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Abstract The parallel performance of a numerical
solution method for the scalar 2D Helmholtz equa-
tion written for inhomogeneous media is studied. The
numerical solution is obtained by an iterative method
applied to the preconditioned linear system which has
been derived from a finite difference discretization. The
preconditioner is approximately inverted using multi-
grid iterations. Parallel execution is implemented using
the MPI library. Only a few iterations are required to
solve numerically the so-called full Marmousi problem
[Bourgeois, A., et al. in The Marmousi Experience, Pro-
ceedings of the 1990 EAEG Workshop on Practical
Aspects of Seismic Data Inversion: Eur. Assoc. Expl.
Geophys., pp. 5–16 (1991)] for the high frequency range.

1 Introduction

The Helmholtz equation, which is also called a reduced
wave equation, in scalar or vector form is often used to
approximately model wave propagation in inhomoge-
neous media. The demand for reliable numerical solu-
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tions to such type of problems is repeatedly encoun-
tered in geophysical and optical applications [4,13]. In
geophysical applications, for example, wave propagation
simulations are used for the development of acoustic
imaging techniques for gaining knowledge about geo-
physical structures deep within the Earth’s subsurface.

It has also to be noticed that it is possible to tackle the
above mentioned problems directly in the time-domain
(for example, acoustic echo techniques). In the time-
domain, the computational cost of a numerical scheme
for the wave equation is proportional to the number of
time samples. However, the cost can be reduced sub-
stantially by working with equations in the frequency
domain, where the cost is proportional to the number
of frequencies used. Moreover, the frequency domain
approach has several advantages, which are especially
pronounced for 3D problems [15].

The discretization of the corresponding Helmholtz
problem is usually based on finite difference (FD) or
finite element discretization (FEM) schemes which are
relatively simple and, at the same time, effective and
increasingly popular. However, in order to maintain
acceptable numerical accuracy in the FD or FEM solu-
tions, fine enough grid spacings per wave length need
to be employed [2,11]. This implies that for most real-
istic cases, which typically deal with domains of sizes
from several tens to several hundreds of wave lengths,
the penalty in terms of computational costs and memory
requirements is tending to be extremely high.

These severe limitations, as it will be shown further,
may effectively be resolved by using the power of mul-
tiprocessor computer architectures, such as, for exam-
ple, Linux computer clusters [5]. Unlike direct solution
methods, iterative methods allow effective paralleliza-
tion and require less memory utilization [3], and thus
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enable one to compute the solution of Helmholtz prob-
lems of practical size in reasonable time. In [10], for
example, a parallel solver for the scalar Helmholtz equa-
tion is considered that is based on a parallel domain
decomposition method. This solver is perfectly applica-
ble to layered-like media, in which the layers are topo-
logically similar to the layers of uniform thickness, and
also the parameters vary smoothly within layers (this
is usually the case in underwater acoustics). In [9], a
parallel fictitious domain method has been used for the
solution of 3D scattering problems such as a scattering of
time-harmonic acoustic waves by an obstacle, showing
good scalability properties.

The parallel approach, which is proposed in the pres-
ent paper is rooted from the sequential code that is based
on the method described in [7,8]. So, the parallel algo-
rithm is in general identical to the sequential one. This
method appears to be advantageous because it is rela-
tively simple and effective for the problems in which the
media parameters can be strongly heterogeneous and
the acoustic frequencies and the corresponding wave-
numbers are relatively high (geophysical applications).
Effectiveness of the algorithm is confirmed by the fact
that only a few iterations are required to solve numeri-
cally the so-called full Marmousi problem [6] for the high
frequency range. Moreover, the solver’s relative simplic-
ity is important for an optimal parallelization procedure.

2 Model

Consider wave propagation in two space dimensions,
which, in the frequency domain, for a constant den-
sity media, is described by the Helmholtz equation.
The complex wave field amplitude due to external and
internal sources obeys the following equation (here we
follow [8])

Au ≡
(
−∂xx − ∂yy − (1 − iα) k2(x, y)

)
u = b(x, y),

(1)
(x, y) : Ω ∈ R

2,

here u = u(x, y) represents some physical quantity char-
acterizing the field (i.e. pressure), k(x, y) = 2π f/c(x, y)

is the wavenumber, c(x, y) the local speed of sound in
an inhomogeneous medium, f is the frequency, α : (0 ≤
α � 1) describes attenuation in the medium, and b(x, y)

is the source term.
Boundary conditions at the boundary Γ = ∂Ω have

to be chosen in such a way that an infinite space can be
approximated by a bounded computational domain, so
that no waves are reflected back or the reflection is neg-
ligibly small. In general, there are three possibilities to

achive this by using so-called absorbing boundary con-
ditions, which are in particular—Sommerfeld-like radia-
tion boundary conditions, an absorbing boundary layer
(ABL) [1], and as an alternative to ABL—the perfectly
matched layer (PML) [18]. In the present case the sec-
ond order Sommerfeld radiation boundary condition is
used:

AΓ u = 0 :
∂ u
∂ν

− i k
(

1 + 1
2 k2

∂2

∂τ 2

)
u = 0 on Γ ,

(2)

where ν is the outward unit normal vector at the bound-
ary, and τ is a vector pointing in the tangential direction.
Although, such boundary conditions perform satisfac-
tory for 2D case, in 3D it seems that there is no satis-
factory alternative to PML or ABL. The present solver,
however, can handle all three types of boundary treat-
ment efficiently.

Numerical accuracy in the solution is controlled by
the number of points per wavelength nf , which is typi-
cally chosen to be 10–12 points. Additionally, the num-
ber of wavelengths in a domain of size L equals Lf/cmin.
Wavenumber k can be large, this means that the oper-
ator in Eq. (1) has both positive and negative eigen-
values, and, therefore matrix A, the FD approximation
of Eq. (1), is indefinite.

In geophysical applications [4], information on the
local speed of sound in an inhomogeneous medium is
usually stored in a large complex-valued array C[i, j].
The so-called Marmousi synthetic data set is a remark-
able example of such array, which was first released as a
test for velocity estimation [6]. It is a complex acoustic
2-D data set based on the geology of the Cuanza basin
in Angola, see Fig. 5. Its structural style is dominated
by growth faults which arise from salt creep and give
rise to the complicated velocity structure in the upper
part of the model. Later it was discovered that many
numerical algorithms used for wave propagation mod-
eling have failed to produce satisfactory results for the
medium with such a velocity profile. Therefore the Mar-
mousi data set has become a popular and very effective
test for new numerical algorithms.

3 Numerical solution method

We consider the well-known five-point discretization
stencil with truncation error O(h2). In stencil notation it
reads as:

Ah �
1
h2

⎡
⎣

−1
−1 4 − h2(1 − iα) k2(xi, yj) −1

−1

⎤
⎦ (3)
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Numerical performance of a parallel solution method for a heterogeneous 2D Helmholtz equation 141

By applying this discretization to Eqs. (1), (2) one
obtains the following linear system

Aφ = b, A ∈ CN×N , φ, b ∈ CN (4)

where N is the number of unknowns in the computa-
tional domain Ωh. The sparse matrix A in Eq. (4) is
complex valued due to both boundary conditions and
the damping term in Eq. (1). Moreover A is in general
symmetric, non-Hermitian, indefinite and, due to accu-
racy requirements, large for high wave-numbers and
large computational domains. The numerical solution
of system (4) is obtained by an iterative method applied
to the preconditioned linear system, namely precondi-
tioned Bi-CGSTAB [19] is used, which converges some-
what faster than other Krylov subspace methods (e.g.
GMRES, QMR). The preconditioned system reads as

A M
−1ψ = b with φ = M

−1 ψ , (5)

where the preconditioner M proposed in [8] is, in fact,
the damped version of the operator given by Eq. (1)

M ≡ −∂xx − ∂yy − (β1 − iβ2) k2(x, y), (6)

where β1,2 ∈ R are adjustable parameters. The method
of choice is with the parameters is (β1, β2) = (1, 0.5), as
was determined in [8]. Boundary conditions for the pre-
conditioner are identical to the original conditions (2).
The preconditioner is approximately inverted by using
one multigrid iteration [17] a so-called F-cycle iteration.

The choice for multigrid as an inner solver is based
on the study of a class of preconditioners for Helmholtz
type problems, which was carried out in work [7].
Multigrid components Here we use standard multigrid
coarsening that is doubling the mesh size h in every
direction [17]. For smoothing the point-wise Jacobi
relaxation with under-relaxation is used, which is well-
parallelizable. The Galerkin coarse grid operator is used
for the discrete coarse grid operators M2h, M4h, . . . ,
which is defined as follows:

M2h = R2h
h MhPh

2h, M4h = R4h
2hM2hP2h

4h, . . . , (7)

where Mh corresponds to discretization of Eq. (6) on the
h, grid, R2h

h and Ph
2h denote the restriction and prolon-

gation operators, respectively. For heterogeneous prob-
lems, the Galerkin coarse grid discretization is a natural
choice. Moreover, for the boundary conditions contain-
ing first and second derivatives, the Galerkin coarse
grid discretization defines the appropriate coarse grid
boundary conditions automatically.

The prolongation operator is based on operator-
dependent interpolation, which is similar to de Zeeuw’s
transfer operators [20]. As the restriction operator the
full weighting operator is employed. The choice for the

combination of a full weighting restriction and the oper-
ator-dependent interpolation is based on the fact that it
brings a robust convergence for a variety of Helmholtz
problems with constant and non-constant coefficients,
especially for the case of strongly varying coefficients,
as in the Marmousi problem discussed further.

4 Parallel program structure

As already indicated, using a parallel computing envi-
ronment a program that is able to take advantage of
such computing power is needed to solve realistic wave
propagation problems in 2D and especially in 3D.

Let us consider the functional structure of the par-
allel program. Main functional blocks of the numerical
solution procedure, namely the iterative solution block
and the multigrid preconditioner, are inherently data
parallel. Due to this, parallelization of the sequential
program can essentially be based on the data parallel
concept [14,17]. Following this concept, the program
data originated by the problem (the matrix, the solu-
tion vector and subsidiary storage vectors) has to be
distributed between processors of a cluster. For the data
exchange between processors, we use the well-known
standard MPI library [16].

It is natural to decompose the matrix A and vector
φ components as shown in Fig. 1. Such a decomposi-
tion can be classified as rowwise block-striped decom-
position. It has to be noted that the communication
pattern (i.e. the amount and structure of the data) is
completely determined by the type of decomposition.
For our numerical test we use a rectangular computa-
tional domain, which is usually used in geophysics. In
order to minimize the amount of data to be exchanged
between computer nodes the computational domain has
to be partitioned in the direction that is perpendicular to
the longest dimension. The rowwise matrix decomposi-

Fig. 1 Matrix A structure and data mapping onto three CPUs
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Fig. 2 It is convenient to introduce local coordinate system
{N, S, E, W}, in which a particular processor receives data packets
from North or (and) South

tion corresponds to rectangular parallel strips which are
partitioning the domain, see Fig. 2.

It has to be noted that such decomposition is not
quite optimal when the number of processors P is rather
large P �

√
N ≈ 102. Therefore, it is pragmatic to

assume that the dimension of the target problem is large
(≈ 2 × 106 unknowns) and the number of available pro-
cessors available (� 16) is considerably less than the
problem size. Moreover, as was confirmed by the test
runs that for such a number of processors and for such
a rectangular form of the computational domain, the
program, which uses the rowwise domain decomposi-
tion outperforms the program based on the block-wise
decomposition.

For example, the following computational domain
[nx = 33, ny = 101], after being decomposed between
three processors, has the following local representa-
tion on the processor nodes, see Table 1, the mean-
ing of a term last level in parallel will be explained
later. We now consider the main operations which are
required by the program in some detail.

– Matrix setup.
– Preconditioner setup.
– Matrix vector multiplications.
– Vector updates.
– Dot products.
– Preconditioning operations.
– Solution output.

All these operations are performed in fully in paral-
lel, except some preconditioning multigrid operations

Table 1 Processor local grids for a number of multigrid levels
(mg.-lev.), the level with number 4 is a level—last in parallel

mg.-lev. X0 Y0 X1 Y1 X2 Y2

8 33 33 33 34 33 34
7 17 17 17 17 17 17
6 9 9 9 8 9 9
5 5 5 5 4 5 4
4 3 3 3 2 3 2
3 2 4 2 4 2 4
2 1 2 1 2 1 2
1 1 1 1 1 1 1

CPU_0 CPU_1 CPU_2

Matrix−Vector Products

Vector Updates

Inner Products

Data Input Output

Seq.
Parallel

Fine−grds Multigrid steps

Coarse−grds Multigrid steps

MPI

Fig. 3 Block-structure of the parallel program

which are performed sequentially (for optimal perfor-
mance) starting from a certain coarse level, which, in
turn, is computed during the setup phase, see Fig. 3.

During Matrix setup the program has to read a large
binary file that contains the data related to the local wave
velocities. This operation has been rewritten in parallel
mode by setting for each MPI-process a special data off-
set, so that each processor reads in parallel its own data
chunk from the binary file which is usually stored at the
so-called master node. Also at this stage, at each proces-
sor the descriptor structure is created, which describes
the identification number of neighboring processor, the
boundaries, i.e. if a particular boundary belongs to com-
putational domain boundary or it is the data partition
between processors.

The Preconditioner setup consists of creating at each
processor node the local coarse grid operator matrices
together with the operator-dependent prolongation and
restriction weights arrays. Also at this stage the number
of the multigrid level (last in parallel—LIP) is computed
until which multigrid computations are performed in
parallel. The next coarser levels are computed in sequen-
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tial mode without communication between MPI-pro-
cesses, resulting in nearly optimal overall performance
of the program. In turn, the LIP level is found if the
number of grid points stored at the particular processor
node is less than some predefined number (we use 100
points), which depends on hardware parameters and can
be found from test runs.

The Matrix vector multiplication is one of the key
operations used by the iterative solution procedure. It
is supposed to be implemented with the use of the most
effective parallel approach. Although at the finest level
the five-point stencil is effectively used, at the coarse lev-
els some zero stencil elements become non-zeros during
the coarse grid operators setup. Therefore, it is conve-
nient to store the matrix by nine-point FD stencils as
a linear array, then matrix-vector multiplication has the
following form

yij =
1∑

l=−1

1∑
m=−1

Ai+lj+mxi+lj+m, (8)

here the summation indices l, m describe the summa-
tion over stencil components stored in the row related
to a (i, j)-grid point. From this equation it is seen that
in order to accomplish matrix-vector multiplication the
neighboring processors have to exchange the adjacent
solution vector components. Such communication, for
example, has been implemented by the MPI library
functions [16]:

MPI_Send_Init(...)
MPI_Recv_Init(...)
MPI_Startall(...)
MPI_Waitall(...)

These functions fall into the category of so-called per-
sistent nonblocking communications, moreover in many
cases they represent the fastest MPI implementations.
However, one should keep in mind that MPI is very
extensive library and thus the fastest way to do neigh-
bor exchange varies from machine to machine.

The Vector updates do not require any communica-
tion between neighboring processors, which means in
particular that this operation scales perfectly.

The Dot products and similar operations effectively
need one global communication communication
between all MPI-processes, which can be implemented
using:

MPI_Allgather(...)

The Preconditioning operations consist of the pro-
longation and restriction operations, and Jacobi pre-
and post-smoothing operations. All these operations
are structurally similar to matrix vector multiplication

operation therefore they possess similar communication
patterns. As already mentioned, after some predefined
multigrid coarse level the program execution switches
from a parallel to a sequential mode in order to opti-
mize performance. Such a program flow is governed by
a special variable, which stores the current multigrid
level and controls the behavior of all functional units of
the parallel program.

The Solution output is performed in a parallel regime.
Each MPI-process outputs a locally stored part of the
solution vector into its own file. Then, these output files
can be merged into the global solution output file if
necessary.

5 Numerical results

For the tests we have chosen two model problems:
the wedge problem and the Marmousi problem. The
test examples differ substantially in the complexity of
the sound velocity profile, see Figs. 4, 5 which, in turn,
affects the number of iterations. The wave field in a
domain is excited by a harmonical delta-like source that
is applied at the top of the computational domain. In the
case of the wedge problem, a region with “fast” medium
is separated from the “fast” medium half-space by an
inclusion of the wedge-shaped “slow” medium. Corre-
sponding numerical solution is shown in Fig. 6. As can be
seen from the figure, the wave field is mostly reflected
at the slow-to-fast transition area (i.e. depth = 700 :
800 m, x = 0 : 200 m), where the wave fronts are visi-
bly curved at the interface boundary. The correctness
of the solution can also be confirmed by time domain
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Fig. 4 Models considered: the wedge problem
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Fig. 5 Models considered: the Marmousi problem
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Fig. 6 An example of acoustic filed pattern at 20 Hz for the case
of the wedge velocity profile

computations (time trace), which were performed using
numerical solutions for a set of frequencies with the
subsequent Fast Fourier transform (DFT [12]) from the
frequency domain into the time resolution domain, see
Fig. 7. In the figure one may observe the time-trace of
the direct wave form (the brightest line at the top), and

Fig. 7 An acoustic field amplitude as function of time detected
at different x-coordinates of a surface receiver

two curves (in the upper part) that indicate the wave
form reflections at the wedge-shaped area.

For this test the surface source located at x = 300 m
has been utilized and its waveform in the time domain
with the corresponding frequency spectrum are shown
in Fig. 8.

In contrast to the wedge velocity profile, the Mar-
mousi velocity profile is very complex with discontinu-
ous and irregular velocity variations, Fig. 5. An example
of field pattern for the case of the Marmousi problem
is shown in Fig. 9. Despite of a quite complex structure
of the velocity profile it is possible to find a physically
reasonable explanation to the amplitude distribution of
the acoustic field. As can be observed, that the field
mostly propagates in “naturally” embedded waveguides,
which are formed by channels of the “fast” medium sur-
rounded by “slow” medium (that is structurally similar
to fiber optics waveguides).

5.1 Parallel performance

An effective way to assess the performance of a parallel
program is to measure its execution time T as function of

Fig. 8 The source waveform
in the time (a) and in the
frequency (b) domains,
respectively, frequency range
is [0...60] Hz
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Fig. 9 An example of acoustic filed pattern for the case of the
Marmousi problem at 30 Hz

Table 2 Wedge: f = 60 Hz, Grid = 481 × 801, number of itera-
tions = 32, damping 5%, i.e. (α = 0.05)

Np 1 2 4 8

Time 47.98 24.60 13.11 6.91
Mem. 286.5 164.2–165.6 92.8–108.9 54.7–69.9
Speedup 1 1.95 3.66 6.95
MF: Time 58.68 30.0 15.72 8.14
MF: Mem. 232.2 137.1–138.4 79.2–95.4 48–63.1
Speedup 1 1.95 3.73 7.2

the number of processors Np. Additionally the so-called
parallel efficiency can be evaluated that indicates how
well a parallel program scales. It is defined as follows

E
(Np

) = 1
Np

T (1)

T
(Np

) . (9)

Accordingly, if a program scales well then its efficiency
is ≈ 1. Otherwise, low efficiency indicates that commu-
nication overhead prevails over computation.

We also compare a full matrix (FM) program which
stores the coefficient matrix A with a so-called Matrix-
free MF variant, which only stores the main diagonal
(i.e. a variant with optimized memory usage). For the
tests we use a Linux cluster which consists of a number
single processor PC’s, namely AMD Athlon(TM) XP
2600+ interconnected with an Ethernet switch.

Results averaged over few runs are shown in Table 2.
The table presents CPU-time, memory utilization, and
relative speedup for the wedge problem and the source
frequency f = 60 Hz, grid size 481 × 801, and conver-
gence achieved after 32 iterations. Here execution time
denoted by ‘Time’ is measured in seconds, and memory
usage per processor node denoted by ‘Mem.’ is mea-
sured in MBytes. Data shown in Table 2 indicates that
for a relatively small problem the FM program is faster
than the MF program because of recomputing of the

Table 3 The Marmousi: f = 30 Hz, Grid = 2, 001 × 534, number
of iterations = 38, damping 5%

Np 1 2 4 8

Time 158.01 79.76 40.90 21.59
Mem. 793.7 426.3–428.4 225.3–246.3 126.2–147.2
Speedup 1 1.98 3.86 7.32
MF: Time 139.64 69.92 35.48 18.28
MF: Mem. 643.4 351.2–353.2 191.9–212.9 109.5–130.5
Speedup 1 1.99 3.93 7.63

Table 4 The Marmousi: f = 60 Hz, Grid = 2, 501 × 751, number
of iterations = 75, damping 5%

Np 2 4 8 10

Time 223.0 110.06 59.3 49.01
Mem. 530.0–532.0 270.0–274.2 138.0–141.1 112.2–115.05
Speedup 1 2.03 3.76 4.55

matrix elements at the boundary of the domain at each
iteration step. However, the MF program scales bet-
ter than the FM program because of the better ratio
between computation and communication. Moreover,
it is clear that the MF program uses less memory and it
will gain more for really large problems.

In Table 3 the data related to the Marmousi model
are shown. Now the MF program outperforms the FM
variant since the amount of inner (not related to the
boundary points) computations prevails and extra time
is necessary to invoke matrix elements from a relatively
large array. Table 4 shows run data obtained using a
larger grid for the MF program only because of its supe-
rior performance. In this test due to memory limita-
tions, it was only possible to start the test on a two node
computer configuration. Results show a very satisfac-
tory scalabity of the program with respect to the wall
clock time and memory usage.

In Fig. 10 the graphs of the parallel efficiencies for the
full Marmousi case f = 30 Hz are shown. Here, similarly
to the parallel efficiency which is evaluated according to
Eq. (9), we have evaluated the parallel memory usage
efficiency. Moreover, it can be additionally noted that
the nonzero small damping may substantially reduce
the number of iterations. From the graphs the follow-
ing conclusions can be drawn. The parallel scalability
of the program is quite good. This is mostly due to the
well parallelizable multigrid preconditioner that con-
sumes most of the computational time. Moreover, bet-
ter results can be achieved by using a faster network.
At first glance one may notice that the memory usage
does not scale well, however, one should bear in mind
that a substantial amount of memory is allocated by the
MPI library buffers. We have not run the program on
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Fig. 10 Parallel efficiency of the MF program

larger numbers of processors, since our actual target is
3D. Having the 3D version ready, it is possible then to
make further parallel optimization in order to achieve
maximum parallel performance.

6 Conclusions

In this paper we have studied the numerical perfor-
mance of parallel solution of a heterogeneous 2D Helm-
holtz equation. The most important conclusions of the
numerical tests are the following:

• Memory and performance limitations for large prob-
lems can effectively be resolved by using a parallel
computing approach.

• The multigrid preconditioner shows a satisfactory
parallel efficiency.

• In the case of 3D problems even better parallel sca-
lability may be expected.

• Using a parallel computing environment, the full
Marmousi can be solved in only a few iterations,
in reasonable time.

In addition it can be remarked that the parallelization
approach shown in this paper can straightforwardly be
applied to 3D problems, in which two- or three-dimen-
sional Cartesian grids of processors (GP) should be
employed. We suggest that for better scalability of the
presented approach for large number of processors non-
static GP have to be used, that is, for example, the follow-
ing sequence of two-dimensional GP: [4×4] ⇒ [3×3] ⇒
[2 × 2], where the first grid corresponds to the finest
multigrid level and the last one—to the lowest multi-
grid level, respectively. This approach is planned for the
future program developments.

Acknowledgements The authors would like to acknowledge that
the current research is financially supported by the Dutch Ministry
of Economic Affairs under the Project BTS01044.

References

1. Bamberger, A., Joly, P., Roberts, J.E.: Second-order absorb-
ing boundary conditions for the wave equation: a solution for
the corner problem. SIAM J. Numer. Anal. 27, 323–352 (1984)

2. Bayliss, A., Goldstein, C.I., Turkel, E.: On accuracy condi-
tions for the numerical computation of waves. J. Comput.
Phys. 49, 394–404 (1985)

3. Berglund, G.Z.M., de Leeuw, S.W.: A feasibility study of
the use of two parallel sparse direct solvers for Helmholtz
equation on Linux clusters. Reports of the Department of
Applied Sciences., Report 03-01, Delft University of Technol-
ogy (2004)

4. Bleistein, N., Cohen, J., Stockwell, J. Jr.: Mathematics of
Multidimensional Seismic Imaging, Migration, and Inver-
sion. Springer, Berlin (2001)

5. Bookman, C.: Linux Clustering: Building and Maintaining
Linux Clusters. Sams Publishing, New York (2002)

6. Bourgeois, A., Bourget, M., Lailly, P., Poulet, M., Ricarte, P.,
Versteeg, R.: Marmousi, model and data. In: Versteeg, R.,
Grau, G., (eds.) The Marmousi Experience, Proceedings of
the 1990 EAEG Workshop on Practical Aspects of Seismic
Data Inversion: Eur. Assoc. Expl. Geophys., pp. 5–16 (1991)

7. Erlangga, Y.A., Vuik, C., Oosterlee, C.W.: On a class of
preconditioners for the Helmholtz equation. Appl. Numer.
Math. 50, 409–425 (2004)

8. Erlangga, Y.A., Vuik, C., Oosterlee, C.W.: A novel mul-
tigrid preconditioner for heterogeneous Helmholtz prob-
lems. SIAM J. Sci. Comp. 27, 1471–1492 (2006)

9. Heikkola, E., Rossi, T., Toivanen, J.: A parallel fictitious
domain method for the three-dimensional Helmholtz equa-
tion. SIAM J. Sci. Comput. 24(5), 1567–1568 (2003)

10. Larsson, E., Holmgren, S.: Parallel solution of the Helmholtz
equation in a multilayer domain. BIT Numer. Math. 43, 387–
411 (2003)

11. Marfurt, K.J.: Accuracy of finite-difference and finite element
modeling of the scalar and elastic wave equations.. Geophys-
ics 49(5), 533–549 (1984)

12. Oppenheim, A., Schafer, R.: Discrete-time Signal Processing.
Prentice-Hall, Englewood Cliffs (1989)

13. Peterson, A., Ray, S., Mittra, R.: Computational Methods for
Electromagnetics. IEEE Press, New York (1998)

14. Quinn, M.J.: Parallel Computing: Theory and Practice.
McGraw-Hill, New York (1994)

15. Riyanti, C.D., Erlangga, Y.A., Plessix, R.-E., Mulder, W.A.,
Vuik, C., Oosterlee, C.W.: A new iterative solver for the time-
harmonic wave equation. Geophysics 72(5):E57–E63 (2006)

16. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.:
MPI-The Complete Reference: The MPI Core, vol. 1. MIT,
Cambridge (1998)

17. Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Aca-
demic, London (2001)

18. Turkel, E., Yefet, A.: Absorbing PML boundary layers for
wave-like equations. Appl. Numer. Math. 27, 533–557 (1998)

19. Vander Vorst, H.A.: BI-CGSTAB: a fast and smoothly con-
verging variant of bi-CG for the solution of nonsymmetric
linear systems. SIAM J. Sci. Stat. Comput. 13, 631–644 (1992)

20. Zeeuw, P.M. de : Matrix-dependent prolongation and restric-
tions in a blackbox multigrid solver. J. Comp. Appl.
Math. 33, 1–27 (1998)

----

~ Springer 

··-. ·---- ··- .. 
------------- ··-. ·- .. 


	Numerical performance of a parallel solution methodfor a heterogeneous 2D Helmholtz equation
	Abstract 
	Introduction
	Model
	Numerical solution method
	Parallel program structure
	Numerical results
	Parallel performance
	Conclusions
	Acknowledgements


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


