
PJtin.ted a.:t -the Ma.:themmc.a.l Cen.tti.e, 49, 2e BoeJtha.a.ve1,,t,uut:t., Am-6-teJr.dam.

The Ma.:thema.;tic.a.£ Cen.tti.e, 6ounded -the 11-,th 06 Feb~ua.Jty 1946, ,{l) a. n.on.
p~o6U ,i,n,6.t,l;tut,ion. a.,lm,i,n.g a.:t -the ~omo:ti.on. 06 pUILe ma.:thema.;tic.1> a.n.d -i:t6
a.pp.U.c.a.;tion..6. U ,i..6 Jpon.M~ed by -the Ne-thVtla.n.d.6 Gov~n.men.t fuough -the
Ne-thVtla.n.d.6 01t.ga.n.-i.za.;tion. 60~ -the Adva.n.c.emen.t 06 PUite Re1>eMc.h (Z.W.O).

MATHEMATICAL CENTRE TRACTS 82

FOUNDATIONS OF
COMPUTER SCIENCE II

K.R. APT (ed.)

J.W. DE BAKKER (ed.)

PART 2

MATHEMATISCH CENTRUM AMSTERDAM 1979

AMS(MOS) subject classification scheme (1970): 68A05, 68A30, 68A10

ACM - Computing Reviews - categories: 5.24, 5.23, 5.25

ISBN 90 6196 141 6

First printing 1976
Second printing 1979

R. MILNER:

R. MILNER:

A. SALOMAA:

W.J. SAVITCH:

Program semantics and mechanized proof

Models of LCF

L Systems: a parallel way of looking at formal

languages. New ideas and recent developments

Three hardest problems

3

49

67

111

PROGRAM SEMANTICS AND MECHANIZED PROOF

1. INTRODUCTION ..

2. OPERATIONAL SEMANTICS.

2.1. Discussion.

2.2. The language L.

2.3. The S,M,C machine

2.4. The reduction relation.

2.5. EVAL = eval

3. DENOTATIONAL SEMANTICS

3.1. Semantic domains.

3.2. Denotation of language L.

3.3. Semantics of expressions.

3.4. Semantics of programs .•

3.5. Equivalence of operational and denotational

by R. MILNER

3

4

4

5

6

7

9

12

12

14

15

17

semantics for L. 18

4. CONTINUATION SEMANTICS 20

4.1. Continuations. . 20

4.2. Techniques for proof about continuous functions 23

4.3. The equivalence of direct and continuation semantics. 25

5. MECHANIZED SEMANTICS 28

5.1. Deductive systems 28

5.2. Formalizing the syntax of language L. 30

5.3. Strategies. 34

5.4. Discussion. 39

6. LITERATURE 41

REFERENCES. • 42

MATHEMATICAL CENTRE TRACTS 82, 1976, 3-44

PROGRAM SEMANTICS AND MECHANIZED PROOF

R. MILNER

University of Edinburgh, Edinburgh, U.K.

1. INTRODUCTION

In the last seven or eight years strong advances have been made in the

mathematical description of the meaning of programming languages. Before

this, the semantic description (in contrast to the syntactic desc~iption,

which was quite formal and was often given greater weight) was presented

rather informally, and inevitably contained ambiguities and left out details,

and the result was that the same language acquired different meanings in

different implementations.

The work of Strachey and Scott and their followers has brought about

an enormous improvement. Strachey was dissatisfied both with the informal

ity of the existing language descriptions and with their dependence on

the notion of evaluation, and when Scott provided the mathematical models

which he was looking for it was a rather short time before the whole of

then-existing languages, such as ALGOL 60, could be mathematically defined

in an elegant manner. And because the description is mathematical, it is

now possible both to study concepts underlying programming languages and

to conduct proofs concerning (for example) the equivalence of different

constructs in one language, or of constructs in different languages.

The current literature contains quite a few examples of mathematical

descriptions of languages, but it is less easy to find reports of proofs

about languages. This is perhaps because proofs about real languages tend

to be long and difficult both to present and to read. The aim of this

paper is to remedy this deficiency to some extent. We take a very simple

language, which admittedly illustrates only some of the techniques which

have been developed for language description, and in the next section we

study its operational semantics (semantics by abstract machine, or by

evaluation).

4

In section 3, using that small part of Scott's work on semantic domains

which is reported in my paper "Models of LCF", we present its denotational

semantics in the style originated by Strachey, and show that the two seman

tic descriptions are indeed equivalent in an appropriate sense.

Section 4 gives an alternative semantics for the language, using the

technique of continuations; it is also demonstrated that this technique

can more naturally handle certain extensions to the language (in particular

the introduction of error exits, -and other features which allow the "normal"

flow of control to be diverted). We again give the proof that - for the

non-extended language - the new semantics is equivalent to the old.

Finally in section 5, using as a basis the formal deductive calculus

described in the second half of "Models of LCF", we discuss the problem of

mechanizing the proof of section 4. The emphasis throughout the paper is

on the detail of the proofs, since we wish to convince the reader as far

as possible, by leaving as few gaps as possible, that the proof strategy

of section 5 will actually work. I hope that the reader will also be en

couraged to believe that proofs about larger languages will indeed be

amenable to similar strategies; it is an unfortunate fact that proofs

about programs and languages are on the whole so long and tedious in com

parison to their intellectual content that no human being is likely to have

the patience to convince himself (even less, to convince others) that they

are correct proofs.

Not many references to the literature are given in the main part of

the paper; instead! I have discussed some of the relevant papers in the

final section.

2. OPERATIONAL SEMANTICS

2.1. Discussion

We will consider throughout these lectures a simple programming language L

which is well-understood by everyone, and indeed possesses very few features

of interest. May aim is to consider styles of proof about languages rather

than sophisticated language "features", since I believe that these styles

are also appropriate to more complex languages. It will be apparent that

even for such a simple language as L the detailed proofs are nor particularly

5

easy to read; this is not so much because of their length as because of the

high ratio of technical manipulation to real mathematical content. To put

it more crudely, the proofs are tedio~s. It has been remarked more than

once that no correctness proof of a program provides greater certainty

of the program's correctness than does thorough "debugging", unless the

proof is mechanically checked, and this is equally true of proofs about

programming languages. If we first examine the mechanizability of some

proofs about a simple language, we hope to reach a position from which we

can advance to proofs about more complex languages.

In this section we introduce Land describe it operationally - that

is, using an abstract machine and its state transitions. The technique

derives from Landin [10] and is essentially the basis of the method used

to define PL/1 [11,12]. We then describe an alternative operational model,

using a method learntfrom Plotkin and employed by him in [13] for various

\-calculi. The purpose of this second model is as an intermediary between

the abstract machine model and the denotational semantic description to

be studied in following sections.

Operational and denotational semantics play complementary roles, and

I believe both will continue to be necessary. An operational definition

gives a guide to implementation, and as such it is likely to be in the

language designer's mind more or less explicitly from the outset, since

he is always aiming at a language which admits an efficient implementation.

On the other hand, to describe a language by giving an abstract denotation

for each phrase is at least a guard against redundancy and "adhocness";

more importantly, the language is thus defined independently of the struct

ure of an abstract machine (which however abstract, inevitably contains some

arbitrary structure), and the denotational definition is more succinct -

often by a factor of three or more in length. And perhaps most importantly,

the denotational definition admits proofs about the language, which are

either impossible or very cumbersome in terms of its operational defini

tion.

2.2. The language L

Constants

Variables

Integer operations:

Boolean operations:

Q_, .!._, ~, ••• , true, false

x0,x1, ••.

+,-,x, ...

=,>,<, •..

6

we use c,x,b,e,p,iop,bop to range over respectively constants, variables,

boolean expressions, integer expressions, programs, integer operations,

boolean operations.

Expressions e ::= xl~le 1 iop e 2

Boolean expressions: b ::= e 1 bop e 2 ltruelfalse

Programs p ::= nulllx:=elp1;p2 lif L then p 1 else p2 1

while b do pl

(We have omitted the use of parentheses; we are concerned not with parsing

but with the phrase structure which results from parsing).

These constitute the three types of phrase in language L.

2.3. The S,M,C machine

A machine state is a triple <S,M,C>, where

- the value stack

- the memory

* S € (Phrases)

M € (Constants) 00

* - the control stack C € (Phrases u Operations u {if,assign,while}) .

The value stack holds results (i.e. constants) and is also used to keep

phrases whose execution is deferred.

The memory M = m0 ,m1 , ... holds current values of the variables x0 ,x1 , ...

The control stack holds phrases and operations awaiting execution.

The Transition rules of the machine are as follows, given by a rela

tion .. over states (in these rules" • "prefixes an element to a stack,

and M[n_/i] means m , ••. ,m. 1 ,n,m. 1 , ..•). -o -i- - -i+

~ <S,M,c•C> .. <c•S,M,C>.

<S,M,x.•C> .. <m.•S,M,C>
i -i

I~ <~2-~1•S,M,+•c> .. <n1+n2•S,M,C>

••. etc. for all iops.

III .. <~2 -~1 -s,M,=•C> .. <t•S,M,C> where tis true if ~l

false otherwise

•.• etc. for all bops.

IV.. <S,M,null•C> .. <S,M,C>

<S,M, (if b then pl else p 2) •C> ~ <p2 •p1 •S,M,b•if•C>

<S,M, (while b do p 1) •C> ~ <p1 •b•S,M,b•while•C>.

<false••••.... > < ••• •P2· .>

<true•p1 •b•S,M,while•C> ~ <S,M, (p 1 ;while b do pl) •C>

<false• .•..•.......•.• >~ <S,M,null•C>.

Note that~ is deterministic. We use~ to denote then-th power of the

* relation~, and~ for its transitive reflexive closure.

We define EVAL: Programs x Memories+ Memories by:

* EVAL(p,M) = M' iff <£,M,p•£> ~ <£,M',£> ,

7

where£ stands for an empty stack. Notice that EVAL is a partial function.

2.4. The reduction relation+

The S,M,C machine is abstract, but rather arbitrary in the method chosen

to control evaluation - that is, one might have used other structures in

preference to a pair of stacks and a memory vector. Some of this arbitrar

iness may be removed by axiomatizing a reduction relation+ over

Phrases x Memories. We give the axioms and rules of a simple formal deduct

ive system.

(~ op e) ,M + (~ op e') ,M

(~1+~2) ,M + nl+n21M

if e,M + e' ,M

••. etc, for all iops.

(~ 1 =~2) ,M + true. ,M } .
according

+ false,M

•.• etc, for all bops.

III+ (x.:=e),M + null,M[~/i] if e,M t ~,M.
1.

(null;p) ,M + p,M.

n 2 or not,

8

* V+ (if b then pl else p2) ,M + pl ,M if b,M + true,M

* • • • • • • • • • • • • • • • • ••• • • ••• + p2 ,M if b,M + false,M.

* VI+ if b,M + true,M

* •••••••••••••.••. + null,M if b,M + false,M

REMARK •. To be fully formal, we should be clear that the sentences of this

formal system are of the form

* where~.~• are program phrases; $,M + ~',M' is not a sentence. Thus rule

III+ has not just a single hypothesis e,M ! ~,M, but k hypotheses (for

some k ~ 0) of the form

(0 s i < k),

where ei n. The same remark holds for V+ and VI+.

We sketch the proof that+ is deterministic. First, one shows that for

each e,M there is at most one pair e',M' such that

e,M + e' ,M'

and that M' = M. It follows that in the case of!, for each e,M there is

at most one pair ~,M' such that

* e,M + !!,M'

and that M' = M. Similar results hold for boolean expressions. These proofs

proceed by induction on the structure of expressions. Analogously, one

then shows that if p,M + p',M' then p',M' is unique.

It follows that the partial function

eval: Programs x Memories+ Memories

is well-defined as follows:

eval(p,M) * M' iff p,M ➔ null,M'

2.5. EVAL eval ------

One might hope to prove the equivalence of EVAL and eval by induction on

the structure of programs. This fails just because of the while construct,

and we have to resort to induction on the length of computation.

LEMMA 1.

(i) k * Ife,M ➔ ~,M' then M' =Mand <S,M,e•C> ~ <~•S,M',C>.

(ii)
k Ifb,M ➔ M' * { true L , Mand <S,M,b•C> ~ < f"S,M .C>. false

(iii) Ifp,M t null,M', then <S,M,p•C> ! <S,M' ,C>.

Proof. We shall omit the proofs of (i) and (ii) and prove (iii) by induc

tion on k (parts (i) and (ii) are simpler).

Basis k 0. In this case p = null, M = M' and use IV(~).

Step. Assume (iii) for all k' < k, and assume

(1)
k p,M ➔ null,M'

Argue by cases

(a)

(b)

pis null. Impossible, since null,M f

pis (x.:=e). ·Then k = 1 and (1) must have been inferred by III (➔),
½

so e,M ➔ ~,Mand M' = M[~/i]. So we have

as required.

(c), (d) We leave the cases p is (p1 ;p2) or p is if b then p 1 else p 2 as

an exercise for the reader.

(e) p is (while b do p 1). Then we have

9

10

and Lemma l(ii) then allows us to deduce

<S,M,p•C> • <p1•b•S,M,b•while•C> by IV(•)

• {~:~:e}•p1 •b•S,M,while•C> by Lemma 1 (ii)

•<SM {Pl;p}•c> by V (•)
' ' null

! <S,M' ,C> by the ind.hypoth. atk - 1.

This concludes the proof of Lemma 1. D

Lemma 1 is half of our equivalence theorem. For the other half we introduce

a definition.

DEFINITION. The reduction <S,M,t•C> ~ <S',M',C> is perfect if the control

stack in each intermediate state is a proper extension of C; that is,

C is first "uncovered" at the last step.

LEMMA 2.

(i) If <S,M,e•C> ~ <S',M',C> is perfect, then

* S' = ~•S for some~• M' =Mand e,M + ~,M.

(ii) If <S,M,b•C> ~ <S',M',C> is perfect, then

S' = true•S or S' = false• S, M' = M * true} and b,M + false ,M resp.

(iii) If
k

<S,M,p•C> • <S',M',C> is perfect, then

S' = Sand * p,M,. null,M'.

Proof. Again, we omit the proofs of (i) and (ii), and deal with represent

ative parts of (iii), for which we induce on k.

Basis k = 0. Impossible.

Step. Assume (iii) for all k' < k, and that

(2)
k

<S,M,p•C> • <S' ,M' ,C>

is perfect.

Argue by cases:

(a) pis null. Then k must be 1 since the reduction (2) is perfect, and by

IV(•) we see that M' = M, S' = S. The rest is trivial.

(bl pis (xi:=e). Then from (2)

k-2 ..
<i•S,M,e•assign•C>l

perfect
<S" ,M" ,assign•C>

• <S' ,M' ,C>

* where by Lemma 2(i), S" = ~•S, M" =Mand e,M + ~,M. Hence by

V (=>) S" = S, M' = [~/i]M; so p,M + null,M' by III (+).

(c), (d) p is (p1 ;p2) or (if b then p 1 else p 2). Exercise.

(e) pis (while b do p 1). Then from (2)

(3)

(4)

<S,M,p•C> <p•b•S,M,b•while•C>l

kl perfect
.. <S" ,M" ,while•C>

perfectly, by assumption.

Now k2 < k, so using Lemma 2(iii) at k2 , for the last reduction, we

infer that resp.

{ (pl;p)} M *
null , + null,M'.

But from (3), by VI (+) we obtain respectively

fP1 ;pl
p,M + ~,M,

* whence p,M + null,M' by (4).

This completes the proof of Lemma 2. D

11

12

THEOREM. EVAL eval.

Proof. we need to establish that

* * <e:,M,p•e:> • <e:,M' ,e:> iff p' ,M ➔ null,M'.

* (•) Suppose <e:,M,p•e:> • <e:,M',e:>. Thus must be a perfect reduction, since

there is no production of the form

<S,M,e:> • •.••

So Lemma 2 provides the rest.

(.,) This is a simple application of Lemma 1. D

3. DENOTATIONAL SEMANTICS

3.1. Semantic domains

In this section we give a semantic description of Lin terms of cpo's,

using the definitions and results of the first two sections of "Models of

LCF" [28]. But first we need two further cpo-preserving domain operations

(we have already seen that if D and E are cpos, so is the continuous func

tion domain [D➔E], which we shall abbreviate henceforward to just D ➔ E).

Cartesian product. If we define the ordaring ~ over

DXE {<x,y> Ix ED, y EE}

by

<x,y> C: <x' ,y'> iff x C: x' and y ~ y',

the following are easily verified:

(i) D x Eis a cpo; indeed, ~DXE <~0 ,~E> and for the chain

{ <x. , y. > i ~ 0} in D x E, U<x. , y. > < LJ x. ,Uy. >.
i i i i i i i i i

(ii) The pairing function AX"Ay•<x,y> ED+ E ➔ D x Eis continuous,

and so are the selector functions

fst A<x,y>•x € D x E + D

snd A<x,y>•y € D x E + E.

13

Disjoint sum. Let us define

D + E {~} u {<O,x> I x € D} u {<1,x> Ix EE}

and the ordering i;_over D +Eby z i;_ z' iff either z =~,or z = <O,x> and

z' = <0,x'> and x C x' in D, or z = <1,y> and z' = <1,y'> and y i;_ y' in E.

A diagram makes it clear:

The flags O and 1 are merely for disjoining D from E, so that for example

D + D contains two distinct copies of D.

(i)

(ii)

Associated with+ are the following functions:

The injection functions lQ: D + D +

l 1: D + D +

The projection functions 1T O: D + E +

1T 1: D + E +

J x if z = <O,x>

L ~0 if z = <1,y> or ~D+E

and 1r 1z is similar.

E AX:D•<O,x>

E Ay:E•<l,y>.

D

E,

0 :}
(iii) The discriminator functions O O. D + E + T

1.

where o0z l tt if z

ff"

~T

<O,x>

14

and o1z is similar with tt, ff interchanged.

It is a simple exercise to show that these are all continuous functions,

and that Vx ED

(a) TIQ(lQX) X,

(b) Til (1 0x) ¾;•
(cl o0 c1 0xi tt,

and many similar identities. Of course the binary+ can be generalised

to n-ary and even infinitary +. If for the latter we choose the non-negative

integers 0,1, •.• as flags, we may also define

00

* D l Di {•} + D + (DXD) + (DXDXD) + •••
i=0

(where{•} is the one element domain), which is a domain of finite sequences

of elements of D. Then l 0 (•) is just the null sequence, and

* length: D ➔ N

is just the "flag selecting" function.

It is easy enough to define all the

normal list processing operations

O~;-- -,- -,---
, , I

/ I I
, I ,

N I I/ ,

.LN

head, tail, cons, null - in terms of pairing and selecting and the

3.2. Denotation of language L

Our aim is to acribe directly (rather than via a machine) a function:

S ➔ S to each program in L, as its meaning or denotation, where Sis now

a cpo of (abstract) memories or stores. We choose S to respect convention:

it is accidental that S stood also for a stack in our operational semantics,

but we shall henceforward use it only in the new sense.

Though there are alternatives, we choose S to be a flat cpo of vectors

of non-negative integers. More precisely

s <m.> E Memories}
-J.

and we shall allows to vary over S, but will adopt the convention that

m varies over S - {i} - i.e. it stands always for a defined store; also
s

we will use m for the abstract counterpart of M:

M

The only operations we need on stores are

where

update: N + (NxS+S)

select: N + (S->N) ,

{
is if i,n ors is undefined

update i(n,s)
[n/iJs otherwise

f iN if i ors is undefined
select i s 1 s. otherwise.

l.

These functions are easily shown continuous, and we can also shown

LEMMA 1. If i, j ,n1 ,n2 are all defined then

{ n, if i j
(1) select i (update j (n,m))

= select i m if i t- j ,

(2) update i (select i m,m) m ,

15

{ update i {n 1 ,ml if i = j

update j (n2 ,update i (n 1 ,m)) otherwise.

Proof. Omitted. D

REMARK. Part (3) holds even for undefined i,j,n1 ,n2 and for is in place

of m.

3.3. Semantics of expressions

We first assign to each expression ea function ES+ N as its meaning,

and to each boolean expression b a function ES+ T. The meaning E[e] of e

16

is given as follows:

E[e] 1.8 l.N

E[!:!h = n

E[x.]m select i m (= m.)
l. l.

E[e 1+e 2]m E[e 1]m + E[e2]m

... etc. for all iops.

[Note that the right-hand+ stands for a function EN+ (N->N), while the

left-hand+ is a symbol of L.]

The brackets [] are to distinguish syntactic objects. For later work

we shall need to consider a cpo E, which consists of all Expressions

together with certain "partially-defined" expressions; then it will be

possible to discuss E as a member of the domain E + (S+ N). Such a domain

as E would indeed be important if we were discussing expressions as data

objects (on a par with N) - as they would be for a compiler for example.

But here we need do no more than remark that E[e] is defined inductively

on the structure of e. The same remark applies to our later semantic

functions Band P.
For boolean expressions, we define B[b] ES+ T thus:

B[b] 1.
s l.s

B[true]m tt, B[false]m = ff

{¾ if either E[e 1]m or E[e2]m is l.N

B[e 1=e 2]m tt if they are equal

ff otherwise.

Before dealing with programs, we state without proof a simple lemma which

relates the denotational semantics of expressions to their operational

semantics.

LEMMA 2.

* (1) e,M + !:!,M

(2) * b,M + { true } M
false '

iff E[e]m

iff B[b]m

Proof. By induction on the structure of expressions. Recall our convention

that mis the abstract counterpart of M. D

3.4. Semantics of programs

We proceed as with expressions to define P[p] € S ➔ S inductively on the

structure of programs. But first the while construct deserves special

attention. What function f € S +Sis P[while b do p 1]? The diagram

ff

suggests that f satisfies

fs = B[b]s + f(P[p 1]s),s

so that we choose for f the least fixed point fix i of the functional

17

That the least fixed point of i is right will be justified by our theorem.

In defining P[e] we choose not to define P[e]i = i since it follows
s

from our definition as an easy lemma.

P[null] s

P[x. :=e]s
J.

P[pl ;p2]s

P[if b then p 1 else p2]s

P[while b do p 1]

LEMMA 3. P[p] is is,.

= s

update i (E[e]s,s)

P[p2] (P[[p1]sl

B[b]s + P[p1]s,P[p2]s

fix(H•,,s' •B[b]s' + f(P[p]s') ,s').

Proof. By induction on the structure of p. Use the definition of update,

and of B[b], and also that fix is= i(fix i)s. 0

18

3.5. Equivalence of operational and denotational semantics for L

We now prove the theorem:

P[TI I i"ff * 11 1 THEOREM. pim = m p,M + ~,M .

As an easy corollary of this, we have that P[pDm = i iff the reduction
s

of p,M under+ fails to terminate. It is easier to divide the theorem

into two lemmas.

LEMMA 4. If p,M + p' ,M' then P[p]m P[p'Dm'.

Proof. Induction on p.

Basis. (i) pis null. Nothing to prove, since null,M f,-.

(ii) pis (x.:=e). Then by the rules of+, p' is null, and M' = [~/i]M,
* l.

where e,M + ~,M. So Lemma 2 gives E[eDm = n, whence P[pDm = update i (n,m)

m[n/i] = m', while P[p'Dm' P[nullDm' = m'.

Step. (iii) p is (p1 ;p2).

If p 1 is~• then p' ,M' = p2 ,M by rule IV (+). But then P[pDm

= P[p2D (P[nullDml = P[p2Dm = P[p'Dm'.

Otherwise p' = (pi;p2) by IV(+), where p 1 ,M + Pi,M', so by Induction

Hypothesis P[p1Dm = P[p1Dm'. But then P[pDm = P[p2D (P[p1Dml

== P[p2D (P[p1Dm' l = P[p'Dm'.

(iv) pis (if b then p 1 else p2). Exercise.

(v) p is (while b do p 1). Then

p' ,M' = {:!::},M where resp. b,M t { ::~:e },M.

So Lemma 2 gives resp. B[bDm Jtt} l ff , whence

P[pDm (fix ¢)m = ~(fix ~)m

B[b]m + (fix ~) (P[p1Dml ,m

resp.
~ fix ~(P[p1Dml = P[pD (P[p1Dml}

l m = P[nullDm

in each case P[p'Dm'. D

Since this lemma was only concerned with one step reductions, we needed

no induction to handle the while construct.

LEMMA 5. If Pl[pb * m' then p, M + null , M ' ·.

19

Proof. Again, by induction on p. We leave all the cases to the reader as

an exercise, except for the~ construct. Here, we assume the lemma for

p 1 and assume P[p]m = m', where p is (while b do p 1). Now Pl[p] = fix <Ii

(<Ii as before). Let

~s+s } so that P[p] = ~ fi
..., f.

l.

We shall prove by induction on i (i.e. induction on the iterates of <Ii)

that

* (#) m' then p,M + null,M' .

Further, from Pl[p]m = lJ(f.m)
i l.

the rest follows from (#).

m' we can infer that for some i, fim m';

[Note: this inference is a consequence of the fact that Sis a flat cpo;

<fim> is a chain ins with lub m', and hence some member of the chain is

itself equal tom'.]

Proof of (#). For the basis i = 0 there is nothing to prove, since

f 0m = J.m = J_, while m' is by convention defined.

Step. Assume # for i, and assume fi+lm = m'. Now

fi+lm = <!ifim (B[b]m + fi (P[p1]m) ,ml m'.

But since m' is defined

either a) B[b]m (whence * tt b,M + true,M by Lemma 2) and

fi+lm fi (P[pl]m) = m',

or b) B[b]m ff (whence * b,M + false,M) and

fi+lm m = m'.

* In the case of b), p,M + null,M' follows easily. For case a), we first

20

note that P[p1]m must be defined, = m" say. (If not, then we have

m' = f. (l) C P[p]l = l, a contradiction.)
1. -

So by the inductive assumption of Lemma 5 for p 1 , we have that

* p 1,M + null,M"; and by the present inductive assumption for fi we have

* I that p,M" + null,M. It follows that

p,M + (p1 ;p) ,M

* + (null,p),M"

as required.

+ p,M"

* + null,M'

* (since b,M + true,M)

Proof of Theorem. (*) Directly from Lemma 5.
(0) (0) (n) (n) ,

(._) Let p,M = p ,M + •.. + p ,M = null,M. Then Lemma 4 tells us

that {P[p (i)]m (i)} are all equal, whence P[p]m = P[null]m' = m' as

required. D

4. CONTINUATION SEMANTICS

4.1. Continuations

Hitherto we have tacitly assumed of the language L that the execution of

each program construct, if it terminates at all, terminates "naturally" -

i.e. control passes out at the end of the construct. Thus it was safe to

write

indicating that p2 will always be executed after the termination of p 1•

Various language constructs do not admit this assumption; jumps are

the obvious example, and error exits (trapped or not) are another. We

shall consider the latter only, and show how the device of continuations -

introduced independently by L. Morris and C. Wadsworth - can handle abnormal

exits. Extension of the technique to jumps involves no further concepts -

it is just rather tedious, essentially because jumps spoil the structured

21

nature of programs.

To avoid too much detail, let us from now on forget the details of

assignments (or other basic non-compound instructions) and expressions in L,

merely assuming that there are certain Boolean expressions b 1,b2 , ••• with

corresponding semantics ai = B[biD ES+ T, and certain basic instructions

ci - including assignments (but excluding null) with corresponding semantics

y, = C[c.D ES+ s, where in particular C[x.:=eDs = update i (E[eDs,s).
i i i

(We are thus preventing consideration of abnormal exit from expressions or

basic instructions; the technique of continuationsadaptseasily to allow

this.)

Consider now adding a single extra instruction"~", whose effect

is supposed to be to abort the whole program and deliver an error message

(which may depend on the current store). There is no easy way to fit~

into the semantic equations for P.
So we proceed as follows. First, assume a cpo O containing all pos

sible end results of programs, including error messages. We should need

something like O anyway - hitherto we have taken the meaning of a program

in the domain S + s, but we are not often interested in the state of the

whole store at the end of the whole program. With Owe may imagine extract

ing the final output by applying to P[pDs some output function ES+ o.
(Aside: we are still not considering programs which can output - or

input - information during execution; it turns out that continuations also

make this easy to handle.)

But now it appears that if xis such an output function, then

X O P[pD is a function in the same domain S + o, respecting the work done

by executing p and ~ "outputting". If we call C = S + O the domain of

continuations, we can equally well specify the meaning of a program p

by defining the effect of "prefixing" its work to our arbitrary continu

ation x to yield another continuation. So our new semantic function will

be Q, and we define Q[pD EC +·C below.

To emphasize the back-to-front way of working, consider the while

construct again. If pis while bi do p1 , then we want to specify the

output Q[pDxs which results from starting p withs and continuing after

p with X·
Let Q[pD = g. Then gx satisfies

22

and our equation below settles on the least fixed point of this recursive

equation for g.

Q[null] xs

Q[c.]xs
l.

Q[p1 ip2]xs

QJ[2:! bi then p 1 else p2]xs

Q[while bi do p 1]

and finally we add

Q[error] xs = dump s ,

xs

x(yis)

Q[pl] (Q[p2]x)s

1\s + Q[p1]xs,Q[p2]xs

fix(Ag'AX"As•6is + Q[p1] (fx)s,xs),

where dump is a special error continuation - we may imagine that it prints

the whole store if we like. The vital point is that because error chooses

to ignore the normal continuation x, any program containing~ may also

choose to ignore its normal continuation. (Write out the meaning of the

program "~;p" to emphasize this, and also notice the difference between

P[p1;p2] and Q[p1;p2].)

In these lectures we do not propose to develop the semantics of more

complex languages (they can be found in the literature) but rather to look

at proofs about simple languages; in fact we shall only do one proof, since

we also want to examine the possibility of mechanizing it. But before

leaving errors, it is worth while sketching an extension to the language

and its semantics to allow for trapping errors.

Suppose then that error is to invoke not a fixed continuation "dump",

but an error continuation n which has somehow been established by the

program. That is, to give the meaning of~, our new semantic function

R needs an n as well as ax as argument - i.e. R[p] E c + C + C, and we

write

ns (cannot succeed!)

and naturally

R[null] xns xs (cannot fail!)

But how are errors to be trapped - or (to ask the same question differently)

how are error continuations established? The simplest possible answer is

to add the program construct

23

whose effect is to be as p 1 if p 1 terminates normally, otherwise to execute

p2 as soon as p 1 commits an error. (Thus,. the whole construct can only err

if p 2 errs.)

Exercise. Give the semantic equation

and complete the definitions of R. You should then be able to prove

(i) orelse is associative, i.e.

(ii) error is a left zero for" ", i.e.

(Is it a right zero?)

(iii) error is a left identity for orelse, i.e.

R[~ ~ p] = R[p] .

(Is it a right identity? Is there a left or right zero for~?)

Does orelse distribute over"; "? •.. over if bi then

If not always, then under what conditions?

else -- ?

Of course the most useful errors are those which return some kind of value,

but we shall have to omit this kind of extension. Again, the techniques

require no really new idea.

4.2. Techniques for proof about continuous functions

Most interesting properties of language semantics involve fixed-points,

and their proofs depend upon the fact that fix t denotes the least fixed

point oft. (The simple properties of~ and orelse mentioned above are

an exception.) The fundamental method is to prove that the required property

holds (or something similar holds) when fix tis replaced by each of the

iterates f. = ti(L) oft. Let us take as an example a general property of
1

fixed points:

24

F(fix(GoF)) = fix(F 0 G),

provided F,G are continuous.

Proof. Let

H F 0 G, J GoF

and let

h. Hi (.L), ji Ji (.L) •
l.

We then show by induction on i that

whence

F(fix J) F(LJ j.) = LJ(F(j.)) C fix(FoG),
i l. j l. -

and a similar induction on the iterates hi yields the other half of the

required result.

To prove (*):

when i = O, F(jO) = F(.L) t;_ F(G(fix H)) (FoG) (fix (FoG)) fix(FoG);

otherwise F(ji+l) = F((GoF)ji) = (FoG) (Fji) C (FoG) (fix(FoG))

(by induction)

fix(FoG).

Hence the induction is complete. D

Exercises. Prove similarly

(i) fix F = fix(FoF);

(ii) if F(.L) = G(.L) =.Land FoG = GoF then fix F = fix G;

(iii) ditto, replacting the second condition by FoFoG = GoF.

The method of such proofs is to prove first that F[f.] holds for all i,
. l.

and then step to F[fix ~] where f, = ~1 .L. For this step to be valid, the
l.

predicate F[] has to be directed-complete; that is, for any chain <f.>,
l.

(V. • F[f. J) ~ F[LJ f. J.
l. l. i l.

25

Now any equational formula - that is t = t' - or inequality t ~ t' is

easily shown to be directed - complete considered as a predicate of some

free variable x in the formula, provided that t and t' are built by appli

cation and abstraction from continuous functions. (This is the import of

Prop. 3.1 in "Models of LCF".) It is also easy to show that if Hx] is

directed complete in x, so are

Vy• Hx]

G • HxJ ,

provided that xis not a free variable of G. The class of directed-complete

formulae may be extended further; we merely emphasize here the importance

of the notion.

4.3. The equivalence of direct and continuation semantics

We have presented two semantic definitions of language L, both guided by

our intuition about what L should mean, and one of them (the direct

semantics P) further substantiated by a proof of its equivalence with an

operational definition. We must therefore answer the question: in what

sense do P and Q give the same meaning to L? In some sense they simulate

one another - their definitions are structurally similar - but we cannot

simply claim P = Q, or P[p] = Q[p], since the domains are different.

The simulation relation between direct and continuation semantics for

a more complex language was exhibited by Reynolds. He used more powerful

techniques than we have developed here, but for L they are unnecessary.

We will give a rather simple proof of the appropriate relationship

between P and Q, and then proceed to examine how the proof might be

formalized and performed interactively with a machine.

We must first omit from L the~ command, since it was not handled

by P. Then in view of our discussion when Q was first defined, it is

natural to expect that

(1) Vx•Q[p]x

and indeed this is readily verified from the semantic equations when p

is c. or null.
1.

26

But suppose that p0 is in some program like

which never terminates? It is not hard to verify that whatever x, Q[p0]x =l.;

on the other hand if we pick x = AS"O for some o ~ 1. E O (i.e. xis a con

stant function) then we also have xoP[p] = As•o ~ 1..

So some restriction on equation (1) is required. It is not hard to

accept that x should be a strict function - that is, it should satisfy

Xl. = l.; intuitively the continuation should be patient enough to wait for

p to introduce~ information (which in our case means a fully defined

store). We therefore formulate our simulation relation thus

(2) Vp•Vx•x strict=> Q[p]x xoP[p] ,

which we shall prove inductively on the structure of programs. We also

need to assume that the meanings of basic instructions and boolean expres

sions are strict functions:

(3)

The following Lemma is needed:

LEMMA. Vp•Vx•x strict=> Q[p]X strict.

Proof. By induction on the structure of p. Assume x strict.

Basis. (i) p = ~- Then (Q[p]x)1.

(ii) p Xl. by (3)

1..

Step. Assume the lemma for all subprograms of p

(iii) p = (p1;p2). Then Q[p]x = Q[p1]x• where x' = Q[p2]x. But by the

Lemma for p2 x' is strict, hence by the lemma for p 1 so is Q[p]x.

(iv) p = (if bi then p 1 else p2). Then Q[p]xl. = f\1. + ••. , •.. = l. by (3).

(v) p = (while bi do p 1). Then Q[p]xl. = (fix <I>)x1. (<l>=Ag•AX"As•Bis + .•. ,

.•.) = <!>(fix <I>)x1. = Bil.+ ••• , ••• = 1. by (3). □

27

REMARK. In this proof the while construct caused no difficulty because it

executes the test before the body. You may like to try the following

exercise, in which you may need an inner induction on the iterates of a

functional like~-

Exercise. Formulate the obvious continuation semantics of the construct

and prove the corresponding case of the lemma. Also prove that

Q[if b. then (do p 1 until b.) else nullD
-1. ---1.

= Q[while b, do p 1] .
--- 1.

(For the last part you may need to look at the style of proof of the

following Theorem.)

SIMULATION THEOREM. Vp•Vx•X strict~ Q[p]x

Proof. By induction on the structure of p.

Basis. (i) p = null, (ii) p = ci. Both trivial.

Step. Assume the theorem for all subprograms of p, and assume x strict.

(iii) p = (p1 ;p2). Then Q[p]x = Q[p1]x• where x' = Q[p2]x

x' 0 P[p1] by the theorem for p 1 , since x' is

strict by the Lemma,

x O P[p 2] 0 Pl[p 1] by the theorem for p 2

x 0 PffpD.

(iv) p = (if bi then p 1 else p 2). Then Q[p]xs

while (x 0 P[pD)s = x<f\s + P[p1h,P[p2]s).

(v)

The result follows by considering the three cases Sis= tt,ff,~T.

p = (while bi do p 1). Then Q[p]x = (fix '!')X and x0 P[p] = X0 fix ~

where'!' Ag•Ax'•;l.s'•Sis' + Q[p1]Cgx'ls',x's'

;\f•As' •Sis' + (foP[p1])s' ,s'.

We need only show that if fi,gi are the iterates of~,'!' respectively, then

28

for each i 2: 0

(4)

For then, when xis strict Q[p]x

xoP[p].

(LJ g.)x = U(g.x) = U(xof.) = xoUf. =
i i i i i i i i

To prove (4); when i = 0 g0x• = LX' = L = X' 0 L (X' strict)

Now assume (4) for i, and let x' be strict. Then

Bis+ (gix' 0 P[p1])s,x's by the theorem for p 1 , since

gix' ~ (fix 'l')x' = Q[p]x' which is strict

by the lemma, so gix' is also strict,

On the other hand

(x'ofi+l)s X'(fi+ls) x' (B.s + (f.oP[p1])s,s)
i i

and equality follows by case analysis on Bis. D

5. MECHANIZED SEMANTICS

5.1. Deductive systems

The aim of this section is to explore the possibility of mechanizing the

proof of the simulation theorem, using a formal deductive calculus which is

an extension of that described in "Models of LCF", Sections 3 & 4. The

extension is in two directions; more logical connectives, and more types.

This system has been presented in detail in Milner, Morris and Newey [24],

and we shall be more informal about it here.

Well-formed formulae (wffs). Wffs are formed from the atomic wffs (awffs)

by normal use of the connectives&,"">, V (conjunction, implication and

universal quantification), and a sentence is r ~ A, where r is a set of

29

wffs and A is a wff. As rules of inference we add

Conjunction r f- A f f- B Selection r f- A & B
rl-A&B r F A r F B

Deduction f U {A} 1-B Modus Ponens r f- A b. f- A => B
ff-A=>B r u b. F B

Generalization r I-A Specialization r f- Vx•A
r F Vx•A r f- A{t/x}

(x not free in r)

Assumption
{A} FA

[Note: these rules actually replace INCL, CONT and CUT of "Models of LCF".]

Types. Instead of just two basic types IND and TR, we allow any number of

basic types (including TR which we rename T), and types may be built using

the binary connectives+ x and+. From what has gone before, we know that

there is a domain (a cpo) for each type, whose name is just that type.

Two further ingredients are necessary; (a) Reflexive types, and

(b) Polymorphic types. From Scott, we know that any family of recursive

domain equations

D F(D1 , ... ,DJ
n n n

has a solution for the Di (strictly the equality is an isomorphism) where

the F. are built from the D., and possibly other domains, by+ x and+.
i i

We therefore allow any family of such equations as relations over

our type constants (domain names); more precisely then a type is any

equivalence class of type expressions induced by these relations, and it

may be named by any member of the class. These are our reflexive types.

But there are many operations which make sense at an infinity of

types. Examples are the conditional and fixed point operations, and the

operations fst, snd, o0 , o1 , 1 0 , 1 1 , w0 , w1 introduced earlier. To allow

30

these operations to have types, we introduce type variables a,a1, ... ,

S,S 1 , .•. and then for example fst: axS ➔ a, 1 0 : a ➔ a+S etc.

Simple and natural rules apply for a term or wff to be well-typed,

and we do not go into them here. Type variables have no binding quantifier,

but we add to our deduction rules the following

Type Instantiation r f- A
r I-Ah/a}

where a is a type variable not in
r, and, is any type (possibly
including variables).

This rule is invoked whenever we wish to use a "polymorphic" theorem,

such as

at a particular instance of its type.

This is the basis which is intended to formalize our informal reason

ing within a typed framework; from now on we shall omit types almost

everywhere (except when discussing them, rather than the objects which

possess them), and we would expect any tolerable mechanization to allow

these omissions but to supply and check types internally.

Note: We will use "fix" rather than "Y" for the fixed point combinator.

Also we shall use the constant " J. " - instead of "UU" as in "Models

of LCF" - to denote J.. It may be worth remarking here that the reasons

for choosing TT, FF, UU in LCF were (i) t, fare far too often used as

variables; similarlywith T,F. (ii) In addition, the Stanford LCF was

superimposed on LISP, which does quite surprising things with the atom T.

(iii) TT and FF are much quicker to type than true, false. However, I sug

gest we pronounce TT,FF,UU "true", "false", "bottom".

5.2. Formalizing the syntax of language L

Our calculus discusses cpo's; so to discuss both the syntax and the

semantics of L, the·syntactic objects as well as the semantic ones must be

found in suitable cpo's. (This will mean introducing things like the

undefined program, and possibly infinite programs; these do not get in

the way however!)

We define a set of mutually reflexive types

PROGM NULL + INSTN + COMPD + CONDL + ITERN

NULL

INSTN

(1) COMPD PROGM x PROGM Assume that+ and x associate
to the right.

CONDL BEXP x PROGM x PROGM

ITERN BEXP x PROGM

BEXP

11 • 11 is our name for the domain with a single element, which we shall

denote by the constant(). This domain is exiomatized easily by

~ Vx •x = ()
0 0

We have left out the definitions of INSTN and BEXP, consistent with our

previous treatment. They could indeed by left unspecified, and for our

theorem all we shall rieed is that the functions

C: INSTN + S + S and B: BEXP + S + T

satisfy

(2)
I- VcINSTN

Note that our type equations really give the abstract syntax of L; all

that is said of a while program is that it is a pair consisting of a

boolean expression and a program, which is all that matters to us.

31

But we would like mnemonic names for the discriminators, constructors

and destructors of this abstract syntax; we define

Discriminators ~ isnull = o0
~ isinstn - Ap•o 1p + o0 (TI 1p),FF

~ iscompd = Ap•o 1p + (o 1TI 1p + o0 (Til (TI 1p)),FF),FF

etc.

all of type PRGM + T.

32

Constructors r mknull - l NULL ➔ PROGM
0

(3)
f- mkinstn - l ol INSTN ➔ PROGM

1 0
f- mkcompd - llollOlo: PROGM x PROGM ➔ PROGM

etc.

Destructors f- destnull - iro PROGM ➔ NULL

f- destinstn - 1T0°1T1 PROGM ➔ INSTN

f- destcompd - ,r0°,r1 o,rl: PROGM ➔ PROGM x PROGM

etc.

We have worked with a binary disjoint sum operation (rather than a 5-ary

one) which makes these definitions lengthy. But once we have proved standard

theorems for our new operations, their definitions need never be seen again.

Such theorems are

f- isnull (mknull ()) - TT

f- 'v'bVp1Vp2 •iscondl(mkcondl(b,p1 ,p2)) - TT
(4) f- 'v'bVp1Vp2 •destcondl(mkcondl(b,p1 ,p2)) TT -

f- Vi •isnull(mkinstn(i)) - FF

etc., etc ..

We shall use them later as simplification rules (which we shall describe)

in proving the main theorem - indeed, these theorems themselves are proved

by using the earlier definitions as simplification rules, i.e. they are

proved completely automatically.

structural Induction for L

We wish to derive, from the standard rule of computation induction given

in "Models of LCF", the following inference rule for programs of L:

I- H.1J I- Hmknull ()] I- Hmkinstn (i)]

(5) F[p1],F[p2] I- F[mkcompd(p1,p2)]

F[p1],F[p2] I- F[mkcondl(b,p1 ,p2)]

F[pl J I- F[mkitern(b,p1)J

I- HpJ

where extra assumptions on the left of the turnstiles have been left out

33

for clarity, but may occur (with their union occurring in the conclusion

of the rule) provided they contain none of i,b,p1,p2 ,p free.

We now have to face a problem of all reflexive domain equations, that

they do not necessarily have a unique solution. Our rule will only follow

if the domains PROGM, ... are in some sense the least solution of equations

(1). The following axiom ensures this; what it expresses is roughly that

every program is well-founded - i .• e. if we analyse it into its primitive

components (in NULL, INSTN and BEXPN) and then build it up again, we have

back our original program. The axiom is made more concise with the fol

lowing functional#:

~ VfVgVxVy•(f#g) (x,y) - (f(x),g(y)).

The axiom is:

(6) ~ Ap•p - fix progfun,

where

~ progfun - Af•Ap• isnull p + mknull(destnull p),

isinstn p + mkinstn(destinstn p),

iscompd p + mkcompd((f#f) (destcompd p)),

iscondl p+ mkcondl (((Ab•b)# (f#f)) (destcondl p)),

isitern p + mkitern(((Ab•b)#f) (destitern p)),

.l.

Now we are at last ready to derive the structural induction rule (5), for

an arbitrary formula F[p].

We take the instance of the computational induction rule on the

functional progfun, in which G[f] is Vp•F[f(p)]:

(7)
~ G[.1] G[f] I- G[progfun (f)]

~ G[fix(progfun)]

Our task is to prove the two hypotheses of (7) from the six hypotheses

of (5); (7) then allows us to infer (together with (6)) that~ G[Ap•p],

i.e.~ Vp•F[p], whence the conclusion of (5) follows by specialization.

34

Basis. G[i] is Vp•F[i(p)], or Vp•F[i] which is the generalization of the

first hypothesis of (5).

Step. Assume

(8) G[f], that is Vp•F[f(p)].

We require to prove Vp•F[progfun(f)p], so we attempt to prove F[progfun(f)p],

for some arbitrary p.

For this, it is enough to consider the truth values of the five conditions

isnull(p),isinstn(p), Now from the definition of progfun, the only

cases which do not yield progfun(f)p = i (when we are done) are when some

condition is TT and the earlier ones are all FF. Ineach case, progfun(f)p

is equal to one of the five expressions at the right of+ in (6). Consider

just the fourth case. Then we are trying to prove

F[mkcondl(((Ab•b)#(f#f)) (destcondl(p)))]

that is (for some b,p1 and p 2)

which follows readily, by (8), from the fifth hypothesis of (5). D

5.3. Strategies

We now attempt to describe the kind of proof strategy which can relieve

one of a morass of technical detail in performing proofs interactively

with a machine, using the Simulation Theorem as an example. Because induc

tion (either structural or computational) appears to be the major creative

ingredient in such proofs, there is some hope that without too much ill

directed search the machine can automatically dispose of large parts of

a proof, given only an initial hint of what induction to perform. Indeed,

once this is achieved one may expect to design strategies which make an

intelligent search for the right induction; such strategies have already

been studied with some success (though in restricted problem domains) by

Boyer and Moore [25], Aubin [26] and von Henke [27] among others.

A major part of such strategies will be the use of equational for

mulae as simplification rules (which we abbreviate to simprules). More

35

precisely, any theorem of the form

which belongs to the current simplification set (simpset) will be used in

the following way when simplification is explicitly called for in a strategy:

to transform a goal F (formula to be proved) into a simpler goal F', any

subterm having the form t[u1 , .•• ,un] is replace by t'[u1 , ... ,unJ. If

after all possible such replacements F• is discovered to be a simple

tautology, then the goal is achieved. As the strategy proceeds, transform

ing the original goal into a list of subgoals, each subgoal attains a

simpset appropriate for its proof.

Other components of a suitable strategy for our example will emerge

in the following analysis; the resulting strategy will be seen to be not

especially oriented to the example, though we would certainly not claim

universal applicability for it.

As a starting point, let us now specify our main goal G0 [p] as

follows:

CG > Vx•x.1 - .l ~ Vs•QJ[phs - x<P!Iph>
0

and

1.

suppose that we have in the initial simpset the following theorems:

Each clause of the definitions of P and Q., in the form *)

I-Vb,p1 ,p2 ,s•P[mkcondl(b,p1 ,p2)]s = B[b]s + P[p1]s,P[p2]s, together

with the strictness clauses P[.LPROGM] = .l, Qj[.LPROGM] = .l.

2. All the theorems (4) above concerning the syntax of L.

3. The strictness theorems (2) for Band C.

4. Standard rules such as B conversion, conditional conversion

(1-Vx,y•TT + x,y = x, etc.), minimality (Vx•.lx = x) and rules

concerning fst, snd, oi, ~i' 'i"

*) although we continue to use [] as decorative brackets., theyhave no·formal
significance to distinguish them from ().

36

First tactic

Try structural induction on p, then simpify the resulting six subgoals;

for each remaining subgoal add its assumptions to the simpset for that

goal.

Applying this to G0 gives (before simplification) the six hypotheses

of rule (5) (with G0 for F). Simplification however eliminates the first

three - those with no assumptions_- provided a wide enough class of simple

tautologies is detected. The first hypothesis, for example, becomes

and the other two yield even simpler tautologies. We are therefore left

with

Vx•x.1 - .1,. Vs•Q[p1] (Q[p2]x)s = x(P[p2] (P[p1]s))

(G l
1 with G0[p1] and G0[p2J in the simpset,

Vx•x.1 - .L,. Vs•B[b]s + Q[p1]xs,Q[p)xs = x(B[b]s + P[p1]s,P[p2]s)

(G2>
with G0[p1J and G0[p2J in the simpset,

Vx•x.1 .L ,_ Vs•fix 'I' xs = x(fix <I> s)
*)

-

(G3)
with Go[pl] in the simpset.

But the reader will have already noticed that the various formulae G0[p1]

added to the simpsets are not equational, and we must therefore extend

our notion of simprule to justify what we have done. We introduce the

notion of a conditional simprule. Any theorem of the form

(in which X• ~ stand for vectors of variables) may be used in simplifying

a goal Fas follows: any subterm of F having the form t 1[~,~J may be

*) We use 'I' and <I> here as abbreviations for our familiar functionals; they
are not variables of the calculus.

replaced by t'[u,v] (where u_,v_ are vectors of terms) provided that
1 - -

ti~J = t2[~]

37

is first proved by simplification. For pragmatic purposes we add one further

constraint: that each of the terms v, should be free in F, i.e. no variable
l.

occurrence free in v. is bound in F. This constraint is not applied to the
l.

ui, either here or in ordinary simplification; it is present to prevent

conditional simplification setting up for itself too many unachievable

subsidiary goals of the form of(*) above. We will see how it works later.

[Aside: even our ordinary simplification mechanism (without conditional

simprules) runs the resk of non-termination,, unless some constraint is

placed on the form of simplification rules. Without this, perhaps it should

be called computation rather than simplification; the point is that some

automatic equational transformation is needed, and it can always be bounded

artificially in some way.]

With this extended notion, we may now assume that our strictness

lemma

I- Vp•x•x.1 - .1 • Q[p]x.1 - .1

is present in the simpset throughout.

Second tactic

Each of G. (i = 1,2,3) is a quantified implication, and we now iterate
l.

the process of stripping quantifiers and assuming antecedents. These are

normal informal proof techniques, and are justified respectively by the

rules of generalisation and deduction given earlier. We choose arbitrary

new variables for those which become unbound.

We then add the assumed antecedent into the simpset for each subgoal,

and apply simplification.

What happens to G1 under this tactic? Before the simplification it

becomes

38

Now the subterm Q[p2]x1 , being free, is an admissible instance for X in

the conditional simprule G0[p1], enabling the left hand side to become

provided that

can be proved by simplification. But this is done by use of the strictness

lemma, and by x1~ =~-Returning to (*), it is similarly transformed

further (using G0[p2]) into the right hand side.

Thus G1 has become a trivial equation, and is achieved.

What happens to G2 under the second tactic? Similar use of conditional

simplification easily reduces it (as the reader may like to check) to

CG)
4

The simple task of proving G4 we leave to the third tactic.

What happens to G3 under the second tactic? Before simplification it

becomes

(G J s

Now in this case, conditional simplification by G0[p1] is not possible,

since the required instance gx' of x in that rule is not free in GS. (If

we relaxed this constraint on conditional simplification, because x' is

bound in the left hand side of GS we would need to prove x•~ =~for an

arbitrary x' to achieve the subsidiary goal of the conditional simplifica

tion, and this is not valid.)

So simplification does nothing for GS.

Third tactic

A tactic which will achieve G4 and is of wide application is: find any

term t of type T which is free in a goal·G, and produce three subgoals,

each consisting of G with respectively t = TT, t = FF and t =~in the

simpset. Then simplify.

G4 yields very simply to this tactic - the only candidate fort is

B[b]s2 - and the strictness of x2 disposes of the third subgoal. On the

other hand G5 is not amenable to the tactic, since B[b)s' is not free

in G5 •

The third tactic is of wider applicability than to the type T; one

may perform case analysis on any term denoting a member of a finite

domain.

5.4. Discussion

39

Let us suppose that our overall strategy is to apply the three tactics in

sequence, each to all the subgoals remaining after applying the previous

one. The effect for our example is to reduce the original goal G0 to a

single subgoal G5 , for which as we saw earlier a further induction is

required. Let us briefly discuss G5 , then consider strategies in general.

The form of G5 is

with G0[p1] and x3~ =~in the simpset. Now our informal proof consisted

in an inductive proof that for each i ~ 0

where gi, fi are the iterates of~,~- Formally we might therefore apply

the rule of parallel induction:

F[f,g] ~ F[~f,~gJ

[F fix ~,fix~]

(which is easily derived from the standard rule), taking for F[f,g] the

formula(*) with suffix i removed. (In passing we may remark that the

40

principle reason for using such induction rules rather than mathematical

induction on the index of the iterates is to avoid formalizing arithmetic

solely for this purpose.)

Without troubling with details, we claim that our original strategy,

but with structural induction replaced by parallel induction will indeed

achieve the goal G3 (from which GS came); but it is worth remarking that

the generation of GS, resulting from uniform application of all three

tactics, was wasted work.

The detailed study of this example leaves us with the impression that

strategies for certain classes of problems may often be built from rather

general purpose tactical material, but that it would be unwise to pursue

the ideal of a single general purpose strategy.

For this very reason, a user of an interactive proof system must have

the ability to extend not only his repertoire of Theorems, but also his

repertoire of tactics, of ways of composing strategies from them, and hence

of strategies themselves. This sounds very like programming; the problem

then is to give him a programming language (a meta-LCF) in which it can

all be done tolerably, and in which however badly he programs he cannot

"prove" non-theorems. He will then not need to study a strategy at length

in the abstract before typing it in and trying it; if he thinks that

structural induction on p, then stripping quantifiers and

antecedents and doing case analysis, all mixed up with

simplification

is a recipe worth trying, then he can type it in, at perhaps no greater

length than the above sentence, and see what happens.

Work with LCF at Stanford [18,19,20,21,22,23] has motivated the

design of such a programming meta-language, and at Edinburgh we have

implemented one which appears to allow plenty of scope for experiment in

strategy-building.

As for the deductive calculus, we would not claim that the one out

lined in this paper is the final answer, even for problems in the rather

special area of programming language semantics; we expect to continue to

find problems whose expression or solution is either impossible or

repulsive however much we enrich the calculus. But in contrast to this,

it is reasonable to expect that many pragmatic aspects of interactive

proof-finding remain constant as the calculus varies. That is to say, a

good meta-language for proof may not be so far away. (This project has

involved four people - initially L. Morris and M. Newey, and currently

M. Gordon and C. Wadsworth - besides myself; much of the work remains

still to be reported, but I would like to acknowledge here the very able

and persistent work of these colleagues.)

6. LITERATURE

41

Scott and Strachey [l] give a starting point for the study of denotational

semantics. Scott [2] provided the underlying models; in [3] he gives an

outline without too much technical detail, and in [4] he carries the

theory further.

Further studies in denotational semantics are given by Tennent [5],

which contains both a good introduction and a presentation of the semantics

of Reynolds' GEDANKEN. Mosses [6] presents ALGOL 60, and Gordon [7]

presents LISP.

For operational semantics, Landin [10] gives a starting point. The

descriptionofPL/1 is by Lucas and Walk [11]; also Wegner [12] gives a

very readable account of the Vienna Definition Language which was invented

for the description of PL/1. Plotkin [13] at a more fundamental level dis

cusses evaluation in the A-calculus.

The continuation technique of Wadsworth and Morris is presented by

Reynolds [14], who. also gives a mathematical discussion of the directed

complete relations which are employed in his analogue of our simulation

theorem. Strachey and Wadsworth [15] illustrate the continuation technique.

For a study of the syntactic properties of formulae which express

directed complete relations - i.e. formulae which admit the use of compu

tationinduction-seeK.lebansky et al [16] and Igarashi [17]. The forerunner of

the computation induction was "recursion induction" given by McCarthy

in [BJ. Scott's rule was also discovered independently by Park [9].

The implementation of LCF carried out at Stanford in 1971-2 is des

cribed in Milner [18], and studies in its use are Milner and Weyhrauch

[19], Weyhrauch and Milner [20], Newey [22], Aiello, Aiello and Weyhrauch

[21] and von Henke [23]. The extended formal calculus used in the present

paper is given in full detail in Milner, Morris and Newey [24].

Work on strategies for proof by induction can be found in Boyer and

42

Moore [25], Aubin [26] and von Henke [27]. The models of the original LCF

are in Milner [28].

This is by no means a full list of the relevant papers, but should

help the reader to explore further the different aspects of work in the

field of semantics and proof.

REFERENCES.

[1] D. scarT & c. STRACHEY, Towards a mathematical semantics for Computer

Languages, Proc. Symposium on Computers and Automata, Micro

wave Res. Inst. Symposia series, Vol. 21, Polytechnic Institute

of Brooklyn, 1971.

[2] o. scarT, Lattice Theoretic Models for Various Type-free Calculi,

Proc. IV-th International Congress for Logic, Methodology and

the Philosophy of Science, Bucharest, 1972.

[3] D. scarT, outline of a Mathematical Theory of Computation, Proc.

Fourth Annual Princeton Conference on Information Sciences

and Systems, 1970.

[4] D. SCarT, Data Types as Lattices, Unpublished Lecture, University of

Amsterdam, 1973.

[SJ R. TENNENT, The Denotational Semantics of Programming Languages,

Comm. A.C.M., Vol. 19, No. 8, 1976.

[6] P. MOSSES, The Mathematical Semantics of ALGOL 60, Technical Mono

graph PRG-12, Oxford University Computing Laboratory,

Programming Research Group, 1974.

[7] M. GORDON, Models of pure LISP, Experimental Programming Report 37,

School of Artificial Intelligence, University of Edinburgh,

1973.

[8] J. McCARTHY, A Basis for a Mathematical Theory of Computation,

Computer Programming and Formal System, D. Braffort &

D. Hirshberg eds., North-Holland, Amsterdam, 1963.

[9] D. PARK, Fixpoint Induction and Proofs of Program Properties, Machine

Intelligence 5, B. Meltzer & D. Michie eds., Edinburgh Univer

sity Press, 1969.

43

[10] P. LANDIN, The Mechanical Evaluation of Expressions, Computer Journal

§, 4, 1964.

[11] P. LUCAS & K. WALK, On the formal Descriptions of PL/], Annual

Review in Automatic Programming§, 3, 1969.

[12] P. WEGNER, The Vienna Definition Language, ACM Computing Surveys,~,

1, 1972.

[13] G. PLarKIN, Call by name, call by value and the \-calculus, Theoretical

Computer Science,.!_, 2, 1975.

[14] J. REYNOLDS, On the relation between direct and continuation

semantics, Proc. 2-nd Colloquium on Automata, Languages and

Programming, Saarbrucken, 1974.

[15] C. STRACHEY & C. WADSWORTH, Continuations: A mathematical semantics

for handling full jumps, Technical Monograph PRG-11,

Oxford University, Computing Laboratory, Programming Research

Group, 1974.

[16] B. KLEBANSKY, Z. MANNA & A. PNUELI, Formulas admissible for Induc

tion, Dept. of Applied Mathematics, The Weizmann Institute

of Science, Rehovot, Israel, 1973.

[17] S. IGARASHI, Admissibility of Fixed-Point Induction in First Order

Logic of Typed Theories, AI Memo AIM-168, Computer Science

Dept., Stanford University, 1972.

[18] R. MILNER, Logic for Computable Functions; Description of a Machine

Implementation, AI Memo No. 169, Computer Science Dept.,

Stanford, 1972.

[19] R. MILNER & R. WEHRAUCH, Proving compiler correctness in a Mechanized

Logic, in Machine Intelligence 7, ed. D. Michie, Edinburgh

University Press, 1972.

[20] R. WEYHRAUCH & R. MILNER, Program semantics and correctness in a

Mechanized Logic, Proc. USA - Japan Computer Conference,

Tokyo, 1972.

[21] L. AIELLO, M. AIELLO & R. WEYHRAUCH, The semantics of PASCAL in LCF,

AIM-221 Computer Science Dept., Stanford University, 1974.

44

[22] M. NEWEY, Formal Semantics of LISP with applications to program

correctness, AIM-243, Stanford University, Computer Science

Dept., 1975.

[23] F. VON HENKE, Notes on Automating theorem proving in LCF, forthcoming

memorandum, 1976.

[24] R. MILNER, L. MORRIS & M. NEWEY, A Logic for Computable Functions

with Reflexive and Polymorphic Types, Proc. Conference on

Proving and Improving Programs, Arc-et-Senans, 1975.

[25] R. BOYER & J. MOORE, Proving Theorems about LISP functions, J. ACM 22,

1975 (pp.129-144).

[26] R. AUBIN, Some generalization heuristics in proofs by induction,

Proc. Conference on Proving and Improving Programs, Arc-et

Senans, 1975.

[27] F. VON HENKE, On Automating Proofs by Induction, unpublished paper,

1976.

[28] R. MILNER, Models of LCF, AI Memo No. 186, Computer Science Dept.,

1973 (also in this volume; see p.49).

MODELS OF LCF by

1. INTRODUCTION

2. CONTINUOUS FUNCTION DOMAINS.

3. PURE LCF: TERMS •••••••

4. PURE LCF: FORMULAE, SENTENCES, RULES AND VALIDITY.

REFERENCES. •

R. MILNER

49

49

• 53

57

• 62

MATHEMATICAL CENTRE TRACTS 82, 1976, 49-63

MODELS OF LCF*

R. MILNER
University of Edinburgh, Edinburgh, U.K.

1. INTRODUCTION

The logic of computable functions proposed by Dana Scott in 1969, in an

unpublished note, has since been the subject of an interactive proof

checking program designed as a first step in formally based machine

assisted reasoning about computer programs. This implementation is fully

documented in [1], and its subsequent applications are reported in later

papers [2,3,4 and S]. However the model theory of the logic, which Scott

originally supplied, is not discussed in those papers, and the purpose

of this Memorandum is to present that theory. Nothing is added here to

Scott's work. The concept of a continuous function, which is central to

the theory, has since been developed by him to provide models for the

A-calculus and to yield his mathematical theory of continuous lattices;

the interested reader can follow these topics in Scott [6]. However,

since LCF is only a version of the typed A-calculus, these developments

are not necessary for the present purpose, and the present paper contains

all that is needed to understand LCF.

2. CONTINUOUS FUNCTION DOMAINS

In this section we define a particular sort of partially ordered domain,

called a complete partial order {cpo), and the concept of continuous

*) This paper appeared first as Memo AI-186 and Report CS-332 of the Com-
puter Science.Department, Stanford University, California, and was written
while the author worked at the Artificial Intelligence Laboratory there
in 1972. The research was supported in part by the Advanced Research
Projects Agency of the Office of the Secretary of Defense, USA, under
Contract No. SD-183.

50

function. We prove some propositions for later use; in particular, that

if D and E are cpo's, then the set of continuous functions from D to E

is itself a cpo.

DEFINITION 2.1. A partial order (po) is a pair (D,i;_) where Dis any set

(domain) and C is a transitive, reflexive, antisymmetric relation over D.

DEFINITION 2.2. For a po (D,i;_), a set X ~Dis a chain if X

and x0 i;_ x 1 i;_ x2 i;_ • . . .

DEFINITION 2.3. A po (D,g is a complete partial order (cpo) if

(1) it has a minimum element, which we denote by i 0 , or just i if there

is no confusion;

(2) every chain X ~ D has a least upper bound (lub) in D, which we denote

by Ux.

DEFINITION 2.4. If D and E are cpo's, then a function f: D +Eis continu

ous if every chain X ~ D satisfies U{ f (x) : x E X} = f (UX) .

Thus a continuous function is one which preserves the lubs of chains. Note

that the set on the lefthand side of the above equation is a chain, since

if X

To see this, we only need to observe that any continuous function is mono

tonic - that is, xi;_ y => f(x) i;_ f(y), and this is true because if Y is

the chain {x,y} then Uy= y, so we have

f(x) ~ U{f(x),f(y)} f (UY) f(y).

We should also note that there is an alternative (more restrictive) defini

tion of a cpo which uses the concept of directed set (Xis directed iff

x,y EX => 3z E X•x,yi;_ z) instead of a chain. This, in turn, leads to an

alternative (more restrictive) definition of continuous function. We have

chosen the less restrictive alternative, but we remark that the theory

can be done equally well (as far as we are here concerned) with either

definition.

Notice that we use the same symbol i;_ for the relation in every po

under discussion. This should give no difficulty. We also use names like

51

D and E both for po's and for their domains.

DEFINITION 2.5. We denote the set of continuous functions from D to E,

where these are cpo's, by [D + E].

PROPOSITION 2.1. If D and E are cpo's then F

relation

f ~ g iff Vx•f(x} ~ g(x}.

[D + E] is a cpo under the

Proof. First, f is a po under this relation (check reflexivity, transitiv

ity and antisymmetry}. Second, the minimum element iF of Fis easily seen

to be Ax•iE. Finally, we need that any chain z s F has a lub Liz€ F.

Define

Liz Ax•LI{ f (x} f € z}.

This is a well-defined function since for each x € D, {f(x} f € z} is

easily seen to be a chain in E. Next, it bounds above every f € z, since

for each x € D, f(x} ~ LI{f(x} f € Z} = (Liz} (x). Further, it is a lub,

since if his any other upper bound for z, then for each x € D and f € z,

we have f(x} ~ h(x}; it follows that (LIZ} (x} ~ h(x}, and hence Liz Ch.

But we must also show that LIZ€ F, i.e., Liz is continuous. Let X s D

be a chain. We require

(LIZ) (Lix} = LI{ (Liz} (x} X € X},

but

(LIZ} (Ux) = LI{f(Lix) : f € Z} by the definition of Liz,

=Li{f(x}: f€Z, X€X}

= LI{ (Liz} (x} : x € x}.

This completes the proof. D

PROPOSITION 2.2. For any cpo D, every f € [D + D] has a minimum fixed-point

Yf € D, i.e. we have f(Yf} = Yf and for all x € D, f(x} = x implies Yf C x.

52

REMARK. This proposition ensures the existence of the least fixed-point

operator Y: [D + D] + D. The next proposition shows that Y is continuous,

i.e. Y € [[D +DJ+ D].

Proof. The set S

Define

0 ~ i} is a chain by the monotonicity of f.

Yf = Us.

By the continuity off, we have f(Yf) = LJ{fi+l(.LD) : 0~i} = Yf, so Yf is

a fixed-point off. Let x be any other fixed-point. Now by the monotonicity

off we have

and, by induction on i we can show

for all i;:: 0,

so

0 ~ i} ~ x,

and thus Yf is the minimum fixed-point off. D

PROPOSITION 2.3. Y is continuous, so Y € [[D + D] + D].

Proof. Let z be any chains;_ [D + D]. We must show that Y(LJZ) = LJ{Yf : fE z}.

In one direction (~) proof is easy since for each f E z, LJz ;! f, so Y (LJZ) ;! Yf by the

monotonicity of Y which in turn follows directly from the definition of Yf.

In the other direction we only need to show that LJ{Yf: fE z} is a fixed

point of LJz, since then it dominates the least such, which is Y(LJZ). Now

LJz (LJ{Yf fEZ}) =LJ{g(LJ{yf: fEZ}): gEZ}

= LJ{g(Yf) g € z, f € z} by continuity of g,

= LJ{f (Yf) f E z}, since

g (Yf) ~ h (Yh) where h

= LJ{Yf : f € Z} ,

max(g,f),

53

which is the required fixed-point property. This completes this proof. D

3. PURE LCF: TERMS

In this section we give the term syntax of Pure LCF, and then after defin

ing a standard interpretation as a function from identifiers into the union

of a family of cpo's, we show how such an interpretation is extended

uniquely to a function from all terms into the same range. The terms of

Pure LCF are just those of a typed A-calculus.

~-
(1) ind and tr are (basic) types.

(2) If Bl, 82 are types then (Bl+ 82) is a type.

(3) These are all the types.

We use B, Bl, 82, ... to denote types, and frequently omit parentheses,

assuming that"+" associates to the right, so that Bl ➔ 82 + 83 abbrevia

tes (Bl+ (82 + 83)).

Terms.

Each term has a well defined type. We use s,t,u to denote terms, and

write s : -B to mean that s has type B.

(1) Any identifier is an (atomic) term. We do not need to describe

them, except to say that there are infinitely many at each type, that the

type of each is determined in some way (perhaps by explicit subscripting),

and that they include TT: tr, FF: tr and the families (indexed by type)

uu :::> B' tr+ B + B + B and

These identifiers are special only in that each standard interpretation

will assign a particular element to each of them. We use x,y to denote

arbitrary identifiers.

(2) Ifs: Bl ➔ B2 and t: Bl are terms then s(t) : 82 is a term.

If x: Bl is an identifier ands: 82 is a term, then [Ax•s] : Bl+ 82 is

a term.

(3) These are all the terms.

54

REMARK. In the machine implementation of LCF, and often for intelligibil

ity, ·we have written terms of the form J(s) (t) (u) and Y([\x•s]) respective

ly as (s + t,u) and [ax•s], and have dispensed with J and Y. It is clear

that every term of implemented LCF is then a transcription of a term of

Pure LCF, and it therefore suffices to discuss the semantics of the latter.

semantics.

A standard model (of LCF) is a family {08} of cpo's, one for each type B,

where D. dis an arbitrary cpo, Dt is the cpo {tt,ff,~t} under the partial in r r
order given by the diagram

tt ff

\LI
tr

and 0 81 + 82 = [o81 + o 82 J. Note that Dind completely determines a standard

model.

Let I be the set of identifiers of Pure LCF. A standard interpreta

tion (of LCF) is a standard model {08} together with a standard assignment,

which is a function

which satisfies the further conditions

*) (1) A[x : S] e: D S ,

(2) The value of A for the special identifiers is given by the

following:

*) We write the (syntactic) arguements of A in decorated brackets as

an aid to the eye.

and

A[TT] = tt,

A[uull] = .LB,

A[FF] ff,

A[:::>tr + 8 + S + 8] = Af;EDtr·AnEDB~AXEDs•(E; + n,x),

55

where (E; + n,x) - the conditional - takes the values .L,n,x according as

E; = .Ltr' tt, ff, and where we have subscripted the fixed-point operator Y

on the right to indicate that it belongs to [[DB+ D8] + DS]. Note that

the Yon the left is an identifier, and the Yon the right a function. It

is easy to check that A[:>] is a continuous function, and Proposition 2.3

has assured us that A[Y] is also continuous.

If A satisfies condition (1) above, but not necessarily condition

(2), we call it just an assignment, yielding an interpretation (not neces

sarily standard). We also confuse the terms assignment and interpretation,

since we have no occasion to discuss here different standard models.

We write AE;/x to indicate the assignment differing from A only in

that its value at xis E;; clearly we have that

A
{ n/y

if X = y,

otherwise.

We now show how to extend the domain of an assignment A to all terms,

preserving the condition that

A[s 8] E DB

which states not only that A respects types, but also that (for composite

types) it yields a continuous function over the appropriate domains.

We define A by induction on the structure of terms, as follows:

A[sCtl] A[s] (A[t] l

That A respects types is obvious. That A[s] E DB for all 8 ands 8 is a

56

corollary of the following

PROPOSITION 3.1. For each assignment A and for each x

A; E DSl,A;/x[s] E [DSl + DS2].

Sl, s S2,

Proof. First, supposes is an atomic term, i.e. an identifier. Either

s = x, in which case Sl = S2 and A;•A;/x[s] is the identity function over

081 , ors# x in which case it is a constant function from 081 to 082 • In

either case it is a continuous function, hence E [o81 + o 82 J.

Next supposes is t(u), t: S3 + S2 and u: S3. Assume the proposi

tion fort and u. We have to show that for any chain X ~ 0 81 ,

; E x}

that is, that

Now if we denote A;•A;/x[t] and A;•A;/x[u] by f and g, the inductive

assumption tells us that f E [DSl + [o83 + o 82 JJ and g E [DSl + o 83 J, and

the required equation merely states th~t for such f and g, A;•f(;) (g(;))

is continuous. The proof of this we leave to the reader; it is hardly more

than proving that for a chain x, {f(;) (g(;)) : ; Ex} and {f(;) (g(n) :

;,n Ex} are cofinal chains.

Finally supposes is [Ay•t], y

to show that

that is, that for any chain X ~ 0 81 ,

Now in the case x y, we have

fl3, t

; E x}

(A) = (A) = A
;/x n/y ·ux/x n/y n/y

S4 and S2

and the equation reduces to a tautology. If x # y, then

S3 + S4. We need

57

and the inductive hypothesis (that the proposition is true fort) tells

us that A~•(ADIY)~/x[t] is continuous - hence monotonic - so

{(A~/X)DIY[t]} is a chain in D64 , for each D- Moreover, the inductive

hypothesis also tells us that for each~ AD•(A~/x)DIY[t] is in [D63 +D64 J,

and by the previous remark the set of these functions - as~ ranges over

X - is a chain in [D63 + D64 J. Thus by the definition of U for function

spaces (Proposition 2.1) we can replace the lefthand side of the desired

equation by

~EX} ADE Ds3·<AD/y)Ux/x[t]

=ADE Ds3·<1\..Jx;x>D/Y[t]

since x # y, and we are done. We have therefore proved the proposition by

induction on the structure of terms. D

COROLLARY 3.2. For every assignment A, type S, and terms

Proof. For atomic terms the corollary is assured by the definition of an

assignment. For A-terms, the proposition gives the corollary directly. For

an application term s(t) : S, the proposition tells us that

so by application to A[x] we get

A[s(t)]

as required. D

4. PURE LCF: FORMULAE, SENTENCES, RULES AND VALIDITY

In this section we define the remainder of the syntax of Pure LCF, extend

ing the domain of assignments A still further, and after defining the con

cept of validity of a sentence we give the rules of inference and show that

58

they preserve validity.

Atomic well-formed formulae (awffs).

If s,t f3 are terms, then s c t is an awff. Let us add the truth values

T,F (not to be confused with TT, FF) to the range of an assignment, and

extend any A to awffs by

if A[s] ~ A[t] ,
A[st:t]

otherwise.

Well-formed formulae (wffs).

A wff is a set of awffs. We use P,Q,Pl,Ql, ••• to denote arbitrary wffs.

Extend A to wffs by

if A E p ~ A[A] T,
A[P]

otherwise.

We uses_ t to abbreviate {s Ct, t Cs}.

Sentences.

If P,Q are wffs, then P f- Q is a sentence (if P

Extend A to sentences by

if A[P] = T, A[Q]
A[PI--Q]

otherwise.

0, we just write I- Q).

F,

We say that Pf- Q is false in A, true in A respectively. We say that a

sentence is valid iff it is true in all standard interpretations.

We now introduce the rules of inference of Pure LCF, accompanying each by

a proof - often very trivial - that it is valid (a rule is valid if when

ever its hypotheses are valid its conclusion is valid). The proofs will

rely on two facts about assignments which are fairly easy to prove (we

omit their proofs). First, if A is any syntactic entity in the domain of

an assignment A, and xis not free in A, then A.[A] is independent of A[x];

more precisely, A,/x[A] = A[A]. Second, in specifying the inference rules

we use A{t/x} to mean: Substitute t for x in A with suitable changes of

bound variables so that no identifier free int becomes bound after the

substitution, and we need the fact that

A[A{t/x}]

Rules of Inference.

59

We write the hypotheses of each rule above a solid line. If there are none,

we omit the solid line. We use the same names for rules as in [1].

INCL

CONJ

CUT

APPL

p I- Q (Q 5- P)

Clearly P true in A implies Q true in A.

p I- Q1 p I- Q2

P I- Q1 u Q2

Clearly valid.

Pl j- P2 P2 j- P3

Pl j- P3

Clearly valid.

t cu I- s(t) c s(u).

If A[t] i;:_ A[uL then A[s(tl] = A[s] (A[t]l !;_A[s] (A[u]l =A[s(u)],

using the monotonicity of A[s].

REFL I- s C s

Clearly valid, by reflexivity of C

TRANS SC t, t CU I-SC U

Clearly valid, by transitivity of C

MIN1 j- UU c s

Clearly valid, by the minimality of i 8 .

MIN2 j- UU(s) c UU

Clearly valid, by the definition i 81 + 82

60

Note that in the last two rules we have omitted the type subscripts from

uu, intending that they be supplied in such a way as to yield a proper awff -

i.e. that the terms on either side should have the same type. We could have

written uu81 ➔ 82 (s: 81) c uu82 • Similarly we will omit subscripts from=>

and Y.

CONDT

CONDU

CONDF

I- ::, (TT) (s) (t) - s

I-::, (UU) (s) (t) - UU

I- ::, (FF) (s) (t) - t

These rules are justified by the standard interpretation of=>.

ABSTR
p I- S C t

x not free in P.
PI- [Ax•s] c [Ax•t]

Let A be such that A[PD = T. Since xis not free in P, we have also

As/x[PD = T for any S• So the hypotheses of the rule assures us that for

each sin DB' where X: B, As/x[sD r;_As/x[tD. Hence

which is to say that

A[[Ax•s] c [Ax•tJD T

as required.

CONV I- [Ax•s](t) - s{t/x}

We have that A[Dx•s](t)D = (As•As/)sD) (A[tD> = AA[tD;)sD. which is

equal to A[s{t/x}D by the second of the facts about assignments which we

have assumed.

ETACONV I- [Ax•y(x)] y, y distinct from x

A[Dx•y(x) JD = As•Aux[y(xlD = As•Aux[y) (As/)xD > = As•A[yD m (since

xis distinct from y, so does not occur free in y) , = A[y).

CASES P,s - Tl' f- Q P,s = uu I- Q P,s - FF f- Q

p f- Q

61

Let A be such that A[P] = T. Since s: tr, A[s] must take one of the

values { tt, .ltr, ff}, so that one of A[s =Tr], A[s = uu] , A[s = FF] takes the

value T. The validity of the appropriate hypothesis ensures A[Q] = T.

FIXP f- Y(x) = x(Y(x))

Clearly valid, by the standard interpretation of Y.

INDUCT
Pf- Q{UU/x} Pu Q f- Q{s(x)/x}

Pf- Q{Y(s)/x}
x not free in P ors.

For simplicity, we consider just the case that Q is an awff. Moreover we

can assume that it is of the form t(x) c u(x) where xis not free int or

u, since for any term t', A[t'] = A[[Ay•t'{y/x}](x)], y distinct from x,

and then xis not free in [Ay•t'{y/x}J. Let A be a standard assignment,

A[P] = T, and assume that A[s] f, A[t] = g, A[u] = h. We first show by

induction on i that for each i ~ 0, g(fi(.la)) ~ h(fi(.la)), where x: a.

For i = 0, the first hypothesis gives that

A.1 I [Q] = T, a X

that is A[t] (.la) I;;;;_A[u] (.la) (since Xis not free in t,u) I so

Now assume the inequality for i. That is, we assume

Since xis not free in P, we also have

and we deduce from the second hypothesis that

62

A . [Q{s(x)/x}] T.
1.

f (.ls)/x

Now

i+l since xis not free ins,= f (.1 13), so from the second fact which we

assumed for assignments we deduce that

A i+l [Q] T,
f (.ls)/x

that is

So the induction is complete. Now

which we require to take the value T. That is, we require g(Y(f)) i;_ h(Y(f)).

But

g(Y(f)) = U{g(fi(.LS)) : i <". O}

i;_u{h(fic.1 13 i : i <". o}

i;_ h(Y(f))

(by the continuity of g),

(by what we have proved),

by the monotonicity of h,

and the justification is complete.

This completes also our justification of the validity of the Rules of LCF.

REFERENCES.

[1] R. MILNER, Logic for Computable Functions. Description of a Machine

Implementation, Artificial Intelligence Laboratory Memo

No. AIM-169, Computer Science Department, Stanford University

(1972).

63

[2] R. MILNER, Implementation and Applications of Scott's Logic for

Computable Functions, Proc. ACM Conference on Proving Assertions

about Programs, New Mexico State University, Las Cruces,

New Mexico (1972).

[3] R. WEYHRAUCH & R. MILNER, Program Semantics and Correctness in a

Mechanized Logic, Proc. USA-Japan Computer Conference, Tokyo

(1972).

[4] R. MILNER & R. WEYHRAUCH, Proving Compiler Correctness in a Mechanized

Logic, Machine Intelligence 7, ed. D. Michie, Edinburgh

University Press (1972).

[5] R. MILNER, A Calculus for the Mathematical Theory of Computation,

International Symposium on Theoretical Programming, Novosibirsk,

USSR (1972) , Springer-Verlag Lecture Notes in Comp. Sc. 5.

[6] D. SCOTT, Continuous Lattices, Proc. 1971 Dalhousie Conference,

Springer Lecture Note Series, Springer-Verlag, Heidelberg.

L SYSTEMS: A PARALLEL WAY OF LOOKING AT FORMAL LANGUAGES.

NEW IDEAS AND RECENT DEVELOPMENTS by A. SALOMAA

(A Finnish motto for each chapter is given in parentheses.)

1. L BASICS (Luonnikas LahtO Laulamaan)

2. L PROOFS (Lyly! Lykit&!n Lujasti) ••

3. L FAMILIES (Lauhkeat Lampaat Laitumella)

4. L GENERALIZATIONS (Laajemmat Leirit Luontoon) ••

5. L PARSING (L6ydet!!nk0 Lev!n Laji) •••

6. L GROWTH (Lis!!ntyv!tkO Liskot Liikaa)

7. L FORMS (Lupaavia Luonnoksia Luokista)

8. L DECIDABILITY (L!!kkeet Luken LOys!!miseen)

9. L PROBLEM (LyM!!nkO LOyly! L!mpimiksi).

10. L FUTURE (Lastu Lainehilla: Lykky!) ••••

11. L REFERENCES (Lienev!tkO Lahteemme Lopuksi Lainkaan

Laatuisia Loitsuja, Luomuksia Luonnosta, Levist&, Liskoista,

Leijonista, Laamoista, Laihoista, Latvoista, Lajeista, Lakoista,

Lampaista, Lehmista, Lehdist&, Luteista, Linnuista, Lepist!,

Leinikeist&, Leivosista, Liljoista, Lohista, Loisista, Lokeista,

67

70

78

83

87

88

95

100

101

103

Lukeista, Luista Lihaville, Laihoille?). • • • • • • • 104

MATHEMATICAL CENTRE TRACTS 82, 1976, 67-107

1. L BASICS

L SYSTEMS: A PARALLEL WAY OF LOOKING

AT FORMAL LANGUAGES.

NEW IDEAS AND RECENT DEVELOPMENTS

A. SALOMAA

University of Turku, Turku, Finland

The theory of L systems originated from the work of Lindenmayer, [L]. The

original aim of this theory was to provide mathematical models for the

development of simple filamentous organisms. At the beginning L systems

were defined as linear arrays of finite automata, later however they were

reformulated into the more suitable framework of granunar-like constructs.

From then on, the theory of L systems was developed essentially as a branch

of formal language theory. It constitutes today one of the most vigorously

investigated areas of formal language theory: so far the yearly growth in

the number of papers has been exponential with base 2, and the number of

people joining the "L crowd" has grown linearly with a decent factor. In

deed, following [vLl] we can say that L systems as a theory of parallel

rewriting constitutes a non-parallelled theory of languages.

The purpose of these notes is to discuss recent results in the theory

of L systems. By "recent" we mean things that have happened after the

latest major L systems conference at Noordwijkerhout in April 1975. These

notes are not intended to be self-contained. For unexplained notions con

cerning automata and formal languages we refer to [Sal]. In the first two

chapters of the notes we try to explain to some extent the basic notions

and techniques in L systems. However, the exposition will be rather brief

and sketchy. For more details and background, the reader is referred to

ilHR] and [RS2] (the former is more comprehensive but contains material

only roughly up to 1973, the latter contains also material from 1973-74),

and to [RSl] and [LR] (these are collections of articles). The present

notes discuss L systems only from the mathematical and formal language

theory point of view. For biological aspects, the reader is referred to

[HR], [LR] and [Ll].

68

The essential feature about L systems, as opposed to grammars, is that

the rewriting of a string happens in a parallel manner, contrary to the

sequential rewriting in grammars. This means that at every step of the re

writing process according to an L system every letter has to be rewritten.

One step of the rewriting process according to a grammar changes only some

part of the string considered.

Let us consider a very simple example. Assume that we are dealing with

a context-free grammar containing the production S ➔ ss. Then, starting

from S, we get any string of the form Sn, where n ~ 1. This follows because

at one step of the rewriting process we can replace one occurrence of S

by SS and leave the other occurrences unchanged. Assume next that we are

dealing with an L system containing the production S ➔ SS. Then, starting
2n

from S, we get by this production only strings of the form S , n ~ 0. This

follows becuase we cannot leave occurrences of S unchanged. Thus, if we

are rewriting the string ss, we obtain at one step the string ssss s4 ,

and not the string s3• On the other hand, if our L system contains also the

production S ➔ S then we can derive any string of the form Sn, n ~ 1.

This parallelism in rewriting reflects the basic biological motivation

behind L systems. We are trying to model the development of an organism.

The development takes place in a parallel way, simultaneously everywhere

in the organism. Sequential rewriting is not suitable for this modeling.

The simplest version of L systems assumes that the development of a

cell is free of influence of other cells. This type of L systems is cus

tomarily called a 0L system ("0" stands for zero-sided communication be

tween cells.) By definition, a 0L system is a triple G = (E,P,w), where E

is an alphabet, w is a word over E, and Pis a finite set of rewriting

rules of the form

a ➔ x, a EE, * X E E •

(It is also assumed that P contains at least one rule for each letter of

E.) The language of G consists of all words which can be derived from w

using rules of Pin the parallel way. (The meaning of this should be clear

enough. The formal definition in terms of the yield-relation is left to

the reader.)

As an example, consider the 0L system

69

({a,b},a,{a-+b,b-+ab}).

The first few words in the generated language are

a,b,ab,bab,abbab,bababbab,abbabbababbab.

Since the system is deterministic (there is only one production for each

letter), its language is generated as a sequence in a unique way. (Deter

ministic systems are denoted by the letter D.) The mathematically minded

reader will also notice that the lengths of the words in this sequence

form the famous Fibonacci sequence. In fact, our OL system provides a very

simple way to generate the Fibonacci sequence, when compared to other pos

sible devices in automata and formal language theory. Our system is also

propagating (abbreviated P): there are no erasing productions, where a

letter goes to the empty word A.

In L systems with interactions, abbreviated IL systems, the produc

tions have the form (y,a,z) ➔ x. Such a production can be applied to re

write the letter a in the context yaz as x. If in all productions the length

of y (resp. z) equals k (resp. 1), we speak of a system with <k,l> inter

actions. (From the biological point of view, this means that an individual

cell may communicate with k of its left and 1 of its right neighbours.)

Near the ends of the string, the missing neighbours are provided by a

special letter g. For instance, the string aaa may be rewritten as bbaba

by the (1,1) productions (g,a,a)-+ bb, (a,a,a) ➔ ab, (a,a,g)-+ a.

An L system with tables (abbreviated T) has several sets of rewriting

rules instead of just one set. At one step of the rewriting process, rules

belonging to the same set have to be applied. For an L system of any type,

systems of the same type and with tables may be considered. The biological

motivation for introducing tables is that one may want different rules to

take care of different environmental conditions (heat, light, etc.) or of

different stages of development.

When defining the language generated by an L system, we have so far

considered only the exhaustive approach: all words derivable from the axiom

by the rules in a parallel way belong to the language. The families of lan

guages obtained in this fashion (for instance, the family of OL languages

which we denote simply by OL) have very weak closure properties. In addi

tion to the exhaustive approach, various selective approaches are possible.

70

In such a selective approach, some "filtering mechanism" is applied like

the mechanism of taking the intersection with the set of words over some

terminal alphabet 6. (This mechanism is always applied in ordinary phrase

structure grammars.) Thus, an 0L system G'1 = (E, P, w) is extended to a con

struct G2 = (E,P,w,6), referred to as an E0L system (E for "extended").

* The language of G2 equals the language of G1 intersected with 6 . Similarly,

we may speak of ETOL systems and languages. We may also apply a homomorphism

(resp. a letter-to-letter homomorphism also called a coding) to L(G1), ob

taining an H0L (resp. a COL) language. According to the well-known

Ehrenfeucht-Rozenberg Theorem, all of these mechanisms coincide as far as

the generative capacity is concerned: E0L = H0L = COL and ET0L = HT0L =
= CTOL. (The first equations are proved in the next chapter.) This result

is very representative for L systems because nothing similar can be ob

tained in the sequential case. For other selective approaches in the def

inition of L languages, we refer to [RS2]. A particularly interesting re

sult is that the "adult" language consisting of words deriving themselves

and themselves only) are exactly the same as context-free languages.

We repeat the main items from the dictionary of L systems which will

be used frequently in the sequel:

0 - context free,

T - with tables,

P - propagating,

D - deterministic (in connection with tables, each table is deterministic),

I - with interactions,

E - extensions (intersection with 6*),

H - homomorphic images,

C - codings (i.e., letter-to-letter homomorphic images).

Combinations are possible. Thus, we speak of EPDT0L systems and languages

(whose family is denoted simply by EPDT0L).

2. L PROOFS

Because of the parallel mode in rewriting, ordinary techniques used in lan

guage theory are not as such applicable for L systems. Consider, for in

stance, the "pumping lemma" for context-free languages. The proof is based

71

on the fact that in big enough derivation trees paths with repetitions must

occur. This enables us to pump because the other parts of the tree do not

develop further but keep waiting for us. The last statement does not hold

if rewriting happens in a parallel way and, thus, tbe argument is not ap

plicable for L systems.

A whole bunch of new techniques have been invented for proofs dealing

with L systems. As a typical example, we gi.ve in this section a proof for

the Ehrenfeucht-Rozenberg Theorem E0L = H0L =COL.Our exposition runs

along the lines of [RS2].

First we will prove an auxiliary result: A language K is an E0L lan

guage if and only if there exists an EP0L system G such that K - {A}= L(G).

If there exists an EP0L system G such that K - {A}= L(G), then clear

ly K is an E0L language.

The more difficult part of the proof is to show that if K is an E0L

language then there exists an EP0L system G such that K - {A}= L(G). Let

K = L(H) for an E0L system H = <E,P,S,8> and let us assume that L(H) is

infinite and P contains erasing productions (otherwise the result holds

trivially). We assume that SEE - 8. We also assume that 8 s E. (This can

be clearly done without loss of generality.) The idea underlying our proof

can be explained rather simply. We want to construct an EP0L system G which

would simulate derivations in Hin such a way that in corresponding deri

vation trees (in G) the occurrences of symbols which do not contribute any

thing to the final product (word) of a tree will not be introduced at all.

Let us assume.that the following tree Tis a derivation tree (for a

word babb) in H:

C

A

B

s

A

a A A

a

a

b

B

b a

a

72

In

we will

simulating this tree in G we want to avoid the situation in which

be forced to apply an erasing production and so we want to delete

every subtree which does not "contribute" to the final result babb. Hence

we want to delete subtrees with double circled roots.

we would like then to be able to produce in Ga derivation tree of

this form

S'

B' C'

a' B"

a" a"' B"'

a•V b' b" av

b"' av• b'v bv

where S', B'-B"', C1 ,a 1 , ••• ,av•,b 1 , ••• ,bv are some "representations" of

symbols S,B,C,a,b.

In other words we are "killing" non-productive occurrences as early

(going top-down) as possible. But, in general, there is no relation whatso

ever between the level on which we delete (in G) a subtree at its root

and the level (in H) on which this subtree really vanishes. Thus we have

to carry along some information which would allow us to say (in G) at a

certain moment: the considered subtree vanishes (in H). Fortunately for

this purpose we can carry finite information only: it is enough to remember

73

the minimal subalphabet Min(x) of a word x derived so far in the considered

subtree rather than the word itself. We will carry this information as the

second component in two-component letters of the form [cr,Z] where cr EE

and Z ,S L

Thus in our particular example we will have the following tree in G.

[S,<j>]

[B,{A}] [C,<j>]

[a, {c} J [B, {A,C}]

[a,{A}]
[B,<j>]

[a,{B}]
[b,<j> J [b, <j> J [a,<j> J

[b, <j>]
[a, <j> J [b, <j>] [b,<j>]

Now inspecting words on all levels of this tree we notice that only

the last word

[b,<j>][a,<j>][b,<j>][b,<j>]

should be transformed to the terminal word (babb) because only on this

level all subtrees that we have decided to delete (in G) really vanished

(in H).

How to perform such a transformation within the system G itself?

To this aim we introduce a rather simple trick called "the synchroni

zation".

For each letter of the form [cr,<j>] with cr in~ we introduce a produc

tion [cr,¢] + cr and a production cr + F where Fis a distinguished nonter

minal symbol in G for which the only production in G is F + F. Assuming

that no other productions have terminal symbols on their right hand sides,

this trick does the job. To see this observe that

74

[b,¢][a,¢][b,¢][b,¢] • babb • F4 • F4 •
G G G G

but if we attempt to use these terminating productions too early then we

fail to obtain a terminal word.

Now the reader should easily understand the following construction.

Let G <V,R,[S,¢], ~> be the EOL system defined by

1. V = v1U{F}U~, where v1 = {[cr,Z]: cr E i:: and z s E}, and Fis a new

symbol.

2. R consists of the following productions:

2.1. If A ➔ B1 ••• Bk is in P with k ~ 2, B1 , ••. ,Bk E 1: then, for every

Z S E,

< i s k and,
p

for 2 s j s p-1, z.
l.j

providing that Z'

z.
l.1

z.
l. p p p
E SucH (Z), where

SucH(Z) ={USE: there exist x,y in i::* with Min(x) Z,

Min(y) = U where x • y}.
H

2.2. If A ➔ Bis in P with Bini::, th,~n, for every Zs i::, [A,Z] ➔ [B,Z']

is in R providing that Z' E SucH(Z).

2.3. [cr,¢] ➔ cr is in R for all cr in~-

2.4. F ➔ Fis in R, and so is cr ➔ F for all cr in~-

The reader should be able to convince himself that L(G)

and this ends the proof.

L(H) - {;\},

Now we present a proof for the Ehrenfeucht-Rozenberg Theorem. We also

make the definitional convention that whenever a language L belongs to some

of the families considered, then also LU {A} belongs to the same family,

and vice versa. This convention is tacitly applied also many times in the

later chapters, i.e., we do not care if some EIPecific construction causes

us to loose or gain the empty word.

By definition, it follows that COLS HOL. After having read this

chapter so far the reader should be able to produce easily the proof of

75

the containment HOL s EOL. If one considers only non-erasing homomorphisms

then the synchronization trick suffices on its own. However if one considers

an erasing homomorphism then this trick by itself does not work. But then

one can construct an equivalent EOL system in which the symbols which are

to be erased by the considered homomorphism will not be introduced at all.

Technically it can be done in exactly the same way as avoiding (occurren

ces of) symbols which are to be erased in the given system.

Thus we have to prove only that EOL s COL. By our auxiliary result,

it suffices to prove that EPOL s COL.

If A is an ultimately periodic set of non-negative integers then

thres(A) denotes the smallest integer j for which there exists a positive

integer q such that, for all i ~ j, i is in A if and only if (i+q) is in A.

The smallest positive integer q such that, for all i ~ thres(A), whenever

i is in A also i+q is in A, is denoted by per(A).

If G is an EOL system with a terminal alphabet~ and a is a letter in

the alphabet of G, then the spectrum of a in G, denoted as Spec(cr,G), is

defined by Spec(cr,G) = {n ~ 0: a~ w for some win~*}.
G

It is easy to see that all spectra of letters in an EOL system are

ultimately periodic.

Now we need some further terminology and notation.

Let G = <E,P,S,~> be an EOL system and let a EE. We say that cr is
l vital, if for every k > 0 there exists an l > k such that a.,. w for some

* w E ~. (We will use AG to denote the set of all vital symbols from E).

Once we have noticed that each symbol in an EPOL system G contributes

terminal subwords to terminal words in Gin an ultimately periodic fashion

we are trying to decompose G into a (finite) number of component systems

in each of which one can consider only terminal contributions at the same

moments of time.

Let G = <E,P,S,~> be an EPOL system. We define the uniform period of

G, denoted as mG, to be the smallest positive integer such that

(i) for all k ~ mG, if a is in E - AG and a¾ w, then w 4 ~*,

(ii) for all a in AG, mG > thres(Spec(G,a)) and per(Spec(G,a)) divides mG.

Now our starting point is to consider all words that can be derived from

Sin mG steps. (We will loose in this way all terminal words that can be

derived in less than mG steps from G but this is a finite set and, as we

will see, easy to handle.)

76

Then we will divide the words in this set into (not necessarily dis

joint) subsets in each of which we can view all derivations going "accord

ing to the same clock" or, in more mathematical terms, conforming to the

same (ultimately periodic) spectrum.

Here is thus our basic construction.

+ mG
CONSTRUCTION. Let O ~ k < mG and let Ax(G,k) = {w E AG: S;t wand, for all

a in Min(w), mG + k is in Spec(G,a)}. If Ax(G,k) #~,then, for all win

Ax(G,k) define a OL system G(k,w) = <E ,R ,w> as follows:
k,w k,w

(i) E {a € AG: mG + k is in Spec(G,a) and, for some l;;:: 0, a is in
k,w

~ Min(y) for some y such that w y}, . G

(ii) a+ a is in 1\ if and only if a
mG

E and a E +
ea with a E Ek • ,w k,w ,w

Hence we have the following situation. If w E Ax(G,k) then the derivation

in G(k,w) goes as follows:

1 step in G(k,w) 1 step in G(k,w)

mG steps in G mG steps in G

Now using the fact that all symbols appearing in words in L(G(k,w)) con

tain mG +kin their spectra we can squeeze the language from G(k,w) in the

following way.

Define M(G(k,w)) by

M(G(k,w)) = {x E 6*: there exists yin L(G(k,w)) such that

:~! x}. y G

We shall now show that the union of the languages M(G(k,w)) over all

k < mG and win Ax(G,k) is identical (modulo a finite set) to L(G).

CLAIM 1. L(G) + 1 · U 11 {w E 6: St w for some 1 < 2mG} U. <m UwEAx(G,k)M(G(k,w)).
G

Proof. Obviously the right side is included in the left side. Now let us

assume that xis in L(G).

(a) If x can be derived in less than 2mG sr.eps, then xis in the first

set in union.

(b) If xis derived in at least 2mG steps, then let

D = (S,x1 , ... ,x~,···•xp = x) be a derivation in G where p 1 •m + k
p G p

77

for some 1 ~ 2 and 0
p

$ k < m •
p G

For all 1, 1 $ 1 < 1
p and a in Min(xl•m), we have

t - G
(i) a is vital, since at x for some word~ in A+, where

t = (1 •m +k) - l•m ~ m.
p G p G G

(ii) m + k is in Spec(G,a), since (1 -l)m + k is in Spec(G,a) and
G p p G p

Spec(G,a) is an ultimately periodic set with period mG and threshold

smaller than mG.

Therefore xis in M(G(k ,x)) and hence xis in our union of languages on
p mG

the right side.

Therefore Claim 1 holds.

Now the reader should note that we have already proven a quite signi

ficant result: each EPOL language is the result of a finite substitution

on a OL language!

However we want to replace the finite substitution mapping by a coding.

To this aim we shall prove now that each component language in the "union

formula for L(G)" as given in the statement of Claim 1 is a finite union

of codings of OL languages.

CLAIM 2. Assume that Ax(G,k) *~and let w be in Ax(G,k). Then there exist
f

OL systems H1, ••• ,Hf and a coding h such that M(G(k,w)) = Ui=l h(L(Hi)).

Proof. Let w = b 1 ..• b where b. is in AG for 1 $ i $ t. For all a in rk
+ t ~+k 1. ,w

let U(a,k) = {x €A: a ==G~ x} = {a k 1 ,a k 2 , .•• ,a k U(k)}, say, a, , a, , a, , a,
and 'fk = {[a,b], [a,b]: a € rk and b E A}. ,w ,w

Let W(w) = {[bl,cll][bl,c12] .•• [bl,clr1][b2,c21J •.• [b2,c2r2] •..

[bt,ct1J ••• [bt,ct]: c. 1 .•• c. E U(b.,k) for 1 $ j $ t}. _ rt J Jrj J __
Let ¾,w = {[a,b] + A: a€ rk,w' b € A} U{[a,b] + [c1 ,d11 J[c 1 ,d12 J ..•

[cl,dlvl], .• [cs,ds1J ••• [cs,dsvs]: b € A, a+ c 1 ... cs is in ¾,wand

d. 1 ••• d. € U(c.,k) for 1 $ j $ s}.
J JVj J -

Let, for every z in W(w), G(k,w,z) be the OL system <rk ,R ,z> and ,w ·k,w
let h be a coding from 'fk into A such that h([a,b]) = h([a,b]) = b.

,w
We leave to the reader the obvious, but tedious proof of the fact

that

M(G(k,w)) u h(L(G(k,w,z))).
ZEW(w)

78

Thus Claim 2 holds.

Now we state two obvious results.

(I) If K is a finite language, then there exist a OL system G and a coding

h such that K = h(L(G)).

(II) If H1, ••• ,Hf are OL systems, h1 , ••• ,hf are codings and
f

K = Ui=l hi(L(Hi)), then there exist a OL system G and a coding h such

that K = h(L(G)).

Thus, we can collect together all the component languages of G by means of

one OL system and one coding. This ends the proof of the equations

EOL =COL= HOL.

3. L FAMILIES

It is apparent on the basis of the notions ~onsidered in Chapter 1 that it

is possible and natural within L systems theory to define quite a number

of different language families. we mention [NRSS] as a typical paper along

these lines. It is also clear that the pure families, i.e., families ob~

tained by the exhaustive definition are mathematically somewhat awkward

because of their weak closure properties. Undoubtedly one can say that

EOL and ETOL are the basic and most thoroughly investigated L families.

Because of a number of reasons (for instance, cf. [Sa2]), they are also

very natural from the formal language theory point of view.

In this chapter we consider some recently introduced L families. Con

text-free languages of finite index (also referred to as derivation-bounded,

quasirational, semilinear and superlinear languages) are quite widely

studied, cf. [Sal]. The notion of finite index has been extended to ETOL

systems in the following way. Let us call a letter a in an ETOL system G

active provided a derives according to G some word a* a. Let A(G) be the

set of all active letters of G and let k be a positive integer. We say

that G is of index k iff every word x in L(G) has a derivation in which

every word has at most k occurrences of active letters, G is of finite

index iff it is of index k for some k. An ETOL language is of index k

(resp. of finite index) iff it is generated by an ETOL system of index k

(resp. of finite index). The corresponding language families are denoted

by ETOLFIN(k) and ETOLFIN" The notations EOLFIN' EDTOLFIN(k)' etc., are

79

used in the same way.

It is easy to see that, for a given ETOL (resp. EDTOL) system, one

can construct an equivalent system G where A(G) equals the set of non

terminals of G. (Systems of the latter type are said to be in active normal

form.) Also it is clear that many constructions, such as the well-known

construction of replacing an ETOL system by an equivalent EPTOL system,

preserve the index. Also the following transition from nondeterministic

to deterministic systems can be made.

THEO.REM 3.1. For any given ETOL system of index k, one can find an equiv

alent EPDTOL system of index kin active normal form.

The proof of Theorem 3.1 is carried out by replacing each nonterminal A

of the original system with k "descendants" A1, •• ·•¾· Because of the as

sumption concerning the index, the tables for the descendants can be chosen

deterministic. The only nondeterminism required is in picking up the right

descendants but this can be affected by introducing different tables.

(Note that the same construction does not work for EOL and EDOL systems.)

As an immediate corollary we get the following result.

THEO.REM 3.2. ETOLFIN(k) = EPDTOLFIN(k) and ETOLFIN EPDTOLFIN"

Once can also consider the subclass of ETOL systems of finite index con

sisting of systems in which every derivation leading to a terminal word

satisfies the finite index restriction. Formally, an ETOL system G is of

uncontrolled index k iff whenever xis a word belonging to some derivation

of a wordy in L(G), then x contains at most k occurrences of active let

ters. The notion of an uncontrolled finite index, as well as the notations

ETOLUFIN(k)' ETOLUFIN' etc., are defined similarly as before. Note the

analogy between ETOL systems of finite index and uncontrolled finite index

on one hand, and context-free grammars of finite index and ultralinear

grammars on the other hand, cf. [Sal]. It is well-known that there are

context-free languages of finite index which are not ultralinear, for in

stance, the language ({a°bnln~O}c)*. However, in case of ETOL systems the

situation is quite the opposite, and one can obtain the following rather

surprising result.

80

THEOREM 3.3. For any given ET0L system of index k, one can find an equiv

alent EPDT0L system of uncontrolled index k (and in active normal form).

Proof. By Theorem 3.1 we may assume that the given ET0L system G is, in

fact, an EPDT0L system and in active normal form. Let G contain m non

terminals. We construct an equivalent EPDT0L system Hof uncontrolled in

dex k as follows. The nonterminals of Hare of form A(i1 , ••• ,im), where A

is a nonterminal of G, 0 s ij S k, and i 1+ ••• +im S k. The vector (i1, ••• ,im)

keeps track of the numbers of occurrences of nonterminals in a derivation

according to G, and whenever there is an overflow, a garbage symbol is in

troduced. Thus, the initial symbol of His S(l,0, ••• ,0), where Sis the

initial symbol of G. A production A·+ a 1A1a2 ••• atAtat+l (A's are nonter

minals) in a table T of G is changed into the set of productions (one for

each vector)

where (i1 , •.• ,im)T is them-dimensional Parikh vector of nonterminals ob

tained from the vector (i1 , ••• ,im) by the use of table T. (Note that

(i1, ••• ,im)T is unique because Tis deterministic.) If the sum of components

in (i1 , •.• ,im)T is greater thank, then instead of the production indicated

we let A(i1 , ••• ,im) go into a garbage symbol.

Combining Theorems 3.2 and 3.3, we get the equations

ETOLFIN(k) = ETOLUFIN(k) = EPDTOLFIN(k) = EPDTOLUFIN(k)'

ET0LFIN = ET0LUFIN = EPDT0LFIN = EPDTOLUFIN"

The above results are from [RV1], where the study of the family ET0LFIN

was initiated. It turns out that under the finite index restriction some

hierarchies of language families collapse into one family, namely, ET0LFIN"

In particular,

free programmed

tion of [Sal]),

family contains

if the finite index restriction is introduced for context

grammars (i.e., for the families P and PA in the nota-
ac ac

the resulting family equals ET0LFIN" That the resulting

ET0LFIN is obvious. The reverse inclusion is shown by con-

structing an ET0L system Hof index k for a language generated by a con

text-free programmed grammar G of index k. The construction is possible

81

since, because of the finite index restriction, we can carry complete in

formation about the nonterminals occurring (even the number of occurrences

and their order), in a derivation step according to G, attached to non

terminals of H. There are only finitely many different derivation steps

(i.e., where not both the rule and the entire sequence of nonterminals are

the same), and each of them is simulated by one table of H. The construction

resembles the one in the proof of Theorem 3.1 but is a little more compli

cated because we have to take care of both the success and failure fields

of the original rule in G. The formal details can be found in [RV2].

It can now be inferred that if l is any family lying between ETOL and

the family of context-free programmed languages, then LFIN = ETOLFIN"

(Examples of such families Lare given in [Pe].) The only thing one has

to show in each particular case is that the simulation by context-free

programmed grammars of the generative devices yielding the family l pre

serves the finiteness of the index. This is straightforward in most cases.

One case is considerd in detail in [Rl]. Thus one can say that a number

of quite different approaches give rise to the family ETOLFIN"

However, ETOLFIN contains properly EOLFIN" For instance, the language

{an.man I } b m ~ n ~ 1 is in ETOLFIN but is not even EOL. The following re-

sults are established in [RV1].

THEOREM 3.4. The family ETOLFIN(l) equals the family of linear languages.

Moreover,

C C C

ETOLFIN(l) f ETOLFIN(2) f•·•f ETOLFIN"

ETOLFIN is a substitution closed full AFL. There is an algorithm for de

ciding whether an arbitrary given ETOL system G is of uncontrolled finite

index but no algorithm for deciding whether G is of finite index.
suLts concerning L families. A characterization of the family of ETOL

languages, as well as its subfamilies EOL, EDTOL, EDOL, in terms of con

text-free programmed grammars of restricted types is given in [RV2]. It

is also shown in the quoted paper that ETOL systems added with an "exactly

one occurrence checking" mechanism (i.e., certain tables p can be applied

only to strings having exactly one occurrence of a specific letter 1),l
yield the full generative capacity of (A-free) context-free programmed

82

grammars. Thus, ETOL systems with an additional mechanism yield context

free programmed languages. One can in a sense reverse this way of thinking

and study context-free programmed grammars with an additional mechanism

suggested by ETOL systems. This is done in [RS3] and leads to a variation

of programmed grammars, where control is imposed over sets of productions

("tables") rather than over single productions. Such programmed grammars

generate exactly the family of context-sensitive languages, the result

being true even if one considers. control of one of the two very simple

types which correspond to programmed grammars with empty failure fields

and those with unconditional transfer.

Some new definitional mechanisms ("squeezing" mechanisms) are con

sidered in [RS4]. They can be applied to L systems of the pure type, such

as OL, DOL, PDOL, TOL, DTOL systems. In the production-universal (resp.

production-existential) definition of the language, only those words are

accepted which possess a derivation such that at the last step every pro

duction (resp. at least one production) applied belongs to a specified set

of "good" productions. Both of these mechanisms are special cases of the

more general production- subset definition: only those words are accepted

which possess a derivation such that at the last step the set of produc~

tions applied equals some set in a specified finite collection of "good"

sets. Letter-universal and letter-existential mechanisms are defined simi

larly by specifying the set of "good" letters whose presence is requested

in the last word. (Thus, the letter-universal mechanism coincides with the

E-mechanism.) From.a biological point of view, one is led naturally to

these definitions if one wants to consider only certain stages in the de

velopment. From a generative capacity point of view, it turns out that if

the underlying L structure is strong enough (such as a TOL structure) then

all of these definitional mechanisms are of equal power, whereas uncompara

bility and strict inclusion results are obtained for weaker underlying L

structures.

We mention briefly two other squeezing mechanisms recently introduced:

time delay and fragmentation introduced in [W] and [RRS], respectively.

With OL as the underlying L structure, we get using these two mechanisms

the families VOL and JOL. In a VOL system letters carry natural numbers

as delay indicators. In one derivation step, each delay indicator is re

duced by 1, and new development can take place after the indicator has

become O. The language of the system is obtained by stripping off the

delay indicators. Thus the VOL system with the axiom a0 and production

a0 + a0a 1 yields at first the sequence

83

Hence, the language of the system equals {aqlq Fibonacci}. In a J0L system,

right sides of the productions may contain occurrences of a special letter

q which induces a cut in the resulting word. The derivation may then con

tinue from one of the parts thus obtained. For instance, using the produc

tions a+ aqa and b + ab, we get from the word bab in one derivation step

the words aba and aab. These two mechanisms can of course also be used in

connection with underlying L structures other than 0L. (A feature common

to both mechanisms is the method by which the abbreviations V and J were

chosen.)

It is well known that the celebra.ted LBA-problem can also be expressed

in terms of L systems. For various ways of doing this, the reader is refer

red to [Vi2]. In most cases, one has to compare the generative capacity of

some nondeterministic and deterministic L systems with interactions. The

most interesting result along these lines is in [Vi2], where comparison.

is made between two deterministic L systems (although nondeterminism comes

into the picture in form of table syst,;ims which are always in a sense non

deterministic). More specifically, it .is shown in [Vi2] (which continues

the work begun in [Vil]) that the family of context-sensitive languages

equals EPlL (the proof of this result :Ls based on the left context-sensi

tive normal form) and, furthermore, using the previous result, that the

family of context-sensitive languages equals also EPDT21L (where T2 refers

to table systems with only two tables). In [Vil], it is shown that the

family of deterministic context-sensitive languages equals EPD2L. Therefore,

the LBA problem amounts to solving the problem of whether or not a trade

off is possible between one-sided context with two tables and two-sided

context with one table for A-free deterministic L systems using nontermi

nals.

4. L GENERALIZATIONS

A number of attempts have been made towards a uniform framework for L

84

systems. Such a framework usually presents also a generalization of the

individual systems considered. The basic idea underlying L systems is that

of iterated substitution. The corresponding formal model is a K-iteration

grammar which has turned out to be a very useful general framework for

discussing L systems.

Let K be a family of languages which is closed under alphabetical

variance and contains a language containing a nonempty word. By a K-sub

stitution over an alphabet Ewe. mean a substitution cr defined on E such

that, for each a€ E, cr(a) is a language over E belonging to K. A K-itera-

tion grammar is a quadruple G (E,P,S,~), where E and~ are alphabets,

~ s E, s EE - ~, and P = {cr1 , ••• ,crn} is a finite set of K-substitutions
k * over E. We write x,. y, for x and yin E, iff there are cr, , ••• ,a. in P

1 1 1 k
such that

y E cr. • .• cr. (x) •
1 k 1 1

The language generated by G is defined by

L(G)
k

{w €~*I s .. x, for some k}.

Languages of this form are called hyper-algebraic over K, and the family

consisting of them the hyper-algebraic extension of K, in symbols, H(K).

Form~ 1, Hm(K) denotes the family of languages generated by K-iteration

grammars such that the cardinality of P does not exceed m.

Following [As1], we call a family of languages Ka prequasoid iff K

is closed under finite substitution and intersection with regular languages.

A quasoid is a pre-quasoid containing at least one infinite language. It

is easy to see (for details, cf. [AS2]) that every pre-quasoid (resp.

quasoid) contains all finite (resp. regular) languages and that the family

of finite languages is the only pre-quasoid which is not a quasoid.

By definition, a pre-quasoid K is a hyper-AFL iff H(K) = K, i.e., K

is hyper-algebraically closed. (It is shown in [As2] that this definition

is equivalent to the definition given in [RS1]. Thus, ETOL is the smallest

hyper-AFL). The following two theorems are from [As2].

THEOREM 4.1. Assume that K contains a language {a}, where a is a letter.

Then H(K) = H (K)
m

85

Proof. Since K is closed under alphabetical variance, it contains all lan

guages consisting of a word of length 1. Clearly, it suffices to prove the

inclusion Hm(K) £ H2 (K), for an arbitrary m ~ 2. (This implies H(K) £ H2 (K),

and the reverse inclusions are obvious.) Thus, consi_der a K-iteration gram

mar G with m ~ 3 substitutions a 1 , ••• ,am. We simulate G by a K-iteration

· grammar H with two substitutions Tl and T2 , defined as follows. To get the

alphabet of H, we add to the alphabet of Ga garbage symbol F and "descen

dants" a0 ,a1, ••• am, for each letter a in the alphabet I: of G. The terminal

alphabet of H equals that of G, and the initial letter of His h0 (s), where

Sis the initial letter of G and his the homomorphism defined on I: which

sends every letter a to the descendant a 0 (i.e., h0 (s) = s 0). The K-substi

tutions T1 and T2 are defined by

{a},

where a€ I:, 0 sis m-1, 1 s j s m, and Tl and T2 assume the value {F}

for all other letters. D

As a corollary of Theorem 4.1 we get the known result that every ETOL lan

guage is g.enerated by an ETOL system with two tables. The proof of Theorem

4.1 uses the idea of "cyclic tables" familiar from ETOL systems.

THEOREM 4.2. For every pre-quasoid K, the family H(K) is a hyper-AFL. (More

over, H (K) ··contains ETOL and is the smallest hyper-AFL containing K.)

The essential point in Theorem 4.2 is that H(K) is hyper-algebraically

closed, i.e., H(H(K)) = H(K). This is an extension of the result of

Christensen, [RS1], that ETOL is hyper-algebraically closed.

THEOREM 4.3. There exists an infinite chain Ki of hyper AFL's strictly in

between the families of contex-free and context-sensitive languages:

We outline the proof, the details of which can be found in [AL]. We con

sider ETOL systems with a control language on the use of tables. The family

of languages generated by ETOL systems with control languages belonging to

86

the family K is denoted by (K)ET0L. Define now

ET0L, (i>0) •

One can show that each (Ki_1)ET0L is hyper-algebraically closed, whence

it follows that each Ki is a hyper-AFL. Clearly, for all i, Ki~ Ki+l· The

strictness of the inclusion is seen by considering functions

and languages

f. (x)

f. (x)
l.

{a 1 J x <! O}

(i>0)

By induction on i, it is immedaitely seen that Li E Ki. That Li k Ki-l

(i>0) follows because the growth rate of fi (x) exceeds the rate possible

for languages in Ki_ 1 • This again is seen inductively by noting first that

the growth rate in ET0L is at most exponential. In the inductive step, it

is useful to note that we may restrict attention to A-free ET0L systems.

To complete the proof, one shows by a complexity argument that Ki is

properly contained in cs. D

Especially interesting is the limit family Kw= UiKi. Kw is a hyper-AFL

which is not principal. Furthermore, it is the smallest hyper-AFL satis

fying the "fixed-point" condition (K)ET0L = K.

K-iteration grammars with a control language (in the same sense as

for ET0L systems) have been investigated in [As2]. Given Kand the family

r of control languages, we denote by H(K,r) the family of languages gener

ated by K-iteration grammars with a control language in r. Under certain

quite general assumptions concerning r, results analogous to Theorems 4.1

and 4.2 are valid for the family H(K,r).

We mention, finally, the work begun in [R2] concerning selective sub

stitution grammars. This is a general model which yields K-iteration gram

mars (and, hence, various L systems) as well as the main types of grammars

met in sequential rewriting as special cases.

87

5. L PARSING

We consider parsing of EOL and ETOL languages. It was shown in [vL2] that

the membership problem for ETOL is NP-complete. In fact, ETOL systems con

stitute perhaps the simplest grammatical device for generating the language

SAT3 crucial for NP-completeness. The following ETOL system G generates

SAT3 {consisting of satisfiable formulas of propositional calculus in 3-

conjunctive normal form with unary.notation for variables.) The alphabet

of G consists of the letters S {initial), v {disjunction), 7 {negation),

t ("true"), f {"false"), { ,

We have the following table

{parentheses), F {garbage), 1 {variables).

[S-+ {aVBVy)S, S-+ {avBvy)]

where {a,B,y) ranges over all combinations of {t,7t,f,7f) which do not

consist entirely of7t's and f's, as well as the table

[S-+ F, t-+ 1t, f-+ 1f, t-+ 1]

and the table obtained from this by replacing t-+ 1 with f-+ 1. {The letters

not listed in the tables go into themselves.)

The same system shows also that the membership problem for TOL lan

guages is NP-complete. As regards DTOL systems, the problem is still open,

although some results {in [Ha]) make it very likely that membership for

DTOL is polynomial time.

The fastest known algorithm for recognizing EOL languages is the one

given in [vL3]. The algorithm works in time O{n3•81), and is based on the

construction of appropriate data-structures such that Valiant's fast algo

rithm for computing the transitive closure of matrices over non-associa

tive domains can be applied.

Questions concerning parsing are closely related to the problem of

finding suitable machine models for L systems. Combining the idea of a

checking stack automaton and his earlier pre-set pushdown automaton, van

Leeuwen, [vL4], has defined the notion of an augmented checking stack

aotumaton and shown that the family of accepted languages equals ETOL. As

a consequence of this result, it follows that ordinary checking stack lan

guages are in ETOL.

88

An augmented checking stack automaton uses both a checking stack and

a synchronously operating pushdown tape. The input tape is one-way, there

is a finite control as usual, and the machine is in general nondeterminis

tic. Initially, the machine writes information on top of the checking stack.

(This information cannot be altered later on but can only be used for

"checking".) After that, the pushdown tape becomes operational in the or

dinary way except that there is a double pointer pointing to both pushdown

and checking stack. The checking stack interrupts the computation if the

pointer reaches its top (beyond which it is not allowed to go). Thus, one

step in a computation of the machine begins by noting the current input

symbol, the current state and the symbols pointed at in the storage (i.e.,

the top symbol of the pushdown tape and the contents of the opposite square

on the checking stack), and results in (perhaps in a nondeterministic

fashion) moving the input head O or 1 squares to the right, changing the

internal state, and popping or pushing a symbol on the pushdown, together

with an adjustment of the double pointer. The latter never moves beyond

the area allocated for the checking stack. Clearly, both the pre-set push

down automaton and the ordinary checking stack automaton are degenerate

cases of this model.

6. L GROWI'H

We now turn into the discussion of some recent results, all in the area of

informationless L systems, concerning growth of word length. The theory

of growth functions has been extensively discussed in [HR], [RS1], [RS2],

[LR], and [Hv], the last-mentioned reference being a recently published

survey article on this area. The results discussed below are from [Sol],

[So2], [So3], [Sa3] and [SaSo]. We begin with the discussion of some un

decidability results. In fact,·one can claim that some of the problems

listed below, for instance Problem (4), are the most "innocent looking"

problems concerning L systems which have been shown to be undecidable. Of

course, there are even more innocent looking problems whose decidability

status is open.

* Consider functions f mapping the set V of all words over a finite

alphabet V = {a1, ••• ,¾} into the set Z of all integers. Such a function

is termed Z-rational (resp. N-rational) iff there is a row vector~, a

89

column vector n, and square matrices M1 , ..• ,~, all of the same dimension

m and with integral (resp. nonnegative integral) entries, such that for

any word x

f(x) = 1rM .••• M. n.
1 1 1 t

(If x equals the empty word A, this matrix representation reduces to

f(A) = 1rn.) An N-rational function is termed DTOL iff all entries inn

equal 1. Finally, a DTOL function is termed PDTOL iff every row in each of

the matrices M1 , .•. ,~ contains at least one element greater than zero.

In the special case of a one-letter alphabet, k = 1, DTOL functions (resp.

PDTOL functions) are referred to as DOL (resp. PDOL) functions. In this

case, the argument is written simply n, instead of a~.

From the L systems point of view, these definitions can be interpreted

as follows. Consider a DTOL system with k tables and m letters in the al

phabet. (Thus, the alphabet V will be the alphabet of the tables, whereas

the dimension of the matrices gives the cardinality of the alphabet of the

system itself.) The matrix Mi is the growth matrix associated with the

table ai, and 1T indicates the distribution of the letters in the axiom. ·

The function value f(a .••. a.) gives the length of the filament resulting
1 1 1 t

by applying the sequence of tables a .••• a. to the axiom. PDTOL functions
1 1 1 t

correspond in the same way to PDTOL systems, and N-rational functions to

HDTOL systems.

N-rational functions over a one-letter alphabet give the length se

quence of an HDOL system. In case of one-letter alphabet, we often speak

of sequences instead of functions. In this chapter, we always mean length

sequences rather than word sequences.

The following theorem which strerightens analogous results in [E] is

our basic tool for establishing undecidability.

THEOREM 6.1. Consider an alphabet V = {a,b} consisting of two letters. The

following problems are undecidable for Z-rational functions f defined on

* V :

(i) Does f assume the value Oat. least once?

(ii) Does f assume the value O infinitely many times?

(iii) Are all values off nonnegative?

(iv) Does there exist at such that f(x) is nonnegative for all words x

with length greater than t?

90

Proof. We show first that if we could decide (i), we would be solving

Hilbert's Tenth Problem. For this purpose we construct, for a given in

teger polynomial P with u variables, a Z-rational function r satisfying

the identity

For i = 1, ••• ,u, let ri be the N~rational function defined by the following

(i+l)-dimensional vectors and matrices:

M. (a)
l.

1T.
l.

11

0

0

(10 ••• 0),

0

• 1
____ 1_1_

0
0 1

It is easy to see that ri satisfies

0 1 0 0
0 1 . 1

M. (b)
l. 0 ·o

----00
0

0 1

The function r can now be constructed from the functions ri by the rational

operations used in the definition of the polynomial P.
* * u-1 Let now Lu be the complement of the (regular) language a (ba) ,

ands the (Z-rational) characteristic function of L. Denote Hadamard
u

product by 9. Then the Z-rational function

r e r + s

assumes the value 0 iff P(n1 , ••• ,nu)

tegers ni.

0 has a solution in nonnegative in-

Because all values of the function s 1 - 1 are nonnegative iff s 1 does

not assume the value 0, we see that also (iii) is undecidable. The undeci-

dability of (ii) and (iv) is seen by an easy modification of the argument

above. D

The next two theorems establish useful interconnections between Z-rational

91

and DTOL functions. The theorems are obtained by the techniques of merging

and dominant terms considered in my article in [LR]. For the statement

of the latter theorem, we need the operator ODD, defined for words of odd

length (over any alphabet) as follows:

For words x over even length, ODD(x) is undefined.

THEOREM 6.2. For any Z-rational function f, there exists a number u0 such

that, for all integers u ~ u0 , the function f 1 (x) = ulg(x)+l + f(x) is a

PDTOL function.

THEOREM 6.3. For any Z-rational function f, there is a number u0 such that,

for any integer u ~ u0 , the function g defined in the following way is a

DTOL function:

g(x)
n+l

u for lg(x) = 2n,

g(x) n+l
u + f(ODD(x)) for lg(x) 2n+l.

We now list some decision problems for DTOL and DOL functions. In the state

ment of the problems, f(x) (resp. fp(x)) is a DTOL (resp. PDTOL) function

over a two-letter alphabet (i.e., the corresponding table system consists

of two tables only). Furthermore, g(n) is a POOL function, xis a word

over V = {a1,a2} and b ranges over {a1,a2}.

(1) (Comparison between POOL and PDTOL growth) Given g and fp, decide

whether g(n) $ fp(x) holds for all n and x with lg(x) = n.

(2) (Monotonicity of DTOL growth) Given f, decide whether f(x) $ f(xb)

holds for all x and b.

(3) (Existence of equal size between POOL and PDTOL growth) Given g and

fp, decide whether there exist an n and x with lg(x) = n such that

g(n) = fp(x).

(4) (Constant level in DTOL growth) Given f satisfying for all x and b

f(x) $ f(xb), decide whether there exist x and b such that f(x) = f(xb).

The remaining problems (5)-(8) are modifications of (1)-(4) respec

tively.

92

(5) (Ultimate comparison between POOL and POTOL growth) Given g and fp,

decide whether there exists au such that g(n) ~ fp(x) holds for all

n ~ u and all x with lg(x) = n.

(6) (Ultimate monotonicity of DTOL growth) Given f, decide whether there

exist au such that f(x) ~ f(xb) holds for all x and b with lg(x) ~ u.

(7) (Equal size between POOL and PDTOL growth infinitely often) Given g

and fp, decide whether g(n) = fp(x) holds for infinitely many pairs

(n,x) with lg(x) = n.

(8) (Constant level in DTOL growth infinitely often) Given f satisfying

for all x and b f(x) ~ f(xb), decide whether f(x) = f(xb) holds for

infinitely many pairs (x,b).

The intuitive meaning from the L systems point of view is indicated in con

nection with each problem. For instance, as regards problem (1), this can

be expanded as follows. We have modeled two developmental processes, one

by a POOL system and the other by a PDTOL system with two tables. We want

to know whether it is possible to use the tables in such a way that, at

some time instant, the filament obtained in the latter process is smaller

than the one obtained in the former process.

THEOREM 6.4. All of the Problems (1)-(8) are undecidable.

Proof. The undecidability of (i) in Theorem 6.1 gives by Theorem 6.2

(resp. Theorem 6.3) the undecidability of (3) (resp. (4)). Similarly, (ii)

is utilized to prove the undecidability of (7) and (8), (iii) to prove

that of (1) and (2), and (iv) to prove that of (5) and (6). D

We consider next problems whose decidability has recently been established.

The decision methods also give a complete characterization of POOL growth

functions within the class of OOL growth functions, of OOL growth functions

within the class of HOOL growth functions, as well as of HOOL growth func

tions within the class of Z-rational functions. Hence, we can always find

out whether or not a given function in one of these classes belongs to

some other class. We get also a complete solution for the OOL synthesis

problem.

The three characterization results referred to above are contained

in the next three theorems. For proofs, we refer to [Sol], [So2], [So3],

or to [SaSo]. Since we are dealing with one-letter alphabet, we prefer to

state the theorems for sequences rn determined by values of functions:

rn = r(n).

93

THEOREM 6.5. A sequence of integers rn is a PDOL sequence iff r 0 > 0 and the

sequence sn = rn+l-rn is N-rational.

THEOREM 6.6. Let rn be a N-rational sequence such that rn * 0, for every n,

and the quotient rn+l/rn remains bounded. Then rn is a DOL sequence.

THEOREM 6.7. Let rn be a sequence of integers satisfying the following two

conditions:

(i)

(ii)

rn ~ 0 for every n,

there are

bers s(j)
n

where a~

numbers m and p such that whenever O ~ j ~ p-1 then the num-

= r have an expression s(j) = P(n)an + E,P. (n)a~,
m+j+np n ii i

0, a> max. la. I, and P ctnd P. are polynomials such that Pis
1 1 . 1

not identically 0. (For different values of j, the numbers a, ai as

well as the polynomials P, Pi may be different.)

Then rn is an N-rational sequence.

That Theorems 6.6 and 6.7 give a necessary and sufficient condition for DOL

ness and N-rationality, respectively, follows because also their converses

hold. Clearly, for every DOL sequence rn (which does not become ultimately

0), the quotient rn+l/rn remains bounded. On the other hand, by Berstel's

Theorem (cf. [E]), every N-rational sequence satisfies conditions (i) and

(ii) of Theorem 6.7.

According to Theorem 6.7, the condition characteristic for N-rationali

ty of a given Z-rational sequence rn is that the poles of its generating

function (if there are any) are of the .form p;, where p > 0 ands is a root

of unity. By considering if necessary decompositions of the given sequence

rn' to test the N-rationality of a sequence, it suffices to be able to test

the validity of the following conditions:

(i) the generating function is a polynomial or has only one pole with min-

imum modulus (and that pole is positive),

(2) rn ~ 0 for every n.

As shown in [So2], these conditions are decidable. It is shown in [Sol] how

to decide the condition for DOL-ness stated in Theorem 6.6. Hence, Theorems

6.5-6.7 imply the following theorem.

94

THEOREM 6.8. It is decidable whether or not a given Z-rational sequence is

N-rational, a DOL sequence, or a PDOL sequence.

As we already pointed out, according to Theorem 6.7 the condition charac

terizing N-rational sequences among Z-rational ones deals with the poles of

minimal modulus of the generating function. Using this criterion and the

fact that (3+4i)/5 is not a root of unity, we see that the following Z-ra

tional sequence (consisting of positive terms) is not N-rational:

r n

Combining this with Theorem 6.5, we can easily construct strictly growing

DOL sequences which are not PDOL sequences. (The existence of such sequences

was an open problem for a long time.) For instance, the sequence sn obtained

from our sequence rn above as follows:

10n + r
n'

is such a DOL sequence. (It is an instance of merging, of which Theorem 6.3

gives a more general result.)

It is well-known that N-rational s,:quences an may consist of differently

growing parts. For instance, a2n may grow linearly and a 2n+l exponentially.

(Since N-rational sequences coincide wi~h HDOL sequences, we see this clear

ly by letting the homomorphism erase some letters.) Obviously, such differ

ently growing parts are not possible in a DOL sequence. Theorem 6.6 shows

that this is, in fact, the only difference between DOL and HOOL sequences.

It is also a consequence of Theorem 6.6 that the quotient an/bn of two DOL

sequences is itself a DOL sequence, provided always bn * 0 and bn di~ides

an. For a more detailed discussion regarding these matters, we refer to three

quoted papers by Soittola or to [SaSo].

Although most of the problems concerning growth in informationless L

systems have been solved, there are still some open problems which probably

are very hard. (Note that there really is no mathematical theory, apart from

some tricky examples and undecidability results, concerning DIL growth.)

Using the terminology of Theorem 6.1, these problems can be stated simply

as follows. Assume that the basic alphabet V consists of one letter only.

95

Are the problems (i), (iii), (iv) decidable? ((ii) is known to be decidable

by a result of Berstel and Mignotte, cf. [LR].) A further discussion con

cerning these problems can be found irt [LR]. We mention here only that an

equivalent formulation for (i) (resp. (iii)) is the following: Given a D0L

sequence rn, decide whether or not there exists an i such that ri = ri+l

(resp. Decide whether or not a given D0L sequence rn is monotonic). It would

be extremely surprising if one of these problems would turn out to be un

decidable.

We mention, finally, that in [Da] the following function dG(n) is in

troduced for DT0L systems G: dG(n) equals the number of distint words deriv

able in exactly n steps according to G. (Thus, for D0L systems G, dG(n) is

identically 1.) The functions dG(n) might have some interconnections with

growth functions although it is not clear whether or not they are even Z

rational.

7. L FORMS

The notion of a grammar form was introduced in [CG] as an attempt to define

families of structurally similar grammars by means of one underlying grammar

called a "grammar form", and an "interpretation" mechanism defining an in

finite family of grammars related to the given grammar form. This notion of

a grammar form and its interpretations has turned out to be a powerful tool

for the study of grammatical properties of both theoretical and practical

significance. Despite the youth of this area of language theory, much prom

ising work has already been done in the field.

The notion of a grammar form can be introduced for L systems as well.

This seems to be well motivated because it will certainly aid to the under

standing of the structure of "L grammars" (as regards problems such as what

types of E0L systems suffice to generate all E0L languages). Furthermore,

from a biological point of view, a family of related L systems can be inter

preted as a "family" or "species" of organisms.

The study of L forms, i.e., grammar forms for L systems has been ini

tiated in [MSW] which contains all the results mentioned in this chapter.

The results concern E0L forms only. However, work concerning other types of

forms, in particular ET0L forms, is in progress.

By definition, an E0L form Fis an E0L system, F = (L,P,S,6). An E0L

system F' = (L',P',S',6') is called an interpretation of F moduloµ,

96

symbolically F'<JF(µ) iff µ is a substitution defined on E such that the

following conditions are satisfied:

(i) µ(A) Si. E' - /).' for each A € E - I).,

(ii) µ(a) Si. /). I for each a € t.,

(iii) µ (ex) n µ(Sl = cf, for any ex * s,
(iv) P' Si. (P) (where µ(P) = u µ (ex) + µ(x)),

ex+x in p

(v) S' € µ (S) •

The family Gr(F) = {F' I F'<JF} is referred to as the grammar family of F,

and the family La(F) = {L(F') I F'<JF} as the language family generated

by F. Two EOL forms F1 and F2 are termed equivalent (resp. strictly equiv

alent) iff La(Fl) = La(F2) (resp. Gr(Fl) = Gr(F2)).

For the readers familiar with the theory of (ordinary) grammar forms,

we would like to point out that our definition of interpretation differs

from the ordinary one with respect to terminals: according to (ii), ter

minals are interpreted by terminal letters rather than terminal words, and

condition (iii) is extended to concern also terminals. In addition of our

definition being more natural mathematically than the ordinary definition,

it has also several advantages from the point of view of L systems which

have been explained in [MSW]. Moreover, the main reason for the exceptional

definition of interpretation of terminals in the ordinary theory of gram

mar forms (the obtained language families become semi-AFL's) is not an

important issue in L systems theory.

For the EOL form

F1 ({s,a},{s + sa,s + a,a + a},s,{a}).

the language family La(F1) equals the family of regular languages, as shown

in [MSW]. (In fact, we obtain only A-free regular languages but, according

to our earlier convention, we consider the equality of languages modulo A.)

For the EOL form

F2 ({s,a},{s + ss,s + s,s + a,a + s},s,{a}),

the language family equals the family of all EOL languages. Note, however,

that if F1 and F2 are viewed as EOL systems, they generate the same lan

guage.

97

Results from the theory of ordinary grammar forms carry over to the

grammar families Gr(F). (For instance, it is decidable whether two E0L

forms generate the same grammar family.) This is quite natural because the

parallelism in derivations is not used at all in the definition of the

family Gr(F). As regards language families La(F), the situation is quite

different. The basic lemma concerning ordinary grammar forms, according

to which L(F) ~ L(F'), provided for every production A ➔ x in F there is

* a derivation A* x according to F', is not valid for E0L forms, the reason

* being that because of the parallelism, the derivations A* x should be of

the same length and they should also not introduce terminal words at the

intermediate steps. The following E0L forms F and F' constitute a counter

example (we list the productions only, the capital letters being nonter

minals and small letters terminals):

F: S ➔ aa, a ➔ a; F': S ➔ b, b ➔ aa, a ➔ a.

The productions of F can be simulated by derivations according to F' (even

by derivations of the same length 2) but La(F) is not contained in La(F')

because the language {aa} is in La(F) - La(F').

For E0L forms, the situation concerning the basic lemma discussed in

the previous paragraph is much more complicated. Several substitutes for

the basic lemma have been established in [MSW].

Several "reduction" or "normal form" results for E0L forms are known,

i.e., results allowing us to replace a given form by an equivalent simpler

one. We mention the following one.

THEOREM 7.1. For every E0L form an equivalent E0L form can be constructed

such that the productions in the latter are of the types

A ➔ a, A ➔ BC, A ➔ B, a ➔ A, A ➔ A,

where A, B, Care nonterminals and a is terminal.

An E0L form is termed complete iff its language family equals the whole

family of E0L languages. Although no exhaustive characterization for com

pleteness of E0L forms is known, we have a number of results which enable

us to decide the matter in most cases. Theorem 7.2 gives some necessary,

98

and Theorem 7.3 sufficient conditions for completeness. Let us call an E0L

system looping (resp. expansive) iff it has a letter a, reachable from the

initial letter, which derives itself in a positive number of steps (resp.

derives a word containing two occurrences· of a).

THEOREM 7.2. Assume that Fis a complete E0L form. Then F viewed as an E0L

system, is looping and expansive. Furthermore, F contains a production

sending a nonterminal to a word over the terminal alphabet, as well as a

production sending a terminal to a word containing one nonterminal.

THEOREM 7.3. Assume that Fis an E0L form such that, for some t ~ 1, the

following derivations are possible according to F (viewed as an E0L system):

S ~ S, S ~ SS, S ~ a, a~ xSy,

for some words x and y and terminal letter a, and that no words strictly

over the terminal alphabet appear in these derivations at the intermediate

steps. Then Fis complete.

The following forms F1-F9 (resp. H1-H6) provide some typical examples of

complete E0L forms (resp. of E0L forms which are not complete).

F4 : S + a, s + s, S + SS, a+ ss

F5 : S + a, S + A, S + S, S + SSS, a+ S

a+A

F7: S + a, S + SSA, S + s, a+ s, A+ A

F8 : s + a, s + s, s + ss, a+ N,

F9 : S + a, S + S, S + SS, a+ N,

H3 : S + a, S + S, a+ S, S + SSS

N + N

N + NN

H4: s + a, a + s, a + ss, a+ a

HS: s + a, a + s, a + a

H6: s + A, A + s, s + ss, A+ a, a+ A.

Note the similarity between F6 and H6 . However, F6 is complete and H6 is

not complete.

99

It is an open problem whether or not there exists an EOL form whose

language family equals the family of context-free languages. However, if

we consider uniform interpretations (i.e., when taking interpretations of

productions, the substitutionµ is uniform on terminals), then the lan

guage family obtained from the form

F: S + SS, S + a, a+ a

equals the family of context-free languages. On the other hand, the lan

guage family La(F) contains non-context-free languages because, for in

stance, the EOL system wi.th the productions

S + SS, S + a, a+ c, c + c

is an interpretation of F. (This system is not a uniform interpretation of

F because a+ c cannot result from a+ a under uniform interpretation.)

Instead of EOL forms, one can also consider so-called pure forms

having just one alphabet (as OL systems have). The distinction between

terminals and nonterminals will be made in interpretations only. Various

interconnections between pure forms and EOL forms can be stated. The problem

of completeness is easier for pure forms. For instance, one can show that

a pure form over a one-letter alphabet {s} is complete iff it contains

the productions S +Sand S + SS.

It is well-known that some L families have very weak, and some others

strong closure properties. Therefore, it is not surprising that, for EOL

forms F, the family La(F) is sometimes an AFL, sometimes an anti-AFL. We

already gave an example of the former possibility, where the language fam

ily was the family of regular languages. For the following form F:

S + a, S + cc, S + AAAA, A+ AA, A+ b, a+ a, b + b, c + c,

the language family La(F) is an anti-AFL.

100

B. L DECIDABILITY

We review in this chapter briefly some recent language-theoretic decidabi

lity results concerning L systems. The problems we have in mind are in a

sense comparative ones: we compare two language families Kand K', where

in most cases one of the families is "sequential" and the other "parallel".

More specifically, we are interested in the following two decision problems

for fixed language families Kand K'.

(1) The equivalence problem between K and K': Given languages L in K and

L' in K', one has to decide whether or not L = L'. (In case K = K',

we speak of the equivalence problem for K.)

(2) The K'-ness problem for K: Given a language Lin K, one has to decide

whether or not Lis in K'. (If K' is the family of regular languages,

we speak of the regularity problem for K, etc.)

Let us call TOL systems with a one-letter alphabet "unary", and denote them

as well as the generated languages by TUL (in accordance with UL systems

and languages). Generalizing the earlier results concerning UL languages,

Latteux has established the following results in [Lal] and [La2].

THEOREM 8.1. The TUL-ness problem is decidable for regular languages, and

so are the regularity and UL-ness problems for TUL languages. Consequent

ly, the equivalence problem between TUL languages and UL languages, as

well as the equivalence problem between TUL languages and regular languages

are decidable.

The following results are established in [Sa4].

THEOREM 8.2. The regularity and context-freeness problems are decidable

for the family DOL and so is the equivalence problem between DOL and con

text-free languages.

The equivalence problem between regular and OL languages, the equivalence

problem between OL and DOL languages, the regularity problem for OL languages,

and the OL-ness problem for regular languages are all open. However, the fol

lowing result is established in [Li].

101

THEOREM 8.3. The DOL-ness problem for context-free languages is decidable.

The proof of Theorem 8.3 proceeds by showing that, for any context-free

DOL language L, one can find a. constant k such that. in any DOL system

generating L the lengths of the axiom and the right sides of all productions

are bounded by k• Tneorem 8.3 follows from this observation by Theorem 8.2.

9. L PROBLEM

What we call "L problem" is easy to guess: The DOL equivalence problem.

Since this problem is perhaps the most simply stated combinatorial problem

whose decidability status is still open, let us repeat here the problem in

a formulation understandable to any mathematician (just in case somebody

not knowing anything about formal languages happens to see this):

L PROBLEM. (Problem of Iterated Morphism). Consider quadruples K =
= (V,x,g,h), where Vis a finite set, xis an element of the free monoid

* * V generated by V, and g and hare endomorphisms of V. Is there an al-

gorithm which decides of a given K whether or not gi(x) = hi(x) holds for

all i?

It is generally believed that L Problem is decidable although some people

have the opposite opinion. The latter is perhaps due to the fact that so

far the Problem has resisted all efforts of finding an algorithm for its

solution. Some partial results are know, cf. [RS2]. The more recent results

are briefly reviewed below.

THEOREM 9.1. The DOL equivalence problem is decidable for polynomially

bounded DOL sequences.

The first detailed proof of Theorem 9.lappears in [Ka], although the theo

rem was announced earlier by Ehrenfeucht and Rozenberg. The proof in [Ka]

is based on a reduction on the degree of the polynomial, leading finally

to linear growth, where results like Theorem 8.2 become available. Although

some notions about how the proof might be carried out are clear to every

body who has worked on the problem, it still takes a lot of careful

102

analysis and effort to complete the proof. Therefore, for anyone trying to

get a feeling on the L problem, we recommend that he works through [Ka]

(or finds a better argument himself). If he eventually thinks that he has

solved the L Problem (the argument in [Ka] cannot.be extended to the general

case), we also hope that he goes through and presents the details carefully.

(No arm waving please.)

We say that a pair (G,H) of DOL systems has a k-bounded balance (k~O)

iff the condition

llg(h(x)) - lg(g(x)) I ~ k

is satisfied for every word x appearing as a prefix in some word in L(G).

(g and hare the homomorphisms defining the systems G and H.) The pair

(G,H) has a bounded balance iff it has a k-bounded balance, for some k.

A family of DOL systems is smooth iff every pair of (sequence) equivalent

systems from the family has a bounded balance. The following result is es

tablished in [CJ and [Va].

THEOREM 9.2. Equivalence problem is decidable for every smooth family of

DOL systems.

Proof. Let G and H be systems from a smooth family K. Fork~ O, we con

struct a finite automaton~ such that Lk = L(~) n L(G) = $ iff the pair

(G,H) has k-bounded balance and G and Hare (sequence) equivalent. (After

reading a prefix x of an input,~ remembers, using its states, which of

the words g(x) and h(x) is longer and by what word, provided the length

difference does not exceed k and provided one of g(x) and h(x) is a prefix

of the other.) Each~ is an EOL language and, hence, its emptiness is

decidable. Because K is smooth, testing the emptiness of L0 ,L1, ••• consti

tutes a partial decision procedure for equivalence. Since a partial deci

sion procedure for nonequivalence is obvious, we obtain the required full

decision procedure by running the partial ones concurrently. D

Denote by K1 the family of DOL systems G such that, for some t, all entries

in the t:th power of the growth matrix of Gare positive. The following

result is established in [C].

103

THEOREM 9.3. The family K1 is smooth. Consequently, equivalence is decidable

for systems in K1•

THEOREM 9.4. D0L equivalence is decidable· for systems over a two-letter

alphabet.

Theorem 9.4 is easily established by a case analysis concerning growth

matrices because the difficult cases are taken care of by Theorem 9.3.

Theorem 9.4 appears also in [Va].

It is well-known that one can decide whether or not two D0L systems

generate the same sequence of Parikh vectors. Instead of Parikh vectors,

one can consider some numerical information telling more about a word than

its Parikh vector. [Ru] is a comprehensive study along these lines. As re

gards D0L systems, it is shown in [Ru] that the equivalence with respect

to many types of combinatorial mappings is decidable. For instance, this

is true for the power sum mappings. Let i ~ 0 be an integer and b a letter.
i

Define a mapping psb for words w by

I (j-1)i,
j

where j ranges over all numbers such that b occurs as the j:th letter in

w. (Thus, for i = 0, we get a component in the Parikh mapping.) For any

fixed i and b, it is decidable whether or not

holds for all n, where wn and w~ are two given D0L word sequences.

10. L FUTURE

So far the yearly growth in the number of papers dealing with L systems

has been exponential with base 2 but it seems that during this year we

cannot keep up with this rate any more (going from 256 to 512). Undoubted

ly, L systems theory constitutes today a central area within formal lan

guage theory, an area in many respects richer than the theory of phrase

structure grammars ever was. I leave it to the biologists to discuss and

104

decide about the importance of L systems for "real biology". overtures

about possibilities for applications in other areas (operating systems,

linguistics) have been heard lately. Also the purely theoretical research

seems to continue vigorously.

Other letters come and go, Lis here to stay!

11. L REFERENCES

[AL] p. ASVELD & J. VAN LEEUWEN, Infinite chains of hyper-AFL, s I Tech

nische Hogeschool Twente, Memorandum nr. 99 (1975).

[ASl] P. ASVELD, Rational, algebraic and hyperalgebraic extensions of

families of languages, Ibid., nr. 90 (1975).

[AS2] P. ASVELD, Controlled iteration grallllllars and full hyper-AFL's, Ibid.,

nr. 114 (1976).

[CJ K. CULIK II: On the decidability of the sequence equivalence problem

for D0L-systems, Theoretical Computer Science, to appear.

[CG] A. CREMERS & s. GINSBURG, Context-free grammar forms, Journal of

Computer and Systems Sciences, 11 (1975) 86-117.

[DA] J. DASSOW, Eine neue Funktion von DT0L-Systemen, EIK, to appear.

[E] S. EILENBERG, Automata, Languages and Machines, Vol. A. Academic

Press 0974).

[Ha] T. HARJU, On the complexity of some L systems, In preparation.

[HR] G. HERMAN & G. ROZENBERG, Developmental Systems and Languages,

North-Holland (1975).

[HV] G. HERMAN & P. VITANYI, Growth functions associated with biological

development, American Mathematical Monthly 83 (1976) 1-15.

[Ka] J. KARHUMAKI, The decidability of the equivalence problem for poly

nomially bounded D0L sequences, Submitted for publication.

[L] A. LINDENMAYER, Mathematical models for cellular interactions in

development, I-II. Journal of Theoretical Biology 18 (1968)

280-315.

105

[Ll] A. LINDENMAYER, Developmental algorithms for multi-cellular organisms:

A survey of L-systems, Ibid. 54 (1975) 3-22.

[Lal] M. LATTEUX, Surles T0L-systemes unaires, Laboratoire de Calcul de

l'Univ. Lille, Publ. nr. 48 (1975).

[La2] M. Latteux, Problemes decidables concernant les T0L-languages un

aires, Discrete Mathematics, to appear.

[Li] M. LINNA, The DOL-ness for context-free languages is decidable,

Submitted for publication.

[LR] A. LINDENMAYER & G. ROZENBERG (eds.), Automata, Languages, Develop-:

ment, At the Crossroads of Biology, Mathematics and Computer

Science. North-Holland (1976).

[MSW] H. MAURER, A. SALOMAA & D. WOOD, EOL forms, Institut fur Angewandte

Informatik und Formale Beschreibungsverfahren, Univ. Karlsruhe

(1976).

[NRSS] M. NIELSEN, G. ROZENBERG, A. SALOMAA & S. SKUYM, Nonterminals, homo

morphisms and codings in different variations of OL systems,

I-II. Acta Informatica 3, 357-364 and 4, 87-106 (1974).

[Pe] M. PENTTONEN, ETOL grammars and N-grammars, Information Processing

Letters 4 (1974) 11-13.

[Rl] G. ROZENBERG, More on ETOL systems versus random context grammars,

UIA, Antwerpen, Publ. 75-15 (1975).

[R2] G. ROZENBERG, Selective substitution grammars, I. Ibid. 76-02 (1976).

[RRS] G. ROZENBERG, K. RUOHONEN & A. SALOMAA, Developmental systems with

fragmentation, International Journal of Computer Mathematics,

to appear.

[RSl] G. ROZENBERG & A. SALOMAA (eds.), L Systems, Springer Lecture Notes

in Computer Science 15 (1974).

[RS2] G. ROZENBERG & A. SALOMAA, The mathematical theory of L systems.

To appear in J. Tau (ed.), Advances in Information Systems

Science, Vol. 6.

[RS3] G. ROZENBERG & A. SALOMAA, Context-free grammars with graph con

trolled tables, To appear in Journal of Computer and Systems

Sciences.

106

[RS4] G. ROZENBERG & A. SALOMM, New squeezing mechanisms for L systems,

UIA, Antwerpen, Publ. 76-06 (1976).

[RVl] G. ROZENBERG & D. VERMEIR, On ETOL systems of finite index, Ibid.

75-13 (1975).

[RV2] G. ROZENBERG & D. VERMEIR, On the relationship between context-free

programmed grammars and ETOL systems, Ibid. 75-14 (1975).

[Ru] K. RUOHONEN, Some combinatorial mappings of words, Ann. Acad. Scient.

Fennicae, Ser. AI Dissertationes 9 (1976).

[Sal] A. SALOMM, Formal Languages, Academic Press (1973).

[Sa2] A. SALOMM, Parallelism in rewriting systems, Springer Lecture Notes

in Computer Science, 14 (1974) 523-533.

[sa3] A. SALOMM, Undecidable problems concerning growth in information

less Lindenmayer systems, EIK, to appear.

[Sa4J A. SALOMM, Comparative decision problems between sequential and

parallel rewriting, IEEE 75 CH1052-0C, pp. 62-66.

[SaSo] A. SALOMM & M. SOITTOLA, Automata-Theoretic Aspects of Formal Power

series, Springer Verlag, in preparation.

[Sol] M. SOITTOLA, Remarks on DOL growth sequences, Revue Francaise In

formatique Theoretique, to appear.

[so2] M. SOITTOLA, Positive rational sequences, To appear in Theoretical

Computer Science.

[so3J M. SOITTOLA, On DOL synthesis problem, To appear in [LR].

[vaJ L. VALIANT, The equivalence problem for DOL systems and its decidabi

lity for binary alphabets, Univ. of Leeds, Centre for Computer

Studies Report nr. 74 (1975).

[Vil] P. VITANYI, Deterministic Lindenmayer languages, nonterminals and

homomorphisms, To appear in Theoretical Computer Science.

[vi2] P. VITANYI, Context-sensitive table Lindenmayer languages and a re

lation to LBA-problem, Mathematisch Centrum, Amsterdam, pre

publication 49/75 (1975).

[vLl] J. VAN LEEUWEN, Parallel rewriting - a non-parallelled theory of

languages, Manuscript (1976).

107

[vL2] J. VAN LEEUWEN, The membership question for ETOL-languages is poly

nomially complete, Information Processing Letters 3 (1975)

138-143.

[vL3] J. VAN LEEUWEN, Deterministically recognizing EOL-languages in time

0(n3•81), Mathematisch Centrum, Amsterdam, prepublication 9/75

(1975).

[vL4] J. VAN LEEUWEN, One-way machines using a checking stack, Manuscript

(1976).

[w] D. WOOD, Time-delayed 0L languages and sequences, Information Sciences

8 (1975) 271-281.

Note added in proof.

The decidability of the DOL equivalence problem has been shown by

K. Culik II and I. Fris. Their paper will appear in Information and Control.

THREE HARDEST PROBLEMS

1. INTRODUCTION.

2. A MODEL FOR TIME AND STORAGE • •

2.1. Machine model ••••••

2.2. Time and storage defined ••

2.3. Worth of the model.

3. CONTEXT FREE LANGUAGES •

3.1. Preliminary definitions.

3.2. A hardest context free language.

4. NONDETERMINISTIC STORAGE ••

4.1. An efficient simulation algorithm.

4.2. Storage hard and complete ••

4.3. A storage complete language.

5. NONDETERMINISTIC TIME. •

5.1. Polynomial time •••

5.2. Time hard and complete.

5.3. A time complete language.

5.4. Conclusions

REFERENCES •••••

by W.J. SAVITCH

111

113

• 113

• • 116

• 118

• 119

• 119

• 121

• 127

127

• 130

131

•• 137

• 137

• 139

140

148

• 148

MATHEMATICAL CENTRE TRACTS 82, 1976, 111-149

THREE HARDEST PROBLEMS

W.J. SAVITCH*

Mathematical Centre, Amsterdam, The Netherlands

1 . INTRODUCTION

In its most traditional form the theory of computation concerns itself with

classifying functions as either computable or noncomputable. Researchers in

theoretical computer science have refined this theory so as to be able to

classify functions as either efficiently computable or not. The notions of

efficiency most often studied, and the ones studied here, are time and

storage. This general research area, which studies the efficiency of compu

tation, is usually referred to as complexity theory. The work in this area

has been quite successful at discovering functions which can be computed by

efficient algorithms. The work has met with less success in its attempts to

discover which functions cannot be computed by realistically efficient

algorithms. Some striking successes at computing lower bounds on the time

and storage requirements of computable functions have been achieved. However,

it is still true that we do not yet have the techniques to prove good lower

bounds for the time and storage needs of very many common functions. Recent

work in complexity theory has produced results which go a long way toward

isolating the problem of deciding which functions can be done by realistic

ally efficient algorithms. A common theme in much recent work in complexity

theory is to consider some class of interesting problems, say for example

the recognition problem for context-free languages, and to try to determine

the minimum time and storage bounds needed to solve these problems on a

computer. The work has not been a total success but many such efforst have

met with striking partial success. Many of these partial successes follow

a similar pattern. They do not determine the time and storage needs of the

class of problems in question; however, they do often produce examples of

Permanent address: University of California, San Diego, USA.

112

problems which are the hardest problem in that class. For example, there is

a hardest context-free language. It is hardest in the sense that if it can

be recognized with a given time or storage bound, then all context-free

language can be recognized within that same time or storage bound. In these

lectures we will look at three examples of problem classes that have hardest

problems. The three problems considered are: the context-free language recog

nition problem, the problem of converting an arbitrary nondeterministic

storage-bounded procedure to an efficient deterministic storage-bounded

procedure, and the analogous problem for time-bounded procedures. Rather

than survey the lists of hardest problems for each problem class, we will

try to explain the techniques used to discover and prove that a problem is

hardest for a given class. We will therefore look at one very key and re

presentative problem for each of the three classes and will discuss in some

detail the proof that these problems are among the hardest problems in their

class.

All our proofs require, in an essential way, that we have a formally

defined model of a computer and a formally defined notion of the time and

storage requirements of a procedure. We have chosen to use the most commonly

studied model; namely, the Turing machine. This model was chosen because it

yields notation and proofs which are particularly simple, and we wish to

exhibit the techniques of the proofs as much as the final results. However,

the results presented here are model-independent. Within the bounds of

accuracy of our results, all of our results apply to any reasonable model

of a computer. This point is discussed in more detail when we define the

model itself.

p u

Finite
State OUTPUT

T A P E 1

Fig. 1
Turing Machine with Two Storage Tapes

113

2. A MODEL FOR TIME AND STORAGE

2.1. Machine model

The Turing machine model was first introduced by Turing in 1936. Since that

time Turing's model and variations on it have been central to much of the

theoretical development in computer science. We will here give an informal

definition of the variant of Turing's model that will serve as our model

of a computer. The reader who finds this description to imprecise can consult

any of a number of standard references. ([Hopcroft & Ullman 1969] for

example.) A Turing machine is a finite state machine attached to a read-only

input tape, finitely many read/write storage tapes, and a write-only output

tape. The finite state machine is referred to as the finite state control,

or sometimes just the control. The tapes are divided into squares. Each

square of a storage tape is capable of holding any one symbol from a specified

finite storage tape alphabet. The storage tapes are infinitely long in both

directions. The output tape has a left-hand end but extends infintely long

to the right. There is a specified finite input alphabet and a specified

finite output alphabet. The input consists of a string over the input alpha

bet and is placed on the input tape. Tl:.e input tape is provided with two'

distinguished end markers, one at each end of the input string. Each tape

has one tape head communicating with finite state control. The situation is

diagramed in Fig. 1. The machine in Fig. 1 has two storage tapes, and the

end markers are denoted by¢ and$.

At any point in time, each head will be scanning one square on its

tape and the finite state control will be in one state. Depending on this

state and the symbols scanned by the input and storage tape heads, the

machine will, in one step, do all of the following:

(i) Overwrite a symbol on the scanned square of each of its storage

tapes (it is, of course, permissible to overwrite a symbol by itself

and so leave it unchanged),

(ii) shift its input head and each storage tape head either left one square,

right one square or not at all (different heads may get different in

structions),

(iii) possibly, write a symbol on the output tape. In this case the output

tape head is advanced one square to the right so that it is ready

to write the next output symbol,

(iv) change the state of the finite state control.

114

The finite state control is designed so that the input head will never leave

the segment of tape containing the input string and end markers.

The machine is said to be deterministic if there is only one possible

action at each step. It is said to be nondeterministic if there are finitely

many possible actions at each step. So, for example, a nondeterministic

Turing machine with one storage tape may have the following as an instruc

tion:

If the finite state control is in stape p and the input head is

scanning symbol a and the storage tape head is scanning symbol c,

then replace c by~• move the storage tape head~ one square,

move the input tape head left one square, change the finite state

control to state g_, and output the symbol e.

Since it is nondeterministic, it may have another instruction which is

applicable in the same situation. For example, it may also have the follow

ing instruction:

If the finite state control is in the state p and the input head

is scanning symbol a and the storage tape head is scanning symbol c,

then replace c by!_, move the storage tape head right one square,

move the input head right one square, change the finite state control

to state!.• and output the symbol 2.·

What happens when the machine is in a situation where both instructions

apply? There are two (or more) possible next steps. Both next steps are con

sidered equally valid. The machine arbitrarily chooses one of the applicable

steps. If it makes the right arbitrary choices then it will successfully

complete the computation. If it makes ether than the right arbitrary choices,

then the computation yields no information. A formal definition of nondeter

ministic computations will be given later on. For now, we will give only an

informal description of how these machines compute. The informal description

is given in terms of parallel computations rather than "arbitrary choices",

but the two concepts are equivalent.

One way to view a Turing machine is as a list of instructions of the

type above. If the machine is nondeterministic, then there can be more than

one instruction for a given situation. When a machine gets to a siatuation

where m ~-2 instructions apply, one can think of the machine as dividing

into m copies of itself; each copy follows one of them instructions. These

m copies then compute in parallel and may later divide themselves. The

computation will be considered successful if at least one path through this

115

tree of dividing machines leads to a successful outcome.

One state of the finite state control is designated as a start state

and finitely many states are designated to be accepting states. One special

tape symbol is designated as the blank symbol. At the start of a computation,

the input string is placed on the input tape and delimited by end markers,

the input tape head is set scanning the left end marker, the finite state

control is put into the start state, the output tape and storage tapes are

blank, and the output tape head is placed at the left end of the output

tape.

A deterministic machine is said to compute a function f from input

strings to output strings, provided that starting in the designated start

configuration with input w, the machine eventually halts in an accepting

state with f(w) written on its output tape. If f is a partial function then

it is usual to insists that the machine not halt on any input w for which

f(w) is undefined. This point will not, however, be important to what we

will be doing. One can define nondeterministic machines that compute func

tions in a more or less similar manner. However, we will have no need for

such machines here; we will use nondeterministic machines only in the re

stricted manner described in the next paragraph.

To simplify the discussion we will usually confine ourself to situa~

tions where the input is in some sense either accepted or rejected. In

these cases there is no need for an output tape. From now on, we will assume,

unless otherwise stated, that our Turing machines have no output tape. If

the machine reaches an accepting state, that will designate acceptance. Thus,

we say that the machine accepts the input w provided that there is some

computation of the machine on input w which reaches an accepting state.

The meaning of this for deterministic machines should be clear. For nondeter

ministic machines this definition of acceptance is to be interpreted as

follows: The input w is accepted provided that there is some sequence of

steps each of which follows one of its permitted instructions and this

sequence of step ends up in an accepting state. (In terms of the dividing

tree described above, this means that there is at least one path through

the tree that leads to an accepting state.) Notice that these machines do

not have any "rejecting" states. So it is not possible to have one sequence

of moves that leads to an accepting state and have another sequence of

moves, on the same input, that leads to a rejecting state. In this way we

avoid inconsistencies that could otherwise arise.

In order to make the above definition of acceptance more precise and

116

in order to develop some notation which will be useful later on we define

a concept called an id for a Turing machine with input w or just id for

short. ("id" stands for "instantaneous description"). An id is a string of

symbols that completely describes the configuration of the Turing machine

with the input w at an instant of time. Specifically, if the machine has

k storage tapes then an id is a string of the form pm¢a 1~B 1¢a2~B 2¢ ..• ¢ak~Bk

where pis a symbol standing for the state of the finite state control, mis

a binary numeral telling the number of squares between the input tape head

and the left end of the tape, and each of the strings ai~Bi describe a stor

age tape configuration. ai~Bi means that the i-th tape contains aiSi and

that the tape head is scanning the first symbol of Bi; we always assume lead

ing and trailing blanks are trimmed from ai~si. The symbols¢ and~ are

presumed to be new symbols. If I 1 and I 2 are ids of the type described above

we will write I 1 ~w I 2 provided that, with input wand in the configuration

described by I 1 , the machine has some applicable instruction that will allow

it to change to the configuration represented by I 2 • Notice that, if the

machine is deterministic than, for any id I 1 , there is at most one id I 2

such that I 1 ~ I 2 • If the machine is nondeterministic there may be finitely
w *

many I 2 such that I 1 ~w I 2 • I 1 ~w I 2 provided either I 1 = I 2 or else there

are J 1,J2 , ••• ,J,e such that I 1 = J 1 , r 2 = J,e and Ji ~w Ji+l for 1 $ i < l;

The definition of acceptance can now be rephrased as follows: The machine

accepts the input w provided there is some id I such that I has the finite
a a

control in .an accepting state and such that IO ~: I a' where IO is the id

for the start machine configuration. An id that contains an accepting state

is called an accepting id. (When w is clear from context we will write~

and ~* for ~ and ~* .) The language accepted by the machine is the set of
w w

all input strings accepted by the machine.

In practice we will state all our algorithms informally and omit the

fairly straightforward but very tedius task of converting our informal

algorithms into Turing machine instructions of the type described above.

2.2. Time and storage defined

We now introduce the measures of time and storage that we will use for our

model of computing. In all case the time and storage will be measured as a

function of the length of the input. So that, rather than having a fixed

constant allotment of time or storage, we will allow more resources for

117

bigger inputs. If w is a string of symbols llwll will denote the length of w.

DEFINITION. Let M be a Turing machine (deterministic or nondeterministic),

let A be a set of strings over the input alphabet of M, and let both T(n)

and S(n) be functions on the natural numbers.

(1) Mis said to accept A within time T(n) proved that

(i) M accepts exactly those input strings which are in A and

(ii) for each string win A, there is at least one accepting computa

tion of M on w which takes T(llwll) or fewer steps. That is, there

are id's I 0 ,I 1 , ••• ,It such that I 0 is the start id, Ii ~w Ii+l

for O s i < t, It is an accepting id and t s T(llwll).

(2) Mis said to accept A within storage S(n) provided that

(i) M accepts exactly those input strings which are in A and

(ii) for each string win A, there is an accepting computation of M

on w that uses no more than S(llwll) squares of storage tape. More

precisely there are I 0 ,I 1 , ••• ,It such that I 0 is the start id,

Ii.~ I. 1 for Os i < t, I is an accepting id and for each Ii.
w i+ t

if Ii= pm¢a 1~s 1¢a2~s2¢ ••. ¢ak~Bk, then

L~ II a. B .11 S S (II wll) .
J=l J J

When discussing storage, we will always assume that the machine M

never overwrites a nonblank symbol by a blank symbol. There is

no loss of generality in this assumption, since we can always add

one extra symbol that is not the blank but it treated like a blank

in doing computations. Thus the sum }:.lla.B.11 is the total number
J J J

of squares that have been scanned so far in the computation.

There are a number of observations to be made about these two definitions.

First note that we are only measuring time and storage on those inputs

which are accepted. If an input is not accepted, then the machine may use

any amount of time and storage. This may seem peculiar for deterministic

machines. However, for the kinds of well behaved time and storage bounds we

will be discussing here it can be shown that the above definition is equiv

alent to one that requires that the machine always operates within the bound

specified. The reason for phrasing the definition in this way is to accommo

date nondeterministic machines. We want to say the machine operates in time

T(n) or storage S(n) provided that the most efficient accepting computation

118

operates in time T(n) or storage S(n). This requires that our definition

ignore all but the most efficient accepting computations and as a result

ignore all non accepting computations. It should also be noted that if the

machine is deterministic, then in parts (ii) of both (1) and (2) there will

be exactly one computation to look at. Finally, we should note that the

above definition can easily be extended to accommodate deterministic machines

that have an output tape and which compute some partial function. When

measuring storage no charge is made for the output (or input) tape, only

the storage tape is charged for.

2.3. Worth of the model

The natural question to ask is how faithfully do these abstract measures

of time and storage model time and storage needs of real computers. The

answer is that the Turing machine is only an approximate measure. The quality

of the Turing machine measure of time and storage can be described as coarse

but correct. Suppose one writes an algorithm to solve some problem and then

implements this algorithm both on a Turing machine and on some other abstract

model of a computer or on some real computer. The time and storage require

ments of the different implementations will be approximately the same. Let

us first consider deterministic computations and let us consider time and

storage separately. The easiest to analyze is storage. It can be shown that,

if a set is accepted by a Turing machine within storage S(n), then we find

another machine that accepts the same language in storage cS(n), for any

constant c, no matter how small. To accomplish this all we need to do is

enlarge the tape alphabet so many symbol~ can be coded as a single symbol.

On the other hand, even huge changes in the model change the storage used

by only a constant multiple. So saying something can be done within stor-

age S(n) on a Turing machine, means that it can be done in order of magni

tude S(n) storage on any reasonable machine. Define s 2 (n) = 0(s1 (n)) to

mean s 2 (n) ~ cs1 (n) for some c and all but finitely many n. Saying something

is doable in deterministic storage S(n) really conveys no more information

than to say it is doable in deterministic storage 0(S(n)). The following

result makes this more precise. The proof is left as an exercise.

THEOREM 1. If A is accepted by a deterministic (respectively nondeterminis

tic) Turing machine within storage S(n), and if c is any constant greater

119

than zero, then we can find another deterministic (respectively nondetermin

istic) Turing machine that accepts A within storage cS(n).

A result similar to Theorem 1 can be proven for time. Again the proof is

omitted. (Theorems 1 and 2 are from [Hartmanis, Lewis & Stearns 1965;

Hartmanis & Stearns 1965], and can now be found in many introductory

texts.)

THEOREM 2. If A is accepted by a deterministic (respectively nondetermin

istic) Turing machine within time T(n) and c is any positive constant,

then we can find a deterministic (respectively nondeterministic) Turing

machine that accepts A within time T2 (n) = max{cT(n),n+l}, provided

fi~ T(n)/n=oo.

This last theorem might lead one to believe that, just as with storage,

Turing machines measure time up to a constant multiple. Unfortunately, time

is not quite as well behaved as storage. If we change the model, then the

time needed to implement a given algorithm can go from T(n) to a polynomial

in T(n). For example, going from our model to a model with only one tape

may raise the time from T(n) to T2 (n). It is however true that, for most

realistic models, changing the model will not change the run time from T(n)

to anything worst than a polynomial in T(n). Define T2 (n) = P(T1 (n)) to mean
C that T2 (n). ~ (T1 (n)) for some c and all but finitely many n. Then to say

something is doable in deterministic time T(n) really conveys little more

information than to say it is doable in deterministic time P(T(n)).

The situation for nondeterministic models is similar. To say that

something is doable in nondeterministic storage S(n) [respectively time

T(n)] conveys little more information than to say it is doable in nondeter

ministic storage 0(S(n)) [respectively time P(T(n))]. The comparison of

deterministic and nondeterministic costs is much harder and is the topic of

the last two major subdivisions of this paper.

3. CONTEXT FREE LANGUAGES

3.1. Preliminary Definitions

In this section we will describe a context-free language which is in a very

120

strong sense the hardest context-free language. Before going on to describe

this language we will first review the definitions of context-free grammar

and context-free language. We shall simplify the presentation by taking our

context-free grammars to be in Greibach normal form, by assuming that our

languages do not contain the empty string and by assuming that all of our

derivations are leftmost derivations. These simplifications cause no loss

of generality, since every context-free language can be generated by a grammar

in Greibach normal form, since the complexity of a language is not affected

by adding or deleting the empty string to the language, and since every deri

vation has an equivalent leftmost derivation. So, for our purposes, we

define a context-free grammar to consist of four distinguished items

(r,N,S,P) where: rand N are disjoint finite sets of symbols called the

terminal and nonterminal alphabets; Sis a nonterminal symbol referred to

as the start symbol; Pis a finite set of rewrite rules of the form A ➔

ax 1x2 ••• xn where A,x 1,x2 , .•. ,Xn are all nonterminals and a is a terminal

symbol. (The possibility of n =O is allowed. In that case, the rule is

A ➔ a.) These rewrite rules are frequently referred to as productions. We

write µAv~ µax 1x2 .•• xnv providedµ is a string of terminal symbols, vis

a string of symbols from r UN, and A ➔ ax1x2 ..• xn is one of the productions

* in P. The symbolism~ denotes the reflexive, transitive closure of~. So

* a~ S, provided that either S=a or Scan be obtained from a by finitely

many applications of~. The language generated by G is denoted L(G) and

is defined.to be the set of all strings over the terminal alphabet which

can be obtained from the start symbol by repeated application of the rewrite

rules. That is, L(G) = {w J S~w and w Er*}. er* denotes the set of all

strings made up from symbols in r.)

The hardest context-free language which we are about to describe has

the property that every context-free language can be obtained from it by a

very simple type of transformation called an inverse homomorphism. Suppose

rand 6 are finite alphabets. A homomorphism of r* into 6* is defined to be

* a mapping h which maps each symbol of r onto a string in 6. The domain of

the mapping his extended from r tor* by defining h(the empty string) =

the empty string and by defining h(a1a 2 •.• an) = h(a1)h(a2) ••• h(an) where

the a. are individual symbols. If Lis a language over 6, then h- 1 (L) is
i

the language over r which is defined by h-1 (L) = {w J h(w) EL}. h-1 (L) is

said to be obtained from L by inverse homomorphism.

121

3.2. A hardest context free language

We now proceed to describe a language discovered by Greibach and shown by

her to be the hardest context-free language. We need one preliminary

definition before we can define the language in question.

DEFINITION. The Dyck set on two letters is the set of all strings over the

four symbols (,), [and J which have the property that all parenthesis and

brackets match in the usual way. The Dyck set on two letters will be

denoted by D. A more precise way to describe Dis as follows. A string w

is in D provided that w can be transformed into the empty string by repeat

ed application of the two rewrite rules: (1) for any x and y, x()y re

writes to xy and (2) for any x and y, x[]y rewrites to xy.

We now describe a language L0 which will turn out to be the hardest context

free language. L0 will not be described in such a way that it is immediately

obvious that it is a context-free language. It is, however, a not too dif

ficult exercise to write a context-free grammar G such that L(G) = L0 .

DEFINITION. Let T = {(,),[,],c}. Let LO= {x1cy1cz 1dx2cy2cz2d ••• dxlcylczld

* l ~ 1, xi,zi ET for all i and [(y1y2 ••• yl ED}.

L0 can be described less formally as follows. The only things that are

candidates for membership in L0 are strings of the form w1dw2d ..• wld such
i i i i .

that each wi is a string of the form y 1cy2c ..• cyn(i) where eac~ yj 1.s a

string consisting of parenthesis and bra.ckets. That is, each y: is made up
J

of the symbols (,), [and]. In order to be in L0 , such a candidate string

must pass the additional test that there is some way of choosing one y from

each win such a way that[(, followed by the concatenation of the chosen

y's is a string in D; that is, such that all parenthesis and brackets

match. For example, the candidate

) c] Jc]]]d () c () [d (() Jc] Jc]] - -- -

is in L0 , since [(2._fil]] is in D. The "y's" chosen to get a correct

cancellation are underlined. The next result is the main theorem of this

section; it is from Greibach [1973].

THEOREM 3. If Lis any context-free language, then there is some homomor-

122

phism h such that L

Before proving Theorem 3, we will derive some of its consequences. The next

two theorems are corollaries of Theorem 3. They say that, in terms of both

time and storage, L0 is in a very strong sense the hardest context-free

language.

THEOREM 4. Let T(n) be any monotone, nondecreasing time bound. Suppose L0

is accepted by some deterministic (respectively nondeterministic) T(n) time

bounded Turing machine and that Lis any other context-free language. Then

there is a constant c depending only on L such that Lis accepted by some

deterministic (respectively nondeterministic) T(cn) time-bounded Turing

machine.

A special case may help to illustrate the importance of Theorem 4.

COROLLARY. If L0 is accepted within deterministic time O(na), where a is a

non-negative real number, then every context-free language can be accepted

within deterministic time O(na).

The corollary is immediate from Theorem 4. The fastest known general

algorithm for accepting arbitrary context-free languages is due to [Valiant

1975]. This algorithm runs in time O(n2 •81). If the single language LO

could be accepted in na for a< 2.81, then we would have a faster algorithm

for general context-free language acceptance. It shovld be noted that

Valiant's algorithm was not stated for Turing machines and it is not clear

that it can be made to run on a Turing machine in time O(n2 · 81). However,

the proof of Theorem 4 remains true if we replace Turing machines by any

other "reasonable" model of a computer. In particular, Theorem 4 and Valiant's

results both hold true for a random-access type model of a computer and such

random-access type models actually look more, rather than less, like the

architecture of current real computers. (For a discussion of such random

access type machines, see [Cook & Reckhow 1973].) It should also be noted

that Theorem 4 is really of no great interest for nondeterministic machines.

This is because all context-free languages can be recognized in nondeter

ministic time T (n) = n+l. (See most any introductory text on the subject.

For example [Hopcroft & Ullman 1969].) However, we will include the non-

123

deterministic machines in the proof, so that we can draw analogies to non

deterministic storage. We now give the proof of Theorem 4.

Proof of Theorem 4. Suppose L0 is accepted by a Turing machine M0 within

time T(n). Let L be any contex-free language. By Theorem 3, there is a homo-
-1 morphism h such that L = h (L0). Let c be the maximum length of h(a), as

a varies over all symbols in the domain of ·h. We will describe a Turing

machine M that accepts L within time T(cn); if M0 is deterministic, then M

will also be deterministic. The algorithm for Mis fairly straightforward.
-1 Given input w, M must decide if w is in L. Now w is in L = h (L0) if and

only if h(w) is in L0 • So all M needs to do is to simulate M0 operating on

h(w). If the simulation accepts h(w), then h(w) is in L0 , sow is in Land

M accepts w. One way to implement this would be to have M first compute h(w),

write h(w) on a scratch tape and then simulate M0 on h(w). This will take

time en to compute h(w) plus about T(cn) to simulate M0 • So the total time

would be at most en+ T(cn). By a more efficient implementation, we can get

the total time down to T(cn). The more efficient implementation does not

compute h(w) all at once but merely computes parts of h(w) as needed. Speci

fically, the more efficient implementation proceeds as follows. Given

w = a 1a 2 ••• an, M's input is always scanning some ai (or an end marker). 'When

Mis scanning ai, it pretends it is scanning h(ai). To accomplish this you

can think of the finite state control of Mas having inside of it a finite

buffer that can hold up to c symbols. As part of the first single move on

input ai, M can put h(ai) inside this buffer. M then does a step-by-step

simulation of M0 . This simulation will tell if M0 accepts h(w) and so will

tell if w is in L = h-1 (L0). Since no extra time is needed to compute h(w),

M runs in the time needed to simulate MO on h(w). So M runs in time

T(Hh(w)H) s T(cn). □

A result analogous to that of Theorem 4 holds for storage. The proof is

also analogous to that of Theorem 4 and so is left as an exercise.

THEOREM 5. Let S(n) be any monotone nondecreasing storage bound. Suppose

L0 is accepted by some deterministic (respectively nondeterministic) S(n)

storage bounded Turing machine, and that Lis any other context-free lan

guage. Then there is a constant c depending only on L such that Lis accept

ed by some deterministic (respectively nondeterministic) S(cn) storage

botmded Turing machine.

124

To date, the most storage efficient method for general context-free recog

nition uses O((log n) 2) storage. This is the best known bound for both
2

deterministic and nondeterministic machines. The algorithm can be implement-

ed on a Turing machine or most any other standard model and will still run

in storage O((log2n) 2). The algorithm is due to Lewis, Stearns & Hartmanis

[1965]. Finding a more efficient algorithm for the particular language LO

would lower this bound. Having described the importance of Theorem 3, we

now give its proof.

Proof of Theorem 3. Let L be a context-free language and let G be a context

free grammar for L. (Recall that we are assuming that L does not include

the empty string and that, as we defined context-free grammars, Gisin

what is commonly called Greibach normal form.) We will explicitely describe
-1

a homomorphism h such that L = h (LO). The homomorphism his described in

terms of G. Let A1,A2 , ••. ,Am be an enumeration, without repetition, of the

nonterminals of G. Also, let this enumeration be such that A1 is the start

symbol. We will describe a method for coding every production of Gas a

string of parenthesis and brackets. We will then use this code to describeh.

If Ai+ a is a production, where a is a terminal, then define

recall that)i means) written i times.

If A,+ aA. A . ••. A. is a production of G, where a is a terminal, then
1. J1 J2 Jr

define

Using this Code function, we can now define h. We need to define a string

h(a), for each terminal symbol a of G. Let a be an arbitrary terminal symbol

of G. Let p 1,p2 , ••• ,pl be an enumeration of all productions such that a

occurs on the right-hand side of the production. Define

This completely describes the homomorphism h.
-1

It remains to show that L = h (LO). In order to establish this

equality, we will show two claims. It will help in understanding the claims

125

if you recall that, by our definition of context-free grammar, one terminal

symbol is produced at each step of a derivation and that, since we always

rewrite the leftmost nonterminal, the terminal symbols are produced left to

right.

CLAIM 1. Suppose a 1a 2 ••• an is a string of terminal symbols and p 1,p2 , ••• ,pn

is a sequence of rewrite rules such that ai appears on the right-hand side

of pi, i=l,2, ••• ,n. Then the following two statements are equivalent:

(1) A1 • a 1 • a 2 • ••• •an= a 1a 2 ••• an by applying productions

P1,p2 , ••• ,pn (to the leftmost nonterminal),

(2) [(Code(p1)code(p2) ••• code(pn) ED.

CLAIM 2. w is in L if and only if h(w) is in L0 •

Once Claim 2 is established, we will have completed the proof. We will first

derive Claim 2 from Claim 1. We will then go back and prove Claim 1. To see

Claim 2, suppose w is in L. We then know that A1 • a 1 • a 2 • ••• •an= w =

a 1a 2 ••• an by applying some productions p 1,p2 , ••• ,pn. (Recall that A1 is the

start symbol.) Now, by the way we defined context-free grammars, the symbol

aj appears on the right-hand side of production pj, j =1,2, ••• ,n. So

h(a.) = x .cCode(p.)czjd. So
J J J

(3) h(w) = x 1ccode(p1)cz1dx2ccode(p2)cz2d ••• dxnccode(pn)cznd.

But by Cla:j.m 1,

(4) [(Code(p1)code(p2) ••• Code(pn) is in o.
So by (3), (4) and the definition of L0 , h(w) is in L0 • Conversely, suppose

h(w) is in L0 • By reversing the above argument, we can show that w is in L.

Thus Claim 2 follows from Claim 1.

It remains to show Claim 1. In order to do this we will prove a slightly

stronger statement. (To get Claim 1 from Claim 1', set s = 1 and i 1 = 1.)

CLAIM 1' • Assume the hypothesis· of Claim 1. If Ai 1 Ai 2 ••• Ais are any non

terminals, then the following two statements are equivalent.

(1')

(2')

Ai1Ai2 ... Ais • a1 • a 2 • ••• •an= a1a 2 ••• an' by applying productions

P1 ,P2 , ••• ,p ·
i i n i

[(S[(s-1[.,.[(1 Code(p1 lcode(p2}. •• Code(pnl € D.

Before proving Claim 1', it might help to see an example. Suppose (1')

is A1 • aA3 • abA2A1 • abcA1 ,. abed. In this case, the string in (2') is

126

[(.Ll..!JJJ.)))][([((ill)]

which is clearly in D. To see where the string came from, we have underlined

every other string of the form Code(p.). In the general case, it is not hard
l. .

to see that if a rule A.+ aA. A. A .•.• A. is applied then the prefix)i]
i J 1 J 1 J 2 Jr

of Code(A. ➔ aA. A,
i Jl J2

. j j 1 jl
••• A.) =)J.][(r[(r- •.. [(will cancel leaving

Jr

j j j
[(r[r-1 ••• [(1 This string will in turn cancel out because the produc

tion applie9 to Aj 1 has a code beginning with)j 1J and this)j 1J cancels
J

with the [(1; the production applied to Aj 2 has a code beginning

and so forth. We now give a formal proof of this intuitive idea.

j2
with)],

Claim 1' is proven by induction on n. We first show that (1') implies

(2'). Suppose (1') is true and consider the base case n=l. In this case,

(1') reduces to Ail=> a 1 by p 1 =Ail+ a 1 . But [(i 1code(p1) = [(il)il]

which is in D. So (2') is true. Next consider the inductive step of the

proof. Suppose (1') is true and suppose that Claim 1' is true for all

derivations of less than n steps. The production p 1 must be of the form

Ail+ a 1Aj 1Aj 2 ••• Ajt• So, by (1') we conclude that

and so we may conclude

by applying productions p2 ,p3 , ••• ,pn, where ai = a 1 a1, i = 2, 3, ... ,n. Now

consider (2'), which we are trying to prove. Since p 1 is Ai ➔ a 1Aj Aj •..
- i 1 j t j t-1 j 1 l l 2

Aj , Code (p 1) -)][([(••• [(. So substituting this in for
t i i

Code(p1) in (2') and cancelling [(1) 1], we see that (2') is equivalent to

(2")

In order to complete the inductive step we must show (2') of Claim 1'. To

do this it will suffice to show (2"). But we know (1 ") is true and we know

that, by induction hypothesis (2") follows from (1"). So (2") and hence

(2') is true and the inductive step is completed. This completes the proof

that (1') implies (2') of Claim 1'. The proof that (2') implies (1') is

similar and will be left as an exercise. So Claim 1' is established and

this completes the proof of Theorem 3. D

4. NONDETERMINISTIC STORAGE

127

The next class of problems we wish to consider is that of simulating an

arbitrary nondeterministic algorithm by a storage efficient deterministic

algorithm. In order to motivate the basic definitions and to get some prac

tice in simulating Turing machine computations, we first present one effi

cient simulation algorithm. We then go on to produce a hardest problem in

this class and to discuss the possibility of producing a more efficient

simulation.

4.1. An efficient simulation algorithm

It is well known that any nondeterministic algorithm can be simulated by

a deterministic algorithm. All the deterministic algorithm need do on an

input w is to simulate all possible computations of the nondeterministic

algorithm on input w. However, if this idea is implemented in the obvious

way, then the deterministic algorithm will use an amount of storage that

is exponential in the amount used by the nondeterministic algorithm.

However, there is a way of checking all possible computations that uses

much less storage than that. The simulation algorithm is from [Savitch

1970].

THEOREM 6. If a set A is accepted by a nondeterministic Turing machine M

within storage*) S(n) and S(n) ~ log2n, then A is accepted by a determin-
2

istic Turing machine MD within storage S (n).

Proof. To simplify the proof it will help to assume that the storage bound

S(n) is well behaved. Functions that are well behaved in the sense we need

are called storage constructable.

*)
Forour purposes, we make the convention logbO = 0, for all b ~ 2. We
also assume S(n) ~ 1, for all storage bounds S(n).

128

DEFINITION. A function S(n) is said to be storage constructable if there is

a deterministic Turing machine which, given an input of length n, will mark

off exactly S(n) squares on a storage tape and, furthermore, will use no

more than S(n) storage in the process.

Assume that S(n) is storage constructable. Later we will note that this

assumption can be dropped. The theorem is proven by exhibiting an algorithm

whereby MD can simulate the computation of M. To understand the simulation,

we will need to recall some facts about id's of M. Consider a fixed input w

to Mand let n be the length of w. Consider an id which could occur in an

accepting computation of Mand that uses no more than S(n) storage. There

is a constant b, depending only on M, with the property that all such id's

have length at most bS(n). This is because the portion that codes a storage

tape has length at most S(n) +1, the portion that codes the input head posi

tion has length at most the length of n+2 in binary and so has length at

most O[log2n] = O[S(n)]. So these pieces, plus the state symbol and punc

tuation symbols¢, have total length at most bS(n) for some suitable b.

Having obtained a bound on the length of an id, we can use this bound

to derive a bound on the running time of M. Suppose M accepts an input w

of length n. Then there is an accepting computation of Mon w such that ho

id has length greater than bS(n). Now there are at most abS(n) such id's

where a-1 is the number of symbols needed to write id's. From this we can

conclude that no more than abS(n) distinct id's occur in the accepting com-
bS(n)

putation. Now if the accepting computation takes more than a steps,

then some id is repeated. We can eliminate the steps between the repeated

id and get a shorter accepting computation. If the shorter computation still

takes more than abS(n) steps, then we can again obtain a still shorter com

putation. If we proceed in this way, we eventually obtain an accepting computa

tion which contains at most abS(n) steps and in which all id's have length

at most bS(n).

We can always find an integer c such that abS(n) ~ 2cS(n) and

bS(n) ~ cS(n). It will be helpful to consider the number of steps in a

computation to be a power of two. Let I 0 denote the start id of the non

deterministic machine M. In order to tell if M accepts w, it will suffice

* for MD to test for all accepting id's Ia whether or not I 0 ~w Ia on M by

a computation of at most 2cS(n) steps, in which all id's have length at

most cS(n). After testing each Ia' it can clear storage for the next tests.
2

So if it can make each of these tests in storage O(S (n)), then MD can tell

129

if M accepts wand can do it all in deterministic storage O(S2 (n)). In order

* to see that MD can efficiently make the tests to see if 10 f-w Ia, for start

and accepting id's, it will suffice to establish,

CLAIM: There is an algorithm with the foliowing properties.

Input 1 1,12 two id's for M such that llr 111 s; cS(n)

and II 1 2 11 s; cs (n).

Output: "yes" if I f-* I on M by a computation which takes at
1 w 2

most 2m steps and in which each id has length at most

cS(n). Otherwise the output is "no".

Storage
used mcS(n) [not counting the storage to hold 1 1 and 12

themselves].

To see that the theorem follows from the claim, set m = cS(n). Then all
2 2 2

the tests can be done inc S (n) = O(S (n)) storage as desired. In order to

prove the claim, we will give the algorithm. The algorithm is stated

recursively. However, it can be converted to a nonrecursive algorithm of the

type required by the definition of Turing machine. The algorithm follows.

ALGORITHM A

Case: m > O.

I. For each id J such that II JII s; cs (n) do the following:

1. Call the a!"gorithm recursively to test whether or not 1 1 f-: Jon M
m-1 in at most 2 steps by id's of length at most cS(n).

2. Clear storage and then again call the algorithm recursively to test
* m-1 whether or not J f-w 1 2 on Min at most 2 steps by id's of length

at most cS(n).

II. If for at least one such J we get affirmative answers to both 1 and 2
1* 1* above, then 1 1 rw J rw 12 and so output "yes". Otherwise output "no 11 •

Case: m = 0.

This requires testing to see if 1 1 f-w 1 2 or 1 1 = 1 2 , which can easily be

done with no storage (besides that used to hold 1 1 and 1 2 themselves).

In order to implement Algorithm A we must be able to go through all

id's J such that IIJII s; cS(n). However, since S(n) is storage constructable,

this is easy to do within storage cS(n). For example, we can run through

130

all strings of length cS(n) in lexicographic order and test each one to

see if it is an id.

To see that Algorithm A runs in storage mcS(n), proceed by induction.

The base case is easy. Proceeding inductively, suppose m > O. The algorithm

needs cS(n) storage to hold the id's J that it is testing as intermediate

points. For each such J it makes two tests:

(i) r 1 ~: J in at most 2m-l steps,

(ii) J ~ r2 in at most 2m-l steps.

Storage is cleared between tests. So the total storage needed is cS(n) to

store the J plus (m-1) cS(n) for the recursive tests. So the total storage

is cS(n) + (m-l)cS(n) = mcS(n), as desired. The bookkeeping required to

implement this recursion on a Turing machine is rather messy but uses only

standard techniques.

Thus the proof is complete in the case where S(n) is storage construct

able. Most all reasonable functions are storage constructable. However, the

proof can be made to work even for those S(n) which do not have this proper

ty. The interested reader is referred to [Savitch 1970], if he wishes to

see this extra bit of generality. D

4.2. Storage hard and complete

The previous theorem said that we can simulate nondeterministic storage

S(n) by deterministic storage s2 (n). Whether or not one can do a more

efficient simulation than that is an op,~n question. We can, however, exhibit

a language with the following properties: The language can be accepted in

nondeterministic storage log2n; furthermore, any deterministic algorithm

to efficiently accept this one particular language can be used to produce

a storage-efficient deterministic simulation of any nondeterministic algo

rithms. Thus if we are interested in converting arbitrary nondeterministic

algorithms to deterministic algorithms, then it will be sufficient to study

this one particular language. Actually, there are many such languages but

we will focus on one particularly simple and representative one. First

we will give some definitions so that we can make these remarks precise.

In the following definition, L may be any class of languages whatsoever.

However, it will help to think of it as the class of all languages that can
a

be accepted within nondeterministic storage (log2n) , for some a~ 1.

DEFINITION. Let. L be a class of languages and L be a particular language

(L may or may not be in L) • L is said to be storage hard for the class L

131

Cl
provided the following holds for all storage bounds of the form (log2n) ,

where a~ 1. If there is some deterministic Turing machine that accepts L

within storage (log2n)a then, for any language L2 in L, there i~ some deter

ministic Turing machine that accepts L2 within the same storage bound

(log2n)a. Lis said to be storage complete for the class L provided Lis

storage hard for Land Lis in L.

Restricting ourselves to storage bounds of the form (log2n)a may seem quite

arbitrary. However, there are two good reasons for this choice. The first

reason is that we will be considering classes L for which it is already
Cl known that everything in L can be done in storage (log2n) , for some a. So

the goal is to see how small a value of a will suffice to accept all lan

guages in L. These classes L will also have the property that they contain
Cl some languages which cannot be accepted in storage (log2n) , for any a< 1.

Thus the lowest value of a we can hope for is a = 1. Therefore:,. for the

classes L which we will be considering, to say that Lis storage complete

for Lis to say that Lis the hardest problem in L, provided storage is

our measure of difficulty. For example, suppose we take L to be the clas·s

of context-free languages. It is known that everything in L can be accepted

in deterministic storage (log2n) 2 • It is also known that there are context-
a free languages which cannot be accepted in storage (log2n) , for any a< 1.

So a storage complete language for L would be a hardest context-free lan

guage. Theorem 5 says, among other things, that the language L0 of Greibach

is storage complete for the class of context-free languages. The second
Cl reason for considering bounds of the form (log2n) is that the proofs we

will give only work for bounds which are of this form or similar to this

form. At the end of.this chapter we will, however, see that many of our

results generalize to arbitrary storage bounds.

4.3. A storage complete language

We now describe a language which is storage complete for the class of all

languages which are accepted within nondeterministic storage 0(log2n).

Later on we will see that this language is the key to simulating nondeter

ministic storage in general; the importance of this language is not limited

to the storage bound log2n.

132

DEFINITION. A maze is a finite directed graph with a single distinguished

node called the start node and a finite number of distinguished nodes

called goal nodes. The maze is said to be threadable if there is a path

from the start node to some goal node. We will always assume that a maze

with k nodes has its nodes numbered one through k.

A (base b) coding of a threadable maze with k nodes is a string of the

following form

where the numbers 1,2, ••• ,k are written in.base b; s, the y's and the u's

are base b numerals standing for the node they number; sis the start node;

h 1 d d f h . i i i .
u 1 ,u2 , ••• ,ug are t e goa no es; an, or eac i, y 1 ,y2 , ••. ,yn(i) is an

enumeration, without repetation, of all nodes y such that there is a

directed arc from i toy.[,] and* are three new symbols.~ will denote

the set of all base b codings of threadable mazes.

THEOREM 7. For any b ~ 2, the set~, of all codings of threadable mazes,

can be accepted by a nondeterministic Turing machine within storage log2n.

Proof. The algorithm for the Turing machine is quite simple. Given an input

string, the machine first checks to see if the input is the coding of some

maze (possibly not threadable). This it can do deterministically in storage

0(log2n). (The details are messy but not difficult.) If the input is not the

coding of some maze, then the computation is aborted. The heart of the prob

lem is to tell if a given maze is threadable. So, assume the algorithm has

determined that the input is the coding of some maze. It then proceeds as

follows. The machine writes down the number of the start node on a storage

tape. It then locates the block which describes the arcs leaving the start

node. (In the notation above, it finds the s-th block which is enclosed in

brackets.) It then nondeterministically chooses one of the nodes that can

be reached from the start node by traversing a single directed arc. (In

the notation above, it chooses one y~.) It replaces the start node by this
J

newly chosen node. It then finds the block corresponding to this newly

chosen node, nondeterministically chooses one node that can be reached by

133

traversing another arc and replaces the number of the old node by the num

ber of this newly chosen node. It proceeds in this way to nondeterminis

tically trace out a path through the graph. When it chooses each new node,

it checks to see if it is a goal node. If a goal node is ever reached, then

the machine accepts the input. If the maze· is threadable, then clearly

there is some sequence of nondeterministic moves that will lead to a goal

node. Thus this algorithm accepts~- So it remains to estimate the storage.

If the input has length n, then there can be no more than n nodes in the

graph. So every node is named by a number which is at most n. A base b

numeral which is no bigger than n can be written down in O(logbn) storage.

But the algorithm needs to store the number for only one node at a time.

Hence, the whole algorithm runs in storage O(logbn). By Theorem 1, the

algorithm can be made to work in storage log2n, since log2n = O(logbn). 0

By Theorem 7, we can conclude that~ can be accepted in nondeterministic

storage log n. In what follows it will be convenient to know that the dif

ficulty of accepting~ is independent of the base b. The proof of the fol

lowing lemma is left as an exercise. [Notice that for any bases band d

which are at least 2, logbn = O(logdn). So we will often write log n omitting

the base. This is because, by Theorem 1, any such storage bounds are equally

powerful.]

LEMMA 1. Let band d be any two bases which are greater than or equal to two.

Let S(n) be any storage bound such that S(n) ~ log2n. If there is a deter

ministic Turing machine that accepts ~' within storage S (n), then we can

find another deterministic Turing mach~'.ne that accepts Md within storage

S(n).

THEOREM 8. For any b ~ 2, the set~• of all codings of threadable mazes,

is storage complete for the class of languages that can be accepted within

nondeterministic storage log n.'

Proof. Let L denote the class of all languages that can be accepted within

nondeterministic storage log n. By Theorem 7, we know that~ is in L. So

it will suffice to show that is storage-hard for L. Let a be a real num-

ber which is greater than or equal to one. We will show that: If we have a

deterministic algorithm that accepts~ within storage (log n) 0 and Lis

any language in L, then we can write a deterministic algorithm to accept L

134

within storage (log n)a.

We first describe a deterministic algorithm that accepts L. This algo

rithm will not run in storage (log n)a. Later on we will indicate how the

algorithm can be modified to run in storage (log n)a. Let Z be a nondeter

ministic Turing machine that accepts L within storage log2n. Let w be an

input string to Z of length n. We associate a maze m(w) with w. The nodes

of m(w) are all those id's of Z which use no more than log2n squares of

storage tape, and which assume an input of length at most n. That is, all

id's pl¢a 1~B 1¢a2~B2 ¢ ... ¢ak~Bk such that l is the numeral for a number which

is at most n + 2 and such that l:. II a. B, II is at most log2n. (k is the number
].].].

of tapes of Z.) There is a directed arc from id I 1 to id I 2 provided Z, with

input w, can go from configuration I 1 to configuration I 2 in one step. That

is, there is an arc from I 1 to I 2 , provided I 1 ~w I 2 on Z. The start node

of m(w) is the start id of z. An id is a goal node if it contains an accept

ing state. With this definition of m(w), note that

(1) Z accepts w if and only if m(w) is threadable.

Let d be the number of distinct symbols needed to write id's of z. If we

identify these d symbols with the digits 0 through d-1, then each id can

be considered a based numeral. This gives us a natural way of numbering

the nodes of the maze m(w). We number them one through h, where his the

largest number whose based numeral is an id of the type being considered.

(Of course, some numerals will not be id's. These numbers can be considered

isolated points of the graph and ignored.) Using this numbering we can

write a coding of m(w). In order to keep from getting buried in notation,

we will let m(w) denote both the maze m(w) and the based coding of m(w).

Now we can rewrite (1) as

(2) Z accepts w if and only if m(w) is in Md.

We can now give a deterministic algorithm to simulate Z.

ALGORITHM B

Input: String w

Construct m(w)

Test if m(w) is in Md

1.

2.

3. If m(w) is in Md, then accept w.

135

By (2) we know that algorithm B accepts exactly the same input strings as z.

Unfortunately, algorithm B does not run in storage (log n) 0 • If implemented

in a straightforward fashion, Step 1 would require Dm(w)B storage. Let us

estimate llm(w)D. The string m(w) consists of a list of id's separated by

some punctuation symbols. If n = HwD, then there are at most ns distinct

id's that appear in m(w), wheres is a constant depending only on Z. In

general, id's will occur more than once. Still, there is a constant t such

that this list will contain a total of at most nt id's. Each id can be

written down in O(log n) space. Thus the total length of m(w) is nc, for

some constant c depending only on z. Now nc is clearly much larger than

(log n) 0 • So we will need to implement Step 1 in other than the most ob

vious way. Before saying more about Step 1, let us analize Step 2. We know

~ can be accepted in deterministic storage (log n) 0 • So by Lemma 1, we

know there is a deterministic Turing machine zd that accepts Md within

storage (log n) 0 • So the test in Step 2 can be done in storage (logffm(w)D) 0 =
O[(log nc)a] O[(log n) 0 J. So, except for the storage needed to construct

and hold m(w), the algorithm runs in storage (log n) 0 • In order to modify

the algorithm so that it runs in total storage (log n) 0 , we will need one

claim.

CLAIM. There is a deterministic Turing machine zm which, given input w,

will output m(w) and, furthermore, Zm will use only O(log2n) storage.

We first see how the claim allows us to modify algorithm B to run in

storage (log n) 0 • After that we will prove the claim. The unmodified

algorithm B would be implemented on a Turing machine as follows. Simulate

Zm and, in this way, write m(w) on a storage tape. Then use this storage

tape as a simulated input tape and simulate Zd to test if m(w) is in Md.

Aside from the tape holding m(w), the algorithm runs in storage (log n) 0 •

Now the simulated input head of zd never sees more than one symbol of m(w)

at a time. So we can modify algorithm Bas follows and still have it work.

The tape that previously held m(w) will now hold two things, the single

symbol being scanned by the simulated input head of Zd and a binary numeral

telling how many symbols there are between the left end of m(w) and the

simulated tape head of zd. Every time the simulation of Zd requires that

the input head of Zd move, this symbol-numeral pair must be updated. It

is easy to update the numeral; simply add or subtract one from it, wich

ever is appropriate. Let q be the new numeral so obtained. In order to

136

obtain the new symbol, Zm is simulated from the beginning. The output is

never written any where but a count is kept (on an extra scratch tape) to

see how many symbols would have been outputed. When this count gets to q,

then the q-th symbol of m(w) is produced and entered as the updated symbol.

The simulation of Zd can then proceed.

Let us estimate the storage used by this modified algorithm Bon an

input w of length n. Steps 1 and 2 are no longer clearly separated in

time and it is best to talk about them as routines rather than steps. One

routine effectively constructs symbols of m(w) as needed. This routine

must store one symbol plus two numbers, both of which are at most llm(w)II,

and it must also simulate Zm on input w. It takes O(log llm(w)II) = O(log n)

to store the symbols and numbers. By the claim, it takes O(log n) storage

to simulate Zm. So the routine that generates the sumbols of m(w) uses

a total of O(log n) storage. The only other storage is that used to simulate

Zd to see if m(w) is in Md. As in the unmodified algorithm, this takes

storage O[(log llm (w) II) a.]. But a. ;,: 1. So the total storage for the modified

algorithm Bis O(log n) + O[(log n)a.] = O[(log n)a.], as desired.

It remains to prove the claim. Let c' be a constant such that all id's

which use log2n storage or less have length bounded above by c'log2n. We

will describe how Zm operates on an input w of length n. Zm first of all

outputs the start id. On one storage tape Zm then generates, in numerical

order, all based numerals of length at most c'log2n. (Recall that id's

have been identified with based numerals.) For each such numeral i, it
i i i

finds the list y 1 ,y2 , ••• ,yn(i) of id's such that i I- i and
i

yj yj uses storage
w

list is empty.). z then out-at most log2n. (If i is not an id, then the

puts [i*Y~*Y;*•··*Y!(i)]. Zm then again generates, in numerical order, all

based numerals of length at most c'log2n. Zm tests each i to see if it is

an accepting id; if it is Zm output* followed by the id. Zm clearly com

putes m(w). Furthermore, Zm operates within storage O(log2n). This completes

the proof of the claim and the proof of the theorem. D

m

The previous theorem says that any storage efficient algorithm that deter

ministically accepts~ can be used to convert any nondeterministic log n

storage algorithm to a storage efficient deterministic one. The same tech

niques for converting from nondeterministic to deterministic storage apply

to all storage bounds S(n);,: log2n and not just to the case S(n) = log2n.

In particular, by mimicking the proof of Theorem 8, we can prove the next

result. The proof is omitted but can fairly easily be constructed by

137

following the proof of Theorem 8 as a model.

THEOREM 9. Suppose there is a deterministic Turing machine Zand a base

b ~ 2 such that Z accepts~, the set of all codings of threadable mazes,

and such that Z runs in storage (log n) 0 • ·In this case every set accepted

by a nondeterministic S(n) storage bounded Turing machine is also accepted

by some deterministic (S(n)) 0 storage bounded Turing machine, provided

S(n) ~ log2n and a~ 1.

Other storage complete languages are discussed by Sudborough [1975a,b] and

Jones [1975]. (They do not actually prove that their languages are storage

complete as we have defined it here. However, it is not difficult to see

that their languages are storage complete.) Sudborough exhibits a context

free language (in fact, a linear context-free language), which is storage

complete for the class of languages accepted in nondeterministic storage

log n. This means that a new more storage-efficient algorithm for general

context-free language recognition would have the side effect of producing

a more storage-efficient algorithm for deterministic simulation of arbitrary

nondeterministic algorithms. In [Sudborough 1976] a language is shown to be

storage complete for the class of deterministic context-free languages.

[Hartmanis & Hunt 1974] give a language which is in a natural sense "storage

hardest" for the class of context-sensitive languages.

5. NONDETERMINISTIC TIME

5.1. Polynomial time

There are problems which are known to have algorithmic solutions but yet,

in practice, cannot be solved on computers; the algorithms cost too much to

run. They would exhaust computing resources long before the algorithms

terminate. Many such problems are intrinsically that difficult. So there is

no hope of designing completely general and yet practical algorithms for

these problems. Proofs for the existence of such problems can be found in

most texts on complexity theory. (See [Aho, Hopcroft & Ullman 1974]. A good

discussion of some particularly interesting problems appeared in [Rabin 1974]

and in works by Fischer, Meyer and Stockmeyer.) It would be nice to determine

a time-bound T(n) such that any algorithm that runs in time T(n) is efficient

138

enough for practical implementation, and any algorithm that runs in time

which is significantly greater than T(n) is not efficient enough for prac

tical implementation. Since computer technology is continually changing,

it seems that there is no hope of finding such a T(n) which will remain

valid over time. If, however, one asks for only a very approximate calcula

tion of such a bound, then there is some hope. Our introductory remarks

indicated that the measures of time that we are discussing are only accurate

to within a polynomial bound; that is, if T1 (n) = P(T 2 (n)) then, within

our limits of accuracy, T1 (n) and T2 (n) can be considered the same bound.

This suggests that the things doable in polynomial time are a likely can

didate for the class of practically doable problems. It is a widely held

view that, given forseeable advances in computer technology, any algorithm

that cannot be made to run in polynomial time is too slow for practicle im

plementation. On the other hand, an algorithm that runs in Time T(n) = n or

T(n) = n2 is efficient enough to be considered practical.

DEFINITION. Let P be the class of all languages which can be accepted by

deterministic Turing machines within a polynomial time bound.

By our above remarks, P would appear to be the class of practically doable

problems. (The class P was first proposed as an important class to study by

Cobham [1964].) The argument that things which are too difficult to be in P

are too difficult to solve by a computer appears to be a reasonably sound argu

ment. The argument that everything in P can be solved within practical time

bounds is quite false. (Is something doable in time nc practical if c is

astronomically large? For that matter, is en a practical time bound for

very large c?) However, given the accuracy of our model, Pis the best

approximation to the class of practically doable problems that we have so

far been able to produce. The true boundary between practically doable and

impractically difficult problems lies somewhere in the class P and probably

is a fluid boundary that will continue to change as technology changes. In

any event, P seems to be a very natural class to look at. The class remains

the same whether we define it in terms of Turing machines, random access

type machines or most any reasonable model of a computer. Also, we can say

with some confidence that things not in Pare too difficult for practical

solutions, given current technology. So P can at least be thought of as

those problems for which there is some hope of a practical solution.

([Hartmanis & Simon 1974 and Savitch & Stimson 1976] have given models

139

which appears to be much more powerful than most models. These machines

appear to be able to do things which are not in the class P, and to do them in

polynomial time. However, these models use unbounded parallism in an

explicite or implicite way. Here we are discussing only serial computations

when we refer to deterministic polynomial time.)

By analogy to the definition of P, we define a similar class for non

deterministic computations.

DEFINITION. Let NP be the class of all languages which can be accepted by

nondeterministic Turing machines within a polynomial time bound.

5.2. Time hard and complete

Whether or not P = NP is a major open question. We do know of a large

number of problems which are in NP and for which practical algorithms would

be very useful. So the question of how efficiently a nondeterministic algo

rithm can be converted to a deterministic algorithm is an important one.

To give a perspective on what is in NP, we now list a few problems which

are in NP. (These problems are not stated as languages to be accepted but

as problems to be solved. The difference is one of notation and the transla

tion can easily been made.)

1. Given an integer matrix A and a vector d, does there exist a 0 - 1

vector x such that Ax = d ?

2. Given a graph G and a positive number n, determine if the nodes of G

can be colored with n colors so that no two adjacent nodes have the

same color.

3. Given a directed graph G, does G have a directed cycle which includes

each node exactly once?

4. Given a Boolean expression, is there some assignment of truth values

to the variables which makes the expression true?

A discussion of these, and many other such problems, can be found in [Karp

1972]. All of these languages are in NP. Also, they all have the interest

ing property that, if any one of them is in P, then they are all in P. In

fact, if any one of them is in P, then P = NP. So they are, in some sense,

the hardest languages in NP. This brings us to our next definition.

DEFINITION. Let L be any class of languages and let L be any particular

language.Lis said to be time hard for L provided that the following holds:

140

If Lis accepted by some deterministic Turing machine within polynomial

time, then every language in Lis accepted within deterministic polynomial

time.Lis said to be time complete for L provided that Lis time hard for

L and L is in L.

The four languages listed above are time complete for the class NP. The

hardest one to show complete is the fourth one, the satisfiable Boolean

expressions. It is also the key complete problem. The proof of its com

pleteness is used implicitely or explicitely in the proofs of completeness

for all problems known to be time complete for NP. We will show the com

pleteness of this problem. The proof is from [Cook 1971]. The proofs of

the other complete problems referred to can be found in [Karp 1972]. (What

we are calling time complete for the class NP is the same concept that

Karp calls NP complete.)

5.3. A time complete language

Notation. Let SAT denote the set of all satisfiable Boolean expressions.

That is, SAT is the set of all (parenthesized) Boolean expressions such that

there is some assignment of truth values to the variables which makes the

value of the entire expression true. We will use A, v and 7 for "and", "or"

and "not" respectively. Formally, variables will be strings Pm where mis

a binary numeral. In this way SAT is a language over a finite alphabet. We

will, however, abbreviate freely and use any convenient notation to abbre

viate variables.

THEOREM 10. SAT is in NP.

Proof. The following algorithm can tell if a string is in SAT.

ALGORITHM C

Input: A string to be tested for membership in SAT.

1. Test if the input is a Boolean expression. If it is not, then abort

the computation; otherwise, continue.

2. For each variable Pm do the following: Nondeterministically choose

either "True" or "False". Replace each occurrence of Pm by the truth

value chosen.

3. Evaluate the Boolean expression produced by 2. If it evaluates to

141

"True", then the string is in SAT.

Clearly, Algorithm C accepts exactly the satisfiable Boolean expressions.

It remains to show that the algorithm runs in polynomial time. Step 1

requires testing to see that the expression has balanced parenthesis, that

each binary operation (A and V) has two arguments and that each 7 has one

argument. It is not difficult to write a deterministic polynomial time

algorithm for this. Step 2 requires a loop to iterate as many times as

there are variables. Each iteration requires one pass over the input. If

the input has length n, then Step 2 requires at most n iterations of a loop

and each iteration takes time a polunomial inn. So Step 2 requires time a

polynomial inn. It is straightforward to write a polynomial time algorithm

for Step 3. So the total time is the sum of three polynomials and hence is

itself a polynomial. D

THEOREM 11. SAT is time complete for the class NP.

Proof. By Theorem 10 we know SAT is in NP. So it will suffice to show that

SAT is time hard for NP. In order to show that we will need one lemma.

LEMMA 2. Suppose Lis accepted by a nondeterministic Turing machine Z within

polynomial time. We can find a deterministic Turing machine Zf which runs in

polynomial time, has the same input alphabet as Land computes a function f

with the following property: For any string w over the input alphabet of z,

Z accepts w if and only if f(w) is in SAT,

We now assume that the lemma is true and complete the proof of Theorem 11.

After completing the proof of Theorem 11, we will go back and prove the

lemma. Suppose SAT is accepted by a deterministic Turing machine ZS within

polynomial time. Suppose Lis in NP. We must produce a deterministic al

gorithm for L that runs in polynomial time. Since Lis in NP, there is a

nondeterministic Turing machine Z that accepts Lin polynomial time. Let

Zf be as in the lemma.

ALGORITHM D

Input: A string w to be tested for membership in L.

1. Simulate Zf to compute f(W)

2. Simulate ZS to test if f(w) is in SAT

3. If f(w) is in SAT, then accept w.

142

By the lemma, w is in L if and only if f(w) is in SAT. So Algorithm D

accepts exactly those strings which are in L. Step 1 takes time nc for some

c, where n =Own.Since Step 1 takes time nc, we know that 0f(w)II s nc.
b Also, by hypotheses, ZS runs in time n, for some b. So, Step 2 takes time

b be at mo_st Hf (w) II s n • Step 3 takes a constant amount of time. So the

total time for Algorithm Dis bounded by a polynomial inn= Owl. Since L

was an arbitrary element of NP, it follows that SAT is time hard for NP
and so time complete for NP. So, once Lemma 2 is proven, the proof of

Theorem 11 will be complete.

Proof of Lemma 2. We will assume that z has only one storage tape. The

proof is the same if Z has finitely many storage tapes but the notation is

much simpler if we assume that z has just one storage tape. (Actually, it

is fairly easy to show that it is possible to simulate finitely many

tapes by one tape and still have the algorithm run in polynomial time. In

any event, there is no loss of generality in assuming there is just one

storage tape.) We will also assume that z never reaches a halting configura

tion. To insure this, add some trivial instructions to z that is applicable

when no other instruction is applicable. So, after accepting, z does some

irrelevant series of moves. We will explicitly give the algorithm for ftw).

The algorithm is quite intuitive, even though the details are very tedious.

The Boolean formula f(w) will be designed so that it in some sense says

"Z accepts•w". In order to define f(w), we will need quite a bit of nota

tion. We now tabulate this notation.

s the set of states of z.

~ the start state of z.

y the set of accepting states of z.

A the storage tape alphabet of z.

b the blank symbol for z.

a 0a 1a 2 ••• anan+l denotes the string of symbols on the input tape. So

w = a 1a 2 ••• an, where the ai are individual symbols; a 0 and an+l

are end markers.

p(n) is a polynomial such that z runs in time p(n).

The storage tape head can move a maximum of p(n) squares from its

original position within time p(n). So only p(n) squares of storage

tape on either side of the tape head's initial position need be

considered. We number these squares as follows. The square the tape

head starts out on is numbered zero. The p(n) squares to the right

of this square are numbered 1,2, ••• p(n). The p(n) squares to the

left of this square are numbered -1,-2, ••• -p(n).

143

f(w) contains a number of variables. Below we list the abbreviation for

these variables and their intuitive meaning. Each variable is meant to

stand for a proposition which is true if and only if the intuitive meaning

is true.

Ta "means" storage tape square numbers contains symbol a at time t;
s,t

a EA, -p(n) s s s +p(n), 0 st S p(n).

H "means" the storage tape head is scanning square numbers at time t;
s,t

-p(n) s s s -p(n), 0 st s p(n).

Sq "means" the finite state control is in state q at time t;
t

q ES, 0 $ t $ p(n).

Ii,t "means" the input head is scanning the square with symbol ai at

time t, 0 s i S n+l, 0 St s p(n).

f (w) = s A I A H A T A B A M A A, wherEl s, I, H, T, B, M and A are Boolean

formulae with the following intuitive meanings. All references are to compu

tations with input w.

S "says" that at each instant of time the finite state control of Z

is in one and only one state.

I "says" that at each instant of time the input head of z is at one

and only one square.

H "says" that at each instant of time the storage tape head is at one

and only one storage tape square.

T "says" that at each instant of time each storage tape square contains

one and only one symbol.

B "says" that at time zero, Z is in the initial configuration.

M "says" that at each instant of time, in any configuration, Z follows

one of its instructions; that is it "says" that symbols and states

change in the way that the finite control of Z might change them.

A "says" that at some time, Z reaches an accepting state.

Given the intuitive meanings of the variables, it is not too difficult to

144

build Boolean expressions which have the above described intuitive meaning.

For example, considers. For a fixed t, vqe:S s~ "says" that at

in some state q e: S. (v S s~ is an abbreviation for s!1 v s!2
qe: o(n) q

time t z is
qe

V ••• V St

where S = {q1 ,q2 , ••• ,qe}). So' A (v S) "says" that at all times, Z is
t=0 qe:S t · '

in some state. For a fixed t " 7 (sr A Sq) "says" that at time t, z is 'rtq t t
not in two different states. So p~n) (A 7 (Sr A sq)) "says" that, at all

t=0 r*q t t
times, Z is in at most one state. So the correct formula for Sis

s [
o(n)

" - " t=0

The intuition for formulas I, H, T, Band A are similar. So we give them

without explanation.

I = fp~n)
lt=O

tt1 I. t)] A fp~n) (,1, 7 (I. t A I. t))],
i=0 1, lt=O 1rJ 1, J,

H

T

B

A

fp~n)

lt=O

+p(n)
(V
s=-p(n)

] rp(n)
H) A A
s,t t=0 (A 7 (H t AH t))]' s#r s, r,

rp(n) +p(n) a] rp(n) +p(n) (Ta c]
A A (V T ; A A A A 7 A T ·) ,

t=0 s=-p(n) ae:A s,t t=0 s=-p(n) a'i'c s,t s,t

I "s~" o,o "Ho,o o

p(n).
V (V y Sq)

t=0 qe: t

+p(n)

" s=-p(n)

The formula for Mis arrived at by the same kind of intuition but is a bit

more complicated. So we will describe it in terms of subformulae. For each

input head position i, the i-th input symbol is some letter a. So for each

input head position i, each stater and each storage tape symbol c, there

are one or more instructions of the following form which are applicable when

the machine has its input head at position i, its finite state control in

stater and its storage tape head scanning symbol c.

If the finite state control is in stater and the input head is

scanning symbol a and the storage tape head is scanning symbol c,

then replace c by d, move the storage tape head x squares, move the

input tape heady squares and change the finite state control to

state q. (x and y may independently be -1, 0 or +1.)

145

Let this be a fixed but arbitrary such instruction and call this instruction

ci. We will construct a formula M(ci,s,t) which "says" that, in the transition

from time t to time t+l, instruction ci is followed. M(ci,s,t) is constructed

assuming that, at time t, the storage tape head is at squares, the input

tape head is at square i and the instruction ci is applicable.

M(ci,s,t) Td 1 A H 1 A I. 1 A ffl.t+l . s,t+ s+x,t+ i+y,t+

Notice that M(ci,s,t) does not say that ci is applicable only that it is

followed. Notice also that M(ci,s,t) says nothing about storage tape squares

other than s. Both of these considerations will be dealt with later on as

we build up M.

Let i be an arbitrary input head position, ran arbitrary state, can

arbitrary storage tape symbol, s an arbitrary storage tape square and t

an arbitrary time. We next construct a formula M(i,r,c,s,t) which "says"

that: if at time t the input head is in position i, the finite state control

is in stater, and the storage tape head is in positions scanning symbol c,

then some applicable instruction is followed. First let ci 1 ,ci2 , ••• ,cik be a

list of all the instructions which are applicable in the situation under

discussion, then define

M(i,r,c,s,t) (I A Sr AH A Tc) ➔
i,t t s,t s,t

The symbol ➔ is being used for the Boolean connective "implies". So A ➔ B

is an abbreviation for -,Av B.

Finally we can define the formula Min terms of subformulae defined

above.

M
p(n)-1

A

t=O

+p(n)
A

s=-p(n)

[H
s,t

➔ (A A

a v-/s

A {M(i,r,c,s,t) A

i,r,c

The subformula in square brackets says that, except for the storage tape

square scanned at time t, the contents of the storage tape is unchanged

146

from time t to time t+l. Given the intuitive meaning of the propositional

variables, the intuitive meaning of M should be clear. M says that, at

every time t, the id for time t+l is obtained from the id at time t by

following some applicable instruction of Z.

The algorithm for f(w) has now been completely described. It remains

to show two things.

CLAIM 1. f(w) can be computed in polynomial timP..

CLAIM 2. z accepts w if and only if f(w) is in SAT.

First consider Claim 1. Since p(n) is a polynomial each of the subformulae

S, I, H, T, B, Mand A are of length at most p2 (n), where p2 (n) is some

polynomial depending only on p(n) and z. Also, each of them can be con

structed by algorithms that essentially just write them down in one left

to-right pass. There is some bookkeeping involved but the algorithms can

easily be made to all run within some polynomial time bound p 3 (n). So the

time needed to produce all of f(w) is some polynomial p4 (n).

Finally consider Claim 2. If Z accepts w then there is some computation

of z on w that passes through an accepting state. Assign to Ta
s,t the value

true if in this computation storage square s contains symbol a at time t;

otherwise assign Ta the value False. Assign H t the value True if in s,t s,
this computation the storage tape head is scanning squares at time t;

otherwise assign Hs;t the value False. Similarly, assign truth values to

the s; and Ii,t acc.ording to whether or not their i:ituitive meaning holds

in this computation. Clearly, this assignment of truth values makes f(w)

true. Thus, if Z accepts w then f(w) is in SAT.

Conversely, suppose f(w) is in SAT. Then there is some assignment
a q

of truth values to the variables Ts,t' Hs,t' St and Ii,t that makes f(w)

true. Conisder such an assignment of truth values. Since the assignment

makes f(w) true, it makes S true. So for each time t, exactly ones~ was

assigned true. Associate this unique state q with time t. Since this

assignment makes f (w) true, it makes T true. So for each time t = 0, 1, ••• ,

p(n) and each storage tape squares, -p(n) s s s +p(n), there is one and
a only one symbol a such that T tis true. In this way we can, for each
s,

time t, assign a unique symbol a to each storage tape squares. Since this

assignment makes f(w) true, it also makes I and H true; so in a similar

way we can use this assignment to associate a unique input tape head position

147

and a unique storage head position with each instant of time t = 0, 1, ••• , p (n) •

In this way, the given assignment of truth values associates a unique id

of Z to each time unit t from zero to-p(n). If we can show that this sequen

ce of id's is an accepting computation of z on input w, then we will know

Z accepts wand we will have shown Claim 2. But this assignment of truth

values makes B, Mand A each true. Since Bis true, the id at time zero is

the correct start ldi at each instant of time t, the id at time t + 1 is the

result of some instruction of Z, since this is what M says and, finally,

since A is true some id includes an accepting state. So this sequence of

id's is an accepting computation of Z on w. Thus, if f(w) ls in SAT, then

Z accepts w. This completes the proof of Claim 2 and the proof of Lemma 2. D

An analysis of the proof of Theorem 11 shows that we have actually proven

something stronger than Theorem 11. Consider the formula

f(w) SA I AH AT AB AM A A,

constructed in Lemma 2. The subformulae s, I, H, T, Band A are all either

in conjunctive normal form or can be converted to conjunctive normal form

by some trivial operations. Thus, if we convert M to conjunctive normal

form, then f(w) will be in conjunctive normal form. In order to convert M

to conjunctive normal form, we need only convert each of the subformulae

M(i,r,c,s,t) to this form, use the definition of+ to replace the remaining

+'s by 7 and v, and finally apply the distributive law to the 7H t" But s,
the subformulae M(i-,r,c,s,t) are all fairly simple. So these subformulae

can easily be converted to conjunctive normal form. Thus we can define f(w)

so that it is in conjunctive normal form and is still computable within

deterministic polynomial time. This means that, instead of Claim 2, we

could have proved

CLAIM 2'. Z accepts w if and only if f(w) is a satisfiable Boolean formula

in conjunctive normal form.

This small modification to the proof yields,

THEOREM 12. The set of satisfiable Boolean formulae in conjunctive normal

form is time complete for the class NP.

148

5.4. Conclusions

Unfortunately, there is no known deterministic polynomial time algorithm to

accept the satisfiable Boolean expressions. The most widely held view is

that none exists and that P does not equal NP. So it appears that SAT and

all the many interesting problems that are time complete for NP are just

too difficult to do within practical time limits. The best known determinis

tic algorithms for these problems take time en, where c is a constant

depending on the problem.

REFERENCES

A.V. AHO, J.E. HOPCROFT, J.D. ULLMAN (1974), The Design and Analysis of

Computer Algorithms, Addison-Wesley.

A. COBHAM (1964), The intrinsic computational difficult of functions,

Proceedings of the 1964 International Congress for Logic, Methodology

and Philosophy of Science, North-Holland, 24-30.

S.A. COOK (1971), The complexity of theorem-proving procedures: Proceedings

of the Third Annual ACM Symposium on Theory of Computing, 151-158.·

S.A. COOK, R.A. RECKHOW (1973), Time bounded random access machines,

JCSS 7, 354-375.

M.J. FISCH.ER, M.0. RABIN (1974), Super-exponential complexity of presburger

arithmetic, MIT MAC Technical Memorandum 43.

S.A. GREIBACH (1973), The hardest context-free language, SIAM J. on Computing

2, 304-310.

J. HARTMANIS, H. HUNT (1974), The lba problem and its importance in the

theory of computing, SIAM-AMS Proceedings 7, 1-26.

J. HARTMANIS, P.M. LEWIS II, R.E. STEARNS (1965), Hierarchies of memory

limited computations, IEEE Conference Record on Switching Circuit

Theory and Logical Design, 179-190. (The material cited can be found

as Theorem 10.1 of Hopcroft & Ullman (1969).)

J. HARTMANIS, R.E. STEARNS (1965), On the computational complexity of

algorithms, Trans. AMS 117, 285-306. (The material cited can be found

as Theorem 10.3 of Hopcroft & Ullman (1969) .)

J. HARTMANIS, J. SIMON (1974), On the power of multiplication in random

access machines, Proceedings IEEE 15th Annual Symposium on Switching

and Automata Theory, 13-23.

J.E. HOPCROFT, J.D. ULLMAN (1969), Formal Languages and Their Relations

to Automata, Addison-Wesley.

149

N.D. JONES (1975), Space-bounded reducibility among combinatorial problems,

JCSS 11, 68-85.

R.M. KARP (1972), Reducibility among combinatorial problems, in R.E. Miller

& J.W. Thatcher (Eds.), Complexity of Computer Computations, Plenum

Press, 85-103.

R.M. KARP (1975), On the computational complexity of combinatorial prob

lems, Networks 5, 45-68.

P.M. LEWIS II, R.E. STEARNS, J. HARTMANIS (1965), Memory bounds for the

recognition of context-free and context-sensitive languages, IEEE

Conference Record on Switching Circuit Theory and Logical Design,

191-202. (Much of the material also appeared in Hopcroft & Ullman

(1969) .)

A. MEYER, L. STOCKMEYER (1972), The equivalence problem for regular expres

sions with squaring requires exponential space, Conf. Record IEEE

Thirteenth Annual Symposium on Switching and Automata Theory, 125-129.

M.O. RABIN (1974), Theoretical Impediments to artificial intelligence,

Proceedings IFIP Congress 74, Stockholm, 615-619.

W.J. SAVITCH (1970), Relationships between nondeterministic and determinis

tic tape complexities, JCSS 4, 177-192.

W.J. SAVITCH, M.J. STIMSON (1976), The complexity of time bounded recursive

computations, Proceedings 1976 Conference on Information Sciences and

Systems, The Johns Hopkins University, 42-46.

I.H. SUDBOROUGH (1975a), On tape-bounded complexity classes and multihead

finite automata, JCSS 10, 62-76.

I.H. SUDBOROUGH (1975b), A note on tape-bounded complexity classes and

linear context-free languages, JACM 4, 499-500.

I.H. SUDBOROUGH (1976), On deterministic context-free languages, multihead

automata and the power of auxiliary pushdown force, Proceedings of the

Eighth Annual ACM Symposium on Theory of Computing.

A.M. TURING (1936), On computable numbers with an application to the

entscheidungs problem, Proc. London Math., Soc. 2-42, 230-265 (a

correction, ibid, 43, 544-546).

L.G. VALIANT (1975), General context-free recognition in less than cubic

time, JCSS 10, 308-315.

OTHER TITLES IN THE SERIES MATHEMATICAL CENTRE TRACTS

A leaflet containing an order-form and abstracts of all publications men
tioned below is available at the Mathematisch Centrum, Tweede Boerhaave
straat 49, Amsterdam-1005, The Netherlands. Orders should be sent to the
same address.

MCT 1 T. VAN DER WALT, Fixed and almost fixed points, 1963. ISBN 90 6196
002 9.

MCT 2 A.R. BLOEMENA, Sampling from a graph, 1964. ISBN 90 6196 003 7.

MCT 3 G. DE LEVE, Generalized Markovian decision processes, part I: Model
and method, 1964. ISBN 90 6196 004 5.

MCT 4 G. DE LEVE, Generalized Markovian decision processes, part II: Pro
bahilistic background, 1964. ISBN 90 6196 005 3.

MCT 5 G. DE LEVE, H.C. TIJMS & P.J. WEEDA, Generalized Markovian decision
processes, Applications, 1970. ISBN 90 6196 051 7.

MCT 6 M.A. MAURICE, Compact ordered spaces, 1964. ISBN 90 6196 006 1.

MCT 7 W.R. VAN ZWET, Convex transformations of random variahles, 1964.
ISBN 90 6196 007 X.

MCT 8 J.A. ZONNEVELD, Automatic numerical integration, 1964. ISBN 90 6196
008 8.

MCT 9 P.C. BAAYEN, Universal morphisms, 1964. ISBN 90 6196 009 6.

MCT 10 E.M. DE JAGER, Applications of distributions in mathematical physics,
1964. ISBN 90 6196 010 X.

MCT 11 A.B. PAALMAN-DE MIRANDA, Topological semigroups, 1964. ISBN 90 6196
011 8.

MCT 12 J.A.TH.M. VAN BERCKEL, H. BRANDT CORSTIUS, R.J. MOKKEN & A. VAN
WIJNGAARDEN, Formal properties of newspaper Dutch, 1965.
ISBN 90 6196 013 4.

MCT 13 H.A. LAUWERIER, Asymptotic e~.:pansions, 1966, out of print; replaced
by MCT 54 and 67.

MCT 14 H.A. LAUWERIER, Calculus of viriations in mathematical physics, 1966.
ISBN 90 6196 020 7.

MCT 15 R. !XlORNBOS, Slippage tests, 1966. ISBN 90 6196 021 5.

MCT 16 J.W. DE BAKKER, Formal definit~on of programming languages with an
application to the defi.,iition of ALGOL 60, 1967. ISBN 90 6196
022 3.

MCT 17 R.P. VANDERIET, Formula manipulation in ALGOL 60, part 1, 1968.
ISBN 90 6196 025 8.

MCT 18 R.P. VAN DE RIET, Formula manipulation in ALGOL 60, part 2, 1968.
ISBN 90 6196 038 X.

MCT 19 J. VAN DER SLOT, Some properties related to compactness, 1968.
ISBN 90 6196 026 6.

MCT 20 P.J. VAN DER HOUWEN, Finite difference methods for solving partial
differential equations, 1968. ISBN 90 6196 027 4.

MCT 21 E. WATI'EL, The compactness operator in set theory and topology,
1968. ISBN 90 6196 028 2.

MCT 22 T.J. DEKKER, ALGOL 60 procedures in nwnerical algebra, part 1, 1968.
ISBN 90 6196 029 0.

MCT 23 T.J. DEKKER & W. HOFFMANN, ALGOL 60 procedures in nwnerical algebra,
part 2, 1968. ISBN 90 6196 030 4.

MCT 24 J.W. DE BAKKER, Recursive procedures, 1971. ISBN 90 6196 060 6.

MCT 25 E.R. PAERL, Representations of the Lorentz group and projective
geometry, 1969. ISBN 90 6196 039 8.

MCT 26 EUROPEAN MEETING 1968, Selected statistical papers, part I, 1968.
ISBN 90 6196 031 2.

MCT 27 EUROPEAN MEETING 1968, Se7ected statistical papers, part II, 1969.
ISBN 90 6196 040 1.

MCT 28 J. OOSTERHOFF, Combination of one-sided statistical tests, 1969.
ISBN 90 6196 041 X.

MCT 29 J. Vl;:RHOEFF, Error detecting decimal codes, 1969. ISBN 90 6196 042 8.

MCT 30 H. BRANDT CORSTIUS, Excercises in computational linguistics, 1970.
ISBN 90 6196 052 5.

MCT 31 W. M::JLENMR, Approximations to the Poisson, binomial and hypergeo
metric distribution functions, 1970. ISBN 90 6196 053 3.

MCT 32 L. DE HAAN, On regular variation and its application to the weak
convergence of sample extremes, 1970. ISBN 90 6196 054 1.

MCT 33 F.W. STEUTEL, Preservation of infinite divisibility under mixing
and related topics, 1970. ISBN 90 6196 061 4.

MCT 34 I. JUHASZ, A. Vl;:RBEEK & N.S. KROONENBERG, Cardinal functions in
topology, 1971. ISBN 90 6196 062 2.

MCT 35 M.H. VAN EMDEN, An analysis of complexity, 1971. ISBN 90 6196 063 0.

MCT 36 J. GRASMAN, On the birth of boundary layers, 1971. ISBN 90 6196 064 9.

MCT 37 J.W. DE BAKKER, G.A. BLAAUW, A.J.W. DuIJVESTIJN, E.W. DIJKSTRA,
P.J. VAN DER HOUWEN, G.A.M. KAMSTEEG-KEMPER, F.E.J. KRUSEMAN
ARETZ, W.L. VANDERPOEL, J.P. SCHAAP-KRUSEMAN, M.V. WILKES &

G. ZOUTENDIJK, MC-25 Informatica Symposiwn, 1971.
ISBN 90 6196 065 7.

MCT 38 W.A. Vl;:RLOREN VAN THEMAAT, Automatic analysis of Dutch compound words,
1971. ISBN 90 6196 073 8.

MCT 39 H. BAVINCK, Jacobi series and approximation, 1972. ISBN 90 6196 074 6.

MCT 40 H.C. TIJMS, Analysis of (s,S) inventory models, 1972. ISBN 90 6196 075 4.

MCT 41 A. Vl;:RBEEK, Superextensions of topological spaces, 1972. ISBN 90
6196 076 2.

MCT 42 W. Vl;:RVAAT, Success epochs in Bernoulli trials (with applications in
nwnber theory), 1972. ISBN 90 6196 077 0.

MCT 43 F.H. RUYMGAART, Asymptotic theory of rank tests for independence,
1973. ISBN 90 6196 081 9.

MCT 44 H. BART, Meromorphic operator valued functions, 1973. ,ISBN 906196 082 7.

MCT 45 A.A. BALKEMA, Monotone transformations and Zimit Zaws, 1973.
ISBN 90 6196 083 5.

MCT 46 R.P. VAN DE RIET, ABC ALGOJ,, A portable language for formula manipu
lation systems, part 1: The language, 1973. ISBN 90 6196 084 3.

MCT 47 R.P. VAN DE RIET, ABC ALGOL, A portable language for formula manipu
lation systems, part 2: The corrrpiZer, 1973. ISBN 90 6196 085 1.

MCT 48 F.E.J. KRUSEMAN ARETZ, P.J.W. TEN HAGEN & H.L. OUDSHOORN, An ALGOL
60 corrrpiZer in ALGOL 60, Text of the MC-corrrpiZer for the
EL-X8, 1973. ISBN 90 6196 086 X.

MCT 49 H. KOK, Connected orderabZe spaces, 1974. ISBN 90 6196 088 6.

MCT 50 A. VAN WIJNGAARDEN, B.J. MAILLOUX, J.E.L. PECK, C.H.A. KOSTER,

MCT 51

MCT 52

MCT 53

M. SINTZOFF, C.H. LINDSEY, L.G.L.T. MEERTENS & R.G. FISKER
(Eds), Revised reporat on the aZgora1:thmic language ALGOL 68,
.1976. ISBN 90 6196. 089 4.

A. HORDIJK, Dynamic programming and Markov potential theoray, 1974.
ISBN 90 6196 095 9.

P.C. BAAYEN (ed.), TopoZogicaZ structures, 1974. ISBN 90 6196 096

M.J. FABER, MetrizabiZity in generaaZized ordered spaces, 1974.
ISBN 90 6196 097 5.

7.

MCT 54 H.A. LAUWERIER, Asyrrrptotic analysis, part 1, 1974. ISBN90 6196098 3.

MCT 55 M. HALL JR. & J.H. VAN LINT (Eds), Combinatoraics, parat 1: Theory
of designs, finite geome·.~ry and coding theory, 1974.
ISBN 90 6196 099 1.

MCT 56 M. HALL JR. & J.H. VAN LINT (Eds), Combinatorics, part 2: graaph
theory, foundations, partitions and combinatorial geometry,
1974. ISBN 90 6196 100 9.

MCT 57 M. HALL JR. & J.H. VAN LINT (Eds), Combinatoraics, part 3: Combina
torial group theory, 1974. ISBN 90 6196 101 7.

MCT 58 W. ALBERS, Asyrrrptotic expansions and the deficiency concept in sta
tistics, 1975. ISBN 90 6196 102 5.

MCT 59 J.L. MIJNHEER, Sample path properties of stable processes, 1975.
ISBN 90 6196 107 6.

MCT 60 F. GoBEL, Queueing models involving buffers, 1975. ISBN 90 6196 108

* MCT 61 P. VAN EMDE BoAS, Abstract raesource-bound classes, parat 1.
ISBN 90 6196 109 2.

* MCT 62 P. VAN EMDE BoAS, Abstract resource-bound classes, part 2.
ISBN 90 6196 110 6.

MCT 63 J.W. DE BAKKER (ed.), Foundations of corrrputer> science, 1975.
ISBN 90 6196 111 4.

MCT 64 W.J. DE SCHIPPER, Symmetric closed categories, 1975. ISBN90 6196
112 2.

MCT 65 J. DE VRIES, Topological traansformation groups 1 A categorical ap
proach, 1975. ISBN 90 6196 113 0.

MCT 66 H.G.J. PIJLS, Locally convex algebras in spectral theory and eigen
function expansions, 1976. ISBN 90 6196 114 9.

4.

* MCT 67 H.A. LAUWERIER, Asymptotic analysis, part 2.
ISBN 90 6196 119 X.

MCT 68 P.P.N. DE GROEN, Singularly perturbed differential operators of
second order, 1976. ISBN 90 6196 120 3.

MCT 69 J.K. LENSTRA, Sequencing by enumerative methods, 1977.
ISBN 90 6196 125 4.

MCT 70 W.P. DE RoEVER JR., Recursive program schemes: semantics and proof
theory, 1976. ISBN 90 6196 127 0.

MCT 71 J.A.E.E. VAN NUNEN, Contracting Markov decision processes, 1976.
ISBN 90 6196 129 7.

MCT 72 J.K.M. JANSEN, Simple periodic and nonperiodic Lame functions and
their applications in the theory of conical waveguides,1977.
ISBN 90 6196 130 0.

MCT 73 D.M.R. LEIVANT, Absoluteness of intuitionistic logic, 1979.
ISBN 90 6196 122 x.

MCT 74 H.J.J. TE RIELE, A theoretical and computational study of general
ized aliquot sequences, 1976. ISBN 90 6196 131 9.

MCT 75 A.E. BROUWER, Treelike spaces and related connected topological
spaces, 1977. ISBN 90 6196 132 7.

MCT 76 M. REM, Associons and the closure statement, 1976. ISBN 90 6196 135 1.

MCT 77 W.C.M. KALLENBERG, Asymptotic optimality of likelihood ratio tests in
exponential families, 1977 ISBN 90 6196 134 3.

MCT 78 E. DEJONGE, A.C.M. VAN RooIJ, Introduction to Riesz spaces, 1977.
ISBN 90 6196 133 5.

MCT 79 M.C.A. VAN ZUIJLEN, Empirical distributions and rankstatistics, 1977.
ISBN 90 6196 145 9.

MCT 80 P.W. HEMKER, A numerical study of stiff two-point boundary problems,
1977. ISBN 90 6196 146 7.

MCT 81 K.R. APT & J.W. DE BAKKER (eds), Foundations of computer science II,
part I, 1976. ISBN 90 6196 140 8.

MCT 82 K.R. APT & J.W. DE BAKKER (eds), Foundations of computer science II,
part II, 1976. ISBN 90 6196 141 6.

* MCT 83 L.S. VAN BENTEM JUTTING, Checking Landau's "Grundlagen" in the
AUTOMATH system, ISBN 90 6196 147 5.

MCT 84 H.L.L. BUSARD, The translation of the elements of Euclid from the
Arabic into Latin by Hermann ofCarinthia (?) books vii-xii, 1977.
ISBN 90 6196 148 3.

MCT 85 J. VAN MILL, Supercompactness and Wallman spaces, 1977.
ISBN 90 6196 151 3.

MCT 86 S.G. VAN DER MEULEN & M. VELDHORST, Torrix I, 1978.
ISBN 90 6196 152 1.

* MCT 87 S.G. VAN DER MEULEN & M. VELDHORST, Torrix II,
ISBN 90 6196 153 x.

MCT 88 A. SCHRIJVER, Matroids and linking systems, 1977.
ISBN 90 6196 154 8.

MCT 89 J.W. DE ROEVER, Corrrplex Fourier transformation and analytic
functionals with unbounded carriers, 1978.
ISBN 90 6196 155 6.

* MCT 90 L.P.J. GROENEWEGEN, Characterization of optimal strategies in dy-
namic games, . ISBN 90 6196 156 4.

* MCT 91 J.M. GEYSEL, Transcendence in fields of positive characteristic,
• ISBN 90 6196 157 2.

* MCT 92 P.J. viEEDA, Finite generalized Markov programming,
ISBN 90 6196 158 0.

MCT 93 H.C. TIJMS (ed.) & J. WESSELS (ed.), Harkov decision theory, 1977.
ISBN 90 6196 160 2.

MCT 94 A. BIJLSMA, Simultaneous approximations in transcendental number
theory, 1978. ISBN 90 6196 162 9.

MCT 95 K.M. VAN HEE, Bayesian control of Markov chains, 1978.
ISBN 90 6196 163 7.

* MCT 96 P.M.B. VITANYI, Lindenmayer systems: structure, languages, and
growth functions, . ISBN 90 6196 164 5.

* MCT 97 A. FEDERGRUEN, Markovian control problems; functional equations
and algorithms, . ISBN 90 6196 165 3.

MCT 98 R. GEEL, Singular perturbations of hyperbolic type, 1978.
ISBN 90 6196 166 1

MCT 99 J.K. LENSTRA, A.H.G. RINNOOY KAN & P. VAN EMDE BOAS, Interfaces
between corrrputer science and operations research, 1978.
ISBN 90 6196 170 X.

MCT 100 P.C. BAAYEN, D. VAN DULST & J. OoSTERHOFF (Eds), Proceedings bicenten
nial congress of the Wiskundig Genootschap, part 1,1979.
ISBN 90 6196 168 8.

MCT 101 P.C. BAAYEN, D. VAN DULST & J. OoSTERHOFF (Eds), Proceedings bicenten
nial congress of the Wiskundig Genootschap, part 2,1979.
ISBN 90 9196 169 6.

MCT 102 D. VAN DULST, Reflexive and superreflexive Banach spaces, 1978.
ISBN 90 6196 171 8.

MCT 103 K. VAN HARN, Classifying infinitely divisible distributions by
functional equations,1978. ISBN 90 6196 172 6.

* MCT 104 J.M. VAN WOUWE, Uo-spaces ana gene1•alizations of metrizabiZity,
. ISBN 90 6196 173 4.

* MCT 105 R. HELMERS, Edgeworth expansions for linear combinations of order
statistics, . ISBN 90 6196 174 2.

AN ASTERISK BEFDRE THE NUMBER MEANS '"IO APPEAR"

