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Abstract 
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CW!. P.O. Box 9../-079, 1090 GB Amsterdam, The Netherlands 

We investigate the use of approximate factorization and diagonalizing techniques for solving iteratively fully 
implicit numerical models of three-dimensional transport-chemistry problems. In particular, we investigate var
ious possibilities that can take advantage of the parallelization and vectorization facilities offered by parallel 
vector computers. © 1997 Elsevier Science B. V. 
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1. Introduction 

The mathematical model describing transport processes of salinity, pollutants, etc., combined with 
their bio-chemical interactions, is defined by an initial-boundary value problem for the system of 30 
advection-diffusion-reaction equations 

a~;, =L(u,v,w)c11 +g11 (:r:,y,z,t.c1, ... J'm). /L= l, ... ,rn, (I.Ja) 

L(n, v, w )c1, := -u~c1, - v aa r·11 - w aa c1, + aa. (c::r a;:\c.11) 
aJ: y z ;i: v:i:: 

a ( ac" ) o ( ac1, ) +- i: -- +- i: __ · oy ~y ay oz ~z oz . 
Here, the various quantities are defined as follows: 

cfi: concentrations of the contaminants, 
'll, V, 111: local fluid velocities in :r, y, z directions (assumed to be divergence free), 
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ex, cy. cz: diffusion coefficients in x, y, z directions (may depend on the species), 
gµ: reaction terms (e.g., chemical interactions) and emissions from sources. 

The velocities u, v, w, and diffusion coefficients Ex, cy, Ez are assumed to be known in advance. 
The terms 9µ describe chemical reactions, emissions from sources, etc., and therefore depend on the 
concentrations. The mutual coupling of the equations in the system ( 1.1) is due to the functions 9w 

The boundary conditions are either of Dirichlet type or of Neumann type. 
Along the lines described in [4,6], we replace in (1.1) the physical domain by a set of N Carte

sian grid points with mesh sizes iiT, 6.y, and 6.z, the advection terms by upwind-biased K = 1 /3 
discretizations (see [8]), and the diffusion terms by symmetric three-point discretizations. This results 
in a semidiscrete, mN-dimensional initial value problem (IVP) 

dC(t) 
-- = F(t,C(t)) := H(t,C(t)) + G(t,C(t)), C(to) = C 0 . (l.2a) 

dt 
Here C contains them concentrations cµ. at all N grid points, Co defines the initial values, H(t, C(t)) 
represents the advection-diffusion terms, and G(t, C(t)) contains the reaction terms and emissions 
from sources. H(t, C) is linear in C with a block-diagonal matrix of coefficients. The m diagonal 
blocks have dimension N and contain (at most) only 13 nonzero diagonals (see also Section 2.1 ). 
We remark that these diagonal blocks are all the same if we use the same boundary conditions and 
diffusion coefficients for the various species. 

From the definition of the operator L it follows that H(t, C) can be split into three terms corre
sponding with the derivatives with respect to x, y and z, respectively (dimensional splitting). Hence, 
H(t, C) can be written as 

H(t, C) = (X(t) + Y(t) + Z(t)) C, ( l.2b) 

where the matrices X, Y and Z are again block-diagonal. Each of these blocks contains 5 nonzero 
diagonals. Moreover, all m blocks belonging to X (or Y, or Z) are identical if we use the same 
boundary conditions and diffusion coefficients for the various species. 

In general, G(t, C) is nonlinear in C, but at each grid point, it only depends on the m concen
trations cµ at that particular grid point. The reaction term G may be considered as nonstiff, because 
the chemistry in shallow water transport problems usually has large time constants. However, the 
advection-diffusion term H introduces stiffness, due to the relatively small vertical mesh size t},.z. 

In order to cope with the stiffness of the IVP (1.2), we shall use for the time discretization an 
implicit discretization formula. Since transport problems usually are advection dominated, this implicit 
formula should at least be A-stable and preferably L-stable. The choice of such a highly stable time 
discretization formula now depends on the required order of time accuracy. If second-order accuracy 
suffices, one may use in the first integration step the (selfstarting) first-order, L-stable backward Euler 
method, and in all subsequent steps, the second-order, L-stable backward differentiation formula (BDF). 
Thus, 

R(tn+I, Cn+1) = 0, (l.3a) 

where 

R(t1, C) := C -6.tF(t1,C) - C 0 , n = 0, 

R(tn+i, C) := C - ~6.tF(tn+1, C) - *[4Cn - Cn-1J, n ~ 1. 
( 1.3b) 
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If third-order time accuracy is desired, we may use the (selfstarting) L-stable, two-stage Radau IIA 
discretization 

(1.4a) 

where An+i;3 may be considered as an auxiliary vector and where the residual functions R 1 and R 2 

are defined by 

R1 (tn+t/3' tn+1, A, C) :=A - 152tl.t F(tn+1;3, A)+ /2!l.t F(tn+1, C) - Cn, 

R2(tn+l/3• tn+J, A, C) := c - ~tl.t F(tn+l/31 A) - ±M F(tn+l. C) - Cn. 
(1.4b) 

The aim of this paper is to develop efficient iterative methods for solving the systems (1.3) and (1.4). 

2. The iteration process 

In order to solve the nonlinear systems ( 1.3) or ( 1.4) there are two often used approaches: fixed-point 
iteration and modified Newton iteration. Let us first consider the fixed-point iteration process for the 
BDF discretization (1.3) 

c(v) = c(v-l) - R(tn+1, c(v-l)), v = 1,2,.... (2.1) 

This iteration process is relatively cheap, highly vectorizable, and highly parallelizable. However, 
it will only converge if !l.t is extremely small. To make this more precise, we ignore the nonstiff 
chemistry and the usually small diffusion terms. Then, fixed-point iteration will converge if the CFL 
number Q, defined as 

Q := !l.t(M + M + ~), (2.2) 
!l.x !l.y !l.z 

is sufficiently small. Due to the usually small mesh size !l.z, such a convergence condition imposes a 
severe restriction on the time step M, unless w = 0. For example, in practical situations lwl/ !l.z can 
be as large as 0 .1 sec 1, forcing this process to take time steps less than 10 seconds to achieve, say 
Q ~ 1 (the horizontal advection terms are less dangerous, because the horizontal mesh sizes usually 
are a factor 100 or 1000 larger). Evidently, we have to discard the fixed-point iteration process. 

At the other end of the scale, we can generate successive approximations cCvl to Cn+ 1 by means of 
the modified Newton process. Let us again consider the BDF discretization (1.3) for which modified 
Newton reads 

oF 
J := I - a!l.t oC, v = 1, 2, ... , c(v) = c(v-1) - 1-1 R(t c(v-1)) n+l, ' (2.3) 

where oF /oC = o(H + G)/oC is the Jacobian and where a= 1 for n = 0 and a= 2/3 for n ~ 1. 
Each Newton iteration requires the solution of a linear system with J as its matrix of coefficients. In the 
case of linear interaction terms, only one Newton iteration suffices, because the advection-diffusion 
terms are also linear. But also in the case of nonlinear interaction, the Newton process is expected to 
converge under rather mild conditions on the time step !l.t. However, due to the different coupling of 
the unknowns in the functions H and G, and due to the fact that we are dealing with three spatial 
dimensions, the linear algebra involved in solving the linear Newton systems is extremely expensive, 
so that we also have to drop the modified Newton algorithm. 
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In this paper, we shall describe an iteration scheme that is in some sense a compromise between 
the two extreme cases of fixed-point iteration and modified Newton iteration. This iteration scheme 
will be separately discussed for the BDF discretization (1.3) and the Radau discretization (1.4). 

2.1. The BDF discretization 

By observing that the modified Newton process (2.3) can be interpreted as fixed-point iteration in 
which the residual term R(tn+I, c(v-I)) is preconditioned by the matrix J, we are led to define for 
(1.3) a preconditioned fixed-point iteration process of the form 

c(v) = cCv-1) _ j-1 R(t cCv-1)) n+J, ' v=l,2, ... , (2.4) 

where the matrix J- 1 should remove the stiffness from the residual term. Evidently, any nonsingular 
matrix J defines a consistent iteration scheme, that is, if the iteration scheme converges, then it 
converges to the solution of (1.3). The matrix J may also be interpreted as a smoothing matrix which 
removes the high frequencies from the residual term. 

Our first concern is to choose J such that we have convergence as .6.z --+ 0. Suppose that we define 
J by the "vertical-preconditioning" matrix J =I - aAtZ, where Z is the matrix occurring in (1.2b). 
Then, (2.4) takes the form 

(I- a.6.tZ)(c(v) -c(v-l)) = -R(tn+1,C(v-I)), v = 1,2, .... (2.4') 

Since the matrix Z only represents the vertical coupling in the advection diffusion terms, the linear 
system (2.4') can be decoupled into Nxy "vertical" linear pentadiagonal subsystems, where Nxy is 
the number of grid points in the horizontal plane. Therefore, the solution of the system (2.4') has 
a considerable amount of intrinsic parallelism and vectorization, and can be done extremely fast on 
parallel vector computers like Cray architectures. 

Although the vertical advection (and diffusion) terms are the most dangerous ones, it is not recom
mendable to forget about the horizontal advection (and diffusion) terms. Therefore, we shall apply a 
similar "horizontal" preconditioning of the residual term. This results into the iteration process 

(I - al1tX)(I - a.6.tY)(I - a.6.tZ)( cCv) - cCv-l)) = -R(tn+i, c(v-l)), 

1/ = 1, 2, .... (2.5) 

Each iteration requires the sequential solution of three linear systems, but by virtue of the structure 
of the matrices X, Y and Z (cf. (1.2b)), these systems can be decoupled respectively into Nxy• Nx= 
and Nyz linear pentadiagonal subsystems (compare the decoupling in (2.4')). Here, Nyz and Nxz are 
defined in a similar way as Nxy and denote the numbers of gridpoints in the vertical "north-south" 
and "east-west" planes. 

The process (2.5) may be considered as the method of Approximate Factorizations applied to the 
modified Newton process (2.3) (cf. [3, p. 439]). This approach replaces the expensive linear system 
in (2.3) by the set of pentadiagonal subsystems involved in (2.5). 

For future reference, it is convenient to give an explicit expression for the matrices X, Y and Z 
occurring in (2.5). For simplicity, we present this expression for constant diffusion coefficients Ex. 
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Ey and Ez and constant (positive) velocities u, v and w (in an actual implementation of numerical 
transport models, one should use more complicated discretization formulas which also preserve the 
conservation of mass in the case of nonconstant velocities). Taking Ex, cy, cz, u, v and w constant, 
we obtain at a particular grid point ~jk := (i.6..x,j.6..y, k.6..z) the difference formula 

Hijk = (XC)ijk + (YC)ijk + (ZC)ijk, (2.6) 

where 

and 

(XC)ijk := -(3B1 + 2D1)ci,j,k - (2B1 - D1)Ci+1,j,k + (6B1 + Di)Ci-1,j,k - B1Ci-2,j,k, 

(YC)ijk := -(3B2 + 2D2)Ci,j,k - (2B2 - D2)Ci,j+1,k + (6B2 + D2)Ci,j-1,k - B2Ci,j-2,k, 

(ZC)ijk := -(3B3 + 2D3)Ci,j,k - (2B3 - D3)Ci,j,k+1 + (6B3 + D3)Ci,j,k-1 - B3Ci,j,k-2, 

u 
Bi:= 6.6..x' 

Here Ci,j,k refers to the m-dimensional vector of concentrations cµ at the grid point Pijk· 

2.2. The Radau discretization 

Next we consider the approach in which the underlying implicit time discretization formula is of 
Runge-Kutta type. As an example, we will discuss the third-order, L-stable, 2-stage Radau IIA method. 
Then, in each step, a system has to be solved, the dimension of which is twice as large as the IVP 
dimension (cf. (l.4a) and (l.4b)). To avoid the increase in the linear algebra work, the Runge-Kutta 
matrix appearing in the modified Newton method will be approximated by a diagonal matrix D or 
a triangular matrix T. This approach was followed in [5,7] to construct parallel iteration methods 
for solving stiff ODEs with Runge-Kutta methods. For higher-stage Runge-Kutta methods (say 4 or 
more stages), the "triangular" approach is to be preferred to the "diagonal" approach, in spite of its 
more complicated implementation requiring the use of Butcher transformations (cf. [7]). However, for 
the 2-stage Radau method the "diagonal" approach is clearly more efficient. Thus, approximating the 
Runge-Kutta matrix by the matrix D = diag( a 1, a 2 ), we obtain the iteration method 

A(v) = A(v-1) _ J-iR (t t A(v-1) c(v-1)) 
i I n+l/3' n+I, , , 

C (v) _ c(v-1) _ J-lR (t t A(v-1) c(v-1)) 
- 2 2 n+l/3• n+1, , , 

v = 1,2, ... ' 

oF 
Ji :=I - ai.6..t oC' 

oF 
Jz :=I - a2.6..t oC' 

(2.7) 

where oF /oC = o(H + G)/oC is again the Jacobian. Notice that both equations are of IVP 
dimension and, moreover, the new iterates A (v) and cM can be solved in parallel. In fact, these 
equations are of the same type as the modified Newton iteration (2.3) for the BDF method. 

In [5] it was shown that for stiff ODEs iteration methods of the type (2.7) possess good convergence 
properties if the (extremely) stiff components are optimally damped. For the Radau IIA method this 
leads to 

a1 = (4 - ./6)/6, 0:2 = (4 + -16)/10. (2.8) 

In Section 3.2 we will argue that (2.8) is also a plausible choice in the present context. 
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Proceeding as in the previous section, the scheme (2. 7) will be further simplified by the Approximate 
Factorization approach to obtain 

(I - oqLitX)(I - a1LitY)(I - a1MZ)(A(v) - A(v-I)) 

- R (t t A(v-1) cCv-1)) 
- - 1 n+l/31 n+l1 ' ' (2.9a) 

- R (t t A(v-I) c(v-t)) 
- - 2 n+l/31 n+l1 ' , (2.9b) 

where v = 1, 2, ... , and the matrices X, Y and Z are defined in (l.2b). Similar to the BDF-based 
method (cf. (2.5)), each iteration requires the successive solution of three linear systems; however, this 
can be done in parallel for (2.9a) and (2.9b ). In this connection, we remark that in the "Gauss-Seidel" 
versions of (2.9), where in (2.9b) A(v-t) is replaced by A(v) (or, alternatively C(v-l) is replaced 
by cCv) in (2.9a)), these linear systems cannot be solved concurrently anymore. Moreover, numerical 
experiments reveal that for a given number of iterations, the accuracy is only slightly improved (see 
Section 4). Hence, we may conclude that the "Jacobi" version (2.9) is preferable to a "Gauss-Seidel" 
version. 

3. Convergence and stability analysis 

In the convergence and stability analysis of the iteration methods (2.5) and (2.9), we distinguish two 
situations: (i) iteration until convergence, and (ii) the execution of a fixed, usually small number of 
iterations. In the first case, we may confine our considerations to an analysis of convergence, because 
the stability properties of the iterated methods are those of the underlying (highly stable) BDF and 
Radau methods. However, if only a few iterations are performed, for instance, for reasons of efficiency, 
then there is no need for a convergence analysis. Instead, we should consider the order of accuracy 
and the stability properties after a finite number of iterations. 

In this paper, we confine our considerations to a convergence analysis of (2.5) and (2.9). For a 
detailed convergence and stability analysis of a wide class of numerical integration methods using 
iteration methods based on approximate factorization, we refer to the forthcoming paper [2]. 

Our convergence analysis is based on a normal mode analysis using the "frozen coefficients" ap
proach, that is, the quantities u, v, w, C:x, C:y, c:2 are assumed to be constant. Again, we discuss the 
BDF and Radau discretizations separately. 

3.1. The BDF discretization 

Let us define the iteration error e(v) := cM - Cn+I · Then 

(I - aLitX)(I - aLitY)(I - aLitZ)(e(v) - e(v-I)) 

= -(R(tn+1, cCv-l)) - R(tn+h Cn+1)) 

~ -(1 -aLit oH - aLit oG) e(v-t). ac ac (3.1) 
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By observing that aH /oC = X + Y + Z, where the matrices X, Y and Z are defined according to 
( l.2b ), we obtain the error recursion 

e(v) = j\;f e(v-1)' 

Jvl :=I - (I- a~tz)- 1 (I- oMY)- 1(I- a6.tX)- 1 (3.2) 

x (r -aM(X + Y + Z) - a6.t ~~). 
We have convergence if the eigenvalues µ of J\;J are within the unit circle. Since the reaction terms 
are nonstiff, we ignore the term a6.t oG /oC, so that a normal mode analysis can be applied. Let 

Then it follows from (3.2) and (2.6) that 

µ = 1 _ l - a6.t(.A1 (fl1) + >'2(fl2) + .A3(f13)) 
(l -a6.t>'l(fl1))(l -a6.t;\2(fl2))(l -a6.t;\3(f13))' 

where the Aj ( ej) represent the eigenvalues of the matrices X, Y and Z. i.e .. 

Aj(ej) = -Bn(flj) + D/)(flj), 

1(fl) := 2ei0 + 3 - 6e-i11 + e- 2i1J = 2( cos(&) -1) 2 + 2i(4 - cos(fl)) sin(B). 

6(()) := e-iO - 2 + ei11 = 2( cos(B) - 1). 

(3.3) 

(3.4) 

Recalling that the magnitude of B 3 is usually much larger than that of Bi and B2. we consider the 
limiting case where B3 = oo (i.e., 6.z -+ 0 and w f 0), to obtain 

1 
l;,(fli,B2,e3) = 1 - (1 - a6.t.>-1(fl1))(l -a6.t>-2(fl2))' 

f13fO, IBJl~7r, j=l,2, 

It can straightforwardly be verified that these expressions are on the open unit disk if 

( a6.t )2 Re ( .,\ 1 ( 81 )A.2 ( fl2)) - a6.t Re ( ->-1 ( fl1) + ->-2 ( fl2)) + ~ > 0, 

a6.t Re ().. J ( e j ) ) < ~ , 

(3.Sa) 

(3.5b) 

(3.6a) 

(3.6b) 

where IBJ I ~ 7r, j = l, 2. The second inequality is always satisfied (see (3 -~)) and the first ine~uality 
is satisfied if Re(,\ 1 ( e1) >.2 ( 82)) ~ 0. If Re( >. 1 ( 81 ).>-2 ( e2)) < 0, then we obtam an upper bound for 6.t. 
However, this upper bound is positive and certainly greater than 
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Table 1 
CFL numbers and maximal convergent stepsizes for the BDF discretization 

q = 00 100 50 20 10 5 2 0.5 0.1 0 

Q= 00 99 50 21 11.5 6.9 4.5 4.1 4.4 7.9 00 

lltB1:::;; 0.18 0.16 0.16 0.16 0.16 0.16 0.18 0.22 0.29 0.62 oo 

Since 

[Re (>-1(81)>'2(82))[:::;; [>-1(81)>-2(82)[:::;; boB1+4D1)boB2 +4D2), 

where /'o := max{b(8)j}, we conclude that a sufficient convergence condition is 

1 
flt:::;; , /'o:=max{['y(8)[}=9. 

aJ2boB1 + 4D1 )(10B2 + 4D2) 

Thus, we have the following convergence theorem: 

(3.7) 

Theorem 3.1. If w =I- 0 and flz __,. 0, then a sufficient condition for convergence is given by (3.7). 

Remark 3.1. In the case where w = 0 (i.e., B 3 = 0) and a sufficiently small vertical diffusion 
coefficient, the eigenvaluesµ can be approximated by (3.5b). We already showed that (3.5b) assumes 
values within the unit circle if (3.6b) is satisfied, so that we have unconditional convergence if B3 = 0. 

In order to obtain some quantitative information on the size of the CFL numbers and the maximal 
convergent stepsize, consider a pure advection model problem { B 1 = B2 , B 3 = q B 1, D j = 0}. 
Defining the quantity b = aB1flt, we obtain 

l8jj:::;;7r, j=I,2,3. (3.3') 

For this model problem, the CFL number is given by Q = 6(2 + q)B1M = 6(2 + q)ba- 1, so that for 
a given q, the maximal convergent CFL number can be computed by finding the largest value of b 
for which µ(81,82,83) remains on the open unit disk when (81,82,83) runs through the frequency 
space. In Table 1 we have listed the CFL number for a sequence of q-values. In addition, we listed 
the maximal values of l!..tB1, i.e., fltB1 = Q(6(2 + q))- 1. 

Realistic values for B 1 and B2 in a shallow water transport problem are B 1 = B2 = 1/6000 
(corresponding to, for example, lul = lvl = 1 msec- 1 and flx = fly = 1000 m). Then, the most 
critical q-value still allows for a time step of approximately 16 minutes. 

It is of interest to apply the sufficient condition (3.7) of Theorem 3.1 to the above model problem 
{B1 = B2, Dj = O}. This yields fltB1 :::;; 0.12. Since w =I- 0 and flz __,. 0 implies that q = oo, 
this sufficient condition should be compared with the true condition fltB1 :::;; 0.18 of Table 1. Thus, 
condition (3.7) prescribes stepsizes that are a factor 2/3 smaller than really necessary. 

Furthermore, it is of interest to know which frequencies are responsible for the limitation of the time 
step. To get an impression, we again use the pure advection problem { B 1 = B2, B3 = q B 1, D j = 0}. 
apply the maximal value for flt and we consider the Iµ I-values as a function of 81, 82 and 83• In Fig. 1 
!µI-values are plotted for q = 100. In this plot, the horizontal axes contain 81- and 83-values; 82 has 
been omitted since we observed that the maximal flt was always obtained for 81 = 82. We see that iµI 
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0 01 

Fig. I. !µI-values (3.3) for q = 100. 

does not critically depend on 03 , except for fh = 0. In that case, the expression for fl reduces to (3.5b) 

for which it was shown that there is no restriction on the time step. Furthermore, we observe that 
the low frequencies in the e 1-direction are perfectly damped and the highest "horizontal" frequencies 

(81 ::::::: 7r) are treated satisfactorily. However, for small q, the damping of these frequencies tends to 

one. Finally, this plot clearly indicates that the mid-range in the frequency space causes the condition 
on the time step. 

3.2. The Radau discretization 

Proceeding as for the BDF discretization, we obtain for the iteration errors e\v) := A(v) - A 11+1; 3 

and e~v) := C(v) - Cn+I the error recursion 

where 

oG 
S := X + Y + Z + oC' 

(3.8) 

j = 1,2. 

Ignoring the reaction terms and applying a normal mode analysis, we see that the eigenvalues of M 
are given by the eigenvalues of the matrix 
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where z := ~t,\3(fh), D := diag(a 1 , a2) and A is the Radau matrix. Since lzl = IB3~t-y3(83)I will take 
large values in many practical situations, the matrix M* behaves like I - D-1 A (indeed, the "optimal" 
choice (oq,a2) = (0.19,0.40) leads to eigenvalues~ 0.61 for this matrix). In [5], we studied exactly 
the same iteration matrix M* as given in (3.9'); the choice (2.8) resulted from requiring that I -D-1 A 
possesses a zero spectrum. Therefore, we also adopt this choice in the present application, in spite 
of the fact that the maximally allowed time step in order to obtain convergence for the mid-range 
frequencies is slightly reduced. 

4. Numerical experiments 

In this paper, we have confined our attention to a relatively simple test problem. In future publi
cations, numerical results for more complex transport problems will be reported. Our test problem is 
defined by 

OC1 at+ U · V'c1 = c~c1 + gi (t, x, y, z) - k1c1c2, 

oc2 ot + U · V'c2 = c~c2 + g2(t, x,y, z) - k1c1 + k2(1 - c2), (4.la) 

0 ~ x, y ~ Lh, -Lv ~ z ~ 0, 0 ~ t ~ T, 

where U = ( u, v, w) denotes the divergence free velocity field, given in analytical form (see [ 1]) 

u(t, x,y, z) = {Y- + 3(z + 1) [(x - 4) 2 + (y- 4) 2 - p2] }d(t), 

v ( t, x, y, z) = { -x + 3 ( z + ! ) [ ( x - ! ) 2 + (ff - 4) 2 - p2] } d( t), 

w(t,x,y,z) = -3Lvz(z + 1){ (x- !)/Lh + (Y- -1)/Lh }d(t), 

(4.lb) 

where we used the scaled co-ordinates x := x/ Lh, y := y/ Lh, z := z/ Lv, and p = -k and d(t) = 
cos(27rt/Tp)· The Dirichlet boundary conditions, the initial condition and the functions g1 and 92 are 
chosen in accordance with the prescribed analytical solution, which is of the form 

with 

cµ(t, x, y, z) =exp { z/ µ - fµ(t) -1µ[(x - r(t)) 2 + (y - s(t)) 2] }, µ = 1, 2, (4.lc) 

t 
h(t) =Tb+ t' f1(t) = 4h(t), ( ) - 2+cos(27rt/Tp) 

rt - 4 , s(t) = 2 + sin(21T"t/Tp). 
4 

In our experiments, we take the following values for the parameters: Lh = 20 OOO, Lv = 100, 
c = 0.5, 1'1 = 80, 1'2 = 20, n = 32400, and Tp = 43 200. We use two grids, respectively with 
Nx = Ny = 41, Nz = 6 (coarse grid) and Nx = Ny = 81, Nz = 11 (fine grid). The length of the 
integration interval T = 36 OOO. Realistic values for the reaction rate constants are: k1 = k2 = 1 o-4. 

The accuracy is measured by 

cdµ :=minimum over all grid points (- log 10 !absolute error for cµI), µ = 1, 2. 
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Table 3 
cdi/cd2-values obtained by the RBWLH method [4]. N =the number of time steps (lit== T/N); an unstable behaviour is 
indicated by an * 

Spatial grid N = 10 N == 20 N = 35 N = 70 N = 140 N = 280 N = 560 N _, oo CPU/step 

Grid:oarse * * 
Gridfine * * 

Table 4 

2.8/1.8 3.5/2.4 

* 2.9/1.8 

3.8/3.0 

3.6/2.5 

3.8/3.6 

4.3/3.0 

3.8/4.2 

4.8/3.7 

3.8/4.3 

4.8/5.2 

cdi/cd2-values obtained by the BDF method { ( 1.3), (2.5) }. N = the number of time steps (M = T / N) 

0.062 

0.28 

Spatial grid v N == 10 N == 20 N = 35 N = 70 N = 140 N == 280 N == 560 N --+ oo CPU/step 

Grid:oarse 2 1.7/1.4 2.0/1.8 2.4/2.2 2.9/2.8 3.4/3.4 

2 1.6/1.4 2.0/1.8 2.4/2.2 2.9/2.8 3.5/3.4 

Table 5 

3.7/3.9 

4.1/4.0 

3.8/4.1 

4.5/4.5 

3.8/4.3 

4.8/5.2 

cd1/cd2-values obtained by the Radau method { ( 1.4), (2.8), (2.9)}. N == the number of time steps (At = T / N) 

0.024 

0.13 

Spatial grid v N == 10 N == 20 N = 35 N = 70 N = 140 N = 280 N = 560 N--+ oo CPU/step 

Grid:oarse 3 2.1/2.1 3.1/3.0 3.7/3.6 3.8/4.2 3.8/4.3 

3 2.0/2.0 2.8/2.6 3.5/3.2 4.2/4.0 4.7/4.6 4.8/5.1 

3.8/4.3 

4.8/5.2 

0.064 

0.33 

The iteration processes in the BDF and Radau methods {(1.3), (2.5)} and {(1.4), (2.8), (2.9)} are 
applied with v iterations in each step, where v is specified in the tables of results. These values are 
more or less optimal with respect to efficiency and have been obtained experimentally. It turns out 
that BDF needs less iterations than the Radau method. This can be explained by observing that in 
the BDF case, each iteration damps the nonstiff error components by a factor O((~t)2 ), because the 
eigenvaluesµ defined by (3.3) are O((~t)2 ). In the Radau case, it can be deduced from (3.9) that its 
eigenvalues are only O(M). 

Since the Jacobian matrices aH /aC only depend on t (and not on C), they are evaluated at the 
new time levels. To start the iteration, we use the trivial prediction, i.e., C(O) := Cn in BDF and 
A (O) := c(O) := Cn in the Radau method. It turns out that this choice for cC0l is more robust than 
using a (more accurate) extrapolation formula. In addition to these iteration methods, we apply the 
RBWLH method developed in [6] (see also [4]). For various values of M, the cd-values and the CPU 
time per step are given in Tables 3, 4 and 5. These CPU times are obtained when running the codes in 
vector mode on one processor of a CRAY C98/4256. Evidently, the new methods allow considerably 
larger stepsizes than the RBWLH method; even for time steps as large as 1 hour, the new methods 
are able to produce results of resonable accuracy. Another nice property of the new methods is that 
they do not show the Du Fort-Frankel inconsistency as observed in the RBWLH method. By this 
we mean that, if both ~t and the grid meshes are halved, then the accuracy of the BDF and Radau 
method increases proportionally. Also note that for N __, oo (that is, M -> 0) all methods show a 
third-order behaviour in space, as is to be expected from the upwind discretization of the advection 
terms, which form the most important part in the model. In case the temporal error dominates the 
spatial error (small N-values), we see that the Radau method is the most accurate one; this is obviously 
owing to its third-order accuracy in time. Furthermore, if we take into account that the two sets of 
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linear systems for A (I/) and C(I/) in the Radau-based method (2.9) can be solved in parallel, we see 
that per step both the BDF and the Radau method are cheaper than the RBWLH method. Finally, we 
tested "Gauss-Seidel" versions of the Radau type method (2.9). As already observed at the end of 
Section 2.2, the accuracies listed in Table 5 are only marginally improved, so that in this application 
the "Jacobi" version (2.9) is a more efficient approach. 

References 

[I] D. Dunsbergen, Particle models for transport in three-dimensional shallow water flow, Ph.D. Thesis, Delft 
Technical University ( 1994). 

[2] C. Eichler-Liebenow, P.J. van der Houwen and B.P. Sommeijer, Analysis of approximate factorization in 
iteration methods, in preparation. 

[3] C. Hirsch, Numerical Computation of Internal and External Flows, Vol. 1: Fundamentals of Numerical 
Discretiz.ation (Wiley, New York, 1988 ). 

[4] B.P. Sommeijer and J. Kok, Splitting methods for three-dimensional bio-chemical transport, Appl. Numer. 
Math. 21 ( 1996) 303-320. 

[5] P.J. van der Houwen and B.P. Sommeijer, Iterated Runge-Kutta methods on parallel computers, SIAM J. 
Sci. Statist. Comput. 12 (199 l) 1000-1028. 

[6] P.J. van der Houwen and B.P. Sommeijer, Splitting methods for three-dimensional transport models with 
interaction terms, CWI Report NM-R9516, submitted for publication. 

[7] P.J. van der Houwen and J.J.B. de Swart, Triangularly implicit iteration methods for ODE-IVP solvers, 
SIAM J. Sci. Comput. 18 (1996) 41-55. 

[8 J B. van Leer, Upwind-difference methods for aerodynamic problems governed by the Euler equations, in: 
B.E. Engquist, S. Osher and R.C.J. Sommerville, eds., Proceedings of the l 5th AMS-SIAM Summer Seminar 
on Applied Mathematics, Scripps Institution of Oceanography, 1983, Lectures in Applied Mathematics 22, 
Part 2 (American Mathematical Society, Providence, RI, 1985) 327-336. 


