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Abstract 

In this paper we analyze the approximation of functions on partially ordered sequences of regular grids. We 
start with the formulation of minimal requirements for useful grid transfer operators. We introduce the notions 
of nested and of commutative transfer operators. We define mutual coherence for representations on grids that 
are not related by coarsening or refining. We show necessary and sufficient conditions for mutual coherence and 
we show how a hierarchical decomposition is generated by a set of commutative transfer operators. The usual 
piecewise constant and piecewise d-linear approximations are identified as special instances of tensor product 
type. 

In the second part of the paper we derive error estimates for approximation in these spaces, in different norms 
on general d-dimensional dyadic sequences of regular and sparse grids. Some of these results have been published 
before, e.g., in doctoral theses by Bungartz and Pflaum. Here, the results are presented in a unified framework 
and the proofs are much simplified. We pay special attention to a convenient notation. © 1997 Published by 
Elsevier Science B. V. 

1. Introduction and notation 

I.I. Introduction 

Recently, in the research on multigrid methods for problems in three dimensions more and more 
attention is paid to semi-coarsening [5, 12, 14,17] and sparse grid approaches [2,6-8, 13, 16]. This can 
be understood if we notice that the classical multigrid approach, where a linear sequence of nested 
grids is used for the approximation on different grids, requires very strong relaxation techniques. The 
selection of a suitable relaxation is difficult because of the large number of possible choices, each with 
their particular advantages and disadvantages. 
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In semi-coarsening, where more coarser grids are introduced, each coarsened in a single direction, 
the role of the smoothing procedure is reduced, and simpler relaxation procedures can be applied [ 10]. 
This makes it attractive to study partially ordered sets of grids, rather than sequentially ordered ones. 

Another difficulty, that particularly arises when regular grids are used for the approximation of 
functions, is the curse of three dimensions: the number of cells increases cubically with each refinement 
in all directions. This results in enormous amounts of degrees of freedom in the approximation, and in 
very large systems of algebraic equations to solve. This difficulty can be removed to a large extent by 
adaptive refinement, i.e., by adding only those degrees of freedom that contribute significantly to the 
improvement of the accuracy. Of course, what each additional degree of freedom adds to the higher 
accuracy depends on the choice of basis-functions that span the approximating function space. If, on a 
regular rectangular grid, a hierarchical basis is chosen, for a sufficiently smooth function the degrees 
of freedom associated with a "sparse grid" are the optimal choice. The sparse grid can be seen as 
a combination of regular grids, each with a different cell aspect ratio. In this way semi-coarsening 
multigrid and sparse grid approximations are much related and make an interesting match. 

It appears that the relations between the approximations on the different grids in the partially ordered 
set are not always clear [4], and that the requirements for the prolongations and restrictions between 
the approximations on the different grids are often chosen in an ad hoe way. In the present paper we 
study the approximation of functions on partially ordered sets of regular grids (on a grids of grids). In 
particular we are interested in the minimal requirements that are needed to introduce the necessary grid 
transfer operators. Analyzing these requirements results naturally in the introduction of a hierarchical 
decomposition of the approximation on the grid of grids, and we are able to show how the usual 
approximations by piecewise constant and piecewise linear basis functions appear as a special case 
of tensor product form. In the next sections we concentrate on the piecewise constant and piecewise 
linear approximations. We define their construction in a systematic way and we derive error estimates 
for the approximations in different norms. 

So, the purpose of this paper is twofold: (1) we show what are the essential requirements for 
prolongations and restrictions to be able to prove the useful properties that are used in computational 
schemes, such as mutual coherence [4], and (2) we show the approximation properties of piecewise 
constant and multilinear approximations on anisotropic and sparse grids. In the first part (Section 2) we 
see that the requirement of nested transfer operators is useful to define restrictions between different 
grids and to define mutual coherence. Furthermore, we see that we need the stronger requirement 
of commutativity in order to construct a pre-wavelet decomposition (28). Of course, tensor product 
spaces give the most interesting and useful examples. In the second part of this paper (Section 3) 
we derive general error estimates for the simplest cases: piecewise constant and piecewise multilinear 
approximations. 

Studying the approximation on a grid of grids, it appeared that a simple and convenient notation 
was lacking and that the data structures that are used in practice to realize the related algorithms, are 
rather complicated. Therefore, in the treatment much attention is given to a convenient notation that 
can be used in general for the description and analysis of algorithms on a grid of grids [11]. 

Sparse grids yield a way for obtaining approximations with a high accuracy relative to the number of 
degrees of freedom (unknowns) used. This was first observed by Smoljak [15] for numerical integration 
and interpolation with trigonometric functions. A different approach of constructing sparse grids is 
presented in [16]. This approach uses hierarchical basis functions for interpolation with piecewise 
multilinear functions. Error estimates in different norms and with different assumptions are found 
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in [2, 13,16]. For obtaining optimal estimates, it is necessary to assume that suitable derivatives of 
the functions are bounded. In case of singularities these assumptions may not hold. Then, optimal 
estimates can be obtained on adaptive sparse grids, which can be constructed in a natural way with 
hierarchical basis functions [2]. 

1.2. Notation 

Let k E zd be a multi-integer in d dimensions, then k = (k1, kz, ... , kd), with ki E Z for 
i = l, 2, ... , d. We define relational operators between multi-integers by 

k < m S> (k1 < m1 and kz < m2 and ... and kd < md), 
and analogously we define k ~ m, k > m, k ;;:::: m and k = m. Further we define 

max(m, n) = (max(m1, ni), max(m2, n2), ... , max(md, nd) ), 

and min( m, n) similarly. In a few instances we will use these operators with the same meaning for 
real vectors x = (x 1, ... , xd) E ffi.d. 

With n = (n 1, •.• , nd) E z<i we denote lnl = n1 + · · · + nd. We also use the notation 0 = 
(0, ... , 0) E Nd; 2n = (2n 1 , ••• , 2"d); 2nx = (2n 1x1, ... , 2ndxd); no m = Li=l, ... ,d n;mi, and 
lllnlll = n1 · · · nd. Further we introduce in zd the unit vectors eki k = I, ... , d, as follows: e1 = 
( L 0, ... , 0); e2 = ( 0, 1 , 0, ... , 0); ed = ( 0, ... , 0, l ) , and we use e = ( I, ... , 1 ) . Final! y we define 
E = { e 1 , •.• , ed}. 

Let either Q = JR;d be the d-dimensional Euclidean space, or let Q = (0, I )d c JR;d be the d­
dimensional open unit cube. With any multi-integer n E zd we associate a function space Vn, e.g., 
the space of piecewise constant or piecewise linear (bi-linear, tri-linear, d-linear) functions on a uniform 
grid with mesh size h = (h 1, ... , hd) = (2-n 1 , ••• , 2-nd). These grids are uniformly spaced in each 
of the d coordinate directions, but possibly with a different mesh size in the different directions. The 
volume of these cells is denoted by lllhlll = 2-lnl. The functions in Vn all are constant or d-linear on 
each dyadic block or cell 

Qn,k = [k12-n 1,(k1+1)2-n 1] X ··· X [kd2-nd, (kd + 1)2-"'d], 

and this family of cells forms the grid 

Qn = {Qn,k I nn,k c Q, k E zd}. 
The family of cell centers or cell nodes is denoted by 

Q~ = {zn,k I Zn,k = (k+e/2)2-n; k E zd; Zn,k En}. 
Other grids are obtained by considering the cell vertices or vertex nodes of the cells in Qn as a grid 
of points. We denote these grids by n;;:. 

Apparently, all grids are identified by a multi-integer n; the number lnl is called the level of the 
grid n. Notice that--different from classical multigrid theory-we make a clear distinction between 
the grid-identification n and the level number lnf. 

We also use the following notation for partial derivatives, with n E Ng, 
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For the Banach spaces of continuously differentiable functions we use, with n E Ng, the notation 
en ( Q) for the space of functions with finite norm 

[[u[[cn = max max ID='u(x)l-
O:(rn:(n mEQ 

For l E No, we introduce the notation cn,l(Q) = nirnl=l cn+rn(Q). This is a generalization which 

combines Cn(Q) = Cn,O(Q) with the usual space of l times continuously differentiable functions 

C1(Q) = CO,l(Q). With a C()(Q) and c;·1(Q) we denote the corresponding subspaces with homoge­

neous boundary conditions. 
For the Banach spaces of integrable functions, I :s; p :s; oo, we, similarly, use the notation w;(n) 

for the space of functions with finite norm 

( ) 
l/p 

[[u[[w; = L lultv;i · 
O:(rn:(n 

Further we use the semi-norm [u[wn or, with 0 ~ k :s; d, the norm [[u[[,,1n,k, defined by 
P Vlp 

and 

For l E No, we write W;1'1(Q) = nlrnl=l w;+=(Q) and we obtain the Sobolev space W~(Q) = 
wg•1(Q). Again, with a W~,0 (Q) and w;,5(Q) we denote the corresponding subspaces with homoge­
neous boundary conditions. For p = oo we use the standard modifications, and for W2 we also write H. 
Thus, for the Hilbert spaces of square integrable functions we use the notation Hn(Q.) = Wf(Q), 
and for the semi-norm and norm [u[Hn = [v.[w,n and llu[[Hn = l[v,[[w,n. For l E No, we write 

1-ln,l(Q) = nlrnl=l Hn+rn(Q.) and we obtain the U~<;ual Sobolev space H 1(Q) = H0.l(n). Again, with 

a Hb(Q) and 'H~' 1 (Q) we denote the corresponding subspaces with homogeneous boundary conditions. 

2. Space decomposition 

In this section we introduce nested and commutative sets of restrictions and prolongations. We see 
that the nested property is required to define restrictions between coarser and finer spaces. The property 
of commutativity is needed to check coherence of approximations on different grids, and, moreover, 
it allows characterization of approximating spaces by a hierarchical decomposition. 

2.1. Nested restrictions and prolongations 

Let X be a Banach space; e.g., X = C0 (Q), X = Lp(Q.) or X = L~)C(Q), where Q c !Rrl. Let 

k E zd and let 

(1) 
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be a restriction, i.e., a linear surjection. Possibly Vk c X, but this is not necessary. We notice that for 
any such Rk, because of the surjection, there exists the right-inverse or reconstruction 

Pk: Vi-+ X, 

such that 

RkPk = Ik 

(2) 

(3) 

is the identity operator on Vk. We notice that Pk is an injection (and hence a prolongation) and 
Ran( Pk) C X, but Pk is not uniquely determined by a given Rk· In this section we study properties 
of such sets of transfer operators {Rk}kEtzd and {PkhEzd. 

It is a consequence of (3) that 

Ih = PkRk 

is a projection 

ilk: X-+ Ran(llk) =Ran( Pk) c X, 

as is 

I - Ilk: X -+Ker( Ilk) = Ker(Rk) c X, 

and we observe that X can be written as a direct sum X = Ran(Pk) EB Ker(Rk)· 

Definition 2.1. A set { Rk} kEZd is called a nested set of restrictions (or NSR) iff 

k ;;:-:: rn :::::} Ker( Rk) C Ker( R-m). 

A set {Pk} kEtzd is called a nested set of prolongations (or NSP) iff 

k ;;:-:: rn:::::} Ran(Pk) ::J Ran(Prn)· 

(4) 

(5) 

It is obvious that for an NSR { Rk} a set of corresponding reconstructions is not necessarily an 
NSP. On the other hand, given an NSP, the corresponding set of restrictions is not necessarily an NSR. 
However, in some cases both the restrictions and their reconstructions may form nested sets. Then we 
say that the transfer operators are nested and {Vk} forms a nested set of representations of functions 
in X. 

Theorem 2.2. Let { Rk hEtzd be a nested set of restrictions, and {Pk hEtzd a set of corresponding 
reconstructions, then 

\In ): m :3! Rrnn: Vn ---+ Vrn, 

with the properties: 

(I) Rrnn is a restriction; 

(2) RrnnRn =Rm,; 

(3) Rrnn = RrnPn (independent of the choice of Pn!). 
(6) 

Proof. (i) Define R!nn = RrnP~ and R~n = RmP~. Then we know that RnP~ = In = RnP; 
and hence Vvn E Vn Rn(P~ - P~)vn = 0. Because {Rk} is an NSR and rn ::::; n it follows that 



60 P.W Hemker, C. Pflaum I Applied Numerical Mathematics 25 ( 1997) 55-87 

Rm(P~ - P;i)vn = O and hence R!nn = R~n· So that there exists a unique Rrnn· This means that 
we can write Rmn = RmPn, and Rmn is independent of the choice of Pn. 

(ii) RmnRn = R'mPnR-n = R""Jin =Rm on Ran(Pn)· Now, because X = Ran(Pn) EB Ker(Rn) 
we may write 'Iv E X: v = Vp + Vn so that 

RmnRnv = RmnRnVp + RmnRnVn = Rm,vp + 0 = Rmvp. 

Further, because of Ker(Rn) C Ker( Rm) we see Rmv = Rmvp + Rmvn = Rrnvp + 0 = Rm'up, so 
that RmnRnv = Rmvp = Rmv Vv EX and hence Rmn.Rn =Rm. 

(iii) Because Rm is a surjection, and by (6), Rmn is necessarily a surjection. Of course, Rmn is 
linear (trivial). Therefore Rmn is a restriction. D 

Given an NSR {Rm}mEzd, and a set of corresponding reconstructions {Prn}mEzd, we introduce, 
form ( n, 

(7) 

Notice that there are many possible choices of Prn for a give Rm. Of course, some actual properties 
of Pnm may depend on this choice! 

Lemma 2.3. Pnm is a right inverse of Rnm: 

(8) 

Proof. RmnPnm = RmPnRnPm = RmPm - Rm(! - PnRn)Pm =Im+ 0, because Ker(Rn) C 
Ker(Rm,). D 

Corollary 2.4. With n ? m: 

(1) Pnm is a prolongation (i.e., a linear injection); 
(2) PnmRmn is a projection Vn--+ Ran(Pnm) C Vn; 
(3) In - PnrnRmn is a projection Vn--+ Ker(Rmn) C Vn; 
(4) Vn = Ran(Pnm) EB Ker(R=n); 
(5) Pnm: Vm--+ Ran(Pnnt) C Vn is a bijection. 

Lemma 2.5. Let {Rk}kEZd be an NSR and let k ? n ? l, then with a given set of corresponding 
reconstructions {Pk} kEZd we have 

Pkl = PknPnl· 

Proof. 

PknPnl = RkPnRnPi = RkP,, - Rk(I - Pn.Rn)P1 = RkPl - Rk(I - lln)Pi 

= RkPi - 0 = RkP1, 

because Ker(Rk) c Ker(lln). Hence 

pkl = RkPl = PknP nl. D 

Lemma 2.6. Let {RkhEzd be an NSR with the corresponding {PkhEzd an NSP, then 

m ? l ~ P mP m,l = Pi. 
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Proof. PrnPrnl = PrnRrnPl = IIrnPl = Pl. The last equality holding because IIrnu = ·u for all 
u E Ran(IIrn) = Ran(Pm) :J Ran(li). D 

Lemma 2.7. If {Rk}kEZd is an NSR, then 

rn ~ l =? IIlIIrn =Ill. 

If, in addition, {Pk} kEZd is an NSP, then also 

rn ~ l =? IIrnIIl = IIz. 

Proof. The first equality follows by 

lllllm = liRzPmRm = PzRzmRm = PzRz = IIz, 
and the second equality by 

llrnIIz = PmRrnPzRz = PmRrnPrnPrnzRzmRrn = PrnPrnzRzmRm = P1Rz = IIz. D 

If {RkhE.zc1 is an NSR, and if m ~ n, then a bijection exists between Ran(Pm) and a subset 
of Ran(Pn)· We denote this relation by Ran(Pm) :::S Ran(Pn). I.e., a function that can be found in Ran(Prn), can uniquely be associated with a function in Ran(Pn). This follows because a bijection 
exists between Ran(Pn) and Vn, and between Ran(Pm) and Vrn; and also a bijection exists between Vm and Ran(Pnrn) C Vn. 

Hence, given a Banach space X with a nested set of restrictions {RkhEzd, a family of subspaces 
Ran(Pn) exists, with a partial ordering corresponding with the partial ordering of {n}. This means 
that, although not necessarily Ran(Pm) c Ran(Pn), a partial ordering exists such that 

rn ~ n <=? Ran(Prn.) :::S Ran(Pn) <=? PnmRrnRan(Prn) = RnRan(Pm) C RnRan(Pn)· 
If {PkhEzc1 is an NSP, this partial ordering simply reduces to Ran(Pm) C Ran(Pn)· Then, in the case that Vn C X and we take Pn to be the natural injection, this means that Ran(Pn) can be 

identified with Vn and rn ~ n <=? Vrn C Vn and, thus, we find {Vn} to be a partially ordered family of subsets of X. 

Definition 2.8. Functions f rn E Vm and f n E Vn are mutually coherent 2 iff 

~f k E Vk with k ~ m, k ~ n, 
such that frn = Rmkfk and fn = Rnkfk· 

Theorem 2.9. Let {Rk}kEZrt be an NSR and {Pkhad an NSP. Then, if fm and fn are mutually coherent, we have 

Vl E zd with l ~ rn, l ~ n, we have Rzrnfrn = Rznfn· (9) 
Moreover, under the additional condition that IImin(m,n) = IIrnIIn, also the reverse holds: it follows from (9) that f rn and Jn are mutually coherent. 

2 For the practical use of mutual coherence see, e.g., [4]. 
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Proof. (::::::}) First we assume that f m E V m and Jn E Vn are mutually coherent. Then 3fk E Vk with 

k ? m, k ? n such that f m = Rmkfk, f n = Rnkfk, and hence 

Rimf m = RirnRmkfk = R1kfk = RinRnkfk = Rtnf n, 

which proves (9). 
(~)Now we assume (9). Let k = max(m, n) and take l = min(m, n). We introduce fk by 

fk = Pkmfrn + Pknf n - PklRtmfm = Pkrnfm + Pknfn - PktRtnf n· 

Then 

Rmkfk = RrnkPkmfrn + RmkPknfn - RrnkPkiRtnfn 

= RrnkPkmfm + RmkPkn(In - PntRtn)fn· 

Now, because k? m and k? n? l, we know RrnkPkm = Irn (Lemma 2.3). 

The additional condition and Lemma 2.7 show IImIIn = II1 = IIrnIItIIn, so that IIrn(J -

IIi)IIn = 0. Hence, 

RmkPknUn - Pn1R1n) = R'YnPkRkPn(In - RnPiR1Pn) 

= RmPkRk(I - PnRnP1Rt)Pn 

= RrnIImIIk(I - IInIIt)IInPn 

= RrnIIm(I - IIi)IInPn = 0. 

Thus, we find Rrnkfk = fm + 0 = fm· Analogously we prove Rnkfk =Jn· D 

2.2. Commutative restrictions and projections 

Definition 2.10. A set { Rk} kEZa is called a commutative set of restrictions (or a CSR) iff for all 

m,n E zd 

Ker(Rn) n Ker(Rm) 

EB 

Ker(Rmin(rn,n)) = Ker( Rn) n Ran(Pm) . 

EB 

Ran(Pn) n Ker(Rrn) 

A set {Pk} kEV is called a commutative set of prolongations (or a CSP) iff for all m, n E zd 

(10) 

Ran(Pmin(rn,n)) = Ran(Pn) n Ran(Pm)· (11) 

If {Rkha,d is a CSR and {PkhEz<t is a CSP, then we say that we have commutative transfer 

operators. 

It is immediate that each CSR is an NSR and each CSP is an NSP: which simply follows from the 

equivalence n:::::; m 9 n = min(n, m). On the other hand not necessarily every NSP is a CSP nor 

every NSR a CSR. 
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In the next theorem we show how the above definition of a CSR and an NSP lead to commutative 
projection operators indeed. To prove the theorem, we derive the following three lemmas. 

Lemma 2.11. /f(l2) holds, then {Rkha<L is a CSR. 

Proof. Let rn, n E zd be arbitrary, and let l = min( m, n), then we know by assumption IIrnIIn = 
ill = IInIIrn. We define 

M = Span( (Ker(Rn) n Ker(Rrn)), (Ker( Rn) n Ran(Prn)), (Ran(Pn) n Ker(Rrn))). 
To prove the lemma we show: 

(i) A1 C Ker(IJL), 
(ii) Ker(IIL) c M, 

(iii) NI= (Ker(Rn) n Ker(Rrn)) EB (Ker(Rn) n Ran(Prn)) EB (Ran(Pn) n Ker(Rrn)). 
To prove (i), let x E M, then x = Xrn + Xn + :z:z with Xn E Ker(IIn) n Ran(llm), Xrn E 

Ker(llm) n Ran(lln), xz E Ker(lln) n Ker(Ilrn)· Then 

So that x E Ker( llz). 
To prove (ii), let x E Ker(lli) be arbitrary and define Xrn := llm(I - IIn)x = llmx and Xn := 

lln(I - llrn)X = lln:z; and 

Xo := (I - llm - lln + 11n11m)X = (I - llm - lln)X. 

Then a simple calculation shows: xo E Ker(Rn) n Ker(Rm) and Xm E Ker(Rn) n Ran(Prn) and 
Xn E Ran(Pn) n Ker(Rrn) and Xo + Xm + Xn = :z:. 

To prove (iii), we show that f\;f is a direct sum of the three spanning spaces. For this we have to 
prove: if :r:o E Ker( Rn) n Ker( Rm) and Xm E Ker(Rn) n Ran(Pm) and Xn E Ran(Pn) n Ker( Rm) and 
Xo + Xm + Xn = 0, then xo = Xm = Xn = 0. This is seen by 0 = llm(I - IIn)(xo + Xm + .r71 ) = Xm 
and 0 = lln(I - IIm)(xo + Xm + Xn) = x:n· This implies :co= 0. 0 

Lemma 2.12. If (12) holds, then {Pk} kEZrl is an NSP. 

Proof. Let n < m then (12) implies IImlln = lln, and hence, for all x E X we have 11m11n1: = 
llnx. It follows that for all x E X holds lln1: E Ran(11.m)· Therefore Ran(lln) C Ran(llm) for all 
rn, n E zci with n < rn. Hence {PkhEzd is a NSP. D 

Lemma 2.13. If { Rk had is a CSR and {Pk had is an NSP then (12) holds. 

Proof. Let l = min(m, n) and let x EX be arbitrary. We know that 

X =Ran( Pt) EB Ker(R1) 

= Ran(PL) EB (Ker( Rn) n Ker( Rm)) EB (Ran(Pn) n Ker(Rrn)) EB (Ker( Rn) n Ran(Pm)) 
because { Rk} is a CSR. Hence, we may split x = :q + x 0 + Xm + Xn accordingly. Now we know 
llzx = xz and 
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llmIInX = llmIIn(Xl + X0 + Xm + Xn) 

= IImllnXl + llmllnX0 + llmllnXm + llmllnXn 

= llmllnXl + llmO + llmXm + llmO 

=llmllnxz. 

Because {Pk}kEZd is an NSP, we know that xz E Ran(Pz) C Ran(Pn) and Xl E Ran(Pz) C Ran(Pm); 

hence IImllnXl = Xl. We conclude that, for arbitrary x E X holds llrnllnx = xz = llzx; which 

proves the lemma. D 

Theorem 2.14. The two following statements are equivalent: 

( 1) { Rk hEzd is a CSR, and {Pk} kEZd is an NSP; and 

(2) 

llrnlln = llmin(m,n) Vrn, n E zd. (12) 

Proof. The theorem is a direct combination of the three lemmas above. o 

It is an immediate consequence of the theorem that operators lln associated with commutative 

transfer operators { Rk hEzd and {Pk hEzd do commute: 

llmlln = llmin(rn,n) = llnllm. 

Further, combination of Theorem 2.14 with Theorem 2.9 gives the following corollary, which is a 

direct generalization of [4, Proposition 2.5]. By the present framework we recognize immediately the 

essential conditions that lead to this result. 

Corollary 2.15. Let {RkhEzd be a CSR and {PkhEZd an NSP, then frn and fn are mutually 

coherent if and only if 

Vl E zd with l ~ m, l ( n, we have Rimfm = Rznfn· (13) 

Having seen what the essential structure of commutative transfer operators is, further in this section 

we assume all transfer operators to be commutative. 

2.3. The merging operator 

Now we have seen how information about a function u E X can be represented on Vn, and how 

the representations Rn,u are related for different n E zd. An important question is how these Rn u, 

given for a limited number of n E zd, can be used to restore the picture of the original function 'U as 

complete as possible. 
We start with the situation where information is available from two representations, viz. in Vn, Vrn. 

Therefore we introduce the merging operator llmn, which selects for an x E X the information that 

can be represented by the combined representations in Vn and Vm. 

Definition 2.16. The merging operator llmn: X -----t X is defined by 

llmn = llm + lln - llmin(m,n)· 
(14) 
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Lemma 2.17. Let {Rn} and {Pn} be a set of commutative transfer operators, then: 

(1) IIrnn = IInrn1 

(2) if rn ::;;; n then IIrrm = IIn, 

(3) IIrnn is a projection, 

Ran(Pn) n Ran(Pm.) 

EB 

(4) Ran(IIm.n) = Ran(Pn) n Ker(.Rm,) 

EB 

Ker(Rn) n Ran(Pm.) 

(5) Ker(IIm.n) = Ker(.Rn) n Ker(.Rm,). 

Proof. The first two statements are trivial by the definition of IIm.n· Now set l = min(rn, n). 
Because IIrnIIn = IInIIrn = IImin(m.,n) we have 

IIrnnIIrnn = (IIrn + IIn - IImin(m.,n))(IIm. + IIn - IImin(m.,n)) 

=~+~-~+~+~-~-~-~+~ 

= IIrn + IIn - Ilz = IIm.n . 

Hence, II7nn is a projection. 
x E Ran(IIrnn) implies :3z: 

X = 1I7nnZ = IIrnz + IInz - Ilzz = (IIm. - Ilz)z + (IIn - Ilz)z + Ilzz = Zm + Zn + z1. 
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(15) 

(16) 

(17) 

(18) 

(19) 

It is clear that this is a decomposition according to the direct sum in (18): z1 E Ran(IIi) c Ran( II=) n 
Ran(IIn); Zm E Ran(II=) and Zm E Ker(IIn) because 

IInzm = IIn(II= - II1) = IImin(n,=) - II1z = 0; 

and similarly Zn E Ran(IIn) n Ker( II=)· 
On the other hand, if z = z1 + Zn + Zm is a splitting according to the direct sum, then 

II1z = 1I1(z1 + Zm + Zn) 

= llzzz + IInIIrnZm + II=IlnZn 

= z1 + IInZm + II=zn = zz, 

(IIrn - Ilz)z = (IIrn - II1)(z1 + Zm + Zn) 

= (IIrn - II1)z1 + (II= - II1)zm + (IIm. - Ilz)Zn 

= Zz - Zl + IIrn(I - IIn)Zm + IIrn(I - IIn)Zn 

= IIrnZm = Zm· 

Analogously (IIn - Ilz)z = Zn. Thus 

Z = Zl + Zm + Zn = II1z + (IIrn - II1)z + (IIn - II1)z = (IIm. + IIn - II1)z = Ilm,nZ. 
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Hence z E Ran(llrnn). 
Assume that 0 = z = z1 + Zn + Zm is a splitting as above, then it follows that 0 = z1 = Zn = Zrn 

because 

0 = flz(z) = (flrnlln)(z1 + Zn + Zm) = Z/, 

0 = (flrn - Ilz)(z) =(I - IIn)IIrn(Zl + Zn + Zm) = Zm 

and 

0 =(!In - Ilt)(z) =(I - IIm)IIn(Zl + Zn + Zm) = Zn· 

llrnn = PrnR"m + PnRn - PiRz, hence Ker(llmn) ::::i Ker(Rn) n Ker(Rm) is trivial. 
Ker(llrnn) c Ker(Rn) n Ker(Rrn) is shown as follows. Let 2: E Ker(IInrn), then 

0 = llnrnX = (IIn - Ilt)x + (IIrn - IIi)x + Ilzx =: Xn + Xm + :r:z. 
This implies xz E Ran(IIL) and .T:n, Xm E Ker(Ilz), so that Xz = 0 and Xn + Xm = 0. Further, from 

Xn = -Xm E Ran(IIm) n Ran(Iln) = Ran(IImin(n,rn)) = Ran(P1) 

it follows that Xm = Xn = 0, and hence Ker(IIrnn) = Ker(Rn) n Ker(Rm). D 

Now we can introduce the hierarchical surplus, HrnnU, of a function u. This hierarchical surplus 
represents the amount of information in an approximation u E Vmax(m,n) that cannot be represented 
on the Span(Vn, Vm,). 

Definition 2.18. Let {Rn} and {Pn} be a commutative set of transfer operators, then we define 
Hrnn: X --+ Ran(Pmax(m,n)) C X, the hierarchical surplus, relative to the grids m and n, by 

Hrnn = IImax(rn,n) - IImn· 

Clearly, the hierarchical surplus is a projection operator, and we can write 

Hmn = (IImax(n,rn) - IIn)(IImax(n,rn) - flrn)· 

(20) 

This general idea of a hierarchical surplus leads naturally to a partitioning of the spaces Vn in more 
elementary subspaces (pre-wavelet spaces) in the following section. 

2.4. The hierarchical decomposition 

In this section, again, we assume {Rn} and { Pn} to be commutative sets of transfer operators. 

Definition 2.19. For a fixed no E {-oo, z}d, which indicates a coarsest grid, we define for arbitrary 
n ~no, n E zd, the operator Qn: X--+ Ran(Pn) c X, by 

d 

IT (21) 

We use the convention that Qn0 = IIno· The operator Qn is called the (direct) hierarchical surplus 
at grid n. 
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If no E zd we call no E zd the coarsest grid, and, without loss of generality we may assume 
no = 0. If a noj = -oo then no coarsest grid exists in the jth direction. 

Lemma 2.20. Qn is a projection and QrnQn = 0 for all m i- n. 

Proof. First we show that Qn is a projection. For simplicity of notation, we set c = n0. 

d 

QnQn = IT (IIn - IIn-ej)(IIn - IIn-ej) 
j=J,nj;iCy 

d 

II (IIn - IIn-ej - IIn-ej + IIn-ej) = 
d 

II (IIn - IIn-e1 ) = Qn- (22) 

To show that QrnQn = 0 for all m i- n, let m i- n. Without loss of generality we may assume 
ni < mi for some i E { 1, ... , d}. We consider the case ni i- ci; the other cases are similar. 

QrnQn = IJ(II"Tn - IIrn-eJ(IIn - IIn-ej) 
j 

= (IJ"Tn - IIrn-eJ(IIn - IIn-eJ IT··· 
j'fi 

= (II(. .. ,n1, •.• ) - II( ... ,n1, ••• ) - II(. .. ,n1-I, ... ) + II(. .. ,n1-!, ... )) IJ · · · = 0. 
#i 

The indices indicated by dots correspond with those of min( n, m). D 

Notice that, for n > no, the two-dimensional case the relation (21) reads 

Qnu = lln'U - IIn-e 1U - IIn-e2 U + IIn-eU, 

where e = (1, 1 ), and in the one-dimensional case we have 

Qnu = IIn'U - IIn-eU. 

(23) 

(24) 

(25) 

Corollary 2.21. From Definition 2.19 it is immediately obvious that the projection IIn can be decom­
posed as 

IIn = L Qrn, 
no,,;;rn:s;n 

and, hence, Ran(IIn) = Span(Ran(Qrn))n0 ,,;;-rn,,;;n- Because of Lemma 2.20 we can write 

Ran(IIn) = E8 Ran(Q-rn). 
no,,;;rn,,;;n 

If Vn c X and Pn is the natural injection, then we see that Ran(Pn) = Ran(IIn) 
defining the pre-wavelet space Wn =Ran( Q-rn), we find 

(26) 

(27) 

Vn and, 

(28) 
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Notice that, given the set {Wm}no:S:m• the expansion (28) essentially describes the complete partially 
ordered set of approximating spaces. In fact, if we can write X = ffino~m W =• we induce au_tomati­
cally a structure for prolongations and restrictions, which-now by nature-form a commutative and 
hence nested sequence. 

2.5. The tensor product case 

In this section we introduce the usual and by far the most interesting examples of commutative 
sets of operators, constructed by means of tensor products. Of course it is also possible to construct­
by trivial means--cases where (28) is no tensor product space, e.g., by taking arbitrary linearly 
independent spaces Vli'm· Although such non-tensor product spaces maybe useful in particular cases, 
tensor product spaces give more regular and interesting examples. 

For any i = 1, ... , d, let Q; c lR and let Q = Q91= 1 Qi c JRd be their Cartesian product. Let Xi (Qi) 
be a function space on Q; with functions Ui,a; (xi) so that Xi(Qi) = Span( { ui,aJa;EAJ, for some 
index set Ai. Let A= 01=1 A; be the Cartesian product of index sets. Then the tensor product space 
X(Q) is defined by 

d d 

X(Q)=Q9Xi(Q.i)= Span IIui,a;· (29) 
i=l (a1,a2, ... ,ad)EA i=I 

It is well known, e.g., that for X;(Q;) = C0 (JR), the tensor product space X(Q) is densely embedded 
both in C1(JRd) and in H 1(lRd). 

For each i = 1, ... , d, let { R;,n}na be a sequence of restrictions (for functions in one dimension) 
defined on X;(Q;), with R;,n: Xi(Qi)-+ Vi,n(Qi) C Xi(Qi). then, similar to X(.Q.), for each n E zd 
we may define a tensor product space Vn(Q) = ®1=i Vi,n; (Qi). 

If the elements of Vi,n; (Q;) are all determined by values associated with On; (Q;ti or n;,), then 
we find a bijection Vn = Vn(Q) ~ Vn(Qn) (or~ Vn(Q~) or ~ Vn(Q~)). This notation indicates 
that its elements are determined by their values on the Cartesian product space .O.n = ®f=l .O.n; (or 
Q~ or Q~). 

Definition 2.22. We define the tensor product restriction Rn: X(Q) -+ Vn(Q) by its action on a 
typical basis function 

d d 

Ua(x) =II Ui,a;(x;) ,.__, Rnua(x) =II Ri,n;Ui,a;(x;). (30) 
i=I i=l 

We also write Rn = 0i R;,n.,· Since Vn(Q) C X(Q), we can take the natural injection Pn as the 
corresponding reconstruction for R,,,. This Pn we call the tensor product prolongation. 

Theorem 2.23. For each i E {I, ... , d} let Qi C lR, and let {Vi,n(Qi) }nEZ form a nested sequence 
of subspaces of the function space X (Qi), with 

Vi,p(Qi) C Vi,q(Qi) C X(Qi) for p:::;; q, (31) 

and let each sequence of (one-dimensional) operators { Ri,n}nEZ form an NSR. If we take for the cor­
responding reconstructions { P;,n }nEZ the natural injection, then the tensor product restrictions {Rn} 
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and prolongations { P n} form a CSR and a CSP, respectively. (So, together they form a commutative 
set of transfer operators.) 

Proof. By the nesting of the subspaces it is immediate that for each i the set { Pi,n }nEZ forms an NSP (Section 2.1). Further, using the fact that the prolongation is the natural injection, we can identify 
restrictions Ri with the corresponding projections Ih and by Lemma 2.7 we see that for each i we 
have Ili,plli,q = Ili,qlli,p = IIi,p if p ~ q. Thus, for each i it follows that the sequences { Pi,n }nEZ and 
{~,n}nEZ are CSP and SCR. Now we prove that {Rn} is an CSR by showing RmRn = Rmin(m,n) as follows. 

Let l = min( rn, n) and let v E X(Q) be arbitrary, then we can write 

v(x) = L CaUa(x), 
aEA 

Rmv(x) = Lca.Rmua(x) =Lea IT ~,miUi,ai(xi)· 
a a i 

Similarly, 

Rn.Rni,v(x) = L CaRn IT ~,miUi,ai(xi) = L Ca IJ Ri,n;Ri,miUi,ai(xi) 
a a 

a a 

Hence Rn.Rm= Ruiin(-rn,n)• and, thus, IInIIrn = IImin(rn,n)· Now Theorem 2.14 shows that {Rn} is an CSR and {Pn} is an NSP. 
To prove that {Pn} is an CSP, we have to show Vmin(rn,n) = Vrn n Vn, or 

(32) 

As for each i we know that {Vi,n(Oi) }nEZ is a nested sequence of subspaces of Xi(Qi), we can 
construct a sequentially ordered set of basis functions Bi = { ui,b }b in Xi (Qi), such that ni < mi 
implies Ui,b E Vi,ni =? ui,b E Vi,mi. It follows that we have Vi,mi = Span( { ui,l E Bi I Ui,l E Vi,mi}) and similarly 

Vi,min(ni,mi) = Span ( { Ui,l E Bi I Ui,l E Vi,ni n Vi,mi}). 
So we see 

which is equivalent with (32). D 

Example 2.24 (Piecewise constant approximation). If we consider Lh0 c(n) = X(Q) and we choose 
for Ri,n the one-dimensional L2-projection ~,n: X(Qi) -+ Vn(Qi) C X(Qi), where Qi C lR and 
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Vn (Qi) is the space of piecewise constant functions on dyadic intervals (i.e., if Ri,n denotes tak­
ing mean values over intervals [j2-n, (j + l )2-n] in the ith coordinate direction), then, for each i, 
the restrictions { Ri.n}n form a one-dimensional NSR. The corresponding reconstructions Pi,n repre­
sent piecewise constant interpolation over dyadic intervals. This makes the prolongations { Pi,n }n an 
NSP. 

Then, as a consequence of the above theorem, { Rk} and {Pk} are commutative transfer operators, 
i.e., {Rk} is a CSR and {Pk} a CSP. 

Example 2.25 (Piecewise d-linear approximation). If we select the restnctron Ri,n: C0(0i) -+ 
V,,(Qi) c IR.2 to be taking function values at dyadic points j2-n in the interval 12,; C lR, then 
{R;, 11 }n is an NSR. Corresponding reconstructions Pi,n, defined by piecewise linear interpolation over 
dyadic intervals, make the prolongations { Pi,n}n an NSP. 

As a consequence of the previous theorem, with c0 (Q) = X(Q), the tensor product operators { Rk} 
and {Pk}, defined on X(Q), are commutative (are a CSR and a CSP respectively). The restriction Rk 
takes the function values at grid points Q~, and the prolongation Pk makes a multi-linear interpolation 
over cells in O.n. 

In the above examples, with Vn c X we took for the reconstruction Pn the natural injection (the 
identity in X). In this way we may identify Rn and IIn. It appears that in both cases, i.e., for the 
piecewise constant and the piecewise linear approximation, we have a projection II n of the form 

d d 

IIn = II IIn;e1 = II RriJej · 
j=l j=I 

Here RnJeJ: X(Q) -+ X(Q) is the operator on the tensor product space X(Q) such that 

d 

RriJeJUa(x) = Rj,n1 Uj,aJ(xj) · IJ·ui,a;(xi)· 
i=fj 

~e following section we consider the case of nested subspaces {Vn} with Vn c X and X -
Un Vn, and where all spaces Vn are spanned by dilations of a single function cp( x ), together with all 
its dyadic translations. This leads to the more-dimensional multiresolution analysis or MRA. In this 
case the spaces Wm= Ran(Qm) correspond with more-dimensional wavelet spaces. 

2.6. More-dimensional MRA and wavelets 

It will be convenient if 
(i) we can make an arbitrarily accurate approximation of any function 'U E X by taking the 

multi-integer n large enough. 
Moreover, it will be convenient if 

(ii) all spaces {Ran(Pn)} or {Vn} have a similar structure, and 
(iii) there is a clear relation between the spaces in {Ran(Pn)} or {Vn}· 
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In order to create such a structure, in this section we introduce the multidimensional multiresolution 
analysis. For this purpose we will restrict ourselves to Hilbert spaces. First we introduce the important 
notion of frame. 

Definition 2.26. A sequence { Xn} in a Hilbert space H is a frame if there exist numbers A, B > 0 
such that for all a: E H we have 

(33) 
n 

The numbers A, B are called frame bounds. The frame is tight if A = B. The frame is exact if it 
ceases to be a frame whenever any single element is deleted from the sequence. If the sequence { Xn} 
satisfies (only) the second part of the inequality (33) then the sequence is called a Bessel sequence. 

Having introduced the exact frame, we can define the partially ordered, more-dimensional mul­
tiresolution analysis. Notice that this is different from the more-dimensional multiresolution analysis 
introduced in [l], which considers a sequentially ordered nested set of approximating spaces. 

Definition 2.27. Let Q =]Rd and let X(Q) be a Hilbert space of functions defined on Q. A multidi­
mensional multiresolution analysis of X(Q), is a partially ordered set of closed linear subspaces 

{Vn I Vn C X(Q)} nEZd 

with the four properties: 

nvn = {O}; LJvn = X(Q), 
n n 

f(x) E Vn {::} f(2rnx) E Vn+rn Vn,rn E zrl, 
f(x) E Vn {::} f (x - 2-nk) E Vn Vn, k E zd, 
3cp E Vo: { rp(x - k) }kEZd is an exact frame for Vo. 

(34a) 

(34b) 

(34c) 

(34d) 

The function rp( x) in (34d) is called the father function or the scaling function of the multiresolution 
analysis. 

For Q = ]Rd the tensor product Examples 2.24 and 2.25 in Section 2.5 also yield examples of a 
multidimensional MRA. 

For piecewise constant interpolation we take X(Q) = L2(JRd) as the starting point. The characteristic 
function on the unit cube (the more-dimensional Haar function) is the scaling function </J. The set {Vn} 
contains the spaces of piecewise constant functions on Qn, and a CSR is obtained by Rn: X (Q) --+ Vn, 
the L2-projection. It is obvious that in this case the set { </J( x - k) h is an orthonormal basis and hence 
an exact frame with bounds A = B = 1. 

For piecewise linear interpolation we take X(Q) = He(JRd) as the Hilbert space. The set {Vn} 
contains the space of piecewise d-Iinear functions, determined by their nodal values at Q~. A CSR 
is obtained by Rn: X(Q) --+ Vn, the piecewise d-linear interpolation at Q~. Here, the d-linear finite­
element basis function is the scaling function rp. By [9, Theorem 2.1.3] it is easily seen that in this 
case { rp( x - k) }k is an exact frame, with as frame bounds the extreme eigenvalues of the frame 
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operator S: £ 2 (0)---+ £2 (Q) defined by Su= Ln(u, <P(x - k))c/J(x - k). Bounds for these extreme 

eigenvalues are A= 3-d and B = 1, respectively. 

As in the tensor product case, we take for the reconstruction the natural injection Pn: Vn ---+ X so 

that Rn = II n for all n E 'lf 

More-dimensional wavelets 
A wavelet space Wn c Vn, a closed subspace of Vn which contains those functions in Vn that 

cannot be represented in any of the function spaces on the next coarser level, i.e., these functions are 

in Vn but not in Span(Vn-e 1 , ••• , Vn-ed). Thus Wn C Vn is a closed subspace so that 

(35) 

This means that Wn contains the 'difference information' that is available in the fine grid Vn but not 

in the span of the coarser grids Vn-e 1 , Vn-e2 , ••• , Vn-ed. 
The space Wn is the complement of Span(Vn-e1 , ••• , Vn-eJ in Vn. Of course, this complement is 

not uniquely determined. If we want we can make use of the Hilbert space structure and consider the 

(unique) orthogonal complement 

(36) 

This choice corresponds with Rn : X ---+ Vn being the orthogonal projection. However, in many cases 

we will use spaces Wn that don't satisfy this orthogonality property! 

As soon as we have selected a CSR {Rn}, then corresponding pre-wavelet spaces are defined as in 

Section 2.4. These pre-wavelet spaces on an MRA are wavelet spaces. 

In the case of an MRA no coarsest grid exists, so that (28) gives 

(37) 

Because of property (34a) we can decompose the space X(Q) in 

X(O) = EB Wj (38) 

jEZd 

so that we can write any u E X(Q) as u = LjEZd Wj with Wj E Wj. A restriction Rn: X(Q) ---+ Vn 

is now determined by 

By Definition 2.19 we recognize the direct hierarchical surplus 

Qn: X(Q)---+ Ran(Qn) = Wn. 

We see that there is no coarsest grid and we can decompose Rn as 

(39) 

(40) 

(41) 

The four relations (34a)-(34d) imply that also the spaces W n are scaled versions of one space W0, 

f(x) E Wn ~ f(rnx) E Wo, Vn E zd, (42) 
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and, moreover, that they are translation invariant for the discrete translations 2-nzd, 

f(x) E Wo {::} f(x - k) E Wo, \in E zd. 
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(43) 

As soon as we find a function 1/J(x) with the property that 'lj;(x - k), k E zd, is a basis of We, 
then by a simple rescaling we see that 1/J(2nx - k ), yields a basis of Wn+e· Such a function is the 
more-dimensional generalization of a wavelet [3]. Because of (38) the full collection 

{ 1/Jn,k(x) 11/Jn,k(x) = 1/J(2nx - k), n, k E zd} 
is a basis of X(JR.d). 

3. Piecewise approximation in d dimensions 

In this section, we first describe the approximating function spaces for piecewise constant and 
piecewise multilinear approximation. For the spaces Vn and for the pre-wavelet spaces Wn we describe 
basis functions. Using these bases, in Sections 3.2 and 3.3 we give proofs for error estimates on regular 
and sparse grids. Most of the estimates are essentially also found in [2,13,16], but here the proofs are 
more general, simpler and given in a unified treatment. 

3.1. Piecewise approximation 

3.1.1. Piecewise constant approximation 
First, let Q = JR.d or Q = (0, l)d. We approximate u E X(O) = Lf0c(O) by Un E Vn, in the space 

of piecewise constant functions on Qn, i.e., in 

Vn =Span( { </>nj}), (44) 

with, for some q ~ 1 or q = oo, 

</>nj(x) = 21nl/q<f>(2nx - j), 
d (45) 

<f>(x) = IJ X[o,l](xj), with X[o,i](x) the characteristic function on the unit interval. 
j=l 

This clearly describes a basis for a tensor product space, and we may write 
d 

Vn = Vn(Q) = Q9Vnj(Qj), 
j=l 

(46) 

the tensor product of spaces Vnj(Qj)- These VnJ are the spaces of piecewise constant functions with 
meshwidth hj = 2-nJ on Qj c R The corresponding grid of cells on the Cartesian product of {Oj }, 
is denoted by Qn. The cell centers are denoted by by O~. 

We define the restriction Rn as the projection 

Rn : X-+ Vn c X, 

U 1-+ Un = Rn'U, with Un,i ='Un ( ( i + e/2)h) = 2+lnl j u(O dQ. 

(47) 

D.ni 
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This restriction is of type (30), and Rn = Rn1 , ••• ,nd can be decomposed as 

d 

Rn = II Rnjej, 

j=l 

(48) 

where Rn.1eJu(x) is the function, piecewise constant in the jth coordinate direction on a partitioning 
Qn, so that 

::c+(h/2)e1 

Rn1e1 1;,(x)=2nJ l u(~I1···1~d)d~.i 
x-(h/2)e1 

for all x with (x.i2nJ ± 1/2) E Z. 
In the special case X = L 2 ( Q), the space X = X ( Q) is a Hilbert space, and { </Jnj} is an orthogonal 

(orthonormal if q = 2) basis in Vn. In this case Rn is the orthogonal projection L2(Q) ---+ Vn. For 
Q = ~d, the set {Vn} as defined in (44)-(45) is a typical MRA. This is no longer the case if we 
consider a bounded domain Q, but the decomposition as treated in Section 2 still can be used in the 
case of a bounded domain. 

It is easily checked that the more-dimensional wavelet 7/J(x) E We, corresponding with the piecewise 
constant scaling function r/>( x) E V0, from the previous section, is the more-dimensional elementary 
checkerboard function given by 

{ 
0, 

t/J(x) = 
(-l)lkl, 

if x ~ 0.o,o, 

if x E Oo,o and x E Oe,k· 

(49) 

This function is the tensor product of the Haar wavelet. 
In wavelet theory the spaces Wn are labeled channels, and the distinct channels are linearly in­

dependent. The first decomposition of an arbitrary function from X ( Q) consists in writing u ( x) = 

Ln Wn(x), where Wn E Wn with n E zd, according to (38). 
Each subspace vVn, has its natural basis, the standard basis, 3 

(50) 

of functions with a minimal support. We see that 't/J = ·iJ.;e,O E Ve is a function with the unit cube 
no,o as support. The basis function '1/.!n,k is a scaled, elementary checkerboard function, that may be 
characterized either by its support, which is a single cell in Qn-e, or by the centerpoint of this cell, 
Zn-e,k = 2-ln-el(k + e/2). 

On the open unit cube Q = (0, 1 )d we consider the 2lnl_dimensional spaces Vn = ®J=I v;.,1, the 

tensor product of v;.,J ( (0, I)), the spaces of piecewise constant functions with meshwidth h:i = 2-n1 

in the jth coordinate direction. For functions defined on Q = (0, I )d we can write relation (38) as 

(51) 

3 Notice that in more dimensions we use the indexing 1/Jn+e,k. whereas in the one-dimensional case one usually writes 'ljJ~. 
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and make a decomposition in channels correspondingly. Each subspace Wn+e• now with n ~ 0, has 
its standard basis 'l/Jn+e.k: 

(52) 

For .Q = (0, l)d, the exceptions related with the boundary are found in the spaces Wn with a zero 
index (i.e., lllnlll = 0). These Wn have basis functions with different shapes. They are derived from 
the corresponding functions for the unbounded case, but their support is restricted to .Q. Their corre­
sponding nodal points Zn-e.k, are found on the boundary an = Q\.Q instead of in the interior. For lllnlll = 0 we have vVn spanned by a basis 

0:::;; kj < 2nJ- 1, 

kj = 0, 

if n · -1- 0 
J r ' 

if nj = 0, 
j=l, .. ,d}. (53) 

Taking such modifications into account, both for .Q = ( 0, 1) d and for Q = ~d, for each u E LfmJ .Q) 
we may write a hierarchical expansion (a wavelet expansion) according to (38) or (51), as 

(54) 
nEZ n,k n,k 

where 1/J is simply 

~ { sign l[[x[I[, 1/J(x) = 
0, 

if max(x1, ... ,xrl) <I, 

if max ( x 1 , ... , x d) > I , 

and Cnk = 0 for all k with [[[k[[[ even. 

3.1.2. Piecewise d-linear approximation 
We approximate u E X = C 0 (.Q) by Un E Vn, in the space of piecewise d-linear functions on .Qn, 

i.e., in 

with, for some q ~ 1 or q = oo, 

</>nj(x) = 21nl/q</>(2nx -j), 
d 

</>(x) =IT A(xJ), with A(x:) = max(O, I - [x[) the usual hat function. 
j=l 

(55) 

(56) 

Clearly this is a basis for a tensor product space as (46), where v;., 1 are spaces of piecewise linear 
functions on a partitioning of Qj with meshwidth hj = 2-n1. The set of nodal points {j2n} JCY.:" m 
Q is denoted by n;;. 

Here we define the restriction Rn as the projection 

Rn :X-+ Vn c X, 

u I-+ Un= Rn'U, Un(x) = u(x) Vx En~. 
(57) 
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The restriction is also of type (30) and the operator Rn= Rn1, ••• ,nd can be decomposed as (48) where 

RnjeJ u(x) is a function, piecewise linear in the Jth coordinate direction, on a partitioning On, such 

that RnJeJu(x) = u(x) for all x with x1/h1 E Z. 

It is clear that there exists a basis-function in Vn for each nodal point Xnk in Q~. If and only iff 

lllklll is even, there exists a 'parent grid' Q~ with m ( n and m # n, for which Xnk E Q~. Hence, 

in this case each wavelet space Wn has its natural basis 

{ cPnk I k E zd with 11\klll odd}. (58) 

On the closed cube Q = [O, l]d we consider the f1J= 1(2nJ +I)-dimensional spaces Vn = Vn(Q) = 
@J=I Vn1 ([O, l]). With homogeneous Dirichlet boundary conditions, the dimension of the correspond­

ing space V~ c Vn is f1J=1 (2nj - 1 ). It is immediately clear that typical FE-basis functions for Vn 

are the d-dimensional hat-functions: functions that vanish on all but one point of Q~. Each such FE 
basis function of v~ is characterized by an interior point from n;!;:. 

We notice that for Q = [O, l ]d we have 

Vn = {O} except for n:;::: 0, 

V~ = {O} except for n:;::: e. 

(59) 

(60) 

With Wn (or W~) we denote the subspace of Vn (respectively V~) of functions that vanish at the 

gridpoints of all Q~-eJ (respectively Q~-e)• _j = 1, ... , d. From (55) we see that for Q = JR.d 

Wn = Span({<Pnj \\\Iii\\ odd}) 

and for Q = [O, l]d we see that 0 ( j ( 2n and 

W n = Span ( { ~nj Ji odd, 0 < Ji < 2ni, if ni > 0, 

Ji = 0, 1, if ni = 0, 

(61) 

(62) 

Clearly Wn = W~ = {O}, except for n:;::: 0. If lllnlll = 0 we see that V~ = {O} and Wn is spanned 

by FE basis functions that are characterized by boundary points on the unit cube. Thus, the trace of a 

function on the boundary is exclusively approximated by elements of W n with lllnll\ = 0. Further we 

see W~ = W n if n ;? e. Apparently 

(63) 

3.2. Error estimates for regular grids 

The decompositions of type (38) allow the approximation of a sufficiently smooth function in X ( Q) 

by a series with elements in Wi. To obtain an impression of the quality of these expansions in the 

following sections we derive error estimates. 
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3.2.1. Estimates for piecewise constant approximation 
As the case where domain boundaries are present, is the more general one, we study the case 

.Q = (0, l)d. To quantify the error of approximation on n., we introduce for ·u E ce(Q) the seminorm 

lul = max IDeu(x)I + max max IDPu(x)I. (64) 
::eEQ O:::;p:::;e ::eEQ\Q 

O<IPl<d 

Now we derive the following 

Theorem 3.1. If we consider an expansion of a ce(n)-function, U, in piecewise constant functions 
on the grid On. for an arbitrary n E zd, n > 0, and if we write 

Rnu = L W-m, 
o:::;-m,,;;n 

with Wm E Wm,, 0 ~ rn ~ n, then, for rn i= 0 we have 

JlwmllL2(Q) ~ Td/2rlmljuj, 

and an estimate for the approximation error 

Jiu - RnullL2(Q) ~ (2/3)d12 llhnlllul. 

(65) 

(66) 

(67) 

Proof. We take { 1f;mk} as a basis in Wm, e ~ rn ~ n. All these functions form an L2(Q)-ortho­
normal set (orthonormal Haar basis) and they are orthogonal to all functions in W n, n i= rn. 

Thus, we find (65) with Wm = I:k a-mk1/Jmk• where 

amk = ( U, 1/Jm,k) = / 1L 1.f1m,k dQ = / u1/Jm,k dQ. 

Q Qm-e,k 

For rn ~ e the point Zrn-e,k lies in the interior of Q and the estimate holds with 

lul = max IDeu(x)I. 
::e 

Viz., by Taylor expansion around Zm-e,h we have 

larnkl =I / u1/J-m,kdQI 
Q'l'n-e,k 

~I / lllx - Zm-e,kllllul·l/Jm,kdQI 
Q"rn-e,k 

d 2-mj 

= juj21=-el/22d II / ~j d~j 
J=I 0 

= juj2-d/22-3lml/2. (68) 

For m =/:- 0, rn ~ e, i.e., for 1/Jmk with an rn-component equal to zero, the point Zm-e,k lies on the 
boundary and the function ·l/Jrn,k is constant in one direction over the whole domain Q, and it is of 
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Haar-wavelet type for the non-zero indices (or index). In this case the orthonormal basis functions are 
21'1/21/'m.k, where d is the number of zeroes in rn. Nevertheless, provided that rn i- 0, in this situation 
the same estimate (68) holds with, e.g., if m1 = 0 and mj ;-?: 1 for j = 2, ... , d, 

I od-Iu(x) I 
lul = max I . 

x O.T2 ... 0Xd 

Hence, the estimate (68) holds for rn ;-?: 0, rn i- 0, if we use the seminorm (64), and we find 

11wm11 2 =2=1amk12 ( I:rdr31m11u1 2 = rdr21m11·u1 2 , (69) 
k k 

so that llu 1171 II ( 2-d/22-lml lul, which leads to (66) and (67) because 

d 

ll·u -- Rn1111 2 = L llwmll2 ( L L 2-dr21rnllul2 

m1>n1 
or ... or 
md>nd 

d 

j=I m~O 
Tnj>'T!j 

~ rdlul2 L L (1/4r'+ .. +md 

j=I m~O 
mJ>n1 

d 

( lul 2 (2/3)d L h;J ~ i·ul 2 (2/3)dllhnll 2 . D 
j=I 

If we have no further a priori knowledge about u, the most efficient approximation will be one with 
h 1 = · · · = hd because this equalizes the main terms in the error bound. We see that the truncation 
error for u - Rn u is not particularly promising or surprising: the major part of the error is produced 
by the largest meshwidth: (max( h 1 , ••• , hd) )d/2, whereas the total number of degrees of freedom for 
an element in Vn is 2lnl. 

3.2.2. Estimates for piecewise d-linear approximation 
For a function u E C0 (n) we consider piecewise linear approximation as in Section 3.1.2. We 

approximate u by Un E Vn, where Vn is the space of piecewise cl-linear functions on .Qn· We take 
Un such that 'Un ( x) = 'll( x) for all x E .Q~ and we write 

Un(x) = L dnjTnj(x), (70) 
j 

where Tnj(x) is defined by (56). 
With Un E Vn the piecewise linear approximation on Qn of the function ·u E c0 (.Q), we make the 

hierarchical decomposition Vn = EBk::;:n Wk, and write 

'Un= L Wk, Wk E Wk, 
k,;;,n 

where 

wk(x) = L CkjTkj(x), 
j 

(71) 

(72) 
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with ckj = 0 for all j with !Iii Ill even. 
In practice the coefficients Ckj, 111.i Ill odd, are computed as hierarchical surplus coefficients, by taking the difference between the value v,(jhk) and the interpolant from coarser grids. This is most conveniently formulated by introducing stencil notation. Therefore, we introduce the difference oper­ator 

\7hu(z) = u(z + h) - u(z), 
(73) 

and the usual central difference approximation for the second derivative by stencil notation, as 
[!, -1, !]hjeJ u(z) = ! \7~je; u(z - hjej). 

With this notation we write an expression for the hierarchical coefficients in a piecewise linear ap­proximation. We see that d-linear interpolation leads to the following expression for the hierarchical surplus coefficient 

(74) 

Notice that the factor l\\hk\\1 1/q cancels the scaling factor 2lk[/q in the definition of rPki• so that the function u( x) is expanded as 

u(re) ~ 2= Ckj\\\hklll-l/q</>(2kx - j). 
k,j 

An expression for the coefficient Ckj is found in the following lemma. 

Lemma 3.2. Let 'U. E ce+m, for a given m with 0 ::::;; rn ::::;; e, and let 
Lnj(x) = 2-lnl<f>(2nx - j), 

then, for each rPnj E Wn, \\\n\\\ ::/- 0, 11\j\\I odd, we have 

d 

\\\hnll\-lfqlcnjl = Il[-!, 1, -1]h;e; u(jhn) 
i=l 

= (-l)le+ml2-d J De+mu(x) De-m Lnj(x) dQ. 

Q 

(75) 

Proof. We see that for l\\n\11 ::f. 0, 11\i Ill odd, each Lnj has a support in the interior of 0.. Taking this into account, we give the proof after a coordinate translation with 2'"'j then we see that for all i, 0 ::::;; i ::::;; d, 

s;h; 

,.~,! [ D••u(z) dz; = "~'' u(z)[~o - .. ~,! "7,.h,e,u(z)l,.~o =[I, -2, I]h,.,u(z)l,.~o 
and hence 
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II [-1, l, -~] hiei u(O) 
i=l,d 

s1 h1 sdhd 

= (-Dd L J · ·· J Deu(x)dx1 · · · dxd 

s1, ... ,sd=-l,l 0 0 

h1 hd d 

= (-1)d J · · · J Deu(x) n ( rn; d~i A(2nixi)) dx1 · · · dxd 

-h1 -hd -

= (-1)d J Deu(x)rlnlDe<t>(2lnlx) dQ 

= (-I)le+m.lrd J De+m.u(x)De-m.Lno(x)d.Q. D 

Remarks. 
(1) For lllnlll = 0 (i.e., for boundary points), the same formula holds, provided that the formula is 

restricted to the lower dimensional boundary manifold (e.g., the face or the edge of the unit 

cube). 
(2) For an m with 0 :::;; m :::;; e we derive an expression for llDm.<PllP, with </> given by (56) as 

follows: 

llD771 <fill: = J IT IDm; A(xi) IP dQ = 2d (p + 1)-le-m.1. 

n i 

So that 

llDrnc/>llp = 2dfp(p + 1)-le-rnl/P. (76) 

(3) In (56) we have <Pnj = 21nl/q<t>(2nx - j), and hence 

llDm.<finjll: = J 21nlp/q1Drnc/>(2nx -j)lp dQ = 2lnl(p/q-l)2lm.onlpllDm.</>ll~· 

Here, 

d d 

2-mon = IJ2mini = rrh-mi = h-m. 
ni n ' 

i=l i=l 

so that for arbitrary j, 

II Dm.</>nj lip = lllhnlll (l/p-l/q) h;;:m. JID771 <f>llp· (77) 

This means that the norm 11</>nj llP is independent of the level n iff we take q = p. 
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(4) To obtain error estimates in the approximation Theorem 3.3 we compute an expression for 
II nm Lnj ( x) ''P' with Lnj as introduced in (75), in particular for p = 1, 2, 00. 

JIDmLnj(x)ll~ = lllhnlllp+lh;;:pmllDm</>JI; = lllhnlllp+lh;;pm2d(p+ 1)-le-ml. 
So that we may conclude, also considering the special case p = oo, 

IJDmLnj(x)ll1 = lllhnlf(hn/2)-m, 
JIDm Lnj (x) 112 = (2/3)d/2lllhnlll312 (hn/v'3 )-m, 
JIDm Lnj(x)JJ 00 = lllhnlll(hn)-m. 

Using the above expressions and Lemma 3.2, we can derive the error estimates in the following 
theorem. 

Theorem 3.3. Let u E cg+m(.Q) be given for some rn with 0 :s;; m :::;; e, and let Un E Vn be the 
piecewise linear approximation on .Qn of u, such that Un ( x) = u( x) for all x E .Q~. If we make the 
hierarchical decomposition Vn = EBk~n Wk, and write 

Un= L Wk, Wk E wk, 

k~n 

then we have the estimates 

llwki12 :s;; llDe+muJl 2 lllhklll 2Td/2rlml/2h~(e-m), 
llwkll= :s;; llDe+mull 00 111hd2(hk/2)-(e-m), 

d 

llu - unll2 :::;; llDe+mull22-d3-3lml/2 L h~i+m;)' 
i=l 

d 

llu - unlloo:::;; IJDe+mulloo6-lml L h~i+mi)_ 
i=l 

Proof. Using (74) and Lemma 3.2 we can obtain estimates for the hierarchical coefficients Ckj· We 
fix k and we derive, writing h = hk, 

lllhlll-l/qickjl =2-dl j De+mu(x)Xkj(x)De-mLkj(x)dxl 
Q 

:::;; 2-dJJDe+mUXkj ll 00 llDe-m Lkj 111 
:::;; 2-dJIDe+mUXkj lloolllhlll2(h/2)-(e-m)' 

where Xki is the characteristic function for the support of Lkj ( x ), or similarly 

lllhlll-I/qlckj I= 2-d1 J ne+mu(x)Xkjne-m Lkj(x) dxl 
Q 

:::;; 2-dJIDe+muXkJ ll2llDe-m Lkj 112 
:::;; 6-d/211 De+mUXkj Jl2111hlll3/2 (h/v'3 )-(e-m). 



82 P. W. Hemker, C. Pjiaum I Applied Numerical Mathematics 25 ( 1997) 55-87 

We write IL'k = L, . Ckj </>kj with llli 111 odd, and we know that these functions { cPkj} j, for fixed k have 
disjoint supports. Aence, for the hierarchical contribution, 

llu 1kli~ =II ~:>kicPki11: = ~ CkiCkj J cPkicPkj dQ = 2;:: ckillcPkill~ 
z - 2,3 z 

~ lllhlll 21qllcPkill~ L IJDe+rnUXkj ll~6-dlllhlll 3 ( h/J3 )-Z(e--m) 
j 

~ 1Jlhlll4 2-dJjDe+=uJJ~h-Z(e-rnJrl-ml. 

for the other norm llwklloo we obtain similarly 

ilwkll:io =II~ Ckj<Pkjlloo ~ mr lckjlll<Pkj lloo 
3 . 

~ lllhlll 11q m~x rdJIDe+rnu Xkj lloolllhlll 2(h/2)-(e--m) lllhlll-l/q 
3 

~ rdJJDe+rnullocJhlll2 (h/2)-(e-rn). 
For the error, for p = 2 or p = oo, we get 

llu - unllp =II L Wk - L Wkll ~ L llwkllp 
k k~n P k~n 

~ CpJJDe+rnuJJP L lllhklf h~(e-rn) 
k~n 

= CplJDe+rnuJJP L h%+rn, 
k~n 

with C - ')-d/Z3 -lrnl/2 C 2-d2fe-rn[ Th. . ld h b · · · 
. 2 - ~ or 'oo = . is y1e s t e a ove mentioned estimates, by takmg 
mto account that 

L h%+rn = L h%+rn - L h%+rn 
k~n k k~n 

= IId i . [1 - IId (1 - (l)(l+n.;)(l+mi))j 
1-(l)l+m, 2 

1=! 2 i=l 

,;; 2'(l)lml [1 - g (I -r11+n.111+m,I) l ~ 3-lml t h~,+"'i 
Form= e this simply reads Lk~n lllhklll2 ~ 3-d llhnll2 . 0 

Corollary 3.4. As a direct corollary we find 

llu - llnllz ~ 54-d/ZJJD2euJJ?llhnll 2 , llu - Unlloo ~ 6-dJJD2e'ull
00

ilhnll 2 , 

and, for p = 2 or p = oo and 0 ::::::: m ::::::: e 
' "'-.:::::: "'= ' 
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llwkllp ~ CllDe+m,ullph~+m, 
d 

llu - 'Unllp ~ CllDe+niullp L h~iTm;, 
'i=l 

From (78) also follows a bound by a w;,c -norm. We immediately see that, for 0 ~ f, ~ d, 

llwkllp ~ Cllullwe,e min h~+m ~ Cllullwe,elllhklll 1H/d_ 
P lml=t' P 

83 

(78) 

(79) 

(80) 

We gave the proof of Theorem 3.3 for functions that vanish at the boundary of Q. Taking into 
account the remark following Lemma 3.2, it is clear that similar estimates (with different constants 
and with terms including derivatives of u that are restricted to the boundary planes as in (64)) also 
hold for functions with non-homogeneous boundary conditions. 

3.3. Error estimates for sparse grids 

3.3.1. Estimates for piecewise constant approximation 
For piecewise constant approximation we use a sparse (box) grid Qn = LJlki(n Qk n Q. A sparse 

grid approximation is obtained by interpolation on this grid by means of the space spanned by all Wk 
with lkl ~ n. 

Theorem 3.5. Let Rnu be the piecewise constant approximation of a function u E Lz(Q) on a sparse 
grid on level n: 

Rnu = L Wk, Wk E wk, 

jkj(n 

then, with lllhlll = 2-n, the volume of the finest cells, we have the estimate 

llu - RnullL2 (n) ~ Clullllhlll log(d-!)/2 lllhlll-

(81) 

(82) 

Proof. To prove the theorem for the L2 (Q)-norm, we use (69), and the orthogonality of the hierarchical 
basis functions, to obtain 

II R~ , 11 2 '"""' II' 11 2 /' ~ 2-d4-lkl I' 12 - 2-d1 12 ~ 2-2ikl U - nU L1(Q) ~ 6 Wk L2(Q) °"" 6 U - U 6 . 
jkj>n jkj>n jkj>n 

We know 

:L 2-21 C: ~ ~ 1) = r 2(n+l) (~ ~ ~)F(I, 1+n+d;2+n;1/4) = G(n, d). 
l>n 

Here F is the hypergeometric function. It follows that 

nd-!2-2n 

G(n, d)""' 3(d _I)! for n --r oo, 

(83) 

(84) 
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where the asymptotic value is reached soon for small values of d. Hence 

(l d 1) d--I2-2n 
llu - Rnuf ::;; 2-dlu\2 L r 21 : _ ~ ::;; rd\ul 2G(n, d) ::;; 2-dlul 2Cnd ~(d - 1) ! , 

l>n 

(85) 

where Cnd is a constant that tends to one for large n (Cnd < d for n ;?: 4). So, we conclude that 

llu - RnullL2(D) ::;; Clu\n(d-1)/22-n, 

which is equivalent with (82). D 

To guarantee a small error on a regular grid, in (67) all cell edges hj need to be small, but in (82) 

for the sparse grid only the volume lllhll\ has to be small. Further, in the two-dimensional case, the 

estimate (82) is of a similar order of accuracy as (67), except for a logarithmic small factor. However, 

the number of degrees of freedom for the approximation (82) is significantly less. Namely, in the 

unit cube, for Rnu the number of degrees of freedom is 2lnl, whereas for Rnu it is O(nd-l2n), viz. 

2n2n + 1 in the 2D-case, and in the 3D-case, e.g., (n2~ + n + 2)211 - 1. Because significantly less 

degrees of freedom are involved in the approximation Rn,u than in the approximation of R(n,n,'!3:._)u, 

i.e., less coefficients aj,k and less gridpoints Zj,k, in analogy to [7], we call the approximation Rnu 

the sparse grid approximation and 

n;i = {zj,k I Zj,k E Zn, \n\ ( n} 
is the sparse (box) grid for this approximation on level n. 

3.3.2. Estimates for piecewise linear approximation 

For piecewise linear approximation we use a sparse (vertex) grid n;t = LJlkl:(n nt n n. A sparse 

grid approximation is obtained by interpolation on this grid by means of the space spanned by all Wk 

with \k\ :::;; n. 

Theorem 3.6. Let Rnu be the piecewise d-linear approximation of a function u E cg+rn(n), with 

0 ~ m, ::;; e, on a sparse grid on level n: 

Rn'U = L Wk, Wk E Wk, (86) 

lkl~n 

then, with l\\h\I\ = 2-n, the volume of the finest cells, we have for p = 2, oo, with rn = e the estimates 

ll'u - Rciullp ( CllD2eul[P\\lhf logd-l \\\h\\\-1, 

and with lml < d the estimates 

[lu - Rnu[IP:::;; CllDe+mu[[P\l\h\ll logd-l-lml \\lh\\\- 1, 

and with 0 ::;; £ ( d 

l[u - Rnu[I :::;; C\\u\\we,£\\\h\\\ 1H/d logd-l \\\h\\\- 1 . 
p p 

(87) 

(88) 

(89) 

Proof. Using the estimates for l\wk \Ip from Theorem 3.3, we prove, more generally, for some m with 

0 ~ m, ( e, and for p = 2 or p = oo, 
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llu - RnullP ~ L llwkllP 
lkl>n 

~ L CllDe+mullph~+m 
lkl>n 

= CllDe+mullp L h~+m 
lkl>n 

~ Ci1De+mullp2-n(C1Tnnlml-l + C2nd-lml-l), 

with C1 = 0 if lrnl = 0, and C2 = 0 if lrnl = d. Hence, for rn f- e we have 

llu - Rnullp ~ CllDe+mullpl/lhlll logd-l-lm/ l/lhlll- 1-

Moreover, (90) yields, for rn = e, 

llu - Rnullp ~ CllD2eullplllhlll2 Iogd-l lllhlll- 1 · 

Further, using the estimate (80) we obtain, similar to the proof for Theorem 3.5, 

llu - RnullP ~ L llwkllP L Cllullw;·elllhklll 1+e/d 
lkl>n lkl>n 

= Cllullw;·e L 2-lkl(IH/d) 
lkl>n 

= Cllullw;·f (~ ~ n F(l, 1+n+d;2 + n; 2-(l+l'/d)2-n(IH/d) 

~ Cllullwe,e lllhlll 1H/d logd-l lllhlr1. D 
p 

85 

(90) 

(91) 

Theorem 3.7. Let Rnu be the piecewise d-linear approximation of a function u E ci· 1(Q) on a 
sparse grid on level n, as in Theorem 3.6, then, with lllhl/I = 2-n, the volume of the finest cells, we 
have, for p = 2, p = oo, the estimates 

llu - Rnullw1 ~ Clllhlll Iogd-l lllhlll- 1 llullwe,1. (92) p p 

lf, moreover, we know u E C2e, then 

llu - Rnullwi ~ ClllhlllllD2eull · p p (93) 

Proof. Let u be sufficiently differentiable and let 0 ~ rn ~ e and lrnl ;:?: 1, then: 
Part 1: 

d 

llDrnwkllp = nm IT (Rk - Rk-e;)u 
j=l p 

d 

~ cd Drn IT hkj Dej u 
j=l P 

~ CdlllhkllJ llDm De·ullp' (94) 
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llDrn(u - Rnu) llP ~II L Drnwkll 
jkj>n P 

(95) 

Part 2: 

llDrn(u - k,·u) llP ~II L Drnwkll 
jkj>n P 

~ CllD2eullprn(C1Tnnd-jrnj-1 + C2nlrnl-I), (96) 

with C1 = 0 if lrnl = d, and C2 = 0 if jrnj = 0. 
Because 

llvllwj, = (ilvll~ + L llDrnvll~) l/p, 
jrnj= 1,0~rri,,;;e 

we consider the case jrnj = 1 and we find 

lln - Rnuli WJ ~ CllD2eullplllhlll· 
Together with the result of Theorem 3.6 this proves the theorem. D 
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