der Astronomie. 
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Allein in der Elastizitatslehre werden 17 Theoreme oder Begriffe nach Cauchy 

benannt33 ). 

II. CAUCHYS BEITRAEGE ZUR GRUNDLEGUNG DER ANALYSIS 

Es ist vollig unmoglich, die 800 Arbeiten von Cauchy hier einigermassen 

sachgerecht zu behandeln, weshalb sich der zweite Teil auf die Analysis 

b h -nk d dab . . . t kt f . 34 ) .. h 11 d' esc ra tun ei nur einige Haup pun e au zeigt • Zunac st so ie 

strenge Grundlegung der Infinitesimalrechnung betrachtet werden, wie sie 
- . 11) Cauchy in seinem Cours d'analyse de l'Ecole Royale Polytechnique und in 

seinem Resume des le9ons donnees a l'Ecole Royale Polytechnique, sur le 

calcul infinitesima1 12 ) geschaffen hat. Im Vorwort zum "Calcul infinitesimal" 
35) 

distanziert sich Cauchy deutlich von seinen Vorgangern. Er sagt : 

Mon but principal a ete de concilier la. rigueur, dont je m'etais fait 
u11e loi dans mon Cours d'analyse, avec la simplicite qui resulte de la 
consideration directe des quantites infiniment petites. Pour cette 
raison, j'ai cru devoir rejeter les developpements des fonctions en 
series infinies, toutes les fois que les series obtenues ne sont pas 
convergentes; et je me suis vu force de renvoyer au calcul integral la 
formule de Taylor, cette formule ne pouvant plus etre admise comme 
generale qu'autant que la serie qu'elle renferme se trouve reduite a 
un nombre fini de termes, et completee par une integrale definie. 

Diese Stelle wendet sich hauptsachlich gegen Lagrange36 ). Cauchy kritisiert 

hier den Gebrauch von nicht konvergenten unendlichen Reihen. Im vorange­

gangenen 18. Jahrhundert hat man sich vielfach recht wenig um Konvergenz­

betrachtungen gekfunmert. Es ist das Verdienst von Abel, Bolzano, Cauchy, 

Dirichletund Gauss auf die daraus entstehenden Pehler hingewiesen zu haben. 

Valson erzahlt in diesem Zusammenhang37 ), dass, nachdem Cauchy seine dies­

bezuglichen Forschungen um das Jahr 1820 zum ersten Mal vor der Akademie 

vorgetragen hatte, Laplace besturzt nach Hause geeilt sei. Er sei erst 

wieder auf die Strasse gegangen, nachdem er die Konvergenz seiner Formeln 

in der "Mecanique celeste" uberpruft hatte. 

Cauchy baut seine Theorie der unendlichen Reihen auf dem Begriff des 

Limes auf, den er auf den ersten Seiten seines "Cours d'Analyse" allgemein 

wie folgt festlegt38 l: 

Lorsque les valeurs successivement attribuees a une meme variable 
s'approchent indefiniment d'une valeur fixe, de maniere a finir par en 
differer aussi peu que l'on voudra, cette derniere est appelee la 
limite de toutes les autres. 

Unter Benutzung des Limesbegriffes definiert er die Konvergenz einer Reihe39 ). 
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In seiner Theorie der unendlichen Reihen im Kapitel 6 des "Cours d'Analyse" 

behandelt Cauchy das beruhmte Cauchysche Kriterium, dass eine unendliche 

Reihe genau dann konvergent ist, wenn die Differenzen ihrer Teilsummen 

Is - s I fur genugend grosse n beliebig klein werden40). An derselben 
n+m n 

Stell.€ erortert Cauchy noch weitere Konvergenzkriterien z.B. das Wurzel-

kriterium und das Quotientenkriterium; sodann betrachtet er Summe und 

Differenz von unendlichen Reihen, studiert alternierende Reihen und ent­

wickelt darauf eine Theorie der Potenzreihen41 ). Cauchy hat damit wesentlich 

zur Grundlegung der heutigen Reihentheorie beigetragen. 

Auch seine Definition der Stetigkeit ist neuartig. Cauchy stutzt sich 

hier ebenfalls auf seinen oben zitierten Limesbegriff. Er definiert42 ): 

En d'autres termes, la fonction f(x) restera continue par rapport a 
x entre les limites donnees, si, entre ces limites, un accroissement 
infiniment petit de la variable produit toujours un accroissement 
infiniment petit de la fonction elle-meme. 

Unter "infiniment petit" versteht er dabei folgendes 43 ): 

Lorsque les valeurs numeriques successives d'une meme variable decrois­
sent indefiniment, de maniere a s'abaisser au-dessous de tout nombre 
donne, cette variable devient ce qu'on nomme un infiniment petit ou 
une quantite infiniment petite. Une variable de cette espece a zero 
pour limite. 

Sicher mutet diese Definition den heutigen Mathematiker noch recht archaisch 

an; es fehlt das vertraute E undo. Die sogenannte Epsilontik geht in ihren 

Anfangen zwar auf Cauchy zuruck, systematisch ausgebaut findet sie sich 

jedoch erst bei Weierstrass44 ). Weiter fallt auf, dass Cauchy die Stetigkeit 

nicht in einem Punkt sondern in einem Intervall definiert. Dazu kommt, dass 

Cauchy seine Definition der Stetigkeit nicht immer konsequent benutzt und 

zudem die Wichtigkeit der gleichmassigen Stetigkeit nie erkannte. All dies 

sind ~weifellos Mangel. Stellt man jedoch der Definition von Cauchy den 

Stetigkeitsbegriff des 18. Jahrhunderts gegenuber, so ist der Fortschritt 

klar erkennbar. Im 18. Jahrhundert verstand man unter einer Funktion einer 

Variablen meist einen Rechenausdruck, in dem die Variable und Konstanten 

vorkommen durfen. Dieser Rechenausdruck bestimmt eine sogenannte "stetige" 

Kurve nach Euler45 ). Nun kann man sich aber auch Kurven denken, die nicht 

mithilfe eines einzigen solchen Rechenausdruckes beschrieben werden konnen. 

Solche Kurven nannte Euler im Gegensatz zu den ersteren "unstetig" oder 

"gemischt". Der Begriff "stetig" hatte somit bei Euler die Bedeutung von 

"demselben analytischen Ausdruck genugend". Wie die weitere Entwicklung 

zeigt, erwies sich diese Einteilung als problematisch46 ). zu Beginn des 19. 
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Jahrhunderts wurde deshalb der Stetigkeitsbegriff von Bolzano und Cauchy neu 

definiert. Cauchy war sich der Wichtigkeit der Aenderung durchaus bewusst. 

In einer spateren Arbeit aus dem Jahre 1844 schreibt er hierzu47 ): 

Dans les Ouvrages d'Euler et de Lagrange, une fonction est appelee con­
tinue ou discontinue, suivant que les diverses valeurs de cette fonc­
tion, correspondantes a diverses valeurs de la variable, sont ou ne 
sont pas assujetties a une meme loi, sont ou ne sont pas fournies par 
une seule et meme equation. C'est en ces termes que la continuite des 
fonctions se trouvait definie par ces illustres geometres, ••• 
Toutefois, la definition que nous venons de rappeler est loin d'offrir 
une precision mathematique; car, si les diverses valeurs d'une fonction, 
correspondantes aux diverses valeurs d'une variable, dependent de deux 
ou de plusieurs equations distinctes, rien n'empechera de diminuer le 
nombre de ces equations et meme de les remplacer par une equation 
unique, dont la decomposition fournirait toutes les autres. Il y a plus: 
les lois analytiques auxquelles les fonctions peuvent etre assujetties 
se trouvent generalement exprimees par des formules algebriques ou 
transcendantes, et il peut arriver que diverses formules representent, 
pour certaines valeurs d'une variable x, la meme fonction; puis, pour 
d'autres valeurs de x, des fonctions differentes. Par suite, si l'on 
considere la definition d'Euler et de Lagrange comme applicable a 
toutes especes de fonctions, soit algebriques, soit transcendantes, un 
simple changement de notation suffira souvent pour transformer une 
fonction continue en fonction discontinue, et reciproquement. 

Cauchy illustriert den Sachverhalt anhand folgender Funktion: 

00 

x2dt 
(i) 

2 

I /22 "stetig" nach Euler y 
1T 27°' t +x 

(ii) y +x fur X 2: 0 "unstetig" nach Euler. 

y -x fur X < 0 

Damit soll die reelle Analysis abgeschlossen und zur komplexen Funk­

tionentheorie iibergegangen werden. In der Theorie der komplexen Funktionen 

schreitet Cauchy zunachst nur zaghaft voran. Lange Zeit ist er - wie die 

meisten damaligen Mathematiker48 )_ der Ansicht, dass eine Gleichung zwischen 

komplexen Grossen nur eine symbolische zusammenfassung zweier reeller 

Gleichungen sei. Diesen Standpunkt vertritt er zunachst auch in seinem 

Memoire sur les integrales definies (1814-27) 7). Sein Hauptanliegen in 

dieser Arbeit ist es, Gleichungen zu erhalten, die den Uebergang von einem 

bestimmten Integral zu einem anderen ermoglichen. Hierzu geht Cauchy von 
49) · 

einer differenzierbaren komplexen Funktion'F(x+iy) = s + iV aus • Aufgrund 
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der Cauchy-Riemannschen Differentialgleichungen, die ubrigens bereits Euler 

und D'Alembert bekannt waren48 ), erhalt er: 

ff av d d 
'Jy y X f f ~ dx dy ax 

f f ~; dy dx = - f f ~: dx dy, 

Cauchy integriert diese Gleichungen uber ein Rechteck x0 $ x $ x 1, 

y0 $ y $ y 1• Dies ergibt: 

XI Y1 

f [V(x,y 1) - V(x,y0 )]dx f [S(x 1,y) - S(x0 ,y)Jdy 

X yo 0 

XI Y1 

f [S(x,y 1) - S(x,y0 )]dx = - f [V(x 1,y) - V(x0 ,y)]dy. 

X Yo 0 

Hier bleibt Cauchy im Jahre 1814 zunachst steh.en; er benutzt diese zwei 

Gleichungen zur Berechnung von bestimmten Integralen. Zudem studiert er den 
50) Fall , wo die Funktion im Rechteck eine singulare Stelle besitzt und 

versucht, das in den Gleichungen zusatzlich auftretende Glied zu bestimmen. 

Noch im Jahre 1823 steht Cauchy einer komplexen Integration ablehnend 

gegenuber. Er kritisiert Poisson, welcher die Integration durch komplexes 

Gebiet zur Bestimmung von gewissen reellen Integralen benutzt hatte51 ). 

Zwei Jahre spater erkennt er jedoch den Vorteil einer solchen Betrachtungs­

weise und baut sie im Gegensatz zu Poisson systematisch aus. Vor dem Druck 

seines 1814 geschriebenen Manuskriptes im Jahre 1827 fugt Cauchy seiner 

Arbeit eine Randanmerkung bei, in der er darauf hinweist, dass man die 

beiden oben erwahnten reellen Gleichungen auch zu einer einzigen komplexen 

Gleichung zusammenfassen kann52 ). Multipliziert man namlich die erste 

Gleichung mit i und addiert sie zur zweiten, so folgt: 



xl 

f [S(x,y1) + iV(x,y1) ]dx 

X 
0 

Y1 

f [S(x1 ,y) +iV(x1 ,y)]idy -

Yo 
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xl 

f [S(x,y ) + iV(x,y ) ]dx 
0 0 

X 
0 

Y1 

f [S (x0 ,y) + iV(x0 ,y) ]idy. 

Yo 

Es ergibt sich somit der Cauchysche Integralsatz fur ein Rechteck (vgl. 

Abb. 1): 

i 

Xo 

Y1 

f F (x0 +iy) idy + 

yo 

-
-

Abb. 1 

xl 

f F(x+iy1)dx 

X 
0 

Y1 

r 
b 

yo 

x1 

xl Y1 

f F(x+iy0 )dx + 

X 

f F (x1 +iy) idy. 

yo 0 

,""'' I 

----__________ _,,-"" ,' __ ..-, .,,., 
,,,,,.,' __ ..... ,, 

~,,,,, _.._......... I 
,,,,';_.,,,._...,.,..- I 

x· a xl 
0 

Abb. 2 

Allgemeiner und deutlicher formuliert findet sich der Cauchysche 

Integralsatz im Memoire sur les integrales definies, prises entre des 

limites imaginaires (1825) 13 ). Dieses Memoire gehort mit zu den schonsten 

Arbeiten, die Cauchy ilberhaupt je geschrieben hat. Cauchy definiert im § 2 

zunachst, was er unter einem Integral langs eines komplexen Weges verstehen 

will. Den Weg gibt er dabei in Parameterdarstellung53 l, 

A+ iB 

xl+iyl 

f f (z)dz 

xo+iyo 

wobei X = <j>(t), Y = x(tl 

<j> (t), X (t) stetig 
54) 

monoton wachsend 

<j> (to) XO, x(t > 
0 yo 

<j> (tl) xl, x(tl) Y1· 
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Er erhalt sodann die bekannte Formel: 

A+ iB 

tl 

J [qi' <tl + ix' (t)Jf[q,(tl + ix(t)Jdt. 

t 
0 

Im §3 studiert Cauchy die Frage, wann dieses Integral vom Wege unab­

hangig ist. Zunachst setzt er voraus, dass die gegebene Funktion in einem 

Rechteck "endlichSS) und stetig54 ),, bleibt. In diesem Rechteck betrachtet 

er zwei Integrationswege (vgl. Abb. 2). Der eine Weg ist gegeben durch 

x q,(t), y = x(t) und der andere durch eine leicht variierte Kurve 

x q,(t) + Eu(t), y = x(t) + Ev(t}, wobei jedoch die Anfangs- und Endpunkte 

der beiden Wege zusammenfallen sollen. Cauchy berechnet nun die Differenz 

der Integrale langs dieser beiden Wege und zeigt, dass sie unter den gege­

benen Bedingungen verschwinden muss. Im Beweis benutzt Cauchy, dass f(z) 

im Rechteck eine stetige Ableitung besitzt. Dies ergibt sich jedoch seiner 

Ansicht nach aus den obigen Voraussetzungen. Eine solche Auffassung war 

damals weit verbreitet56 ); man beschrankte sich ja auch meist auf das 

Studium von analytischen Funktionen. Mit der Konstruktion von stetigen, 

"nichtdifferenzierbaren" Funktionen befasste man sich (wenn man vom damals 

kaum bekannten Bolzano absieht) erst zur Zeit von Weierstrass und Riemann. 

Im §4 untersucht Cauchy den Fall, wo die gegebene Funktion f(z) in 

einem Punkt a+ ib des nicht variierten Weges unendlich wird und dort nach 

der heutigen Terminologie einen Pol erster Ordnung besitzt. Cauchy bemerkt 

zunachst, dass in diesem Fall das Integral langs des nicht variierten 

Weges "unbestimmt" wird. Betrachtet man nun zwei variierte Wege, welche die 

Variationen EU(t), £v(t) und -£u(t), -£v(t) besitzen und die Singularitat 

somit umschliessen (vgl. Abb. 2), so ist die Differenz der Integrale langs 

dieser beiden Wege nicht mehr gleich null. Sie lasst sich jedoch im vor-

. liegenden Fall durch die untenstehende Formel ausdrucken: 

A" +iB" - (A' +iB') ± 211 fi, wobei f lim[x-a + i (y-b) ]f (x+iy) . 
x->-a 
y->-b 

Den Wert f nennt Cauchy spater Residuum. In den nachfolgenden Paragraphen 

studiert er auch die Falle, in denen die Funktion im Rechteck einen Pol 

m-ter Ordnung oder mehrere Pole zugleich besitzt. Die 1825er Arbeit liefert 

somit einen wesentlichen Beitrag zur Residuentheorie; Cauchys Formeln sind 

jedoch haufig komplizierter, als wir dies heute gewohnt sind. Cauchy kannte 
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damals die Laurentsche Reihenentwicklung einer analytischen Funktion noch 

nicht, diese wurde erst im Jahre 1843 durch Laurent entdeckt. 

Zurn Schluss soll noch kurz auf die beruhmte Turiner Abhandlung Memoire 

sur la mecanique celeste et sur un nouveau calcul appelle calcul des limites 
, 18) . 

(1831-33) eingegangen werden, in der Cauchy die Potenzreihenentwicklung 

einer analytischen Funktion behandelt. In Teil I, §2 beweist Cauchy zunachst 
53) 

seine Integralformel : 
+TT 

f(z) 1 J l;;f(I;;) d 
2'rr ~ p (di; l;;idp). 

-1[ 

Er beschrankt sich dabei auf einen kreisformigen Integrationsweg um den 

Nullpunkt und setzt wie ublich voraus, dass die Funktion auf dieser Kreis­

scheibe "endlich und stetig" bleibt. - Beim Wiederabdruck der Arbeit im 

Jahre 1841 hat Cauchy ubrigens an dieser Stelle nach einer Kontroverse mit 

Sturm und Liouville zusatzlich die Existenz einer stetigen Ableitung 

Anschliessend entwickelt Cauchy den Ausdruck _I;_ in eine 
i;;-z 

57) 
verlangt • 

geometrische Reihe und erhalt folgenden Satz: Eine analytische Funktion 

lasst sich innerhalb eines gewissen grossten Kreises [dem Konvergenzkreis] 

in eine Potenzreihe entwickeln, der dadurch bestimmt ist, dass die Funktion 

und ihre Ableitung in ihm gerade noch uberall stetig sind. Cauchy diskutiert 

den Satz anhand verschiedener Beispiele und weist darauf hin, dass sich auf 

dem Konvergenzkreis mindestens eine singulare Stelle befinden muss. In 

derselben Arbeit erwahnt Cauchy ubrigens auch noch seine Abschatzungsformel 

fur die Koeffizienten der Reihe. 

Das Studium von Cauchys Werken ist ni.cht immer leicht. Seine Forschungen 

in der Funktionentheorie zum Beispiel hat Cauchy nie in Buchform zusammen­

gefasst, sie befinden sich in einer Vielzahl von sich teilweise wieder­

holenden Arbeiten. Cauchy ist stets auf der Suche und mit ihm naturlich auch 

der Leser. Manchmal scheint Cauchy seine fruheren Resultate wieder vergessen 

zu haben. Da definiert er zum Beispiel im "Cours d'Analyse" einen neuen 

Stetigkeitsbegriff, wendet diesen jedoch in der Folge keineswegs konsequent 

an. Oder um ein anderes Beispiel zu nennen: Cauchy hatte mit der 1825er 

Arbeit die Moglichkeit gehabt, seinen Integralsatz allgemein zu formulieren; 

er stutzt sich jedoch wahrend der nachsten 20 Jahre weiterhin auf sein 

1814er Manuskript und beschrankt sich meist auf rechteckige oder kreisformige 

Integrationswege. Die von Bertrand32 ) kurz nach dem Tode von Cauchy 

gea1,1sserte Meinung trifft somit zweifelsohne zu: "Das Genie von Cauchy 

verdient unseren Respekt, aber warum soll man verschweigen, dass die 
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Ueberfulle von Arbeiten ihre Genauigkeit haufig verringert und ihren Wert 

manchmal sogar verdeckt hat". 

1) 

2) 

3) 

4) 

-o-o-o-o-o-o-o-o-o-o-o-o-o-

Dieser erste biographische Teil wurde vor allem auf die Biographie von 
VALSON gestutzt. Grosse Teile von Cauchys Nachlass sind inzwischen ver­
lorengegangen. Eine Zusammenstellung von erhaltengebliebenen Dokumenten 
findet man in Oeuvres, Serie II, Bd. 15, S. 6llff. 

Vgl. VALSON, s. 18 und BIOT, s. 144. 

Vgl. VALSON, s. 27. 

Nach VALSON, s. 29. Brief vom 10. Dez. 1810. 
5) e 

A.-L. Cauchy, Surles polygones et les polyedres, J.E.P. 2_, 16 cah. 
(1813) = Oeuvres, Serie II, Bd. 1, S. 35f. 

6 ) Vgl. die chronologische Zusammenstellung der Arbeiten von CAUCHY in 
Oeuvres, Serie II, Bd. 15, S. 583-607. 

7) A.-L. Cauchy, Memoire sur les int1grale3 definies (gelesen 1814, zum 
Druck eingereicht 1825), M. Sav. Etr. l_ (1827) = Oeuvres, Serie I, Bd. 1, 
s. 329-506. 

8 ) A.-L. Cauchy, Theorie de la propagation des ondes a la surface d'un 
fluide pesant d'une profondeur indefinie (eingereicht 1815), M. Sav. Etr. 
l_ (1827) = Oeuvres, Serie I, Bd. 1, S. ~i-318. 

9) 
Vgl. die Briefauszuge in VALSON, s. 55ft. 

lO)Vgl. die Ausfuhrungen von BIOT, S. 147f. 
11) - re A.-L. Cauchy, Cours d'analyse de l'EcolE Royale Polytechnique, 1 partie, 

Analyse algebrique, Paris 1821 = Oeuvres, Serie II, Bd. 3. 
12) -A. -L. Cauchy, Resume des le,;:ons donnees §. l 'Ecole Royale Polytechnique, 

sur le calcul infinitesimal, Bd. 1, Par i., 1823 = Oeuvres, Serie II, 
Bd. 4. 

13) 
A.-L. Cauchy, Memoire sur les integrales definies, prises entre des 
limites imaginaires, Paris 1825 = Oeuvres, Serie II, Bd. 15, s. 41-89. 

14) 
Vgl. BIOT, S. 150. 

15 )Die erhaltengebliebenen Akten von der Amtsenthebung von Cauchy sind von 
Taton analysiert und publiziert worden. Vgl. TATON, s. 142f. 

16) 
Vgl. CASTELLA und TERRACINI. 

17 )Fur den Turiner Aufenthalt vgl. vor allem TERRACINI sowie VALSON, S. 75ff. 



18)Die vollstandige Fassung dieser Schrift ist in den Jahren 1832/33 als 
Lithographie erschienen (= Oeuvres, Serie II, Bd. 15, s. 262-411). 
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Den Abschnitt uber die Potenzreihenentwicklung hat Cauchy im Jahre 1841 
mit einigen Erganzungen in den Exercices Mathematiques abdrucken lassen 
(= Oeuvres, Serie II, Bd. 12, S. 48-112). Ausfuhrliche Angaben uber die 
weiteren Fassungen und Abdrucke gibt GRATTAN-GUINNESS 1975, S. 182f. 
Hinzuzufugen ist eine von Cauchy im Jahre 1840 in den Exercices Mathema­
tiques veroffentlichte Abhandlung (= Oeuvres, Serie II, Bd. 11, S. 43-
50), in der Cauchy selbst (ebenda s. 45) Angaben macht uber die ver­
schiedenen Fassungen. 

19)vgl. VALSON, s. 83. Angaben uber den Aufenthalt von Cauchy in Prag 
machen auch D'HAUTPOUL, RYCHLIK und SINACEUR. 

20) 
Vgl. VALSON, S. 90. 

21 )cauchy hat im Jahre 1843 schriftlich gegen diese Verknupfung protestiert. 
Vgl. den diesbezuglichen Brief von Cauchy in VALSON, s. 101-104. 

22 )Vgl. BIOT, S. 152. 

23 )Vgl. BIOT, S. 153f. 

24 )BIOT, S. 159. Vgl. auch BIOT, S. 154 und VALSON, S. 274, woman eine 
leicht variierende Formulierung findet. 

25 ) l 125 Vg. TATON, S. • 

. 26 )vgl. z.B. BIOT, S. 152. 

27 )Vgl. VALSON, S. 188-242. 

28 )vgl. VALSON, S. 108-121. 

29 )Nach VALSON, s. 36-39. Wir verweisen in diesem Zusammenhang auch auf das 
Memoire Surles limites des connaissances humaines (= Oeuvres, Serie II, 
Bd. 15, s. 5-7), welches Cauchy am 14. Nov. 1811 vor der Societe Acade­
mique de Cherbourg gelesen hat. 

3o)Nach 192 TERRACINI, S. • 
3 l)Nach TERRACINI, S. 160. 
32) BERTRAND, S. 210. 
33 )Vgl. TRUESDELL - TOUPIN. 

34 >Fur eine Wurdigung des Gesamtwerkes von Cauchy verweisen wir auf den 
ausgezeichneten Artikel von FREUDENTHAL. 

35 >oeuvres, Serie II, Bd. 4, S. 9. 
36 )vgl. Oeuvres, Serie II, Bd. 4, s. 10. 
37) 

VALSON, S. 127. 
38) Oeuvres, Serie II, Bd. 3, s. 19. 
39) 

Oeuvres, Serie II, Bd. 3, s. 114. 
40) 

Oeuvres, Serie II, Bd. 3, s. 115f. Vgl. 
s. 267ff. 

41) 
Oeuvres, Serie II, Bd. 3, s. 135ff. 

42) 
Oeuvres, Serie II, Bd. 3, s. 43. 

43) 
Oeuvres, Serie II, Bd. 3, s. 19. 

auch Oeuvres, Serie II, Bd. 7, 
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44 )Vgl. SINACEUR, S. 108ff. und DUGAC, S. 63f. 

45 )Fur Stellenangaben und detaillierte Ausfuhrungen vgl. YOUSCHKEVITCH, 
s. 64ff. 

46 )vgl. hierzu vor allem JOURDAIN 1914. Jourdains Gedanken sind wahrend der 
letzten Jahre van verschiedenen Autoren erneut aufgegriffen warden. 

47 >A.-L. Cauchy, Memoire sur les fonctions continues, C.R.~ (1844) 
Oeuvres, Serie I, Bd. 8, S. 145f. 

48 )Einen Ueberblick uber die Anfange der komplexen Funktionentheorie gibt 
z.B. MARKUSCHEWITSCH. 

49 )Vgl. Oeuvres, Serie I, Bd. 1, S. 336ff. Wir geben Cauchys Ausfuhrungen 
hier vereinfacht und mit vereinheitlichter, leicht modernisierter 
Notierung wieder. Fur eine ausfuhrliche Diskussion der 1814er Arbeit 
verweisen wir auf ETTLINGER. 

50)Vgl. Oeuvres, Serie I, Bd. 1, s. 378ff. 

51 )vgl. Cauchy, Oeuvres, Serie II, Bd. 1, s. 354. Hinsichtlich der Rivalitat 
zwischen Poisson und Cauchy vgl. u.a. GRATTAN-GUINNESS 1970, s. 28ff. 

52) 
Vgl. Oeuvres, Serie I, Bd. 1, s. 338. 

53 )cauchys Notierung wurde wiederum leicht modernisiert. 
54) 

Vgl. unten. 
55 )Die Frage, ob es notwendig sei "endlich und stetig" oder bloss "stetig" 

zu sagen, wird van Casorati noch im Jahre 1864 in Gesprachen mit 
Kronecker und Weierstrass aufgeworfen. Vgl. NEUENSCHWANDER 1977, s. 7f 
und 16. 

56 )Vgl. NEUENSCHWANDER 1978. 

57 )cauchy begrundet diesen Schritt in Oeuvres, Serie II, Bd. 11, S. 50 und 
in Oeuvres, Serie II, Bd. 12, S. 58f, Randanmerkung 1. 
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THE MATHEMATICAL THEORY OF CLINES 

LA. PELETIER 

1. Introduction 
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In recent years there has been considerable interest in the effect 

on the genetic composition of a population caused by an inhomogeneous en­

vironment. In some polymorphic species it is found that the frequency of 

one type varies monotonically in a certain direction. Huxley [11] has 

called such a gradient a cline, and he lists numerous examples. 

A cline may be due to the fact that one particular type of the 

species enjoys a selective advantage in one part of the habitat and a dis­

advantage in another. In addition there will be the effect of migration, 

which will tend to keep the different types mixed. Haldane [8] mentions 

the example of the deer-mouse which inhabits Flordia and Alabama. On the 

sandy beaches of the Gulf of Mexico the lighter coloured subspecies 

is less visible and thus enjoys an advantage there. 

The first mathematical treatment of migration and selection was given 

by Fisher [6]. He considered a population, distributed in a one-dimensional 

uniform habitat n, in which each individual belongs to one of three 

possible genotypes: aa, aA and AA. Let u(x,t) denote the fraction of 

alleles of type a amongst the total number of alleles in the population 

at the point x En and at time t 2: 0. Thus u is a measure of the genetic 

composition of the population which takes on values in the interval [0,1]. 

Adapting Fisher's model to a non-uniform habitat, Haldane [8] showed that 

under a number of simplifying assumptions u satisfies the equation 

uxx + >..f(x,u) X En, t > 0 (1) 
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in which subscripts denote partial differentiation and A is a positive 

constant, which is proportional to the inverse of the rate of migration. 

A detailed discussion of this model was recently given by Fife [4]. 

The function fin (1) is related to the relative fitnesses of the 

three genotypes. We shall consider two particular functions f: 

I. f(x,u) s(x) u(l-u), 

where s: Q + lR is piecewise continuously differentiable. This choice is 

appropriate for a population in which the fitness of the heterozygote aA 

lies between the fitnesses of the homozygotes aa and AA. 

II. f(x,u) u(l-u) [u-a(x) ], 

where a: n + (0,1) is continuously differentiable. In this case the fitness 

of the heterozygote is assumed to be inferior to the fitnesses of the 

homozygotes. 

Let us denote by Qa the set of points x E Q, where the fitness of aa 

is superior to the fitnesses of aA and AA, and let QA be the set of points 

x E Q where AA has the superior fitness. For the functions f defined above 

the sets Qa and QA can be given in terms of the functions s, respectively 

a. 

Case I. Q 
a 

Case II. Q 
a 

{x E Q {x E Q s {x) < 0} 

{x E Q {x E Q 

We shall be interested in the situation in which neither Qa nor QA is 

empty. Then the two homozygotes are competing, each of them being 

advantageous in part of the habitat. We shall then enquire into the pos­

sible existence of equilibrium solutions, in particular in those in which 

the three genotypes coexist, and into the stability of these solutions. 

In the case that Q = R the existence, uniqueness and stability of 

clines has been discussed by Conley [3], Nagylaki [12,13] and Fife and 



Peletier [5]. In this paper we shall consider the case of a bounded 

habitat. We shall assume that Q = (-1,1) and that at the boundary of Q 

there is no flow of.genetic material. This assumption leads to the con­

ditions [12] 
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o, u (+1,t) 
X 

0 t ~ 0. (2) 

After introducing some basic notions in section 2, we shall discuss 

Cases I and II in sections 3 and 4 respectively. The discussion of Case I 

is largely based on results due to Fleming [7] although in some places we 

shall present somewhat different proofs. The discussion of case II is 

based on [14]. 

2. Preliminaries 

Suppose u(x) is an equilibrium solution of (1) and (2). Then u is a 

solution of the problem 

u" + Af(x,u) = 0 
(A) { 

u' (-1) = 0, u' (+1) 0. 

-1 < X < 1 (3) 

(4) 

Equation (3) is the Euler equation satisfied by the critical points of the 

functional 

where 

1 
V(u) J {~(u 1 ) 2 - AF(x,u)}dx, 

-1 

F(x,u) Ju f(x,s)ds 
0 

which is defined on the Sobolev space H1 (-1,1). This is the space of 

functions~ E L2 (-1,1) such that~•€ L2 (-1,1), endowed with the norm 
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1 
J q>2dx. 

-1 

If u is a qriticalpoint of V and van arbitrary element of H1 (-1,1), then 

V(u+v) V(u) + ½a(v,v;u) + p(llvll 1 l, (5) 

where 

a(v,v;u) 
1 2 2 J {v' - Af (x,u(x))v }dx 

-1 u 

and 

p(s) + 0 as s + 0. 

The variational structure of Problem .'\. yields a simple criterion fur:·fue 
1 

stability of equilibrium solutions. Suppone 1jJ EH (-1,1) and u(x,t;~,) is 

the solution of (1), (2) which satisfies tr:e initial condition 

u(x,O;ljJ) -1 $ X $ 1. (6) 

Suppose u* is an equilibrium solution. Then we shall say that u* is stable, 

if for any£> O, there exists a o > 0 such that 

111/J - u* 11 1 < o => llu(•,t;ljJ) - u* 11 1 <£fort?: O; 

otherwise we call u* unstable. 

THEOREM 1.[7]. Let u* be an isolated equilibrium solution. 

(i) If there exists a positive constant v such that 

2 
a(v,v;u*) ?: v llv 11 1 

then u* is stable. 

1 for all v EH (-1,1) 



(ii) If there exists an element v E H1 (-1,1) such that 

a(v,v;u*) < 0 

then u* is unstable. 

Another criterion is based on the sign of the largest eigenvalue 

of the eigenvalue problem obtained by formally linearizing equation (3) 

•about. an .equilibrium solution u: 

{ 
y" + ;\fu(x,u(x))y = µy 

(Bu) 
y' (-1) = 0, y' (+l) = O. 

It is well known that this problem has a sequence of simple eigenvalues 

µ 1 > µ2 > ••• , and that 

a(y,y;u) 

lly II~ 
y + 0' (7) 

the minimum being attained for the eigenfunction y 1 corresponding to µ 1 • 

Thus, if µ 1 > 0, 

On the other hand, if µ 1 < 0, 

2 
a(y,y;u) ?c>: v lly 11 0 

1 for ally EH (-1,1), 
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where v = -µ 1 > 0. Since fu(x,u(x)) is uniformly bounded in [-1,1] it fol­

lows that there exists a constant v' > 0 such that 

2 
a(y,y;u) ?c>: v' lly 11 1 

1 for ally EH (-1,1). 

Summarizing we have the following result. 
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THEOREM 2. Let u be an isolated equilibrium solution, and let µ 1 be the 

largest eigenvalue of the eigenvalue problem Bu. Then (i) if µ 1 > o, u is 

unstable., and (ii) if µ 1 < O, u is stable. 

3. Case I 

Since f(x,0) f (x, 1) 0 for -1 ~ x ~ 1, the functions 

are equilibrium solutions. To discuss their stability we define the 

number 

where 

and 

inf 
VEQ 

!1 '2 
-l V dx 

f1q,,2dx 
-1 

q(x) fu(x,u(x)) = s(x)[1-2u(x)] 

Q {vEH1 (-1,1) : f1qv2dx > 0}. 
-1 

(8) 

In view of the assumptions we made about sin the introduction we may ex­

pect q(x) to take on both positive and negative values. It can be shown 

[2] that 

(i) if f1q(x)dx ~ 0, then A*= 0; 
-1 

(ii) if J1q(x)dx < 0, then A*> 0 and there exists a function v E Q such 
-1 

that 



1 
f -,2 

V dx 
-1 

1 2 f qv dx 
-1 

Let us consider the solution u0 • Then q(x) 

1 
a(v,v;u0 ) = f {v" 2 - /\s(x)v2}a.x. 

-1 

In particular, with v(x) = 1, 

1 

a(v,v;u) 
0 

1 
- A f s(x)dx. 

-1 

s(x) and 

Thus, if f s(x)dx > o, a(v,v;u0 ) 

-1 
< 0 and it follows from Theorem 1 

1 
that u 

0 
is unstable for any A> 0. If f s(x)dx = 0, a(v,v;u0 ) = 0. 

-1 
However, since vis not a solution of Problem Bu, it cannot be a 

minimizer of (7). Therefore -µ 1< 0 and hence, by0 Theorem 2, u0 is un­

stable for any/\> 0. 
1 

Next, suppose that f s (x) dx < 0 and /\ > /\ *. Then, in view of (9), 
-1 

because V € 

A E (O,/\*). 

a(v,v;u) 
0 

Q. Hence u 
0 

1 2 
(/\*-/\) f sv dx < O 

-1 

is unstable for A > 

Then, assuming that l!y1!! 0 1, 

1 
( I 2 2 

-µ1 f Y1 - /\sy1 )dx. 
-1 

A*. Next, let 

1 2 
Suppose y 1 f Q. Then f sy1dx ~ 0 and hence 

-1 

1 I 2 
-µ1 ~ f Y1 dx ~ 0. 

-1 

Thus -½ - 2 , when µ1~ 0. However, in this case it 

301 

(9) 

(10) 
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follows from Problem B that 
u 

0 

1 
½A f s(x)dx < 0. 

-1 

1 2 
Next, suppose y 1E Q. Then f sy1dx > 0 and, by (8), 

-1 

1 2 
f y~ dx 2': 

-1 

which yields, together with (10) 

implying that µ 1< 0 as well. Thus, if A E (O,A*), µ 1< 0 and it follows 

from Theorem 2 that u is stable. 
0 

In an entirely analogous manner we can obtain corresponding results 

THEOREM 3. Let A!= A*(u.) i = 0,1 be defined by (8). 
1 l. l. 

(i) Let f s(x)dx < 0. Then u 1 is unstable for any A> 0 and u is unstable 
-1 0 

for A> A* and stable for A E (O,A*). 
01 0 

(ii) Let f s(x)dx > O. Then u0 is unstable for any A> 0 and u 1 is un-
-1 

stable for A> A* and stable for A E (O,A*1J. 
1 1 

(iii) Let f s(x)dx = 0. Then 
-1 

u 0 and u 1 are both unstable for A> O. 

1 
Let us return to the 

of Theorem 3, the largest 

case f s(x)dx < 
-1 

eigenvalue µ 1 

O. Then, as we saw in the proof 

µ 1 (A,u0 ) changes sign at A= A~. 

It can be shown by means of an argument involving degree theory [15,14] 

that this implies that the point (A*,u) is a bifurcation point, i.e. in 
0 0 

anyIR x H1 neighbourhood of this point there exists a solution u f u 
0 

of Problem A. In fact, Fleming [7] showed by different means that there 

exists a branch of solutions 



for so~e small o > 0 such that 

and 

-+ u 
0 

in H1 as>.-+>.* 
0 

A detailed description of the behaviour of solutions of (1),(2),(6) near 

the point (>.*,u) was given by HoppenstE!adt[10]. Finally, it was shown 
0 0 

by Henry [9] that the branch C0 can be continued uniquely to the branch 

C {(>.,cj,().)) >.*<).<oo}, 
0 

i.e. C contains no bifurcation points. In addition 
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on C. (11) 

and hence, by Theorem 2, solutions on Care stable. 

REMARK. In the case that s(x) is a nondecreasing function and _().,cj,) € C 

it is not difficult to see that 

cj,' (x) > 0 -1 < X < 1. 

For in that case f (x,cj,(x)) ~ 0 and hence, writing cj, 1 = w 
X 

w"+).fu(x,cj,(x))w so, 

w(-1) = 0, w(+l) = 0. 
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Moreover, in view of (11) there exists a constant v > 0 such that 

a(v,v;cp) 
. 1 

for all v EH (-1,1). 

The result now follows from an application of the maximum principle 

[5, Appendix]. Thus ifs is nondecreasing, any solution cp of C is a 

cline. 

4. Case II 

As in Case I, the trivial solutions u0 and u1 are equilibrium 

solutions for all A> O. To determine whether or not they are stable we 

observe that 

-a(x) -l+a(x). 

Therefore, by our assumptions on a, there exists a constant v > 0 such 

that 

f (x,u.) < - v 
u J. 

for -1 ~ x ~ 1 , i 0, 1 (12) 

and hence there exists a constant v' > 0 such that 

i=0,1 

for all v E H1 (-1,1). Thus, by Theorem 1, we obtain the following result. 

THEOREM 4. The trivial solutions u 0 and u 1 are stable for all\> 0. 

It follows from (12) and a result due to Amann [1] that for each 

\ > 0 there exists at least one nontrivial solution cp of Problem A, i.e. 

0 < cp (x, \) < 1 for -1 S x ~ 1 , \ > 0. 



For small values of A, $(•,A) turns out to be the only nontrivial 

solution. Moreover, it depends continuously on A and 

where 

1 
a.= l:i f a(x)dx. 

-1 

as A + O, 

THEOREM 5. For small values of A, $(•,Al is unstahle. 

Proof. Let v(x) - 1. Then, by (7), 

By (13) 

Hence 

1 
lim ff (x,$(x,A))dx 
;l..+0 -1 u 

1 
l:iA ff (x,$(x,A))dx. 

-1 u 

for A small, 

which implies - by Theorem 2 - the desired result. 

REMARK. As in Case I, if a(x) is a nonincreasing function,$(x,A) is 

strictly increasing in x, and is therefore a cline. In fact, it can be 

shown that any nontrivial solution $(•,;l..), which is connected to (O,a.) 

by a continuous branch in lR x H1 is a cline. 
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(13) 

For large values of A, the situation is more complicated. Assuming 

again that a'(x) < 0 it can be shown by means of the method of super and 

subsolutions, and a shooting method, that Problem A has at least three 

strictly increasing solutions $1 < $2 < $3 • It appears that, for large 
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values of A, these are the only clines. 

To conclude this section we shall show how the unique cline <P, which 

exists for small values of A, and the three clines <Pi(i = 1,2,3) which 

exists for large values of A, f~t together in a simple example. 

Suppose the function a(x) is given by 

-1 $ X < 0 
a(x) 

where 0 <a<½. Then a(-x) = 1-a(x) for -1 S x s 1 and hence, for small 

values of A, the unique cline <P(•,A) must have the same symmetry property: 

<P (-x,A) 

In fact one can prove the following result: 

THEOREM 6. For each A> 0, Problem A has a unique cline <P(•,A) which 

satisfies (14), and has the followiYl{J properties 
) + 1 . l . ( i) <P ( • , A : lR -+ H ( -1 , 1) 1,S ana yt-z,c; 

(ii) µ 1 (A,<P) > O for small values of A; 

(iii) µ1 (A,<P) < O for large values of A. 

Set 

s { (A, <P) A> 0, <P symmetric}, 

(14) 

where we say that <P is symmetric if it satisfies (14). Then it follows from 

Theorem 6 and the analyticity of µ1 (A,<P), that there exists a point 

(A ,<P) ES where µ 1 (A,<P) changes sign. This implies that (A ,<P) is a 
0 0 O O 

bifurcation point, from which two new clines emerge, thus accounting for the 

three clines found for large values of A. 
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VAN DANTZIG'S COLLECTIVE MARKS REVISITED 

J.Th. Runnenburg 

0. INTRODUCTION 

As this is an occasion for looking back, I decided I would have 

another look at the propagation of Van Dantzig's "method of collective 

marks" through the mathematical community .. Certain problems in probabil­

ity theory can be solved very elegantly by that method. Still only very 

few people seem to use collective marks, so too few people know about 
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them. This may partly be due to the fact that VAN DANTZIG [1947] is in 

Dutch and that VAN DANTZIG [1949], [1955] and [1957] as well as VAN DANTZIG 

& ZOUTENDIJK [1959] are in French. 

Here I discuss a new set of (not-new) examples illustrating the meth­

od (see RUNNENBURG [1965] for another set), not hesitating to show some 

of the shortcomings as well. I still consider it a very fruitful occupa­

tion to work through a number of these examples. 

1 . FLOWGRAPHS 

In RADE [1972] collective marks and flowgraphs are combined into an 

attractive amalgam. Just one of the simpler examples (starting on page 162 

of the book) is described here, to whet your appetite. 

Suppose we perform a series of independent Bernoulli trials, eachwith 

outcome 0 with probability q or outcome 1 with probability p, so p+q = 1. 

We want to find the generating function of fn, the probability of obtain­

ing the (complete) pattern 1010 for the first time at the n-th experiment. 

The collective mark approach in this case is the following. Introduce a 

second series of independent Bernoulli trials, now each with outcome "no 

catastrophe" with probability sor "catastrophe" with probability 1 - s. 

Do this in such a way, that all trials involved are independent as well. 
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Call a trial of the first kind a "trial" and a trial of the second kind a 

"toss". Let us further agree to have a "toss" after each "trial" and to 

stop experimenting after we have performed the "toss" following the "trial" 

giving us the completed pattern 1010 for the first time. Then the quantity 

we are interested in is 

(1.1) f(s) }: 
n=l 

the probability of obtaining our pattern without having a catastrophe. The 

growth of the pattern, or the successive stages leading to the completion 

of the pattern, can be described in a figure called a flowgraph. 

ps ps 
1 11 I I 

start I I I 

qs I qs 1 

I 0 I I 10 I ps I 101 I ps I 1011 
I I I 

qs qs 

I 100 I II 1010 II 1 I 

Here we have registered the last relevant outcomes from the series of 

"trials". If the last two trials have resulted in 10 say (and the pattern 

has not yet been completed), then at the next trial we reach 101 (without 

a catastrophe) with probability ps or 100 (without a catastrophe) with 

probability qs. In the first case we are nearer our (specially marked) 

goal, in the second case we have failed to complete the pattern and are 

back where we started from, in the literal sense. The arrows indicate the 

possible development and the added probabilities are the probabilities of 

making the move along that arrow without having a catastrophe on that move. 

The l's near the arrows can be read "we are really back at". 

Clearly in moving along the arrows from "start" we either first reach 

0 or we first reach 1, in the second case we either first reach 100 or we 

first reach 1010. The probability of at once going to 0 and then reaching 

1010 without a catastrophe is qs f(s). The probability of getting to 100 

for the first time without going through 0 and without having a catastrophe 
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can be obtained by simplifying the relevant part of the first flowgraph to 

ps 
start 

qs 

and reading off for this probability 

10 

100 

2 2 
p s 

(1.2) 
C'JS 2 2 qs 

ps. ~1 (1 + p s -- + ••• ) • qs -ps 1-ps 

2 3 
pq s 

2 3 • 
1-ps-p qs 

, The probability of reaching 1010 without a catastrophe and without going 

through O or 100 follows from the simplification 

ps 
start I I 

I 

and is seen to be 

(1.3) ps . 

But then we have 

--2_ 
1 • ps -ps 

-2-1 s • ps -ps 
1-__.2.,_ .ps. ps 

1-ps 

qs 

2 3 

I 
I 

2 2 4 
p q s 

2 3 
1-ps-p qs 

I 
I 

II 

ps 

101 

qs 

1010 

(1.4) f(s) qsf(s)+ pq s f(s) + 
2 3 

2 2 4 
p q s 

2 3 ' 
1-ps-p qs 1-ps-p qs 
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from which f(s) is easily obtained. 

REMARKS. Flowgraphs are used in ENGEL [1976], HOWARD [1971], LORENS [1964], 

MASON & ZIMMERMANN [1960], MURPHY [1957] as well. The advantage of interpret­

ing the generating variables as a probability clearly lies a) in the ce­

menting together of the fn to one quantity f(s) with a well-defined probabi­

listic meaning and b) in the economy of expression in the explanation of the 

use of the flowgraph. We have here an illustration of the statement in VAN 

DANTZIG [1957]: "En 1946, 1947 nous avons expose les principes d'une methode 

qui admet parfois d'obtenir une fonction generatrice (ou aussi une fonction 

caracteristique a argument reel) sans recourir d'abord a une equation 

recurrente. 

L'aspect peut-~tre le plus caracteristique de notre methode consiste 

en une interpretation probabiliste des variables auxiliaires intervenants 

dans la fonction generatrice, et de cette fonction elle-meme." 

In this example we have met with an extreme in the sense that where 

elsewhere most of the derivation-through-interpretation is given in words, 

here much is read off from a picture. 
0 

The expressions of disapproval Rade has had to listen to in discussing 

the above and related examples ("this is only a didactic trick") seem very 

short-sighted. In ENGEL [1976] flowgraphs with probabilistic interpreta­

tion are used in a textbook aimed at "fenior high school and beyond". The 

collective marks approach is introduced on page 67 and occurs in a very 

natural way. 

2. RUNS 

In VAN DANTZIG [1949] the method of collective marks was published 

for the first time. Here the name arose quite naturally. Van Dantzig was 

very much aware of the inappropriateness of the term "collective marks" in 

certain contexts. Unfortunately I do not remember the new name he thought 
0 

of. Rade uses something like "method of the extra event" and that is much 

more descriptive and indicative of what we are dealing with. 

In VAN DANTZIG [1949] several "collective marks" are introduced. 

Among them the following one. Consider a probability space (n,F,P) and a 

finite number of dissections of n in measurable sets, i.e. for 

m € {1,2, •.. ,r} with r a positive integer, 
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CX) 

(2 .1) n U B with disjoint Bml'Bm2 , ... E F. 
n=l mn 

Take (see Note at the end of this paper) 

(2. 2) 

and associate with every pair (m,n) a lottery from which the result 

"catastrophe Em" is obtained with probability 1 - smn and hence "no catas­

trophe Em" with probability smn. Catastrophes occur independently from one 

another and from the Bmn Take a ticket from lottery (m,n) only if Bmn 

occurs. Then 

def 
(2. 3) C 

is the probability of "no catastrophe of any kind" associated with taking 

a random element from this probability space. C is the "collective mark" 

of the Pn 1,n2 , ... ,nr or we can also say the "mark" of the "collection" of 

subsets nr 1 B of r2 (provided we let the smn range independently over 
m= mnm 

the real interval [0,1]). 

On these collective marks one can operate in several ways: one can 

demark, substitute or draw. We shall not go into these possibilities (only 

dealt with in detail in the 1949 paper), but just consider the main ex­

ample from that paper. Unfortunately this application is incorrect as it 

stands, in the sense that the final formula ((65) on page 40) is correct, 

but has been obtained by an incorrect interpretation (RA as defined above 

(59) seems to have no meaning whatsoever, relation (59) with RA as defined 

in (60) is the correct quantity we need analytically, the first relation 

after (61) is trivially not equivalent to (60) though it should be and the 

sentence containing that relation has other incorrect and incomplete in­

formation). In VAN DANTZIG & ZOUTENDIJK [1959] the same derivation is 

needed again in a more general context and now a different interpretation 

is used. In a footnote Van Dantzig points out that (59) and RA in the 1949 

paper have not been interpreted correctly. One can hardly hope for a more 

convincing warning concerning the possible pitfalls in using the method of 

collective marks! 

Let us now first describe and then solve the problem in question in 

the traditional way, using mainly a choice of the notations from VAN DANTZIG 



314 

[1949] and VANDANTZIG & ZOUTENDIJK [1959]. 

We are concerned with a series of n independent experiments, where 

each experiment leads to just one of the marks (or outcomes) AA (with 

A e: {1,2, ... ,k} for a finite integer k) with probability pA (hence 
k 

EA=l pA = 1). Say on carrying out these experiments we obtain first a 1 

times AA1 , then a 2 times AA 2 , ••• and finally ar times AAr with 

Al t- A2 t- ..• t- Ar (although we can have ;\ = A3) where 1 5: r 5: n and 

E~=l ap = n. This description is in terms of the complete iterations or 

runs we have obtained in our series of n experiments, where the first run 

consists of a 1 marks AA, the second of a 2 marks AA, etc. Say in all we 
1 2 

obtain mAi runs of AA of length t, where 

k n 
and l l imAi = n. 

A=1 i=1 
(2. 4) 

These same runs can occur in a different order. We are interested in the 

probabilities 

abb 

of obtaining prescribed runs in arbitrary order. It is convenient to intro­

duce a generating function 

(2.6) * C 
n 

abb def 

mAi 
where sAi is the mAi-th power of a complex variable sAi with lsAil 5: 1 

and EmAt stands for summation over all (sets of indices) mAi satisfying 

(2.4). It is easier to take a generating function with respect ton as 

well, so we further introduce 

(2. 7) 
abb 

c* 
def 

1 + 

where t is a complex variable with It!· < 1 (so we are sure of absolute 

* convergence in (2.7) as the absolute value of en is at most 1). We are in 

fact trying to find (reordering the terms in (2.7) and returning to the 

description with successive runs) 



(2. 8) 

Introducing 

(2. 9) 

* C 1 + 
00 00 

I I )). 1 , A2 , .•• , Ar 
n=l r=l A 1 "'A2 ;t ••• "'Ar a 1 ?: 1 a2 ?: 1, ... , ar?: 1 

a 1 +a2 + ... +ar = n· 

we can rewrite (2.8) (after changing the order of sUJlllllation) 

(2 .10) c* 
00 

1 + I )A1,A2, .•. ,Ar IA I 
r=1A 1,,A2 ;t ... ;t\ 1A2 

Clearly (collecting terms starting with IA) 

(2. 11) 

where 

(2 .12) 

* C 

But then (collecting terms starting with I) 
µ 

(2. 13) I D . 
µ µ 

Now (using (2.13) in (2.11)) for each A 

(2 .14) 

and so (using (2.14) in (2.11) to eliminate DA} 

(2. 15) 

315 

If we want to derive (2.15) with the method of collective marks, all 

we have to do is find a suitable interpretation for (2.11) and (2.13). As 

(2.8) is hard to interpret as it stands, we multiply both sides with 1 -t 

and take 
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(2.16) C=(l-t)c*. 

We imagine that each time before we do an experiment (producing AA with 

probability pA) we toss at-coin to decide whether we do that experiment 

(with probability t) or stop altogether (with probability 1 - t). We take t 

and each sAt between O and 1 (with only t strictly less than 1), so each 

sA1 can be interpreted as the probability of the non-occurrence of a ca­

tastrophe. We now have a set-up, where C stands for the probability that 

we don't have a catastrophe in a stochastic process consisting of alterna­

tively tossing at-coin to decide whether we do one more experiment and 

doing that experiment in case of a positive decision, continuing in this 

way till we stop at a negative decision, with the further complication that 

every time we have completed a run of one kind of outcome of the experiment, 

say a run of marks AA of length 1, we toss a sA1-coin leading to "catastrophe" 

(with probability 1 - sH) or "no catastrophe" (with probability sH). Of 

course we assume the independence of all outcomes of experiments and coin 

tosses. We toss a catastrophe coin every time a run of outcomes has been 

completed, either by the start of a new run or by the process stopping._ If 

no experiment is done at all, we have no catastrophe with probability 1. 

This is the 1949 description of the stochastic process we use for the inter­

pretation. The correct 1959 interpretation is now easy to give. Write CA 

for the probability that there is a first experiment producing AA and no 

catastrophe occurs during the process. Then clearly 

(2.17) C 

k 

1 - t + l CA, 
A=l 

as we either have no first experiment or a first experiment leading to 

some AA. If there is a first experiment leading to AA, then there is either 

only a first run of AA's or there is a first run of AA's followed by a 

second run of A 's for someµ~ A. The probability of having only a single 
µ 

run of AA's without a catastrophe is (1-t)~A' while the probability of 

having a first run of AA's, a second run of Aµ's for a fixedµ~ A and no 

catastrophe in the process is ~Acµ. Hence 

(2.18) C ) • 
µ 
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The derivation through interpretation has now been obtained (without (2.8), 

(2.10) and (2.12)). If we write (1-t)<!>ADA for CA, then the difference be­

tween (2.11) and (2.17) as well as that between (2.13) and (2.18) disappears. 

The main step in the interpretation is the assertion that a certain 

probability is given by <!>Acµ. I find it hard to be absolutely certain of 

this fact without in some way, however superficial, passing through the 

first derivation. Having done that once, I have no difficulty in accepting 

the second derivation as the full story from then on and presenting it as 

such to an audience. Perhaps you should not try to learn to write shorthand 

until you have learned to spell. Van Dantzig could write shorthand. 

After I had decided to include the main 1949 example in this paper, 

I discovered the inconsistency in that example. Before trying to rescue it 

I obtained (2.15) by the analytic argument I described. It showed the cor­

rectness of the main formula for this example in the 1949 paper. I then 

remembered that the interpretation might be given again in the Van Dantzig 

and Zoutendijk paper. I checked with a version of the manuscript and found 

.the error repeated. I had a look at a reprint to see where the article was 

published and then noticed the very elegant new interpretation in the final 

version. After first changing the present analytic derivation so it differed 

only by a factor 1 - t in some places from the second derivation, I changed 

it back to the original one as the natural one (for me). The analytic de­

rivation can be interpreted too, but leads to such complicated formulations 

that I intended to use it to show the superiority of the analytic deriva­

tion over the probabilistic one in this case (until I saw the 1959 reprint). 

One can also use a flowgraph approach to obtain C. This leads to 

(2.19) C 
k 

1 - t + L tpABA, 
A=1 

where the probability BA satisfies 

(2. 20) 

or with CA= tpABA we have rederived (2.17) and (2.18). To give some in­

dication of how these relations come about, consider the next flowgraph, 

where for simplicity we have taken k = 2. Here we use S for start and E for 

end. Again we have to reach (some) E from S (without a catastrophe). Notice 

that once the flowgraph is drawn with the correct probabilities added, we 

can forget about catastrophes: we only have to go from S to E. 
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This flowgraph can be simplified to the next one (we are lumping states in 

a Markov chain, see KEMENY & SNELL [1960]). 

E 

tpl 812 = (tpl) -1~ I (tp2) 

812 621 

tp2 
821 

-1 

2 
(tp2) ~2(tpl) 

a2 

(tp2) -1~2 (1-t) a = 2 
E 

REMARKS. The problem in this section was studied in FRECHET [1940, 1943] 

to show that it is not at all unusual to find a run of one sex of length 

17 in the registration of 200,000 births and that this fact certainly does 

not prove the inapplicability of probability theory to this kind of data 

(as maintained by Marbe). Whereas Frechet obtained expectation and variance 

of the number of runs of length i of one kind inn experiments, where each 
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experiment is an alternative, and conjectured that this number has a Poisson 

limiting distribution if JI, and n tend to infinity in a suitable way, Van 

Dantzig proved this conjecture and much more on the basis of (2.15). 

According to GOOD [1973] the relation (2.15) was obtained by 

Gontcharov in 1943 for alternatives (k=2). According to FELLER [1968], 

page 305 "The classical theory of runs was rather messy, ... " and he there­

fore advocates his way of counting runs, which is quite different from what 

we did. One should reexamine Frechet's conclusions on the basis of Feller's 

theory. 

3. QUEUING 

Let x be a non-negative random variable with distribution function F 

and take 

(3. 1) J e-sxdF(x) for s ~ 0. 

[O,co) 

Assume that a stationary Poisson process (independent of~) with intensity 

A> 0 produces events at times x_1,x_1+x_2 , .••. Then x_1 ,x_2 , ••. are independent 

and exponential with parameter A and so $(A) stands for the probability 

that no event occurs in [O,~]. To find the generating function 

(3.2) f(s) L for 0 $ s $ 1, 
n=O 

where fn is the probability that exactly n events occur in [O,~], we can 

observe that 

(3.3) f n 

because conditional on x = x we have with probability 

(3.4) 
-AX (AX)n 

e ---n! 

exactly n events in [O,~] and hence 

(3.5) f(s) L 
n=O J 

[O,co) 

$(A(1-s)). 
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Alternatively we can toss a coin every time an event occurs to decide 

whether that event is a marked orie (with probability 1 - s) or an unmarked 

one (with probability s). Marking is done independently of~ and the 

Poisson process and independently for different events. Now f(s) is the 

probability, that during [0,~] no marked event occurs. Marked events occur 

according to a Poisson process with intensity A(l-s). This must be proved 

andquickly,as otherwise we won't find a short(er) proof for (3.5) by prob­

abilistic interpretation. Let us assume it is evident. Now we are back at 

the problem of finding the probability that no event occurs in [0,~], this 

time from a Poisson process with intensity A(l-s). Hence 

(3.6) f(s) c/>(A(l--s)). 

This kind of derivation is nice, but also rather superficial. For this and 

similar reasons YADIN [1970] is not a serious contribution to the method 

of collective marks. This is not a criticism of the paper as such, which 

is indeed a fine piece of work. It would qualify, if we were ready to call 

any paper in which difference equations and differential difference equa­

tions are avoided in the determination of generating functions a paper in 

which the method of collective marks is used. 

Next consider a passage from KINGMAN [1966] (relation (63) and beyond). 

The author states very definitely that he is here using the method of col­

lective marks. And he is, in the sense that he introduces an extra event in 

his original problem in order to get more information about the old problem. 

Consider the GI/G/1 queue: customers 1,2, ••• arrive at a single counter to 

be served at times 0,x_1 ,x.1+x.2 , ••• , where x_1 ,x.2 , ••• are non-negative random 

variables with the same distribution function A. The service times needed 

for the successive customers are .!!1 ,.!!2 , .•• , also non-negative random 

variables with a common distribution function B. Assume that .x,1 ,~1,.x,2 ,~2 , ••• 

are independent. Write~ for ~-Xn•!n for .!!1+~2+ ... +~ and~ for 

~ 1+~2+ ••. +~. Then 

(3. 7) 
abb 

b = P{v1 >0,v,.,>0, ••. ,v 1 >0,v :50} 
n - -"' --n- --n 

is the probability that in the first busy period exactly n customers are 

served. Write z for the length of the first busy period and~ for the 

number of customers served in that period, then z = En if n = n. Kingman 

proves 



(3. 8) 

and remarks that the same 

placed by u 0 , b replaced 
-n n 

n 
~ P{v 
n -n 

0 
relation holds (with~ replaced by~•~ re-

by b0 , etc.), if we start from non-negative 
n 
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random variables 0 0 
~ 1 ,~2, ••• that assume the value 00 with positive probabil-

ity (and have a common distribution, etc.). 

Now introduce the possibility that the server may die while working, 

into the problem with ~ 1 ,~2 , •••• Let his death occur at the first event 

from a stationary Poisson process (independent of the queuing process) with 

intensity 0 > O, that falls in a service period. The duration of that period 

is then 00 • This changes the original service times ~ 1 ,~2 , ••• to~~,~~•··· 

with, for finite non-negative s 1 ,s2 , ••• ,sn' 

(3. 9) 
n 
TT 

k=1 I 
[O,sk] 

-0s 
e dB(s). 

We use in the O version of (3.8) only s 0 s 0 restricted to finite -1 '-2' ... 

·values, so there is no harm in assuming~~,~~•··· independent with 

(3.10) P{s 
-n 

00} 1 - I -0s e dB(s). 

[0,00) 

Now with~ exponential with parameter 0 and ~,x_1,~1 ,x_2 ,~2 , ... indepen­

dent, we have (with XA(w) = 1 for w € A and XA(w) = 0 otherwise) 

-St 
-n 

(3. 11) P{v 0 :;; o} P{v :;; O,,!n :;; ~} Ee 
-n -n X{v :;; o} 

-n 

and 

(3.12) bo p{~~ > O,v0 > 
0 

O,v0 O} o, ... ,~-1 > :;; 
n -2 -n 

-0.!:n, -ez 
Ee Xfn=n}=Ee -Xfn=n}· 

The O version of (3.8) can now be written 

(3.13) n -0z ( ; Ex-e -, = 1 - exp - l 
' n=1 
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so in principle we now know the joint distribution of n and~, whereas 

with (3.8) we only knew 

(3.14) I 
n=l 

or the distribution of n alone. 

n 
~ P{v 
n -n 

REMARKS. Yadin told me that his paper was originally written without any 

attempt to use collective marks. At Neuts' suggestion he changed to the 

published version. 

Kingman's construction is a beautiful example of operating on a given 

collective mark to get a more general one. 

4. MORE QUEUING 

D. Sikkel, one of my students, was able to translate the first chap­

ter of Service systems with priorities by Gnedenko, Danieljan, Dimitrov, 

Klimov and Matvejev (in Russian). I obtained a copy of the book through 

J.C. Smit, Nijmegen. I am very grateful to the latter for drawing my at­

tention to this book and to the fact that it contains applications of the 

method of collective marks. 

So far I only know the contents of the first chapter. This part is 

promising, but not entirely satisfying. The explanations of interpretations 

are given in such a way, that much is left to the reader. In the first 

chapter a study is made of what happens in a busy period in an M/G/1 queue. 

In RUNNENBURG [1965] a result of Wishart for this busy period was derived 

by interpretation and it was intriguing to see that in the book slightly 

different aspects of the same basic situation had been focused on. 

A combination of all earlier results proved possible and is contained 

in SIKKEL [1975], a final exam paper. I include most of the proof of the 

general result here, both to have it published and to demonstrate that in­

terpretation and classical use of non-interpreted (maybe non-interpretable) 

summations and integrations can be combined to give seemingly complicated 

results in a fairly simple way. 

Assume that customers arrive according to a stationary Poisson process 

with intensity A> 0 at one counter to be served, where the service times 

~ 1 ,~2 , ... of customers 1,2, .•• are independent non-negative random vari­

ables with the common distribution function Band Laplace-Stieltjes 



323 

transform S with 

(4.1) sm 
-l;s 

Ee -n for I;~ 0. 

Take !in= ~ 1+~2 + •.• +;. Arrival intervals and service times are inde­

pendent. We start at time 0 with customer 1 present and his service period 

just starting. The server will remain at work from time 0 onwards, taking 

care (in some order) of all newly arriving customers one at a time till 

time~, the end of the first busy period, at which moment he becomes idle 

for the first time (because there are no more waiting customers). During 

the first busy period~ customers are served. 

One would like to know at a time a with 0 < a :s ~ 

(4.2a) 

(4.2b) 

(4.2c) 

(4.2d) 

(4. 2e) 

(4. 2f) 

(4.2g) 

(4.2h) 

(4.2i) 

!!!_(a)= number of customers fully served in [0,a], 

Z I (a) 

SI (a) 

s" (a) 

z" (a) 

~l(a) 

~2(a) 

~3(a) 

time needed for serving these !!!_(a) customers, 

a - ~•(a), 

remaining service time of the customer being served 
at a, 

z - ~• (a) - ~• (a) - ~" (a) , 

number of customers arriving in (0,~• (a) J less (:E_(a)-1), 

number of customers arriving in (a-~• (a) ,a], 

number of customers arriving in (a,a+~" (a)], 

~ (a) = number of customers arriving in (~-~" (a) ,~]. 

It seems rather hopeless to get information about all these random 

variables simultaneously. It is possible if we replace a by~• where~ 

has an exponential distribution (independent of the arrival intervals and 

service times) with parameter I; > 0. We need five different markings for the 

customers: with probability X a customer doesn't have mark 0, with probabil­

ity Y 1 (Y2 ,Y3 ,Y4) he doesn't have mark 1 (2,3,4). These will lead to geometr:i:-

cally distributed random variables r ,r ,r ,r and ru with 
-X -Y1 -Y2 -Y3 -it+ 

(4. 3) r} 
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and likewise for the Y's. We also need four different kinds of catastrophe. 

Each kind is produced by a stationary Poisson process, the respective in­

tensities are s1 ,n1 ,n2 ,s2 . The first kind we call s1-catastrophe, etc. We 

shall deal with these catastrophes through exponentially distributed ran­

dom variables ~s '~n '~n '~s with parameters s1 ,n1,n2 ,s2 respectively. 

All markings and1Poilson2pro~esses are independent of one another and of 

shall write 

m customers 

~,~•, ... ,!si for~(~), 

fully served before~ (with 

the queuing process and~- We 

~• (~), ... ,!si (~s) and call the 

~ S ~) the ~-customers, 

customer (= the customer 

etc. The ~ 1-customers consist 

being served at time~) plus 

of the (m+l) st 

the customers 

waiting just after the servicing of that customer has started. Hence ~l 2". 1. 

Let now 11(s,s1 ,n1 ,n2,s2 ,x,Y1 ,Y2 ,Y3 ,Y4) denote the probability that 

~ S ~, none of the ~-customers has mark 0, none of the ~-customers has 

mark i (for i E {1,2,3,4}) and no s1-catastrophe occurs during (O,~•J, 

no n1-catastrophe during (¾-~' ,¾], no n2-catastrophe during (¾'¾+~"] 

and no s2-catastrophe during(~-~",~]. This means that with independent 

~s '¾ '¾ ,~ •E.x•E.y •E.y •E.y •E.y and (¾,~•~• ,5!._' ,~ .. ,~ .. ,~,t1•t2•t3,~) 
1 1 2 2 1 2 3 4 

we can write 

(4. 4) 

=P{z2".~1 z'<ar,s'<a ,s"<a ,z"<az:,m:<o:r ,k.Sr 
- ~- -.,1 - -n 1 - -n2 - -"2 - -x -1 -Yi 

for 1 s i $ 4}. 

we use the abbreviation 

abb 
(4.5) A {t <~St 1 ,n>m,z'<a ,s'<a s"<a m=mk =k 

--m ~ --m+ - - -s1 - -n/- -n2 '- '-j j 

for 1 s j s 3}. 

Write o(s2 ,Y4 ) for the probability, that no Y4-marked customer arrives and 

no s2-catastrophe occurs during a busy period starting at time O with one 

customer present, just about to start being served at that time. Then 

(4.6) P({z" 

because the conditional probability can be seen to be the probability, that 

no Y4-marked customer arrives and no 1;2-catastrophe occurs during a busy pe­

riod starting at time O with k 1+k2+k3-1(2".0) customers present, the first of 
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which is to begin service at that time. It is well-known that this probabili­
th ty is the (k1+k2+k3-1) power of o(s2 ,Y4). To obtain o(s2 ,Y4) (assuming 

B(s) < 1 for ans> 0) one can determine the unique o(~,X) satisfying 

(4. 7) B (~+A-AXo (~,X)) 

with 0 < o(~,X) < 1 for~> 0, 0 S X S 1 and o(0,1) = 1. RUNNENBURG [1965] 

contains a proof of (4.7) by interpretation, the uniqueness follows easily 

by comparing the graphs of o and B(~+A-AXo) for a variable o with 0 so s 1. 

We now write down an expression for the right-hand side of (4.4), in 

which we first introduce the conditional probability obtained in (4.6) and 

then carry out the summations, using (4.4). Hence the left-hand side of 

(4.4) is equal to 

co co 00 co m k k k 
(4.8) I I I I P(A n {~" < a , ~ :,; })X y ly 2r3 

m=0 k 1=1 k2=0 k 3=0 .:.:.i:;2 !..i4 1 2 3 

co co co co m k 1 k2 k3 k1+k2+k3-1 
I I I I P(A)X yl y2 y3 a(s2 ,Y4l 

m=0 k 1=1 k2=0 k3=0 

This means that we need not determine TI as a function of all its ten argu­

ments at once, but can first restrict to s 2 = 0 and Y4 = 1 in (4.4) and 

then later use (4.8) to get the general TI. 

From (4.4) we find, specifying the possible values of m and using 

b as an abbreviation for ~--rot, 
={,m ---,,. 

(4.9) 

co 

I P{t·<~,n>m,t.<a ,msr,k Sr}. 
m=0 -m - -m ....;,;1 -x -1,m -Y1 

~" '~" -i.::.,m ~,m 

where 

(4.10) B {b~ > 0, n > m, -rot< a , ms _rx, k Sr }. -<;,m .:.:.i:; 1 -1,m -Y1 
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Note that _k1 has been replaced by k 1 , where k 1 + m - 1 is the number of 
- ,m - ,m 

customers arriving in (O,t J and that~ has an exponential distribution -m -.,,,m -
with parameter I; under the condition~ > 0. The conditional probability -..,,m 
in (4.9) can be seen to equal the unconditional probability (just ignore B) 

in which~ is an exponential random variable with parameter I; and the re­---..,,m 
lations between the random variables s 1,~ ,aT) 1,an2 ,k2,r" ,k3,r remain 

-m+ ---..,,m - - - -i2 - -Y3 
as they were. We can now compute this conditional probability (condition on 

~,m =band .:'!m+l = s) and find 

00 S 

(4. 11) f ( J 
-n b-n (s-b) -A(1-Y )b -A(l-Y )(s-b) \ 

e 1 2 e 2 e 3 l;e~l;bdb)dB(s) 

0 0 

Note that (4.11) does not depend on m. The next step in our calculation is 

then to find 

(4.12) I P{!m < ~· !!.. > m, 
m=O 

t < a , m 5 E.x• k 5 E."} -m .c.c.,,;; 1 -1,m -i 1 

n > m, 

In (4.12) we no longer have~~~ in our conditions, but that is no 

problem as all the random variables ~• ,!!._' ,!!._" ,~" ,!!!_,~1,~2 ,~3 ,~ depending on 

~ and defined for~~~ only have disappeared as well. From now on we 

can forget the restriction!:.~~ and carry out our calculations with the 

help of!!_= number of customers served in the first busy period, !m = total 

service time of the first m customers, k 1 + m - 1 = number of customers 
- ,m 

arriving in (O,t ], while~~ and a are exponentially distributed with 
-m ---.., -z:;1 

parameters I; and ~l respectively and -rx and r are geometrically distri-
-Yl 

buted with parameters X and Y1 respectively. Also~, a , r __ , r and 
---.., -'-'-<';1 -X -Yl 

(!m, !!_, ~1,m> are independent. 

It is now not hard to realize that form 

p{!o < ~• n > 0, ~l,O 5 E.y} 
1 

(4.13) 

0, 1 , 2, ; • . (with 

1) 

P{t < ~,n>m,k1 5 r } S(I; + A - AY 1) 
-m " - - ,m -Y1 



and also 

(4.14) P{~+l < ¾;' n ~ m + 1, ~1,m+l 

where (independent of Y1) 

(4.15) 0m+1 (!;) 

Because 

( 4. 16) o ( !; , X) 

P{-mt +l < ~, n = m + 1, k s r }. ---., -1,m+l -Y l 

00 

l xm om+l (!;) 
m=O 
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is again the unique solution in [0,1] of (4.7) for!;> 0 and O $ X $ 1, we 

can combine (4.13), (4.14) and (4.16) to 

00 

(4.17) l ~ p{~ < ¾;' n > m, ~1,m $ E..yl} 
m=O 

Y1{Y1-xo(!;,X)} 

Y 1-xs (!;+A-AY l) 

and so express the left-hand side in known functions. In (4.17) we need 

only replace!; by!;+ ~l to obtain the right-hand side of (4.12). But then 

the left-hand side of (4.9) is known and because of (4.8) we can combine 

all our partial results to 

(4.18) 

REMARKS. The present derivation deals with a set of random variables slight­

ly different from the one in SIKKEL [1975]. Also o(!;,X) differs by a factor 

X from the o(!;,X) used in RUNNENBURG [1965]. 

I hesitated about including the present section in this paper, because 

it is hard to see how (4.17) can be used as it stands. However, one can 

slightly generalize the foregoing derivation to a calculation of the prob­

ability of having the exponentially distributed¾; land in~ busy period, 

rather than in the first one only (and not having any of the marks and 

catastrophes). We then obtain 
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(4.19) 

and can take the limit for~~ 0. This produces a useful result concerning 

nine random variables (~',:!._',:!._",~",~,~l'~2 ,~3,~) in the stationary limit­

ing process (provided we add AE:!,_1 < 1 to our assumptions). 

Note concerning (2.2) and (2.3). 

In the section on runs I intended to give an example of a col'iective 

mark from VAN DANTZIG [1949] to indicate his manner of introducing such 

marks. As pointed out to me by A.J. Lenstra and A.H. Hoekstra, the mark 

(2.3) hardly makes sense for infinitely many dissections of n. Hence I 

have added the restriction to finitely many (say r) dissections. With all 

smn equal to 1 in (2.3) the mark C is now equal to 1 as well, as it should 

be. The mark in (2.3) becomes an ordinary generating function, if we re­

place mfl s by mfl snm, where snm is the nth power of the complex va-
mnm m m m 

riable s (with absolute value at most one). 
m 

REFERENCES 

VAN DANTZIG, D. [1947], Syllabus Mathematische Statistiek, Mathematisch 

Centrum, Amsterdam (in Dutch, lecture notes). 

[1949], Sur la methode des fonctions generatrices, 

Colloques internationaux du CNRS ~i 29-45. 

[1955], Chaines de Markof dans les ensembles abstraits et 

applications aux processus avec regions absorbantes et au 

probleme des boucles, Ann. Inst. H. Poincare .!_ij, 145-199. 

[1957], Les fonctions generatrices liees a quelques tests 

non-parametriques, Report S 224, Mathematical Centre, Amsterdam. 

VAN DANTZIG, D. & G. ZOUTENDIJK [1959], Iterations markoviennes dans les 

ensembles abstraits, J. Math. Pures Appl. 382 , 183-200. 

ENGEL, A. [1976], Wahrscheinlichkeitsrechnung und Statistik, Band 2, 

Ernst Klett, Stuttgart. 

FELLER, W. [1968], An introduction to probability theory and its applica­

tions, Volume 1, third edition, Wiley, New York. 



329 

FRECHET, M. [1940,1943], Les probabilites associees a un systeme 

d'evenements compatibles et dependants, premiere partie (1940), 

deuxieme partie (1943), Hermann, Paris. 

GNEDENKO, B.V., E.A. DANIELJAN, B.N. DIMITROV, G.P. KLIMOV & W.F. MATVEJEV 

[1973], Service systems with priorities, Moskow University 

Publication, Moskow (in Russian). 

GOOD, I.J. [1973], The joint probability generating function for run­

lenghts in regenerative binary Markov chains, with applications, 

Ann. Statist • .!._, 933-939. 

HOWARD, R.A. [1971], Dynamic probabilistic systems, 2 volumes, Wiley, 

New York. 

,KEMENY, J.G. & J.L. SNELL, [1960], Finite Markov chains, Van Nostrand, 

Princeton. 

KINGMAN, J.F.C. [1966], On the algebra of queues, J. Appl. Probability l, 
285-326. 

LORENS, c. [1964], Flowgraphs for the modeling and analysis of linear sys­

tems, McGraw-Hill, New York. 

MASON, S.J. & H.J. ZIMMERMANN, [1960], Electronic circuits, signals and 

systems, Wiley, New York. 

MURPHY, G.J. [1957], Basic automatic control theory, Van Nostrand, 

Princeton. 

RADE, L. [1972], Thinning of rener1'al point processes, Teknologtryck, 

Goteborg. 

RUNNENBURG, J.Th. [1965], On the use of the method of collective marks in 

queueing theory, Chapter 13 in Congestion Theory, edited by W.L. 

Smith and W.E. Wilkinson, University of North Carolina Press, 

Chapel Hill. 

SIKKEL, D. [1975], Simultane verdelingen in wachtrijen met een bediener, 

afgeleid met de methode van de collectieve kenmerken, final exam 

paper, University of Amsterdam (doctoraalscriptie). 

YADIN, M. [1970], Queueing with alternating priorities, treated as random 

walk on the lattice in the plane, J. Appl. Probability 7_, 

196-218. 





Notation 

COMPUTATION AND STABILITY OF SOLUTIONS OF 

LINEAR LEAST SQUARES PROBLEMS 

A. van der SLUIS 

A will denote a real or complex mxn-matrix; 

b will denote a real or complex m-vector; 

x will denote a real or complex n-vector; 

11°11 will denote the euclidean vector norm as well as its associated 

matrix norm; 

* used as a superscript of a matrix will denote transposition followed 

by complex conjugation. 

1 . INTRODUCTION 
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In this paper we discuss a number of properties of least squares prob­

lems and their solution methods in a historic setting, with emphasis on 

their backgrounds and implications rather than on their formal derivation. 

For reasons of time and space we restrict ourselves to the full rank least 

squares problem, i.e. given an overdetermined system of linear equations 

(1.1) Ax b 

where A has rank n, determine the vector x which minimizes 

(1. 2) IIAx - bll. 

The vector x is then called the least squares solution of (1.1) and the 

vector 

(1. 3) r = b -Ax 
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is called the residual vector. 

A typical situation in which this problem may arise is the following. 

A physical quantity 8 is known (or supposed) to depend linearly on quanti-

{1,4) 8 

but the coefficients x 1 , ... ,xn are unknown and are to be determined. Now 

suppose that for any given n-tuple a 1 , ..• ,an the corresponding value of 8 

may be measured. Then each of these measurements gives a linear equation 

(1.4) for x 1 , •.• ,xn. This leads to a system (1.1) which, due to measuring 

errors, will usually be contradictory if m > n. By minimizing the functional 

(1.2) one then hopes to get a better solution than by just solving n of 

these equations. 

The idea of minimizing (1.2) goes back to Gauss, who also noted that 

the value of x so obtained is the most probable value, what is called nowa­

days the maximum likelihood value (cf. GAUSS [5], § 179). He also introduced 

the normal equations method for solving the minimization problem (1.c.§180). 

Actually, Gauss states he hit on these ideas as early as 1795. However, 

he did not publish them until 1809, and then ran into a heated priority de­

bate, with Legendre, who had found the same method independently and publish­

ed it in 1806 (cf. GAUSS [6], p. 196). 

2. THE NORMAL EQUATIONS 

A rather simple geometrical explanation of Gauss' way of solving the 

least squares problem, to which we shall refer in the sequel, is the follow­

ing. 

Let P denote the hyperplane spanned by the columns of A, and let b' be 

the orthogonal projection of b on P (cf. the figure on the next page). Then 

the vector x which minimizes II Ax - bll should obviously be such that Ax = b' . 

Hence b -Ax 1-P, i.e. the inner product (b -Ax,Au) should equal O for all u, 

* * or (A b - A Ax,u) = 0 for all u. Hence 

(2. 1) * A Ax * A b, 

which is a system of n equations inn unknowns, the well-known normal equa­

tions, which we know how to solve. 



p 

b 
I 

'r 
I 
I 

~--Ax-=-----' b I 
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This method has worked well for a century and a half. However, when 

high speed electronic computers came into use after WW II and much larger 

systems could be handled than before, difficulties arose: the normal equa­

tions used to be ill-conditioned. 

3. THE CONDITION OF EQUATIONS 

Already in 1950 the notion of condition of a matrix was the subject of 

lively discussion, as appears from a remark in TAUSSKY [22]. It amounts to 

the following. Let 

(3.1) By= c 

denote a non-singular system of n equations inn unknowns and let 

(3.2l By= c 

denote a non-singular system whose matrix is somewhat perturbed with respect 

to B. Then, defining /';y = y -y, /';B = B -B, it is easily verified that 

(3.3) ll!';yll :,; 
7fylr 

moreover it may be shown (cf. VAN DER SLUIS [19]) that for any Band c and 

any c5 > 0, e: > 0 there exists a AB f O, II /';BII :,; c5, such that the quotient of 

the right- and left-hand sides of (3.3) is less than 1 + e:. Hence, a rela­

tive error (to be understood in the sense of norms) Sin B may lead to a 

relative error n in y which is about a factor 

(3. 4l 



334 

times as large as S. The quantity K(B) (which is never less than 1) is call­

ed the spectral condition number of S, and if it is large then obviously the 

solution of (3.1) is very sensitive to errors in the matrix B. The matrix 

and the system of equations are then called ill-conditioned. 

(3.5) 

For the effect of perturbing c by ~c we have 

ll~yll ll~cll 
"lyJr S K(B,y) 71c1i 

where K(B,yl. = lla- 11111Byll/llyll, whence 1 s K(B,y) s K(B), and the equality 

sign in (3.5) may occur for any Band c. 

The condition number of a matrix is closely related to a geometric 

property of its column vectors: if Bi denotes the i-th column of Band 

a. denotes its euclidean distance from the hyperplane spanned by the other 
l. 

columns then we have 

( 3 .6) 
maxll Bill 
----$ 
min oi 

K(B) 

Thus, for moderate values of 

least one of the a. is small 
l. 

This implies that large 

m2,xll Bill 

-;;in a i 

n we have that K(B) is large 

with respect to at least one 

if and 

of the 

condition numbers have two possible 

only if at 

Ila.II. 
J 

sources: 

(a) the row- or column-vectors of the matrix have widely differing norms; 

(b) the directions of the row- or column-vectors are not very well sepa­

rated, i.e. the span of one of the rows or columns makes a small angle with 

the span of the others. 

As an illustration consider a 2x2 matrix B. If v s 1 denotes the quo­

tient of the norms of the columns (rows) and cp is the angle between the 

columns (rows), then (3.6) implies 

(3. 71 
v•sin(cp) 

S K(B) 2 s--"---­
v•sin(cp) 

A condition number can be defined equally well for a full rank mxn­

matrix B, m > n. For, considered as a mapping from mn or ~n to the range 

of Bit has a unique inverse whose norm is given by 

(3. 8) 
llxll 

maxifRxll, 
xfO Bx 
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and substituting this into (3.4) for IIB- 111 then defines K(B). The quantity 

in (3.8).may also be written as 11B+II, where B+ denotes the generalized in­

verse of B (for a definition cf. STEWART [21] p. 221 and p. 325). 

Then (3.6) still holds. Moreover we have 

(3.9) * 2 K (B B) = K (B) . 

What becomes out of (3.3) and (3.5) in this case will be the subject of a 

latter section. 

4. THE ILL-CONDITIONING OF THE NORMAL EQUATIONS 

* From (3.9) we see that as soon as A is moderately ill-conditioned, A A 

is terribly ill-conditioned, which makes it understandable, to some extent, 

why normal equations are so often ill-conditioned. 

A very bad example of ill-conditioning is given by the normal equa­

tions encountered in determining a least squares polynomial fit to a func­

tion which is sampled more or less uniformly on the interval [0,1]. The 

* matrix A A then resembles 

(4.1) 

1 

1 
2 

1 
2 

1 
3 

1 
3 

1 
4 

n 

n+l 
;. ................ . 
1 ••••••.••.••. 
n 

(a finite segment of the infinite Hilbert matrix), whose columns obviously 

become more nearly dependent the more right-most they are. And indeed, 

K(A*A) ~ 10l. 5n (cf. GREGORY & KARNEY [9]). 

* Now suppose that A A is computed with relative rounding errors of 

10-15 , say, after each arithmetic operation. Then one should at least ex-

* pect a relative error (in the sense of norms, cf. § 3) in A A of the order 

of 10-15 , and hence the value n = 10 is no longer tolerable (cf. (3.3) and 

subsequent text). 

It should be noted, however, that not always, when A has a large con­

dition number, the normal equations perform as badly as has just been de­

scribed. Indeed, if the columns of A have widely differing norms, and if D 

is a diagonal matrix such that the columns of AD have about equal norms, 
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then it may be shown that the relative error in x is controlled by K(AD)K(A) 

(private communication by Prof. R. Bjorck) and if the directions of the col­

umns of A are well separated then K(AD) will be very much smaller than K(A) 
2 

and hence K(AD)K(A) << K (A). However, this does obviously not apply to the 

example earlier in this section. 

5. BETTER SOLUTION METHODS 

It is most disturbing, of course, that in solving the least squares 

problem via the normal equations, the vector x is determined from a system 

whose sensitivity is governed by K2 (A) whereas, when ordinary systems of 

equations are solved, the vector x is determined right away from a system 

whose sensitivity is governed by K(A). 

Thus a search went underway for methods which would not suffer the 

squaring of the condition number (without bothering, what would have been 

more natural, about the question whether the true vector x minimizing (1.2) 

would not already have a sensitivity with respect to perturbations of A 

and b for which K2 (A) is relevant), For discussions and early results cf. 

e.g. LAUCHLI [13], VON HOLDT [11], OSBORNE [16]. 

The idea was to avoid the use of normal equations altogether or to 

transform the least squares problem in such a way that the normal equations 

could not be arbitrarily ill-conditioned. Recalling our geometric treatment 

in § 2, a rather obvious way of doing this is to construct an orthonormal 

basis in P, then the coordinates of b' with respect to this basis can be 

easily calculated, and by expressing these basis vectors in terms of the 

columns of A we get x. In formulae Q = AU, Q an mxn-matrix with orthonormal 

* columns and U an nxn-matrix, then b' has Q bas its vector of coordinates 

with respect to the columns of Q, i.e. * * * b' = QQ b = AUQ b, hence x = UQ B. 

The most obvious way to find Q is by applying Gram-Schmidt orthogonal­

ization to A, but if one actually does so then one is in trouble since this 

orthogonalization method is not numerically stable (cf. WILKINSON [23], 

p. 243), and this is dramatically confirmed by the results of a least 

squares solution method based on this principle (cf. JORDAN [12]). 

In 1965, however, GOLUB published a method (cf. [7], also BUSINGER & 

GOLUB [4]) where in fact the orthogonalization process was carried out us­

ing Householder transformations, and this is known to be a stable process. 

Ills method is still the one in widest use. 

Then, in 1967, BJORCK (cf. [1]) proved that a modified version of 
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Gram-Schmidt also is numerically stable. A least squares solution method 

based on•it may, according to the experiments of JORDAN [12], even be 

slightly more accurate than Golub's method. 

The amount of work for Golub's and Bjorck's methods are about the same, 

and about double what is required for the normal equations method. 

6. THE SENSITIVITY OF LEAST SQUARES SOLUTIONS 

In 1966 Golub and Wilkinson raised the question about (what they call­

ed) the inherent sensitivity of the least squares solution (cf. GOLUB & 

WILKINSON [8]). 

They showed that if IIAII = llbll = 1 and A and bare perturbed by t.A and 

t.b with nun s e, Dt.bD s e, then the vector x which minimizes the perturbed 

expression (1.2) satisfies 

(6.1) 

(for r cf. (1.3)), and to our dismay we see that K2 (A) still plays a role. 

Now (6.1) gives only an upper bound, but Golub and Wilkinson added that it 

is easy to verify by means of a 3x2 matrix that this bound is realistic. 

A heuristic explanation, that eK 2 (A)r should indeed be expected to be 

of importance for the sensitivity of the least squares solution, can be de­

rived from geometrical arguments. Indeed, for given e > 0 and any t.A with 

Huns e the angle between span(A+U) and span(A) is at most y = 
arcsin(eK(A)), and this value is attained for a. suitable U. Tilting 

span(A) over this angle will cause b' (see the figure in §2) to move by a 

distance of about yDrl (if y is small) across the tilting plane. Since x 

satisfies Ax= b' this means changing the right hand side by eK(A)DrD, and 
ByA 

this may lead to an error in x which is~ llAy0 times this qu~tity 

(cf. (3.8)), and this accounts for the second factor K(A) in eK (A)r 

(cf. (6 .1)) because of DAIi = 1. 

However, the normalization A= b = 1 obscures something. Indeed, condi­

tion numbers are expected to link relative perturbations, whereas in (6.1) 

something is said about absolute perturbations. Returning to our geometri­

cal explanation, and looking at (3.5), we would rather expect something 

like eK(A,x)K(A)Drll/llb 1 II in an estimate for the relative error in x. This 

geometrical argument can be made exact, and leads to the following state­

ment (cf. VAN DER SLUIS [20]): 
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Assumptions: 

let II MII :;;; all All and II tibll :;;; Sllbll; 

letµ 0 aK(A) < 1 (this is a natural requirement since otherwise there 

would be a LIA such that rank (A+~A) < n) ; 

let 

let 

cj, denote the angle between band span(A); 
IIAxll + + llyll 

K (A,x) denote -.--n- IIA II (where IIA II = max v-=-,r, 
IIXII y-/0 HAyH 

obviously 1 $ K(A,x) $ K(A)). 

Then 

cf. § 3; 

(6. 2) 
II x-xll K (A) K (A) B UT:;;; a.--2 K(A,x)tan(cj,) + -- (a+ cos("') ) 

1-µ 1-µ 'I' 

and there exist ~A, lib with ll~AII allAII, ~b O, such that 

(6. 3) 
llx-xll K (A) 7ri1r ;;: a.--2 K (A,x) tan (cj,). 

1-µ 

We note that in (6.2) and (6.3) the "dangerous" terms containing 

K(A)K(A,x) coincide. For earlier results in the direction of (6.2) and (6.3) 

we refer to LAWSON & HANSON [14] and to HANSON & LAWSON [10]. 

Formulae (6.2) and (6.3) make a few things clear: 

(al In order that the sensitivity (in the sense of relative perturbations 
. 2 

of A, b and x) is controlled by K (A) it is necessary that II Axil /II xii is of 

the order of IIAII and tan(cj,) is of the order 1 (unless one is willing to 

consider systems with cj, ""1r/2). Now IIAyll/llyll""IIAII is true for a large frac­

tion of all vectors y, but if K (A) is large than II Axil /II xii "" II All is true for 

a small fraction of all vectors b only. 

(b) Nevertheless a sensitivity which is quite a bit greater than correspond­

ing to K(A) may already happen as soon as K(A)tan(cj,) is noticeably larger 

than 1, and this, in turn, may already be the case for very small cj,, i.e. 

for systems (1.1) which are only slightly incompatible. 

7. THE ACCURACY OF LEAST SQUARES S•JLUTIONS 

Now what does the sensitivity analysis of § 6 mean for the accuracy with 

which least squares solutions may be obtained? 

Let us assume we use Golub's method (cf. §5), carrying out the arith­

metic operations with relative rounding errors of the order of~ (typical 
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-7 -15 
values for~ lie between 10 and 10 ). Then it can be proved that the 

computed solution x is the true least squares solution of a system 

... 
(7.1) Ax= b, 

and l:i.A A - A, l:i.b b - b satisfy 

(7.2) Dti.A.0 s: e:DA.U, 111:i.bl s: e:llbD, e: 
l. l. 

c(m,n)~, 

where Ai denotes the i-th column of A and c(m,n) is independent of A and b 

(cf. GOLUB & WILKINSON [8]). 

Hence 

(7.3) 

which is an overestimate, but there are ti.A satisfying (7.2) such that 

(7.4) 

Thus (6.2) may be applied with a= fn•e:, a= e:, but may (6.3) be ap­

plied with a= e:? That depends entirely on whether all l:i.A satisfying (7.2) 

are possible, and for the kind of relative errors we are considering this 

will not, in general, be the case. It will certainly not be the case if 

the columns of A have widely differing norms, and thus (6.3) will not be 

applicable. 

Indeed, suppose that the columns of A have well separated directions 

(cf. §3), but strongly differing norms. Then K(A) will be large. 'Reflection 

on our heuristic argument in §6 makes it clear, however, that small rela­

tive perturbations of the columns of A, i.e. small perturbations of the 

directions of the columns of A, can now only result in a small tilting 

angle of the plane P ( cf. the figure in § 2) , irrespective of K (A) • That is 

to say that if Dis a diagonal matrix such that the columns of AD have 

about equal norms, then the sensitivity of the solution is expected to de­

pend on K(AD)K(A,x)tan(<j,) rather than on K(A)K(A,x)tan(<j,). This is actually 

proved in (more detail) in VAN DER SLUIS [20]. 

Comparing this result with the one mentioned at the end of §4 one 

notes that in this case, too, Golub's method is superior to the normal 

equations method. 
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The result also reminds us that condition numbers say something about 

sensitivity only for certain specific perturbation classes. 

Obviously, speaking about the accuracy of least squares solutions one 

should also take into account possible errors in the data. If these errors 

satisfy properties like II &All s KIi All or II 11A, II s KIi A, II then the perturbation 
1. 1. 

results mentioned before are clearly applicable. One should not be mistaken, 

however, in thinking that the effects of these errors also are smaller when 

Golub's method is used than when normal equations are used. Since.the nor­

mal equations are mathematically equivalent to the least squares problem 

they must give the same result when no rounding errors are made. 

8. STABILITY 

In §7 we noted that the computed solution satisfies a slightly per­

turbed least squares problem. This may be used for estimating the error in 

the computed solution (as we did in § 7), but now we consider this from a 

different point of view. 

Actually, the elements of A and b will usually be subject to some er­

ror or uncertainty, if only because of their being rounded to machine pre­

cision. This in turn will lead to an uncertainty in the solution, which we 

will call the intrinsic uncertainty. Then, if the elements of 11A and L'>b in 

(7.2) exceed the uncertainties in the corresponding elements of A and b by at 

most a factor q, it follows that the error in the solution caused by round­

ing errors during the computation, large as it may be, will not exceed the 

intrinsic uncertainty by more than the same factor q. This is a very desir­

able stability property provided q has a reasonable value, and in fact no 

numerical algorithm may then be axpected to perform essentially better. 

From (7.2) we see that we will have this kind of stability if for all 

j all elements in A. have uncertainties which are not small with respect to 
J 

EIIA,11, and similarly for b. 
J 

One situation in which the latter condition will certainly not be sat-

isfied is when A is obtained from a matrix which does satisfy this con­

dition by multiplying its rows by widely differing constants, and likewise 

b (so as to put widely differing weights on the various equations). And in­

deed, as has been observed by POWELL & REID [18], in this case Golub's 

method may lead to awkward results. They suggested to add a pivoting pro­

cedure to Golub's method in order to circumvent these difficulties (column 

pivoting combined with row pivoting). 
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Roughly speaking, this pivoting procedure has the effect that for all 

i the elements in the i-th row of ~A are of the order of£ times the larg­

est element in the i-th row of A, and the i-th element of lib is about II xii 

times the latter amount (although sometimes the situation may be worse). 

In order to appreciate this, suppose that IIA.11 ""'llbll for all j, which is 
J 

just a matter of scaling, and that then llxll is not large with respect to 1, 

which is not unreasonable (see however §6, under (a)). Then, if allele­

ments in the i-th row of (A:b) have an uncertainty which is not small with 

respect to£ times the largest element in the i-th row of A - a rather rea­

sonable assumption - we have again the desired kind of stability. 

Column pivoting alone, as suggested in GOLUB [7], does not have this 

beneficial effect. In fact, it is hard to see when column pivoting may be 

expected to have a positive effect, and this is confirmed by experiments 

of JORDAN [12]. Column pivoting may be useful as a tool for detecting near 

rank-deficiency, however, but that is quite another story. 

9. TOPICS NOT TREATED 

Again for reasons of time and space we have not dealt with alternatives 

for Golub's method and with iterative methods. However, a few references to 

this effect have been added (cf. [1], [2], [3], [BJ, [15], [17]). 
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ERROR BOUNDS IN THE NUMERICAL SOLUTION OF INITIAL VALUE PROBLEMS 

M.N. Spijker 

1 . INTRODUCTION 

In this paper we consider initial value problems for systems of ordin­

ary differential equations and integro-differential equations. We shall 

deal with numerical methods for approximating the solutions of such ini­

tial value problems. Many authors have been concerned with the problem of 

finding bounds for the errors which are usually present in the approxim­

ations produced by these numerical methods~ Roughly speaking the bounds to 

be found in the literature fall into two groups. 

The first group consists of computable a-posteriori bounds, the pur­

pose of which is to give the users of a numerical method precise quantita­

tive information about the meaning and accuracy of the numbers actually 

produced by the computer. Obtaining.bounds of this type often requires 

some new numerical process to be executed on a computer. So-called inter­

val-arithmetic is one of the techniques that are used in arriving at these 

bounds - see e.g. [7], [8]. 

The second group consists of a-priori bounds originating from a math­

ematical analysis of the numerical method under consideration. Usually 

these bounds are of little value for arriving at a useful quantitative 

statement about the accuracy of the approximations actually obtained. On 

the other hand the bounds within our second group may lead to an under­

standing of the mechanism by which the errors in the approximations are 

built up. Further these bounds can be used to obtain useful qualitative 

information about the accuracy of the approximations. Moreover, these 

bounds have often been a guiding principle in constructing new efficient 

numerical methods. 

In this paper we shall deal with error bounds belonging to the sec­

ond group. In particular we shall be concerned with so-called two-sided 

error bounds. 

In the, still introductory, chapter 2 it will be shown how a short­

coming of some of the classical (one-sided) error bounds leads in a 
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natural way to the concept of a two-sided error bound. In chapter 3 we 

consider the general problem of finding easily verifiable conditions that 

are necessary and sufficient for the existence of two-sided error bounds. 

In the rest of the paper we review some results obtained with regard to 

this problem during the last few years. 

In the chapters 2, 3 and 4 we deal with numerical methods for solving 

ordinary differential equations. In chapter 5 we consider the numerical 

solution of integro-differential equations of Volterra. 

2. THE NEED OF TWO-SIDED ERROR BOUNDS 

2.1. We consider an initial value problem for a system of s ordinary 

differential equations which, by using vector notation, can be written 

in the form 

(2 .1) 
d 
dt U(t) f(t,U(t)) (0 S t S T) , U(O) C • 

Here c denotes a given vector in the s-dimensional real vectorspace lRs, 

and f is a given continuous function from [ 0, T] x lRs to lR s. We assume 

that f satisfies a Lipschitz condition 

(2. 2) 

where I • I denotes any norm on vec,ctors in lRs, and where L is independent 

of~, ~ and t. Under these conditions there exists a unique solution 

U(t) E lRs (for OS t ST) to the initial value problem (2.1) - see e.g. 

[4, p.113]. 

In order to introduce the concept of a two-sided error bound we are 

going to consider the numerical solution of the problem (2.1) by the fol­

lowing simple method, due to Euler. 

(2. 3) 
-1 

h • (u -u ) 
n n-1 (n 1,2, ... ,N), c. 

Here h denotes the so-called stepsize, which is chosen such that O < h s T. 

The vectors un are computed recursively from (2.3) and stand for approxi­

mations of U(t) at t = tn nh. With N we denote the greatest integer 

satisfying Nh s T. 



2.2. Along with (2.3) we consider a perturbed version of Euler's method 

(2 .4) 
-1 ~ 

h • (u -u ) 
n n-1 (n=l,2, ... ,N), u0 
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where un denotes the approximation of U(tn) obtained in the presence of 

some local perturbations w0 ,w1 , ••. ,wN. For instance, in case f is a com­

plicated function, w may stand for the error introduced in the nth stage n 
of the computations if the value f(tn-l'un_ 1) is approximated by some, 

more easily computable, quantity f(tn-l'un_ 1) f(tn-l'un_ 1) + wn. Like­

wise, the perturbations wn may be understood to be caused by rounding-off 

only. Finally, wn may also stand for the so-called local discretization 

error, which means that wn is defined by the relations (2.4) with 

un U(tn) (n=0,1, •.• ,N). 

From (2.1) and Taylor's theorem one obtains the following expressions 

for the local discretization errors 

(2.5) 0, w 
n 

h 
2 (n 1,2, •.• ,N). 

Clearly, in each of the three cases just mentioned it is desirable 

to have an a-priori bound by means of which the effect of the perturba­

tions w on the differences u - u can be estimated. n n n 
By subtracting the relations (2.3) from (2.4) and by using the Lip-

schitz condition (2.2) one arrives, after a short calculation, at the 

(classical) error bound 

(2 .6) 

(see e.g. [6], [16]). 

An important application of this bound is obtained by choosing 

un U(tn) and wn as in (2.5). The right-hand member of (2.6) then reduces 

to 

N 
eLT.h l O(h) 

j=l 

and since Nh ST, it follows from (2.6) that 

max Ju(t )-u I 
OSnSN n n 

O(h). 
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The bound (2.6) can thus be used to prove that Euler's method produces 

approximations un which, if h + O, converge to the corresponding values 

of the true solution U(t). 

2.3. Although the bound (2.6) thus has a useful application, it suffers 

from an imperfection, which manifests itself if we consider the behaviour 

of (2.6), when T is fixed and h + O, for perturbations different from 

(2.5). We choose f(t,,) - o, L = 0 and w0 = 0, w, (-l)j-lwl (2 s j s N)' 
J 

lw1l = e: > o. 

The right-hand member of (2.6) now reduces to N•he:. An easy calcula­

tion shows that the actual quantity maxOSnSNlun-unl equals h•e:. Hence the 

factor by which the right-hand member of (2.6) overestimates its left-hand 

member, equals N FI/$~' which tends to infinity if h + O. 

In the next section it will be shown how this shortcoming of (2.6), 

which is also present for other, less tr~vial, choices for f(t,~), can be 

overcome by using the concept of a two-sided error bound. 

For the sake of completeness we conclude this section by noting that 

the bound (2.6) suffers from a second imperfection, which manifests it­

self if we keep h > 0 fixed and let T +=.Then, it can be seen from (2.6) 

that its right-hand member may increase exponentially in cases where 

maxOsnsNlun-unl remains bounded. This imperfection can, to some extent, be 

overcome by replacing the factor exp(LT) in (2.6) by a factor in which the 

so-called logarithmic norm of the Jacobian matrix a~ f(t,~) enters (see 

[3], [5]). We shall not deal any further with this imperfection of (2.6). 

2.4. Suppose we have an arbitrary error bound, for Euler's method, which 

can be written in the form 

(2. 7) max lu -u I s El 
OSnSN n n 

where E1 = E1 [w0 ,w1 , ••• ,wN;h] depends on the perturbations wn € lRs and 

on h > 0. The factor by which E1 overestimates the actual quantity 

maxOSnSNlun-unl equals imaxOSnSNlun-unlJ-1• El' and is thus bounded by 

some constant S > 0 if ;; • El S maxO< <Niu -u j. Hence, the factor by .., -n- n n 
which (2.7) overestimates the actual error, is bounded uniformly for all 

h > 0 and all wn € lRs, if and only if (2.7) can be completed to a two­

sided error bound 

(2.8) Eo s max lu -u I s El 
OSnSN n n 



with a left-hand member E0 

form 

Here the constant S > 0 is independent of w0 ,w1 , ••• ,wN and h. 

It has been proved (cf. [12], [16], [17]) that the error un - un, 

caused by the perturbations wn in (2.4), admits the following bound of 

type (2.8) 

n n 

349 

(2. 9) Yo. max lwo+h l wjl $ max lu -u I 
OSnSN j=l OSnSN n n 

S y1 • max lw0+h l w.l. 
OSnSN j=l J 

Here and in the following we use the convention that l;=i·· = 0 if n < 1. 

For y0 ,y1 one can obtain the expressions y0 = (l+LT)- 1, y 1 = exp(LT). 

From the two-sided error bound (2.9) it thus follows that the error 

bound (2.7) holds with 

LT n 
e • max lw0 + h l w.l, 

OSnSN j=l J 

and that, with this choice of E1, the bound (2.7) overestimates 

max0< < I~ -u I by a factor which remains bounded if h + 0. Consequently, 
-n-N n n 

the imperfection of (2.6) mentioned above has been removed by replacing 

the expression 

N 

I WO I + h l I w. I 
j=l J 

appearing in (2.6) by 

n 
max lw0 + h l w. I. 

OSnSN j=l J 

3. GENERAL TWO-SIDED ERROR BOUNDS 

3.1. In this chapter we consider the numerical solution of the initial 

value problem (2.1) by the general step-by-step method 

(3 .1) 
-1 

h • (u -u ) 
n n-1 (n 1,2, ••• ,N), c, 
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and along with (3.1) we consider the perturbed method 

(3.2) (n 1,2, .•. ,N), 

It is assumed that the function F satisfies the following condition 

(3.3), in which h0 and A denote arbitrary, but otherwise fixed, numbers 

with O <ho~ T, >. > 0. 

(3.3) 
s 

For all h E (O,h0], ~ E JR the elements F(tn-l'~;h) belong to 

(n 

condition 

1,2, .•. ,N). Further F satisfies the Lipschitz 

JF(tn_1 ,t';h) - F(tn-l'~;h)! ~A•!~-~, 

( ~, 7; E JRs ; h E ( O, h0 J; n = 1 , 2, .•• , N) • 

Clearly, if F(t,~;h) = f(t,~) and the Lipschitz constant Lin (2.2) 

satisfies L ~ A, then condition (3.3) is fulfilled, and the methods (3.1), 

(3.2) reduce to Euler's method (2.3) and to its perturbed version (2.4), 

respectively. Further examples of the general method (3.1) include Runge­

Kutta methods and Taylor expansion methods (see [4]). 

3.2. In order to investigate general bounds for the errors un - un, 

resulting from the perturbations wn occurring in (3.2), it is convenient 

to introduce the vectors 

~ ~ u u = (uo,u1,···~), w 

These vectors belong to the vectorspace Xh given by 

~ {x Ix N (h) and all x E lRs }. 
n 

Here N(h) denotes the greatest integer N with N • h ~ T. In Xh addition 

and multiplication with real numbers are defined coordinate-wise. 

The difference between u and u will be measured by means of a given 

seminorm II xii h for vectors x E Xh (see [9], p. 24). We thus assume that II xii h 

is a real number, and that llx + yllh ~ llxllh + llyllh, lla•xllh = la!• llxllh, 

for all vectors x, y E X h and all real a. 

Special attention will be paid to absolute seminorms, i.e. to semi­

norms such that II xii h = II yll h for any pair of vectors x = (x0 ,x1 , ... ,xN), 
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y = (y0 ,y1 , ••• ,yN) the coordinates of which satisfy lxnl IYnl 

(n = 0,1, .•• ,N). 

We list four examples of seminorms in ¾· 

EXAMPLE 1. nxnh max Ix I, 
Q:;;n:;;N n 

EXAMPLE 2. llxllh lxNI, 

EXAMPLE 3. llxllh max[ max Ix I, I -1 ex -x 1 i I J, max h . 
Q:;;n:;;N n 1:;;n:;;N n n-

EXAMPLE 4. llxllh max[ lxNI, ,h-1 . (xN-xN-1) I J. 

Clearly, the seminorms in the examples 1, 2 are absolute, and those 

in the examples 3, 4 are not. 

The following definition formalizes the concept of a two-sided error 

bound discussed in chapter 2. 

DEFINITION. Let y0 , y 1 be positive constants, and assume $his a mapping 

from¾ to the set of real numbers lR. If for all h E (0,h0 ] and all 

w E lRs the relations ( 3. 1) , ( 3. 2) imply that 
n 

(3.4) 

then (3.4) is called a two-sided error bound for method (3.1). 

The error bound (2.9) provides an example of (3.4). In this case the 

functional $h has the remarkable property that it is independent of the 

function f appearing in (2.3). 

In the rest of this paper we consider the problem under what condi­

tions the result (2.9) allows a generalization for the case of numerical 

methods that are more general than Euler's method (2.3), and of arbitrary 

seminorms llxllh. 

3.3. In order to formulate concisely a criterion for the existence of 

two-sided error bounds, we introduce the summation operator S. For any 

h E (0,h0 ] and any x = (x0 ,x1 , ... ~) E xh we define 

y = Sx 

by y 

1,2, •.• ,N). 
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The following theorem gives a simple condition on the seminorm 

llxllh (viz. statement 3 in theorem 1) which is necessary and sufficient 

in order that suitable two-sided error bounds exist for all methods of 

type (3.1). 

THEOREM 1. (Two-sided error bounds with absolute seminorms). Assume 

II xii h is a given absolute seminorm in Xh (for all h E ( 0, h0]) • Then the 

following three propositions are equivalent. 

1. For any method of type (3.1) there exists a two-sided error bound (3.4) 

with a functional ~h which is independent of the function F appearing 

in (3.1). 

2. For any method of type (3.1) there exists a two-sided error bound 

(3.4) of the special form 

(3.5) 

where v = (v0 ,v1 , .•• ,vN) is defined by vn 

3. There is a constant 5 such that for all h E 

inequality II sxll h 5 o • II xii h. 

n 
WO + h l w. 

j=l J 
(O,h0J, x E 

(n = 0,1, •.• ,N). 

Xh we have the 

This theorem can be proved, for instance, by a straightforward appli­

cation of lemma 6 in [14]. 

It is easily verified that e.g. the seminorm of example 1 satisfies 

condition 3. Hence by virtue of theorem 1 there exists an error bound 

(3.5) where llxllh stands for llxllh = max05n5Nlxnl·. Note that the bound thus 

obtained is of the same form as (2.9). 

On the other hand, the seminorm of example 2 is easily seen to vio­

late condition 3. Theorem 1 thus proves the surprising fact that the error 

bound (2.9) allows no generalization in case max0< <Niu -u I would be 
-n- n n 

4. GENERALIZATIONS OF THEOREM 1 

4.1. In this chapter we review some extensions of theorem 1. First of all 

it should be noted that the class of numerical methods covered by formula 

(3.1) is still rather restricted. 'rherefore we replace (3.1) by the more 

general formula 



(4 .1) h-1 • (un-Kun-1) 

u0 = c0 (h), 

(n 
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1,2,, •• ,N), 

where K is a fixed square matrix and c0 (h) is a starting vector depending 

on h E (O,h0 ]. We also allow that the vectors U(t), f(t,U(t)), c, of the 

initial value problem (2.1), belong to some vectorspace whose dimension 

is smaller than the dimension of the space to which un' F(tn-l'un_1;hl, 

c0 (h) , occurring in ( 4 .1) , belong.. The class of methods ( 4 .1) now includes 

for instance (linear) multistep methods, provided the latter are rewritten 

as one-step methods (see e.g. SKEEL [10]). 

We consider the following perturbed version of (4.1). 

(4.2) 
-1 

h • (un -Kun-l) (n 1,2, ••• ,N), 

uo co(h) + WO. 

Under mild conditions on the matrix K theorem 1 allows a generali­

zation which deals with the methods (4.1), (4.2), instead of (3.1), (3.2) 

(see [13]). According to this generalization there still exists a suitable 

two-sided error bound for (4.1) if the maximum-norm (see example 1) is 

used, and there exists no such error bound in case the seminorm. from 

example 2 is used. 

SKEEL [10] recently derived a simple functional ~h which can be used 

(in a two-sided error bound of type (3.4) for method (4.1)) in case 

D \i-ull h stands for the maximum norm max0< ~Ju -u I • This functional reads 
-n"'" n n 

with 

max Iv I, 
OSnSN n 

n-1 
E (wo + h l w.) + hw 

j=l J n 
(n 1,2, .•• ,N) , 

where E denotes the so-called component of K corresponding to its eigen­

value 1 (see [10]). For a related result we refer to ALBRECHT [1, section 

5.1]. 

4.2. Returning to the numerical method (3.1) we consider another general­

ization of theorem 1. 
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An obvious restriction of theorem 1 consists in the fact that it only 

applies to seminorms DxDh that are absolute. For instance, from theorem 

1 it cannot be concluded whether two-sided error bounds for the methods 

(3.1) exist with the seminorm Dxlh from example 3. 

In [18] STUMMEL proved that for some special non-absolute seminorms, 

including the one from example 3, there do exist two-sided error bounds 

for (3.1). 

The following theorem is a generalization of theorem 1 that applies 

to arbitrary seminorms, which may be absolute or not. For the proof and 

applications of the theorem we refer to [15], [2]. 

We note that the proof in [15] of the theorem differs in many re­

spects from the proof of theorem 1 (essentially contained in [14]). The 

proof in [15] allows no straightforward_generalization so as to apply also 

to the more general methods of type (4.1). 

THEOREM 2. (Two-sided error bounds with arbitrary seminorms). Assume the 

maximal stepsize h0 , appearing in condition (3.3), is so small that 

Aho < 1. Let llxDh denote an arbitrary seminorm in Xh (for all h € (O,h0]). 

Then the following three propositions are equivalent. 

(i) For any method of type (3.1) there exists a two-sided error bound 

(3.4) with a functional ~h which is independent of the function F 

appearing in (3.1). 

(ii) For any method of type (3.1) there exists a two-sided error bound 

(3.4) of the special form 

(4.3) 

(iii) 

n 
where v= (v0 ,v1 , ••• ,vN) with vn=w0 +h l wj {n = 0,1, ••• ,N). 

j=l 

There is a constant <'i such that for all h € (O,h0 ] and all 

X = (xO,xl, ••• ,~), x = cx0 ,x1 , ••• ,~> E xh with Ix I :!, lxnl n 
(n = 0,1, ••• ,N), we have the inequality U sxllh :!> <'i . llxllh. 

It is easily verified that the seminorm of example 3 satisfies condi­

tion (iii), while the one of example 4 does not. Consequently, with the 

seminorm of example 3 we have the error bound (4.3), which is equivalent 

to the bound given by STUMMEL [18]. Further, we may conclude that with 

the seminorm of example 4, statement (i) is not valid. 
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5. INTEGRO-DIFFERENTIAL EQUATIONS 

5.1. In this chapter we consider the initial value problem for a system of 

s integro-differential equations of Volterra 

(5 .1) 

t 

d~ U(t) = f(t,U(t), I g(t,T,U(T))dT) 

0 

(0 :S t :S T) , U(0) 

Here c has the same meaning as in the initial value problem (2.1), and 

c. 

f, g are given continuous functions from [ 0, T] x lRs x lRs to lRs , and from 

the set 

{ ( t, T, 1';.) I 0 :S t :S T, 0 :S T :S t, 1';. € :ms } 

to :ms, respectively. we assume that f and g satisfy the Lipschitz condi­

tions 

!f(t,~,n) - f(t,1';.,n) I :S L1 • 

lg(t,T,~) - g(t,T,1';,) I :S L3 

L • 
2 ln-nl , 

Here L1 , L2 , L3 denote positive constants independent oft€ [0,T], 

T € [0,t] and 1';., ~' n, n € lRs. 

In [11] SMIT considered the problem under what conditions there exist 

two-sided error bounds in the numerical solution of the initial value 

problem (5.1). 

We shall discuss two simple, but typical, applications of the theory 

contained in [11]. 

For the ease of presentation we confine ourselves to the following 

numerical method, which is a straightforward generalization of Euler's 

method (2.3). 

(5.2) • (u -u ) = f(t hntl (t i) n n-1 n-l'un-1' _lg n-l'tJ.,uJ. 
J=l , 

(n = 1,2, •.• ,N), 

We note that the use of a finite sum in (5.2) to approximate the 

Jtn-1 integral 0 g(tn_ 1 ,T,U(T))dT, generates an error which is not present 

in Euler's method (2.3). Therefore, it is realistic to consider a 
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perturbed version of (5.2) which, in addition to the wn occurring in (2.4), 

also contains perturbations w* in the third argument of the function f. 
n 

We thus arrive at the following generalization of (2.4) 

(5. 3) 

( n = 1 , 2 , ••• , N) , 

5.2. Suppose u ,u satisfy (5.2), (5.3), respectively. We consider the n n 
problem whether there exists a two-sided bound for max0< <Niu -u I 

-n- n n 
similar to the bound (2.9). To be more exact, we pose the question whether 

the un,un computed from ,(5.2), (5.3) satisfy a relation of type 

(5. 4) 

Here the positive constants y0 ,y1 should be independent of h E (O,T], 
* ** * s * s w = (w0 ,w1 , ••. ,wN), w = (w0 ,w1 , •.. ,wN_1), wn E lR, wn E lR. The con-

stants y0 ,y1 may depend on f and g, but the functional $h should be inde­

pendent off, g. 

It follows from [11, Theorem 6.2] that such a two-sided error bound 

of type (5.4) does not exist. 

5.3. The above application of the theory in [11] has thus led to a nega­

tive result. We consider a second application yielding a positive one. 

We define for n = 0,1, ... ,N-1 

n 

h I 
j=l 

g(t ,t.,u.), 
n J J 

n 
h I 

j=l 
* g(t ,t.,u.) + w . 

n J J n 

It follows from [11, Theorem 6.20] that the un,un, computed from (5.2), 

(5.3), satisfy the two-sided error bound 

Here y0 ,y1 > 0 are constants independent of he (O,T], wn E JRs, w~ E JRs. 

The functional $his defined by 

n 
max[ max lw0+h I w. I, max lw*!]. 

O~n~ j=l J O~n~N-1 n 
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We note that ~his independent off and g. 
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For the various sections of the mathematical community Brouwer's fame 

seems confined to their own specialisms. For the topologist he is the man 

of the fixed-point theorem, who introduced revolutionary methods and solved 

the problem of the invariance of dimension. Alexandroff claims "that the 

power of these methods reached far beyond the proof of invariance of dimen­

sion; they were the kind of creation which have made Brouwer with Cantor 

and Poincare the founder of modern topology" [1]. To the logician Brouwer 

represents the extreme challenge of the traditional principles of logic in 

the practice of mathematics, in particular of the Principle of the Excluded 

Middle. This challenge and his more stringent definition of the negative 

formed the basis of a completely new practice of mathematical logic, the 

modern intuitionist school. 

For the serious mathematician-philosopher Brouwer's intuitionist chal­

lenge extends beyond the subtleties of mathematical logic; to him Brouwer 

is perhaps the last of that rare breed of mathematicians and philosophers 

who concerned themselves with the fundamental, metaphysical questions of 

the nature of mathematics, the nature of mathematical truth and reality. An 

uncompromising reformer, who passionately tried to halt the increasingly 

formalistic trend in the practice of mathematics and made gallant attempts 

to systematically re-construct the whole of mathematics in accordance with 

his constructive philosophy. At the height of Brouwer's international fame 

Hermann Weyl renounced his own contribution to the solution of the continuum­

problem and proclaimed 'a crisis in the foundations of mathematics re­

sulting from Brouwer's findings: "Und Brouwer, das ist die Revolution!" 

*) The author gratefully acknowledges the generous help of ZWO and the 
hospitality of Utrecht University during the academic year 1976/77 which 
enabled him to gather biographical information and set up the Brouwer 
Archief. 
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the one mathematician who at last had solved the problem of the continu­

um which since ancient times had defeated even the greatest minds [2]. 

There is no doubt as to the prominent place Brouwer holds both in the 

field of Foundation studies and in Topology. Perhaps due to some profes­

sional jealousy topologists and foundationalists each claim Brouwer as 

their champion and play down his role and contribution in the other field, 

or it may be that in our age of specialization we cannot but doubt the 

seriousness and value of contributions in what we regard as two completely 

separate specialisms. It was the declared policy of the editors of Brouwer' s 

Collected Works to separate his foundational and topological work. Heyting 

speaks in the Introduction of "two almost disjoint parts". 

No attempt has yet been made to relate Brouwer's activity in these two 

fields. Foundationalists hardly mention his contribution to Topology or use 

it only as evidence and proof of Brouwer's genius as a mathematician and 

express their doubts about Brouwer's own claim that in his topological work 

he "was always careful to derive only such results as could be expected to 

find their place in the new system after the systematic construction of an 

intuitionist set theory" [3]. Topologists express surprise and disappoint­

ment at Brouwer's "loss of interest in Topology" after a brilliant but 

brief blaze of activity in the period 1909- 1912. Newman and Kreisel diag­

nose "a shift in Brouwer's interest to philosophy after the first world­

war" [4] and Freudenthal and Heyting blame "national isolation during World­

war I for Brouwer's loss of interest in Topology" [5]. 
*) As part of our own attempt at a Brouwer Biography I venture to an-

swer some of these questions' the reasons for the "shift" in Brouwer's in-

terest, the timing of this shift and the relation between these apparently 

disjoint interests. Considering all the evidence now available, I think 

that the answer to these questions is to be found mainly in the person and 

character of Brouwer and the particular circumstances he found himself in 

at the time. We have been fortunate in having found and gathered together 

in the past year most of Brouwer's papers including his correspondence with 

D.J. Korteweg, his 'promoter' in more sense than one, i.e. the professor 

supervising a doctoral thesis. 

I have no doubt that Brouwer's chief mathematical interest throughout 

his life has been the Foundations of Mathematics as philosophical reflection 

*) Dirk van Dalen and the author in a joint effort have started to gather 
biographical information in preparation of a Brouwer biography. 
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on the nature of mathematics, its origin, its fundamental principles and 

concepts and its relation to other human activities, and that his passion­

ately held views on these fundamental aspects were.the inspiration and 

driving force behind most of his mathematical work. 

It is no coincidence that on all important occasions in his academic 

career he chose to speak out on foundational matters rather than topology 

even at a time when his topological fame reached its climax; both his doc­

toral thesis (1907) and his Inaugural Address (1912) were major contribu­

tions in his intuitionist campaign. This preference goes back to his student 

days. On the occasion of the conferment of the Honorary Doctorate on Gerrit 

Mannoury, Brouwer recalled his disillusionment with the undergraduate mathe­

matics course: "I could see the figure of the mathematician only_ as a ser­

vant of natural science or as a collector of truths, fascinating by their 

immovability but horrifying by their lifelessness, like stones from barren 

mountains of disconsolate infinity" [6]. He gratefully acknowledged his in­

debtedness to the man who had opened his eyes to the possibility of extend-

. ing his mathematical activities to the domain of foundational studies. 

Korteweg had hoped that his talented student would use the opportunity of 

his doctoral thesis to produce a brilliant piece of mathematics. Brouwer, 

however, saw it as the occasion to launch the manifesto of his deeply felt 

views on the nature and practice of mathematics which would shock the world. 

When after two years of reading and studying Brouwer produced his magnum 

opus Korteweg was stunned. He crossed out and rejected the greater part 

of Chapter II, the most important part of the thesis, and angrily wrote to 

Brouwer: "I have again considered whether I can accept it as it stands, but 

honestly Brouwer, I cannot ••• it has nothing to do with mathematics ••• it 

is bizarre [7]. In the following heated exchange Brouwer pleaded passiona~e­

ly: "You know that when two years ago I chose my subject it was not for 

lack of ability on my part to tackle a more 'normal' topic, but only be­

cause I felt strongly drawn towards this subject ••• how mathematics is 

rooted in life and what should be the starting point of all our theories" 

[8]. Korteweg, however, remained adamant, Brouwer had to agree to the re­

moval of practically the whole of his treatise on the nature of mathemat­

ics and the physical sciences; all that was left was a sober statement on 

the nature of mathematics together with a brief account of the Primordial 

Intuition of Time. The main body of the all-important Chapter II is now 

taken up by a survey of the physical sciences and a criticism of Russell. 

When some months later Korteweg made some critical comment on mathematical 



362 

detail of what was left of Chapter II, Brouwer, still resentful, blamed the 

general incoherence of the chapter on the removal of the main theme which 

these mathematical references only served as props: " •. in my mind they 

were originally only incidental offshoots of a fundamental idea which held 

them together - and which is not any more to be found in the dissertation; 

they only had secondary importance. After their sudden appearance in the 

full limelight, substituting for their former leader, it was not possible 

to doll them up quickly in such a way that they together by themselves 

could save the entire performance. At least that is my impression when I 

look at the chapter" [9]. 

Brouwer's second attempt to set the world of Foundations of Mathemat­

ics ablaze met with a sim1lar fate. Towards the end of 1907 he submitted 

his now famous article on the Unreliability of the Principles of Logic to 

Bierens de Haan, the chief editor of the newly founded Tijdschrift voor 

Wijsbegeerte. It is his first public rejection of the Principle of the Ex­

cluded Middle. Far from receiving an enthusiastic response for his revolutionary 

ideas Brouwer was told that his contribution was unintelligible. Only after 

much persuasion could he convince the secretary to plead on his behalf with 

the editorial board; they only reluctantly and conditionally agreed to its 

publication. Kohnstamm wrote: "In today's meeting the editorial board decid­

ed to publish your paper in the February issue. But, as I expected, only 

after considerable resistance; most members stated they had not understood 

a word of it •• I only succeeded in overcoming their resistance by repeat­

ing your promise in your letter of 7 December to Bierens de Haan to elab­

orate on your point of view in a series of articles a little more compre­

hensible to non-mathematicians" [10]. 

The promised articles never materialized, Brouwer became more and more 

disillusioned: even those who recognized his mathematical talents were not 

prepared to listen tohis philosophical views. At the International Congress 

of Mathematicians in Rome in the spring of 1908 he contributed two papers, 

using some of the ideas of his thesis. In a letter from Italy he complained 

to Korteweg about the poor reception these papers received. But he also 

speaks of the inspiration he experienced from the company of great men, 

"the admiration and awe I felt in the presence of these heroes of abstrac­

tion", in particular of the inspiring presence of Poincare: "To be able to 

raise oneself to a view from where one can produce a lecture such as 

Poincare's l'Avenir des Mathematiques, whose truthfulness everyone experi­

ences and accepts as a guide in his work, this to me seems to be the 
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highest ideal for any mathematician" [11]. 

Brouwer began to realize that his own revolutionary views on mathemat­

ics would only be listened to if pronounced from such a height and with an 

authority such as Poincare had earned through his mathematical work; he 

first had to gain the respect of his fellow-mathematicians on account of 

his own purely mathematical work. 

The need to prove his mathem~tical worth became the more urgent as 

the down-to-earth necessities of life began to make themselves felt: he 

had to earn himself a living. For more than a year he had been completely 

dependent on his wife's earnings (and it would be another four years before 

he earned his first salary). 

Brouwer's letters to .. Korteweg leave no doubt as to his ambition: he 

wanted no less than a professorship or at least a lectureship. Yet he was 

not prepared to follow the traditional Dutch slow route to academic prom­

inence via a successful teaching career in a gymnasium, gradually and care­

fully preparing one's candidature for some future academic vacancy through 

.frequent contacts with academics in the meetings of the Wiskundig Genoot­

schap, publications in the national academic press and by giving one's free 

service to the University as a 'privaat-docent'. Brouwer knew his limita­

tions and his unsuitability for teaching in schools. He hated teaching, 

"submitting to the 'bon plaisir' of one's audience" [12]. Korteweg's advice 

was "to let no opportunity pass to make yourself known and show what you 

would be worth as a lecturer or professor" [13]. Brouwer reluctantly and 

resentfully accepted Korteweg's advice to apply for the humble and unpaid 

licence to teach at the University of Amsterdam as a 'privaat-docent'. He 

was determined and used all his energies to force a short cut to academic 

high office. In a letter to Korteweg already in November 1908 he advanced 

the revolutionary idea that such high office should be awarded solely on 

academic merit i.e. international reputation as a scholar*). He purposely 

set out in quest of international recognition, bypassing the parochial na­

tional routes and wooing the mathematical giants of the time. He was 

shrewd enough to realize that he had to.bury the controversy on the Founda­

tions of Mathematics for the time being and he was prepared to remain 

*) About ten years later Brouwer returned to this theme in a one-man 
campaign on the appointment of professors and the establishment of 
mathematics departments as research institutes in the national press, 
the Wiskundig Genootschap and the Royal Academy. 
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silent on this issue, closest to his heart, until he had achieved his ambi­

tion. He would not speak out on the matter of Foundations until the very day 

that he acceeded to the chair of mathematics at Amsterdam University in 

1912. 

In the isolation of his 'Hut' on the Laren heath Brouwer now began his 

pure-mathematical research. The unfinished problems of his thesis were an 

obvious and natural subject for further investigations. In the heat of the 

argument with Korteweg he had claimed "to have solved Hilbert's fifth Paris 

problem (The Lie notion of continuous Transformation groups without the 

assumption of differentiability) for the simple linear case" [14]. In his 

Rome lecture he posed the more general problem of "determining all finite 

continuous groups of then-dimensional manifold" [15]. His thorough study 

of Lie Groups, approaching them through manifolds and one-to-one mappings 

[16] was his first work which he considered good enough to offer to Hilbert 

for publication in the 'Mathematische Annalen'. It set him firmly on the 

road to Topology. In October 1908 Brouwer gave his first lecture to the 

Wiskundig Genootschap [17], a general survey of research to date, On Plane 

Curves and Plane Domains, still firmly based on Schoenfliess's results but 

posing many problems and a programme of his work for the years to come. 

It was, however, his discovery of flaws in Schoenfliess's work during the 

winter of 1908/09 that gave him the break he had been waiting for, an 

opportunity to conduct a searching mathematical investigation in the inter­

national limelight and under the eyes of 'the great'. Early in 1909 he 

writes to Hilbert, "When during the last winter I had the second part of 

my Finite Continuous Groups ready to send in for• publication in the Mathe­

matische Annalen I suddenly notic2d that Schoenfliess's investigations 

into the Analysis Situs of the plane, on which I so entirely based my work, 

cannot in all its parts be sustai1ted; this also calls into question my own 

group-theoretical results. To clear this matter it was necessary to work 

thoroughly through the relevant parts of Schoenfliess's theory and deter­

mine precisely on which results we can rely in full confidence. That's how 

the enclosed work originated" [18]. Brouwer enclosed the original, rather 

aggressive draft of his Zur Analysis Situs with a request to publish it in 

the Mathematische Annalen. Another copy he sent to Schoenfliess. Hilbert's 

reply was a simple acceptance and concerned only the size of the illustra­

tions. But it was Schoenfliess' s reatction that pleased Brouwer most: "At 

last some fish has taken the bait! •• I am so glad at last to receive some­

thing more than just a polite postcard about my work •• Schoenfliess has 
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gone into my paper in considerable detail, but I had to put the thumbscrews 

on rather.hard" [19]. 

zur Analysis Situs marks the. beginning of a series of many papers of 

Brouwer's hand during the years 1909-1912 which completely changed the 

course and role of Topology. He had found his strength and in that time 

achieved his ambition to rub shoulders with the 'great', drawing their at­

tention by his sharp and critical analysis of the work of others*) and the 

simplicity and beauty of his own methods. His contacts with Hadamard of the 

1908 Rome Congress had developed into a personal friendship. In the summer 

of 1909 he met Hilbert for the first time in The Hague, and the relation 

Hilbert-Brouwer at that time can only be described as mutual admiration and 

friendship; he had the great satisfaction ~f receiving a personal tribute 

from Poincare and was admired and encouraged by Klein. Success, ambition 

and pressing financial need spurred him on into frantic activity over a 

wide front of topology, culminating in his work on dimension. Casually but 

proudly he writes to Hilbert at the end of a letter, "Apart from a new 

·paper on group theory I am preparing for submission to the editorial board 

of the Annalen a paper in which I solve the problem of the invariance of 

dimension, showing that there cannot be a one-to-one mapping between spaces 

of even and odd dimensions" [20]. In October that same year he divulged his 

remarkable proof of the invariance of dimension for the first time in pub­

lic at a meeting of the Wiskundig Genootschap [21]. 

The fulfilment of his other ambition, a professorship with its finan­

cial security, was greatly due to the relentless efforts of his promotor, 

D.J. Korteweg, who in two long campaigns lobbied the university authori­

ties, the city fathers and his colleagues of sister universities. It is 

amusing to unravel the intrigue and enthusiastic plotting of Korteweg and 

his fellow-mathematics-professor Hendrik de Vries to secure Brouwer's 

membership of the Royal Academy and so to advance his candidature for a 

professorship; and to read their long and carefully worded petitions sup­

ported by glowing references from such giants as Hilbert, Poincare and 

*) A letter of Caratheodory to Hilbert is evidence of Brouwer's reputation 
for rigour: "The length of the manuscript is due to my attempt to be 
absolutely rigorous (you know how in this part of mathematics one sins 
against this - with the exception of course of Brouwer)" •• (Nieder­
sachs. Staatsbibl. Gc5ttingen). 
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*) Borel • As a true mathematician Brouwer must have enjoyed the satisfaction 

and excitement of his creative topological work, but his moodinthose years 

is overwhelmingly one of resentment and impatience, hurt pride and resent­

ment at not being offered an academic position any earlier. His letters to 

Korteweg are full of angry outbursts •• , "a second slap in the face •• 

after being passed over in Delft for someone younger and inferior" [22]. In 

another letter he sneeringly suggests that Korteweg perhaps ought to tell 

the University Authorities who Poincare - his referee - is [23]. There was 

resentment too and the beginning of bitter enmity towards those who did not 

immediately and openly acknowledge his mathematical superiority, especially 

towards the topological school of Lebesgue. 

On the other hand the absence of lecturing duties and the administra­

tive commitments of a university post gave him the freedom and the oppor­

tunity to devote all his time and energy to research - and he needed the 

strong pressure to apply himself and force his energies in the direction of 

pure-mathematical research.In private he often confessed to his friends 

that pure mathematics "bored" him. But he maintained his calculated silen­

ce and managed to keep his revolutionary ideas on the nature of mathematics 

from those whose support he still needed. In a long letter to Hilbert 

[24] - seven pages foolscap - he volunteered his criticism on die Grundla­

gen der Geometrie, but his suggested improvements and criticisms only con­

cern the technical details of Hilbert's addendum as published in 1902, not 

a word of criticism on the most fundamental issue, Hilbert's formal axiomatic 

method, which was launched in the first chapter of die Grundlagen as 

published in 1899 and which Brouwer had so severely criticized in his thesis. 

(That Brouwer did not expect Hilbert to know about his contributions in 

Dutch is clear from a letter to Korteweg in which he expresses surprise and 

his "mixed feelings" at hearing from Hilbert that he had seen some of his 

Dutch contributions [25].) 

*) Hilbert's testimony speaks of Brouwer as "a scholar of unusual talent, 
of the most rich and wide-ranging knowledge and rare sharpness of mind •• 
It is characteristic of Brouwer never to be satisfied with the easy re­
sults which the usual research offers; he always becomes involved in 
especially difficult and deep problems and only leaves them when he bas 
succeeded in a solution which completely satisfies him. I think in par­
ticular of his solution of the problem of finite continuous groups and 
his marvellous proof of the Jordan Curve theorem" (Hilbert to Korteweg, 
6-2-1911, DJK 80). 
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Brouwer finally broke his silence on the Foundations of Mathematics on 

the day that he officially acceeded to the chair of mathematics. He did not 

use the occasion of his inaugural address to reveal to the world yet another 

of his brilliant innovations in the field of topology for which he had re­

ceived early fame and was awarded his chair nor did he choose to speak about 

the two areas of his new responsibility, the theory of functions and ana­

lytic geometry. The newly found security gave him the freedom at last to 

speak out publicly on deeper, fundamental issues and to resume his campaign 

against an increasingly mechanistic and formalistic trend in the whole 

field of mathematics. He now could speak also confidently and authoritative­

ly, knowing that his voice would be listened to. There is an element of 

defiance in his opposition to the established policy of world famous mathe­

maticians like Peano and Hilbert whom he now knew personally; perhaps even 

an element of mischievous revenge in Brouwer' s publicly repeating views - in 

some cases literally -which had been rejected by his promoter and removed 

from the thesis. (It is a tribute to Korteweg's magnanimity that within a 

.year he would voluntarily step down to give Brouwer the chance to become 

'Ordinarius' and so be retained for Amsterdam.) 

Brouwer's accession to his professorial chair marks the beginning of 

his full-scale intuitionist campaign and the end of his involvement in 

topology. He did not purposely abandon topology. However, his university 

duties and other interests began to make increasing demands on his time 

and energy: In his first year he had to prepare courses in coordinate geo­

metry and function theory, in 1913 he became fully responsible for all 

courses in mechanics; at the death of Schouten he also started a long term 

of office &n the committee of the Wiskundig Genootschap. But above all, 

having secured his academic position he was now free to pursue his inter­

ests in the foundations of mathematics, in 'Signifies' and in national and 

university politics. 

The biographical evidence leaves no doubt that Brouwer's first love 

and the chief concern throughout his life has been the fundamental problems, 

the philosophy of mathematics. This is also clear from the style of his 

writing which betrays his passionate involvement in the struggle for the 

purity of mathematics. At a time when mathematical practice underwent 

perhaps its most fundamental change he recognized in the increasing lin­

guistic and formalistic emphasis a threat to what he believed to be the true 

nature of mathematics, a threat also to a practice of mathematics which 
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came most natural to him, through.profound thought, "inner vision", rather 

than mechanical manipulation of symbols on paper. 

I do not wish to maintain that the reasons for Brouwer's involvement 

in topology are solely mercenary and accidental and that there is no connec­

tion between his topology and intuitionism other than a means to an end. 

If there is to be a more fundamental reason for his dual interests, the key 

perhaps may be found in Brouwer's own character, his misanthropic and so­

lipsistic preference for 'inner vision'. In his first public lecture as a 

'privaat-docent', The Nature of Geometry, Brouwer proclaimed the 'problems 

of analysis situs' as the most topical and urgent; however, his emphasis 

on the visual perceptive simplicity of geometric topology is the clearest 

indication of its appeal to Brouwer's intuitive conception of mathematics. 

In the final lines he equates 'topological' to 'geometric' and 'formula­

less': "Therefore also in other theories (- i.e. besides projective geome-

try-) even if one succeeds in founding them on analysis situs, coordinates 

and formulae need not entirely be banned; but the 'formula-less', the 'geo­

metric' treatment will be the starting point while the analytic treatment 

becomes a dispensable expedient. It is to the possibility and desirability 

of the priority of the geometric treatment that I have wanted to draw your 

attention" [26]. The geometric medium allowed the 'intuitive' approach and 

promoted a simplicity which is the hall-mark of Brouwer's topological 

methods and solutions. This approach and his exceptional genius produced 

the master strokes, the brilliant and grand ideas which made Brouwer one 

of the great topological pioneers. He was ill-suited nor prepared to under­

take the more laborious and mundane task of constructing a detailed and 

systematic follow up. Writing to Korteweg about his own more technical­

mathematical contributions he remarks apologetically, "I consider these 

publications to be of a much lower standard than my other work; anyone could 

have obtained these results" [27]. 

As to Brouwer's move away from topology in 1912 and his return to the 

field of foundations, there is some continuity and a direct link between 

Brouwer's 'topological' interests in 1912 and his intuitionist pre­

occupation during the following years. It is quite remarkable that 

Brouwer's first breakthrough in 1909 and his dramatic entry into the 

field of topology was sparked off by his critical analysis of Schoen­

flies's work and that again in 1912 the change back to foundations was 

partly due to his involvement in Schoenflies's work in set theory. 
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In both cases Brouwer's work in the following years was determined by it. 

Early in' 1912 Brouwer's attention began to centre on set theory. He des­

cribes the reason for this inter.est in a letter to Hilbert : 

"You know probably that for some time I have been busy with the 

re-edition of Schoenflies's Bericht uber die Mengenlehre. What happened in 

this: I was repeatedly pressed from different quarters to write a book on 

the theory of sets, since the present textbooks and articles in 

Encyclopediae are inadequate and superficial. When I was in Gottingen 

in the summer of 1911 I was asked again and about the same time I heard 

that Schoenflies was preparing a new edition of his book. I thought it 

would solve the problem and save my time if I could control the edition 

during the printing stage and where necessary improve it and supplement it. 

The problem of persuading Schoenflies to allow me the control was soon 

solved when Fricke, who knows him personally, offered to mediate. Schoen­

flies was very pleased with my proposal made by Fricke. But I am now in 

some difficulty with hum on the nature and the degree of my cooperation; 

we differ on the fundamental issue. Schoenflies likes to restrict my role 

to correcting false theorems and proofs, whereas I, of course, also aim 

improving and complementing them" 28). 

Brouwer's "cooperation" had in his own imagination grown into a "right 

of control". A different version emerges from his letter to Schoenflies 

in December 1911, in which Brouwer offers his services: "When I discussed 

with Fricke the new edition of your Bericht I mentioned that my collabo­

ration might be helpful. I now hear that Fricke has discussed the matter 

with you and that you like the idea. I am wholl:y at your service" 29). 

During 1912 Brouwer becomes more and more involved in editing Schoen­

flies's Bericht 30) and more and more frustrated that Schoenflies did 

not do as he was told. Mrs. Brouwer writes to her sister-in-law, " At the 

moment all his time is taken up with correcting the second print of the 

German standard work in his special field, the work by Schoenflies. He 

was requested by the German authorities to offer his generous services ••• 

that same Schoenflies with whom he quarrelled before, just as obstinate 

and headstrong as then •• " 31). 

Brouwer's letters to Hilbert throughout 1913 are dominated by his ob­

session with the edition of Schoenflies's work, he repeatedly urges 

Hilbert to put pressure on Schoenflies: 

On 16th March 1913 : " Schoenflies presses me to hurry up. I feel it all 

as a Sisyphus task, after my corrections Schoenflies tries to improve it 
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again and brings in new errors. The solution perhaps might be pressure 

from a third party. I know that Schoenflies will be visiting Gottingen 

next week and will probably discuss the Bericht with you. Perhaps you 

could suggest that he should allow me more freedom. His great respect for 

you might help. Please, drop a hint in that direction. It will be good for 

set theory and mathematics" 32). 

On the 23rd April he again asks Hilbert to intervene: " I am not his 

assistent, nor do I do it out of frienship; my concern is a good book on 

the theory of sets and at the moment I am the most competent 

person " 33). 

On the 16th June "Your suggestions to Schoenflies have not worked very 

long • • • He makes errors any student would be ashamed of. But I remain at 

my post trying to salvage what can be saved" 34). 

On the 4th July " Schoenflies gets worse. If there is not a complete 

change I shall have ·to give up the work on which I spent more than eight 

months ••• I have not done any work of my own " 35) and on the 5th Sep­

tember: 11 Once more I ask for your help against Schoenflies in the inte­

rest of science. On one of the most important points after endless efforts 

I succeeded in making him delete a proof and replace it by one of mine. 

But now at the last moment, blind to his mistake (and honestly you don't 

need much intelligence to see them) he wants to re-introduce it •• 

I beg you to send him a telegram immediately and tell him that he must 

give in to me 11 36) etc. 

Brouwer's complaint that he had not been able to do any work of his own 

is echoed by Mrs Brouwer in a letter to her sister-in-law in which she 

specifically blames Schoenflies for Brouwer losing the contest in proving 

Poincare's last theorem: 11 Bertus thinks he cannot stand it any longer. 

It also made him lose the priority in solving the famous last problem of 

Poincare 11 37). From the Brouwer - Korteweg correspondence it appears 

that during the summer of 1912 Brouwer had been working on the solution 

of Poincare's problem: Just before his Inaugural Address he writes to 

Korteweg: "As to my solution of Poincare's problem, it will take me some 

more weeks. Please don't speak to anyone about it. When I have a fully 

worked out version I shall present it to the Academy " 38). 

Instead of using the occasion of his Inaugural Address to reveal 

his solution of Poincare's last problem Brouwer returns to the field 

of Foundations; after years of silence he speaks out openly again on 

Intuitionism. But his emphasis has shifted away from logic, the 
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Principle of the Excluded Middle is not even mentioned. Neither do we 

hear another diatribe against science or the application of mathematics. 

The offensive is mainly directed at Zermelo' s axiomatic treatment of 

Set Theory. 

In his review of Schoenflies's book Brouwer elaborates on the 

deficiencies in Schoenflies's work and in Set Theory at the time. He 

describes Schoenflies's Bericht 39) as a useful survey of Set Theory to 

date. His criticism are that" that Schoenflies keeps away from the fun­

damental philosophical problems" and that because of this lack of a 

proper foundation the work fails to satisfy the intuitionist as well as 

the formalist:" for the formalist there is too little, for the intuitio­

nist •• who only recognizes well-constructed sets •• there is too much" 

Brouwer diagnosed a general lack of a theory of sets which questions 

assumptions and goes back to fundamental philosohical issues. The con­

struction on such a theory of sets became his task in the years ahead 

and would result in his intuitionist set-theoretical contributions in 

1917 and 1918. 

As to Brouwer's own opinion about his contribution to mathematics, he 

saw his own role primarily as that of a reformer of general mathematical 

practice, the father of intuitionism. History may well bear him out. After 

the rapid advances in topology his name and his contributions already 

seem to fade into oblivion. In the field of foundations, however, his 

extreme and consistent challenge of a formal and mechanistic conception 

of mathematics has remained as the only viable alternative philosophy of 

mathematics which still intrigues the seekers of mathematical truth all 

over the world. 
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The foundations of rational mechanics can be based on various "basic 

assumptions", e.g. the variational structure leading to the Euler-Lagrange 

equations or the canonical structure leading to the Hamilton equations, but 

whatever choice one makes, in one way or the other the "phase space", or 

rather "orbit space" [6] gets in a natural way a symplectic structure which 

plays a dominant role in the whole theory. It is a well known consequence 

of the existence of this symplectic structure that, roughly speaking, for 

each symmetry there is a conservation law; see for example [2]. In [7] I 

considered the problem whether the existence of a certain amount of sym­

metry together with the corresponding conservation laws imply the existence 

of an underlying variational principle. The results, obtained in that paper, 

concern field equations; the present paper deals with the corresponding 

problem for mass points or, as Souriau calls them elementary systems [6]. 

The fact that this time we are interested in symplectic structures rather 

than variational principles has a technical reason: for "particles" with 

spin there is no obvious variational principle but there is still a good 

symplectic structure of its orbit space. 

Although our formal definitions are somewhat different from those of 

Souriau's we also define an elementary system as a mechanical system which 

is "minimal" in some sense. The symmetry groups which are relevant, are the 

Huygens group (usually called the Galilei group, but see [3]), and the 

Poincare group depending on whether we consider Newtonian or relativistic 

mechanics. The notion of "conservation law corresponding to a given sym­

metry" leads to two possible definitions namely "momentum" (2.5) or 

"momentum with agreeing force form" (2.4), (2.6). The main result of this 

paper states that an elementary system with symmetry group G and correspond­

ing conservation laws admits an associated symplectic structure (on its 
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orbit space see (2.7)); if G is the Poincare group but does not necessarily 

admit such a structure if G is the Huygens group. 

We conclude this introduction with some miscellaneous comments: 

Although the main problem is this paper is closely related with [7], the 

methods are completely different and much more related with [6] Chapitre 

II, III; the treatment of elementary systems in this last source motivated 

much of the present work; the reader is assumed to be familiar with that 

treatment. 

The classification of elementary systems, as given by SOURIAU [6] be­

comes incomplete with our definitions; this has various reasons most of 

which are trivial but one of which is interesting. This will be illustrated 

in example (6.3). 

2. FORMALIZATION OF THE PROBLEM 

We shall first define what we consider as a (particle) system. The 

definition is formal but we indicate the physical meaning in brackets. 

DEFINITION 2.1. A particle system is a structure consisting of: 

an affine space V (V plays the role of space-time and will be 4-dimensional 

in all examples); 

a Lie group G of affine transformations of V containing the vector space 

cr(V) of all affine translations of V (it is this group which, in the ap­

plications will be the Huygens or the Poincare group); 

a subset T of T (V) , the tangent bundle of V, such that for t € T, A € lR , 

g € G, dg(t) € T and J-•t € T if and only if A> 0 (the vectors t € T cor­

respond to motion in positive time direction); a translation~ E cr(V) is 

said to be a translation in positive time direction if the tangent vector 

of s + (s•~) (v) is in T;· T n Tv(V) is denoted by T(v); 

a differentiable bundle n: E + V over V with a G-action on E (notation: 

g € G and e €Ethen (g,e) + gE(e)) such that for all e € E, g € G, 
g(n(e)) = n(gE(e)) (each point e of Eis supposed to represent a possible 

state of our particle when its position/ time is n(e)); 

an evolution field E which assigns to each e € E an open halfline E(e) in 

T (E) such that dn(E(e)) c T(n(e)) and dg (E(e)) = E(g (e)) (E should be 
e E E 

interpreted as the direction of evolution with time, which occures without 

external forces); 

a restriction field R which assigns to each e €Ea linear subspace 
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R(e) E Te(E), transverse to E(e), such that for each g E G, e EE, x1 E E(e) 

and x2 E R(e), dgE(R(e)) = R(gE(e)) and dTI(X1+x2) E T(TI(e)) (these vectors 

x1 + x2 , with x1 E E(e) and x2 E R(e), represent possible evolution direc­

tions in the situation where external forces are present). 

DEFINITION 2.2. A curve y: lR +Eis called a free orbit if for each t, . 
y(t) E E(y(t)); it is called a possible orbit if each y(t) is the sum of a 

vector in f(y(t)) and R(y(t)). 

DEFINITION 2.3. A particle system (V,G,T,E,TI,E,R) is an elementary system 

if G acts transitively on E and if there is no proper submanifold E' c E 

such that for each e' EE', E(e') and R(e') are contained in Te 1 (E'). 

DEFINITION 2.4. A force form F for an elementary system (V,G,T,E,TI,E,R) is 

a map which assigns to each e E E an injection F(e): R(e) + T *(E) such that 
e 

for g E G, e EE, x1 E R(e) and x2 E Te(E), (F(e)x1)x2 = (F(gE(e))dgE(x1)) 

dgE(x2) (if y: lR + Eis a possible orbit, and y(t) = x1 + x2 , x1 E R(y(t)) 

and x2 E E(y(t)), then F(y(t)) x1 "is the force needed at time t to get 

this orbit"). 

DEFINITION 2.5. A momentum M for an elementary system (V,G,T,E,TI,f,R) is 

smooth map M: E + J* (]* is the dual of the Lie algebra J of G) such that 

(i) Mis constant on each free orbit; 

(ii) the rank of dM is everywhere equal to dim(E)-1; 

(iii) there is a map 0: G + J* such that for each e EE and g E G, 

M(gE(e)) gJ*(M(e)) + 0(g), where gJ* refers to the canonical linear 
-1 representation of G on J*, 

-1 
= a ( (Ad g ) X) (g E G, a E 

determined by (gJ*a) (X) = a(gJ X) 

J*, X E J and Ad the adjoint representa-

tion [1]). 

COMMENT 2.Sa. The notion of momentum is introduced as a concept describing 

a system of conservation laws corresponding to a group (namely G) of sym­

metries. Namely for each X E J, i.e .. , for each infinitesimal symmetry X, 

MX: E + lR, defined by ~(e) = (M(e))X is a function which is constant on 

free orbits and hence the value of MX may be considered as a conserved 

quantity. 

The fact that the rank of dM equals dim(E)-1 means that (locally) the 

free orbits can be distinguished by the values of the conserved quantities 

along them. 
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The third condition would, for 0 = 0, mean that Mis equivariant with 

respect to the given G-actions on E and 1*. The reason for adding the term 

0(g) is the following: in general, conserved quantities are only defined up 

to some additive constant. Hence we should expect that not M, but "M modulo 

an additive constant" has prime significance. Requiring "M modulo an additive 

constant" to be compatible with the G-actions is for our purpose equivalent 

with requiring dM to be compatible with these actions, which leads to (iii). 

DEFINITION 2.6. Let (V,G,T,E,TT,E,R) be an elementary system with force form 

F and momentum M. F and Mare said to agree if for each e EE, X E R(e) and 

Z E 1, (F(e)X)ZE(e) = ((dM)eX)Z, where ZE(e) is the tangent vector of the 

curves + (Exp(s.Z))Ee, and where we identify TM(e) (1*> with 1* so that 

(dM) becomes a map from T (E) to 1*. A force form F, resp. a momentum M, 
e e 

is said to be agreeble if there is a momentum M, resp. a force form f, such 

that F and M, resp. F and M agree; in this case Mis unique up to a constant, 

resp. Fis unique. 

DEFINITION 2.7. Let (V,G,T,E,TT,E,R) be an elementary system; a symplectic 

structure for this system consists of a closed 2-form non E such that 

(i) 

(ii) 

if x E E(e), YET (E), then n(x,Y) = O; 
e 

dim(E) = 2n+1, for some integer n, and n A ••• A n (n-times) is nowhere 

zero; 

* (iii) for each g E G, gEn = n. 

Note that such n does not define a symplectic structure (in the usual 

sense) on the manifold E, but only on the (maybe only locally defined) 

"manifold of free orbits". 

DEFINITION 2.8. Let n define a symplectic structure for an elementary 

system (V,G,T,E,TT,E,R). The force form Fn, induced by n, is defined by 

(Fn(e}X)Y = n(x,Y) for all x E R(e), YE Te(E). A momentum'M is said to be 

related with a symplectic structure n if M agrees with the force form Fn. 

REMARK 2. 9. If E is connected and H1 (E; JR ) = 0 then there is for each 

symplectic structure n a related momentum M which is unique up to an ad­

ditive constant; this momentum Mis of course agreeable. 
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3. STATEMENT OF THE RESULTS 

H, resp. P, denotes the Huggens, resp. Poincare group, defined in §5. 

They are both groups of affine transformations of E.4 • We define TH, resp. 

TP, as follows: 

T = {E 
a T (:R4) Cl., 

ilxi 
E H 1 X X 

TP {E 
a I E T (:R4) Cl.. 

a:xi 1 X X 

Note that, up to the arbitrary choice a.4 > O, TH and TP are the maximal 

subsets of T(:R4 )' satisfying the conditions in definition (2.1) G = H resp. 

G = P. 

4 T E R ➔ p* THEOREM 3.1. Let (:R , P, P,E,TT, , ) be an elementary system. If M: E 

is a momentum then Mis agreeable and Mis related with a symplectic struc~ 

.ture. 

THEOREM 3.2. Let (E.4 ,H,TH,E,TT,E,R) be an elementary system. If M: E ➔ H* 
is a momentum then is does not follow that Mis agreeable; if Mis agree­

able, it does not follow that Mis related with some symplectic structure. 

4. THE PROOF OF THEOREM 3.1. 

In this§ we let (V,G,T,E,TT,E,R) be an eleil)entary system and M: E ➔ 

1* some momentum. We investigate the obstructions to M being agreeable and 

to M admitting a related symplectic structure. 

OBSERVATION 4.1. Let M be a momentum and a. E 1* a constant.Mis agreeable 

and/or related with a symplectic structure if and only if M+a. is; 

(M+a.) (e): = M(e) -+ a. For this reason we say that M and M are equivalent 

if and only if M - Mis constant. 

LEMMA 4.2. Let M be a momentum with 0: G ➔ 1* as in (2.5). Then a defines 

ff· t t · of G on 1* •. an a ine represen a ion g ➔ gl*,e 
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PROOF. From the above definition it follows that gJ*,e is an invertible 

affine map which is linearly related with gJ* (i.e. gJ*,e is gJ* plus .a 

translation) and that (id) J* = identity on J*. So we only have to show 

that g 1 g2 (g1.g2) • From (2.5) we have (g .g2) (M(e) + 
J*,e 0 J*,a 1*,a 1 J* 

a (gl .g2)) = M( (gl .g2)Ee) = M( (gl (g2 e))) = gl (M(g2 (e))) + a (gl) = 
E E ]* E 

glJ* g2J*(M(e)) + g1J*(S(g2)) + S(g1), or S(g1.g2) = g1J*S(g2) + S(gl). 

From this last formula the lemma follows directly. 

OBSERVATION 4.3. If Mand Mare equivalent momenta and 8,0: G ➔ J* the 

corresponding mappings then there is some a€ J* such that for each g € G, 

DEFINITION 4.4. We define z1 (G;J*) to be the vectorspace of those smooth 

maps 8:G ➔ J* such that for g1,g2 € G, 8(g1.g2) = g1J* 8(g2) + O(g1). 

B1 (G;J*) c z1 (G;J*) is the vectorsubspace of these a for which there is a 

fixed a€ J* such that for all g € G,8(g) = ~ - gJ*(a). H1 (G;J) 

z1 (G;J*) / B1 (G;J*). 

Note that a momentum M determines a unique 8 € z1 (G;J*); if 0 € z1 (G;J*) 

with 8- a€ B1 (G;J*) then there is a unique momentum M, equivalent with M, 

such that 8 corresponds with M. An equivalence class of momenta determines 

an equivalence class [8] € H1 (G;J*). 

1 * DEFINITION 4.5. We define Z (];]) to be the vectorspace of bilinear maps 

f:JxJ ➔ :JR such that, for all x1 ,x2 ,x3 € J, 

OBSERVATION 4.6. It should be noted that the bilinear maps f:JxJ ➔ R are 
~ * ~ in 1-1 correspondence with linear maps f:J ➔ J (f(x1,x2) = (f(X1)lX2). 

For each bilinear f:JxJ ➔ R there is a corresponding affine vectorfield 

x on J* defined by: (X (a))Y = -a([X,Y]) + f(X,Y) (using the identification 
f f -

* ~ * * Ta(])= J); a€ J ,X,Y € J. The linear part of Xf (-a([X,Y]) in the above 

formula) corresponds to the infinitesimal representation of g ➔ gJ* in the 
2 

sense that ((Exp t.X) J*a-a)Y = a((Exp t.-X) 1Y-Y) = -ta([X,Y]) + O(t ). 
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From a simple computation one finds that for bilinear maps f:JxJ ➔ :R, 
1 '* f € z (];]) if and only if x ➔ Xf is an infinitesimal affine representation 

* . 1 of G on J • In case G is connected and H ( G; :R) = 0, there is a 1-1 corre-

spondence between affine representations of G on J*, which are linearly 

equivalent with g ➔ g]*' and infinitesimal affine representations of G on J*, 

which are linearly equivalent with the infinitesimal co-adjoint representa­

tion. 

Since both Hand P (see §5) have the ·homotopy type of S0(3) they are 

both connected and both have H 1 ( ; :R) equal to zero, we may and do assume 

from now on that G is connected and that e1 (G;:R) = O. 
. 1 ' " ·1 * From the above remarks we have that Z (G;J) ~ Z (],]).From a simple 

1 * calculation one sees that this isomorphism induces an isomorphism B (G;J ) ~ 

(];]*) and hence e1 (G;J*) ~ H,1 (];]*). 

1 * . PROPOSlTION 4.7. Let M be a momentum, 8 € z (G;J) the corresponding map 

from G ➔ J* and f € z 1 (];]*), the .related bilinear map on ],i.e., f(X,Y) = 

. ((d8)idX)Y see (4.6). We take some e 0 € E and define Je0 = {x €JI ~(e0) 

O}, Jeo,R+E = {x €JI ~(e0) is contained in the linear of Te0 (e) spanned 

by R(e0 ) and Ece0 ) }. 

Then~ is agreeable if and only if for each pair x1 € J ,x2 € J E' 
e 0 . e 0 ,R+ 

PROOF._ Let X € E(e0) and Y € R(e0). Then Mis agreeable (at least in e0 , but 

since G is transitive on E this implies agreeable everywhere) if and only 

if for each such X,Y and Z € J , ((dM) (X+Y))Z = O. 
eo eo . 

Since G is transitive, there is a z' € Jeo,R+E 

Hence we have to -~how that for all z 1 f J RE' ·z € 
eo, + 

o, if and only if f(Z' ,Z) = -f(Z,Z'). 

such that z'E(e0) = X+Y. 

J eo, ( (dM) eo (Z IE (eo) ))Z = 

((dM)eo (Z'E(eo))Z = :t (M((Exp t Z')EeO))Z = 

:t (( (Exp t Z 1 ) J"M(e0))z) + :t (8 (Exp t Z ') Z) 

-M(e0Jc[z',z]J + f(z',zJ. 

In the same way one obtains that ((dM)e (ZE(e0)))Z' = -M(e0) ([Z,Z']) + 

f(z,z'). Since ZE(e0) = O, this last eJression is zero, so M([Z,Z']) 

f(z,z') and hence ((dM) cz' (e0))JZ = f(Z,Z'l + f(Z',z). 
e0 E 
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This proves the position. 

CONSTRUCTION 4.8. Let F be an agreeable force form; we shall show how to 

reconstruct the momentum. From (2.6) we know that F determines the deriva­

tive of the momentum restricted to R; in the direction of E the derivative 

of the momentum has to be zero. From (2.3) it now follows that two momenta 

can only differ by a constant: if M1,M2 do not, differ by a constant, let 
* -1 a. E J be the image of M1 - M2; (M1 -M2 ) (a.) is a manifold (because due 

to equivariance rk(d(M1 -M2 )) is constant) which is not allowed to exist 

by (2.3). Hence F determines dM. 

If Fis moreover induced by some symplectic structure n, then by (2.8) 

and the above observation. Q is uniquely determined by F: Q(X,ZE(e)) = 

( (dM (X)) Z. 
e 

PROPOSITION 4.9. Let M be an agreeable momentum with corresponding 6:G ➔ J* 

and f:JxJ ➔ JR. Then the agreeing force form F is induced by a symplectic 

structure if and only if f is anti-symmetric. 

PROOF. If n is a symplectic structure inducing the force form F of M, 

Q(ZE(e),z'E(e)) = -Q(Z'E(e),ZE(e)). Using the arguments in the proof of 

(4.7) we see that the following expression has to be anti-symmetric in 

z,z': Q(Z (e),z'E(e)) = ((dM) z (e))Z' = -M(e)([z,z']) + f(Z,Z'); hence 
E e E 

f has to be anti-symmetric. 

_If f is anti-symmetric then ((dM} (Z (e)})Z' is anti-symmetric in 
e E 

Z,Z'; since this expression is zero for ZE(e) = O, it is also zero if 

z 1E(e) = O. Hence there is a 2-form non E such that for all 

e E E,Z,Z' E J, Q(ZE(e),Z'E(e)) = ((dM)eZE(e)}Z'. If there is a symplectic 

structure inducing F, it must be Q;Q defines indeed a symplectic structure: 

n is G-invariant because dM is G-equivariant; 

- for x E E(e), n(x,-) = 0 because Mis constant along free orbits; 

- for X transversal to E(e), n(x,-) f O because otherwise the rank of dM 

would be$ dim(E)-2; 

- an= O; this results from the following computation: because of the in~ 

variance of n,L:it_En = 0 for all z E J (L stands for the Lie derivative) 

hence lZEdn + dizEn o, but lzEn -( (dM) (-))Z = -d(M(Z)) and hence 

d,zEn = o, so izEan O for all z E J; from this and the transitivity of 

the G-action on E, it follows that an O. 



REMARK (4.10). Theorem (3.1) now follows, using (4.7) and (4.9) from the 

1 * fact that H (P;P) = 0 which we shall prove in §5. 

5. THE HUYGENS AND THE POINCARE GROUP. 

(a) The Huygens group. 
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The Huygens group H consists of affine transformations of R 4 which, as 

5x5 matrices, have the form 

with A E S0(3) ;13,y € R 3 and ll € R. The action of g on R 4 is determined 

by: 

The Lie algebra Hof H consists of those 5x5 matrices 

with A skew symmetric; b,c E R3 and d E R, 

The elements of the dual Lie algebra H* can be represented by 5x5 

matrices of the form 

with A skew symmetric; b * * ,c 

* * * * l (X) (trace A A)+ b b +·cc+ d d. 
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1 * ~ 1 * THEOREM 5.1. H (H;H) = H (H;H) 1 * Representatives off E Z (H;H )can 

be given as 

j (a) 

* The corresponding 0f:H ➔ H is given by 

f3 

1 

0 

For the sake of completeness we add: 

) ( * ) 
y A O 0 

o b* 0 0 

1 1* c*d*o 

0 

0 

where 

axb. 

* ~T ~ *TT * ~T ~ *T T ~[f3 b .A -A.b. f3 + y.c .A -A.c .y] 0 

0 o.c*.'i< + b*'i< 
*"'I' 

c .A 
* * "'I' 

d -c .A .f3 

1 * 1 * PROOF. The fact that 0f E Z (H;H ), f E Z (H;H) and that fo+ different 

AO,A1,A2 the corresponding f's represent different elements in H1 (H;H*) 

follows from tedious but straightforward calculat~ons. 



The proof that dim a1 (H;H*) $ 3 is harder; we shall not use and also not 

prove this last fact in this paper. 

(b) The Poincare group. 
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The Poincare group P consists of affine transformations of R4 which, 

as 5x5 matrices, have the form 

with M E R 4 and A a 4x4 matrix such that AAT 

on the Poincare group, AT is defined by 

ad, however, in this section 

and such that a 44 > O, det(A) > 0. The corresponding action on R4 is de­

termined by 

The Lie algebra P of P consists of 5x5 matrices 

X C :) 
with B + BT O and N €. R4 . We shall prove: 
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1 * 1 . * THEOREM 5.2. H (P;P) = 0 and hence also H (P;P) = 0. 

PROOF. We introduce two Lie subalgebras of P: L consists of those elements 

of P which have the form: 

with B +BT= O; a consists of the infinitesimal translations, in matrix 

notation: 

4 
with N E E. • 

1 * Let f:PxP ➔ E. be an element of z (P;P), i.e., f satisfies for all 

x1 ,x2 ,x3 , e: P: 

We have to show that f E B1 (P;P*). First we observe that f I LxL: LxL ➔ E. 

is in z1 (L;L*). Due to Whitehead's lemma [5] there is aµ e: L* such that, 

for x1,x2 EL, f(x1,x2) = µ([x 1,x2]). We extendµ to P (as linear map to 

E.) and replace f( , ) by f( , ) - µ([ , ]) ; this makes no difference 

1 * modulo B (P;P) and enables us to assume that for x 1,x2 e: L, f(X 1,x2) = O. 

we apply (1) tot the case where x1 e: a and x2 = x3 e: Land find 

f([x 1,x2J,x2) = -f(x2,[x1,x2]). Since for generic x2 e: L, [a,x2 J = a, 

we conclude that f(x 1,x2) = -f(x2 ,x1) whenever x 1 e: a and x2 e: L. 
Next we apply (1) to the case where x 1,x2 e: Land x3 e: a: 

From this we want to conclude that if Xi EL, x3 Ea and [Xi,Xj] 

have f(Xi,Xj) = 0. We represent Xi,Xj as 

(
Bl OJ (. 0 N3) , resp. 
0 0 0 0 

0, we 
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[xi,x3J = 0 is then equivalent with B1N3 = 0 or N3 E Ker (B 1). We assume 

that N3 f O (otherwise x3 = 0 and hence f(Xi,x3) = 0) and conclude that 

Ker (B1) has at least dimension 2, see [4], Chapter XV, §6,15.26. 

Hence, arbitrarily close to x3 there y is some X/ E a, X/' = {~ :3) , with 

[ I 'J O I O d I ( ·1) . h 2 2 2 2 ...l 0 x 1,x3 = , or B1 N3 = , an N3 = : wit y 1 + y2 + y 3 - y4 r • 

Y4 
It clearly suffices to show that f(Xi,x 3

11 ) = O. For this we define LX311 

I 2 2 2 2 x 11 
{x E L [x,x3 11 ] = O}; because y 1 + y2 + y 3 - y4 f O, L 3 is isomorphic 

X " X"' 
with the Lie algebra of SO (3) • Xi E L 3 and hence there are x 1 11 ,x2 11 E L 3 

such that [X II X 11 ] = X' Now the above formula implies that f([X II X 11 ] x 11 ) 1 '2 1· 1 '2 '3 
= O. From this we conclud.e that for some linear µ:cr + lR, f(X 1 ,X3 ) = 
µ([x 1 ,x3]) whenever x 1 EL and x 3 Ea. We extendµ to a linear function on 

P so thatµ I L = 0 and replace (again) f( ,. ) by f( , ) -µ([ , ]) • This 

means that we may assume that f(x 1 ,x2 ) = 0 whenever x 1 ,x2 EL, or x 1 EL 

and x2 Ea, or x 1 Ea and x2 EL. 

Finally we apply (1) with x 1,x2 Ea and x3 EL: f(x 1,[x2 ,x3]) 

f(x2 ,[x1 ,x3 ]) and (interchanging x2 and x3 in (1)): 

From this we conclude that f a x a is invariant under the adjoint 

action of L = Exp(L) on a and that f cr x a is anti-symmetric. From this 

we conclude that f I a x a= 0 and hence that f = O. 

6. EXAMPLES AND THE PROOF OF THEOREM (3.2) 

We give some examples of elementary systems with momenta. In all these 

examples V = R 4 , G = H, the Huygens group, and T = T see §3. To describe 
H 

such an example we give: 

(a) the affine respresentation 0 of Hon H*; this is done by specifying 

the A1,A2 ,A3 in theorem (5.1); 

(b) -1 * the image of some e0 E ~ (0) under Min H; these first two data 

determine the Lie algebra He0 ,E = {x EH I XE(e0) is in the linear 

subspace spanned by E(eO)} = Lie algebra of {h E H I (0 (h)) M(eO) = 

M(e0 )} 
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(c) the linear subspace H RE~ H E, see proposition (4.7). 
eo, + eo, 

* If the representation 0, the element M(e0) EH and the subspace H RE 
eo, + 

are given then there is a (unique) elementary particle model if: 

1. 

2. 

3. 

dim(H E) = dim(H ) + 1, H E as above (determined by 0 and M(eO)) 
eo, eo eo, 

and H {X EH EI X(O) = O}, the elements of Hare here identi-
eo eo, 

4 
fied with affine vectorfield on R; 

for some YEH \ H , Y(O) is in positive time direction; 
e0 ,E e 0 

H is not contained in a proper subalgebra of H. 
e0 ,R+E 

If these conditions are satisfied, the momentum Mis agreeable if and 

only if for each x 1 E H x E H , f (X X ) 
e O ' 2 e 0 ,R+E 1' 2 

The momentum is related with a symplectic structure if and only if 

f(x 1,x2) = -f(x2,x1) for all x 1,x2 EH, see (4.9); f is here related with 

the representation 0 as in §4. The verification, along the above lines, 

that the examples below have the announced properties, is left to the reader. 

EXAMPLE 6.1. Representation: AO f O, Alf 0, A2 

H - { o (
A 

e0,R+E - 0 

b 
0 
0 

O; 

In this case the momentum is not agreeable; if we replace AO by zero we get 

the classical mass point with the usual momentum. 

EAMPLE 6.2. Representation: AO f O, Alf O, A2 O; 

. (r11 
0 il M(eO) 0 , for the meaning of 
0 

jG) see theorem (5 .1) ; 

~A 

b ~) I b = ( ~2) H - { o 0 , d O}. 
eO,R+E - 0 0 b3 

In this case, the momentum is agreeable but not related with any symplectic 

structure. Theorem (3.2) follows from the examples (6.1) and (6.2). 
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EXAMPLE 6.3. Representation: AO O; 

·(j (!) 0 

;) M(e0 ) 0 

0 

~ 
b 

g) I 
H { 0 C O}. 

e 0 ,R+E 
0 

Here the momentum is related with a symplectic structure. However, we have 

another stange phenomenon. If 'IT:E ➔ R 4 is the 

example,=• c= get a new ex,mple by ~difying':'.":::"e'.:.~:e~":'."(!) 
and extend 'IT equivariantly (which is possible in a unique way). If one 

adjusts the definition of R we have again an elementary system with momen­

tum and related symplectic structure. In Souriau's classification [6] these 

two elementary systems (with 'IT and 'IT) are considered equal. 
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INTEGRAL REPRESENTATIONS OF INVARIANT REPRODUCING KERNELS 

E. Thomas 

INTRODUCTION 

391 

a, . *) 
Let v be a c -manifold , and let V(v) and V• (V) be respectively the 

spaces of Schwartz test functions and distributions. 

Let G be a group of diffeomorphisms a:. V ➔ V. G operates in a natural 

way on v• (V) and on v• (VXV). 

We shall consider distributions KE V1 (vxv) which satisfy the condi­

.tion 

vip E Vcv>, 

the so-called kernels of positive type, and which are invariant under G: 

vip,lji E vcv>. 

These kernels form a closed convex cone rG in V1 (vxv). 

The object of this paper is to prove the following theorems, the pre­

cise content of which will be made clear below: 

A) Every element in rG possesses an integral representation by means of 

extreme generators of rG (sometimes called zonal kernels). In particular 

rG is the closed convex hull of its extreme generators. 

B) Every KE rG possesses a unique integral representation by means of ex­

treme generators if and only if rG is a lattice in its own order. 

C) If G1 c G2 and rG1 is a lattice in its own order, so is rG2• · 

Thus for instance the uniqueness of the integral representations of 

translation invariant kernels of positive type KE V1 (mnx lRn), (theorem 

*) V will be assumed throughout to possess a countable basis of open sets. 
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of Bochner-Schwartz) actually implies the uniqueness in the case of any 

group of diffeomorphisms of IRn containing the translations on IRn (e.g. 

the Euclidean motion group, the inhomogeneous Lorentz group, etc.). 

D) If Vis a unimodular Lie group (or more generally a locally compact 

group (second countable), V• (V) being the space of Bruhat distributions) 

the cone of bi-invariant distributions of positive type (traces) is a 

lattice in its own order. Thus every trace possesses a unique integral 

representation by means of characters. 

The existence of such integral representations has been previously 

proved by K. MAURIN [6]. 

The question of the uniqueness has not been previously taken up. The 

precise meaning of the uniqueness, for cones not necessarily possessing a 

base, will be defined in section a. 

In certain contexts (e.g. quantum mechanics) it is desirable to con­

sider instead of V1 (V) a space of vector valued distributions V'(V;F) where 

for instance Fis a finite dimensional vector space over~. Positive kernels 

are then themselves vector valued distributions KE V1 (vxv;F®F), F being a 

space anti-isomorphic to F with a given anti-isomorphism x + x (cf. [8]). 

The consideration only of transformations of V'(V), defined by diffeo­

morphisms of v, is unnecessarily restrictive. For instance many examples 

involve transformations defined, by transposition to V(V), through maps 

~ + a~ 0 cr where cr is a diffeomorphism and a E C00 (V), a(p) f O for all p, 

a(p) being an invertible linear operator in the vector valued case. 

We shall therefore consider more generally groups of automorphisms of 

V• (V) not necessarily implemented by diffeomorphisms. 

Finally it will be useful in most of what follows, to replace V'(V) by 

a general locally convex space. 

CONTENTS 

In section 1 we recall facts from Schwartz's theory of kernels and 

associated Hilbert spaces [7]. 

In section 2 we study cones of invariant kernels. 

In section 3 we present the necessary facts from integral representa­

tion theory. 

Finally, in section 4, we deduce the theorems mentioned above and we 

show by an elementary counter example the need to use distributions rather 

than for instance measures. 



1. KERNELS AND HILBERT SUBSPACES 

Let Ebe a quasi-complete locally convex space over~, e.g. V'(V). 

* 
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Let E be the space of continuous linear forms on E, together with a 

nondegenerate sesquilinear form <x,$>, linear with respect to x EE, anti­

linear with respect to$ EE*. (In the case E = V1 (V) E* = V(V) and we put 

<T,$> = T(~).) 

* If F,F is a second similar pair and u: F +Eis a continuous linear 

* map we define the adjoint linear operator u by 

( 1) 

Let H be a Hilbert subspace of E, i.e. a linear subspace with a given 

Hilbert space inner product such that the inclusion 

j: HG+ E 

is continuous. 

We identify H* with H, the sesquilinear form being replaced by the 

inner product (x,y). (The adjoint of a linear operator u: H + H thus be­

comes the usual adjoint operator.) 

This implies that for$ EE*, j*$ is the element of H satisfying the 

equation 

(2) * (x,j $) = <jx,$>. 

Note that the image of j*: E* +Hin His a dense subspace, o being the 

only vector orthogonal to it by (2). 

Now let K 

* K: E 

* jj • Then K is a linear operator: 

+E 

called the reproducing kernel of H (see [7] for the background to this 

definition). Replacing x by j*w in (2) one obtains 

(3) 

which shows that K is hermitian symmetric: 

(4) 

Putting W =$in (3) we see that 
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(5) <K(j>,(j>> ~ 0 

which is expressed by saying that K is a kernel of positive type. 

Let F be the set of all hermitian kernels (i.e. linear operators 

K: E* + E satisfying relation (4)) and let r be the set of all positive 

hermitian operators (i.e. those satis.fying (5)). Then F is a linear space 

over IR, the addition of kernels being defined by (K1+K2 )4> K14> + K24>, 

and r is a convex cone in F for which r n -r = (0) (this follows from the 

inequality l<K(j>,$>1 2 S <K(j>,(j>><K$,$> valid for KE r). 

We put K1 S K2 if K2-K1 Er. 

Also H1 and H2 being Hilbert subspaces we put H1 s H2 if H1 c H2 and 

the inclusion map is norm decreasing (i.e. the unit ball of H1 is includ­

ed in the unit ball of H,.). 

Let us now recall some results of L. SCHWARTZ [7] in the form of some 

lemmas: 

LEMMA 1. To each KE r there corresponds a unique Hilbert subspace HK C+ E 

of which K is the reproducing kernel. 

LEMMA 2. K1 s K2 if and only if H1 s H2 , Ki being the reproducing kernel 

of H .• 
]. 

LEMMA 3. Let H C+ Ebe a Hilbert subspace with reproducing kernel K = jj*. 

Let TE L(H) be a bounded hermitian operator in H such that O s T s I, and 

* let K1 = jTj • Then K1 is a hermitian kernel and O s K1 s K. Conversely 

every K1 with O s K1 s K is obtained in this man11er from a unique operator T. 

LEMMA 4. The space H1 associated with K1 in lemma 3 is a closed linear sub­

space of H, with the norm inherited from H, if and only if T is an orthog­

onal projection. In that case T is the orthogonal projection on H1• 

Let u: E +Ebe continuous, linear, and one-to-one (in the sequel bi­

jective). Then His said to be invariant under u if the following two con­

ditions are satisfied: 

a) uH = H; 
b) II uxll H = II xii H Vx E H. 
In this case ulH is a unitary map. 

A kernel KE r is said to be invariant under u if 

(6) * * <Ku 4>,u $> = <K(j>,$> 



This is obviously equivalent to 

(7) * uKu K. 

LEMMA 5. K is invariant under·u if and only if HK is invariant under u. 
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For the proofs of these facts we refer to L. SCHWARTZ [7]. An elemen­

tary introduction to Hilbert subspaces and their kernels can also be found 

in [8]. 

In the sequel we shall equip the space F with a locally convex topol­

ogy. Several topologies are in fact reasonable: 

1. the topology of pointwise convergence on E* (the kernel topology); 

2. the topology of pointwise weak convergence on E* (the weak kernel to­

pology); 

* * 3. the topology of unifiorm convergence on cr(E ,E) bounded subsets of E 

(the strong kernel topology). 

Finally let us briefly consider the case where E = V1 (V), E* V(V) 
- * and <T,$> = T($). In this case E is itself endowed with a topology and 

<K$,W> = <Kw,$> is separately (hence jointly) continuous. 

Let KE V• (vxv) be a distribution of positive type, i.e. such that 

K($®$) ~ 0 for all$ E V(V). Then the equation 

(8) 

defines a kernel KE r, K$ being the distribution w-+ K($®w). 

Conversely Schwartz's kernel theorem implies that every kernel KE r 
is obtained in this manner for a unique distribution K. We may thus iden­

tify F and r with subsets of V1 (vxv), and drop the notational distinction. 

The topology induced by Vb(vxv) on Fis the strong kernel topology. The 

weak kernel topology is the one induced by cr (V' (vxv) , V (V) ® V (V)) • 

Consider now an automorphism u: V1 (V)-+ V'(V) defined by putting 

(9) <u(T),$> = <T,a$ocr>, 

cr being a diffeomorphism and a E C00 (V) with a(p) "F O 'v'p E v. The-nu*($) 

a$ 0 cr and K is invariant if and only if 

(10) 

or equivalently: 
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( 11) K 
(JX(J 

Kcrxcr being the distribution defined (by virtue of the kernel theorem) by 

(12) 

Similar results hold in Bruhat's theory of distributions for locally 

compact groups (cf. BRUHAT [l]). 

2. INVARIANT KERNELS 

Let G be a group (or set) of automorphisms of E (i.e. linear homeo­

morphisms). 

We shall say that H (resp. K) is invariant under G if H (resp. K) is 

invariant under each u E G. We denote by GIH the set of restrictions ulH, 

for u E G. 

Let rG denote the set of KE r invariant under G. Then rG is clearly 

a closed convex cone in r (for any of the three topologies considered above). 

PROPOSITION 1. Let H be invariant and let K = jj* be its reproducing kernel, 

j being the inclusion of Hin E. Let H1 S H. Recall (lemma 3) that the re-

* producing kernel of H1 has the form K1 = jTj , where OST SI in L(H). 

Then H1 is invariant if and only if T belongs to the dommutant (GIH> '. 

PROOF. Let u E G and let U = ulH. Then uj ·* * jU, hence Ju 
~ * * * * the adjoint of the unitary operator U. Thus uK1u = ujTj u = jUTU j • Now 

j being injective and j* dense, this kernel equals K1 = jTj* if and only if 

* UTU = T, i.e. UT = TU. 

Before proceeding further let us observe that the proper order of rG 

is just the order induced by r in rG, i.e. if K1 and K2 belong to rG we 

have K2-K1 E rG if and only if K2 -K1 belongs tor. This follows immedi­

ately from the fact that the difference of two G-invariant kernels is G-in­

variant. 

Now let ext(fG) denote the set of extreme generators of rG, i.e. the 

set of kernels KE rG such that OS K1 SK implies K1 = AK for some A ;ce 0. 

PROPOSITION 2. KE ext(fG) if and only if GIHK is irreducible. 



397 

PROOF. By GjHK irreducible we mean that HK contains no closed subspaces 

also invariant under G except for (0) and H. By Schur's lemma this is equiv­

alent to (GjHK)' = ~I, which again is equivalent to the fact that there are 

no operators T between O and I commuting with GjH other than the AI, with 

0 $A$ 1. By proposition 1 this means that the only invariant kernels K1 

with O $ K1 $ K are the multiples of K, i.e. K is extremal. 

REMARK. In the case of function kernels, i.e. E = ~Q, Q being some set, and 

the elements of G being defined by a group of permutations of Q, these prop­

ositions have been proved by KREIN [5]. In principle the above more general 

propositions can be deduced from these particular cases by noting that Eis 

a subspace of ~E*, and that the maps u* permute E*. The direct proof seems 

simpler however. 

COROLLARY. The extremal elements of r = r{Id} are the degenerate kernels 

of rank one, the reproducing kernels of one dimensional Hilbert subspaces: 

<K<j,, 1/J> = <e;qi><e, 1/J>, denoted by e S e. 

Anticipating somewhat the next section observe that every KE r pos­

sesses an "integral representation" by means of extreme kernels: for any 

orthogonal basis (ei)iEI of HK one has K = IiEI ei S ei. The obvious non­

uniqueness of these decompositions is related to the fact, observed by 

SCHWARTZ [7], that r is not a lattice. Cones rG do not necessarily have 

any extreme generators at all however. 

PROPOSITION 3. rG is a lattice if and only if (G,jH)' is commutative for 

every G-invariant H. 

Let us introduce the following notation: For any convex cone r let 

f(a) denote the set of elements of r dominated by a, i.e. 

r(a) {x Er: 3A ~ o, x $ Aa} 

LEMMA 6. 

a) Let r be a proper convex cone. The proper order of f(a) equals the 

order induced by I'; 

b) r is a lattice if and only if r(a) is a lattice for all a. 

This is clear without proof. 
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LEMMA 7. Let K e rG and let H = HK. Let A = (GIH>' and let 

A+ = {T e A: (Tx,x) ~ 0 Vx e H}. 

Then rG(K) is linearly isomorphic to A+. 

This is an immediate consequence of proposition 1. The proof of prop­

osition 3 therefore results from: 

LEMMA 8. (SHERMAN [10]). Let H be a Hilbert space and let Ac L(H) be a Von 

Neumann algebra. Let A+ be the set of positive hermitian operators belonging 

to A. Then A+ is a lattice in its own order if and only if A is commutative. 

PROOF. If A is commutative A is isomorphic to a space C(K), A+ correspond­
~ 

ing to C(K)+ (Guelfand). Thus A+ is a lattice. 

Conversely assume A+ is a lattice. It suffices to prove that two or­

thogonal projections P and Qin A commute. Let A= inf(P,Q) (relative to 

A). Let R be the orthogonal projection on Im A. Then R belongs to A+ and it 

is easy to see that As R s P,Q; hence R =A= inf(P,Q). Let P1 = P-R, 

Q1 = Q-R. Then inf(P1,Q1) = O, and P1+Q1 = sup(P 1,Q1) s I, i.e. P1 s I-Q1 
which means that P 1 and Q1 are projections on mutually orthogonal subspaces, 

in particular P1Q1 = Q1P1, i.e. (P-R) (Q-R) = (Q-R) (P-R). Expanding this and 

using the fact that PR= RP(= R) and QR= RQ, we see that PQ = QP. 

Now consider two groups (or sets) of automorphisms G1 c G2 c GL(E). 

Then clearly rG2 c rG1• 

PROPOSITION 4. Assume G1 c G2· Then, if rG1 is a lattice, rG2 is a lattice. 

Moreover, for K' and K" in rG 2, sup(K' ,K") is the same whether calculated 

in rG1 or in rG2• 

PROOF. The first assertion is an immediate consequence of proposition 3. 

For the proof of the second assertion, let us label with subscripts the 

a priori different suprema. Since sup2 (K' ,K") belongs to rG1 we have 

sup1 (K' ,K") s sup2 (K' ,K"). Therefore it is sufficient to show that 

sup1 (K' ,K") belongs to rG2• Let K be an element in rG2 majorising K' and K" 

(e.g. K' + K"). Then supi (K' ,:K") is also the supremum of K' and K" calculat­

ed in rGi (K). Now rG2 (K) c rG1 (K) and, by proposition 1, these cones are 

isomorphic respectively to A! and At, where Ai= (GilH)', H =HK.Thus we 

have A; c A~ c L(H) and it is sufficient to prove that for T 1 ,T" in A;, 
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+ sup1 (T' ,T") belongs to A2 • Equivalently, it suffices to prove that for any 

hermitian·T € A2 , ITI = sup1 (T,-T) belongs to A2 • But this is obvious since 

ITI is the limit in norm of polynomials in T, and A2 is a closed algebra. 

3. INTEGRAL REPRESENTATION THEORY 

Let F be a quasi-complete locally convex space over lR. We denote by t 

the elements of the dual space F'. We assume that F' contains a countable 

set of linear forms separating the points of F. Let us recall some defini­

tions from the theory of conical measures of G. CHOQUET [2,3]. Let h(F) be 

the smallest subspace of 'BF containing F' and containing, together with f 

and g, sup(f,g). The elements f € h(F) ·can be written in the form 

f = sup ti - s~p tj, 
i J 

i.e. as difference of two finite suprema of continuous linear forms. Accord­

·ing to Choquet a conical measure is a linear form µ: h (F) + It such that 

µ(f) ~ 0 for all f ~ O. The resultant of a conical measureµ is the point 

a in the weak completion of F, such that t(a) = µ(t) for all t € F'. 

EXAMPLE. Let m be a positive Radon measure (cf. [9]) on F\{O} such that 
1 J lt(x) ldm(x) < +co for all t € F', and consequently h(F) c L (m). Let us 

put 

c13i µ(f> = J fdm. 

Thenµ is a conical measure. In general not all conical measures can be 

defined in this way. A conical measure defined by relation (13) will be 

said to be localizable, and m will be said to be a localization ofµ. 

A localizable conical measureµ f O possesses infinitely many local­

izations since from (13) follows that for any A> 0 

µ(f) = A-l J f(Ax)dm(x) = J fdm, 

m being A-l times the image of m under the map x + Ax. 

We have the following result however: 
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PROPOSITION 5. Letµ be a localizable conical measure. 

1. Let r be any cone in F (with vertex 0). Let m1 and m2 be two localiza­

tions ofµ. Then m1 is concentrated on r if and only if m2 is concen­

trated on r. 
In this case we say thatµ is concentrated on r. 

2. Letµ be concentrated on rand let p: r + [0,+ro) be any Borel function, 

positively homogeneous of degree 1, and such that p(x) > 0 for x I 0 

(such functions exist though not necessarily linear and continuous). 

Let A {x € f: p(x) = 1}. Then there exists one and only one localiza-

tion ofµ concentrated on A. 

3. Let m be any localization ofµ and let a be the resultant ofµ. Then 

a= f xdm(x) (i.e. Jl,(a) = f ,11,(x)dm(x) \/JI,€ F'J. 

Only the last statement is trivial. We shall write symbolically a= f xdµ (x) 

(cf. [12]). 

DEFINITION. Let r be a closed convex cone and let ext(f) be the cone of its 

extreme generators. We shall say that a point a€ r possesses a (unique) 

integral representation by means of extreme generators if there exists a 

(unique) localizable conical measureµ concentrated on the cone ext(f) such 

that a= f xdµ(x). 

REMARKS. From proposition 5, 2. follows that if r possesses a basis 

A= {x € r: Jl,(x) = 1}, JI, being a continuous linear form such that Jl,(x) > 0 

for all x € r\{0}, the point a possesses a (unique) integral representation 

by means of extremal generators if and only if a is the resultant of a 

(unique) Radon measure m concentrated on An ext(f), i.e. on the set of ex­

treme points of A. 

On the other hand, whether r possesses a basis or not, there always 

exists a topological Hausdorff space T and a continuous function t + e(t) € 

€ ext(f), taking but one value on each ray, such that a€ r possesses a 

(unique) integral representation by means of extremals if and only if there 

exists a (unique) Radon measure on T such that f l,11,(e(t»I dm(t) < +oo for all 

JI, € F', and a= f e(t) dm(t). It suffices to choose T = {x € ext (f): p(x) = 1}, 

p being a Borel function of the kind described in 2. proposition 5, and to 

take e to be the identity map. 

DEFINITION (CROQUET). Let r be a convex cone. A cap of r is a convex com­

pact subset Cc r containing O and such that f\C is convex. A cone r is 
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said to be well capped if r is the union of its caps (e.g. a cone with com­

pact base'is well capped). 

A closed convex cone of a well capped cone is well capped, in fact, if 

r 1 is a closed subcone of rand c is a cap of r, c n r 1 is a cap of r 1• 

THEOREM ([11] or [12]). Let F be a quasi-complete space such that F' con­

tains a countable system of linear forms separating the points of F. Let 

r c F be a closed convex well capped cone. Then we have: 

A) every point in r possesses an integral representation by means of ex­

treme generators; 

B) every point in r possesses a unique integral representation by means of 

extreme generators if and only if r is a lattice in its own order. 

PROOF. See [11] for an outline, [12] for details. 

The application of this theorem to the situation considered here 

.depends on the following proposition: 

*) PROPOSITION 6. Let Ebe a quasi-complete barralled conuclear space • Let 

r be the cone of hermitian positive kernels K: E*-+ E equipped with the 

topology of uniform convergence on bounded sets (strong kernel topology). 

Then r is well capped. 

COROLLARY. rG is well capped for any G C GL(E). 

PROOF. Let K e: r and let CK be the set of kernel.s K' e: r satisfying the 

following conditions: 

1) HK, c HK, 
2) the inclusion map is of Hilbert Schmidt type, with Hilbert Schmidt norm 

at most equal to 1. 

Then CK is a cap in r. This can be proved by making use of the fact that 

the set of positive operators in L(H), of trace at most 1, forms a cap in 

L+(H) equipped with the weak operator topology. On the other hand, E being 

conuclear, for every Hilbert suspace H• c E there exists H ~ H• such that 

the inclusion operator H• c His of Hilbert Schmidt type (cf. [9], p.230). 

*) These spaces are precisely the strong duals of barralled nuclear spaces 
(cf. SCHWARTZ [9]). Thus E = V1 (V) is such a space; moreover V(V) = E' 
is separable. 
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This implies that r = K~r CK. 

* REMARK. Assume moreover that E contains a countable set (~n) separating 

the points of E. Then the linear forms K + <K~n'~m> separate F and so the 

previous theorem may be applied tor and to rG for any set G c GL(E). 

4. APPLICATIONS 

Let us summarize the results in a somewhat more symmetric fashion 

with a slight change of notation. 

THEOREM. Let V be a separable, barralled, nuclear space. Let G c GL(V) be 

a group of automorphisms of V. Let rG be the set of hermitian positive 

kernels on V x V such th~t K(u~,u~) = K(~,~) fox all u E G. Then we have: 

1. Every element of rG possesses an integral representation by means of ex­

treme elements. 

2. The following conditions are equivalent: 

i) rG is a lattice; 

ii) the integral representations are unique; 

iii) the representations of G associated with the kernels K are 

multiplicity free. 

3. If Gl c G2 c GL(V) and rGl is a lattice, so is rG2' with the lattice 

operations inherited from rG. 
1 

This justifies the assertions A,B,C in the _Introduction. As for D) we 

still have to prove the following: 

THEOREM. Let G be a unimodular locally compact group (second countable). 

Let V(G) be the space of Bruhat test functions. Let rbi be the cone of bi­

invariant distributions KE V1 (GxG) of positive type. Then rbi is a lattice 

in its own order. Consequently each element in rbi (trace) has a unique in­

tegral representation by means of extreme elements (characters). 

PROOF. It suffices to prove that if H c V1 (G) is any bi-invariant Hilbert 

space the set U of operators, commuting with both right and left transla­

tion operators, is commutative. Now let L(R) be the von Neumann algebra 

generated by the left (right) translation operators in H. Then U L' n R'. 

But by the Godement-Segal commutativity theorem ([4], p.71) L• Rand so 
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U - Rn R• is counnutative. 

We terminate with an elementary example proving the need for the intro­

duction of distributions. 

Let V 1R and let G c V• (lR) be the group generated by the transla-

tions and by the operator defined by 

Cl > 1 

so that u(fdx) = a~f(ax)dx and L2 is invariant). Then the irreducible 

Hilbert subspaces of V1 (lR) can be shown to be the spaces HA of distribu­

tions of the form 

f F l 
m:!IZ 

with ~ anif 12 l n < +ClO, 
n 

i.e. 

f(t) I (convergence in S•) 
n 

Now if a> 1 is a sufficiently large odd integer and fn = 0 for n < O, 

fn = an for n ~ 0 with aa2 < 1 and aa > 1 + ~ff, Fis a continuous function 

which has been shown by Weierstrass to be nowhere differentiable (Hardy 

also proved this for aa > 1). It follows that Fis of bounded variation in 

no interval, so that f is a distribution which reduces to a measure in no 

open interval. A fortiori the reproducing kernels of the spaces HA cannot 

be measures. 
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1. Let A= {a1 ,a2 , ••• } be an infinite, strictly increasing sequence of 

non-negative integers. The distance set V(A) of A is defined to be the set 

of all non-negative integers which occur as the difference between two 

elements of A. The distance sequence of A, also denoted by V(A), is obtain­

ed by arranging the elements of the distance set of A in increasing order. 

By N(A,n) we denote the number of elements of A not exceeding n. We call 

. a(A) = liw~up N(A,n)/n the upper density of A and £(A)= liw_j,nf N(A,n)/n 

the lower density of A. If d(A) = d(A) this value is said to be the density 

d(A) of A. 

It is not difficult to show that d(V(A)) ~ d(A) for every sequence A. 

If d(A) O, this inequality is trivial. It was conjectured by Erdos and 

proved by RUZSA [11] that in this case even 

lim N (V (A) ,n) 
N(A,n) 

n->= 

On the other hand, it can happen that V(A) =A.Take for example for A the 

sequence of all non-negative multiples of a fixed integer. 

Our aim is to find necessary and sufficient conditions for subsets of 

the set of non-negative integers JN0 in order to be the distance· set of 

some sequence A. Since it seems to be difficult to formulate a simple 

criterion, we shall consider questions like these: 

a) What can be said about the distances of consecutive elements of a 

distance sequence? 

b) Does every distance sequence of a dense sequence contain an arithmetical 

progression? 

c) Is the intersection of two distance sets also a distance set? 
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d) How dense can a sequence A be, if the distance set V(A) does not con­

tain any elements from a given set K? An interesting choice for K is the 

set of all positive squares; 

These questions arose as natural questions during the investigations or 

originated from problems in other fields. 

Because of possible applications it was interesting also to investi­

gate the above mentioned questions for certain subsets of V(A). We define 

the infinite distance set Vco(A) of A as the set of all non-negative in­

tegers which occur infinitely often as the difference of two terms of A. 

Further we define the density distance set V0 (A) of A as the set of all 

non-negative integers d such that the upper density of the integers a with 

both a EA and a+ d EA is positive. It is obvious that V0 (A) may be empty. 

For example V (A)= {O} if and only if a. 1 - a.+ co as j + co and in this 
co J+ J 

case V0 (A) =(a.On the other hand, it is not difficult to show that Vco(A) 

and VO (A) are non-empty_ if d (A) > 0, and that, moreover, ~ (V 00 (A) ) <?~(VO (A) J <? 

d(A) for every sequence A. 

In many aspects V(A), Vco(A) ~nd V0 (A) behave in a similar way. In this 

respect the following result is very useful. 

LEMMA 1. For every sequence A with d(A) > 0 there exists a sequence B with 

~(B) <? d(A) such that V(B) c V0 (A). 

In view of this lemma it suffices for establishing that ~(V0 (A)) <? d(A) 

for every sequence A to prove that ~(V(A)) <? d(A) for every sequence A. 

The latter result is a consequence of another useful lemma. 

LEMMA 2. Let A be a sequence with d(A) =a> 0. For any positive integer 

b there are at least [ar] of the integers b,2b, •.• ,rb in V(A). 

2. According to RUZSA [11] it was proved by Erdos and Sarkozy that if 

d(A) > 0, then the differences between consecutive terms of V(A) are 

bounded by a number M. For a proof see [15]. By Lemma 1 the corresponding 

results hold for Vco(A) and V0 (A). It is not possible to find an upper bound 

M which depends only on d(A). For let At denote the sequence of integers 

of the form 3nt + i for i = 1, ••• ,t and n = 0,1,2, •••• Then V(At) consists 

of the non-negative integers of the form 3nt :!:, i for i = 1, .•• ,t and 

n = 0,1,2, ••• and so contains infinitely many gaps of length t. On the other 

hand, d(At) = 1/3 for every t. This fact was observed for the first time 
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by SZEMEREDI, [11]. 

3. ErdOs asked whether every distance sequence of a sequence A with 

d(A) > O contains an arithmetical progression. More generally, one might 

ask whether there exists a countable set E of infinite subsets of lN0 such 

that every distance set V(A) contains at least one element of E. It is 

well known (see e.g. [8] Ch.1, Theorem 4.1) that for any sequence 

E = {e1,e2 , ••• } the sequence {nek}==l is uniformly distributed modulo 1 for 

almost all real numbers n. Hence, given countably many sequences 

E(i) = {e~i)} we can find an irrational number 8 for which {8e~i)} is uni­

formly distributed modulo 1 for all i. By applying the following result to 

this number 8 we see that ErdOs' question is answered in the negative. 

THEOREM 1. Let 8 be an irrational number and let a be a number between 0 

and 1. There exist uncountably many sequences A with density a for which 

d(V(A)nE) s 2a d(E) 

for every sequence E {e1,e2 , ••• } such that {8ek}==l is uniformly distri­

buted modulo 1. 

This result is non-trivial if a<~- However, if a>~. then V(A) = lN0 • 

It would be interesting to have a simple, not very thick, set E of infinite 

subsets of ::N0 such that every distance set V(A) contains at least one ele­

ment of E. 

4. It was proved by RUZSA [11] that the union of two distance sets need 

not be a distance set. Let A1 and A2 be sequences of positive upper density. 

STEWARI' and TIJDEMAN [15] showed that V(A1) n V(A2) need not be a distance 

set and one can show by a similar example that V(A1) u V(A2) need not be a 

distance set. Suprisingly it is true that both V0 (A1) u V0 (A2) and V0 (A1) n 

V0 (A2) are density distance sets. This can be proved by constructing se­

quences B1 and B2 with V0 (B1) = V0 (A1) u V0 (A2) and V0 (B2) = V0 (A1) nV0 (A2). 

For infinite distance sets the situation is even more striking. We have 

THEOREM 2. The collection of infinite distance sets associated with se­

quences of positive upper density is a filter on the set of all subsets of 

~-
It is not true that it is also an ultrafilter. For there exist 
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disjoint sets D1 and D2 satisfying D1 u D2 = N 0 and ~(D1) = ~(D2 ) = 0. 

Neither Di nor D2 is an infinite distance set of a sequence of positive 

upper density, since d(V (A))~ d(A) for every sequence A. The proof of 
- 00 

Theorem 2 essentially fa,lls into two parts, the proof of the extension 

property and the proof of the intersection property. 

The extension property says that if A is a sequence with d(A) > 0 and 

Dis a set with V00 (A) £ D, then there exists a sequence B with V00 (B) D. 

In fact we have 

THEOREM.3. Let A be a sequence and let D be a set with V00 (A) c D. Then there 

exists a sequence B with d(B) = d(A) and ~(B) ~(A) whose infinite distance 

set is D. 

An immediate consequence of this result is that there exist sequences 

A with d(A) = ~(A) > 0 for which d(V00 (A)) > ~(V00 (A)). The extension proper­

ty does not hold for the other types of distance sets. Take for A the non-

negative even integers and put D 

not exist a sequence B with V(B) 

Au {1}. It is obvious that there does 

D. A more complicated argument shows 

that there is neither a sequence B with V0 (B) = D. Thus neither the distance 

sets nor the density distance sets form a filter in the sense of Theorem 2. 

5. The intersection property says that if A1, .•• ,¾ are sequences with 

positive upper density, then V(A1) n ••• n V(¾l contains an infinite dis­

tance set V(B) of a sequence B with d(B) > 0. Erdos posed the problem to 

prove that V(A1) n ••• n V(¾) is non-empty. This was independently of each 

other solved by Prikry and by Stewart and Tijdeman. PRil<RY [9] deduced this 

result by means of a theorem of HINDMAN [7], [1], [3], which says that if 

N 0 is divided into two sets then there is a sequence drawn from one of 

these sets such that all finite sums of distinct numbers of this sequence 

remain in the same set. He even proved the much stronger assertion that 

V0 (A1) n ••• n V0 C¾l does not contain gaps of arbitrary length. He further 

applied his result to a problem in chromatic graph theory. The proof of 

Stewart and Tijdeman is elementary and uses cyclic shifts. In this way they 

obtained quantitative results which imply the results of Prikry. Let X + k 

denote the set {x + k Ix Ex}. 

THEOREM 4. Let A1 , ••• ,¾ be sequences with positive upper densities 

a 1 , ••• ,ah respectively. Put c1 = a 1 and eh= ~=l (ai/5 log(h+l)) for 
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h ~ 2. Then there exists a sequence A with ~(A) ~ eh such that 
h 

V(A) ~ ni=l V0 (Aj). Furthermore, there exist r integers k 1 , •.• ,kr such that 

r 

{(i~l VO(Ai)) + kj} u ~ JNo 
j=l 

with r $ 
-log 

eh 
3/log 2 

Apart from the factor 5 log(h+l) in the definition of eh the first 

assertion is best possible. For let n 1 , ••. ,¾ be positive integers and 

A1 = {a I a~ 0 and a= 0(mod n 1 )} and Ai {a I a~ 0 and 

a= 0,1, ••• ,n1 •.• ni-l (mod n 1 .•• ni)} for i 2, ••• ,h. Then 

( 
h \ h 

d . n VO (A.) / = TT d (A.) 
i=l 1.' i=l 1. 

h 
TT 

i=l 
Cl.,. 

l. 

It further follows from the second assertion that n~=l V0 (Ai) cannot con­

tain gaps of size larger than twice the maximum in absolute value of the 

k.'s. For if there was a larger gap, the integer(s) closest to the middle 
J h 

of the gap would not be in the union of the sets (ni=l V0 (Ai)) + kj. In 

particular the theorem implies the results mentioned in section 2. Observe 

that because of the intersection property and the extension property both 

V00 (A1 ) u V00 (A2 ) and V00 (A1 ) n V00 (A2 ) are infinite distance sets. 

It is very likely that the first assertion of Theorem 4 remains valid 

if eh is replaced by rh = rf. 1 a. .• The example given above shows that the 
1.= l. 

inequality in the second assertion cannot be better than r S r~1 • It is an 

open problem whether the second assertion with this inequality holds. 

6. Let K be any given set of positive integers. It is clear that there 
-1 

exists a sequence A with V(A) n K = 0 and d(A) = t , if no multiple oft 

is in K. Therefore A can be chosen to have positive density if IKI < 

Here IKI denotes the cardinality of K. Let µ(K) = sup d(A), where the 

supremum is taken over all sequences A with V(A) n K = 0. T.S. Motzkin 

posed the problem to compute µ(K). CANTOR and GORDON [2] determined the 

exact value of µ(K) if IKI S 2. Of course, µ(K) =½if IKI = 1. They found 

for K {k1 ,k2 } with (k1 ,k2 ) = d, 

For the general case they obtained the following result. 
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THEOREM 5. (CANTOR and GORDON [2]). 

Let !xii denote the absolute value of the absolutely least remainder of 

x (mod.l). Then 

where the supremum is taken over all positive integers c and l with 

(c,l> = 1. 

They wondered whether equality holds if the elements of K are relative-­

ly prime. Recently HARALAMBIS [6] established the value of µ(K) for several 

classes of sets K with !Kl~ 4. 

7. Natural sets K for which it is not obvious that there exist sequences 

A with d(A) > 0 and V(A) n K = 0 are for example the factorials and the 

squares. It was proved by STEWART and TIJDEMAN [15] that µ(K) ~ 1/9 if 

K = {k! I k E lN}. M. Voorhoeve observed that this implies that the above 

question of Cantor and Gordon has a negative answer, at least for infinite 

sets K. Taking kj = j! for all j gives a bound O in Theorem 5. The lower 

bound 1/9 for µ(K) follows from a quantitative version of the following 

result. 

THEOREM 6. If k 1 ,k2 , •.. is a sequence of positive integers satisfying 

lim inf k. h/k. > 1 for some fixed h, then there exists a sequence A with 
J-+<><> J+ J 

i(A) > 0 for which k. i V(A) for j = 1,2, •... 
J 

This result is in a sense best possible. It is not difficult to prove 

that if lim inf k. h/k. = 1 for every h, then there exists a sequence 
j-+<><> J+ J 

L = {£1,£2 , ... } with f. 1/l. ~ k. 1/k. for j = 1,2, ..• such that 
J+ J J+ J 

V(A) n L f 0 for every sequence A with d(A) > 0. 

8. In case K is the set of all positive squares, µ(K) = 0. This was shown 

by Furstenberg and Sark6zy independently. FURSTENBERG [5] deduced his re­

sult as a by-product of his ergodic proof of the theorem of Szemeredi that 

every sequence A with i(A) > 0 contains arbitrarily long finite arith­

metical progressions. SARKOZY [12] used an adaptation of the Hardy­

Littlewood method elaborated by Roth. He also obtained quantitative results. 
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THEOREM 7. (SARKOZY [12], [13]) 

If V(A) does not contain any positive squares, then 

2/3 -1/3 
N(A,x) = O(x(loglog x) (log x) ) • 

~n the other hand, there exists a sequence A with 

1/2 1 -1 
N(A,x) > x exp{3 log x logloglog x (loglog x) } 

such that V(A) does not contain any positive squares. 

~arkozy conjectured that N(A,x) = O(x½+c) for any c > O for such se­

quences A. In a third paper he considered other sets K for which his method 

works. The case Kt = {kt I k E lN} for any t E :N , t ~ 3 is quite similar 

to the case of the squares K2 . He further treated the sets 

K = {p-1 Ip prime}, in which case he obtained 
4 -2 

N(A,x) O(x (logloglog x) (loglog x) ) for every sequence A with 

V (A) n K = 0 and he mentioned that the case K = {k2 -1 I k E :N , k > 1} can 

be dealt with similarly. On the other hand, it is almost trivial that in 

the cases K = {p I p prime} and K = {k2 +1 I k E lN} one has µ (K) > 0. 

9. If K is still denser, it is even uncertain whether there exists an in­

finite set A with V(A) n K = 0. It is simple to show that 

liµup (kj+l-kj) = 00 is a sufficient condition. 

This result is best possible in a similar sense as Theorem 6 is. If 

kj+l - kj is bounded for all j, then there exists a sequence L = {l1,l2 , •.• } 

with lj+l - lj ~ kj+l - kj for j = 1,2, •.• such that V(A) n L # 0 for every 

infinite sequence A. 

A closely related problem was studied by ERDOS and HARTMAN [4]. Let 

A be an infinite sequence of positive integers. The set B c V(A) is said 

to be avoidable if there is an infinite subsequence A1 of A such that V(A1) 

and Bare disjoint. They proved for example that for every c with 

0 < c < 1 there is a B which is not avoidable but of relative density at 

most c in A. On the other hand, if ~(A) > 0 and ~(B) = 0, then Bis 

avoidable. ROTENBERG [10] proved that B {bj};=l is avoidable if bj+l­

bj + 00 as j + 00 , thereby solving a problem of Erdos and Hartman. 
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The results mentioned in the sections 6-9, found during independent 

investigations, fit together to a global answer to question d).It would 

be very interesting to have a general theorem complementing Theorem 6 by 

describing the structural properties of a sequence K = {k1 ,k2 , ... } such 

that V(A) n K #~for every sequence A with d(A) > 0. The results of 

Sarkozy for particular sequences are important steps in this direction. 

10. Proof of all numbered theorems on distance sets and on infinite dis­

tance sets can be found in the paper by STEWART and TIJDEMAN [15], unless 

stated otherwise. For density distance sets most results follow directly 

from an application of Lemma 1 to these results. The proof of this lemma 

is unpublished yet. 

There is another type of distance sets which might be studied. Let, 

for any E with 0 < E < 1,V (A) be the set of all non-negative integers d 
E 

such that the upper density of the integers a with both a EA and a+d EA 

is at least E. Then VE c V0, but the behaviour of VE is quite different 

from V0 and only a few trivial results about VE are known. 

Even if you did not like the topic it might be worthwhile to remember 

that number theory, combinatorics, graph theory, logic and ergodic theory 

have common facets and that the interaction between these field led to 

new research and results. 
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ADDENDUM 

The problems mentioned at the end of section 5 have been solved. Both 

Katznelson and Ruzsa have given elementary proofs of Theorem 4 with eh= 
h -1 

ui=l ai and r s eh. It has also been noted that these results can be de-

duced by ergodic theory. 

ERDOS & SARKOZY [16] proved a result which is closely related to Theo­

rem 6. Their proof is essentially the same as the one obtained independently 

by Stewart and the author, but the quantitative forms of the results differ. 

Important progress is made concerning the problem mentioned at the 

end of section 9. Let P € zz: [x] with P (0) = 0 and P (n) + 00 as n + 00 • Put 

K = {P(n) In€ lN, P(n) > 0}. H.L. Montgomery proved that if A is a se­

quence with V (A) n K = /3, then d (A) = 0. This result can be extended to the 

following theorem which is the best possible. 

THEOREM 8. (KAMAE & MENDES FRANCE, [18]). Let P € ZZ:[x]. Put K = {P(n) 

n € lN, P (n) > 0}. If for every r € lN there exists an m € K such that r Im, 

then every sequence A with V(A) n K = /3 has density 0. 

The counterpart of this theorem is obvious. If there exists an r € lN such 

that no element of K is divisible by r, then there exists a sequence A with 

d(A) > 0 such that V(A) n K = /3, namely A= {0,r,2r, ••• }. By a theorem of 

FROBENIUS [17] every irreducible polynomial P € ZZ:[x] of degree at least 

two has a prime p with p j P(n) for all n € zz: and does therefore not ful­

fil the condition of the theorem. I:xamples of polynomials satisfying the 

condition of Theorem 8 and not having an integral zero are (x3-19) (x2+3) 

and (x2-13) (x2-17) (x2-221). 

KAMAE and MENDES FRANCE [18] showed an interesting relation with the 

theory of uniform distribution. The set H c lN is said to be a 

Van der Corput set if the uniform distribution (mod. 1) of the sequences 

(un+h - un) :=l for all h € H implies the uniform distribution (mod. 1) of 

(un):=l" They proved that sets K wh.ich satisfy the condition of Theorem 8 

are Van der Corput sets. It further turns out that H cannot be a 

Van der Corput set, if there exists a sequence A with d(A) > 0 such that 

V(A) n H = /3. The converse question is still open. Is it true that H is a 

Van der Corput set, if V(A) n.H # /3 for every sequence A with d(A) > 0? 
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THINKING ON TWO LEVELS 

A. van Wijngaarden 

1. INTRODUCTION 

Two-level grammars, introduced in [1], have been mainly used to define 

programming languages [2]. However, they can be used to express algorithms 

directly, without the intervention of a programming language. Since the 

grammars imply only a play with letters without any meaning, the programmer 

is forced to go into minute details, on the one hand, but, on the other 

hand, does not need to conform his way of thinking to the idiosyncrasies 

of a particular language. 

Some experience shows that the two-level mechanism suits the human way 

of thinking well. The lower level of the grammar enables us to depict a 

specific situation, the higher level to express an abstraction, viz., a 

class of situations. These are precisely the tools of human thought. 

In order to illustrate this point, this paper gives a self-contained 

exposition. Section 2 defines the two-level concept and gives some practical 

conventions. If the reader has grasped the idea, then he may forget that 

some elementary mathematical concepts and notations have been used in this 

section in order to define the tool, since they are of no relevance later 

on; it is only the tool that matters. 

In the following sections some examples of grammars are given in quick­

ly ascending order of complexity. In Section 3 the natural number and deci­

mal notation are introduced; in Section 4 the prime numbers are constructed 

and in Section 5 sorting is described. 

One should notice that not only the definition of the concepts and 

algorithms is very short but also easy to grasp, and that the correctness 

is easily verifiable since there is no language that obscures their ex­

pression. 
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2. TWO-LEVEL GRAMMARS 

A "vocabulary" is a set; its elements are termed "letters". A "word" 

over a vocabulary V is a mapping [ 1 :n] -+ V, for any n E :No, and is thus a 

set of n ordered pairs ( 1,v i), for i = 1, ... ,n, V, E V. Therefore, V. is 
J. J. 

termed the "i-th letter" and n the "length" of the word. If n = 0, then the 

word is the empty set, also termed the "empty word". For any vocabulary V, 

v* denotes the set of words over V, and V+ the set of nonempty words over 

V. A "sentence" over a vocabulary Vis a word over the vocabulary whose 
** letters are the words over V; hence, V is the set of sentences over V. 

A "rule" is an ordered pair (v,w) where v and ware owrds over cer­

tain vocabularies. 

A "two-level grammar" VWG is an ordered sextuple (V ,V ,vt,R ,R ,w ), m o m -11 s 

where Vm' V0 , Vt are finite vocabularies; whose letters are termed "meta-

letters", "ortholetters" and "terminal letters" respectively, Rm and 1\i are 

finite sets of rules, termed "metarules" and "hyperrules" respectively, and 

ws is some word over V0 , termed the "start word". Let Vh := V u V0 • It 
+ * ~ ** is required that V n V = { }, V c V, R c V x V, R c V x vh, 

+ m o tom m hh h 
W E V • 

S 0 

The grammar VWG "generates" a "language" L defined as follows: 

Let*~mo := vm xv;, R00 := v: xv;*, Rso := {ws} xv:* and Rst := 

{ws} x Vt. A set R~ identical with Rm and a set~ identical with 1\i are 

introduced and then extended by arbitrarily often, if possible, applying 

the following extension, where at each application, of the three alterna­

tives enclosed by"()" and separated by"/", consistently either the first, 

or the second or the third must be chosen: 

Extension: To (R~/~/~) a rule is added, obtained by replacing in a 

copy of some rule (v,w) E (R'\R / R'\R / R'\R ) and for some rule 
m mo h oo h oo 

(v',w') E (Rm'nRmo / R'nR / R'nR ), (some/ each/ some) occurrence of v' m mo -11 oo 
in (w/v and w/w) by w'. 

Then, L := {w I (ws,w) E ~ n Rst}. 

In order to create a useful tool from two-level grammars, one must lay 

down some conventions about the choice of the different vocabularies and 

the way of writing the rules. 

It has become a tradition to use as the letters of Vm specific words 

over the vocabulary of "metamarks", i.e., conventional capital letters and 

some other convenient marks. In [ 2 J, e.g. , SOME and MODE 2 are letters of 
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V. Similarly, traditionally, the letters of V are specific words over the 
m o 

vocabulary of "orthomarks", i.e., conventional lower-case letters. In [2], 

e.g., long and real are letters of V. 
·o 

Four other marks play a role, viz., colon, point, comma and semicolon. 

Since Vm is a finite vocabulary its letters can, or rather should be, 

chosen, in such a way that a word over Vm cannot be misread as another word 

over vm. In the simple grammars of this paper, each metaletter consists of 

a capital letter followed by zero or more apostrophs, so that this condi­

tion is fulfilled. It is more difficult to ensure that a sentence over V 
0 

cannot be misread. 

Marks are "written" one after the other in such a way that the order 

in which they have been written is clear, in this paper conventionally to 

the right of the mark lastly written before, or on the next line or on the 

next page, whatever this may mean. 

A word is written when its writing starts by writing its fisrt letter, 

if it exists, and, when its i-th letter has been written by writing its 

(i+1)-th letter, if it exists. 

A metarule (v,w) is written by writing v, then writing twice a colon, 

then writing wand then writing a point (cf. the rules M1 up to M4). 

A hyperrule (v,w) is written by writing v, then writing a colon, then 

writing wand then writing a point. Writing w, however, poses the problem 

that a sentence over V0 might later on be misread. In natural languages 

this problem is overcome by separating the words of the sentence by blanks. 

Here, traditionally, one separates the words by writing a comma after a 

word has been written and before the next word of the sentence is going to 

be written (cf. the rules H1', H3, H9, H12, H20) what leaves open the use 

of blanks for display purposes inside the words. 

The grammar mechanism as defined so far is, however, not yet complete. 

The terminal letters are words over V but this internal structure is of 
0 

no relevance to the user. Therefore, Vt is mapped onto another vocabulary 

wt, the set of "representations" of the terminal letters, which may be 

marks chosen by the user at his convenience as long as they differ from 

all marks mentioned above. 

A terminal production of a VWG, i.e., an element of the language that 

it generates, is obtained by first constructing any such element by the 

process described above, and then replacing any terminal letter in that 

element by its representation and taken out the comma that follows it, if 

any. 
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A useful shorthand notation for rules is the following one: If two 

rules have the same left-hand side up to and including the colon or double 

colon, then they may be combined into one rule consisting of the first rule 

in which the point has been replaced by a semicolon, followed by the right­

hand side of the second rule. 

Thus L::a;b;c. stands for L::a. L::b. L::c. 
Another useful convention stems from the fact that one frequently 

needs metarules differing only in the left-hand side, because one wants to 

circumvent the effect of the, utterly necessary, word "each" in the Exten­

sion. Therefore, by convention, it holds: 

Let M stand for any element of Vm. Then,any occurrence of M' in a VWG 

tacitly implies that the metarule M'::M. is an element of R. 
m 

Thus, the occurence of N" implies the rule N"::N'., which implies 

again the rule N'::N., so that N, N' and N" have the same terminal produc­

tions over V. 
0 

In the following sections some examples of two-level grammars are 

given. In all those grammars. 

V C {D,N,N',N 11 ,P,P',P 11 ,S,S',S 11 }, 
m 

v0 c {c,d,i,j,n,p,q,s}, 

vt c {cs,ds,dis,diis,diiis,diiiis,diiiiis,diiiiiis,diiiiiiis, 
diiiiiiiis,diiiiiiiiis,es,ps}. 

The representations of the terminal letters are highly suggestive for 

their intended function, viz., 

CS 

ds 0 

dis 1 

diis 2 

diiis 3 

diiiis 4 

diiiiis 5 

diiiiiis 6 

diiiiiiis 7 

di iii iii is 8 

diiiiiiiiis 9 

es 
ps + 



421 

3. NATURAL NUMBERS, DECIMAL REPRESENTATION AND ADDITION. 

In this section a two-level grammar concerning natural numbers, their 

decimal representation and their addition is discussed. Let the first rule 

of R be 
m 

N:: ;Ni. (Ml) 

which stands therefore, more precisely for the two metarules 

N::. (Ml.1) 

N: :Ni. (Ml. 2) 

This set can be extended by virtue of the first alternative of the Exten­

sion by replacing the second occurrence of Nin (Ml.2) by the right-hand 

side of (Ml.1), yielding 

N:: i. (Ml.3) 

and then again by replacing that occurrence of N by the right-hand side of 

(Ml.3), yielding 

N::ii. , (Ml .4) 

and so on. The terminal productions of N are therefore words of any length, 

possibly zero, all of whose letters are i. If one interprets this i as "the 

successor of", then iii is interpreted as "the successor of the successor 

of the successor of nothing". Therefore, Ml defines the concept "natural 

number"; it is actually equivalent to the first two Peano axioms whereas 

the other Peano axioms are automatically included by the operational char­

acter of the grammar. 

If iii suggests a specific natural number, viz., three, then on a 

higher level N suggests any natural number. The two levels may be mixed; 

e.g., Ni suggests any positive natural number. This is immediately ab­

stracted again by the second rule of Rm: 

P:: Ni. (M2) 

which is logically not necessary but provides a convenient abbreviation. 

Let the start word ws of the grammar be n and let 
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n:jN. (Hl) 

be the first rule of¾· 

The second alternative of the Extension with the now extended R~ per­

mits the extension of¾ with the rules 

n:j. (Hl .1) 

n :ji. (Hl. 2) 

n:jii. (Hl.3) 

and so on. The letter j in Hl serves as a handle to the sequence of i's pre­

venting the right-hand side of·. Hl .1 to be empty which would cause difficul­

ties later on. In fact, we are not through yet. Unlike in ordinary mathema­

tics, it is not sufficient to define, by means of axioms, natural numbers, 

what we did in some sense with the rules given above, but they also should 

be represented by representations of terminal letters. In order to make our 

task somewhat realistic and not too easy, we choose to represent the natural 

numbers by their decimal representation. Let the second rule of Rm be 

D::;i;ii;iii;iiii;iiiii;iiiiii;iiiiiii;iiiiiiii;iiiiiiiii. (M3) 

which stands, more precisely for ten metarules. Just like N introduced the 

concept of the natural number, so does D introduce the concept of the deci­

mal digit. 

Moreover, we complete¾ with the three hyperrules 

NjN'iiiiiiiiii : NijN'. (H2) 

PjD : jP,jD. (H3) 

jD: dDs (H4) 

In order to see how this works let us use ik as a shorthand notation 

for a word of length k all of whose letters are i. Consider the rule found 

by the extension of¾= 

n:ji 691. 

Using the rules 
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and the second alternative of the Extension, H2 yields the rule 

.. 691 .. 681 
Jl : lJ . 

Using 

N:: i. 

H2 yields the rule 

... 681 .2 .. 671 
lJl :lJl. 

and so on. The third alternative of the Extension of Section 1 now extends 

.~ with 

.. 681 n: lJ . 

and then with 

and finally with 

Then the rules M2 and 

extend R' with 
m 

which then with 

D:: i. 

and H3 extend~ with 
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'. -69 .. 
n:Jl ,Jl. 

Proceeding similarly, the rule 

• -6 • -9 •. 
n:Jl ,Jl ,Jl. 

is obtained which together with H4 then yields 

n:diiiiiis,diiiiiiiiis,dis. 

which after replacing the terminal letters by their representations and re­

moving the separating comma's yields the result 691. 

Of course, even a context-free grammar, i.e., a two-level grammar with 

empty Vm and, hence, empty Rm and representations equal to the terminal sym­

bols themselves could produce the same result. 

E.g., the context-free grammar 

n:o;p. 

p:d;po;pd. 

does the job. However, our two-level grammar does not only produce 691 but 

does it via the detour of the word constituted by 691 times the letter 

generated by the metalevel of the grammar. This opens the door to arithmetic 

as is shown by changing the grammar into one which produces all elementary­

school sums like 

3+4 7 or 597+94 = 691. 

The only thing one has to do is to replace Hl by 

n:jN,ps,jN' ,es,jNN'. (Hl I) 

The addition is now actually performed on the metalevel and no context-free 

grammar can achieve this. 
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4. PRIME NUMBERS 

We shall now give, as a more complicated and interesting example, a 

grammar producing any prime number in decimal notation. 

Rm consists again of the metarules Ml, M2 and M3. 

¾ consists of the hyperrules H2, H3 and H4, together with 

NjNPjP' :NP' NPjP'. (HS) 

PP"jPjP' :jPjP' i. (H6) 

PjPjP' :jPijii. (H7) 

jPjP:jP. (HS) 

ws is jiijii. 

Consider hypernotions of the form NjPjP'. The start word is of this 

form with N empty and P = P' = ii, and HS, H6 and H7 all transform a hyper­

notion of this form into another one of this form. Let us now interpret 

such a hypernotion as follows: The number P is tested for primality, P' is 

a candidate for a divisor, at least 2, or course, and N is some multiple of 

P'. To start with, N is O and P and P' are 2. 

If both the candidate and its multiple are less than the number, then 

only HS applies and the multiple is increased by the candidate. If, after 

doing so, the multiple is larger than the number, i.e., the candidate is not 

a divisor, then only H6 applies, the candidate is increased by 1 and the 

multiple is reset to O. If, however, after doing so, the multiple equals 

the number, i.e., the candidate is a divisor, then only H7 is applicable, 

the number, which is considered as composite, is increased by 1, the candi­

date is reset to 2 and the multiple to O. If, at last, the candidate equals 

the number and its multiple is 0, i.e. the number is prime, then both HS 

and HS apply. Application of HS leads to application of H7, i.e., the fact 

that the number is prime is ignored and the next number is tested. Applica­

tion of HS, however, accepts the number as a prime number and H2, H3 and H4 

take care of its representation in decimal notation. 

One should notice that the grammar, although extremely short, produces 

no blind alleys since, on the one hand, each hypern~tion can be produced 

further and, on the other hand, in view of Euclid's theorem of the nonexist­

ence of a largest prime number, there is no danger of ignoring HB too often. 

A typical terminal production of jiijii is 691. 
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5. SORTING 

As last example we treat the sorting of a sequence of natural numbers 

in ascending order according to the so-called Quick-Sort method of 

C.A.R. HOARE as modified by M.H. VAN EMDEN. 

Rm consists of the metarules Ml, M2 and M3 together with 

S:: ;SjN. 

Rm consists of the hyperrules H2, H3 and H4 together with 

q:pS,es,S. 

p:. 

pjN:jN. 

pjNSjN':jN,cs,pSjN'. 

jNPSjN :jNSjNP. 

jNSjNN':jNpNSpNN'jNN'. 

SpNN'jNS'pNN'N"S":SjNpNN'S'pNN'N"S". 

SpNS'jNN'N"pNN'S":SpNS'pNN'jNN'N"S". 

SpNjNPS'pNN'PS": SjNPpNPS'pNN'PS". 

SpNS'jNN'pNN'PS":SpNS'pNN'jNN'S". 

SpNPjNN'PP'S'jNpNN'PS":SjNpNPS'pNN'PjNN'PP'S". 

SpNpNN'S':S,cs,S'. 

ws is q. 

{M4) 

{H9) 

{H10) 

{H11) 

{H12) 

{H13) 

{H14) 

(H15) 

{H16) 

{Hl 7) 

{H18) 

{H19) 

{H20) 

The metanotion S stands according to M4 for the abstract concept of 

the, possibly empty, sequence of natural numbers. Hyperrule H9 produces the 

start word q into a sequence produced by p, a separating symbol CS and the 

same sequence without the preceding p. The hyperrules H10, H11 and H12 pro­

duce the abstract sequence preceded by p into a concrete sequence of its 

terms separated by CS. The sequence without the preceding p is sorted and 

split by the hyperrules H12 up to H20. 

First of all, if the sequence is empty or if it has only one element, 

then there is nothing to sort and split. If it has at least two elements 

then only H13 or H14 may apply, since these are the only rules whose left­

hand side does not contain p. If the first element is larger than the last 
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element, then H13 interchanges these two elements. Now, anyhow, the first 

element is at most equal to the last element, H14 applies and introduces a 

lower bound pN and an upper bound pNN' which shall also serve as pointers. 

Now, the following property holds: All elements (actually the only elemen~ 

to the left of the lower-bound pointer are at most (is actually) equal to 

the lower bound, all elements (actually the only element) to the right of 

the upper-bound pointer are at least (is actually) equal to the upper bound 

and the upper bound is at least equal to the lower bound. The hyperrules 

H15 up to H19 all preserve this property as is seen by inspection. Moreover, 

at least one of them, or otherwise H20 applies. 

If the element to the (right of the lower/left of the upper)-bound 

pointer is not (larger/smaller) than that bound, then (H15/H16) applies and 

shifts that pointer one element to the (right/left). 

If the element to the (right of the lower/left of the upper)-bound 

pointer is (larger/smaller) than that bound but not (larger/smaller) than 

the (upper/lower)-bound, then (H17/H18) applies, (increases/decreases) the 

(lower/upper)-bound to that element and shifts the pointer one element to 

the (right/left). 

If, at last, the element to the right of the lower-bound pointer is 

larger than the upper bound and the element to the left of the upper-bound 

pointer is smaller then the lower-bound, then there are obviously at least 

two elements between the pointers and H19 applies, swaps the two elements 

and shifts the lower-bound pointer one element to the right and the upper­

bound pointer one element to the left. 

Therefore, each application of some hyperrule preserves the property 

and moreover, decreases the number of elements between the two pointers by 

one or two. After a finite number of steps, therefore, the two pointers 

come together and H20 applies and splits the sequence into a left subse­

quence, all of whose elements are at most equal to the lower-bound, and a 

right subsequence of all whose elements are at least equal to the upper 

bound and, hence, at least equal to the lower bound. These subsequences 

can, therefore, be sorted independently. Since each subsequence contains 

fewer elements than the sequence, after a finite number of steps each subse­

quence contains at most one element whereupon sorting and splitting are no 

longer necessary. 

Finally, each element will be represented in decimal notation by means 

of H2, H3 and H4, as before. 
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A. typical terminal production of q is 

13,1,4,691,4 1,4,4,13,691. 
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