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MATHEMATICAL CENTRE TRACTS 82, 1976, 3-44 

PROGRAM SEMANTICS AND MECHANIZED PROOF 

R. MILNER 

University of Edinburgh, Edinburgh, U.K. 

1. INTRODUCTION 

In the last seven or eight years strong advances have been made in the 

mathematical description of the meaning of programming languages. Before 

this, the semantic description (in contrast to the syntactic desc~iption, 

which was quite formal and was often given greater weight) was presented 

rather informally, and inevitably contained ambiguities and left out details, 

and the result was that the same language acquired different meanings in 

different implementations. 

The work of Strachey and Scott and their followers has brought about 

an enormous improvement. Strachey was dissatisfied both with the informal

ity of the existing language descriptions and with their dependence on 

the notion of evaluation, and when Scott provided the mathematical models 

which he was looking for it was a rather short time before the whole of 

then-existing languages, such as ALGOL 60, could be mathematically defined 

in an elegant manner. And because the description is mathematical, it is 

now possible both to study concepts underlying programming languages and 

to conduct proofs concerning (for example) the equivalence of different 

constructs in one language, or of constructs in different languages. 

The current literature contains quite a few examples of mathematical 

descriptions of languages, but it is less easy to find reports of proofs 

about languages. This is perhaps because proofs about real languages tend 

to be long and difficult both to present and to read. The aim of this 

paper is to remedy this deficiency to some extent. We take a very simple 

language, which admittedly illustrates only some of the techniques which 

have been developed for language description, and in the next section we 

study its operational semantics (semantics by abstract machine, or by 

evaluation). 
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In section 3, using that small part of Scott's work on semantic domains 

which is reported in my paper "Models of LCF", we present its denotational 

semantics in the style originated by Strachey, and show that the two seman

tic descriptions are indeed equivalent in an appropriate sense. 

Section 4 gives an alternative semantics for the language, using the 

technique of continuations; it is also demonstrated that this technique 

can more naturally handle certain extensions to the language (in particular 

the introduction of error exits, -and other features which allow the "normal" 

flow of control to be diverted). We again give the proof that - for the 

non-extended language - the new semantics is equivalent to the old. 

Finally in section 5, using as a basis the formal deductive calculus 

described in the second half of "Models of LCF", we discuss the problem of 

mechanizing the proof of section 4. The emphasis throughout the paper is 

on the detail of the proofs, since we wish to convince the reader as far 

as possible, by leaving as few gaps as possible, that the proof strategy 

of section 5 will actually work. I hope that the reader will also be en

couraged to believe that proofs about larger languages will indeed be 

amenable to similar strategies; it is an unfortunate fact that proofs 

about programs and languages are on the whole so long and tedious in com

parison to their intellectual content that no human being is likely to have 

the patience to convince himself (even less, to convince others) that they 

are correct proofs. 

Not many references to the literature are given in the main part of 

the paper; instead! I have discussed some of the relevant papers in the 

final section. 

2. OPERATIONAL SEMANTICS 

2.1. Discussion 

We will consider throughout these lectures a simple programming language L 

which is well-understood by everyone, and indeed possesses very few features 

of interest. May aim is to consider styles of proof about languages rather 

than sophisticated language "features", since I believe that these styles 

are also appropriate to more complex languages. It will be apparent that 

even for such a simple language as L the detailed proofs are nor particularly 
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easy to read; this is not so much because of their length as because of the 

high ratio of technical manipulation to real mathematical content. To put 

it more crudely, the proofs are tedio~s. It has been remarked more than 

once that no correctness proof of a program provides greater certainty 

of the program's correctness than does thorough "debugging", unless the 

proof is mechanically checked, and this is equally true of proofs about 

programming languages. If we first examine the mechanizability of some 

proofs about a simple language, we hope to reach a position from which we 

can advance to proofs about more complex languages. 

In this section we introduce Land describe it operationally - that 

is, using an abstract machine and its state transitions. The technique 

derives from Landin [10] and is essentially the basis of the method used 

to define PL/1 [11,12]. We then describe an alternative operational model, 

using a method learntfrom Plotkin and employed by him in [13] for various 

\-calculi. The purpose of this second model is as an intermediary between 

the abstract machine model and the denotational semantic description to 

be studied in following sections. 

Operational and denotational semantics play complementary roles, and 

I believe both will continue to be necessary. An operational definition 

gives a guide to implementation, and as such it is likely to be in the 

language designer's mind more or less explicitly from the outset, since 

he is always aiming at a language which admits an efficient implementation. 

On the other hand, to describe a language by giving an abstract denotation 

for each phrase is at least a guard against redundancy and "adhocness"; 

more importantly, the language is thus defined independently of the struct

ure of an abstract machine (which however abstract, inevitably contains some 

arbitrary structure), and the denotational definition is more succinct -

often by a factor of three or more in length. And perhaps most importantly, 

the denotational definition admits proofs about the language, which are 

either impossible or very cumbersome in terms of its operational defini

tion. 

2.2. The language L 

Constants 

Variables 

Integer operations: 

Boolean operations: 

Q_, .!._, ~, ••• , true, false 

x0,x1, ••. 

+,-,x, ... 

=,>,<, •.. 
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we use c,x,b,e,p,iop,bop to range over respectively constants, variables, 

boolean expressions, integer expressions, programs, integer operations, 

boolean operations. 

Expressions e ::= xl~le 1 iop e 2 

Boolean expressions: b ::= e 1 bop e 2 ltruelfalse 

Programs p ::= nulllx:=elp1;p2 lif L then p 1 else p2 1 

while b do pl 

(We have omitted the use of parentheses; we are concerned not with parsing 

but with the phrase structure which results from parsing). 

These constitute the three types of phrase in language L. 

2.3. The S,M,C machine 

A machine state is a triple <S,M,C>, where 

- the value stack 

- the memory 

* S € (Phrases) 

M € (Constants) 00 

* - the control stack C € (Phrases u Operations u {if,assign,while}) . 

The value stack holds results (i.e. constants) and is also used to keep 

phrases whose execution is deferred. 

The memory M = m0 ,m1 , ... holds current values of the variables x0 ,x1 , ... 

The control stack holds phrases and operations awaiting execution. 

The Transition rules of the machine are as follows, given by a rela

tion .. over states (in these rules" • "prefixes an element to a stack, 

and M[n_/i] means m , ••. ,m. 1 ,n,m. 1 , ..• ). -o -i- - -i+ 

~ <S,M,c•C> .. <c•S,M,C>. 

<S,M,x.•C> .. <m.•S,M,C> 
i -i 

I~ <~2-~1•S,M,+•c> .. <n1+n2•S,M,C> 

••. etc. for all iops. 

III .. <~2 -~1 -s,M,=•C> .. <t•S,M,C> where tis true if ~l 

false otherwise 

•.• etc. for all bops. 

IV.. <S,M,null•C> .. <S,M,C> 



<S,M, (if b then pl else p 2) •C> ~ <p2 •p1 •S,M,b•if•C> 

<S,M, (while b do p 1) •C> ~ <p1 •b•S,M,b•while•C>. 

<false• ......•••.... > < ••• •P2· .> 

<true•p1 •b•S,M,while•C> ~ <S,M, (p 1 ;while b do pl) •C> 

<false• .•..•.......•.• >~ <S,M,null•C>. 

Note that~ is deterministic. We use~ to denote then-th power of the 

* relation~, and~ for its transitive reflexive closure. 

We define EVAL: Programs x Memories+ Memories by: 

* EVAL(p,M) = M' iff <£,M,p•£> ~ <£,M',£> , 

7 

where£ stands for an empty stack. Notice that EVAL is a partial function. 

2.4. The reduction relation+ 

The S,M,C machine is abstract, but rather arbitrary in the method chosen 

to control evaluation - that is, one might have used other structures in 

preference to a pair of stacks and a memory vector. Some of this arbitrar

iness may be removed by axiomatizing a reduction relation+ over 

Phrases x Memories. We give the axioms and rules of a simple formal deduct

ive system. 

(~ op e) ,M + (~ op e') ,M 

(~1+~2) ,M + nl+n21M 

if e,M + e' ,M 

••. etc, for all iops. 

(~ 1 =~2 ) ,M + true. ,M } . 
according 

+ false,M 

•.• etc, for all bops. 

III+ (x.:=e),M + null,M[~/i] if e,M t ~,M. 
1. 

(null;p) ,M + p,M. 

n 2 or not, 
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* V+ (if b then pl else p2 ) ,M + pl ,M if b,M + true,M 

* • • • • • • • • • • • • • • • • ••• • • ••• + p2 ,M if b,M + false,M. 

* VI+ if b,M + true,M 

* •••••••••••••.••. + null,M if b,M + false,M 

REMARK •. To be fully formal, we should be clear that the sentences of this 

formal system are of the form 

* where~.~• are program phrases; $,M + ~',M' is not a sentence. Thus rule 

III+ has not just a single hypothesis e,M ! ~,M, but k hypotheses (for 

some k ~ 0) of the form 

(0 s i < k), 

where ei n. The same remark holds for V+ and VI+. 

We sketch the proof that+ is deterministic. First, one shows that for 

each e,M there is at most one pair e',M' such that 

e,M + e' ,M' 

and that M' = M. It follows that in the case of!, for each e,M there is 

at most one pair ~,M' such that 

* e,M + !!,M' 

and that M' = M. Similar results hold for boolean expressions. These proofs 

proceed by induction on the structure of expressions. Analogously, one 

then shows that if p,M + p',M' then p',M' is unique. 

It follows that the partial function 

eval: Programs x Memories+ Memories 

is well-defined as follows: 



eval(p,M) * M' iff p,M ➔ null,M' 

2.5. EVAL eval ------

One might hope to prove the equivalence of EVAL and eval by induction on 

the structure of programs. This fails just because of the while construct, 

and we have to resort to induction on the length of computation. 

LEMMA 1. 

(i) k * Ife,M ➔ ~,M' then M' =Mand <S,M,e•C> ~ <~•S,M',C>. 

(ii) 
k Ifb,M ➔ M' * { true L , Mand <S,M,b•C> ~ < f"S,M .C>. false 

(iii) Ifp,M t null,M', then <S,M,p•C> ! <S,M' ,C>. 

Proof. We shall omit the proofs of (i) and (ii) and prove (iii) by induc

tion on k (parts (i) and (ii) are simpler). 

Basis k 0. In this case p = null, M = M' and use IV(~). 

Step. Assume (iii) for all k' < k, and assume 

( 1) 
k p,M ➔ null,M' 

Argue by cases 

(a) 

(b) 

pis null. Impossible, since null,M f 

pis (x.:=e). ·Then k = 1 and (1) must have been inferred by III (➔), 
½ 

so e,M ➔ ~,Mand M' = M[~/i]. So we have 

as required. 

(c), (d) We leave the cases p is (p1 ;p2 ) or p is if b then p 1 else p 2 as 

an exercise for the reader. 

(e) p is (while b do p 1). Then we have 

9 
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and Lemma l(ii) then allows us to deduce 

<S,M,p•C> • <p1•b•S,M,b•while•C> by IV(•) 

• {~:~:e}•p1 •b•S,M,while•C> by Lemma 1 (ii) 

•<SM {Pl;p}•c> by V (•) 
' ' null 

! <S,M' ,C> by the ind.hypoth. atk - 1. 

This concludes the proof of Lemma 1. D 

Lemma 1 is half of our equivalence theorem. For the other half we introduce 

a definition. 

DEFINITION. The reduction <S,M,t•C> ~ <S',M',C> is perfect if the control 

stack in each intermediate state is a proper extension of C; that is, 

C is first "uncovered" at the last step. 

LEMMA 2. 

(i) If <S,M,e•C> ~ <S',M',C> is perfect, then 

* S' = ~•S for some~• M' =Mand e,M + ~,M. 

(ii) If <S,M,b•C> ~ <S',M',C> is perfect, then 

S' = true•S or S' = false• S, M' = M * true} and b,M + false ,M resp. 

(iii) If 
k 

<S,M,p•C> • <S',M',C> is perfect, then 

S' = Sand * p,M,. null,M'. 

Proof. Again, we omit the proofs of (i) and (ii), and deal with represent

ative parts of (iii), for which we induce on k. 

Basis k = 0. Impossible. 

Step. Assume (iii) for all k' < k, and that 

(2) 
k 

<S,M,p•C> • <S' ,M' ,C> 

is perfect. 

Argue by cases: 

(a) pis null. Then k must be 1 since the reduction (2) is perfect, and by 

IV(•) we see that M' = M, S' = S. The rest is trivial. 



(bl pis (xi:=e). Then from (2) 

k-2 .. 
<i•S,M,e•assign•C>l 

perfect 
<S" ,M" ,assign•C> 

• <S' ,M' ,C> 

* where by Lemma 2(i), S" = ~•S, M" =Mand e,M + ~,M. Hence by 

V (=>) S" = S, M' = [~/i]M; so p,M + null,M' by III (+). 

(c), (d) p is (p1 ;p2 ) or (if b then p 1 else p 2). Exercise. 

(e) pis (while b do p 1). Then from (2) 

(3) 

(4) 

<S,M,p•C> <p•b•S,M,b•while•C>l 

kl perfect 
.. <S" ,M" ,while•C> 

perfectly, by assumption. 

Now k2 < k, so using Lemma 2(iii) at k2 , for the last reduction, we 

infer that resp. 

{ (pl;p)} M * 
null , + null,M'. 

But from (3), by VI (+) we obtain respectively 

fP1 ;pl 
p,M + ~,M, 

* whence p,M + null,M' by (4). 

This completes the proof of Lemma 2. D 

11 
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THEOREM. EVAL eval. 

Proof. we need to establish that 

* * <e:,M,p•e:> • <e:,M' ,e:> iff p' ,M ➔ null,M'. 

* (•) Suppose <e:,M,p•e:> • <e:,M',e:>. Thus must be a perfect reduction, since 

there is no production of the form 

<S,M,e:> • •.•• 

So Lemma 2 provides the rest. 

(.,) This is a simple application of Lemma 1. D 

3. DENOTATIONAL SEMANTICS 

3.1. Semantic domains 

In this section we give a semantic description of Lin terms of cpo's, 

using the definitions and results of the first two sections of "Models of 

LCF" [28]. But first we need two further cpo-preserving domain operations 

(we have already seen that if D and E are cpos, so is the continuous func

tion domain [D➔E], which we shall abbreviate henceforward to just D ➔ E). 

Cartesian product. If we define the ordaring ~ over 

DXE {<x,y> Ix ED, y EE} 

by 

<x,y> C: <x' ,y'> iff x C: x' and y ~ y', 

the following are easily verified: 

(i) D x Eis a cpo; indeed, ~DXE <~0 ,~E> and for the chain 

{ <x. , y. > i ~ 0} in D x E, U<x. , y. > < LJ x. ,Uy. >. 
i i i i i i i i i 

(ii) The pairing function AX"Ay•<x,y> ED+ E ➔ D x Eis continuous, 

and so are the selector functions 



fst A<x,y>•x € D x E + D 

snd A<x,y>•y € D x E + E. 
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Disjoint sum. Let us define 

D + E {~} u {<O,x> I x € D} u {<1,x> Ix EE} 

and the ordering i;_over D +Eby z i;_ z' iff either z =~,or z = <O,x> and 

z' = <0,x'> and x C x' in D, or z = <1,y> and z' = <1,y'> and y i;_ y' in E. 

A diagram makes it clear: 

The flags O and 1 are merely for disjoining D from E, so that for example 

D + D contains two distinct copies of D. 

(i) 

(ii) 

Associated with+ are the following functions: 

The injection functions lQ: D + D + 

l 1: D + D + 

The projection functions 1T O: D + E + 

1T 1: D + E + 

J x if z = <O,x> 

L ~0 if z = <1,y> or ~D+E 

and 1r 1z is similar. 

E AX:D•<O,x> 

E Ay:E•<l,y>. 

D 

E, 

0 :} 
(iii) The discriminator functions O O. D + E + T 

1. 

where o0z l tt if z 

ff" 

~T 

<O,x> 
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and o1z is similar with tt, ff interchanged. 

It is a simple exercise to show that these are all continuous functions, 

and that Vx ED 

(a) TIQ(lQX) X, 

(b) Til (1 0x) ¾;• 
(cl o0 c1 0xi tt, 

and many similar identities. Of course the binary+ can be generalised 

to n-ary and even infinitary +. If for the latter we choose the non-negative 

integers 0,1, •.• as flags, we may also define 

00 

* D l Di {•} + D + (DXD) + (DXDXD) + ••• 
i=0 

(where{•} is the one element domain), which is a domain of finite sequences 

of elements of D. Then l 0 ( •) is just the null sequence, and 

* length: D ➔ N 

is just the "flag selecting" function. 

It is easy enough to define all the 

normal list processing operations 

O~;-- -,- -,---
, , I 

/ I I 
, I , 

N I I/ , 

.LN 

head, tail, cons, null - in terms of pairing and selecting and the 

3.2. Denotation of language L 

Our aim is to acribe directly (rather than via a machine) a function: 

S ➔ S to each program in L, as its meaning or denotation, where Sis now 

a cpo of (abstract) memories or stores. We choose S to respect convention: 

it is accidental that S stood also for a stack in our operational semantics, 

but we shall henceforward use it only in the new sense. 

Though there are alternatives, we choose S to be a flat cpo of vectors 

of non-negative integers. More precisely 

s <m.> E Memories} 
-J. 



and we shall allows to vary over S, but will adopt the convention that 

m varies over S - {i} - i.e. it stands always for a defined store; also 
s 

we will use m for the abstract counterpart of M: 

M 

The only operations we need on stores are 

where 

update: N + (NxS+S) 

select: N + (S->N) , 

{ 
is if i,n ors is undefined 

update i(n,s) 
[n/iJs otherwise 

f iN if i ors is undefined 
select i s 1 s. otherwise. 

l. 

These functions are easily shown continuous, and we can also shown 

LEMMA 1. If i, j ,n1 ,n2 are all defined then 

{ n, if i j 
(1) select i (update j (n,m)) 

= select i m if i t- j , 

(2) update i (select i m,m) m , 

15 

{ update i {n 1 ,ml if i = j 

update j (n2 ,update i (n 1 ,m)) otherwise. 

Proof. Omitted. D 

REMARK. Part (3) holds even for undefined i,j,n1 ,n2 and for is in place 

of m. 

3.3. Semantics of expressions 

We first assign to each expression ea function ES+ N as its meaning, 

and to each boolean expression b a function ES+ T. The meaning E[e] of e 
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is given as follows: 

E[ e] 1.8 l.N 

E[!:!h = n 

E[x.]m select i m (= m.) 
l. l. 

E[e 1+e 2]m E[e 1]m + E[e2]m 

... etc. for all iops. 

[Note that the right-hand+ stands for a function EN+ (N->N), while the 

left-hand+ is a symbol of L.] 

The brackets [] are to distinguish syntactic objects. For later work 

we shall need to consider a cpo E, which consists of all Expressions 

together with certain "partially-defined" expressions; then it will be 

possible to discuss E as a member of the domain E + (S+ N). Such a domain 

as E would indeed be important if we were discussing expressions as data 

objects (on a par with N) - as they would be for a compiler for example. 

But here we need do no more than remark that E[e] is defined inductively 

on the structure of e. The same remark applies to our later semantic 

functions Band P. 
For boolean expressions, we define B[b] ES+ T thus: 

B[ b] 1. 
s l.s 

B[ true]m tt, B[false]m = ff 

{¾ if either E[e 1]m or E[e2]m is l.N 

B[e 1=e 2]m tt if they are equal 

ff otherwise. 

Before dealing with programs, we state without proof a simple lemma which 

relates the denotational semantics of expressions to their operational 

semantics. 

LEMMA 2. 

* ( 1) e,M + !:!,M 

(2) * b,M + { true } M 
false ' 

iff E[ e]m 

iff B[b]m 

Proof. By induction on the structure of expressions. Recall our convention 

that mis the abstract counterpart of M. D 



3.4. Semantics of programs 

We proceed as with expressions to define P[p] € S ➔ S inductively on the 

structure of programs. But first the while construct deserves special 

attention. What function f € S +Sis P[while b do p 1]? The diagram 

ff 

suggests that f satisfies 

fs = B[b]s + f(P[p 1]s),s 

so that we choose for f the least fixed point fix i of the functional 

17 

That the least fixed point of i is right will be justified by our theorem. 

In defining P[e] we choose not to define P[e]i = i since it follows 
s 

from our definition as an easy lemma. 

P[null] s 

P[x. :=e]s 
J. 

P[pl ;p2]s 

P[if b then p 1 else p2]s 

P[ while b do p 1] 

LEMMA 3. P[p] is is,. 

= s 

update i (E[e]s,s) 

P[p2] (P[[p1]sl 

B[b]s + P[p1]s,P[p2]s 

fix(H•,,s' •B[b]s' + f(P[p]s') ,s'). 

Proof. By induction on the structure of p. Use the definition of update, 

and of B[b], and also that fix is= i(fix i)s. 0 
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3.5. Equivalence of operational and denotational semantics for L 

We now prove the theorem: 

P[ TI I i"ff * 11 1 THEOREM. pim = m p,M + ~,M . 

As an easy corollary of this, we have that P[pDm = i iff the reduction 
s 

of p,M under+ fails to terminate. It is easier to divide the theorem 

into two lemmas. 

LEMMA 4. If p,M + p' ,M' then P[p]m P[p'Dm'. 

Proof. Induction on p. 

Basis. (i) pis null. Nothing to prove, since null,M f,-. 

(ii) pis (x.:=e). Then by the rules of+, p' is null, and M' = [~/i]M, 
* l. 

where e,M + ~,M. So Lemma 2 gives E[eDm = n, whence P[pDm = update i (n,m) 

m[n/i] = m', while P[p'Dm' P[nullDm' = m'. 

Step. (iii) p is (p1 ;p2). 

If p 1 is~• then p' ,M' = p2 ,M by rule IV (+). But then P[pDm 

= P[p2D (P[nullDml = P[p2Dm = P[p'Dm'. 

Otherwise p' = (pi;p2) by IV(+), where p 1 ,M + Pi,M', so by Induction 

Hypothesis P[p1Dm = P[p1Dm'. But then P[pDm = P[p2D (P[p1Dml 

== P[p2D (P[p1Dm' l = P[p'Dm'. 

(iv) pis (if b then p 1 else p2). Exercise. 

(v) p is (while b do p 1). Then 

p' ,M' = {:!::},M where resp. b,M t { ::~:e },M. 

So Lemma 2 gives resp. B[bDm Jtt} l ff , whence 

P[pDm (fix ¢)m = ~(fix ~)m 

B[b]m + (fix ~) (P[p1Dml ,m 

resp. 
~ fix ~(P[p1Dml = P[pD (P[p1Dml} 

l m = P[ nullDm 

in each case P[p'Dm'. D 



Since this lemma was only concerned with one step reductions, we needed 

no induction to handle the while construct. 

LEMMA 5. If Pl[ pb * m' then p, M + null , M ' ·. 
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Proof. Again, by induction on p. We leave all the cases to the reader as 

an exercise, except for the~ construct. Here, we assume the lemma for 

p 1 and assume P[p]m = m', where p is (while b do p 1). Now Pl[p] = fix <Ii 

(<Ii as before). Let 

~s+s } so that P[p] = ~ fi 
..., f. 

l. 

We shall prove by induction on i (i.e. induction on the iterates of <Ii) 

that 

* (#) m' then p,M + null,M' . 

Further, from Pl[p]m = lJ(f.m) 
i l. 

the rest follows from (#). 

m' we can infer that for some i, fim m'; 

[Note: this inference is a consequence of the fact that Sis a flat cpo; 

<fim> is a chain ins with lub m', and hence some member of the chain is 

itself equal tom'.] 

Proof of (#). For the basis i = 0 there is nothing to prove, since 

f 0m = J.m = J_, while m' is by convention defined. 

Step. Assume # for i, and assume fi+lm = m'. Now 

fi+lm = <!ifim (B[b]m + fi (P[p1]m) ,ml m'. 

But since m' is defined 

either a) B[b]m (whence * tt b,M + true,M by Lemma 2) and 

fi+lm fi (P[pl]m) = m', 

or b) B[b]m ff (whence * b,M + false,M) and 

fi+lm m = m'. 

* In the case of b), p,M + null,M' follows easily. For case a), we first 
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note that P[p1]m must be defined, = m" say. (If not, then we have 

m' = f. (l) C P[p]l = l, a contradiction.) 
1. -

So by the inductive assumption of Lemma 5 for p 1 , we have that 

* p 1,M + null,M"; and by the present inductive assumption for fi we have 

* I that p,M" + null,M. It follows that 

p,M + (p1 ;p) ,M 

* + (null,p),M" 

as required. 

+ p,M" 

* + null,M' 

* (since b,M + true,M) 

Proof of Theorem. (*) Directly from Lemma 5. 
(0) (0) (n) (n) , 

(._) Let p,M = p ,M + •.. + p ,M = null,M. Then Lemma 4 tells us 

that {P[p (i)]m (i)} are all equal, whence P[p]m = P[null]m' = m' as 

required. D 

4. CONTINUATION SEMANTICS 

4.1. Continuations 

Hitherto we have tacitly assumed of the language L that the execution of 

each program construct, if it terminates at all, terminates "naturally" -

i.e. control passes out at the end of the construct. Thus it was safe to 

write 

indicating that p2 will always be executed after the termination of p 1• 

Various language constructs do not admit this assumption; jumps are 

the obvious example, and error exits (trapped or not) are another. We 

shall consider the latter only, and show how the device of continuations -

introduced independently by L. Morris and C. Wadsworth - can handle abnormal 

exits. Extension of the technique to jumps involves no further concepts -

it is just rather tedious, essentially because jumps spoil the structured 



21 

nature of programs. 

To avoid too much detail, let us from now on forget the details of 

assignments (or other basic non-compound instructions) and expressions in L, 

merely assuming that there are certain Boolean expressions b 1,b2 , ••• with 

corresponding semantics ai = B[biD ES+ T, and certain basic instructions 

ci - including assignments (but excluding null) with corresponding semantics 

y, = C[c.D ES+ s, where in particular C[x.:=eDs = update i (E[eDs,s). 
i i i 

(We are thus preventing consideration of abnormal exit from expressions or 

basic instructions; the technique of continuationsadaptseasily to allow 

this.) 

Consider now adding a single extra instruction"~", whose effect 

is supposed to be to abort the whole program and deliver an error message 

(which may depend on the current store). There is no easy way to fit~ 

into the semantic equations for P. 
So we proceed as follows. First, assume a cpo O containing all pos

sible end results of programs, including error messages. We should need 

something like O anyway - hitherto we have taken the meaning of a program 

in the domain S + s, but we are not often interested in the state of the 

whole store at the end of the whole program. With Owe may imagine extract

ing the final output by applying to P[pDs some output function ES+ o. 
(Aside: we are still not considering programs which can output - or 

input - information during execution; it turns out that continuations also 

make this easy to handle.) 

But now it appears that if xis such an output function, then 

X O P[pD is a function in the same domain S + o, respecting the work done 

by executing p and ~ "outputting". If we call C = S + O the domain of 

continuations, we can equally well specify the meaning of a program p 

by defining the effect of "prefixing" its work to our arbitrary continu

ation x to yield another continuation. So our new semantic function will 

be Q, and we define Q[pD EC +·C below. 

To emphasize the back-to-front way of working, consider the while 

construct again. If pis while bi do p1 , then we want to specify the 

output Q[pDxs which results from starting p withs and continuing after 

p with X· 
Let Q[pD = g. Then gx satisfies 
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and our equation below settles on the least fixed point of this recursive 

equation for g. 

Q[null] xs 

Q[c.]xs 
l. 

Q[p1 ip2]xs 

QJ[2:! bi then p 1 else p2]xs 

Q[ while bi do p 1] 

and finally we add 

Q[ error] xs = dump s , 

xs 

x(yis) 

Q[pl] (Q[p2]x)s 

1\s + Q[p1]xs,Q[p2]xs 

fix(Ag'AX"As•6is + Q[p1] (fx)s,xs), 

where dump is a special error continuation - we may imagine that it prints 

the whole store if we like. The vital point is that because error chooses 

to ignore the normal continuation x, any program containing~ may also 

choose to ignore its normal continuation. (Write out the meaning of the 

program "~;p" to emphasize this, and also notice the difference between 

P[p1;p2] and Q[p1;p2].) 

In these lectures we do not propose to develop the semantics of more 

complex languages (they can be found in the literature) but rather to look 

at proofs about simple languages; in fact we shall only do one proof, since 

we also want to examine the possibility of mechanizing it. But before 

leaving errors, it is worth while sketching an extension to the language 

and its semantics to allow for trapping errors. 

Suppose then that error is to invoke not a fixed continuation "dump", 

but an error continuation n which has somehow been established by the 

program. That is, to give the meaning of~, our new semantic function 

R needs an n as well as ax as argument - i.e. R[p] E c + C + C, and we 

write 

ns (cannot succeed!) 

and naturally 

R[null] xns xs (cannot fail!) 

But how are errors to be trapped - or (to ask the same question differently) 

how are error continuations established? The simplest possible answer is 

to add the program construct 
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whose effect is to be as p 1 if p 1 terminates normally, otherwise to execute 

p2 as soon as p 1 commits an error. (Thus,. the whole construct can only err 

if p 2 errs.) 

Exercise. Give the semantic equation 

and complete the definitions of R. You should then be able to prove 

(i) orelse is associative, i.e. 

(ii) error is a left zero for" ", i.e. 

(Is it a right zero?) 

(iii) error is a left identity for orelse, i.e. 

R[~ ~ p] = R[p] . 

(Is it a right identity? Is there a left or right zero for~?) 

Does orelse distribute over"; "? •.. over if bi then 

If not always, then under what conditions? 

else -- ? 

Of course the most useful errors are those which return some kind of value, 

but we shall have to omit this kind of extension. Again, the techniques 

require no really new idea. 

4.2. Techniques for proof about continuous functions 

Most interesting properties of language semantics involve fixed-points, 

and their proofs depend upon the fact that fix t denotes the least fixed 

point oft. (The simple properties of~ and orelse mentioned above are 

an exception.) The fundamental method is to prove that the required property 

holds (or something similar holds) when fix tis replaced by each of the 

iterates f. = ti(L) oft. Let us take as an example a general property of 
1 

fixed points: 
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F(fix(GoF)) = fix(F 0 G), 

provided F,G are continuous. 

Proof. Let 

H F 0 G, J GoF 

and let 

h. Hi (.L), ji Ji (.L) • 
l. 

We then show by induction on i that 

whence 

F(fix J) F(LJ j.) = LJ(F(j.)) C fix(FoG), 
i l. j l. -

and a similar induction on the iterates hi yields the other half of the 

required result. 

To prove (*): 

when i = O, F(jO) = F(.L) t;_ F(G(fix H)) (FoG) (fix (FoG)) fix(FoG); 

otherwise F(ji+l) = F((GoF)ji) = (FoG) (Fji) C (FoG) (fix(FoG)) 

(by induction) 

fix(FoG). 

Hence the induction is complete. D 

Exercises. Prove similarly 

(i) fix F = fix(FoF); 

(ii) if F(.L) = G(.L) =.Land FoG = GoF then fix F = fix G; 

(iii) ditto, replacting the second condition by FoFoG = GoF. 

The method of such proofs is to prove first that F[f.] holds for all i, 
. l. 

and then step to F[fix ~] where f, = ~1 .L. For this step to be valid, the 
l. 

predicate F[ ] has to be directed-complete; that is, for any chain <f.>, 
l. 

(V. • F[ f. J) ~ F[LJ f. J. 
l. l. i l. 



25 

Now any equational formula - that is t = t' - or inequality t ~ t' is 

easily shown to be directed - complete considered as a predicate of some 

free variable x in the formula, provided that t and t' are built by appli

cation and abstraction from continuous functions. (This is the import of 

Prop. 3.1 in "Models of LCF".) It is also easy to show that if Hx] is 

directed complete in x, so are 

Vy• Hx] 

G • HxJ , 

provided that xis not a free variable of G. The class of directed-complete 

formulae may be extended further; we merely emphasize here the importance 

of the notion. 

4.3. The equivalence of direct and continuation semantics 

We have presented two semantic definitions of language L, both guided by 

our intuition about what L should mean, and one of them (the direct 

semantics P) further substantiated by a proof of its equivalence with an 

operational definition. We must therefore answer the question: in what 

sense do P and Q give the same meaning to L? In some sense they simulate 

one another - their definitions are structurally similar - but we cannot 

simply claim P = Q, or P[p] = Q[p], since the domains are different. 

The simulation relation between direct and continuation semantics for 

a more complex language was exhibited by Reynolds. He used more powerful 

techniques than we have developed here, but for L they are unnecessary. 

We will give a rather simple proof of the appropriate relationship 

between P and Q, and then proceed to examine how the proof might be 

formalized and performed interactively with a machine. 

We must first omit from L the~ command, since it was not handled 

by P. Then in view of our discussion when Q was first defined, it is 

natural to expect that 

( 1) Vx•Q[p]x 

and indeed this is readily verified from the semantic equations when p 

is c. or null. 
1. 
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But suppose that p0 is in some program like 

which never terminates? It is not hard to verify that whatever x, Q[p0]x =l.; 

on the other hand if we pick x = AS"O for some o ~ 1. E O (i.e. xis a con

stant function) then we also have xoP[p] = As•o ~ 1.. 

So some restriction on equation (1) is required. It is not hard to 

accept that x should be a strict function - that is, it should satisfy 

Xl. = l.; intuitively the continuation should be patient enough to wait for 

p to introduce~ information (which in our case means a fully defined 

store). We therefore formulate our simulation relation thus 

(2) Vp•Vx•x strict=> Q[p]x xoP[p] , 

which we shall prove inductively on the structure of programs. We also 

need to assume that the meanings of basic instructions and boolean expres

sions are strict functions: 

(3) 

The following Lemma is needed: 

LEMMA. Vp•Vx•x strict=> Q[p]X strict. 

Proof. By induction on the structure of p. Assume x strict. 

Basis. (i) p = ~- Then (Q[p]x)1. 

(ii) p Xl. by (3) 

1.. 

Step. Assume the lemma for all subprograms of p 

(iii) p = (p1;p2). Then Q[p]x = Q[p1]x• where x' = Q[p2]x. But by the 

Lemma for p2 x' is strict, hence by the lemma for p 1 so is Q[p]x. 

(iv) p = (if bi then p 1 else p2). Then Q[p]xl. = f\1. + ••. , •.. = l. by (3). 

(v) p = (while bi do p 1). Then Q[p]xl. = (fix <I>)x1. (<l>=Ag•AX"As•Bis + .•. , 

.•. ) = <!>(fix <I>)x1. = Bil.+ ••• , ••• = 1. by (3). □ 
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REMARK. In this proof the while construct caused no difficulty because it 

executes the test before the body. You may like to try the following 

exercise, in which you may need an inner induction on the iterates of a 

functional like~-

Exercise. Formulate the obvious continuation semantics of the construct 

and prove the corresponding case of the lemma. Also prove that 

Q[ if b. then (do p 1 until b. ) else nullD 
-1. ---1. 

= Q[while b, do p 1] . 
--- 1. 

(For the last part you may need to look at the style of proof of the 

following Theorem.) 

SIMULATION THEOREM. Vp•Vx•X strict~ Q[p]x 

Proof. By induction on the structure of p. 

Basis. (i) p = null, (ii) p = ci. Both trivial. 

Step. Assume the theorem for all subprograms of p, and assume x strict. 

(iii) p = (p1 ;p2 ). Then Q[p]x = Q[p1]x• where x' = Q[p2]x 

x' 0 P[p1] by the theorem for p 1 , since x' is 

strict by the Lemma, 

x O P[ p 2] 0 Pl[ p 1] by the theorem for p 2 

x 0 PffpD. 

(iv) p = (if bi then p 1 else p 2). Then Q[p]xs 

while (x 0 P[pD)s = x<f\s + P[p1h,P[p2]s). 

(v) 

The result follows by considering the three cases Sis= tt,ff,~T. 

p = (while bi do p 1). Then Q[p]x = (fix '!')X and x0 P[p] = X0 fix ~ 

where'!' Ag•Ax'•;l.s'•Sis' + Q[p1]Cgx'ls',x's' 

;\f•As' •Sis' + (foP[p1] )s' ,s'. 

We need only show that if fi,gi are the iterates of~,'!' respectively, then 
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for each i 2: 0 

(4) 

For then, when xis strict Q[p]x 

xoP[p]. 

(LJ g.)x = U(g.x) = U(xof.) = xoUf. = 
i i i i i i i i 

To prove (4); when i = 0 g0x• = LX' = L = X' 0 L (X' strict) 

Now assume (4) for i, and let x' be strict. Then 

Bis+ (gix' 0 P[p1])s,x's by the theorem for p 1 , since 

gix' ~ (fix 'l')x' = Q[p]x' which is strict 

by the lemma, so gix' is also strict, 

On the other hand 

(x'ofi+l)s X'(fi+ls) x' (B.s + (f.oP[p1])s,s) 
i i 

and equality follows by case analysis on Bis. D 

5. MECHANIZED SEMANTICS 

5.1. Deductive systems 

The aim of this section is to explore the possibility of mechanizing the 

proof of the simulation theorem, using a formal deductive calculus which is 

an extension of that described in "Models of LCF", Sections 3 & 4. The 

extension is in two directions; more logical connectives, and more types. 

This system has been presented in detail in Milner, Morris and Newey [24], 

and we shall be more informal about it here. 

Well-formed formulae (wffs). Wffs are formed from the atomic wffs (awffs) 

by normal use of the connectives&,"">, V (conjunction, implication and 

universal quantification), and a sentence is r ~ A, where r is a set of 
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wffs and A is a wff. As rules of inference we add 

Conjunction r f- A f f- B Selection r f- A & B 
rl-A&B r F A r F B 

Deduction f U {A} 1-B Modus Ponens r f- A b. f- A => B 
ff-A=>B r u b. F B 

Generalization r I-A Specialization r f- Vx•A 
r F Vx•A r f- A{t/x} 

(x not free in r) 

Assumption 
{A} FA 

[Note: these rules actually replace INCL, CONT and CUT of "Models of LCF".] 

Types. Instead of just two basic types IND and TR, we allow any number of 

basic types (including TR which we rename T), and types may be built using 

the binary connectives+ x and+. From what has gone before, we know that 

there is a domain (a cpo) for each type, whose name is just that type. 

Two further ingredients are necessary; (a) Reflexive types, and 

(b) Polymorphic types. From Scott, we know that any family of recursive 

domain equations 

D F(D1 , ... ,DJ 
n n n 

has a solution for the Di (strictly the equality is an isomorphism) where 

the F. are built from the D., and possibly other domains, by+ x and+. 
i i 

We therefore allow any family of such equations as relations over 

our type constants (domain names); more precisely then a type is any 

equivalence class of type expressions induced by these relations, and it 

may be named by any member of the class. These are our reflexive types. 

But there are many operations which make sense at an infinity of 

types. Examples are the conditional and fixed point operations, and the 

operations fst, snd, o0 , o1 , 1 0 , 1 1 , w0 , w1 introduced earlier. To allow 
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these operations to have types, we introduce type variables a,a1, ... , 

S,S 1 , .•. and then for example fst: axS ➔ a, 1 0 : a ➔ a+S etc. 

Simple and natural rules apply for a term or wff to be well-typed, 

and we do not go into them here. Type variables have no binding quantifier, 

but we add to our deduction rules the following 

Type Instantiation r f- A 
r I-Ah/a} 

where a is a type variable not in 
r, and, is any type (possibly 
including variables). 

This rule is invoked whenever we wish to use a "polymorphic" theorem, 

such as 

at a particular instance of its type. 

This is the basis which is intended to formalize our informal reason

ing within a typed framework; from now on we shall omit types almost 

everywhere (except when discussing them, rather than the objects which 

possess them), and we would expect any tolerable mechanization to allow 

these omissions but to supply and check types internally. 

Note: We will use "fix" rather than "Y" for the fixed point combinator. 

Also we shall use the constant " J. " - instead of "UU" as in "Models 

of LCF" - to denote J.. It may be worth remarking here that the reasons 

for choosing TT, FF, UU in LCF were (i) t, fare far too often used as 

variables; similarlywith T,F. (ii) In addition, the Stanford LCF was 

superimposed on LISP, which does quite surprising things with the atom T. 

(iii) TT and FF are much quicker to type than true, false. However, I sug

gest we pronounce TT,FF,UU "true", "false", "bottom". 

5.2. Formalizing the syntax of language L 

Our calculus discusses cpo's; so to discuss both the syntax and the 

semantics of L, the·syntactic objects as well as the semantic ones must be 

found in suitable cpo's. (This will mean introducing things like the 

undefined program, and possibly infinite programs; these do not get in 

the way however!) 



We define a set of mutually reflexive types 

PROGM NULL + INSTN + COMPD + CONDL + ITERN 

NULL 

INSTN 

(1) COMPD PROGM x PROGM Assume that+ and x associate 
to the right. 

CONDL BEXP x PROGM x PROGM 

ITERN BEXP x PROGM 

BEXP 

11 • 11 is our name for the domain with a single element, which we shall 

denote by the constant(). This domain is exiomatized easily by 

~ Vx •x = () 
0 0 

We have left out the definitions of INSTN and BEXP, consistent with our 

previous treatment. They could indeed by left unspecified, and for our 

theorem all we shall rieed is that the functions 

C: INSTN + S + S and B: BEXP + S + T 

satisfy 

(2) 
I- VcINSTN 

Note that our type equations really give the abstract syntax of L; all 

that is said of a while program is that it is a pair consisting of a 

boolean expression and a program, which is all that matters to us. 
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But we would like mnemonic names for the discriminators, constructors 

and destructors of this abstract syntax; we define 

Discriminators ~ isnull = o0 
~ isinstn - Ap•o 1p + o0 (TI 1p),FF 

~ iscompd = Ap•o 1p + (o 1TI 1p + o0 (Til (TI 1p)),FF),FF 

etc. 

all of type PRGM + T. 
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Constructors r mknull - l NULL ➔ PROGM 
0 

(3) 
f- mkinstn - l ol INSTN ➔ PROGM 

1 0 
f- mkcompd - llollOlo: PROGM x PROGM ➔ PROGM 

etc. 

Destructors f- destnull - iro PROGM ➔ NULL 

f- destinstn - 1T0°1T1 PROGM ➔ INSTN 

f- destcompd - ,r0°,r1 o,rl: PROGM ➔ PROGM x PROGM 

etc. 

We have worked with a binary disjoint sum operation (rather than a 5-ary 

one) which makes these definitions lengthy. But once we have proved standard 

theorems for our new operations, their definitions need never be seen again. 

Such theorems are 

f- isnull (mknull () ) - TT 

f- 'v'bVp1Vp2 •iscondl(mkcondl(b,p1 ,p2 )) - TT 
(4) f- 'v'bVp1Vp2 •destcondl(mkcondl(b,p1 ,p2)) TT -

f- Vi •isnull(mkinstn(i)) - FF 

etc., etc .. 

We shall use them later as simplification rules (which we shall describe) 

in proving the main theorem - indeed, these theorems themselves are proved 

by using the earlier definitions as simplification rules, i.e. they are 

proved completely automatically. 

structural Induction for L 

We wish to derive, from the standard rule of computation induction given 

in "Models of LCF", the following inference rule for programs of L: 

I- H.1J I- Hmknull ()] I- Hmkinstn (i)] 

(5) F[p1],F[p2] I- F[mkcompd(p1,p2)] 

F[p1],F[p2] I- F[mkcondl(b,p1 ,p2)] 

F[pl J I- F[mkitern(b,p1)J 

I- HpJ 

where extra assumptions on the left of the turnstiles have been left out 
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for clarity, but may occur (with their union occurring in the conclusion 

of the rule) provided they contain none of i,b,p1,p2 ,p free. 

We now have to face a problem of all reflexive domain equations, that 

they do not necessarily have a unique solution. Our rule will only follow 

if the domains PROGM, ... are in some sense the least solution of equations 

(1). The following axiom ensures this; what it expresses is roughly that 

every program is well-founded - i .• e. if we analyse it into its primitive 

components (in NULL, INSTN and BEXPN) and then build it up again, we have 

back our original program. The axiom is made more concise with the fol

lowing functional#: 

~ VfVgVxVy•(f#g) (x,y) - (f(x),g(y)). 

The axiom is: 

(6) ~ Ap•p - fix progfun, 

where 

~ progfun - Af•Ap• isnull p + mknull(destnull p), 

isinstn p + mkinstn(destinstn p), 

iscompd p + mkcompd((f#f) (destcompd p)), 

iscondl p+ mkcondl ( ( (Ab•b)# (f#f)) (destcondl p)), 

isitern p + mkitern(((Ab•b)#f) (destitern p)), 

.l. 

Now we are at last ready to derive the structural induction rule (5), for 

an arbitrary formula F[p]. 

We take the instance of the computational induction rule on the 

functional progfun, in which G[f] is Vp•F[f(p)]: 

(7) 
~ G[.1] G[f] I- G[progfun (f)] 

~ G[fix(progfun)] 

Our task is to prove the two hypotheses of (7) from the six hypotheses 

of (5); (7) then allows us to infer (together with (6)) that~ G[Ap•p], 

i.e.~ Vp•F[p], whence the conclusion of (5) follows by specialization. 
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Basis. G[i] is Vp•F[i(p)], or Vp•F[i] which is the generalization of the 

first hypothesis of (5). 

Step. Assume 

(8) G[f], that is Vp•F[f(p)]. 

We require to prove Vp•F[progfun(f)p], so we attempt to prove F[progfun(f)p], 

for some arbitrary p. 

For this, it is enough to consider the truth values of the five conditions 

isnull(p),isinstn(p), .... Now from the definition of progfun, the only 

cases which do not yield progfun(f)p = i (when we are done) are when some 

condition is TT and the earlier ones are all FF. Ineach case, progfun(f)p 

is equal to one of the five expressions at the right of+ in (6). Consider 

just the fourth case. Then we are trying to prove 

F[mkcondl(((Ab•b)#(f#f)) (destcondl(p)))] 

that is (for some b,p1 and p 2) 

which follows readily, by (8), from the fifth hypothesis of (5). D 

5.3. Strategies 

We now attempt to describe the kind of proof strategy which can relieve 

one of a morass of technical detail in performing proofs interactively 

with a machine, using the Simulation Theorem as an example. Because induc

tion (either structural or computational) appears to be the major creative 

ingredient in such proofs, there is some hope that without too much ill

directed search the machine can automatically dispose of large parts of 

a proof, given only an initial hint of what induction to perform. Indeed, 

once this is achieved one may expect to design strategies which make an 

intelligent search for the right induction; such strategies have already 

been studied with some success (though in restricted problem domains) by 

Boyer and Moore [25], Aubin [26] and von Henke [27] among others. 

A major part of such strategies will be the use of equational for

mulae as simplification rules (which we abbreviate to simprules). More 



35 

precisely, any theorem of the form 

which belongs to the current simplification set (simpset) will be used in 

the following way when simplification is explicitly called for in a strategy: 

to transform a goal F (formula to be proved) into a simpler goal F', any 

subterm having the form t[u1 , .•• ,un] is replace by t'[u1 , ... ,unJ. If 

after all possible such replacements F• is discovered to be a simple 

tautology, then the goal is achieved. As the strategy proceeds, transform

ing the original goal into a list of subgoals, each subgoal attains a 

simpset appropriate for its proof. 

Other components of a suitable strategy for our example will emerge 

in the following analysis; the resulting strategy will be seen to be not 

especially oriented to the example, though we would certainly not claim 

universal applicability for it. 

As a starting point, let us now specify our main goal G0 [p] as 

follows: 

CG > Vx•x.1 - .l ~ Vs•QJ[phs - x<P!Iph> 
0 

and 

1. 

suppose that we have in the initial simpset the following theorems: 

Each clause of the definitions of P and Q., in the form *) 

I-Vb,p1 ,p2 ,s•P[mkcondl(b,p1 ,p2)]s = B[b]s + P[p1]s,P[p2]s, together 

with the strictness clauses P[.LPROGM] = .l, Qj[.LPROGM] = .l. 

2. All the theorems (4) above concerning the syntax of L. 

3. The strictness theorems (2) for Band C. 

4. Standard rules such as B conversion, conditional conversion 

(1-Vx,y•TT + x,y = x, etc.), minimality (Vx•.lx = x) and rules 

concerning fst, snd, oi, ~i' 'i" 

*) although we continue to use [ ] as decorative brackets., theyhave no·formal 
significance to distinguish them from ( ). 
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First tactic 

Try structural induction on p, then simpify the resulting six subgoals; 

for each remaining subgoal add its assumptions to the simpset for that 

goal. 

Applying this to G0 gives (before simplification) the six hypotheses 

of rule (5) (with G0 for F). Simplification however eliminates the first 

three - those with no assumptions_- provided a wide enough class of simple 

tautologies is detected. The first hypothesis, for example, becomes 

and the other two yield even simpler tautologies. We are therefore left 

with 

Vx•x.1 - .1,. Vs•Q[p1] (Q[p2]x)s = x(P[p2] (P[p1]s)) 

(G l 
1 with G0[p1] and G0[p2J in the simpset, 

Vx•x.1 - .L,. Vs•B[b]s + Q[p1]xs,Q[p)xs = x(B[b]s + P[p1]s,P[p2]s) 

(G2> 
with G0[p1J and G0[p2J in the simpset, 

Vx•x.1 .L ,_ Vs•fix 'I' xs = x(fix <I> s) 
*) 

-

(G3) 
with Go[pl] in the simpset. 

But the reader will have already noticed that the various formulae G0[p1] 

added to the simpsets are not equational, and we must therefore extend 

our notion of simprule to justify what we have done. We introduce the 

notion of a conditional simprule. Any theorem of the form 

(in which X• ~ stand for vectors of variables) may be used in simplifying 

a goal Fas follows: any subterm of F having the form t 1[~,~J may be 

*) We use 'I' and <I> here as abbreviations for our familiar functionals; they 
are not variables of the calculus. 



replaced by t'[u,v] (where u_,v_ are vectors of terms) provided that 
1 - -

ti~J = t2[~] 
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is first proved by simplification. For pragmatic purposes we add one further 

constraint: that each of the terms v, should be free in F, i.e. no variable 
l. 

occurrence free in v. is bound in F. This constraint is not applied to the 
l. 

ui, either here or in ordinary simplification; it is present to prevent 

conditional simplification setting up for itself too many unachievable 

subsidiary goals of the form of(*) above. We will see how it works later. 

[Aside: even our ordinary simplification mechanism (without conditional 

simprules) runs the resk of non-termination,, unless some constraint is 

placed on the form of simplification rules. Without this, perhaps it should 

be called computation rather than simplification; the point is that some 

automatic equational transformation is needed, and it can always be bounded 

artificially in some way.] 

With this extended notion, we may now assume that our strictness 

lemma 

I- Vp•x•x.1 - .1 • Q[p]x.1 - .1 

is present in the simpset throughout. 

Second tactic 

Each of G. (i = 1,2,3) is a quantified implication, and we now iterate 
l. 

the process of stripping quantifiers and assuming antecedents. These are 

normal informal proof techniques, and are justified respectively by the 

rules of generalisation and deduction given earlier. We choose arbitrary 

new variables for those which become unbound. 

We then add the assumed antecedent into the simpset for each subgoal, 

and apply simplification. 

What happens to G1 under this tactic? Before the simplification it 

becomes 
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Now the subterm Q[p2]x1 , being free, is an admissible instance for X in 

the conditional simprule G0[p1], enabling the left hand side to become 

provided that 

can be proved by simplification. But this is done by use of the strictness 

lemma, and by x1~ =~-Returning to (*), it is similarly transformed 

further (using G0[p2]) into the right hand side. 

Thus G1 has become a trivial equation, and is achieved. 

What happens to G2 under the second tactic? Similar use of conditional 

simplification easily reduces it (as the reader may like to check) to 

CG ) 
4 

The simple task of proving G4 we leave to the third tactic. 

What happens to G3 under the second tactic? Before simplification it 

becomes 

(G J s 

Now in this case, conditional simplification by G0[p1] is not possible, 

since the required instance gx' of x in that rule is not free in GS. (If 

we relaxed this constraint on conditional simplification, because x' is 

bound in the left hand side of GS we would need to prove x•~ =~for an 

arbitrary x' to achieve the subsidiary goal of the conditional simplifica

tion, and this is not valid.) 

So simplification does nothing for GS. 



Third tactic 

A tactic which will achieve G4 and is of wide application is: find any 

term t of type T which is free in a goal·G, and produce three subgoals, 

each consisting of G with respectively t = TT, t = FF and t =~in the 

simpset. Then simplify. 

G4 yields very simply to this tactic - the only candidate fort is 

B[b]s2 - and the strictness of x2 disposes of the third subgoal. On the 

other hand G5 is not amenable to the tactic, since B[b)s' is not free 

in G5 • 

The third tactic is of wider applicability than to the type T; one 

may perform case analysis on any term denoting a member of a finite 

domain. 

5.4. Discussion 
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Let us suppose that our overall strategy is to apply the three tactics in 

sequence, each to all the subgoals remaining after applying the previous 

one. The effect for our example is to reduce the original goal G0 to a 

single subgoal G5 , for which as we saw earlier a further induction is 

required. Let us briefly discuss G5 , then consider strategies in general. 

The form of G5 is 

with G0[p1] and x3~ =~in the simpset. Now our informal proof consisted 

in an inductive proof that for each i ~ 0 

where gi, fi are the iterates of~,~- Formally we might therefore apply 

the rule of parallel induction: 

F[f,g] ~ F[~f,~gJ 

[F fix ~,fix~] 

(which is easily derived from the standard rule), taking for F[f,g] the 

formula(*) with suffix i removed. (In passing we may remark that the 
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principle reason for using such induction rules rather than mathematical 

induction on the index of the iterates is to avoid formalizing arithmetic 

solely for this purpose.) 

Without troubling with details, we claim that our original strategy, 

but with structural induction replaced by parallel induction will indeed 

achieve the goal G3 (from which GS came); but it is worth remarking that 

the generation of GS, resulting from uniform application of all three 

tactics, was wasted work. 

The detailed study of this example leaves us with the impression that 

strategies for certain classes of problems may often be built from rather 

general purpose tactical material, but that it would be unwise to pursue 

the ideal of a single general purpose strategy. 

For this very reason, a user of an interactive proof system must have 

the ability to extend not only his repertoire of Theorems, but also his 

repertoire of tactics, of ways of composing strategies from them, and hence 

of strategies themselves. This sounds very like programming; the problem 

then is to give him a programming language (a meta-LCF) in which it can 

all be done tolerably, and in which however badly he programs he cannot 

"prove" non-theorems. He will then not need to study a strategy at length 

in the abstract before typing it in and trying it; if he thinks that 

structural induction on p, then stripping quantifiers and 

antecedents and doing case analysis, all mixed up with 

simplification 

is a recipe worth trying, then he can type it in, at perhaps no greater 

length than the above sentence, and see what happens. 

Work with LCF at Stanford [18,19,20,21,22,23] has motivated the 

design of such a programming meta-language, and at Edinburgh we have 

implemented one which appears to allow plenty of scope for experiment in 

strategy-building. 

As for the deductive calculus, we would not claim that the one out

lined in this paper is the final answer, even for problems in the rather 

special area of programming language semantics; we expect to continue to 

find problems whose expression or solution is either impossible or 

repulsive however much we enrich the calculus. But in contrast to this, 

it is reasonable to expect that many pragmatic aspects of interactive 

proof-finding remain constant as the calculus varies. That is to say, a 



good meta-language for proof may not be so far away. (This project has 

involved four people - initially L. Morris and M. Newey, and currently 

M. Gordon and C. Wadsworth - besides myself; much of the work remains 

still to be reported, but I would like to acknowledge here the very able 

and persistent work of these colleagues.) 

6. LITERATURE 
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Scott and Strachey [l] give a starting point for the study of denotational 

semantics. Scott [2] provided the underlying models; in [3] he gives an 

outline without too much technical detail, and in [4] he carries the 

theory further. 

Further studies in denotational semantics are given by Tennent [5], 

which contains both a good introduction and a presentation of the semantics 

of Reynolds' GEDANKEN. Mosses [6] presents ALGOL 60, and Gordon [7] 

presents LISP. 

For operational semantics, Landin [10] gives a starting point. The 

descriptionofPL/1 is by Lucas and Walk [11]; also Wegner [12] gives a 

very readable account of the Vienna Definition Language which was invented 

for the description of PL/1. Plotkin [13] at a more fundamental level dis

cusses evaluation in the A-calculus. 

The continuation technique of Wadsworth and Morris is presented by 

Reynolds [ 14], who. also gives a mathematical discussion of the directed 

complete relations which are employed in his analogue of our simulation 

theorem. Strachey and Wadsworth [15] illustrate the continuation technique. 

For a study of the syntactic properties of formulae which express 

directed complete relations - i.e. formulae which admit the use of compu

tationinduction-seeK.lebansky et al [16] and Igarashi [17]. The forerunner of 

the computation induction was "recursion induction" given by McCarthy 

in [BJ. Scott's rule was also discovered independently by Park [9]. 

The implementation of LCF carried out at Stanford in 1971-2 is des

cribed in Milner [18], and studies in its use are Milner and Weyhrauch 

[19], Weyhrauch and Milner [20], Newey [22], Aiello, Aiello and Weyhrauch 

[21] and von Henke [23]. The extended formal calculus used in the present 

paper is given in full detail in Milner, Morris and Newey [24]. 

Work on strategies for proof by induction can be found in Boyer and 
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Moore [25], Aubin [26] and von Henke [27]. The models of the original LCF 

are in Milner [28]. 

This is by no means a full list of the relevant papers, but should 

help the reader to explore further the different aspects of work in the 

field of semantics and proof. 
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MODELS OF LCF* 

R. MILNER 
University of Edinburgh, Edinburgh, U.K. 

1. INTRODUCTION 

The logic of computable functions proposed by Dana Scott in 1969, in an 

unpublished note, has since been the subject of an interactive proof

checking program designed as a first step in formally based machine

assisted reasoning about computer programs. This implementation is fully 

documented in [1], and its subsequent applications are reported in later 

papers [2,3,4 and S]. However the model theory of the logic, which Scott 

originally supplied, is not discussed in those papers, and the purpose 

of this Memorandum is to present that theory. Nothing is added here to 

Scott's work. The concept of a continuous function, which is central to 

the theory, has since been developed by him to provide models for the 

A-calculus and to yield his mathematical theory of continuous lattices; 

the interested reader can follow these topics in Scott [6]. However, 

since LCF is only a version of the typed A-calculus, these developments 

are not necessary for the present purpose, and the present paper contains 

all that is needed to understand LCF. 

2. CONTINUOUS FUNCTION DOMAINS 

In this section we define a particular sort of partially ordered domain, 

called a complete partial order {cpo), and the concept of continuous 

*) This paper appeared first as Memo AI-186 and Report CS-332 of the Com-
puter Science.Department, Stanford University, California, and was written 
while the author worked at the Artificial Intelligence Laboratory there 
in 1972. The research was supported in part by the Advanced Research 
Projects Agency of the Office of the Secretary of Defense, USA, under 
Contract No. SD-183. 
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function. We prove some propositions for later use; in particular, that 

if D and E are cpo's, then the set of continuous functions from D to E 

is itself a cpo. 

DEFINITION 2.1. A partial order (po) is a pair (D,i;_) where Dis any set 

(domain) and C is a transitive, reflexive, antisymmetric relation over D. 

DEFINITION 2.2. For a po (D,i;_), a set X ~Dis a chain if X 

and x0 i;_ x 1 i;_ x2 i;_ • . . . 

DEFINITION 2.3. A po (D,g is a complete partial order (cpo) if 

(1) it has a minimum element, which we denote by i 0 , or just i if there 

is no confusion; 

(2) every chain X ~ D has a least upper bound (lub) in D, which we denote 

by Ux. 

DEFINITION 2.4. If D and E are cpo's, then a function f: D +Eis continu

ous if every chain X ~ D satisfies U{ f (x) : x E X} = f (UX) . 

Thus a continuous function is one which preserves the lubs of chains. Note 

that the set on the lefthand side of the above equation is a chain, since 

if X 

To see this, we only need to observe that any continuous function is mono

tonic - that is, xi;_ y => f(x) i;_ f(y), and this is true because if Y is 

the chain {x,y} then Uy= y, so we have 

f(x) ~ U{f(x),f(y)} f (UY) f(y). 

We should also note that there is an alternative (more restrictive) defini

tion of a cpo which uses the concept of directed set (Xis directed iff 

x,y EX => 3z E X•x,yi;_ z) instead of a chain. This, in turn, leads to an 

alternative (more restrictive) definition of continuous function. We have 

chosen the less restrictive alternative, but we remark that the theory 

can be done equally well (as far as we are here concerned) with either 

definition. 

Notice that we use the same symbol i;_ for the relation in every po 

under discussion. This should give no difficulty. We also use names like 
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D and E both for po's and for their domains. 

DEFINITION 2.5. We denote the set of continuous functions from D to E, 

where these are cpo's, by [D + E]. 

PROPOSITION 2.1. If D and E are cpo's then F 

relation 

f ~ g iff Vx•f(x} ~ g(x}. 

[D + E] is a cpo under the 

Proof. First, f is a po under this relation (check reflexivity, transitiv

ity and antisymmetry}. Second, the minimum element iF of Fis easily seen 

to be Ax•iE. Finally, we need that any chain z s F has a lub Liz€ F. 

Define 

Liz Ax•LI{ f (x} f € z}. 

This is a well-defined function since for each x € D, {f(x} f € z} is 

easily seen to be a chain in E. Next, it bounds above every f € z, since 

for each x € D, f(x} ~ LI{f(x} f € Z} = (Liz} (x). Further, it is a lub, 

since if his any other upper bound for z, then for each x € D and f € z, 

we have f(x} ~ h(x}; it follows that (LIZ} (x} ~ h(x}, and hence Liz Ch. 

But we must also show that LIZ€ F, i.e., Liz is continuous. Let X s D 

be a chain. We require 

(LIZ) (Lix} = LI{ (Liz} (x} X € X}, 

but 

(LIZ} (Ux) = LI{f(Lix) : f € Z} by the definition of Liz, 

=Li{f(x}: f€Z, X€X} 

= LI{ (Liz} (x} : x € x}. 

This completes the proof. D 

PROPOSITION 2.2. For any cpo D, every f € [D + D] has a minimum fixed-point 

Yf € D, i.e. we have f(Yf} = Yf and for all x € D, f(x} = x implies Yf C x. 
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REMARK. This proposition ensures the existence of the least fixed-point 

operator Y: [D + D] + D. The next proposition shows that Y is continuous, 

i.e. Y € [[D +DJ+ D]. 

Proof. The set S 

Define 

0 ~ i} is a chain by the monotonicity of f. 

Yf = Us. 

By the continuity off, we have f(Yf) = LJ{fi+l(.LD) : 0~i} = Yf, so Yf is 

a fixed-point off. Let x be any other fixed-point. Now by the monotonicity 

off we have 

and, by induction on i we can show 

for all i;:: 0, 

so 

0 ~ i} ~ x, 

and thus Yf is the minimum fixed-point off. D 

PROPOSITION 2.3. Y is continuous, so Y € [[D + D] + D]. 

Proof. Let z be any chains;_ [D + D]. We must show that Y(LJZ) = LJ{Yf : fE z}. 

In one direction (~) proof is easy since for each f E z, LJz ;! f, so Y (LJZ) ;! Yf by the 

monotonicity of Y which in turn follows directly from the definition of Yf. 

In the other direction we only need to show that LJ{Yf: fE z} is a fixed

point of LJz, since then it dominates the least such, which is Y(LJZ). Now 

LJz (LJ{Yf fEZ}) =LJ{g(LJ{yf: fEZ}): gEZ} 

= LJ{g(Yf) g € z, f € z} by continuity of g, 

= LJ{f (Yf) f E z}, since 

g (Yf) ~ h (Yh) where h 

= LJ{Yf : f € Z} , 

max(g,f), 
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which is the required fixed-point property. This completes this proof. D 

3. PURE LCF: TERMS 

In this section we give the term syntax of Pure LCF, and then after defin

ing a standard interpretation as a function from identifiers into the union 

of a family of cpo's, we show how such an interpretation is extended 

uniquely to a function from all terms into the same range. The terms of 

Pure LCF are just those of a typed A-calculus. 

~-
(1) ind and tr are (basic) types. 

(2) If Bl, 82 are types then (Bl+ 82) is a type. 

(3) These are all the types. 

We use B, Bl, 82, ... to denote types, and frequently omit parentheses, 

assuming that"+" associates to the right, so that Bl ➔ 82 + 83 abbrevia

tes (Bl+ (82 + 83)). 

Terms. 

Each term has a well defined type. We use s,t,u to denote terms, and 

write s : -B to mean that s has type B. 

(1) Any identifier is an (atomic) term. We do not need to describe 

them, except to say that there are infinitely many at each type, that the 

type of each is determined in some way (perhaps by explicit subscripting), 

and that they include TT: tr, FF: tr and the families (indexed by type) 

uu :::> B' tr+ B + B + B and 

These identifiers are special only in that each standard interpretation 

will assign a particular element to each of them. We use x,y to denote 

arbitrary identifiers. 

(2) Ifs: Bl ➔ B2 and t: Bl are terms then s(t) : 82 is a term. 

If x: Bl is an identifier ands: 82 is a term, then [Ax•s] : Bl+ 82 is 

a term. 

(3) These are all the terms. 
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REMARK. In the machine implementation of LCF, and often for intelligibil

ity, ·we have written terms of the form J(s) (t) (u) and Y([\x•s]) respective

ly as (s + t,u) and [ax•s], and have dispensed with J and Y. It is clear 

that every term of implemented LCF is then a transcription of a term of 

Pure LCF, and it therefore suffices to discuss the semantics of the latter. 

semantics. 

A standard model (of LCF) is a family {08} of cpo's, one for each type B, 

where D. dis an arbitrary cpo, Dt is the cpo {tt,ff,~t} under the partial in r r 
order given by the diagram 

tt ff 

\LI 
tr 

and 0 81 + 82 = [o81 + o 82 J. Note that Dind completely determines a standard 

model. 

Let I be the set of identifiers of Pure LCF. A standard interpreta

tion (of LCF) is a standard model {08} together with a standard assignment, 

which is a function 

which satisfies the further conditions 

*) ( 1) A[ x : S] e: D S , 

(2) The value of A for the special identifiers is given by the 

following: 

*) We write the (syntactic) arguements of A in decorated brackets as 

an aid to the eye. 



and 

A[TT] = tt, 

A[uull] = .LB, 

A[FF] ff, 

A[:::>tr + 8 + S + 8] = Af;EDtr·AnEDB~AXEDs•(E; + n,x), 
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where (E; + n,x) - the conditional - takes the values .L,n,x according as 

E; = .Ltr' tt, ff, and where we have subscripted the fixed-point operator Y 

on the right to indicate that it belongs to [[DB+ D8] + DS]. Note that 

the Yon the left is an identifier, and the Yon the right a function. It 

is easy to check that A[:>] is a continuous function, and Proposition 2.3 

has assured us that A[Y] is also continuous. 

If A satisfies condition (1) above, but not necessarily condition 

(2), we call it just an assignment, yielding an interpretation (not neces

sarily standard). We also confuse the terms assignment and interpretation, 

since we have no occasion to discuss here different standard models. 

We write AE;/x to indicate the assignment differing from A only in 

that its value at xis E;; clearly we have that 

A 
{ n/y 

if X = y, 

otherwise. 

We now show how to extend the domain of an assignment A to all terms, 

preserving the condition that 

A[s 8] E DB 

which states not only that A respects types, but also that (for composite 

types) it yields a continuous function over the appropriate domains. 

We define A by induction on the structure of terms, as follows: 

A[sCtl] A[ s] (A[ t] l 

That A respects types is obvious. That A[s] E DB for all 8 ands 8 is a 
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corollary of the following 

PROPOSITION 3.1. For each assignment A and for each x 

A; E DSl,A;/x[s] E [DSl + DS2]. 

Sl, s S2, 

Proof. First, supposes is an atomic term, i.e. an identifier. Either 

s = x, in which case Sl = S2 and A;•A;/x[s] is the identity function over 

081 , ors# x in which case it is a constant function from 081 to 082 • In 

either case it is a continuous function, hence E [o81 + o 82 J. 

Next supposes is t(u), t: S3 + S2 and u: S3. Assume the proposi

tion fort and u. We have to show that for any chain X ~ 0 81 , 

; E x} 

that is, that 

Now if we denote A;•A;/x[t] and A;•A;/x[u] by f and g, the inductive 

assumption tells us that f E [DSl + [o83 + o 82 JJ and g E [DSl + o 83 J, and 

the required equation merely states th~t for such f and g, A;•f(;) (g(;)) 

is continuous. The proof of this we leave to the reader; it is hardly more 

than proving that for a chain x, {f(;) (g(;)) : ; Ex} and {f(;) (g(n) : 

;,n Ex} are cofinal chains. 

Finally supposes is [Ay•t], y 

to show that 

that is, that for any chain X ~ 0 81 , 

Now in the case x y, we have 

fl3, t 

; E x} 

(A ) = (A ) = A 
;/x n/y ·ux/x n/y n/y 

S4 and S2 

and the equation reduces to a tautology. If x # y, then 

S3 + S4. We need 
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and the inductive hypothesis (that the proposition is true fort) tells 

us that A~•(ADIY)~/x[t] is continuous - hence monotonic - so 

{(A~/X)DIY[t]} is a chain in D64 , for each D- Moreover, the inductive 

hypothesis also tells us that for each~ AD•(A~/x)DIY[t] is in [D63 +D64 J, 

and by the previous remark the set of these functions - as~ ranges over 

X - is a chain in [D63 + D64 J. Thus by the definition of U for function 

spaces (Proposition 2.1) we can replace the lefthand side of the desired 

equation by 

~EX} ADE Ds3·<AD/y)Ux/x[t] 

=ADE Ds3·<1\..Jx;x>D/Y[t] 

since x # y, and we are done. We have therefore proved the proposition by 

induction on the structure of terms. D 

COROLLARY 3.2. For every assignment A, type S, and terms 

Proof. For atomic terms the corollary is assured by the definition of an 

assignment. For A-terms, the proposition gives the corollary directly. For 

an application term s(t) : S, the proposition tells us that 

so by application to A[x] we get 

A[s(t)] 

as required. D 

4. PURE LCF: FORMULAE, SENTENCES, RULES AND VALIDITY 

In this section we define the remainder of the syntax of Pure LCF, extend

ing the domain of assignments A still further, and after defining the con

cept of validity of a sentence we give the rules of inference and show that 
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they preserve validity. 

Atomic well-formed formulae (awffs). 

If s,t f3 are terms, then s c t is an awff. Let us add the truth values 

T,F (not to be confused with TT, FF) to the range of an assignment, and 

extend any A to awffs by 

if A[ s] ~ A[ t] , 
A[ st:t] 

otherwise. 

Well-formed formulae (wffs). 

A wff is a set of awffs. We use P,Q,Pl,Ql, ••• to denote arbitrary wffs. 

Extend A to wffs by 

if A E p ~ A[A] T, 
A[P] 

otherwise. 

We uses_ t to abbreviate {s Ct, t Cs}. 

Sentences. 

If P,Q are wffs, then P f- Q is a sentence (if P 

Extend A to sentences by 

if A[P] = T, A[Q] 
A[PI--Q] 

otherwise. 

0, we just write I- Q). 

F, 

We say that Pf- Q is false in A, true in A respectively. We say that a 

sentence is valid iff it is true in all standard interpretations. 

We now introduce the rules of inference of Pure LCF, accompanying each by 

a proof - often very trivial - that it is valid (a rule is valid if when

ever its hypotheses are valid its conclusion is valid). The proofs will 

rely on two facts about assignments which are fairly easy to prove (we 

omit their proofs). First, if A is any syntactic entity in the domain of 

an assignment A, and xis not free in A, then A.[A] is independent of A[x]; 



more precisely, A,/x[A] = A[A]. Second, in specifying the inference rules 

we use A{t/x} to mean: Substitute t for x in A with suitable changes of 

bound variables so that no identifier free int becomes bound after the 

substitution, and we need the fact that 

A[A{t/x}] 

Rules of Inference. 
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We write the hypotheses of each rule above a solid line. If there are none, 

we omit the solid line. We use the same names for rules as in [1]. 

INCL 

CONJ 

CUT 

APPL 

p I- Q (Q 5- P) 

Clearly P true in A implies Q true in A. 

p I- Q1 p I- Q2 

P I- Q1 u Q2 

Clearly valid. 

Pl j- P2 P2 j- P3 

Pl j- P3 

Clearly valid. 

t cu I- s(t) c s(u). 

If A[t] i;:_ A[uL then A[s(tl] = A[s] (A[t]l !;_A[s] (A[u]l =A[s(u)], 

using the monotonicity of A[s]. 

REFL I- s C s 

Clearly valid, by reflexivity of C 

TRANS SC t, t CU I-SC U 

Clearly valid, by transitivity of C 

MIN1 j- UU c s 

Clearly valid, by the minimality of i 8 . 

MIN2 j- UU(s) c UU 

Clearly valid, by the definition i 81 + 82 
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Note that in the last two rules we have omitted the type subscripts from 

uu, intending that they be supplied in such a way as to yield a proper awff -

i.e. that the terms on either side should have the same type. We could have 

written uu81 ➔ 82 (s: 81) c uu82 • Similarly we will omit subscripts from=> 

and Y. 

CONDT 

CONDU 

CONDF 

I- ::, (TT) ( s) ( t) - s 

I-::, (UU) (s) (t) - UU 

I- ::, (FF) (s) (t) - t 

These rules are justified by the standard interpretation of=>. 

ABSTR 
p I- S C t 

x not free in P. 
PI- [Ax•s] c [Ax•t] 

Let A be such that A[PD = T. Since xis not free in P, we have also 

As/x[PD = T for any S• So the hypotheses of the rule assures us that for 

each sin DB' where X: B, As/x[sD r;_As/x[tD. Hence 

which is to say that 

A[[Ax•s] c [Ax•tJD T 

as required. 

CONV I- [Ax•s](t) - s{t/x} 

We have that A[Dx•s](t)D = (As•As/)sD) (A[tD> = AA[tD;)sD. which is 

equal to A[s{t/x}D by the second of the facts about assignments which we 

have assumed. 

ETACONV I- [Ax•y(x)] y, y distinct from x 

A[Dx•y(x) JD = As•Aux[y(xlD = As•Aux[y) (As/)xD > = As•A[yD m (since 

xis distinct from y, so does not occur free in y) , = A[ y). 
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p f- Q 
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Let A be such that A[P] = T. Since s: tr, A[s] must take one of the 

values { tt, .ltr, ff}, so that one of A[ s =Tr], A[ s = uu] , A[ s = FF] takes the 

value T. The validity of the appropriate hypothesis ensures A[Q] = T. 

FIXP f- Y(x) = x(Y(x)) 

Clearly valid, by the standard interpretation of Y. 

INDUCT 
Pf- Q{UU/x} Pu Q f- Q{s(x)/x} 

Pf- Q{Y(s)/x} 
x not free in P ors. 

For simplicity, we consider just the case that Q is an awff. Moreover we 

can assume that it is of the form t(x) c u(x) where xis not free int or 

u, since for any term t', A[t'] = A[[Ay•t'{y/x}](x)], y distinct from x, 

and then xis not free in [Ay•t'{y/x}J. Let A be a standard assignment, 

A[P] = T, and assume that A[s] f, A[t] = g, A[u] = h. We first show by 

induction on i that for each i ~ 0, g(fi(.la)) ~ h(fi(.la)), where x: a. 

For i = 0, the first hypothesis gives that 

A.1 I [Q] = T, a X 

that is A[t] (.la) I;;;;_A[u] (.la) (since Xis not free in t,u) I so 

Now assume the inequality for i. That is, we assume 

Since xis not free in P, we also have 

and we deduce from the second hypothesis that 
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A . [Q{s(x)/x}] T. 
1. 

f (.ls)/x 

Now 

i+l since xis not free ins,= f (.1 13 ), so from the second fact which we 

assumed for assignments we deduce that 

A i+l [Q] T, 
f (.ls)/x 

that is 

So the induction is complete. Now 

which we require to take the value T. That is, we require g(Y(f)) i;_ h(Y(f)). 

But 

g(Y(f)) = U{g(fi(.LS)) : i <". O} 

i;_u{h(fic.1 13 i : i <". o} 

i;_ h(Y(f)) 

(by the continuity of g), 

(by what we have proved), 

by the monotonicity of h, 

and the justification is complete. 

This completes also our justification of the validity of the Rules of LCF. 
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1. L BASICS 

L SYSTEMS: A PARALLEL WAY OF LOOKING 

AT FORMAL LANGUAGES. 

NEW IDEAS AND RECENT DEVELOPMENTS 

A. SALOMAA 

University of Turku, Turku, Finland 

The theory of L systems originated from the work of Lindenmayer, [L]. The 

original aim of this theory was to provide mathematical models for the 

development of simple filamentous organisms. At the beginning L systems 

were defined as linear arrays of finite automata, later however they were 

reformulated into the more suitable framework of granunar-like constructs. 

From then on, the theory of L systems was developed essentially as a branch 

of formal language theory. It constitutes today one of the most vigorously 

investigated areas of formal language theory: so far the yearly growth in 

the number of papers has been exponential with base 2, and the number of 

people joining the "L crowd" has grown linearly with a decent factor. In

deed, following [vLl] we can say that L systems as a theory of parallel 

rewriting constitutes a non-parallelled theory of languages. 

The purpose of these notes is to discuss recent results in the theory 

of L systems. By "recent" we mean things that have happened after the 

latest major L systems conference at Noordwijkerhout in April 1975. These 

notes are not intended to be self-contained. For unexplained notions con

cerning automata and formal languages we refer to [Sal]. In the first two 

chapters of the notes we try to explain to some extent the basic notions 

and techniques in L systems. However, the exposition will be rather brief 

and sketchy. For more details and background, the reader is referred to 

ilHR] and [RS2] (the former is more comprehensive but contains material 

only roughly up to 1973, the latter contains also material from 1973-74), 

and to [RSl] and [LR] (these are collections of articles). The present 

notes discuss L systems only from the mathematical and formal language 

theory point of view. For biological aspects, the reader is referred to 

[HR], [LR] and [Ll]. 
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The essential feature about L systems, as opposed to grammars, is that 

the rewriting of a string happens in a parallel manner, contrary to the 

sequential rewriting in grammars. This means that at every step of the re

writing process according to an L system every letter has to be rewritten. 

One step of the rewriting process according to a grammar changes only some 

part of the string considered. 

Let us consider a very simple example. Assume that we are dealing with 

a context-free grammar containing the production S ➔ ss. Then, starting 

from S, we get any string of the form Sn, where n ~ 1. This follows because 

at one step of the rewriting process we can replace one occurrence of S 

by SS and leave the other occurrences unchanged. Assume next that we are 

dealing with an L system containing the production S ➔ SS. Then, starting 
2n 

from S, we get by this production only strings of the form S , n ~ 0. This 

follows becuase we cannot leave occurrences of S unchanged. Thus, if we 

are rewriting the string ss, we obtain at one step the string ssss s4 , 

and not the string s3• On the other hand, if our L system contains also the 

production S ➔ S then we can derive any string of the form Sn, n ~ 1. 

This parallelism in rewriting reflects the basic biological motivation 

behind L systems. We are trying to model the development of an organism. 

The development takes place in a parallel way, simultaneously everywhere 

in the organism. Sequential rewriting is not suitable for this modeling. 

The simplest version of L systems assumes that the development of a 

cell is free of influence of other cells. This type of L systems is cus

tomarily called a 0L system ("0" stands for zero-sided communication be

tween cells.) By definition, a 0L system is a triple G = (E,P,w), where E 

is an alphabet, w is a word over E, and Pis a finite set of rewriting 

rules of the form 

a ➔ x, a EE, * X E E • 

(It is also assumed that P contains at least one rule for each letter of 

E.) The language of G consists of all words which can be derived from w 

using rules of Pin the parallel way. (The meaning of this should be clear 

enough. The formal definition in terms of the yield-relation is left to 

the reader.) 

As an example, consider the 0L system 
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({a,b},a,{a-+b,b-+ab}). 

The first few words in the generated language are 

a,b,ab,bab,abbab,bababbab,abbabbababbab. 

Since the system is deterministic (there is only one production for each 

letter), its language is generated as a sequence in a unique way. (Deter

ministic systems are denoted by the letter D.) The mathematically minded 

reader will also notice that the lengths of the words in this sequence 

form the famous Fibonacci sequence. In fact, our OL system provides a very 

simple way to generate the Fibonacci sequence, when compared to other pos

sible devices in automata and formal language theory. Our system is also 

propagating (abbreviated P): there are no erasing productions, where a 

letter goes to the empty word A. 

In L systems with interactions, abbreviated IL systems, the produc

tions have the form (y,a,z) ➔ x. Such a production can be applied to re

write the letter a in the context yaz as x. If in all productions the length 

of y (resp. z) equals k (resp. 1), we speak of a system with <k,l> inter

actions. (From the biological point of view, this means that an individual 

cell may communicate with k of its left and 1 of its right neighbours.) 

Near the ends of the string, the missing neighbours are provided by a 

special letter g. For instance, the string aaa may be rewritten as bbaba 

by the (1,1) productions (g,a,a)-+ bb, (a,a,a) ➔ ab, (a,a,g)-+ a. 

An L system with tables (abbreviated T) has several sets of rewriting 

rules instead of just one set. At one step of the rewriting process, rules 

belonging to the same set have to be applied. For an L system of any type, 

systems of the same type and with tables may be considered. The biological 

motivation for introducing tables is that one may want different rules to 

take care of different environmental conditions (heat, light, etc.) or of 

different stages of development. 

When defining the language generated by an L system, we have so far 

considered only the exhaustive approach: all words derivable from the axiom 

by the rules in a parallel way belong to the language. The families of lan

guages obtained in this fashion (for instance, the family of OL languages 

which we denote simply by OL) have very weak closure properties. In addi

tion to the exhaustive approach, various selective approaches are possible. 
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In such a selective approach, some "filtering mechanism" is applied like 

the mechanism of taking the intersection with the set of words over some 

terminal alphabet 6. (This mechanism is always applied in ordinary phrase 

structure grammars.) Thus, an 0L system G'1 = ( E, P, w) is extended to a con

struct G2 = (E,P,w,6), referred to as an E0L system (E for "extended"). 

* The language of G2 equals the language of G1 intersected with 6 . Similarly, 

we may speak of ETOL systems and languages. We may also apply a homomorphism 

(resp. a letter-to-letter homomorphism also called a coding) to L(G1), ob

taining an H0L (resp. a COL) language. According to the well-known 

Ehrenfeucht-Rozenberg Theorem, all of these mechanisms coincide as far as 

the generative capacity is concerned: E0L = H0L = COL and ET0L = HT0L = 
= CTOL. (The first equations are proved in the next chapter.) This result 

is very representative for L systems because nothing similar can be ob

tained in the sequential case. For other selective approaches in the def

inition of L languages, we refer to [RS2]. A particularly interesting re

sult is that the "adult" language consisting of words deriving themselves 

and themselves only) are exactly the same as context-free languages. 

We repeat the main items from the dictionary of L systems which will 

be used frequently in the sequel: 

0 - context free, 

T - with tables, 

P - propagating, 

D - deterministic (in connection with tables, each table is deterministic), 

I - with interactions, 

E - extensions (intersection with 6*), 

H - homomorphic images, 

C - codings (i.e., letter-to-letter homomorphic images). 

Combinations are possible. Thus, we speak of EPDT0L systems and languages 

(whose family is denoted simply by EPDT0L). 

2. L PROOFS 

Because of the parallel mode in rewriting, ordinary techniques used in lan

guage theory are not as such applicable for L systems. Consider, for in

stance, the "pumping lemma" for context-free languages. The proof is based 
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on the fact that in big enough derivation trees paths with repetitions must 

occur. This enables us to pump because the other parts of the tree do not 

develop further but keep waiting for us. The last statement does not hold 

if rewriting happens in a parallel way and, thus, tbe argument is not ap

plicable for L systems. 

A whole bunch of new techniques have been invented for proofs dealing 

with L systems. As a typical example, we gi.ve in this section a proof for 

the Ehrenfeucht-Rozenberg Theorem E0L = H0L =COL.Our exposition runs 

along the lines of [RS2]. 

First we will prove an auxiliary result: A language K is an E0L lan

guage if and only if there exists an EP0L system G such that K - {A}= L(G). 

If there exists an EP0L system G such that K - {A}= L(G), then clear

ly K is an E0L language. 

The more difficult part of the proof is to show that if K is an E0L 

language then there exists an EP0L system G such that K - {A}= L(G). Let 

K = L(H) for an E0L system H = <E,P,S,8> and let us assume that L(H) is 

infinite and P contains erasing productions (otherwise the result holds 

trivially). We assume that SEE - 8. We also assume that 8 s E. (This can 

be clearly done without loss of generality.) The idea underlying our proof 

can be explained rather simply. We want to construct an EP0L system G which 

would simulate derivations in Hin such a way that in corresponding deri

vation trees (in G) the occurrences of symbols which do not contribute any

thing to the final product (word) of a tree will not be introduced at all. 

Let us assume.that the following tree Tis a derivation tree (for a 

word babb) in H: 

C 

A 

B 

s 

A 

a A A 

a 

a 

b 

B 

b a 

a 
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In 

we will 

simulating this tree in G we want to avoid the situation in which 

be forced to apply an erasing production and so we want to delete 

every subtree which does not "contribute" to the final result babb. Hence 

we want to delete subtrees with double circled roots. 

we would like then to be able to produce in Ga derivation tree of 

this form 

S' 

B' C' 

a' B" 

a" a"' B"' 

a•V b' b" av 

b"' av• b'v bv 

where S', B'-B"', C1 ,a 1 , ••• ,av•,b 1 , ••• ,bv are some "representations" of 

symbols S,B,C,a,b. 

In other words we are "killing" non-productive occurrences as early 

(going top-down) as possible. But, in general, there is no relation whatso

ever between the level on which we delete (in G) a subtree at its root 

and the level (in H) on which this subtree really vanishes. Thus we have 

to carry along some information which would allow us to say (in G) at a 

certain moment: the considered subtree vanishes (in H). Fortunately for 

this purpose we can carry finite information only: it is enough to remember 
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the minimal subalphabet Min(x) of a word x derived so far in the considered 

subtree rather than the word itself. We will carry this information as the 

second component in two-component letters of the form [cr,Z] where cr EE 

and Z ,S L 

Thus in our particular example we will have the following tree in G. 

[S,<j>] 

[B,{A}] [C,<j>] 

[a, {c} J [B, {A,C}] 

[a,{A}] 
[B,<j>] 

[a,{B}] 
[b,<j> J [b, <j> J [a,<j> J 

[b, <j>] 
[a, <j> J [b, <j>] [b,<j>] 

Now inspecting words on all levels of this tree we notice that only 

the last word 

[b,<j>][a,<j>][b,<j>][b,<j>] 

should be transformed to the terminal word (babb) because only on this 

level all subtrees that we have decided to delete (in G) really vanished 

(in H). 

How to perform such a transformation within the system G itself? 

To this aim we introduce a rather simple trick called "the synchroni

zation". 

For each letter of the form [cr,<j>] with cr in~ we introduce a produc

tion [cr,¢] + cr and a production cr + F where Fis a distinguished nonter

minal symbol in G for which the only production in G is F + F. Assuming 

that no other productions have terminal symbols on their right hand sides, 

this trick does the job. To see this observe that 
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[b,¢][a,¢][b,¢][b,¢] • babb • F4 • F4 • 
G G G G 

but if we attempt to use these terminating productions too early then we 

fail to obtain a terminal word. 

Now the reader should easily understand the following construction. 

Let G <V,R,[S,¢], ~> be the EOL system defined by 

1. V = v1U{F}U~, where v1 = {[cr,Z]: cr E i:: and z s E}, and Fis a new 

symbol. 

2. R consists of the following productions: 

2.1. If A ➔ B1 ••• Bk is in P with k ~ 2, B1 , ••. ,Bk E 1: then, for every 

Z S E, 

< i s k and, 
p 

for 2 s j s p-1, z. 
l.j 

providing that Z' 

z. 
l.1 

z. 
l. p p p 
E SucH (Z), where 

SucH(Z) ={USE: there exist x,y in i::* with Min(x) Z, 

Min(y) = U where x • y}. 
H 

2.2. If A ➔ Bis in P with Bini::, th,~n, for every Zs i::, [A,Z] ➔ [B,Z'] 

is in R providing that Z' E SucH(Z). 

2.3. [cr,¢] ➔ cr is in R for all cr in~-

2.4. F ➔ Fis in R, and so is cr ➔ F for all cr in~-

The reader should be able to convince himself that L(G) 

and this ends the proof. 

L(H) - {;\}, 

Now we present a proof for the Ehrenfeucht-Rozenberg Theorem. We also 

make the definitional convention that whenever a language L belongs to some 

of the families considered, then also LU {A} belongs to the same family, 

and vice versa. This convention is tacitly applied also many times in the 

later chapters, i.e., we do not care if some EIPecific construction causes 

us to loose or gain the empty word. 

By definition, it follows that COLS HOL. After having read this 

chapter so far the reader should be able to produce easily the proof of 
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the containment HOL s EOL. If one considers only non-erasing homomorphisms 

then the synchronization trick suffices on its own. However if one considers 

an erasing homomorphism then this trick by itself does not work. But then 

one can construct an equivalent EOL system in which the symbols which are 

to be erased by the considered homomorphism will not be introduced at all. 

Technically it can be done in exactly the same way as avoiding (occurren

ces of) symbols which are to be erased in the given system. 

Thus we have to prove only that EOL s COL. By our auxiliary result, 

it suffices to prove that EPOL s COL. 

If A is an ultimately periodic set of non-negative integers then 

thres(A) denotes the smallest integer j for which there exists a positive 

integer q such that, for all i ~ j, i is in A if and only if (i+q) is in A. 

The smallest positive integer q such that, for all i ~ thres(A), whenever 

i is in A also i+q is in A, is denoted by per(A). 

If G is an EOL system with a terminal alphabet~ and a is a letter in 

the alphabet of G, then the spectrum of a in G, denoted as Spec(cr,G), is 

defined by Spec(cr,G) = {n ~ 0: a~ w for some win~*}. 
G 

It is easy to see that all spectra of letters in an EOL system are 

ultimately periodic. 

Now we need some further terminology and notation. 

Let G = <E,P,S,~> be an EOL system and let a EE. We say that cr is 
l vital, if for every k > 0 there exists an l > k such that a.,. w for some 

* w E ~. (We will use AG to denote the set of all vital symbols from E). 

Once we have noticed that each symbol in an EPOL system G contributes 

terminal subwords to terminal words in Gin an ultimately periodic fashion 

we are trying to decompose G into a (finite) number of component systems 

in each of which one can consider only terminal contributions at the same 

moments of time. 

Let G = <E,P,S,~> be an EPOL system. We define the uniform period of 

G, denoted as mG, to be the smallest positive integer such that 

(i) for all k ~ mG, if a is in E - AG and a¾ w, then w 4 ~*, 

(ii) for all a in AG, mG > thres(Spec(G,a)) and per(Spec(G,a)) divides mG. 

Now our starting point is to consider all words that can be derived from 

Sin mG steps. (We will loose in this way all terminal words that can be 

derived in less than mG steps from G but this is a finite set and, as we 

will see, easy to handle.) 
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Then we will divide the words in this set into (not necessarily dis

joint) subsets in each of which we can view all derivations going "accord

ing to the same clock" or, in more mathematical terms, conforming to the 

same (ultimately periodic) spectrum. 

Here is thus our basic construction. 

+ mG 
CONSTRUCTION. Let O ~ k < mG and let Ax(G,k) = {w E AG: S;t wand, for all 

a in Min(w), mG + k is in Spec(G,a)}. If Ax(G,k) #~,then, for all win 

Ax(G,k) define a OL system G(k,w) = <E ,R ,w> as follows: 
k,w k,w 

(i) E {a € AG: mG + k is in Spec(G,a) and, for some l;;:: 0, a is in 
k,w 

~ Min(y) for some y such that w y}, . G 

(ii) a+ a is in 1\ if and only if a 
mG 

E and a E + 
ea with a E Ek • ,w k,w ,w 

Hence we have the following situation. If w E Ax(G,k) then the derivation 

in G(k,w) goes as follows: 

1 step in G(k,w) 1 step in G(k,w) 

mG steps in G mG steps in G 

Now using the fact that all symbols appearing in words in L(G(k,w)) con

tain mG +kin their spectra we can squeeze the language from G(k,w) in the 

following way. 

Define M(G(k,w)) by 

M(G(k,w)) = {x E 6*: there exists yin L(G(k,w)) such that 

:~! x}. y G 

We shall now show that the union of the languages M(G(k,w)) over all 

k < mG and win Ax(G,k) is identical (modulo a finite set) to L(G). 

CLAIM 1. L(G) + 1 · U 11 {w E 6: St w for some 1 < 2mG} U. <m UwEAx(G,k)M(G(k,w)). 
G 

Proof. Obviously the right side is included in the left side. Now let us 

assume that xis in L(G). 

(a) If x can be derived in less than 2mG sr.eps, then xis in the first 

set in union. 

(b) If xis derived in at least 2mG steps, then let 

D = (S,x1 , ... ,x~,···•xp = x) be a derivation in G where p 1 •m + k 
p G p 
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for some 1 ~ 2 and 0 
p 

$ k < m • 
p G 

For all 1, 1 $ 1 < 1 
p and a in Min(xl•m ), we have 

t - G 
(i) a is vital, since at x for some word~ in A+, where 

t = (1 •m +k) - l•m ~ m. 
p G p G G 

(ii) m + k is in Spec(G,a), since (1 -l)m + k is in Spec(G,a) and 
G p p G p 

Spec(G,a) is an ultimately periodic set with period mG and threshold 

smaller than mG. 

Therefore xis in M(G(k ,x )) and hence xis in our union of languages on 
p mG 

the right side. 

Therefore Claim 1 holds. 

Now the reader should note that we have already proven a quite signi

ficant result: each EPOL language is the result of a finite substitution 

on a OL language! 

However we want to replace the finite substitution mapping by a coding. 

To this aim we shall prove now that each component language in the "union 

formula for L(G)" as given in the statement of Claim 1 is a finite union 

of codings of OL languages. 

CLAIM 2. Assume that Ax(G,k) *~and let w be in Ax(G,k). Then there exist 
f 

OL systems H1, ••• ,Hf and a coding h such that M(G(k,w)) = Ui=l h(L(Hi)). 

Proof. Let w = b 1 ..• b where b. is in AG for 1 $ i $ t. For all a in rk 
+ t ~+k 1. ,w 

let U(a,k) = {x €A: a ==G~ x} = {a k 1 ,a k 2 , .•• ,a k U( k)}, say, a, , a, , a, , a, 
and 'fk = {[a,b], [a,b]: a € rk and b E A}. ,w ,w 

Let W(w) = {[bl,cll][bl,c12] .•• [bl,clr1][b2,c21J •.• [b2,c2r2] •.. 

[bt,ct1J ••• [bt,ct ]: c. 1 .•• c. E U(b.,k) for 1 $ j $ t}. _ rt J Jrj J __ 
Let ¾,w = {[a,b] + A: a€ rk,w' b € A} U{[a,b] + [c1 ,d11 J[c 1 ,d12 J ..• 

----
[cl,dlvl], .• [cs,ds1J ••• [cs,dsvs]: b € A, a+ c 1 ... cs is in ¾,wand 

d. 1 ••• d. € U(c.,k) for 1 $ j $ s}. 
J JVj J -

Let, for every z in W(w), G(k,w,z) be the OL system <rk ,R ,z> and ,w ·k,w 
let h be a coding from 'fk into A such that h([a,b]) = h([a,b]) = b. 

,w 
We leave to the reader the obvious, but tedious proof of the fact 

that 

M(G(k,w)) u h(L(G(k,w,z))). 
ZEW(w) 
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Thus Claim 2 holds. 

Now we state two obvious results. 

(I) If K is a finite language, then there exist a OL system G and a coding 

h such that K = h(L(G)). 

(II) If H1, ••• ,Hf are OL systems, h1 , ••• ,hf are codings and 
f 

K = Ui=l hi(L(Hi)), then there exist a OL system G and a coding h such 

that K = h(L(G)). 

Thus, we can collect together all the component languages of G by means of 

one OL system and one coding. This ends the proof of the equations 

EOL =COL= HOL. 

3. L FAMILIES 

It is apparent on the basis of the notions ~onsidered in Chapter 1 that it 

is possible and natural within L systems theory to define quite a number 

of different language families. we mention [NRSS] as a typical paper along 

these lines. It is also clear that the pure families, i.e., families ob~ 

tained by the exhaustive definition are mathematically somewhat awkward 

because of their weak closure properties. Undoubtedly one can say that 

EOL and ETOL are the basic and most thoroughly investigated L families. 

Because of a number of reasons (for instance, cf. [Sa2]), they are also 

very natural from the formal language theory point of view. 

In this chapter we consider some recently introduced L families. Con

text-free languages of finite index (also referred to as derivation-bounded, 

quasirational, semilinear and superlinear languages) are quite widely 

studied, cf. [Sal]. The notion of finite index has been extended to ETOL 

systems in the following way. Let us call a letter a in an ETOL system G 

active provided a derives according to G some word a* a. Let A(G) be the 

set of all active letters of G and let k be a positive integer. We say 

that G is of index k iff every word x in L(G) has a derivation in which 

every word has at most k occurrences of active letters, G is of finite 

index iff it is of index k for some k. An ETOL language is of index k 

(resp. of finite index) iff it is generated by an ETOL system of index k 

(resp. of finite index). The corresponding language families are denoted 

by ETOLFIN(k) and ETOLFIN" The notations EOLFIN' EDTOLFIN(k)' etc., are 
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used in the same way. 

It is easy to see that, for a given ETOL (resp. EDTOL) system, one 

can construct an equivalent system G where A(G) equals the set of non

terminals of G. (Systems of the latter type are said to be in active normal 

form.) Also it is clear that many constructions, such as the well-known 

construction of replacing an ETOL system by an equivalent EPTOL system, 

preserve the index. Also the following transition from nondeterministic 

to deterministic systems can be made. 

THEO.REM 3.1. For any given ETOL system of index k, one can find an equiv

alent EPDTOL system of index kin active normal form. 

The proof of Theorem 3.1 is carried out by replacing each nonterminal A 

of the original system with k "descendants" A1, •• ·•¾· Because of the as

sumption concerning the index, the tables for the descendants can be chosen 

deterministic. The only nondeterminism required is in picking up the right 

descendants but this can be affected by introducing different tables. 

(Note that the same construction does not work for EOL and EDOL systems.) 

As an immediate corollary we get the following result. 

THEO.REM 3.2. ETOLFIN(k) = EPDTOLFIN(k) and ETOLFIN EPDTOLFIN" 

Once can also consider the subclass of ETOL systems of finite index con

sisting of systems in which every derivation leading to a terminal word 

satisfies the finite index restriction. Formally, an ETOL system G is of 

uncontrolled index k iff whenever xis a word belonging to some derivation 

of a wordy in L(G), then x contains at most k occurrences of active let

ters. The notion of an uncontrolled finite index, as well as the notations 

ETOLUFIN(k)' ETOLUFIN' etc., are defined similarly as before. Note the 

analogy between ETOL systems of finite index and uncontrolled finite index 

on one hand, and context-free grammars of finite index and ultralinear 

grammars on the other hand, cf. [Sal]. It is well-known that there are 

context-free languages of finite index which are not ultralinear, for in

stance, the language ({a°bnln~O}c)*. However, in case of ETOL systems the 

situation is quite the opposite, and one can obtain the following rather 

surprising result. 
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THEOREM 3.3. For any given ET0L system of index k, one can find an equiv

alent EPDT0L system of uncontrolled index k (and in active normal form). 

Proof. By Theorem 3.1 we may assume that the given ET0L system G is, in 

fact, an EPDT0L system and in active normal form. Let G contain m non

terminals. We construct an equivalent EPDT0L system Hof uncontrolled in

dex k as follows. The nonterminals of Hare of form A(i1 , ••• ,im), where A 

is a nonterminal of G, 0 s ij S k, and i 1+ ••• +im S k. The vector (i1, ••• ,im) 

keeps track of the numbers of occurrences of nonterminals in a derivation 

according to G, and whenever there is an overflow, a garbage symbol is in

troduced. Thus, the initial symbol of His S(l,0, ••• ,0), where Sis the 

initial symbol of G. A production A·+ a 1A1a2 ••• atAtat+l (A's are nonter

minals) in a table T of G is changed into the set of productions (one for 

each vector) 

where (i1 , •.• ,im)T is them-dimensional Parikh vector of nonterminals ob

tained from the vector (i1 , ••• ,im) by the use of table T. (Note that 

(i1, ••• ,im)T is unique because Tis deterministic.) If the sum of components 

in (i1 , •.• ,im)T is greater thank, then instead of the production indicated 

we let A(i1 , ••• ,im) go into a garbage symbol. 

Combining Theorems 3.2 and 3.3, we get the equations 

ETOLFIN(k) = ETOLUFIN(k) = EPDTOLFIN(k) = EPDTOLUFIN(k)' 

ET0LFIN = ET0LUFIN = EPDT0LFIN = EPDTOLUFIN" 

The above results are from [RV1], where the study of the family ET0LFIN 

was initiated. It turns out that under the finite index restriction some 

hierarchies of language families collapse into one family, namely, ET0LFIN" 

In particular, 

free programmed 

tion of [Sal]), 

family contains 

if the finite index restriction is introduced for context

grammars (i.e., for the families P and PA in the nota-
ac ac 

the resulting family equals ET0LFIN" That the resulting 

ET0LFIN is obvious. The reverse inclusion is shown by con-

structing an ET0L system Hof index k for a language generated by a con

text-free programmed grammar G of index k. The construction is possible 
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since, because of the finite index restriction, we can carry complete in

formation about the nonterminals occurring (even the number of occurrences 

and their order), in a derivation step according to G, attached to non

terminals of H. There are only finitely many different derivation steps 

(i.e., where not both the rule and the entire sequence of nonterminals are 

the same), and each of them is simulated by one table of H. The construction 

resembles the one in the proof of Theorem 3.1 but is a little more compli

cated because we have to take care of both the success and failure fields 

of the original rule in G. The formal details can be found in [RV2]. 

It can now be inferred that if l is any family lying between ETOL and 

the family of context-free programmed languages, then LFIN = ETOLFIN" 

(Examples of such families Lare given in [Pe].) The only thing one has 

to show in each particular case is that the simulation by context-free 

programmed grammars of the generative devices yielding the family l pre

serves the finiteness of the index. This is straightforward in most cases. 

One case is considerd in detail in [Rl]. Thus one can say that a number 

of quite different approaches give rise to the family ETOLFIN" 

However, ETOLFIN contains properly EOLFIN" For instance, the language 

{an.man I } b m ~ n ~ 1 is in ETOLFIN but is not even EOL. The following re-

sults are established in [RV1]. 

THEOREM 3.4. The family ETOLFIN(l) equals the family of linear languages. 

Moreover, 

C C C 

ETOLFIN(l) f ETOLFIN(2) f•·•f ETOLFIN" 

ETOLFIN is a substitution closed full AFL. There is an algorithm for de

ciding whether an arbitrary given ETOL system G is of uncontrolled finite 

index but no algorithm for deciding whether G is of finite index. 
suLts concerning L families. A characterization of the family of ETOL 

languages, as well as its subfamilies EOL, EDTOL, EDOL, in terms of con

text-free programmed grammars of restricted types is given in [RV2]. It 

is also shown in the quoted paper that ETOL systems added with an "exactly 

one occurrence checking" mechanism (i.e., certain tables p can be applied 

only to strings having exactly one occurrence of a specific letter 1),l 
yield the full generative capacity of (A-free) context-free programmed 
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grammars. Thus, ETOL systems with an additional mechanism yield context

free programmed languages. One can in a sense reverse this way of thinking 

and study context-free programmed grammars with an additional mechanism 

suggested by ETOL systems. This is done in [RS3] and leads to a variation 

of programmed grammars, where control is imposed over sets of productions 

("tables") rather than over single productions. Such programmed grammars 

generate exactly the family of context-sensitive languages, the result 

being true even if one considers. control of one of the two very simple 

types which correspond to programmed grammars with empty failure fields 

and those with unconditional transfer. 

Some new definitional mechanisms ("squeezing" mechanisms) are con

sidered in [RS4]. They can be applied to L systems of the pure type, such 

as OL, DOL, PDOL, TOL, DTOL systems. In the production-universal (resp. 

production-existential) definition of the language, only those words are 

accepted which possess a derivation such that at the last step every pro

duction (resp. at least one production) applied belongs to a specified set 

of "good" productions. Both of these mechanisms are special cases of the 

more general production- subset definition: only those words are accepted 

which possess a derivation such that at the last step the set of produc~ 

tions applied equals some set in a specified finite collection of "good" 

sets. Letter-universal and letter-existential mechanisms are defined simi

larly by specifying the set of "good" letters whose presence is requested 

in the last word. (Thus, the letter-universal mechanism coincides with the 

E-mechanism.) From.a biological point of view, one is led naturally to 

these definitions if one wants to consider only certain stages in the de

velopment. From a generative capacity point of view, it turns out that if 

the underlying L structure is strong enough (such as a TOL structure) then 

all of these definitional mechanisms are of equal power, whereas uncompara

bility and strict inclusion results are obtained for weaker underlying L 

structures. 

We mention briefly two other squeezing mechanisms recently introduced: 

time delay and fragmentation introduced in [W] and [RRS], respectively. 

With OL as the underlying L structure, we get using these two mechanisms 

the families VOL and JOL. In a VOL system letters carry natural numbers 

as delay indicators. In one derivation step, each delay indicator is re

duced by 1, and new development can take place after the indicator has 

become O. The language of the system is obtained by stripping off the 
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a0 + a0a 1 yields at first the sequence 
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Hence, the language of the system equals {aqlq Fibonacci}. In a J0L system, 

right sides of the productions may contain occurrences of a special letter 

q which induces a cut in the resulting word. The derivation may then con

tinue from one of the parts thus obtained. For instance, using the produc

tions a+ aqa and b + ab, we get from the word bab in one derivation step 

the words aba and aab. These two mechanisms can of course also be used in 

connection with underlying L structures other than 0L. (A feature common 

to both mechanisms is the method by which the abbreviations V and J were 

chosen.) 

It is well known that the celebra.ted LBA-problem can also be expressed 

in terms of L systems. For various ways of doing this, the reader is refer

red to [Vi2]. In most cases, one has to compare the generative capacity of 

some nondeterministic and deterministic L systems with interactions. The 

most interesting result along these lines is in [Vi2], where comparison. 

is made between two deterministic L systems (although nondeterminism comes 

into the picture in form of table syst,;ims which are always in a sense non

deterministic). More specifically, it .is shown in [Vi2] (which continues 

the work begun in [Vil]) that the family of context-sensitive languages 

equals EPlL (the proof of this result :Ls based on the left context-sensi

tive normal form) and, furthermore, using the previous result, that the 

family of context-sensitive languages equals also EPDT21L (where T2 refers 

to table systems with only two tables). In [Vil], it is shown that the 

family of deterministic context-sensitive languages equals EPD2L. Therefore, 

the LBA problem amounts to solving the problem of whether or not a trade

off is possible between one-sided context with two tables and two-sided 

context with one table for A-free deterministic L systems using nontermi

nals. 

4. L GENERALIZATIONS 

A number of attempts have been made towards a uniform framework for L 



84 

systems. Such a framework usually presents also a generalization of the 

individual systems considered. The basic idea underlying L systems is that 

of iterated substitution. The corresponding formal model is a K-iteration 

grammar which has turned out to be a very useful general framework for 

discussing L systems. 

Let K be a family of languages which is closed under alphabetical 

variance and contains a language containing a nonempty word. By a K-sub

stitution over an alphabet Ewe. mean a substitution cr defined on E such 

that, for each a€ E, cr(a) is a language over E belonging to K. A K-itera-

tion grammar is a quadruple G (E,P,S,~), where E and~ are alphabets, 

~ s E, s EE - ~, and P = {cr1 , ••• ,crn} is a finite set of K-substitutions 
k * over E. We write x,. y, for x and yin E, iff there are cr, , ••• ,a. in P 

1 1 1 k 
such that 

y E cr. • .• cr. (x) • 
1 k 1 1 

The language generated by G is defined by 

L(G) 
k 

{w €~*I s .. x, for some k}. 

Languages of this form are called hyper-algebraic over K, and the family 

consisting of them the hyper-algebraic extension of K, in symbols, H(K). 

Form~ 1, Hm(K) denotes the family of languages generated by K-iteration 

grammars such that the cardinality of P does not exceed m. 

Following [As1], we call a family of languages Ka prequasoid iff K 

is closed under finite substitution and intersection with regular languages. 

A quasoid is a pre-quasoid containing at least one infinite language. It 

is easy to see (for details, cf. [AS2]) that every pre-quasoid (resp. 

quasoid) contains all finite (resp. regular) languages and that the family 

of finite languages is the only pre-quasoid which is not a quasoid. 

By definition, a pre-quasoid K is a hyper-AFL iff H(K) = K, i.e., K 

is hyper-algebraically closed. (It is shown in [As2] that this definition 

is equivalent to the definition given in [RS1]. Thus, ETOL is the smallest 

hyper-AFL). The following two theorems are from [As2]. 

THEOREM 4.1. Assume that K contains a language {a}, where a is a letter. 

Then H(K) = H (K) 
m 
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Proof. Since K is closed under alphabetical variance, it contains all lan

guages consisting of a word of length 1. Clearly, it suffices to prove the 

inclusion Hm(K) £ H2 (K), for an arbitrary m ~ 2. (This implies H(K) £ H2 (K), 

and the reverse inclusions are obvious.) Thus, consi_der a K-iteration gram

mar G with m ~ 3 substitutions a 1 , ••• ,am. We simulate G by a K-iteration 

· grammar H with two substitutions Tl and T2 , defined as follows. To get the 

alphabet of H, we add to the alphabet of Ga garbage symbol F and "descen

dants" a0 ,a1, ••• am, for each letter a in the alphabet I: of G. The terminal 

alphabet of H equals that of G, and the initial letter of His h0 (s), where 

Sis the initial letter of G and his the homomorphism defined on I: which 

sends every letter a to the descendant a 0 (i.e., h0 (s) = s 0). The K-substi

tutions T1 and T2 are defined by 

{a}, 

where a€ I:, 0 sis m-1, 1 s j s m, and Tl and T2 assume the value {F} 

for all other letters. D 

As a corollary of Theorem 4.1 we get the known result that every ETOL lan

guage is g.enerated by an ETOL system with two tables. The proof of Theorem 

4.1 uses the idea of "cyclic tables" familiar from ETOL systems. 

THEOREM 4.2. For every pre-quasoid K, the family H(K) is a hyper-AFL. (More

over, H (K) ··contains ETOL and is the smallest hyper-AFL containing K.) 

The essential point in Theorem 4.2 is that H(K) is hyper-algebraically 

closed, i.e., H(H(K)) = H(K). This is an extension of the result of 

Christensen, [RS1], that ETOL is hyper-algebraically closed. 

THEOREM 4.3. There exists an infinite chain Ki of hyper AFL's strictly in 

between the families of contex-free and context-sensitive languages: 

We outline the proof, the details of which can be found in [AL]. We con

sider ETOL systems with a control language on the use of tables. The family 

of languages generated by ETOL systems with control languages belonging to 
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the family K is denoted by (K)ET0L. Define now 

ET0L, (i>0) • 

One can show that each (Ki_1)ET0L is hyper-algebraically closed, whence 

it follows that each Ki is a hyper-AFL. Clearly, for all i, Ki~ Ki+l· The 

strictness of the inclusion is seen by considering functions 

and languages 

f. (x) 

f. (x) 
l. 

{a 1 J x <! O} 

(i>0) 

By induction on i, it is immedaitely seen that Li E Ki. That Li k Ki-l 

(i>0) follows because the growth rate of fi (x) exceeds the rate possible 

for languages in Ki_ 1 • This again is seen inductively by noting first that 

the growth rate in ET0L is at most exponential. In the inductive step, it 

is useful to note that we may restrict attention to A-free ET0L systems. 

To complete the proof, one shows by a complexity argument that Ki is 

properly contained in cs. D 

Especially interesting is the limit family Kw= UiKi. Kw is a hyper-AFL 

which is not principal. Furthermore, it is the smallest hyper-AFL satis

fying the "fixed-point" condition (K)ET0L = K. 

K-iteration grammars with a control language (in the same sense as 

for ET0L systems) have been investigated in [As2]. Given Kand the family 

r of control languages, we denote by H(K,r) the family of languages gener

ated by K-iteration grammars with a control language in r. Under certain 

quite general assumptions concerning r, results analogous to Theorems 4.1 

and 4.2 are valid for the family H(K,r). 

We mention, finally, the work begun in [R2] concerning selective sub

stitution grammars. This is a general model which yields K-iteration gram

mars (and, hence, various L systems) as well as the main types of grammars 

met in sequential rewriting as special cases. 
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5. L PARSING 

We consider parsing of EOL and ETOL languages. It was shown in [vL2] that 

the membership problem for ETOL is NP-complete. In fact, ETOL systems con

stitute perhaps the simplest grammatical device for generating the language 

SAT3 crucial for NP-completeness. The following ETOL system G generates 

SAT3 {consisting of satisfiable formulas of propositional calculus in 3-

conjunctive normal form with unary.notation for variables.) The alphabet 

of G consists of the letters S {initial), v {disjunction), 7 {negation), 

t ("true"), f {"false"), { , 

We have the following table 

{parentheses), F {garbage), 1 {variables). 

[S-+ {aVBVy)S, S-+ {avBvy)] 

where {a,B,y) ranges over all combinations of {t,7t,f,7f) which do not 

consist entirely of7t's and f's, as well as the table 

[S-+ F, t-+ 1t, f-+ 1f, t-+ 1] 

and the table obtained from this by replacing t-+ 1 with f-+ 1. {The letters 

not listed in the tables go into themselves.) 

The same system shows also that the membership problem for TOL lan

guages is NP-complete. As regards DTOL systems, the problem is still open, 

although some results {in [Ha]) make it very likely that membership for 

DTOL is polynomial time. 

The fastest known algorithm for recognizing EOL languages is the one 

given in [vL3]. The algorithm works in time O{n3•81 ), and is based on the 

construction of appropriate data-structures such that Valiant's fast algo

rithm for computing the transitive closure of matrices over non-associa

tive domains can be applied. 

Questions concerning parsing are closely related to the problem of 

finding suitable machine models for L systems. Combining the idea of a 

checking stack automaton and his earlier pre-set pushdown automaton, van 

Leeuwen, [vL4], has defined the notion of an augmented checking stack 

aotumaton and shown that the family of accepted languages equals ETOL. As 

a consequence of this result, it follows that ordinary checking stack lan

guages are in ETOL. 
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An augmented checking stack automaton uses both a checking stack and 

a synchronously operating pushdown tape. The input tape is one-way, there 

is a finite control as usual, and the machine is in general nondeterminis

tic. Initially, the machine writes information on top of the checking stack. 

(This information cannot be altered later on but can only be used for 

"checking".) After that, the pushdown tape becomes operational in the or

dinary way except that there is a double pointer pointing to both pushdown 

and checking stack. The checking stack interrupts the computation if the 

pointer reaches its top (beyond which it is not allowed to go). Thus, one 

step in a computation of the machine begins by noting the current input 

symbol, the current state and the symbols pointed at in the storage (i.e., 

the top symbol of the pushdown tape and the contents of the opposite square 

on the checking stack), and results in (perhaps in a nondeterministic 

fashion) moving the input head O or 1 squares to the right, changing the 

internal state, and popping or pushing a symbol on the pushdown, together 

with an adjustment of the double pointer. The latter never moves beyond 

the area allocated for the checking stack. Clearly, both the pre-set push

down automaton and the ordinary checking stack automaton are degenerate 

cases of this model. 

6. L GROWI'H 

We now turn into the discussion of some recent results, all in the area of 

informationless L systems, concerning growth of word length. The theory 

of growth functions has been extensively discussed in [HR], [RS1], [RS2], 

[LR], and [Hv], the last-mentioned reference being a recently published 

survey article on this area. The results discussed below are from [Sol], 

[So2], [So3], [Sa3] and [SaSo]. We begin with the discussion of some un

decidability results. In fact,·one can claim that some of the problems 

listed below, for instance Problem (4), are the most "innocent looking" 

problems concerning L systems which have been shown to be undecidable. Of 

course, there are even more innocent looking problems whose decidability 

status is open. 

* Consider functions f mapping the set V of all words over a finite 

alphabet V = {a1, ••• ,¾} into the set Z of all integers. Such a function 

is termed Z-rational (resp. N-rational) iff there is a row vector~, a 
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column vector n, and square matrices M1 , ..• ,~, all of the same dimension 

m and with integral (resp. nonnegative integral) entries, such that for 

any word x 

f(x) = 1rM .••• M. n. 
1 1 1 t 

(If x equals the empty word A, this matrix representation reduces to 

f(A) = 1rn.) An N-rational function is termed DTOL iff all entries inn 

equal 1. Finally, a DTOL function is termed PDTOL iff every row in each of 

the matrices M1 , .•. ,~ contains at least one element greater than zero. 

In the special case of a one-letter alphabet, k = 1, DTOL functions (resp. 

PDTOL functions) are referred to as DOL (resp. PDOL) functions. In this 

case, the argument is written simply n, instead of a~. 

From the L systems point of view, these definitions can be interpreted 

as follows. Consider a DTOL system with k tables and m letters in the al

phabet. (Thus, the alphabet V will be the alphabet of the tables, whereas 

the dimension of the matrices gives the cardinality of the alphabet of the 

system itself.) The matrix Mi is the growth matrix associated with the 

table ai, and 1T indicates the distribution of the letters in the axiom. · 

The function value f(a .••. a. ) gives the length of the filament resulting 
1 1 1 t 

by applying the sequence of tables a .••• a. to the axiom. PDTOL functions 
1 1 1 t 

correspond in the same way to PDTOL systems, and N-rational functions to 

HDTOL systems. 

N-rational functions over a one-letter alphabet give the length se

quence of an HDOL system. In case of one-letter alphabet, we often speak 

of sequences instead of functions. In this chapter, we always mean length 

sequences rather than word sequences. 

The following theorem which strerightens analogous results in [E] is 

our basic tool for establishing undecidability. 

THEOREM 6.1. Consider an alphabet V = {a,b} consisting of two letters. The 

following problems are undecidable for Z-rational functions f defined on 

* V : 

(i) Does f assume the value Oat. least once? 

(ii) Does f assume the value O infinitely many times? 

(iii) Are all values off nonnegative? 

(iv) Does there exist at such that f(x) is nonnegative for all words x 

with length greater than t? 
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Proof. We show first that if we could decide (i), we would be solving 

Hilbert's Tenth Problem. For this purpose we construct, for a given in

teger polynomial P with u variables, a Z-rational function r satisfying 

the identity 

For i = 1, ••• ,u, let ri be the N~rational function defined by the following 

(i+l)-dimensional vectors and matrices: 

M. (a) 
l. 

1T. 
l. 

11 

0 

0 

(10 ••• 0), 

0 

• 1 
____ 1_1_ 

0 
0 1 

It is easy to see that ri satisfies 

0 1 0 0 
0 1 . 1 

M. (b) 
l. 0 ·o 

----00 
0 

0 1 

The function r can now be constructed from the functions ri by the rational 

operations used in the definition of the polynomial P. 
* * u-1 Let now Lu be the complement of the (regular) language a (ba) , 

ands the (Z-rational) characteristic function of L. Denote Hadamard 
u 

product by 9. Then the Z-rational function 

r e r + s 

assumes the value 0 iff P(n1 , ••• ,nu) 

tegers ni. 

0 has a solution in nonnegative in-

Because all values of the function s 1 - 1 are nonnegative iff s 1 does 

not assume the value 0, we see that also (iii) is undecidable. The undeci-

dability of (ii) and (iv) is seen by an easy modification of the argument 

above. D 

The next two theorems establish useful interconnections between Z-rational 
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and DTOL functions. The theorems are obtained by the techniques of merging 

and dominant terms considered in my article in [LR]. For the statement 

of the latter theorem, we need the operator ODD, defined for words of odd 

length (over any alphabet) as follows: 

For words x over even length, ODD(x) is undefined. 

THEOREM 6.2. For any Z-rational function f, there exists a number u0 such 

that, for all integers u ~ u0 , the function f 1 (x) = ulg(x)+l + f(x) is a 

PDTOL function. 

THEOREM 6.3. For any Z-rational function f, there is a number u0 such that, 

for any integer u ~ u0 , the function g defined in the following way is a 

DTOL function: 

g(x) 
n+l 

u for lg(x) = 2n, 

g(x) n+l 
u + f(ODD(x)) for lg(x) 2n+l. 

We now list some decision problems for DTOL and DOL functions. In the state

ment of the problems, f(x) (resp. fp(x)) is a DTOL (resp. PDTOL) function 

over a two-letter alphabet (i.e., the corresponding table system consists 

of two tables only). Furthermore, g(n) is a POOL function, xis a word 

over V = {a1,a2} and b ranges over {a1,a2}. 

(1) (Comparison between POOL and PDTOL growth) Given g and fp, decide 

whether g(n) $ fp(x) holds for all n and x with lg(x) = n. 

(2) (Monotonicity of DTOL growth) Given f, decide whether f(x) $ f(xb) 

holds for all x and b. 

(3) (Existence of equal size between POOL and PDTOL growth) Given g and 

fp, decide whether there exist an n and x with lg(x) = n such that 

g(n) = fp(x). 

(4) (Constant level in DTOL growth) Given f satisfying for all x and b 

f(x) $ f(xb), decide whether there exist x and b such that f(x) = f(xb). 

The remaining problems (5)-(8) are modifications of (1)-(4) respec

tively. 
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(5) (Ultimate comparison between POOL and POTOL growth) Given g and fp, 

decide whether there exists au such that g(n) ~ fp(x) holds for all 

n ~ u and all x with lg(x) = n. 

(6) (Ultimate monotonicity of DTOL growth) Given f, decide whether there 

exist au such that f(x) ~ f(xb) holds for all x and b with lg(x) ~ u. 

(7) (Equal size between POOL and PDTOL growth infinitely often) Given g 

and fp, decide whether g(n) = fp(x) holds for infinitely many pairs 

(n,x) with lg(x) = n. 

(8) (Constant level in DTOL growth infinitely often) Given f satisfying 

for all x and b f(x) ~ f(xb), decide whether f(x) = f(xb) holds for 

infinitely many pairs (x,b). 

The intuitive meaning from the L systems point of view is indicated in con

nection with each problem. For instance, as regards problem (1), this can 

be expanded as follows. We have modeled two developmental processes, one 

by a POOL system and the other by a PDTOL system with two tables. We want 

to know whether it is possible to use the tables in such a way that, at 

some time instant, the filament obtained in the latter process is smaller 

than the one obtained in the former process. 

THEOREM 6.4. All of the Problems (1)-(8) are undecidable. 

Proof. The undecidability of (i) in Theorem 6.1 gives by Theorem 6.2 

(resp. Theorem 6.3) the undecidability of (3) (resp. (4)). Similarly, (ii) 

is utilized to prove the undecidability of (7) and (8), (iii) to prove 

that of (1) and (2), and (iv) to prove that of (5) and (6). D 

We consider next problems whose decidability has recently been established. 

The decision methods also give a complete characterization of POOL growth 

functions within the class of OOL growth functions, of OOL growth functions 

within the class of HOOL growth functions, as well as of HOOL growth func

tions within the class of Z-rational functions. Hence, we can always find 

out whether or not a given function in one of these classes belongs to 

some other class. We get also a complete solution for the OOL synthesis 

problem. 

The three characterization results referred to above are contained 

in the next three theorems. For proofs, we refer to [Sol], [So2], [So3], 

or to [SaSo]. Since we are dealing with one-letter alphabet, we prefer to 



state the theorems for sequences rn determined by values of functions: 

rn = r(n). 
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THEOREM 6.5. A sequence of integers rn is a PDOL sequence iff r 0 > 0 and the 

sequence sn = rn+l-rn is N-rational. 

THEOREM 6.6. Let rn be a N-rational sequence such that rn * 0, for every n, 

and the quotient rn+l/rn remains bounded. Then rn is a DOL sequence. 

THEOREM 6.7. Let rn be a sequence of integers satisfying the following two 

conditions: 

(i) 

(ii) 

rn ~ 0 for every n, 

there are 

bers s(j) 
n 

where a~ 

numbers m and p such that whenever O ~ j ~ p-1 then the num-

= r have an expression s(j) = P(n)an + E,P. (n)a~, 
m+j+np n ii i 

0, a> max. la. I, and P ctnd P. are polynomials such that Pis 
1 1 . 1 

not identically 0. (For different values of j, the numbers a, ai as 

well as the polynomials P, Pi may be different.) 

Then rn is an N-rational sequence. 

That Theorems 6.6 and 6.7 give a necessary and sufficient condition for DOL

ness and N-rationality, respectively, follows because also their converses 

hold. Clearly, for every DOL sequence rn (which does not become ultimately 

0), the quotient rn+l/rn remains bounded. On the other hand, by Berstel's 

Theorem (cf. [E]), every N-rational sequence satisfies conditions (i) and 

(ii) of Theorem 6.7. 

According to Theorem 6.7, the condition characteristic for N-rationali

ty of a given Z-rational sequence rn is that the poles of its generating 

function (if there are any) are of the .form p;, where p > 0 ands is a root 

of unity. By considering if necessary decompositions of the given sequence 

rn' to test the N-rationality of a sequence, it suffices to be able to test 

the validity of the following conditions: 

(i) the generating function is a polynomial or has only one pole with min-

imum modulus (and that pole is positive), 

(2) rn ~ 0 for every n. 

As shown in [So2], these conditions are decidable. It is shown in [Sol] how 

to decide the condition for DOL-ness stated in Theorem 6.6. Hence, Theorems 

6.5-6.7 imply the following theorem. 
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THEOREM 6.8. It is decidable whether or not a given Z-rational sequence is 

N-rational, a DOL sequence, or a PDOL sequence. 

As we already pointed out, according to Theorem 6.7 the condition charac

terizing N-rational sequences among Z-rational ones deals with the poles of 

minimal modulus of the generating function. Using this criterion and the 

fact that (3+4i)/5 is not a root of unity, we see that the following Z-ra

tional sequence (consisting of positive terms) is not N-rational: 

r n 

Combining this with Theorem 6.5, we can easily construct strictly growing 

DOL sequences which are not PDOL sequences. (The existence of such sequences 

was an open problem for a long time.) For instance, the sequence sn obtained 

from our sequence rn above as follows: 

10n + r 
n' 

is such a DOL sequence. (It is an instance of merging, of which Theorem 6.3 

gives a more general result.) 

It is well-known that N-rational s,:quences an may consist of differently 

growing parts. For instance, a2n may grow linearly and a 2n+l exponentially. 

(Since N-rational sequences coincide wi~h HDOL sequences, we see this clear

ly by letting the homomorphism erase some letters.) Obviously, such differ

ently growing parts are not possible in a DOL sequence. Theorem 6.6 shows 

that this is, in fact, the only difference between DOL and HOOL sequences. 

It is also a consequence of Theorem 6.6 that the quotient an/bn of two DOL 

sequences is itself a DOL sequence, provided always bn * 0 and bn di~ides 

an. For a more detailed discussion regarding these matters, we refer to three 

quoted papers by Soittola or to [SaSo]. 

Although most of the problems concerning growth in informationless L 

systems have been solved, there are still some open problems which probably 

are very hard. (Note that there really is no mathematical theory, apart from 

some tricky examples and undecidability results, concerning DIL growth.) 

Using the terminology of Theorem 6.1, these problems can be stated simply 

as follows. Assume that the basic alphabet V consists of one letter only. 
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Are the problems (i), (iii), (iv) decidable? ((ii) is known to be decidable 

by a result of Berstel and Mignotte, cf. [LR].) A further discussion con

cerning these problems can be found irt [LR]. We mention here only that an 

equivalent formulation for (i) (resp. (iii)) is the following: Given a D0L 

sequence rn, decide whether or not there exists an i such that ri = ri+l 

(resp. Decide whether or not a given D0L sequence rn is monotonic). It would 

be extremely surprising if one of these problems would turn out to be un

decidable. 

We mention, finally, that in [Da] the following function dG(n) is in

troduced for DT0L systems G: dG(n) equals the number of distint words deriv

able in exactly n steps according to G. (Thus, for D0L systems G, dG(n) is 

identically 1.) The functions dG(n) might have some interconnections with 

growth functions although it is not clear whether or not they are even Z

rational. 

7. L FORMS 

The notion of a grammar form was introduced in [CG] as an attempt to define 

families of structurally similar grammars by means of one underlying grammar 

called a "grammar form", and an "interpretation" mechanism defining an in

finite family of grammars related to the given grammar form. This notion of 

a grammar form and its interpretations has turned out to be a powerful tool 

for the study of grammatical properties of both theoretical and practical 

significance. Despite the youth of this area of language theory, much prom

ising work has already been done in the field. 

The notion of a grammar form can be introduced for L systems as well. 

This seems to be well motivated because it will certainly aid to the under

standing of the structure of "L grammars" (as regards problems such as what 

types of E0L systems suffice to generate all E0L languages). Furthermore, 

from a biological point of view, a family of related L systems can be inter

preted as a "family" or "species" of organisms. 

The study of L forms, i.e., grammar forms for L systems has been ini

tiated in [MSW] which contains all the results mentioned in this chapter. 

The results concern E0L forms only. However, work concerning other types of 

forms, in particular ET0L forms, is in progress. 

By definition, an E0L form Fis an E0L system, F = (L,P,S,6). An E0L 

system F' = (L',P',S',6') is called an interpretation of F moduloµ, 
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symbolically F'<JF(µ) iff µ is a substitution defined on E such that the 

following conditions are satisfied: 

(i) µ(A) Si. E' - /).' for each A € E - I)., 

(ii) µ(a) Si. /). I for each a € t., 

(iii) µ (ex) n µ(Sl = cf, for any ex * s, 
(iv) P' Si. (P) (where µ(P) = u µ (ex) + µ(x)), 

ex+x in p 

(v) S' € µ (S) • 

The family Gr(F) = {F' I F'<JF} is referred to as the grammar family of F, 

and the family La(F) = {L(F') I F'<JF} as the language family generated 

by F. Two EOL forms F1 and F2 are termed equivalent (resp. strictly equiv

alent) iff La(Fl) = La(F2) (resp. Gr(Fl) = Gr(F2)). 

For the readers familiar with the theory of (ordinary) grammar forms, 

we would like to point out that our definition of interpretation differs 

from the ordinary one with respect to terminals: according to (ii), ter

minals are interpreted by terminal letters rather than terminal words, and 

condition (iii) is extended to concern also terminals. In addition of our 

definition being more natural mathematically than the ordinary definition, 

it has also several advantages from the point of view of L systems which 

have been explained in [MSW]. Moreover, the main reason for the exceptional 

definition of interpretation of terminals in the ordinary theory of gram

mar forms (the obtained language families become semi-AFL's) is not an 

important issue in L systems theory. 

For the EOL form 

F1 ({s,a},{s + sa,s + a,a + a},s,{a}). 

the language family La(F1) equals the family of regular languages, as shown 

in [MSW]. (In fact, we obtain only A-free regular languages but, according 

to our earlier convention, we consider the equality of languages modulo A.) 

For the EOL form 

F2 ({s,a},{s + ss,s + s,s + a,a + s},s,{a}), 

the language family equals the family of all EOL languages. Note, however, 

that if F1 and F2 are viewed as EOL systems, they generate the same lan

guage. 



97 

Results from the theory of ordinary grammar forms carry over to the 

grammar families Gr(F). (For instance, it is decidable whether two E0L 

forms generate the same grammar family.) This is quite natural because the 

parallelism in derivations is not used at all in the definition of the 

family Gr(F). As regards language families La(F), the situation is quite 

different. The basic lemma concerning ordinary grammar forms, according 

to which L(F) ~ L(F'), provided for every production A ➔ x in F there is 

* a derivation A* x according to F', is not valid for E0L forms, the reason 

* being that because of the parallelism, the derivations A* x should be of 

the same length and they should also not introduce terminal words at the 

intermediate steps. The following E0L forms F and F' constitute a counter 

example (we list the productions only, the capital letters being nonter

minals and small letters terminals): 

F: S ➔ aa, a ➔ a; F': S ➔ b, b ➔ aa, a ➔ a. 

The productions of F can be simulated by derivations according to F' (even 

by derivations of the same length 2) but La(F) is not contained in La(F') 

because the language {aa} is in La(F) - La(F'). 

For E0L forms, the situation concerning the basic lemma discussed in 

the previous paragraph is much more complicated. Several substitutes for 

the basic lemma have been established in [MSW]. 

Several "reduction" or "normal form" results for E0L forms are known, 

i.e., results allowing us to replace a given form by an equivalent simpler 

one. We mention the following one. 

THEOREM 7.1. For every E0L form an equivalent E0L form can be constructed 

such that the productions in the latter are of the types 

A ➔ a, A ➔ BC, A ➔ B, a ➔ A, A ➔ A, 

where A, B, Care nonterminals and a is terminal. 

An E0L form is termed complete iff its language family equals the whole 

family of E0L languages. Although no exhaustive characterization for com

pleteness of E0L forms is known, we have a number of results which enable 

us to decide the matter in most cases. Theorem 7.2 gives some necessary, 
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and Theorem 7.3 sufficient conditions for completeness. Let us call an E0L 

system looping (resp. expansive) iff it has a letter a, reachable from the 

initial letter, which derives itself in a positive number of steps (resp. 

derives a word containing two occurrences· of a). 

THEOREM 7.2. Assume that Fis a complete E0L form. Then F viewed as an E0L 

system, is looping and expansive. Furthermore, F contains a production 

sending a nonterminal to a word over the terminal alphabet, as well as a 

production sending a terminal to a word containing one nonterminal. 

THEOREM 7.3. Assume that Fis an E0L form such that, for some t ~ 1, the 

following derivations are possible according to F (viewed as an E0L system): 

S ~ S, S ~ SS, S ~ a, a~ xSy, 

for some words x and y and terminal letter a, and that no words strictly 

over the terminal alphabet appear in these derivations at the intermediate 

steps. Then Fis complete. 

The following forms F1-F9 (resp. H1-H6) provide some typical examples of 

complete E0L forms (resp. of E0L forms which are not complete). 

F4 : S + a, s + s, S + SS, a+ ss 

F5 : S + a, S + A, S + S, S + SSS, a+ S 

a+A 

F7: S + a, S + SSA, S + s, a+ s, A+ A 

F8 : s + a, s + s, s + ss, a+ N, 

F9 : S + a, S + S, S + SS, a+ N, 

H3 : S + a, S + S, a+ S, S + SSS 

N + N 

N + NN 



H4: s + a, a + s, a + ss, a+ a 

HS: s + a, a + s, a + a 

H6: s + A, A + s, s + ss, A+ a, a+ A. 

Note the similarity between F6 and H6 . However, F6 is complete and H6 is 

not complete. 
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It is an open problem whether or not there exists an EOL form whose 

language family equals the family of context-free languages. However, if 

we consider uniform interpretations (i.e., when taking interpretations of 

productions, the substitutionµ is uniform on terminals), then the lan

guage family obtained from the form 

F: S + SS, S + a, a+ a 

equals the family of context-free languages. On the other hand, the lan

guage family La(F) contains non-context-free languages because, for in

stance, the EOL system wi.th the productions 

S + SS, S + a, a+ c, c + c 

is an interpretation of F. (This system is not a uniform interpretation of 

F because a+ c cannot result from a+ a under uniform interpretation.) 

Instead of EOL forms, one can also consider so-called pure forms 

having just one alphabet (as OL systems have). The distinction between 

terminals and nonterminals will be made in interpretations only. Various 

interconnections between pure forms and EOL forms can be stated. The problem 

of completeness is easier for pure forms. For instance, one can show that 

a pure form over a one-letter alphabet {s} is complete iff it contains 

the productions S +Sand S + SS. 

It is well-known that some L families have very weak, and some others 

strong closure properties. Therefore, it is not surprising that, for EOL 

forms F, the family La(F) is sometimes an AFL, sometimes an anti-AFL. We 

already gave an example of the former possibility, where the language fam

ily was the family of regular languages. For the following form F: 

S + a, S + cc, S + AAAA, A+ AA, A+ b, a+ a, b + b, c + c, 

the language family La(F) is an anti-AFL. 
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B. L DECIDABILITY 

We review in this chapter briefly some recent language-theoretic decidabi

lity results concerning L systems. The problems we have in mind are in a 

sense comparative ones: we compare two language families Kand K', where 

in most cases one of the families is "sequential" and the other "parallel". 

More specifically, we are interested in the following two decision problems 

for fixed language families Kand K'. 

(1) The equivalence problem between K and K': Given languages L in K and 

L' in K', one has to decide whether or not L = L'. (In case K = K', 

we speak of the equivalence problem for K.) 

(2) The K'-ness problem for K: Given a language Lin K, one has to decide 

whether or not Lis in K'. (If K' is the family of regular languages, 

we speak of the regularity problem for K, etc.) 

Let us call TOL systems with a one-letter alphabet "unary", and denote them 

as well as the generated languages by TUL (in accordance with UL systems 

and languages). Generalizing the earlier results concerning UL languages, 

Latteux has established the following results in [Lal] and [La2]. 

THEOREM 8.1. The TUL-ness problem is decidable for regular languages, and 

so are the regularity and UL-ness problems for TUL languages. Consequent

ly, the equivalence problem between TUL languages and UL languages, as 

well as the equivalence problem between TUL languages and regular languages 

are decidable. 

The following results are established in [Sa4]. 

THEOREM 8.2. The regularity and context-freeness problems are decidable 

for the family DOL and so is the equivalence problem between DOL and con

text-free languages. 

The equivalence problem between regular and OL languages, the equivalence 

problem between OL and DOL languages, the regularity problem for OL languages, 

and the OL-ness problem for regular languages are all open. However, the fol

lowing result is established in [Li]. 
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THEOREM 8.3. The DOL-ness problem for context-free languages is decidable. 

The proof of Theorem 8.3 proceeds by showing that, for any context-free 

DOL language L, one can find a. constant k such that. in any DOL system 

generating L the lengths of the axiom and the right sides of all productions 

are bounded by k• Tneorem 8.3 follows from this observation by Theorem 8.2. 

9. L PROBLEM 

What we call "L problem" is easy to guess: The DOL equivalence problem. 

Since this problem is perhaps the most simply stated combinatorial problem 

whose decidability status is still open, let us repeat here the problem in 

a formulation understandable to any mathematician (just in case somebody 

not knowing anything about formal languages happens to see this): 

L PROBLEM. (Problem of Iterated Morphism). Consider quadruples K = 
= (V,x,g,h), where Vis a finite set, xis an element of the free monoid 

* * V generated by V, and g and hare endomorphisms of V. Is there an al-

gorithm which decides of a given K whether or not gi(x) = hi(x) holds for 

all i? 

It is generally believed that L Problem is decidable although some people 

have the opposite opinion. The latter is perhaps due to the fact that so 

far the Problem has resisted all efforts of finding an algorithm for its 

solution. Some partial results are know, cf. [RS2]. The more recent results 

are briefly reviewed below. 

THEOREM 9.1. The DOL equivalence problem is decidable for polynomially 

bounded DOL sequences. 

The first detailed proof of Theorem 9.lappears in [Ka], although the theo

rem was announced earlier by Ehrenfeucht and Rozenberg. The proof in [Ka] 

is based on a reduction on the degree of the polynomial, leading finally 

to linear growth, where results like Theorem 8.2 become available. Although 

some notions about how the proof might be carried out are clear to every

body who has worked on the problem, it still takes a lot of careful 
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analysis and effort to complete the proof. Therefore, for anyone trying to 

get a feeling on the L problem, we recommend that he works through [Ka] 

(or finds a better argument himself). If he eventually thinks that he has 

solved the L Problem (the argument in [Ka] cannot.be extended to the general 

case), we also hope that he goes through and presents the details carefully. 

(No arm waving please.) 

We say that a pair (G,H) of DOL systems has a k-bounded balance (k~O) 

iff the condition 

llg(h(x)) - lg(g(x)) I ~ k 

is satisfied for every word x appearing as a prefix in some word in L(G). 

(g and hare the homomorphisms defining the systems G and H.) The pair 

(G,H) has a bounded balance iff it has a k-bounded balance, for some k. 

A family of DOL systems is smooth iff every pair of (sequence) equivalent 

systems from the family has a bounded balance. The following result is es

tablished in [CJ and [Va]. 

THEOREM 9.2. Equivalence problem is decidable for every smooth family of 

DOL systems. 

Proof. Let G and H be systems from a smooth family K. Fork~ O, we con

struct a finite automaton~ such that Lk = L(~) n L(G) = $ iff the pair 

(G,H) has k-bounded balance and G and Hare (sequence) equivalent. (After 

reading a prefix x of an input,~ remembers, using its states, which of 

the words g(x) and h(x) is longer and by what word, provided the length 

difference does not exceed k and provided one of g(x) and h(x) is a prefix 

of the other.) Each~ is an EOL language and, hence, its emptiness is 

decidable. Because K is smooth, testing the emptiness of L0 ,L1, ••• consti

tutes a partial decision procedure for equivalence. Since a partial deci

sion procedure for nonequivalence is obvious, we obtain the required full 

decision procedure by running the partial ones concurrently. D 

Denote by K1 the family of DOL systems G such that, for some t, all entries 

in the t:th power of the growth matrix of Gare positive. The following 

result is established in [C]. 
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THEOREM 9.3. The family K1 is smooth. Consequently, equivalence is decidable 

for systems in K1• 

THEOREM 9.4. D0L equivalence is decidable· for systems over a two-letter 

alphabet. 

Theorem 9.4 is easily established by a case analysis concerning growth 

matrices because the difficult cases are taken care of by Theorem 9.3. 

Theorem 9.4 appears also in [Va]. 

It is well-known that one can decide whether or not two D0L systems 

generate the same sequence of Parikh vectors. Instead of Parikh vectors, 

one can consider some numerical information telling more about a word than 

its Parikh vector. [Ru] is a comprehensive study along these lines. As re

gards D0L systems, it is shown in [Ru] that the equivalence with respect 

to many types of combinatorial mappings is decidable. For instance, this 

is true for the power sum mappings. Let i ~ 0 be an integer and b a letter. 
i 

Define a mapping psb for words w by 

I (j-1)i, 
j 

where j ranges over all numbers such that b occurs as the j:th letter in 

w. (Thus, for i = 0, we get a component in the Parikh mapping.) For any 

fixed i and b, it is decidable whether or not 

holds for all n, where wn and w~ are two given D0L word sequences. 

10. L FUTURE 

So far the yearly growth in the number of papers dealing with L systems 

has been exponential with base 2 but it seems that during this year we 

cannot keep up with this rate any more (going from 256 to 512). Undoubted

ly, L systems theory constitutes today a central area within formal lan

guage theory, an area in many respects richer than the theory of phrase 

structure grammars ever was. I leave it to the biologists to discuss and 
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decide about the importance of L systems for "real biology". overtures 

about possibilities for applications in other areas (operating systems, 

linguistics) have been heard lately. Also the purely theoretical research 

seems to continue vigorously. 

Other letters come and go, Lis here to stay! 
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1 . INTRODUCTION 

In its most traditional form the theory of computation concerns itself with 

classifying functions as either computable or noncomputable. Researchers in 

theoretical computer science have refined this theory so as to be able to 

classify functions as either efficiently computable or not. The notions of 

efficiency most often studied, and the ones studied here, are time and 

storage. This general research area, which studies the efficiency of compu

tation, is usually referred to as complexity theory. The work in this area 

has been quite successful at discovering functions which can be computed by 

efficient algorithms. The work has met with less success in its attempts to 

discover which functions cannot be computed by realistically efficient 

algorithms. Some striking successes at computing lower bounds on the time 

and storage requirements of computable functions have been achieved. However, 

it is still true that we do not yet have the techniques to prove good lower 

bounds for the time and storage needs of very many common functions. Recent 

work in complexity theory has produced results which go a long way toward 

isolating the problem of deciding which functions can be done by realistic

ally efficient algorithms. A common theme in much recent work in complexity 

theory is to consider some class of interesting problems, say for example 

the recognition problem for context-free languages, and to try to determine 

the minimum time and storage bounds needed to solve these problems on a 

computer. The work has not been a total success but many such efforst have 

met with striking partial success. Many of these partial successes follow 

a similar pattern. They do not determine the time and storage needs of the 

class of problems in question; however, they do often produce examples of 
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problems which are the hardest problem in that class. For example, there is 

a hardest context-free language. It is hardest in the sense that if it can 

be recognized with a given time or storage bound, then all context-free 

language can be recognized within that same time or storage bound. In these 

lectures we will look at three examples of problem classes that have hardest 

problems. The three problems considered are: the context-free language recog

nition problem, the problem of converting an arbitrary nondeterministic 

storage-bounded procedure to an efficient deterministic storage-bounded 

procedure, and the analogous problem for time-bounded procedures. Rather 

than survey the lists of hardest problems for each problem class, we will 

try to explain the techniques used to discover and prove that a problem is 

hardest for a given class. We will therefore look at one very key and re

presentative problem for each of the three classes and will discuss in some 

detail the proof that these problems are among the hardest problems in their 

class. 

All our proofs require, in an essential way, that we have a formally 

defined model of a computer and a formally defined notion of the time and 

storage requirements of a procedure. We have chosen to use the most commonly 

studied model; namely, the Turing machine. This model was chosen because it 

yields notation and proofs which are particularly simple, and we wish to 

exhibit the techniques of the proofs as much as the final results. However, 

the results presented here are model-independent. Within the bounds of 

accuracy of our results, all of our results apply to any reasonable model 

of a computer. This point is discussed in more detail when we define the 

model itself. 

p u 

Finite 
State OUTPUT 

T A P E 1 

Fig. 1 
Turing Machine with Two Storage Tapes 
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2. A MODEL FOR TIME AND STORAGE 

2.1. Machine model 

The Turing machine model was first introduced by Turing in 1936. Since that 

time Turing's model and variations on it have been central to much of the 

theoretical development in computer science. We will here give an informal 

definition of the variant of Turing's model that will serve as our model 

of a computer. The reader who finds this description to imprecise can consult 

any of a number of standard references. ([Hopcroft & Ullman 1969] for 

example.) A Turing machine is a finite state machine attached to a read-only 

input tape, finitely many read/write storage tapes, and a write-only output 

tape. The finite state machine is referred to as the finite state control, 

or sometimes just the control. The tapes are divided into squares. Each 

square of a storage tape is capable of holding any one symbol from a specified 

finite storage tape alphabet. The storage tapes are infinitely long in both 

directions. The output tape has a left-hand end but extends infintely long 

to the right. There is a specified finite input alphabet and a specified 

finite output alphabet. The input consists of a string over the input alpha

bet and is placed on the input tape. Tl:.e input tape is provided with two' 

distinguished end markers, one at each end of the input string. Each tape 

has one tape head communicating with finite state control. The situation is 

diagramed in Fig. 1. The machine in Fig. 1 has two storage tapes, and the 

end markers are denoted by¢ and$. 

At any point in time, each head will be scanning one square on its 

tape and the finite state control will be in one state. Depending on this 

state and the symbols scanned by the input and storage tape heads, the 

machine will, in one step, do all of the following: 

(i) Overwrite a symbol on the scanned square of each of its storage 

tapes (it is, of course, permissible to overwrite a symbol by itself 

and so leave it unchanged), 

(ii) shift its input head and each storage tape head either left one square, 

right one square or not at all (different heads may get different in

structions), 

(iii) possibly, write a symbol on the output tape. In this case the output 

tape head is advanced one square to the right so that it is ready 

to write the next output symbol, 

(iv) change the state of the finite state control. 
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The finite state control is designed so that the input head will never leave 

the segment of tape containing the input string and end markers. 

The machine is said to be deterministic if there is only one possible 

action at each step. It is said to be nondeterministic if there are finitely 

many possible actions at each step. So, for example, a nondeterministic 

Turing machine with one storage tape may have the following as an instruc

tion: 

If the finite state control is in stape p and the input head is 

scanning symbol a and the storage tape head is scanning symbol c, 

then replace c by~• move the storage tape head~ one square, 

move the input tape head left one square, change the finite state 

control to state g_, and output the symbol e. 

Since it is nondeterministic, it may have another instruction which is 

applicable in the same situation. For example, it may also have the follow

ing instruction: 

If the finite state control is in the state p and the input head 

is scanning symbol a and the storage tape head is scanning symbol c, 

then replace c by!_, move the storage tape head right one square, 

move the input head right one square, change the finite state control 

to state!.• and output the symbol 2.· 

What happens when the machine is in a situation where both instructions 

apply? There are two (or more) possible next steps. Both next steps are con

sidered equally valid. The machine arbitrarily chooses one of the applicable 

steps. If it makes the right arbitrary choices then it will successfully 

complete the computation. If it makes ether than the right arbitrary choices, 

then the computation yields no information. A formal definition of nondeter

ministic computations will be given later on. For now, we will give only an 

informal description of how these machines compute. The informal description 

is given in terms of parallel computations rather than "arbitrary choices", 

but the two concepts are equivalent. 

One way to view a Turing machine is as a list of instructions of the 

type above. If the machine is nondeterministic, then there can be more than 

one instruction for a given situation. When a machine gets to a siatuation 

where m ~-2 instructions apply, one can think of the machine as dividing 

into m copies of itself; each copy follows one of them instructions. These 

m copies then compute in parallel and may later divide themselves. The 

computation will be considered successful if at least one path through this 
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tree of dividing machines leads to a successful outcome. 

One state of the finite state control is designated as a start state 

and finitely many states are designated to be accepting states. One special 

tape symbol is designated as the blank symbol. At the start of a computation, 

the input string is placed on the input tape and delimited by end markers, 

the input tape head is set scanning the left end marker, the finite state 

control is put into the start state, the output tape and storage tapes are 

blank, and the output tape head is placed at the left end of the output 

tape. 

A deterministic machine is said to compute a function f from input 

strings to output strings, provided that starting in the designated start 

configuration with input w, the machine eventually halts in an accepting 

state with f(w) written on its output tape. If f is a partial function then 

it is usual to insists that the machine not halt on any input w for which 

f(w) is undefined. This point will not, however, be important to what we 

will be doing. One can define nondeterministic machines that compute func

tions in a more or less similar manner. However, we will have no need for 

such machines here; we will use nondeterministic machines only in the re

stricted manner described in the next paragraph. 

To simplify the discussion we will usually confine ourself to situa~ 

tions where the input is in some sense either accepted or rejected. In 

these cases there is no need for an output tape. From now on, we will assume, 

unless otherwise stated, that our Turing machines have no output tape. If 

the machine reaches an accepting state, that will designate acceptance. Thus, 

we say that the machine accepts the input w provided that there is some 

computation of the machine on input w which reaches an accepting state. 

The meaning of this for deterministic machines should be clear. For nondeter

ministic machines this definition of acceptance is to be interpreted as 

follows: The input w is accepted provided that there is some sequence of 

steps each of which follows one of its permitted instructions and this 

sequence of step ends up in an accepting state. (In terms of the dividing 

tree described above, this means that there is at least one path through 

the tree that leads to an accepting state.) Notice that these machines do 

not have any "rejecting" states. So it is not possible to have one sequence 

of moves that leads to an accepting state and have another sequence of 

moves, on the same input, that leads to a rejecting state. In this way we 

avoid inconsistencies that could otherwise arise. 

In order to make the above definition of acceptance more precise and 
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in order to develop some notation which will be useful later on we define 

a concept called an id for a Turing machine with input w or just id for 

short. ("id" stands for "instantaneous description"). An id is a string of 

symbols that completely describes the configuration of the Turing machine 

with the input w at an instant of time. Specifically, if the machine has 

k storage tapes then an id is a string of the form pm¢a 1~B 1¢a2~B 2¢ ..• ¢ak~Bk 

where pis a symbol standing for the state of the finite state control, mis 

a binary numeral telling the number of squares between the input tape head 

and the left end of the tape, and each of the strings ai~Bi describe a stor

age tape configuration. ai~Bi means that the i-th tape contains aiSi and 

that the tape head is scanning the first symbol of Bi; we always assume lead

ing and trailing blanks are trimmed from ai~si. The symbols¢ and~ are 

presumed to be new symbols. If I 1 and I 2 are ids of the type described above 

we will write I 1 ~w I 2 provided that, with input wand in the configuration 

described by I 1 , the machine has some applicable instruction that will allow 

it to change to the configuration represented by I 2 • Notice that, if the 

machine is deterministic than, for any id I 1 , there is at most one id I 2 

such that I 1 ~ I 2 • If the machine is nondeterministic there may be finitely 
w * 

many I 2 such that I 1 ~w I 2 • I 1 ~w I 2 provided either I 1 = I 2 or else there 

are J 1,J2 , ••• ,J,e such that I 1 = J 1 , r 2 = J,e and Ji ~w Ji+l for 1 $ i < l; 

The definition of acceptance can now be rephrased as follows: The machine 

accepts the input w provided there is some id I such that I has the finite 
a a 

control in .an accepting state and such that IO ~: I a' where IO is the id 

for the start machine configuration. An id that contains an accepting state 

is called an accepting id. (When w is clear from context we will write~ 

and ~* for ~ and ~* . ) The language accepted by the machine is the set of 
w w 

all input strings accepted by the machine. 

In practice we will state all our algorithms informally and omit the 

fairly straightforward but very tedius task of converting our informal 

algorithms into Turing machine instructions of the type described above. 

2.2. Time and storage defined 

We now introduce the measures of time and storage that we will use for our 

model of computing. In all case the time and storage will be measured as a 

function of the length of the input. So that, rather than having a fixed 

constant allotment of time or storage, we will allow more resources for 
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bigger inputs. If w is a string of symbols llwll will denote the length of w. 

DEFINITION. Let M be a Turing machine (deterministic or nondeterministic), 

let A be a set of strings over the input alphabet of M, and let both T(n) 

and S(n) be functions on the natural numbers. 

(1) Mis said to accept A within time T(n) proved that 

(i) M accepts exactly those input strings which are in A and 

(ii) for each string win A, there is at least one accepting computa

tion of M on w which takes T(llwll) or fewer steps. That is, there 

are id's I 0 ,I 1 , ••• ,It such that I 0 is the start id, Ii ~w Ii+l 

for O s i < t, It is an accepting id and t s T(llwll). 

(2) Mis said to accept A within storage S(n) provided that 

(i) M accepts exactly those input strings which are in A and 

(ii) for each string win A, there is an accepting computation of M 

on w that uses no more than S(llwll) squares of storage tape. More 

precisely there are I 0 ,I 1 , ••• ,It such that I 0 is the start id, 

Ii.~ I. 1 for Os i < t, I is an accepting id and for each Ii. 
w i+ t 

if Ii= pm¢a 1~s 1¢a2~s2¢ ••. ¢ak~Bk, then 

L~ II a. B .11 S S ( II wll ) . 
J=l J J 

When discussing storage, we will always assume that the machine M 

never overwrites a nonblank symbol by a blank symbol. There is 

no loss of generality in this assumption, since we can always add 

one extra symbol that is not the blank but it treated like a blank 

in doing computations. Thus the sum }:.lla.B.11 is the total number 
J J J 

of squares that have been scanned so far in the computation. 

There are a number of observations to be made about these two definitions. 

First note that we are only measuring time and storage on those inputs 

which are accepted. If an input is not accepted, then the machine may use 

any amount of time and storage. This may seem peculiar for deterministic 

machines. However, for the kinds of well behaved time and storage bounds we 

will be discussing here it can be shown that the above definition is equiv

alent to one that requires that the machine always operates within the bound 

specified. The reason for phrasing the definition in this way is to accommo

date nondeterministic machines. We want to say the machine operates in time 

T(n) or storage S(n) provided that the most efficient accepting computation 
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operates in time T(n) or storage S(n). This requires that our definition 

ignore all but the most efficient accepting computations and as a result 

ignore all non accepting computations. It should also be noted that if the 

machine is deterministic, then in parts (ii) of both (1) and (2) there will 

be exactly one computation to look at. Finally, we should note that the 

above definition can easily be extended to accommodate deterministic machines 

that have an output tape and which compute some partial function. When 

measuring storage no charge is made for the output (or input) tape, only 

the storage tape is charged for. 

2.3. Worth of the model 

The natural question to ask is how faithfully do these abstract measures 

of time and storage model time and storage needs of real computers. The 

answer is that the Turing machine is only an approximate measure. The quality 

of the Turing machine measure of time and storage can be described as coarse 

but correct. Suppose one writes an algorithm to solve some problem and then 

implements this algorithm both on a Turing machine and on some other abstract 

model of a computer or on some real computer. The time and storage require

ments of the different implementations will be approximately the same. Let 

us first consider deterministic computations and let us consider time and 

storage separately. The easiest to analyze is storage. It can be shown that, 

if a set is accepted by a Turing machine within storage S(n), then we find 

another machine that accepts the same language in storage cS(n), for any 

constant c, no matter how small. To accomplish this all we need to do is 

enlarge the tape alphabet so many symbol~ can be coded as a single symbol. 

On the other hand, even huge changes in the model change the storage used 

by only a constant multiple. So saying something can be done within stor-

age S(n) on a Turing machine, means that it can be done in order of magni

tude S(n) storage on any reasonable machine. Define s 2 (n) = 0(s1 (n)) to 

mean s 2 (n) ~ cs1 (n) for some c and all but finitely many n. Saying something 

is doable in deterministic storage S(n) really conveys no more information 

than to say it is doable in deterministic storage 0(S(n)). The following 

result makes this more precise. The proof is left as an exercise. 

THEOREM 1. If A is accepted by a deterministic (respectively nondeterminis

tic) Turing machine within storage S(n), and if c is any constant greater 
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than zero, then we can find another deterministic (respectively nondetermin

istic) Turing machine that accepts A within storage cS(n). 

A result similar to Theorem 1 can be proven for time. Again the proof is 

omitted. (Theorems 1 and 2 are from [Hartmanis, Lewis & Stearns 1965; 

Hartmanis & Stearns 1965], and can now be found in many introductory 

texts.) 

THEOREM 2. If A is accepted by a deterministic (respectively nondetermin

istic) Turing machine within time T(n) and c is any positive constant, 

then we can find a deterministic (respectively nondeterministic) Turing 

machine that accepts A within time T2 (n) = max{cT(n),n+l}, provided 

fi~ T(n)/n=oo. 

This last theorem might lead one to believe that, just as with storage, 

Turing machines measure time up to a constant multiple. Unfortunately, time 

is not quite as well behaved as storage. If we change the model, then the 

time needed to implement a given algorithm can go from T(n) to a polynomial 

in T(n). For example, going from our model to a model with only one tape 

may raise the time from T(n) to T2 (n). It is however true that, for most 

realistic models, changing the model will not change the run time from T(n) 

to anything worst than a polynomial in T(n). Define T2 (n) = P(T1 (n)) to mean 
C that T2 (n). ~ (T1 (n)) for some c and all but finitely many n. Then to say 

something is doable in deterministic time T(n) really conveys little more 

information than to say it is doable in deterministic time P(T(n)). 

The situation for nondeterministic models is similar. To say that 

something is doable in nondeterministic storage S(n) [respectively time 

T(n)] conveys little more information than to say it is doable in nondeter

ministic storage 0(S(n)) [respectively time P(T(n))]. The comparison of 

deterministic and nondeterministic costs is much harder and is the topic of 

the last two major subdivisions of this paper. 

3. CONTEXT FREE LANGUAGES 

3.1. Preliminary Definitions 

In this section we will describe a context-free language which is in a very 
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strong sense the hardest context-free language. Before going on to describe 

this language we will first review the definitions of context-free grammar 

and context-free language. We shall simplify the presentation by taking our 

context-free grammars to be in Greibach normal form, by assuming that our 

languages do not contain the empty string and by assuming that all of our 

derivations are leftmost derivations. These simplifications cause no loss 

of generality, since every context-free language can be generated by a grammar 

in Greibach normal form, since the complexity of a language is not affected 

by adding or deleting the empty string to the language, and since every deri

vation has an equivalent leftmost derivation. So, for our purposes, we 

define a context-free grammar to consist of four distinguished items 

(r,N,S,P) where: rand N are disjoint finite sets of symbols called the 

terminal and nonterminal alphabets; Sis a nonterminal symbol referred to 

as the start symbol; Pis a finite set of rewrite rules of the form A ➔ 

ax 1x2 ••• xn where A,x 1,x2 , .•. ,Xn are all nonterminals and a is a terminal 

symbol. (The possibility of n =O is allowed. In that case, the rule is 

A ➔ a.) These rewrite rules are frequently referred to as productions. We 

write µAv~ µax 1x2 .•• xnv providedµ is a string of terminal symbols, vis 

a string of symbols from r UN, and A ➔ ax1x2 ..• xn is one of the productions 

* in P. The symbolism~ denotes the reflexive, transitive closure of~. So 

* a~ S, provided that either S=a or Scan be obtained from a by finitely 

many applications of~. The language generated by G is denoted L(G) and 

is defined.to be the set of all strings over the terminal alphabet which 

can be obtained from the start symbol by repeated application of the rewrite 

rules. That is, L(G) = {w J S~w and w Er*}. er* denotes the set of all 

strings made up from symbols in r.) 

The hardest context-free language which we are about to describe has 

the property that every context-free language can be obtained from it by a 

very simple type of transformation called an inverse homomorphism. Suppose 

rand 6 are finite alphabets. A homomorphism of r* into 6* is defined to be 

* a mapping h which maps each symbol of r onto a string in 6. The domain of 

the mapping his extended from r tor* by defining h(the empty string) = 

the empty string and by defining h(a1a 2 •.• an) = h(a1)h(a2) ••• h(an) where 

the a. are individual symbols. If Lis a language over 6, then h- 1 (L) is 
i 

the language over r which is defined by h-1 (L) = {w J h(w) EL}. h-1 (L) is 

said to be obtained from L by inverse homomorphism. 
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3.2. A hardest context free language 

We now proceed to describe a language discovered by Greibach and shown by 

her to be the hardest context-free language. We need one preliminary 

definition before we can define the language in question. 

DEFINITION. The Dyck set on two letters is the set of all strings over the 

four symbols (, ), [ and J which have the property that all parenthesis and 

brackets match in the usual way. The Dyck set on two letters will be 

denoted by D. A more precise way to describe Dis as follows. A string w 

is in D provided that w can be transformed into the empty string by repeat

ed application of the two rewrite rules: (1) for any x and y, x()y re

writes to xy and (2) for any x and y, x[]y rewrites to xy. 

We now describe a language L0 which will turn out to be the hardest context

free language. L0 will not be described in such a way that it is immediately 

obvious that it is a context-free language. It is, however, a not too dif

ficult exercise to write a context-free grammar G such that L(G) = L0 . 

DEFINITION. Let T = {(,),[,],c}. Let LO= {x1cy1cz 1dx2cy2cz2d ••• dxlcylczld 

* l ~ 1, xi,zi ET for all i and [(y1y2 ••• yl ED}. 

L0 can be described less formally as follows. The only things that are 

candidates for membership in L0 are strings of the form w1dw2d ..• wld such 
i i i i . 

that each wi is a string of the form y 1cy2c ..• cyn(i) where eac~ yj 1.s a 

string consisting of parenthesis and bra.ckets. That is, each y: is made up 
J 

of the symbols (, ), [and]. In order to be in L0 , such a candidate string 

must pass the additional test that there is some way of choosing one y from 

each win such a way that[(, followed by the concatenation of the chosen 

y's is a string in D; that is, such that all parenthesis and brackets 

match. For example, the candidate 

) c] Jc]] ]d () c () [ d ( () Jc] Jc]] - -- -

is in L0 , since [( 2._fil ]] is in D. The "y's" chosen to get a correct 

cancellation are underlined. The next result is the main theorem of this 

section; it is from Greibach [1973]. 

THEOREM 3. If Lis any context-free language, then there is some homomor-
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phism h such that L 

Before proving Theorem 3, we will derive some of its consequences. The next 

two theorems are corollaries of Theorem 3. They say that, in terms of both 

time and storage, L0 is in a very strong sense the hardest context-free 

language. 

THEOREM 4. Let T(n) be any monotone, nondecreasing time bound. Suppose L0 

is accepted by some deterministic (respectively nondeterministic) T(n) time

bounded Turing machine and that Lis any other context-free language. Then 

there is a constant c depending only on L such that Lis accepted by some 

deterministic (respectively nondeterministic) T(cn) time-bounded Turing 

machine. 

A special case may help to illustrate the importance of Theorem 4. 

COROLLARY. If L0 is accepted within deterministic time O(na), where a is a 

non-negative real number, then every context-free language can be accepted 

within deterministic time O(na). 

The corollary is immediate from Theorem 4. The fastest known general 

algorithm for accepting arbitrary context-free languages is due to [Valiant 

1975]. This algorithm runs in time O(n2 •81 ). If the single language LO 

could be accepted in na for a< 2.81, then we would have a faster algorithm 

for general context-free language acceptance. It shovld be noted that 

Valiant's algorithm was not stated for Turing machines and it is not clear 

that it can be made to run on a Turing machine in time O(n2 · 81 ). However, 

the proof of Theorem 4 remains true if we replace Turing machines by any 

other "reasonable" model of a computer. In particular, Theorem 4 and Valiant's 

results both hold true for a random-access type model of a computer and such 

random-access type models actually look more, rather than less, like the 

architecture of current real computers. (For a discussion of such random

access type machines, see [Cook & Reckhow 1973].) It should also be noted 

that Theorem 4 is really of no great interest for nondeterministic machines. 

This is because all context-free languages can be recognized in nondeter

ministic time T (n) = n+l. (See most any introductory text on the subject. 

For example [Hopcroft & Ullman 1969].) However, we will include the non-
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deterministic machines in the proof, so that we can draw analogies to non

deterministic storage. We now give the proof of Theorem 4. 

Proof of Theorem 4. Suppose L0 is accepted by a Turing machine M0 within 

time T(n). Let L be any contex-free language. By Theorem 3, there is a homo-
-1 morphism h such that L = h (L0). Let c be the maximum length of h(a), as 

a varies over all symbols in the domain of ·h. We will describe a Turing 

machine M that accepts L within time T(cn); if M0 is deterministic, then M 

will also be deterministic. The algorithm for Mis fairly straightforward. 
-1 Given input w, M must decide if w is in L. Now w is in L = h (L0 ) if and 

only if h(w) is in L0 • So all M needs to do is to simulate M0 operating on 

h(w). If the simulation accepts h(w), then h(w) is in L0 , sow is in Land 

M accepts w. One way to implement this would be to have M first compute h(w), 

write h(w) on a scratch tape and then simulate M0 on h(w). This will take 

time en to compute h(w) plus about T(cn) to simulate M0 • So the total time 

would be at most en+ T(cn). By a more efficient implementation, we can get 

the total time down to T(cn). The more efficient implementation does not 

compute h(w) all at once but merely computes parts of h(w) as needed. Speci

fically, the more efficient implementation proceeds as follows. Given 

w = a 1a 2 ••• an, M's input is always scanning some ai (or an end marker). 'When 

Mis scanning ai, it pretends it is scanning h(ai). To accomplish this you 

can think of the finite state control of Mas having inside of it a finite 

buffer that can hold up to c symbols. As part of the first single move on 

input ai, M can put h(ai) inside this buffer. M then does a step-by-step 

simulation of M0 . This simulation will tell if M0 accepts h(w) and so will 

tell if w is in L = h-1 (L0 ). Since no extra time is needed to compute h(w), 

M runs in the time needed to simulate MO on h(w). So M runs in time 

T(Hh(w)H) s T(cn). □ 

A result analogous to that of Theorem 4 holds for storage. The proof is 

also analogous to that of Theorem 4 and so is left as an exercise. 

THEOREM 5. Let S(n) be any monotone nondecreasing storage bound. Suppose 

L0 is accepted by some deterministic (respectively nondeterministic) S(n) 

storage bounded Turing machine, and that Lis any other context-free lan

guage. Then there is a constant c depending only on L such that Lis accept

ed by some deterministic (respectively nondeterministic) S(cn) storage 

botmded Turing machine. 
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To date, the most storage efficient method for general context-free recog

nition uses O((log n) 2) storage. This is the best known bound for both 
2 

deterministic and nondeterministic machines. The algorithm can be implement-

ed on a Turing machine or most any other standard model and will still run 

in storage O((log2n) 2). The algorithm is due to Lewis, Stearns & Hartmanis 

[1965]. Finding a more efficient algorithm for the particular language LO 

would lower this bound. Having described the importance of Theorem 3, we 

now give its proof. 

Proof of Theorem 3. Let L be a context-free language and let G be a context

free grammar for L. (Recall that we are assuming that L does not include 

the empty string and that, as we defined context-free grammars, Gisin 

what is commonly called Greibach normal form.) We will explicitely describe 
-1 

a homomorphism h such that L = h (LO). The homomorphism his described in 

terms of G. Let A1,A2 , ••. ,Am be an enumeration, without repetition, of the 

nonterminals of G. Also, let this enumeration be such that A1 is the start 

symbol. We will describe a method for coding every production of Gas a 

string of parenthesis and brackets. We will then use this code to describeh. 

If Ai+ a is a production, where a is a terminal, then define 

recall that )i means) written i times. 

If A,+ aA. A . ••. A. is a production of G, where a is a terminal, then 
1. J1 J2 Jr 

define 

Using this Code function, we can now define h. We need to define a string 

h(a), for each terminal symbol a of G. Let a be an arbitrary terminal symbol 

of G. Let p 1,p2 , ••• ,pl be an enumeration of all productions such that a 

occurs on the right-hand side of the production. Define 

This completely describes the homomorphism h. 
-1 

It remains to show that L = h (LO). In order to establish this 

equality, we will show two claims. It will help in understanding the claims 



125 

if you recall that, by our definition of context-free grammar, one terminal 

symbol is produced at each step of a derivation and that, since we always 

rewrite the leftmost nonterminal, the terminal symbols are produced left to 

right. 

CLAIM 1. Suppose a 1a 2 ••• an is a string of terminal symbols and p 1,p2 , ••• ,pn 

is a sequence of rewrite rules such that ai appears on the right-hand side 

of pi, i=l,2, ••• ,n. Then the following two statements are equivalent: 

(1) A1 • a 1 • a 2 • ••• •an= a 1a 2 ••• an by applying productions 

P1,p2 , ••• ,pn (to the leftmost nonterminal), 

(2) [(Code(p1)code(p2) ••• code(pn) ED. 

CLAIM 2. w is in L if and only if h(w) is in L0 • 

Once Claim 2 is established, we will have completed the proof. We will first 

derive Claim 2 from Claim 1. We will then go back and prove Claim 1. To see 

Claim 2, suppose w is in L. We then know that A1 • a 1 • a 2 • ••• •an= w = 

a 1a 2 ••• an by applying some productions p 1,p2 , ••• ,pn. (Recall that A1 is the 

start symbol.) Now, by the way we defined context-free grammars, the symbol 

aj appears on the right-hand side of production pj, j =1,2, ••• ,n. So 

h(a.) = x .cCode(p.)czjd. So 
J J J 

(3) h(w) = x 1ccode(p1)cz1dx2ccode(p2)cz2d ••• dxnccode(pn)cznd. 

But by Cla:j.m 1, 

(4) [(Code(p1)code(p2 ) ••• Code(pn) is in o. 
So by (3), (4) and the definition of L0 , h(w) is in L0 • Conversely, suppose 

h(w) is in L0 • By reversing the above argument, we can show that w is in L. 

Thus Claim 2 follows from Claim 1. 

It remains to show Claim 1. In order to do this we will prove a slightly 

stronger statement. (To get Claim 1 from Claim 1', set s = 1 and i 1 = 1.) 

CLAIM 1' • Assume the hypothesis· of Claim 1. If Ai 1 Ai 2 ••• Ais are any non

terminals, then the following two statements are equivalent. 

(1') 

(2') 

Ai1Ai2 ... Ais • a1 • a 2 • ••• •an= a1a 2 ••• an' by applying productions 

P1 ,P2 , ••• ,p · 
i i n i 

[( S[( s-1[.,.[( 1 Code(p1 lcode(p2}. •• Code(pnl € D. 

Before proving Claim 1', it might help to see an example. Suppose (1') 

is A1 • aA3 • abA2A1 • abcA1 ,. abed. In this case, the string in (2') is 
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[( .Ll..!JJJ. )))][([((ill)] 

which is clearly in D. To see where the string came from, we have underlined 

every other string of the form Code(p.). In the general case, it is not hard 
l. . 

to see that if a rule A.+ aA. A. A .•.• A. is applied then the prefix )i] 
i J 1 J 1 J 2 Jr 

of Code(A. ➔ aA. A, 
i Jl J2 

. j j 1 jl 
••• A. ) = )J.][( r[( r- •.. [( will cancel leaving 

Jr 

j j j 
[( r[ r-1 ••• [( 1 This string will in turn cancel out because the produc

tion applie9 to Aj 1 has a code beginning with )j 1J and this )j 1J cancels 
J 

with the [( 1; the production applied to Aj 2 has a code beginning 

and so forth. We now give a formal proof of this intuitive idea. 

j2 
with ) ], 

Claim 1' is proven by induction on n. We first show that (1') implies 

(2'). Suppose (1') is true and consider the base case n=l. In this case, 

(1') reduces to Ail=> a 1 by p 1 =Ail+ a 1 . But [(i 1code(p1) = [(il)il] 

which is in D. So (2') is true. Next consider the inductive step of the 

proof. Suppose (1') is true and suppose that Claim 1' is true for all 

derivations of less than n steps. The production p 1 must be of the form 

Ail+ a 1Aj 1Aj 2 ••• Ajt• So, by (1') we conclude that 

and so we may conclude 

by applying productions p2 ,p3 , ••• ,pn, where ai = a 1 a1, i = 2, 3, ... ,n. Now 

consider (2'), which we are trying to prove. Since p 1 is Ai ➔ a 1Aj Aj •.. 
- i 1 j t j t-1 j 1 l l 2 

Aj , Code (p 1) - ) ][ ( [ ( ••• [ ( . So substituting this in for 
t i i 

Code(p1) in (2') and cancelling [( 1) 1], we see that (2') is equivalent to 

(2") 

In order to complete the inductive step we must show (2') of Claim 1'. To 

do this it will suffice to show (2"). But we know (1 ") is true and we know 

that, by induction hypothesis (2") follows from (1"). So (2") and hence 

(2') is true and the inductive step is completed. This completes the proof 

that (1') implies (2') of Claim 1'. The proof that (2') implies (1') is 
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this completes the proof of Theorem 3. D 

4. NONDETERMINISTIC STORAGE 
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The next class of problems we wish to consider is that of simulating an 

arbitrary nondeterministic algorithm by a storage efficient deterministic 

algorithm. In order to motivate the basic definitions and to get some prac

tice in simulating Turing machine computations, we first present one effi

cient simulation algorithm. We then go on to produce a hardest problem in 

this class and to discuss the possibility of producing a more efficient 

simulation. 

4.1. An efficient simulation algorithm 

It is well known that any nondeterministic algorithm can be simulated by 

a deterministic algorithm. All the deterministic algorithm need do on an 

input w is to simulate all possible computations of the nondeterministic 

algorithm on input w. However, if this idea is implemented in the obvious 

way, then the deterministic algorithm will use an amount of storage that 

is exponential in the amount used by the nondeterministic algorithm. 

However, there is a way of checking all possible computations that uses 

much less storage than that. The simulation algorithm is from [Savitch 

1970]. 

THEOREM 6. If a set A is accepted by a nondeterministic Turing machine M 

within storage*) S(n) and S(n) ~ log2n, then A is accepted by a determin-
2 

istic Turing machine MD within storage S (n). 

Proof. To simplify the proof it will help to assume that the storage bound 

S(n) is well behaved. Functions that are well behaved in the sense we need 

are called storage constructable. 

*) 
Forour purposes, we make the convention logbO = 0, for all b ~ 2. We 
also assume S(n) ~ 1, for all storage bounds S(n). 
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DEFINITION. A function S(n) is said to be storage constructable if there is 

a deterministic Turing machine which, given an input of length n, will mark 

off exactly S(n) squares on a storage tape and, furthermore, will use no 

more than S(n) storage in the process. 

Assume that S(n) is storage constructable. Later we will note that this 

assumption can be dropped. The theorem is proven by exhibiting an algorithm 

whereby MD can simulate the computation of M. To understand the simulation, 

we will need to recall some facts about id's of M. Consider a fixed input w 

to Mand let n be the length of w. Consider an id which could occur in an 

accepting computation of Mand that uses no more than S(n) storage. There 

is a constant b, depending only on M, with the property that all such id's 

have length at most bS(n). This is because the portion that codes a storage 

tape has length at most S(n) +1, the portion that codes the input head posi

tion has length at most the length of n+2 in binary and so has length at 

most O[log2n] = O[S(n)]. So these pieces, plus the state symbol and punc

tuation symbols¢, have total length at most bS(n) for some suitable b. 

Having obtained a bound on the length of an id, we can use this bound 

to derive a bound on the running time of M. Suppose M accepts an input w 

of length n. Then there is an accepting computation of Mon w such that ho 

id has length greater than bS(n). Now there are at most abS(n) such id's 

where a-1 is the number of symbols needed to write id's. From this we can 

conclude that no more than abS(n) distinct id's occur in the accepting com-
bS(n) 

putation. Now if the accepting computation takes more than a steps, 

then some id is repeated. We can eliminate the steps between the repeated 

id and get a shorter accepting computation. If the shorter computation still 

takes more than abS(n) steps, then we can again obtain a still shorter com

putation. If we proceed in this way, we eventually obtain an accepting computa

tion which contains at most abS(n) steps and in which all id's have length 

at most bS(n). 

We can always find an integer c such that abS(n) ~ 2cS(n) and 

bS(n) ~ cS(n). It will be helpful to consider the number of steps in a 

computation to be a power of two. Let I 0 denote the start id of the non

deterministic machine M. In order to tell if M accepts w, it will suffice 

* for MD to test for all accepting id's Ia whether or not I 0 ~w Ia on M by 

a computation of at most 2cS(n) steps, in which all id's have length at 

most cS(n). After testing each Ia' it can clear storage for the next tests. 
2 

So if it can make each of these tests in storage O(S (n)), then MD can tell 
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if M accepts wand can do it all in deterministic storage O(S2 (n)). In order 

* to see that MD can efficiently make the tests to see if 10 f-w Ia, for start 

and accepting id's, it will suffice to establish, 

CLAIM: There is an algorithm with the foliowing properties. 

Input 1 1,12 two id's for M such that llr 111 s; cS(n) 

and II 1 2 11 s; cs (n). 

Output: "yes" if I f-* I on M by a computation which takes at 
1 w 2 

most 2m steps and in which each id has length at most 

cS(n). Otherwise the output is "no". 

Storage 
used mcS(n) [not counting the storage to hold 1 1 and 12 

themselves]. 

To see that the theorem follows from the claim, set m = cS(n). Then all 
2 2 2 

the tests can be done inc S (n) = O(S (n)) storage as desired. In order to 

prove the claim, we will give the algorithm. The algorithm is stated 

recursively. However, it can be converted to a nonrecursive algorithm of the 

type required by the definition of Turing machine. The algorithm follows. 

ALGORITHM A 

Case: m > O. 

I. For each id J such that II JII s; cs (n) do the following: 

1. Call the a!"gorithm recursively to test whether or not 1 1 f-: Jon M 
m-1 in at most 2 steps by id's of length at most cS(n). 

2. Clear storage and then again call the algorithm recursively to test 
* m-1 whether or not J f-w 1 2 on Min at most 2 steps by id's of length 

at most cS(n). 

II. If for at least one such J we get affirmative answers to both 1 and 2 
1* 1* above, then 1 1 rw J rw 12 and so output "yes". Otherwise output "no 11 • 

Case: m = 0. 

This requires testing to see if 1 1 f-w 1 2 or 1 1 = 1 2 , which can easily be 

done with no storage (besides that used to hold 1 1 and 1 2 themselves). 

In order to implement Algorithm A we must be able to go through all 

id's J such that IIJII s; cS(n). However, since S(n) is storage constructable, 

this is easy to do within storage cS(n). For example, we can run through 
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all strings of length cS(n) in lexicographic order and test each one to 

see if it is an id. 

To see that Algorithm A runs in storage mcS(n), proceed by induction. 

The base case is easy. Proceeding inductively, suppose m > O. The algorithm 

needs cS(n) storage to hold the id's J that it is testing as intermediate 

points. For each such J it makes two tests: 

(i) r 1 ~: J in at most 2m-l steps, 

(ii) J ~ r2 in at most 2m-l steps. 

Storage is cleared between tests. So the total storage needed is cS(n) to 

store the J plus (m-1) cS(n) for the recursive tests. So the total storage 

is cS(n) + (m-l)cS(n) = mcS(n), as desired. The bookkeeping required to 

implement this recursion on a Turing machine is rather messy but uses only 

standard techniques. 

Thus the proof is complete in the case where S(n) is storage construct

able. Most all reasonable functions are storage constructable. However, the 

proof can be made to work even for those S(n) which do not have this proper

ty. The interested reader is referred to [Savitch 1970], if he wishes to 

see this extra bit of generality. D 

4.2. Storage hard and complete 

The previous theorem said that we can simulate nondeterministic storage 

S(n) by deterministic storage s2 (n). Whether or not one can do a more 

efficient simulation than that is an op,~n question. We can, however, exhibit 

a language with the following properties: The language can be accepted in 

nondeterministic storage log2n; furthermore, any deterministic algorithm 

to efficiently accept this one particular language can be used to produce 

a storage-efficient deterministic simulation of any nondeterministic algo

rithms. Thus if we are interested in converting arbitrary nondeterministic 

algorithms to deterministic algorithms, then it will be sufficient to study 

this one particular language. Actually, there are many such languages but 

we will focus on one particularly simple and representative one. First 

we will give some definitions so that we can make these remarks precise. 

In the following definition, L may be any class of languages whatsoever. 

However, it will help to think of it as the class of all languages that can 
a 

be accepted within nondeterministic storage (log2n) , for some a~ 1. 
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(L may or may not be in L) • L is said to be storage hard for the class L 
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Cl 
provided the following holds for all storage bounds of the form (log2n) , 

where a~ 1. If there is some deterministic Turing machine that accepts L 

within storage (log2n)a then, for any language L2 in L, there i~ some deter

ministic Turing machine that accepts L2 within the same storage bound 

(log2n)a. Lis said to be storage complete for the class L provided Lis 

storage hard for Land Lis in L. 

Restricting ourselves to storage bounds of the form (log2n)a may seem quite 

arbitrary. However, there are two good reasons for this choice. The first 

reason is that we will be considering classes L for which it is already 
Cl known that everything in L can be done in storage (log2n) , for some a. So 

the goal is to see how small a value of a will suffice to accept all lan

guages in L. These classes L will also have the property that they contain 
Cl some languages which cannot be accepted in storage (log2n) , for any a< 1. 

Thus the lowest value of a we can hope for is a = 1. Therefore:,. for the 

classes L which we will be considering, to say that Lis storage complete 

for Lis to say that Lis the hardest problem in L, provided storage is 

our measure of difficulty. For example, suppose we take L to be the clas·s 

of context-free languages. It is known that everything in L can be accepted 

in deterministic storage (log2n) 2 • It is also known that there are context-
a free languages which cannot be accepted in storage (log2n) , for any a< 1. 

So a storage complete language for L would be a hardest context-free lan

guage. Theorem 5 says, among other things, that the language L0 of Greibach 

is storage complete for the class of context-free languages. The second 
Cl reason for considering bounds of the form (log2n) is that the proofs we 

will give only work for bounds which are of this form or similar to this 

form. At the end of.this chapter we will, however, see that many of our 

results generalize to arbitrary storage bounds. 

4.3. A storage complete language 

We now describe a language which is storage complete for the class of all 

languages which are accepted within nondeterministic storage 0(log2n). 

Later on we will see that this language is the key to simulating nondeter

ministic storage in general; the importance of this language is not limited 

to the storage bound log2n. 
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DEFINITION. A maze is a finite directed graph with a single distinguished 

node called the start node and a finite number of distinguished nodes 

called goal nodes. The maze is said to be threadable if there is a path 

from the start node to some goal node. We will always assume that a maze 

with k nodes has its nodes numbered one through k. 

A (base b) coding of a threadable maze with k nodes is a string of the 

following form 

where the numbers 1,2, ••• ,k are written in.base b; s, the y's and the u's 

are base b numerals standing for the node they number; sis the start node; 

h 1 d d f h . i i i . 
u 1 ,u2 , ••• ,ug are t e goa no es; an, or eac i, y 1 ,y2 , ••. ,yn(i) is an 

enumeration, without repetation, of all nodes y such that there is a 

directed arc from i toy.[, ] and* are three new symbols.~ will denote 

the set of all base b codings of threadable mazes. 

THEOREM 7. For any b ~ 2, the set~, of all codings of threadable mazes, 

can be accepted by a nondeterministic Turing machine within storage log2n. 

Proof. The algorithm for the Turing machine is quite simple. Given an input 

string, the machine first checks to see if the input is the coding of some 

maze (possibly not threadable). This it can do deterministically in storage 

0(log2n). (The details are messy but not difficult.) If the input is not the 

coding of some maze, then the computation is aborted. The heart of the prob

lem is to tell if a given maze is threadable. So, assume the algorithm has 

determined that the input is the coding of some maze. It then proceeds as 

follows. The machine writes down the number of the start node on a storage 

tape. It then locates the block which describes the arcs leaving the start 

node. (In the notation above, it finds the s-th block which is enclosed in 

brackets.) It then nondeterministically chooses one of the nodes that can 

be reached from the start node by traversing a single directed arc. (In 

the notation above, it chooses one y~.) It replaces the start node by this 
J 

newly chosen node. It then finds the block corresponding to this newly 

chosen node, nondeterministically chooses one node that can be reached by 
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traversing another arc and replaces the number of the old node by the num

ber of this newly chosen node. It proceeds in this way to nondeterminis

tically trace out a path through the graph. When it chooses each new node, 

it checks to see if it is a goal node. If a goal node is ever reached, then 

the machine accepts the input. If the maze· is threadable, then clearly 

there is some sequence of nondeterministic moves that will lead to a goal 

node. Thus this algorithm accepts~- So it remains to estimate the storage. 

If the input has length n, then there can be no more than n nodes in the 

graph. So every node is named by a number which is at most n. A base b 

numeral which is no bigger than n can be written down in O(logbn) storage. 

But the algorithm needs to store the number for only one node at a time. 

Hence, the whole algorithm runs in storage O(logbn). By Theorem 1, the 

algorithm can be made to work in storage log2n, since log2n = O(logbn). 0 

By Theorem 7, we can conclude that~ can be accepted in nondeterministic 

storage log n. In what follows it will be convenient to know that the dif

ficulty of accepting~ is independent of the base b. The proof of the fol

lowing lemma is left as an exercise. [Notice that for any bases band d 

which are at least 2, logbn = O(logdn). So we will often write log n omitting 

the base. This is because, by Theorem 1, any such storage bounds are equally 

powerful.] 

LEMMA 1. Let band d be any two bases which are greater than or equal to two. 

Let S(n) be any storage bound such that S(n) ~ log2n. If there is a deter

ministic Turing machine that accepts ~' within storage S (n), then we can 

find another deterministic Turing mach~'.ne that accepts Md within storage 

S(n). 

THEOREM 8. For any b ~ 2, the set~• of all codings of threadable mazes, 

is storage complete for the class of languages that can be accepted within 

nondeterministic storage log n.' 

Proof. Let L denote the class of all languages that can be accepted within 

nondeterministic storage log n. By Theorem 7, we know that~ is in L. So 

it will suffice to show that is storage-hard for L. Let a be a real num-

ber which is greater than or equal to one. We will show that: If we have a 

deterministic algorithm that accepts~ within storage (log n) 0 and Lis 

any language in L, then we can write a deterministic algorithm to accept L 
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within storage (log n)a. 

We first describe a deterministic algorithm that accepts L. This algo

rithm will not run in storage (log n)a. Later on we will indicate how the 

algorithm can be modified to run in storage (log n)a. Let Z be a nondeter

ministic Turing machine that accepts L within storage log2n. Let w be an 

input string to Z of length n. We associate a maze m(w) with w. The nodes 

of m(w) are all those id's of Z which use no more than log2n squares of 

storage tape, and which assume an input of length at most n. That is, all 

id's pl¢a 1~B 1¢a2~B2 ¢ ... ¢ak~Bk such that l is the numeral for a number which 

is at most n + 2 and such that l:. II a. B, II is at most log2n. (k is the number 
]. ]. ]. 

of tapes of Z.) There is a directed arc from id I 1 to id I 2 provided Z, with 

input w, can go from configuration I 1 to configuration I 2 in one step. That 

is, there is an arc from I 1 to I 2 , provided I 1 ~w I 2 on Z. The start node 

of m(w) is the start id of z. An id is a goal node if it contains an accept

ing state. With this definition of m(w), note that 

(1) Z accepts w if and only if m(w) is threadable. 

Let d be the number of distinct symbols needed to write id's of z. If we 

identify these d symbols with the digits 0 through d-1, then each id can 

be considered a based numeral. This gives us a natural way of numbering 

the nodes of the maze m(w). We number them one through h, where his the 

largest number whose based numeral is an id of the type being considered. 

(Of course, some numerals will not be id's. These numbers can be considered 

isolated points of the graph and ignored.) Using this numbering we can 

write a coding of m(w). In order to keep from getting buried in notation, 

we will let m(w) denote both the maze m(w) and the based coding of m(w). 

Now we can rewrite (1) as 

(2) Z accepts w if and only if m(w) is in Md. 

We can now give a deterministic algorithm to simulate Z. 

ALGORITHM B 

Input: String w 

Construct m(w) 

Test if m(w) is in Md 

1. 

2. 

3. If m(w) is in Md, then accept w. 
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By (2) we know that algorithm B accepts exactly the same input strings as z. 

Unfortunately, algorithm B does not run in storage (log n) 0 • If implemented 

in a straightforward fashion, Step 1 would require Dm(w)B storage. Let us 

estimate llm(w)D. The string m(w) consists of a list of id's separated by 

some punctuation symbols. If n = HwD, then there are at most ns distinct 

id's that appear in m(w), wheres is a constant depending only on Z. In 

general, id's will occur more than once. Still, there is a constant t such 

that this list will contain a total of at most nt id's. Each id can be 

written down in O(log n) space. Thus the total length of m(w) is nc, for 

some constant c depending only on z. Now nc is clearly much larger than 

(log n) 0 • So we will need to implement Step 1 in other than the most ob

vious way. Before saying more about Step 1, let us analize Step 2. We know 

~ can be accepted in deterministic storage (log n) 0 • So by Lemma 1, we 

know there is a deterministic Turing machine zd that accepts Md within 

storage (log n) 0 • So the test in Step 2 can be done in storage (logffm(w)D) 0 = 
O[(log nc)a] O[(log n) 0 J. So, except for the storage needed to construct 

and hold m(w), the algorithm runs in storage (log n) 0 • In order to modify 

the algorithm so that it runs in total storage (log n) 0 , we will need one 

claim. 

CLAIM. There is a deterministic Turing machine zm which, given input w, 

will output m(w) and, furthermore, Zm will use only O(log2n) storage. 

We first see how the claim allows us to modify algorithm B to run in 

storage (log n) 0 • After that we will prove the claim. The unmodified 

algorithm B would be implemented on a Turing machine as follows. Simulate 

Zm and, in this way, write m(w) on a storage tape. Then use this storage 

tape as a simulated input tape and simulate Zd to test if m(w) is in Md. 

Aside from the tape holding m(w), the algorithm runs in storage (log n) 0 • 

Now the simulated input head of zd never sees more than one symbol of m(w) 

at a time. So we can modify algorithm Bas follows and still have it work. 

The tape that previously held m(w) will now hold two things, the single 

symbol being scanned by the simulated input head of Zd and a binary numeral 

telling how many symbols there are between the left end of m(w) and the 

simulated tape head of zd. Every time the simulation of Zd requires that 

the input head of Zd move, this symbol-numeral pair must be updated. It 

is easy to update the numeral; simply add or subtract one from it, wich

ever is appropriate. Let q be the new numeral so obtained. In order to 
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obtain the new symbol, Zm is simulated from the beginning. The output is 

never written any where but a count is kept (on an extra scratch tape) to 

see how many symbols would have been outputed. When this count gets to q, 

then the q-th symbol of m(w) is produced and entered as the updated symbol. 

The simulation of Zd can then proceed. 

Let us estimate the storage used by this modified algorithm Bon an 

input w of length n. Steps 1 and 2 are no longer clearly separated in 

time and it is best to talk about them as routines rather than steps. One 

routine effectively constructs symbols of m(w) as needed. This routine 

must store one symbol plus two numbers, both of which are at most llm(w)II, 

and it must also simulate Zm on input w. It takes O(log llm(w)II) = O(log n) 

to store the symbols and numbers. By the claim, it takes O(log n) storage 

to simulate Zm. So the routine that generates the sumbols of m(w) uses 

a total of O(log n) storage. The only other storage is that used to simulate 

Zd to see if m(w) is in Md. As in the unmodified algorithm, this takes 

storage O[ (log llm (w) II) a.]. But a. ;,: 1. So the total storage for the modified 

algorithm Bis O(log n) + O[(log n)a.] = O[(log n)a.], as desired. 

It remains to prove the claim. Let c' be a constant such that all id's 

which use log2n storage or less have length bounded above by c'log2n. We 

will describe how Zm operates on an input w of length n. Zm first of all 

outputs the start id. On one storage tape Zm then generates, in numerical 

order, all based numerals of length at most c'log2n. (Recall that id's 

have been identified with based numerals.) For each such numeral i, it 
i i i 

finds the list y 1 ,y2 , ••• ,yn(i) of id's such that i I- i and 
i 

yj yj uses storage 
w 

list is empty.). z then out-at most log2n. (If i is not an id, then the 

puts [i*Y~*Y;*•··*Y!(i)]. Zm then again generates, in numerical order, all 

based numerals of length at most c'log2n. Zm tests each i to see if it is 

an accepting id; if it is Zm output* followed by the id. Zm clearly com

putes m(w). Furthermore, Zm operates within storage O(log2n). This completes 

the proof of the claim and the proof of the theorem. D 

m 

The previous theorem says that any storage efficient algorithm that deter

ministically accepts~ can be used to convert any nondeterministic log n 

storage algorithm to a storage efficient deterministic one. The same tech

niques for converting from nondeterministic to deterministic storage apply 

to all storage bounds S(n);,: log2n and not just to the case S(n) = log2n. 

In particular, by mimicking the proof of Theorem 8, we can prove the next 

result. The proof is omitted but can fairly easily be constructed by 
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following the proof of Theorem 8 as a model. 

THEOREM 9. Suppose there is a deterministic Turing machine Zand a base 

b ~ 2 such that Z accepts~, the set of all codings of threadable mazes, 

and such that Z runs in storage (log n) 0 • ·In this case every set accepted 

by a nondeterministic S(n) storage bounded Turing machine is also accepted 

by some deterministic (S(n)) 0 storage bounded Turing machine, provided 

S(n) ~ log2n and a~ 1. 

Other storage complete languages are discussed by Sudborough [1975a,b] and 

Jones [1975]. (They do not actually prove that their languages are storage 

complete as we have defined it here. However, it is not difficult to see 

that their languages are storage complete.) Sudborough exhibits a context

free language (in fact, a linear context-free language), which is storage 

complete for the class of languages accepted in nondeterministic storage 

log n. This means that a new more storage-efficient algorithm for general 

context-free language recognition would have the side effect of producing 

a more storage-efficient algorithm for deterministic simulation of arbitrary 

nondeterministic algorithms. In [Sudborough 1976] a language is shown to be 

storage complete for the class of deterministic context-free languages. 

[Hartmanis & Hunt 1974] give a language which is in a natural sense "storage 

hardest" for the class of context-sensitive languages. 

5. NONDETERMINISTIC TIME 

5.1. Polynomial time 

There are problems which are known to have algorithmic solutions but yet, 

in practice, cannot be solved on computers; the algorithms cost too much to 

run. They would exhaust computing resources long before the algorithms 

terminate. Many such problems are intrinsically that difficult. So there is 

no hope of designing completely general and yet practical algorithms for 

these problems. Proofs for the existence of such problems can be found in 

most texts on complexity theory. (See [Aho, Hopcroft & Ullman 1974]. A good 

discussion of some particularly interesting problems appeared in [Rabin 1974] 

and in works by Fischer, Meyer and Stockmeyer.) It would be nice to determine 

a time-bound T(n) such that any algorithm that runs in time T(n) is efficient 
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enough for practical implementation, and any algorithm that runs in time 

which is significantly greater than T(n) is not efficient enough for prac

tical implementation. Since computer technology is continually changing, 

it seems that there is no hope of finding such a T(n) which will remain 

valid over time. If, however, one asks for only a very approximate calcula

tion of such a bound, then there is some hope. Our introductory remarks 

indicated that the measures of time that we are discussing are only accurate 

to within a polynomial bound; that is, if T1 (n) = P(T 2 (n)) then, within 

our limits of accuracy, T1 (n) and T2 (n) can be considered the same bound. 

This suggests that the things doable in polynomial time are a likely can

didate for the class of practically doable problems. It is a widely held 

view that, given forseeable advances in computer technology, any algorithm 

that cannot be made to run in polynomial time is too slow for practicle im

plementation. On the other hand, an algorithm that runs in Time T(n) = n or 

T(n) = n2 is efficient enough to be considered practical. 

DEFINITION. Let P be the class of all languages which can be accepted by 

deterministic Turing machines within a polynomial time bound. 

By our above remarks, P would appear to be the class of practically doable 

problems. (The class P was first proposed as an important class to study by 

Cobham [1964].) The argument that things which are too difficult to be in P 

are too difficult to solve by a computer appears to be a reasonably sound argu

ment. The argument that everything in P can be solved within practical time 

bounds is quite false. (Is something doable in time nc practical if c is 

astronomically large? For that matter, is en a practical time bound for 

very large c?) However, given the accuracy of our model, Pis the best 

approximation to the class of practically doable problems that we have so 

far been able to produce. The true boundary between practically doable and 

impractically difficult problems lies somewhere in the class P and probably 

is a fluid boundary that will continue to change as technology changes. In 

any event, P seems to be a very natural class to look at. The class remains 

the same whether we define it in terms of Turing machines, random access

type machines or most any reasonable model of a computer. Also, we can say 

with some confidence that things not in Pare too difficult for practical 

solutions, given current technology. So P can at least be thought of as 

those problems for which there is some hope of a practical solution. 

([Hartmanis & Simon 1974 and Savitch & Stimson 1976] have given models 



139 

which appears to be much more powerful than most models. These machines 

appear to be able to do things which are not in the class P, and to do them in 

polynomial time. However, these models use unbounded parallism in an 

explicite or implicite way. Here we are discussing only serial computations 

when we refer to deterministic polynomial time.) 

By analogy to the definition of P, we define a similar class for non

deterministic computations. 

DEFINITION. Let NP be the class of all languages which can be accepted by 

nondeterministic Turing machines within a polynomial time bound. 

5.2. Time hard and complete 

Whether or not P = NP is a major open question. We do know of a large 

number of problems which are in NP and for which practical algorithms would 

be very useful. So the question of how efficiently a nondeterministic algo

rithm can be converted to a deterministic algorithm is an important one. 

To give a perspective on what is in NP, we now list a few problems which 

are in NP. (These problems are not stated as languages to be accepted but 

as problems to be solved. The difference is one of notation and the transla

tion can easily been made.) 

1. Given an integer matrix A and a vector d, does there exist a 0 - 1 

vector x such that Ax = d ? 

2. Given a graph G and a positive number n, determine if the nodes of G 

can be colored with n colors so that no two adjacent nodes have the 

same color. 

3. Given a directed graph G, does G have a directed cycle which includes 

each node exactly once? 

4. Given a Boolean expression, is there some assignment of truth values 

to the variables which makes the expression true? 

A discussion of these, and many other such problems, can be found in [Karp 

1972]. All of these languages are in NP. Also, they all have the interest

ing property that, if any one of them is in P, then they are all in P. In 

fact, if any one of them is in P, then P = NP. So they are, in some sense, 

the hardest languages in NP. This brings us to our next definition. 

DEFINITION. Let L be any class of languages and let L be any particular 

language.Lis said to be time hard for L provided that the following holds: 
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If Lis accepted by some deterministic Turing machine within polynomial 

time, then every language in Lis accepted within deterministic polynomial 

time.Lis said to be time complete for L provided that Lis time hard for 

L and L is in L. 

The four languages listed above are time complete for the class NP. The 

hardest one to show complete is the fourth one, the satisfiable Boolean 

expressions. It is also the key complete problem. The proof of its com

pleteness is used implicitely or explicitely in the proofs of completeness 

for all problems known to be time complete for NP. We will show the com

pleteness of this problem. The proof is from [Cook 1971]. The proofs of 

the other complete problems referred to can be found in [Karp 1972]. (What 

we are calling time complete for the class NP is the same concept that 

Karp calls NP complete.) 

5.3. A time complete language 

Notation. Let SAT denote the set of all satisfiable Boolean expressions. 

That is, SAT is the set of all (parenthesized) Boolean expressions such that 

there is some assignment of truth values to the variables which makes the 

value of the entire expression true. We will use A, v and 7 for "and", "or" 

and "not" respectively. Formally, variables will be strings Pm where mis 

a binary numeral. In this way SAT is a language over a finite alphabet. We 

will, however, abbreviate freely and use any convenient notation to abbre

viate variables. 

THEOREM 10. SAT is in NP. 

Proof. The following algorithm can tell if a string is in SAT. 

ALGORITHM C 

Input: A string to be tested for membership in SAT. 

1. Test if the input is a Boolean expression. If it is not, then abort 

the computation; otherwise, continue. 

2. For each variable Pm do the following: Nondeterministically choose 

either "True" or "False". Replace each occurrence of Pm by the truth 

value chosen. 

3. Evaluate the Boolean expression produced by 2. If it evaluates to 
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"True", then the string is in SAT. 

Clearly, Algorithm C accepts exactly the satisfiable Boolean expressions. 

It remains to show that the algorithm runs in polynomial time. Step 1 

requires testing to see that the expression has balanced parenthesis, that 

each binary operation (A and V) has two arguments and that each 7 has one 

argument. It is not difficult to write a deterministic polynomial time 

algorithm for this. Step 2 requires a loop to iterate as many times as 

there are variables. Each iteration requires one pass over the input. If 

the input has length n, then Step 2 requires at most n iterations of a loop 

and each iteration takes time a polunomial inn. So Step 2 requires time a 

polynomial inn. It is straightforward to write a polynomial time algorithm 

for Step 3. So the total time is the sum of three polynomials and hence is 

itself a polynomial. D 

THEOREM 11. SAT is time complete for the class NP. 

Proof. By Theorem 10 we know SAT is in NP. So it will suffice to show that 

SAT is time hard for NP. In order to show that we will need one lemma. 

LEMMA 2. Suppose Lis accepted by a nondeterministic Turing machine Z within 

polynomial time. We can find a deterministic Turing machine Zf which runs in 

polynomial time, has the same input alphabet as Land computes a function f 

with the following property: For any string w over the input alphabet of z, 

Z accepts w if and only if f(w) is in SAT, 

We now assume that the lemma is true and complete the proof of Theorem 11. 

After completing the proof of Theorem 11, we will go back and prove the 

lemma. Suppose SAT is accepted by a deterministic Turing machine ZS within 

polynomial time. Suppose Lis in NP. We must produce a deterministic al

gorithm for L that runs in polynomial time. Since Lis in NP, there is a 

nondeterministic Turing machine Z that accepts Lin polynomial time. Let 

Zf be as in the lemma. 

ALGORITHM D 

Input: A string w to be tested for membership in L. 

1. Simulate Zf to compute f(W) 

2. Simulate ZS to test if f(w) is in SAT 

3. If f(w) is in SAT, then accept w. 
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By the lemma, w is in L if and only if f(w) is in SAT. So Algorithm D 

accepts exactly those strings which are in L. Step 1 takes time nc for some 

c, where n =Own.Since Step 1 takes time nc, we know that 0f(w)II s nc. 
b Also, by hypotheses, ZS runs in time n, for some b. So, Step 2 takes time 

b be at mo_st Hf (w) II s n • Step 3 takes a constant amount of time. So the 

total time for Algorithm Dis bounded by a polynomial inn= Owl. Since L 

was an arbitrary element of NP, it follows that SAT is time hard for NP 
and so time complete for NP. So, once Lemma 2 is proven, the proof of 

Theorem 11 will be complete. 

Proof of Lemma 2. We will assume that z has only one storage tape. The 

proof is the same if Z has finitely many storage tapes but the notation is 

much simpler if we assume that z has just one storage tape. (Actually, it 

is fairly easy to show that it is possible to simulate finitely many 

tapes by one tape and still have the algorithm run in polynomial time. In 

any event, there is no loss of generality in assuming there is just one 

storage tape.) We will also assume that z never reaches a halting configura

tion. To insure this, add some trivial instructions to z that is applicable 

when no other instruction is applicable. So, after accepting, z does some 

irrelevant series of moves. We will explicitly give the algorithm for ftw). 

The algorithm is quite intuitive, even though the details are very tedious. 

The Boolean formula f(w) will be designed so that it in some sense says 

"Z accepts•w". In order to define f(w), we will need quite a bit of nota

tion. We now tabulate this notation. 

s the set of states of z. 

~ the start state of z. 

y the set of accepting states of z. 

A the storage tape alphabet of z. 

b the blank symbol for z. 

a 0a 1a 2 ••• anan+l denotes the string of symbols on the input tape. So 

w = a 1a 2 ••• an, where the ai are individual symbols; a 0 and an+l 

are end markers. 

p(n) is a polynomial such that z runs in time p(n). 

The storage tape head can move a maximum of p(n) squares from its 

original position within time p(n). So only p(n) squares of storage 

tape on either side of the tape head's initial position need be 

considered. We number these squares as follows. The square the tape 



head starts out on is numbered zero. The p(n) squares to the right 

of this square are numbered 1,2, ••• p(n). The p(n) squares to the 

left of this square are numbered -1,-2, ••• -p(n). 
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f(w) contains a number of variables. Below we list the abbreviation for 

these variables and their intuitive meaning. Each variable is meant to 

stand for a proposition which is true if and only if the intuitive meaning 

is true. 

Ta "means" storage tape square numbers contains symbol a at time t; 
s,t 

a EA, -p(n) s s s +p(n), 0 st S p(n). 

H "means" the storage tape head is scanning square numbers at time t; 
s,t 

-p(n) s s s -p(n), 0 st s p(n). 

Sq "means" the finite state control is in state q at time t; 
t 

q ES, 0 $ t $ p(n). 

Ii,t "means" the input head is scanning the square with symbol ai at 

time t, 0 s i S n+l, 0 St s p(n). 

f (w) = s A I A H A T A B A M A A, wherEl s, I, H, T, B, M and A are Boolean 

formulae with the following intuitive meanings. All references are to compu

tations with input w. 

S "says" that at each instant of time the finite state control of Z 

is in one and only one state. 

I "says" that at each instant of time the input head of z is at one 

and only one square. 

H "says" that at each instant of time the storage tape head is at one 

and only one storage tape square. 

T "says" that at each instant of time each storage tape square contains 

one and only one symbol. 

B "says" that at time zero, Z is in the initial configuration. 

M "says" that at each instant of time, in any configuration, Z follows 

one of its instructions; that is it "says" that symbols and states 

change in the way that the finite control of Z might change them. 

A "says" that at some time, Z reaches an accepting state. 

Given the intuitive meanings of the variables, it is not too difficult to 
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build Boolean expressions which have the above described intuitive meaning. 

For example, considers. For a fixed t, vqe:S s~ "says" that at 

in some state q e: S. (v S s~ is an abbreviation for s!1 v s!2 
qe: o(n) q 

time t z is 
qe 

V ••• V St 

where S = {q1 ,q2 , ••• ,qe}). So' A (v S) "says" that at all times, Z is 
t=0 qe:S t · ' 

in some state. For a fixed t " 7 (sr A Sq) "says" that at time t, z is 'rtq t t 
not in two different states. So p~n) ( A 7 (Sr A sq)) "says" that, at all 

t=0 r*q t t 
times, Z is in at most one state. So the correct formula for Sis 

s [
o(n) 

" - " t=0 

The intuition for formulas I, H, T, Band A are similar. So we give them 

without explanation. 

I = fp~n) 
lt=O 

tt1 I. t)] A fp~n) (,1, 7 (I. t A I. t))], 
i=0 1, lt=O 1rJ 1, J, 

H 

T 

B 

A 

fp~n) 

lt=O 

+p(n) 
( V 
s=-p(n) 

] rp(n) 
H ) A A 
s,t t=0 ( A 7 (H t AH t))]' s#r s, r, 

rp(n) +p(n) a ] rp(n) +p(n) (Ta c ] 
A A (V T ; A A A A 7 A T · ) , 

t=0 s=-p(n) ae:A s,t t=0 s=-p(n) a'i'c s,t s,t 

I "s~" o,o "Ho,o o 

p(n). 
V (V y Sq) 

t=0 qe: t 

+p(n) 

" s=-p(n) 

The formula for Mis arrived at by the same kind of intuition but is a bit 

more complicated. So we will describe it in terms of subformulae. For each 

input head position i, the i-th input symbol is some letter a. So for each 

input head position i, each stater and each storage tape symbol c, there 

are one or more instructions of the following form which are applicable when 

the machine has its input head at position i, its finite state control in 

stater and its storage tape head scanning symbol c. 

If the finite state control is in stater and the input head is 

scanning symbol a and the storage tape head is scanning symbol c, 

then replace c by d, move the storage tape head x squares, move the 

input tape heady squares and change the finite state control to 

state q. (x and y may independently be -1, 0 or +1.) 
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Let this be a fixed but arbitrary such instruction and call this instruction 

ci. We will construct a formula M(ci,s,t) which "says" that, in the transition 

from time t to time t+l, instruction ci is followed. M(ci,s,t) is constructed 

assuming that, at time t, the storage tape head is at squares, the input 

tape head is at square i and the instruction ci is applicable. 

M(ci,s,t) Td 1 A H 1 A I. 1 A ffl.t+l . s,t+ s+x,t+ i+y,t+ 

Notice that M(ci,s,t) does not say that ci is applicable only that it is 

followed. Notice also that M(ci,s,t) says nothing about storage tape squares 

other than s. Both of these considerations will be dealt with later on as 

we build up M. 

Let i be an arbitrary input head position, ran arbitrary state, can 

arbitrary storage tape symbol, s an arbitrary storage tape square and t 

an arbitrary time. We next construct a formula M(i,r,c,s,t) which "says" 

that: if at time t the input head is in position i, the finite state control 

is in stater, and the storage tape head is in positions scanning symbol c, 

then some applicable instruction is followed. First let ci 1 ,ci2 , ••• ,cik be a 

list of all the instructions which are applicable in the situation under 

discussion, then define 

M(i,r,c,s,t) (I A Sr AH A Tc ) ➔ 
i,t t s,t s,t 

The symbol ➔ is being used for the Boolean connective "implies". So A ➔ B 

is an abbreviation for -,Av B. 

Finally we can define the formula Min terms of subformulae defined 

above. 

M 
p(n)-1 

A 

t=O 

+p(n) 
A 

s=-p(n) 

[H 
s,t 

➔ (A A 

a v-/s 

A {M(i,r,c,s,t) A 

i,r,c 

The subformula in square brackets says that, except for the storage tape 

square scanned at time t, the contents of the storage tape is unchanged 
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from time t to time t+l. Given the intuitive meaning of the propositional 

variables, the intuitive meaning of M should be clear. M says that, at 

every time t, the id for time t+l is obtained from the id at time t by 

following some applicable instruction of Z. 

The algorithm for f(w) has now been completely described. It remains 

to show two things. 

CLAIM 1. f(w) can be computed in polynomial timP.. 

CLAIM 2. z accepts w if and only if f(w) is in SAT. 

First consider Claim 1. Since p(n) is a polynomial each of the subformulae 

S, I, H, T, B, Mand A are of length at most p2 (n), where p2 (n) is some 

polynomial depending only on p(n) and z. Also, each of them can be con

structed by algorithms that essentially just write them down in one left

to-right pass. There is some bookkeeping involved but the algorithms can 

easily be made to all run within some polynomial time bound p 3 (n). So the 

time needed to produce all of f(w) is some polynomial p4 (n). 

Finally consider Claim 2. If Z accepts w then there is some computation 

of z on w that passes through an accepting state. Assign to Ta 
s,t the value 

true if in this computation storage square s contains symbol a at time t; 

otherwise assign Ta the value False. Assign H t the value True if in s,t s, 
this computation the storage tape head is scanning squares at time t; 

otherwise assign Hs;t the value False. Similarly, assign truth values to 

the s; and Ii,t acc.ording to whether or not their i:ituitive meaning holds 

in this computation. Clearly, this assignment of truth values makes f(w) 

true. Thus, if Z accepts w then f(w) is in SAT. 

Conversely, suppose f(w) is in SAT. Then there is some assignment 
a q 

of truth values to the variables Ts,t' Hs,t' St and Ii,t that makes f(w) 

true. Conisder such an assignment of truth values. Since the assignment 

makes f(w) true, it makes S true. So for each time t, exactly ones~ was 

assigned true. Associate this unique state q with time t. Since this 

assignment makes f (w) true, it makes T true. So for each time t = 0, 1, ••• , 

p(n) and each storage tape squares, -p(n) s s s +p(n), there is one and 
a only one symbol a such that T tis true. In this way we can, for each 
s, 

time t, assign a unique symbol a to each storage tape squares. Since this 

assignment makes f(w) true, it also makes I and H true; so in a similar 

way we can use this assignment to associate a unique input tape head position 
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and a unique storage head position with each instant of time t = 0, 1, ••• , p (n) • 

In this way, the given assignment of truth values associates a unique id 

of Z to each time unit t from zero to-p(n). If we can show that this sequen

ce of id's is an accepting computation of z on input w, then we will know 

Z accepts wand we will have shown Claim 2. But this assignment of truth 

values makes B, Mand A each true. Since Bis true, the id at time zero is 

the correct start ldi at each instant of time t, the id at time t + 1 is the 

result of some instruction of Z, since this is what M says and, finally, 

since A is true some id includes an accepting state. So this sequence of 

id's is an accepting computation of Z on w. Thus, if f(w) ls in SAT, then 

Z accepts w. This completes the proof of Claim 2 and the proof of Lemma 2. D 

An analysis of the proof of Theorem 11 shows that we have actually proven 

something stronger than Theorem 11. Consider the formula 

f(w) SA I AH AT AB AM A A, 

constructed in Lemma 2. The subformulae s, I, H, T, Band A are all either 

in conjunctive normal form or can be converted to conjunctive normal form 

by some trivial operations. Thus, if we convert M to conjunctive normal 

form, then f(w) will be in conjunctive normal form. In order to convert M 

to conjunctive normal form, we need only convert each of the subformulae 

M(i,r,c,s,t) to this form, use the definition of+ to replace the remaining 

+'s by 7 and v, and finally apply the distributive law to the 7H t" But s, 
the subformulae M(i-,r,c,s,t) are all fairly simple. So these subformulae 

can easily be converted to conjunctive normal form. Thus we can define f(w) 

so that it is in conjunctive normal form and is still computable within 

deterministic polynomial time. This means that, instead of Claim 2, we 

could have proved 

CLAIM 2'. Z accepts w if and only if f(w) is a satisfiable Boolean formula 

in conjunctive normal form. 

This small modification to the proof yields, 

THEOREM 12. The set of satisfiable Boolean formulae in conjunctive normal 

form is time complete for the class NP. 
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5.4. Conclusions 

Unfortunately, there is no known deterministic polynomial time algorithm to 

accept the satisfiable Boolean expressions. The most widely held view is 

that none exists and that P does not equal NP. So it appears that SAT and 

all the many interesting problems that are time complete for NP are just 

too difficult to do within practical time limits. The best known determinis

tic algorithms for these problems take time en, where c is a constant 

depending on the problem. 
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