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PREFACE 

Combinatorics has come of age. It had its beginnings in a number of 

puzzles which have still not lost their charm. Among these are EULER's 

problem of the 36 officers and the KONIGSBERG bridge problem, BACHET's 

problem of the weights, and the Reverend T.P. KIRKMAN's problem of the 

schoolgirls. Many of the topics treated in RoUSE BALL's Reareational Mathe

matias belong to combinatorial theory. 

All of this has now changed. The solution of the puzzles has led to 

i 

a large and sophisticated theory with many complex ramifications. And it 

seems probable that the four color problem will only be solved in terms of 

as yet undiscovered deep results in graph theory. Combinatorics and the 

theory of numbers have much in common. In both theories there are many prob

lems which are easy to state in terms understandable by the layman, but 

whose solution depends on complicated and abstruse methods. And there are 

now interconnections between these theories in terms of which each enriches 

the other. 

Combinatorics includes a diversity of topics which do however have 

interrelations in superficially unexpected ways. The instructional lectures 

included in these proceedings have been divided into six major areas: 

1. Theory of designs; 2. Graph theory; 3. Combinatorial group theory; 

4. Finite geometry; 5. Foundations, partitions and aombinatorial geometry; 

6. Coding theory. They are designed to give an overview of the classical 

foundations of the subjects treated and also some indication of the present 

frontiers of research. 

Without the generous support of the North Atlantic Treaty Organization, 

this Advanaed Study Institute on Combinatorias would not have been possible, 

and we thank them sincerely. Thanks are also due to the National Science 

Foundation for the support of some advanced students, in addition to the 

support of those with their own NSF grants. The IBM Corporation has kindly 

given us financial support to supplement the NATO grant. The Xerox Corp

oration has helped with donations of material and equipment. 

Finally we must acknowledge the extensive activities of the Mathematical 

Centre of Amsterdam in making all the arrangements necessary for holding this 

conference and preparing these proceedings. 

M. HALL, Jr. 

J.H. VAN LINT 





GRAPH THEORY 

ISOMORPHISM PROBLEMS FOR HYPERGRAPHS 

1. Introduction ....•. 
2. Transitive hypergraphs ... 
3. Extensions of the Whitney theorem. 
References. • 

EXTREMAL PROBLEMS FOR HYPERGRAPHS 

Introduction. • . • . . . . . • . . . . 
1. IV I is fixed, maximize I A I . . . . . 
2. Conditions varying on a wider scale. 
3. Weakening the conditions l ••••• 

by 

by 

4. One condition containing more operations or relations. 
5. Miscellany ......•••••. 
6. The problems we shall not consider here. 
7. I A I is fixed • . . . . • • . 
8. More hypergraphs •..•...•• 
9. n-Dimensional lattice-points ••• 

10. Further analogues and generalizations. 
11. References. • • .•.. 

APPLICATIONS OF RAMSEY STYLE THEOREMS 
TO EIGENVALUES OF GRAPHS 

1. Introduction .. 
2. The Ramsey style 
3. Question ( 1) 
4. Question (2) 
5. Question (3) 
6. Question (4) 
7. Question (5) 
References. 

theorems. 

by 

C. BERGE 

3 
5 
7 

12 

G.O.H. KATONA 

13 
13 
21 
25 
25 
27 
29 
30 
3J 
35 
36 
37 

A.J. HOFFMAN 

43 
45 
47 
49 
52 
54 
55 
57 





MATHEMATICAL CENTRE TRACTS 56, 1974, 3-12 

ISOMORPHISM PROBLEMS FOR HYPERGRAPHS 

C. BERGE 

Universite de Paris, Paris 5e, France 

1. INTRODUCTION 

A hypergraph H = (x,E) = (E 1 ,E2 , .•. ,Em) = (Ei : i E Ml is a family E 

of subsets Ei of a set X = {xj : j EN} of vertices. The sets Ei are called 

edges. 

The ra:nk r(H) of a hypergraph His the maximum cardinality of the 

edges. If all edges have the same cardinality, the hypergraph is said to be 

uniform. The subhypergraph induced by a subset A of X is the hypergraph 

HA (Ei n A: i EM, Ei n A f ~). 

If I EM, the partial hypergraph generated by I is the hypergraph 

(Ei i EI). The section hypergraph is the partial hypergraph 

(Ei: i EM, Ei EA S X). 

The duaZ H* of His a hypergraph with vertex set E = {e1 , •.. ,em}, and 

having edges which are certain subsets of E, namely edges X. where 
J 

{ei: i EM, xj E Ei}. X. 
J 

Consider two hypergraphs H = (E 1 , ... ,Em) and H' = (F 1 , •.. ,Fm). His 

equivalent to H' (H = H') if the mapping~: X ➔ Y, ~(xi) = yi, satisfies 

~(Ei) = FTTi (i EM) for some permutation TT of M. 

His equal to H' (or H = H') if the permutation TT in the above defini-

tion can be the identity. 

His isomorphic to H' (or H~ H') if there is a bijection~: X ➔ Y and 

if there is a permutation TT of M such that ~(Ei) = FTTi (i EM). The bijec

tion~ is called an isomorphism. 

H is strongly isomorphic to H' ( or H '-'"' H') if there is a bijection 

~: X ➔ Y for which ~(Ei) =Fi.for all i EM. 
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Observe that equality implies the other three relations and any of the 

relations imply isomorphism. 

We give some examples: 

EXAMPLE. Consider the following: 

1 X 

H H' 

4 2 4 2 

5 6 5 

3 3 

Observe that H ,,:, H', but H "t H', since if H ~ H', the vertex x would map to 

the non-existent vertex meeting edges 1, 2 and 5 in H'. 

EXAMPLE. Consider the line graph L(H) of the graph H above: 

2 

L(H) 

4 3 

Observe that L(H) 

is meaningless. 

L(H'), but since the edges are unlabeled here, equality 

Our purpose in this paper is to present some general results concerning 

isomorphisms and other relations among hypergraphs. 

A multigraph is a hypergraph with !Eil s 2 for all i EM. 

PROPOSITION 1. If H = (X,(E,). ) and H' = (Y,(F.). M) are multigraphs, and 
1 1EM 1 1€ 

if~= x ➔ Y is a bijection, then the following are equivalent: 

(i) ~ is an isomorphism; 

(ii) ~(x,y) = ~.(~(x),~(y)) for alZ x,y EX, where 

mH(x,y) is the number of edges joining x and x' in H. 

* * PROPOSITION 2. If His a hypergraph, then (H) H. 



PROPOSITION 3. If H, H' are hypergraphs, then H ~ H' if and on"ly if 
H* le:!. H1 *. 

PROPOSITION 4. If H, H' are hypergraphs, then H = H' if and on"ly if 
H* ~ H 1*. 

PROPOSITION 5. The dual, of the partial, hypergraph of H generated by 

(Ei: i EI) equa"ls the subhypergraph of H* induced by {ei: i EI}. 

* PROPOSITION 5. The dual, of the subhypergraph 

HA= (E. n A: i € M, E. n A~~) with A= {x. 
1 * 1 J 

hypergraph of H generated by (X. : j E J). 
J 

j E J} equa"ls the partial, 
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PROPOSITION 6. The dual, of the seation hypergraph H x A, A= {xj j € J}, 

equa"ls the subhypergraph of H* induaed by . U x. - U x .. 
JEN J jEN-J J 

2. TRANSITIVE HYPERGRAPHS 

Let H = (X,E) be a hypergraph. Two vertices x and y of Hare symmetria 

if there exists an automorphism$ of H such that $(x) = y. Two edges Ei and 

EJ. are symmetria if there exists an automorphism$ of H such that $(E.)= E .• 
1 J 

His said to be vertex-transitive (resp. edge-transitive) if any two 

vertices (resp. edges) are symmetric. A hypergraph that is both vertex

transitive and edge-symmetric is said to be transitive. Beaause of the 

dua"lity prinaip"le for hypergraphs, the study of vertex-transitive hyper

graphs reduces to the study of edge-transitive hypergraphs. 

The following result is a generalization of a theorem for graphs due 

to E. DAUBER [3]. 

THEOREM 1. For an edge-transitive hypergraph H = (X,E), there exists a 

partition cx1 ,x2, ••• ,~) of x suah that 

(i) IA r(XA) = r(X), where r(A) denotes the rank of HA, 

(ii) 8x is transitive for aii A. 
A 

Since His edge-transitive, JEiJ = h for all i. Let E1 = {x1,x2 , ••• ,~}. 

For i EM, let $i be an automorphism such that $i(E 1) = Ei. 

Let Yp = {$i(xp): i EM}, (p=l,2, ••• ,h). Then, H= (Y1 , ••• ,Yh) is a 

hypergraph on X, because 

U Y U ~. (E ) 
p p iEM 1 1 

U E. X • 
iEM 1 
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Let x1 ,x2 , ••• ,xk be the connected components of H. 

1,2, ••• ,k. 

Hence 

Thus, 

h h • 

Hence the equality holds, and 

Hence 

(i E M). 

A 
This shows that HX is uniform with rank IE 1 1, and furthermore, 

A 

l IE"I = l !E. n x I= h 
A 1 A i A 

PROOF OF (ii). In 8x 
A 

the edges Ei n XA and Ej n XA are symmetric, since 

Hence HX is edge-transitive. 
A 

Furthermore, two vertices x,y E Y are symmetric, since 
p 

Now consider two vertices x, x' in X, with x E Y, x' E Y. There exists a 
A p q 

sequence (Y ,Y ,Y , ••• ,Y) such that any two consecutive sets of the 
. p P1 P2 q 

sequence intersect. Let xk E Y n Y • In the sequence 
Pk-1 pls: 

(x,x1,x2 , .•. ,xq = x'), any two consecutive vertices are symmetric. Therefore 



x and x' are symmetric. 

Thus, HX is both edge-transitive and vertex-transitive. D 
:>.. 

COROLIARY 1. If H is an edge-transitive hyper-graph that is not vertex-

transitive, then His biaoZorabZe. 
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PROOF. This follows, since the partition of X has at least two classes, and 

they are both transversal sets of H. D 

COROLIARY 2. (DAUBER). If H is an edge-transitive graph that is not vertex-

transitive, then His bipartite. 

PROOF. This follows from corollary 1. D 

3. EXTENSIONS OF THE WHITNEY THEOREM 

Let G = (Ei: i EM) and G' =(Fi: i EM) be two connected simple 

graphs with IMI = m > 2. H. WHITNEY [6] has shown that IEi n Ej] =!Fin Fj! 

for all i,j implies that G~ G', unless G = K3 and G' = K113 , or vice versa. 

An easy corollary of WHITNEY's theorem states that if G and G' are two 

simple graphs different from K3 and K1 , 3 , then G - Ei ~ G' - Fi for all i 

implies that G:ag G'. (The weak reconstruction conjecture states only that 

n(G) > 4, G - Ei ~ G' - Fi for all i, implies that G~ G'). 

In [2], BERGE & RADO have proved several extensions of these theorems 

for hypergraphs. 

Denote by P(M) the set of all subsets of M = {1,2, ••• ,m}, by P1 (M) the 

set of all subsets I~ M such that III= 1 modulo 2, and by P0 (M) the set 

of all subsets J ~ M such that !JI = 0 modulo 2 and J f ~- Clearly, 
m-1 m-1 !P1 (M) I= 2 and IP0 (M) I= 2 - 1 (because the regular bipartite graph 

whose vertex-sets are P1 (M) and P0 (M) u {~} and where (S,T) is an edge iff 

-1 s lsl-lTI s 1, has a perfect matching). 

The two Whitney hyper-graphs w1 (Ml and w0 (M) are defined as follows: 

The vertex set of w1 (M) is P1 (M), and its edges are 

A. 
]. 

= {I : I € pl (M), I 3 i} I (i € M). 

The vertex set of w0 (M) is Po(M), and its edges are 

B. 
]. 

= {J : J € P0 (Ml, J 3 i} , (i € M). 
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w1 (M) w0 (M) 

m 1 
Al 

fa 

01 

m = 2 

Al B 

Q o•, 1 Q) B2 

12 
1 2 

123 1 
12 13 

Al B1 

m = 3 
A3 A2 

B2 
B3 

3 2 23 

PROPOSITION 7. Form ~ 2, the Whitney hypergraphs w1 (Ml = (Ai : i E Ml and 

w0 (Ml = (Bi : i E Ml are tuJo uniform hypergraphs of ro:nk 2m-2; their booiean 

atoms have aardinaZity one, and they are not isomorrphia. HOIJ)ever, they 

satisfy 

(i E M). 

PROOF. For K £ M, K f fa, put 

Clearly, w1 (M) and w0 (M) are not isomorphic, since l~l 
IBM I = 2m- l - 1. 

For K £ M, we have 

= {K} or fa • 

If this set of vertices is not empty, it has cardinality one, and it is a 

boolean atom of w1 (M). Therefore, all the boolean atoms have cardinality one. 



Now, let N = {2,3, .•. ,m}, and let us show that (Ai 

(Bi: i EN) are strongly isomorphic. 

If K £ N, !Kl = 1 modulo 2, we have 

A[K] - ~-K = {K} ' 

B[K] - BN-K ={KU {1}} 

i EN) and 

(and vice versa if IKJ = 0 modulo 2). Hence, for all K £ N, K # 0, we have 

This shows that (Ai : i e N) ~ (Bi : i E N). 0 

A converse of this proposition is: 

THEOREM 2. Let H = (E. : i e M) a:nd H' = (F. : i e M) be two families of 
1 1 

subsets E. £ x and F. £ Y (with possibly empty edges or infinite edges), 
1 1 

with at least one finite edge, such that 

(3 .1) {
for alZ_k, the~e exis~s a bijection 

.k(Ei) - Fi (i e M, ii k). 

•k= x ➔ Y such that 

Then H ~H', unless there exist two sets A£ x a:nd B £ Y with !Al = IBI 

such that (An Ei 

PROOF. The proof, by induction on m, is the same as in [2, theorem 2]. For 

the finite case, a direct proof, shorter than our original one, was found 

recently by LoVASZ [S]. 0 

Note that the statement of theorem 2 would not be true if there is no 

finite edge: take four infinite sets n0 ,n1 ,n2 ,n3 of the same cardinality, 

and put X = Y = DO u n1 u D2 u o3 , El= D1 u n2 u n3 , Fl = D2 u D3 , 

9 

E2 = F2 D2 , E3 = F3 = D3 . H = (E1 ,E2 ,E3 ) and H' = (F1 ,F2 ,F3) satisfy (1), 

and there is no A£ X such that (An Ei) ~w1 (1,2,3) and no B such that 

(B n Fi) ~ W 1 ( 1, 2, 3) • However, H ~ H' • 

GOROLLARY 1. Let !Ml ~ p ~ 2, a:nd let H 

be two hypergraphs such that 

(3. 2) i EI) , 

i EM) a:nd H' i EM) 

(I sM, lrl p-1). 
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Then H H' , unless there exist sets A£ EM, B £ FM and P £ M such that 

IPI = p and 

(3. 3) { 

(A n Ei 

(B n Fi 

PROOF. Form= p, consider two hypergraphs Hand H' with m edges which 

satisfy (3.2) and not (3.3). 

Let us show first that IEMI = IFMI; if we have for instance IEMI < IFMI, 

consider a set X obtained from EM by adding IFMI - IEMI additional points, 

and put Y =FM.By theorem 2, there exists a bijection~: X ➔ Y such that 

~(Ei) = Fi, and therefore 

This shows that )EM) = )FMI which is a.contradiction. Thus, IEMI = IFMI, 

and theorem 2, applied with X = EM, Y = FM shows that H\;;;;l,H 1 • 

Now, let m = p+t, t ~ 1, and assume that the statement of this corol

lary is true for hypergraphs with p+t-1 edges. Consider two hypergraphs 

H = (Ei: i EM), H' =(Fi: i EM), with M = {1,2, .•• ,m}, satisfying (3.2) 

but not (3.3). By the induction hypothesis, we have, fork EM, 

On the other hand, there exist no sets A0 £ EM, B0 £ FM, such that 

because this would imply the existence of two sets A and B satisfying (3.3). 

Since the theorem is true for p = m, we have also H '-'"' H'. D 

COROLLARY 2. Let H = (E. : i EM) and H' = (F. 
2 i 1 

of rank h < 2p- • If, for every J £ M with I JI 
(E. : i E J) ._.,., (F. : i E J), then H '-'"' H' . 

i i 

i EM) be two hypergraphs 

p-1, we have 

PROOF. The proof follows immediately from corollary 1. D 

COROLLARY 3. Let H = (Ei : i EM) and H' = (Fi : i E M) be two multigraphs 

such that 



(3. 4) 

(3. 5) 

for all i,j EM, 

{ 
H, H' do not contain as partial graphs 

Ws(i,j,k) and w1_s(i,j,k), respectively. 

Then H ~ H'. 

PROOF. This follows from corollary 1 with p = 3. D 
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The Whitney theorem follows easily from corollary 3 because, if Hand 

H' are connected, of order >4, and if, say, (Ei,Ej,Ek) = w1 (i,j,k) and 

(Fi,Fj,Fk) '-" w0 (i,j,k), then there exists an edge Eq which has exactly 

endpoint in w1 (i,j,k); hence 

one 

!Fin Fq] + !Fj n Fql + !Fk n Fql = 

= JE. n E I+ ]E. n EI + !Ek n Eql 
i q J q 

0 or 3 , 

which is impossible. If His of order 4 with more than three edges, it is 

easy to check that H ~ H'. 

The following result is in fact due to LOVASZ [4], who stated it only 

for graphs. 

THEOREM 3. Let H = {E. : i EM} and H' = {F. : i EM} be r-uniform sirrrple 
i l ) i 

hypergraphs of order n with IM I m > 2 (: , such that 

(i E M). 

Then H ~ H'. 

PROOF. Denote by H = P (X)-H the complement hypergraph of H, whose number 
r 

of edges is 

We may assume that X = Y. If S £ Pr(X), denote by a(S,H') the number of 

isomorphisms TT: X + Y such that {TTS: SES}£ {F. : i EM}. By the sieve 
i 

formula, 

m 
a(H,H') L 

k=0 
L 

I£M 
IIl=k 

a ({E, 
i 

i E 
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Since the terms with lr I > m<Hl are null, 

m-1 
(-l)k (3.6) a(H,H') I I a({E. i E I} ,H') 

k=O Is;;M 
J_ 

)IJ=k 

and 

m-1 
(-1)k (3. 7) a(H' ,H') I I a({F. j E J} ,H' l 

k=O J!;M J 

)J]=h 

Since, by hypothesis, Hand H' have the same proper partial hypergraphs, 

the terms in (3.6) and in (3.7) are equal, hence: 

a(H,H') = a(H' ,H') 2: 1 . 0 
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EXTREMAL PROBLEMS FOR HYPERGRAPHS 

G.O.H. KATONA 

Hungarian Academy of Sciences, 1053 Budapest, Hungary 

By a hypergraph we mean a pair (V,A), where Vis a finite set, and 

A= {A1 , .•• ,Am} is a family of its different subsets. IV I means the number 

of elements of V; this is usually denoted simply by n. Similarly, !Al =m. 

The elements of V are called vertices, the elements of A are the edges. 

We use the term hypergraph, because it becomes more and more familiar, 

but the questions concerned here did not develop directly from the theory of 

graphs (with some exceptions); the particular cases of these theorems give 

usually trivialities for graphs. 

A hypergraph is a k-graph if IAI =k holds for all AEA. (V,A) is a 

complete k-graph if A consists of all the k-tuples of v. 

In this paper we try to give a survey of some extremal problems of 

hypergraphs, namely, the problems developed from SPERNER's [74] theorem. We 

shall mention briefly some other areas, too. On the other hand we give some 

remarks on the possible generalizations for more general structures. 

We have the feeling, that the classification of the problems in this 

paper is not good. However, the various questions are connected in many ways, 

thus the only proper way of classification would be a graph whose vertices 

are the problems and the "connected" problems are connected. (The most 

interesting question concerning this graph would be "how to get nice new 

vertices?") 

For the interested readers it is suggested to read the survey paper 

of ERDOS & KLEITMAN [21] on this subject, since our paper contains it only 

partly. 

1. lvl IS FIXED, MAXIMIZE IAI 

The typical problem of this type: A set of conditions is given on A, 

and we are interested in determining the maximum (minimum) of m= IAI if 
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n = IV I is fixed and (V ,A) runs over all the possible A' s satisfying the 

given conditions. 

The origin of these theorems is the well-known theorem of SPERNER [74]. 

THEOREM 1. If (V,A) satisfies A, ~ A, (i~j), then 
l. J 

(1) 

where equality holds for the complete [n/2]-graph. 

The following beautiful proof is due to LUBELL. 

PROOF. C := {c0 , ... ,cn} is called a complete chain, if c 0 cc1 c ••. ccn. 

(c denotes inclusion without = ) ; (le.I = i follows). Let us count in two 
l. 

different ways the number of pairs (C ,A.) , where Ai EA and A. =C. E C for 
l. l. J 

some j. For a given Ai, Cj must be equal to CIAil' we have IAil! possibil-

ities in choosing c 0 ,c1 , ... ,c 1AiJ-l' and (n-lAil)! possibilities for 

CJA l+1•·••1C. The number of possible C•s is IA.I! (n-lA.I)!, and the 
i n i J. 

total number of pairs (C,A.) is '~ 1 IA. I! (n - !Ail)!. On the other hand, 
l. li= J. 

fixing C, there is at most one A, since A.= c,cck = A1 would contradict 
l. l. J 

the condition given on A. Thus, the number of pairs (C,A.) is at most n!, 
l. 

the total number of C's. We obtain the inequality 

or 

(2) 

m 

I 
i=l 

IA. I! (n - IA. I l ! :, n! 
l. l. 

m 

I-(1):,;1. 
i=1 IAn I 

i 

(1) follows from (2) easily, using 

The proof is completed. D 

Equation (2) (which was discovered by LUBELL [67], MESHALKIN [68] and 

YAMAMOTO [77]) is perhaps more important than (1) itself. If L~=l f(IAill, 

where f is an arbitrary function, is maximized, then the maximum is attained 



by the complete k-graph, where k is defined by 

f (k) (~) f(i> r) . 
l. 

The proof of this statement (cf. [58,45]) easily follows from (2) 

that is, 

m 

i ~ I 
i=l 

m 

I f( IA. I l 
i=l l. 

m £(IA.I) m f(IA.ll 
I ---1--- ~ I 1 

i=l f(IAill(I:) i=l f(kl(~) 
l. 

In some other cases LUBELL's method works again. In order to show, 
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what properties of Care used in general, (may be) it is worthwhile to 

formulate the method as a separate lemma. (W',B') is called a sub-hypergraph 

of (w,B) if W' SW and B' sB. (W',B) is a spanned sub-hypergraph if 

B = {B: Bs;;W', BEB}. We say that u is an independent set in (W,B) if u_s:w, 

and there is no B E B such that B .5: U. 

LEMMA 1. Let (w1,B1), ••. ,(wz,Bz) be spanned sub-hypergraphs of (W,B), the 

maximal number of independent elements being f 1 , ••• ,fz and f, respectively. 

Then 

(3) f '.'., 
min 
WEW 

z 
I f. 

i=l 1 

I {i: WEW,} I 
l. 

If, additionally, lw1 1 = •.• = lwzl' (w1 ,B1), ••• ,(Wz,Bz) are isomorphic, 

and l{i: wEW.}I does not depend on w, then 
l. 

(4) 

PROOF. Let F;:: W (IF I = f) be an independent set in (W, BJ . Let us count in 

two different ways the number of pairs ((Wi,Bi),w) where WEF and wEWi. For 

a given w E F there are I { i: WEW. } I sub-hypergraphs, thus the total number 
l. 

is l F l{i: WEW.}I. On the other hand, fixing a sub-hypergraph (W.,B.), WE l. l. J. 
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the maximal number of w' s satisfying w E Wi can be fi. Thus the number of 

pairs is at most I:=l fi. The resulting inequality 

(5) I 
WEF 

I { i : WEW. } I s 
l. 

However, since 

f min [{i: wEW.}I s l 
WEW l. w~F 

I {i: WEW.} I 
l. 

the inequality (3) follows from (5). 

and 

Using the additional suppositions 

I 
WEW 

I {i: WEW,} I 
l. 

zlw. I 
l. 

7wl'" 

zlw. I, 
J. 

On the other hand I:=l fi= zfi. Substituting this result into (3) the 

inequality (4) is obtained, which completes the proof. D 

How to apply this lemma to our problems? W equals 2V (the power set 

of V) and 8 consists of the subsets of 2V which are excluded by the given 

condition. If the conditions exclude only elements and pairs of elements 

of 2v, then (W,8) is a simple graph. For instance, in the case of SPERNER's 

theorem: two vertices A.,A. EW are connected iff A. cA. or A. cA,, For 
J. J J. J J J. 

w1, ... ,Wz we choose all possible chains C given in LUBELL's proof. In 

this case (5) leads to (2), and (3) leads to (1). 

The next natural condition (see [ 19]) for A is 

(6) A. n Aj 'F ~-J. 

This question is, however, trivial: A can contain at most one of the sets 

A, V-A, thus IAI s half the number of all subsets of V: 

(7) 
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(The application of lemma 1 gives the same if we take W. = {A. ,V-A.} for all 
l l l 

A. E2V; then (4) gives (7).) This is the best possible bound: 
l 

A = {A: VEA, vEV, v fixed} gives equality in (7). 

The other classical theorem (ERDOS, KO & RADO [19]) solves the problem 

for a combined condition, with a small modification. 

THEOREM 2. If (v,A) is a hypergraph satisfying the condition 

(8) A, t A.,A. n A. f 0, [A. I s k if A1 ,AJ. EA (ifj), 
~ J l J l ~ 

n where k s 2, then 

(9) (n-1) 
m s k-1 , 

and this is the best possible bound. 

PROOF. First the constructions concerning (9): 

A= {A: JA\=k, vEA, vEV, v fixed}. 

In the proof lemma 1 is used again. W consists of all elements of 2V 

having at least k elements. (W,B) is a simple graph. Two different vertices 

A,A' are connected iff Ac A', A ::>A' or An A'= J1). Wi's are defined in the 

following way. Let us consider all possible cyclic orderings of V. Wi con

sists of all subsets of V with sizes k, and with consecutive elements ac

cording to the i-th ordering. The (Wi,Bi) 's are isomorphic, fi does not 

depend on i. 

We shall show that fi s k if k S n/2. Fix the i-th cyclic ordering 

v 1 , ... , v n (the indices are mod n}, and suppose w 1 , ... , w f. are independent 
l 

vertices in (W.,B.). By the symmetry we can suppose w1 = {v1, .•• ,v }. If 
l l n 

the first and last elements of a w j are outside w 1 then either w j ::i w 1 , or 

wjnw1 = 0 holds. Then the first or last element of each wj is in w1 . Fix 

an 1, (lSl<r), and consider all sets A E Wi, the last element of which 

is v1 or the first element of which is vl+l" These vertices are all con

nected in (W,B) (or in (W.,B.)), thus there is at most one wJ. among them. 
l l 

Altogether, we have at most (r-1) wj's with last element from v1 , .•• ,vr-l 

or with first element from v2 , •.• ,vr. v1 can be the first element of w1 , only. 

(Other A E Wi with this property either contain or are contained in w1.) 
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The same holds for the wj's having v1 as a last element. We obtained 

f,$r$k. 
l. 

We need I {i: AEW.} I = !Al! (n- !Al)! • This is simply the number of 
l. 

cyclic orderings in which A has consecutive members. (5) gives the following 

inequality: 

m 
( 10) I 

i=l 

$ k 
n 

if k $ n 
2 

and hence, using that in the case I A. I $ k $ n/2, 
l. 

holds, we obtain (9), and the proof is completed. D 

This proof is a stronger version of the proof given in [42]. By (10) it 

is also easy to determine max 1~ 1 f(A.) under (8). li= i 
An obvious question: what happens if the condition IA. I $ k is omitted 

l. 

(or more generally, n/2 < k $ n). If n is odd, then theorem 1 gives the 

estimation ((n+~)/2), and the complete n;1-graph satisfies the conditions. 

The case of even n is solved by BRACE & DAYKIN [2]. 

Another type of conditions is A.UA. # V. This does not seem to be a 
l. J 

new condition, since it is equivalent to (V-A. ) n (V-A.) # //J. However, in 
l. J 

some combinations of conditions we can not use the complement sets. For 

instance if 

A. n A. 'f //J 
1. J 

and A. U A. ,j. V, 
1. J 

n-2 
this is the case. Under this condition m $ 2 , as DAYKIN & LOV~SZ [12] 

proved; equality holds with A = {A: VEA, wi.A, where v ,j. w are fixed elements 

of v}. 

The next type of conditions is the constraint on the sizes of A. n A. or 
1. J 

Ai UAj (i#j) (perhaps of Ai nAj nA1 , and so on). An example: in [19] the 

following condition is considered 

(11) IA. I = k, IA.nA. I 2c l, (k 2'. l). 
1. l. J 

The result [19]: if n is large enough (relatively to k and 1), then 
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(12) (n-1) 
k-1 ' 

where equality holds for A= {A: L c A where ILi = 1, La fixed subset of v} . 

. The result does not hold for small n, as the following example shows (given 

by MIN): n=S, k=4, 1=2, A={A: IAI =4, 1An{1,2,3,4}1 =3}, m = 16> (~)

This result gives a good example for the case, that sometimes the exact 

formulas are valid only for large values. 

There is a large class of problems, where the solution (the extremal 

hypergraph) can be constructed by finite geometries or block designs. We 

shall not consider these problems, because their methods are completely 

different from the problems treated here. Thus, we do not investigate (with 

some exceptions) the conditions of such type, where I A. n A. I has to be small, 
l. J 

or I A. - A. I has to be large. However, the questions ( 11) - ( 12) give an oppor-
l. J 

tunity for a glimpse at the connections between the two areas. Consider the 

case k = 3, 1 = 2 (in this simple case (12) holds if n <! 6 [39]). A Steiner 

triple system is a 3-graph (V, C) with the property, that each pair v, w E V 

(vfw) is contained by exactly one C EC. It is well known [71], that such a 

system exists iff n = 1 or 3 (mod 6). Use lemma 1; W consists of all the 

triples of V; w1 and w2 are connected in 8 iff lw1n w2 1 < 2. Wi consists of 

the triples arising from a fixed Steiner triple system by the i-th permuta

tion of V. It is easy to see, that (Wi,Bi) is a complete graph, so fi = 1. 

Trivially, lwil = (~)/3, lwl = (~), thus (4) gives f $ n-2, and this is 

( 12) for k = 3, 1 = 2. 

By the combinations of the above conditions we obtain a lot of prob

lems. We try to list some of them. 

If 

(13) A. U A. ,/ V, 
l. J 

then [2] (see also [45,59]) gives 

(14) ( n-1 ) 
[(n-2)/2] · 

If 

( l.5) IA. n A. I <! 1, 
l. J 

then [39] gives 
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n 
(~) (16) ms I if n+l is even 

l+n i=-
2 

and 

( n-1 ) 
n 

(17) m s n+l-1 + I (~) if n+l is odd. 
. n+l+l l. 

2 1.=--
2 

If 

then [69] gives 

Let 1 s k s n and 1 s h s min(k,n-k), and suppose 

(20) 

then [36] gives 

h s IA. I s k, 
l. 

If 1 s k s n, and there is no pair i~j such that 

(22) and 

then [17] gives 

(23) m S (the sum of k largest binomial coefficients of order n) . 

Conversely, if there is no pair satisfying 

(24) Al.. => A j 
and 
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then [43] gives 

(25) 

Concerning the combinations which are missing, three cases can happen. 

1) It is an easy consequence of another one. 

2) The author of this paper does not know the result. 

3) It is a nice open problem. 

An example for case 3): 

If IAinAjl ~ 1 but there is no pair with AiUAj = V, then probably the 

inequalities (16) and (17) hold with n - 1 rather than n. (We can not 

give examples for case 2).) 

2. CONDITIONS VARYING ON A WIDER SCALE 

In this section we consider the same kind of problems as in section 1, 

but the conditions Va:t'Y on a wider scale. 

The most general form of theorem 2 (and (11)-(12)) is the following 

theorem of HAJNAL & RoTHSCHILD [29]. 

(26) 

then 

If 

there are iJ. and ih with IA. n A. I ~ 1, 
i j ih 

provided n is la:t"ge enough (n ~ n (k, r, 1) ) • 

What are the best values for n(k,r,l)? By theorem 2, n(k,1,1) = 2k. For 

the cases of n(k,1,1) we can not expect a nice smallest value. The estima

tions of [19] are improved in [37]. The hopeful case is n(k,r,1). For 

instance, n(k,2,1) = 3k+1 might be true. 

The same question without I A. I = k, and only for 1 = 1 is solved by 
1. 

KLEITMAN [55]. So, if for any 1 1 , •.. ,ir+l there is a pair ij,ih such that 
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(28) 

and n (r+l)q, then 

(29) 
(r+l)q l ( (r+_l)q) + ( (r+l)~ r 

1. q r+l . 
i=q+1 

If n = (r+l)q-1, another exact estimation is given. For other n's there is 

a small gap between the estimations and the constructions [55]. 

An obvious open question is the case 1 > 1 ( IA. n A. I ;c: 1). This is 
l. j l.h 

solved only for r=l (see (15)-(17)). 

A third variant of these questions was posed by D. PETZ and solved by 

P. FRANKL [27] (students in Budapest): 

If 

(30) and IA. u ••• u A. I $ qr+s 
1 1 1 r 

where O $ s < r, then 

(31) 
min(q,s/2) 

m $ I 
i=O 

provided n is large enough depending on rand qr+s. The construction: let 

ccv, lcl =s, then A= {A: IAl=q+[s/2], IAn(V-C)I $ q}. The cases s=O and 

s = 1 are solved independently by E. BoROS. Observe that (30)-(31) is a 

generalization of ( 18) - ( 19) using the complement set. In ( 18) - (19) r = 2, 

s = 0 or 1. 

It seems that in (9) equality can hold (k < n/2) only for the given 

extremal hypergraph (all the A' s containing a given v E V). In [ 19] it is 

asked, what happens, if we exclude this extremal hypergraph, or suppose 
m 

iQl Ai= 0, HILTON & MILNER [33] have given the answer: 

(32) ( n-1) _ (m-k-1). 
k-1 k-1 

They have more general theorems, too: If 1 $ min(3,s+1) $ k $ n/2, and 

IAil $ k, Ai~ Aj (i~j), AinAj ~ 0, 

(33) A. n •• • n A. 
1 1 1 m-s+1 
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for any different indices i 1, •.• ,im-s+l' then 

if 2 < k s s+2, 

(34) 

if k s 2 or k ;?: s+2. 

A combination of (32) and (20)-(21) is given in [36]: 

Let 1 s k s n-1, 1 s h s min(k,n-k). If 

(35) 

then 

k [ n-1 n-k-1] 
< 36 i m s 1 + . I (i -1 ) + ( i -1 J . 

i=h 

The following three results [36] are modifications of the above ones, 

when besidesA1, ••• ,Am there is an additional edge B of our hypergraph with 

slightly different conditions. Leth and k satisfy 1 s k s n/2, 1 s h s n-1. 

If AinAj f 0, AinB f 0, IAil s 

excluded), then 

k, IBI = h, A. li;A., Al.. §.B (BcA. is not 
l. J l. 

[ (~=:i _ (n-h-1) if h;?:n/2, k-1 

m s 

(n-1) _ (h-1) if h<n/2. k-1 k-1 

[(
n-1) _ (n-h-1) 
k-1 k-1 

ms (n-1) _ (n-k-1) 
i + k-1 k-1 

if k s h, 

if h < k. 

0, then 
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m $ 

k 

I 
i=g 

k 

i + I 
i=g 

if k $ h, 

if h < k. 

In a paper of HILTON [35] the concept of the sirrruZta:neousZy disjoint 

pairs of edges is defined by 

Ai n Aj 
s s 

Let 2 $ 2k $ m (n-k-1) 
and s $ l k-l - 1. If 

and there are no s+1 
(37) {

IA. I $k, A. /!;A, 
l. l. J 

simultaneously disjoint pairs of edges, 

then (cf. [35]) 

(38) m $ (n-1) 
k-1 + s. 

If Ai c Aj is allowed, then we obtain (cf.[35]) 

k 
m $ I 

i=l 
(n-1) 
i.-1 + s. 

Or more generally [32], if h $ !Ail $ k, then 

k 
m $ I 

i.=h 

(n-1) 
i-1 + s. 

(For a recent result of this type see [11].) 

Similar results are obtained in [32] in case we exclude the exis

tence of s+l simultaneously disjoint r-tuples of edges. Fors= 0 it was 

solved earlier by ERDOS & GALLAI [18] for 2-graphs and later by ERDOS [20] 

fork-graphs. ERDOS' case is also included by (26)-(27), but the common 
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generalization of ID\.JNAL & RoTHSCHILD [29] and HILTON [32] is still open. 

3. WEAKENING THE CONDITIONS 

Could we weaken the conditions of our theorems with the same conclusions? 

In this section we give examples for that. 

First !<LEITMAN [49] and KATONA [40] independently observed, that if 

we fix a partition v0uv1 = V, (v0nv1 = ~) of V and we exclude the edges 

satisfying 

(39) and 

(instead of A, c A.), then under this weaker condition the conclusion 
l. J 

remains the same. 

A natural question: what happens for the partition v0uv1uv2 = V 

(v0,v1,v2 are pairwise disjoint), if we exclude edges equal in two Vi's 

and containing each other in the third? The answer is disappointing: m can 

be larger than ([n/2]). In [47] an additional condition is given, under 

which (40) remains true. This additional condition is rather complicated. 

It excludes some 4-tuples of edges of the hypergraph. Recently, GREENE & 

!<LEITMAN [28] determined weak conditions from the symmetric chain method 

(see [ 3]) . 

A combination of (39) and (22) is given in [44], and a combination of 

(39) and (24) in [43]. Recent generalizations of this type can be found in 

[60]. 

A question: how could we weaken the conditions of theorem 2 with the 

same conclusion? 

4. ONE CONDITION CONTAINING MORE OPERATIONS OR RELATIONS 

In this section we treat the problems where one condition contains more 

operations or relations. 

Probably the oldest result of this type is due to !<LEITMAN [56]. If 
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there is no triple satisfying 

A. n A. 
l J 

simultaneously, then 

2r+1 
m ,::; L 

i=r+1 

and 

provided n = 3r+1, and this is the best estimation. For n 

the results are near best possible. 

3r and n 

Another problem: there are no 4 different edges in the hypergraph 

satisfying both 

A. U A. = A_ 
l J k 

and 

3r+2 

2n 
ERDOS & !<LEITMAN [24] have constructed c 1 =-r edges with this condition and 

n they proved that 

but c 1 < c 2 • 

Many obvious general questions can be asked. 

In the next problem lvl is not fixed, but we list it here, because its 

character is similar to the other problems treated here. Now IAI = m is 

fixed and f(m) is the largest number such that there are always f(m) edges 

in the hypergraph no three different ones of them having the property 

The first result is given by !<LEITMAN [50]: 

f(m) ,::; cmhog m . 

J. RIDDEL proved ✓i;;" < f(m), and finally ERDOS & KOMLOS [22] determined 

f (m) < 2/2n'+4. 



BOLLOBAS proved for 3-graphs that if 

(41) there are no three different edges Ah :::i (A. -A.) u (A. -A. ) , 
- l J J l 

then 

if 3ln. The hypergraph with equality: Vis divided into 3 equal parts, 

and we choose the edges having exactly one vertex from each part. 
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It is conjectured also by BOLLOBAS, that a similar theory might be true 

fork-graphs. For 2-graphs it is a particular case of TURAN's graph theorem 

[76]. A conjecture of ERDOS & KATONA: Under the condition (41) (without 

size restrictions) the best hypergraph can be constructed in the following 

way. Divide V into [E.] classes of 3 and 2 elements, and choose those edges 
3 

which contain exactly one vertex from each class. 

5. MISCELLANY 

We will treat three further problems which do not really fit into any 

of these sections. The first question was proposed by Rf:NYI [70]. The edges 

of the hypergraph are called qualitatively independent if 

(42) 

are all non-empty. What is the maximum of m under this condition? The 

answer is 

m < ( n-1 ) . 
- [(n-2)/2] 

This is an easy consequence of theorems 1 and 2, as it is pointed out by 

KLEITMAN & SPENCER [59] and independently in [45]. (Observe, that (13) and 

(42) are equivalent, thus [2] also gives the solution.) In [59] a harder 

problem is also considered. We say, the edges are k-qualitatively indepen

dent if 
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for any different i 1 , ..• ,ik, where A0 is either A or A 

condition 

and a hypergraph is constructed with 

edges, where c and d are constants, k fixed and n->- 00 • 

V-A. Under this 

An unsolved question: maximize m under the condition that any of (42) 

has a size ~ r. 

The density of a hypergraph was defined by ERDOS. It is the largest 

s such that there is au£ v such that lul =sand IA n ul = 2s. SAUER [72] 

proved, that supposing 

s:,; k, 

we obtain 

A similar problem of ERDOS & KATONA: what is the maximum of m under 

the condition that IA. nA. I are all different (1 :,; i < j :,; m)? 
l. J 

A new area of problems is considered in [2]. The valency v = v( (V ,A)) 

of a hypergraph is the minimal valency of its vertices. In [2] the maximum 

of vis asked for under several conditions. 

n-2 ( n-1 ) 
2 + ! (n-1)/2 if n is odd, 

if n is even. 

If Ai Ii; Aj, then 

( n-1 
V :,; [ (n-1) /2]) 
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and if A. Is; A., A, nA. 
l. J l. J 

0, then the same holds. 

6. THE PROBLEMS WE SHALL NOT CONSIDER HERE 

These problems -although they have many points in common with our sub

ject- require different methods, and are approached from various points of 

view. These problems are also extremal problems for hypergraphs, but this 

concept is too wide. 

1) If A, nA. is small, A. - A. or (A.-A.) u (A.-A.) are large, the problems 
l. J l. J l. J J l. 

are usually coding problems. Their methods are closer to block designs 

and finite geometries. 

2) Covering problems. Usually a smallest family of edges is sought under 

some conditions, covering all the edges of a given hypergraph. In 1) and 

2) the solutions give hypergraphs where the edges are "far" from each 

other, in our cases they are "close". 

3) Ramsey type theorems. See the paper of GRAHAM & RoTHSCHILD in this 

tract (pp. 61-76). 

4) Tura:n type theorems. Certain generalizations are very near (see [46]). 

5) Combinatorial search problems. They are closely related to the coding 

problems (see [46]). 

6) We did not touch the question of the number of optimal hypergraphs. 

In many cases there is only one. In some other cases it is an open 

problem how many of them exist. A closely related problem: how many 

hypergraphs do we have under several conditions? For these questions see 

[21]. 

7) 6-systems and B-property. A hypergraph is a strong 6-system if A. nA. 
l. J 

(i;,!j) does not depend on i and j. In the case of a weak 6-system I A. n A. I 
l. J 

(i;,!j) is independent of i and j. f (k,l) denotes the minimum of IAI with 
s 

the property that in the case I A. I = k, ( 1 :,; i :,; m) , there are always l 
l. 

Ai's forming a strong 6-system. fw(k,l) denotes the same for weak 

6-systems. There are lower and upper estimations forfs(k,l) and fw(k,1). 

We say that (V,A) has property B, if there is a set Bev such that 

I BnA. I 2: 1 but B i> A. ( 1 :,; i :,; m) . The questions concerning 6-systems and the 
l. l. 

B-property are closely related to our problems; however,ERDOS [25] has 

recently published a survey paper on this subject. 
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7. I A J IS FIXED 

Perhaps, the main feature of the problems in this section is not IAI 

being fixed, because in many cases we obtain an inequality and in an in

equality usually it is not important, which variable is fixed and which one 

is not. However, the problems treated here -as we shall see- have a definite

ly different character. 

SPERNER's theorem says, if we have ([n/2]) +1 edges in a hypergraph 

(with lvl =n), then there is a pair of different edges A. cA .• Observe, 
]. J 

however, that adding one edge to the complete [n/2]-graph there are always 

more pairs with Ai c Aj. What is the minimum? More generally, if m and n 

are fixed, what is the minimal number of pairs A. c A.? The solution is given 
]. J 

by !<LEITMAN [51]. The optimal hypergraph is constructed easily. Order all 

subsets of V, first take all [n/2]-tuples, then all [n/2]+1-tuples, all 

[n/2]-1-tuples, all [n/2]+2-tuples, and so on. The edges of the optimal hy

pergraph are the first m subsets according to this order. 

The corresponding question is not solved yet, not even for the case of 

(15)-(16). This latter one can not be too hard for 1=1. The optimal hyper

graph could be constructed by taking the subsets of V according to their 

sizes, starting from n. (For the case of theorem 2 see later in this section.) 

Let (V,A) now beak-graph, and let C(A) denote the family of subsets 

C: CcAfor an AEA and lei =k-1. SPERNER [74] used in his proof the easy 

fact 

IC<A> I ;,: IAl •k 
n-k+l 

The question arises, what is minlC(A) I if n,k,m are fixed (m ~(~)).The 

construction of the optimal k-graph is as follows. Fix an order v1 , ••• ,vn 

of the vertices in V. Form a sequence of O's and l's in the usual way from 

each k-set of V. The first m sequences in the lexicographic order give the 

optimal k-graph. A formula can also be given for minlC(A) J. There is a 

unique expression of the form 

where t;?:1, ¾>¾-i > .•. >at and ai ;?:i. Then 
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(44) 

¾ 
The result is more clear if m has the form ( k}. Then we have for the 

optimum a complete k-graph in V' c V where IV' I = '7<. An interesting thing: 

(44) does not depend on n. (44) was first proved by KRUSKAL [63]. Some 

years later it was rediscovered in [41]. Then CLEMENTS & LINDSTROM [4] 

proved a more general theorem by a different method. They also proved the 

theorem independently, but they found [41] and [63] before publishing it. 

HANSEL [30] also has a paper, and recently DAYKIN [13] found a relatively 

short proof. 

A similar result was found earlier by KLEITMAN [52]: If (V,A) is a 

hypergraph with Ai JI Aj and I A I = (~) then the number of different sets C for 

which there exists an Ai EA with C::; Ai is at least 

k 
(45) I 

i=O 

This question was solved for any m by CLEMENTS [9], using (44). In this 

solution only an algorithm is given determining the optimal A, no formula 

of type (45) is given for the minimum in general. This remains open. [9] 

also contains useful inequalities concerning (44). 

There are a lot of other consequences of (44). E.g., recently DAYKIN 

[14] observed that theorem 2 (ERDOS, KO & RADO) follows from (44). Now we 

give some examples, where (44) is used in the proof. 

Let (V,A) beak-graph. A (k-1)-representation of (V,A) is a set 

{B1 , ••. , Bm} of (k-1) -tuples such that Bi c Ai ( 1 Si Sm) • ERDOS asked what 

is the maximal m for which any (V,A) with IAI =m has a (k-1)-representation. 

The answer [41] is 

m (2k-1) (2(k-1)-1) (1) 
k + k-1 + .•. + 1 • 

From inequality (2) it is trivial that if we modify the conditions of 

theorem 1 in such a way that IA. I = n/2 (let n be even) is excluded, then 
1 

m S ((n/2~_ 1) and this is the best. However, if we describe the number of 

edges Ai with I Ai I = n/2 (and this number is > 0, but < (n~2}) , then usually 

we do not obtain an exact estimation form. This question was solved in 
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[10] more generally: p, = l{A: AEA,IAl=j}I are called the pa:l'ameters of a 
J 

hypergraph. Let 0 ~ i 0 < n and the parameters Pi f. 0, Pi +1' •.• ,p be fixed. 
O o n 

max I A I is determined under this condition, provided A. Jl A .• 
1. J 

Another formulation is given independently by DAYKIN, GoDFREY & HILTON 

[ 15]: If p 0 = 0, p 1 , .•. ,p g > 0 are given integers, then the least integer n 

such that there exists a hypergraph (V,A) with Iv! =n, A. JlA. and with the 
l. J 

where f. is defined in (44). 
1. 

[15] solves a conjecture of KLEITMAN & MILNER, too: If (V,A) satisfies 

A. JlA. and has the parameters p 0 ,p1 , ... ,p, then there is an other hyper-
1. J n 

graph (V,A') satisfying A1 ;i\Aj and with parameters 0, .•• ,0,pn/z'Pn;2+1+pn/Z-l' 

... ,pn+p0 (if n is odd, then the middle is: ... ,0,0,p½(n+l)+p½(n-l)' P½(n+J)+ 

+p½ (n-3) '· · .J. 

Let the parameters p 1 , ... ,pl+r be fixed. What is the minimal number of 

(1-1 )-tuples contained in any edge A EA? This is answered in [8]. 

CLEMENTS [11] dealt with the problem what happens in theorem 2 if we 

take more edges than (~=!)- However, he did not minimize the number of dis

joint pairs, but maximized the number of edges meeting all other edges of 

(V ,A} • 

As is clear from the examples, (44) is almost necessary if contain

ment is involved and the optimal arrangement does not consist of complete 

i-graphs. We had to write "almost", because KLEITMAN's result in [51] is an 

exception. 

Another type of problems where IA! is fixed: what is the maximal number 

of pairs A. ::, A. , I A. -A. I = 1? An extremal hypergraph can be constructed by 
l. J 1. J 

choosing the first m = !Al edges according to the lexicographic order. This 

is proved in [1,31,65]. However, as CLEMENTS [6] pointed out it is an easy 

consequence of (44). 

minlC(A) I can be asked for under several conditions. For instance in [39] 

it is tried to do this supposing IA. nAj I ~ 1 (IA.I = k remains true, l < k). 

However, only IC1ti' I is minimized. ~he optimal h~pergraph is a complete k

graph on a (2k-l)-element subset of V. For fixed IA!, the hypergraph mini

mizing IC(A) I seems rather complicated, but it is regular enough to have 

some hope for the solution. 

P. FRANKL asked the following question of similar type. If IA! is fixed, 
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IAI =k for A€ A, what is the minimum of (2k-1)-tuples contained in a union 

A. UA. (A.,A. EA)? 
l. J l. J 

8. MORE HYPERGRAPHS 

In these problems we have more hypergraphs with the same vertex set. 

Usually it is supposed that the hypergraphs do not have common edges. The 

conditions and the questions are usually similar to those in the above 

sections. 

The first result was achieved by ERDOS [17]. If the hypergraphs 

(v,A1), ••• , (V,Ad) satisfy the condition 

JI A.' 
J 

A.,A. € A 
i J h 

(and A.nA. = flJ (i;,fj)),then 
l. J 

d 

( 1 s h s d) 

(46) I 
i=1 

IA. I s (the sum of the d largest binomial coefficients 
l. 

of order n). 

By the same proof as in the case of theorem 1 we obtain the inequality 

d 
where simply the hypergraph (V,.U1A.) was considered; thus one chain C can 

l.= l. 

contain at most d A's. (47) is equivalent to L~=O xk/(~) s d, where¾ 

denotes the number of A' s with I A I = k. It is clear, that under this 

inequality I~=O ~ is maximal if we take the maximal values of the xk's with 

minimal coefficients, thus xk 

The next question, what is 

(~) for the d 

max L:=1 1Ail, 

middle k's and O otherwise. 

if the A. 's are disjoint and 
l. 

Aj,~€ Ai (lsisd). The answer was found by KLEITMAN [53]: 

d 

I 
i=l 

The corresponding question for theorem 2 is unsolved. A problem of 

KNESER [62] is the following. If 

AinAj ;,f flJ for Ai,Aj EAh, AinAj 
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what is the minimum of d under these conditions? 

Another line was started by HILTON & MILNER [33]. Let (V,A) and (V,B) 

be two hypergraphs such that 

then supposing p 5 IAl,IBI and 1 5 min(2,p) 5 k 5 n/2, 

!(~)-r-:+l)+n-k+l if 1 < k 5 p+1, 

IAl+IBI s 

p+ ~)- r-tl )+ r-:=~+!) otherwise, 

holds. HILTON [34] generalized,for the case JBiJ 5 1 F k, KLEITMAN's 

result [57] on the same subject: (V,A) and (V,B) are hypergraphs satisfying 

IA. I k, JB. I 1, k+l $ n, Ai n B. ¥ Ill 
l. ]_ J 

then either 

IAI $ (n-1) 
k-1 

or 

IBI $ 
n-1 n-1-k 
(1-1)- ( 1-1 )· 

EHRENFEUCHT & MYCIELSKI [16] conjectured that if the hypergraphs 

satisfy 

k (Ai E A) ' I Bi I 1 (B. EB), IAI = IBI = m 
l. 

and 

iff i ¥ j 

then 

(48) 

It is proved in [48]. T. TARJAN [75] modified the proof yielding a 

stronger result: 
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Let (V,A) and (V,B) be two hypergraphs with IAI = IBI and 

(49) iff i ,f, j. 

Lemma 1 will be applied for the following graph. W consists of all 

pairs (S,T) where S,TSV, SnT = gl, and two distinct vertices (s1 ,T1),(s2 ,T2 ) 

are connected iff one of the sets s 1nT2,s2nT1 is empty. Fix an order on the 

elements in V. Let W. consist of those vertices (S,T) in which all elements 
l. 

of s precede all elements of T according to the i-th permutation of the 

elements of v. Observe that Wi spans a complete graph. That means fi = 1. 

We need the number 

From inequality (5) we obtain 

m 
(50) I 

i=l ( IAil+IB. I)$ 1. 
IA I l. 

i 

n! Is!! ITI ! 
c lsl+iTI l ! 

If IA. I= k, IB. I 1, (48) trivially follows. Other variants follow, too. 
l. l. 

E.g. if IA. l+IB. I S k then 
l. l. 

9, n-DIMENSIONAL LATTICE-POINTS 

SPERNER's question can be formulated in the following way. A square-

free integer N = p 1p 2 ••• pn is given; what is the maximal number of its 

divisors not dividing each other? After answering this question it is a must 
(l (l 

p 11 pnn, too. The divisors of N to answer the same for arbitrary N 
x1 x 

have the form p 1 ••• pnn' where O s x1 soi (1 sis n). Thus, with the 

divisors we can associate the lattice-points of an (o1+1)x .• ,x(an+1) 

n-dimensional parallelotope. All questions can be extended ton-dimensional 

parallelotopes in this way. Some of these extensions are motivated by other 

applications. 
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If the character of the problem is such that in the parallelotopes there 

do not appear new phenomena (compared to the hypergraphs), then it is easier 

to start making a conjecture and proof for the 2- and 3-dimensional parallel

otopes, since they are more graphic. 

We briefly list the results which are generalizations of this type. 

SPERNER's theorem was generalized in [3]. The bound form is the 

maximal number of lattice-points with a fixed coordinate sum ( =[Ia./2]). 
1 

SCHONHEIM [73] generalized (46) and (39)-(40). In [44] the common 

generalization is given. (25) is generalized in [43]. 

ERDOS & SCHONHEIM [26], further ERDOS, HERZOG & SCHONHEIM [23] have 

investigated the generalization of (6). The max of m is not equal to the 

minimal m for which there exists an m-element set of divisors such that 

any other divisor is coprime to one of them. Both values are determined. 

An analogue of (15)-(16) is generalized in [54]. 

The analogue of (44) is proved in [4]. Of course, there are no 

formulas, but it is proved that one of the optimal sets of lattice-points 

gives the first m in the lexicographic order. Other results concerning this 

theorem can be found in [7]. [5] gives the generalization of ERDOS' problem 

of (k-1)-representation of k-edges. [8] also concerns this generalization. 

In [6] CLEMENTS shows, that the theorem of LINDSEY [65] (which maximizes 

the pairs of neighbouring lattice-points if their number is given) is an 

easy consequence of the generalized formula (44). Recently KLEITMAN, KRIEGER& 

RDTHSCHILD [61] determined the maximal number of such pairs which differ 

only in one coordinate. 

LINDSTROM [66] solved an interesting question of KRUSKAL [64], which 

is an analogue of (44). A hypergraph can be imagined as a set of certain 

faces of an (n-1)-dimensional simplex. Thus, if we fix the number of (k-1)

dimensional faces, then (44) gives the minimal number of (k-2)-dimensional 

subfaces. LINDSTROM solved the same question for more-dimensional cubes. 

10. FURTHER ANALOGUES AND GENERALIZATIONS 

There is an attempt to put these combinatorial theorems in a more gen

eral -algebraic- form. Most results concern SPERNER's theorem and close mod

ifications. All these papers state the theorems for certain partial orders. 

We do not even give the list of these papers because KLEITMAN's paper in 

this tract contains it. The results contain all important combinatorial ana-
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logues of SPERNER's theorem with one exception: the partitions of a finite 

set under refinement. 

For generalizing other problems, there is only one result by HSIEH 

[38]. It solves an analogue of theorem 2: what is the maximal number of 

k-dimensional non-disjoint subspaces? And what is interesting, the harder 

problem, when the subspaces must have 1-dimensional common subspaces, is 

also solved for small n's. Compare this with (11)-(12) which is true only 

for large n's. The reason for the difference is, that the middle levels of 

the partial order of the subspaces are much larger than those of the sub

sets of a set. 

It would be nice to have an algebraic generalization of (44). However, 

it seems to be hard, because besides the partial order we need an ordering 

in the levels of the elements of the same rank. 
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APPLICATIONS OF RAMSEY STYLE THEOREMS 

TO EIGENVALUES OF GRAPHS *l 

A.J. HOFFMAN 

IBM Watson Research Center, Yorktown Heights, New York 10598, USA 

1 . INTRODUCTION 

Let G be a graph, A(G) its adjacency matrix, i.e. A (a .. ) is given 
1.J 

by 

a,. 
1.J 

if i and j are adjacent vertices, 

otherwise. 

Thus, A= A(G) is a symmetric matrix whose entries are O and 1, with every 

aii= 0. For any real symmetric A, we denote its eigenvalues by 

or 

.... , 

as is convenient. For A= A(G), we sometimes write A. (G) 

A. (A(G)) or Ai(A(G)) respectively. 
1. 

1. 

There have been many investigations in graph theory, experimental de

signs, group theory, etc. in which knowledge of properties of {A, (G)} 
1. 

-which we shall henceforth call the spectrwn of G- has been very useful 

even where the eigenvalues are not mentioned in either the hypotheses or 

conclusions of the theorems proved. These investigations furnish part of 

(the rest is natural curiosity) the motivation for study of questions where 

*) The preparation of this manuscript was supported (in part) by us Army 
contract# DAHC04-72-C-0023. 
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the eigenvalues play an explicit role. More specifically, we can ask (and 

sometimes answer) questions of the following type: 

(1) What properties of a graph control the magnitude of ,,i(G) or 

We can answer this in a limited way for A1 ,A2 and A1 . 

A. (G)? 
l 

(2) If G is an induced subgraph of H, written G c H then (as we know from 

matrix theory), Ai(G) s Ai (H), Ai(G) ~ Ai(H). Suppose we specify that 

every vertex of H must have large valence. Then by how much must 

A. (H) exceed Ai(G) or Ai(G) exceed Ai(H)? We can answer this for A2 
l 1 

and A 

(3) Define a relationship~ on V(G) to mean i ~ j if for every k~i,j, 

aik=ajk' and let e(G) be the number of equivalence classes so defined. 

The examples 

and 

e(G) 2 e(G) = 3 

show that e(G) is not uniquely determined by the spectrum of G (which 

is (2,0,0,0,-2) in both cases). But is the magnitude of e(G) roughly de

termined by the spectrum? The answer is yes in a sense to be made pre

cise later (and this result will be completely proved in these notes, 

whereas other results will be sketched). 

(4) What real numbers can be limit points of the {A 1 (G)}, as Granges over 

all graphs, or {A 2 (G)}, ... , or {A 1 (G)}, etc.? We know the early limit 

points for {A 1 (G)} and {A 1 (G)}. 

(5) Suppose (as is sometimes done) we represent G by the matrix 

B(G) = J-2A(G). What can be said about the spectrum of B(G)? To show 

that the study of B(G) has its own surprises, we mention (and will in-
1 2 

dicate the proof of): for i > 1, I A. (B) I s 29 (A (B)) 
l 

Of course the study of these questions mixes ideas of graph theory 

and matrix theory, and the principal tools from graph theory are RAMSEY's 

theorem and some relatives. 



45 

2. THE RAMSEY STYLE THEOREMS 

For theorems 2.1-2.3, Sis a set of symbols, Is! = s ~ 2. 

THEOREM 2.1. There exists a function R(n,s) such that every syrronetric ma

trix of order R(n,s) with entries ins contains a principal submatrix of 

order n, with all diagonal entries the same, all off diagonal entries the 

same. 

This is essentially RAMSEY's theorem, which needs no proof here. 

THEOREM 2.2. There exists a function Z(n,s) such that every square matrix 

with entries ins of order Z(n,s) contains a square submatrix of order n, 

every entry of which is the same. 

This is easy to prove directly (see, e.g., the special cases= 2 

given in [1], which easily generalizes) but we will give another proof 

soon. 

THEOREM 2.3. There exists a function H(n,s) such that every matrix with 

entries ins containing H(n,s) rows, no two the same, contains a square 

submatrix M of order n, which (after permutations of rows and columns) has 

the appearance 

(2 .1) 

(all diagonal entries a, lower triangle entries b, upper triangle entries 

c), a,b,c not all the same. 

PROOF OF THEOREM 2.2. (assuming theorem 2.3). Let Z(n,s) = nH(2n,s), and 

let A be of order Z(n,s). If at least H(2n,s) rows are different, then the 

lower left (or upper right) part of (2.1) yields the desired submatrix of 

order n. Hence, we may assume that A has n rows the same. By symmetry, A 

has n columns the same. D 
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PROOF OF THEOREM 2.3. (cf. [3]). We first prove: 

(2 .2) 

If f(r) = 2(sr-1)/(s-1), if A has all entries ins and has f(r) 

different rows, then A contains a submatrix B of 2r rows and r 

columns which, after permutation of rows and columns has the 

form 

b 2k,j for j i k, k,j=1, ... ,r. 

When r = 1, f(r) = 2, verifying (2.2) in this case. Assume (2.2) has 

been shown for r-1, and let A have f(r) different rows. We may also assume 

that each column of A is essential for the statement that any two rows are 

different (otherwise, such an inessential column can be discarded). Now 

suppose the first column of A were discarded. Then two rows of A (say 1 

and 2) would be the same. Hence we may assume a 11 i a 21 , but a1. = a2. for 
J J 

j > 1. Of the f(r-2) remaining rows, at least (f(r)-2)/s must be the same 

in column 1 . Now 

f(r)-2 = (2(sr-1) - 2)/s = f(r-1). 
s s-1 

The induction hypothesis applied to these (f(r)-2)/s rows and the remaining 

columns of A completes the proof of (2.2). 

Consider the matrix B given by (2.2). We use it to define a symmetric 

matrix C of order r on (;) + s 2 symbols as follows: cii is the unordered 

pair {b2 . 1 . ,b2i . } of distinct symbols in S; c .. = the ordered pair 
i- ,i ,i 1J 

(b2 . . ,b2 .. ) if i < j, the reverse if i < j. Assume r = R(n, (s)+s2). By 
1,J J,1 2 

theorem 2.1, C contains a principal submatrix of order n in which all dia-

gonal entries are the same, all off diagonal entries are the same. Refer

ring back to B, this means B contains a matrix D with 2n rows and n columns 

such that (after possible row interchanges), we have 

dll d32 d = (say) al 2n-1,n 

d21 d42 d2n,n (say) a2 

d2k-1,j d2k · 
'J 

(say) b, for all j > k 

d2k-1,j d2k ' , J 
(say) c, for all j < k. 



Clearly the odd or even rows of D (either unless b = c, and one of 

a 1,a2 is b=c) produce the desired submatrix. Thus we have shown 

R(n, (;)+s2) 
s -1 

H(n,s) = 2 s-l • D 

The last Ramsey style theorem we will use is 
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THEOREM 2.4. There exists a funation S(n) suah that, if G is a aonneated 

graph on S(n) vertiaes, G aontains a vertex of valenae at least n, or a 

path of length n as an induaed subgraph. 

The proof of this theorem is too easy to give here. 

3. QUESTION (1) 

Define Hn to be the graph on 2n+1 vertices, in which one vertex is not 

adjacent to exactly n other vertices, but all other pairs of vertices are 

adjacent. For any graph G, let i(G) be the smallest positive integer such 

that neither Kl,i nor Hi is an induced subgraph of G. The following theorem 

is proved in [2]. 

THEOREM 3 • 1 • The funation l ( G) is bounded from above and be Zow by a funa

tion of I >.. 1 (G) 1-

The proof of theorem 3.1 has three parts. The first part shows that 

i(G) is bounded from above by a function of 1>-- 1 (G) I. The second part pro

ceeds as follows: The distance d(G,H) between two graphs G and H with 

V(G) = V(H) is defined by making d(G,H) the maximum valence of the ver

tices in the graph (G-H) u (H-G). Then L(G) is defined to be the smallest 

integer L such that there exists a graph H with 

d(G,H) :,; L 

and H having a distinguished 

(i) every edge of H is in 

(ii) every vertex of H is 

(iii) lv<Kil n V(Kj) I :,; L 

1 2 
family of cliques K ,K 

i at least one K, 

, .... 

in at most L of the Ki's, 

for if,. j. 

satisfying 

Finally, it is proved that L(G) is bounded from above by a function of i(G). 

The third part of the proof shows that l>-- 1 (G) I is bounded from above by a 
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function of L(G). 

The proofs in the first and third parts are arguments from matrix 

theory, and are in [2]. The proofs in the second part use RAMSEY's theorem 

(theorem 2.1 in these notes). For the remainder of this section, S = {0,1}, 

and we use R(n) for R(n,2). 

The strategy is to look for "large" cliques in G ("large" depends on Jl) 

and define an equivalence relation on large cliques. The equivalence 

classes of large cliques are themselves almost cliques, i.e., we can add a 

graph in which each vertex has valence bounded by a function of Jl, so that 

they become cliques. These added edges are the edges of H-G. Further the 

edges of G not contained in any large clique form a graph in which each ver

tex has valence bounded by a function of Jl, and these edges are the edges of 

G-H. 

Let N = N(Jl) = i 2+Jl+2. Define W to be the set of all cliques Kc G 

such that lv(K) I 2 N. We shall prove the statements given in the preceding 

paragraph for the cliques in W (the full discussion, including (ii) and 

(iii), requires further conditions on N). 

LEMMA 3.L If K,K' E w, define 

K ~ K' 

if each vertex of K is adjacent to all but at most Jl-1 vertices of K'. 

Then~ is an equivalence relation. 

PROOF. Reflexivity is clear, since lv(K) I 2 Jl. To prove symmetry, assume 

there is a vertex v in K' not adjacent to at least Jl vertices in K, and 

let A denote that set of Jl vertices in K. Each vertex in A is not adjacent 

to at most Jl-2 vertices in K' other than v, since K K'. Hence, the set 

of vertices in K' each not adjacent to at least one vertex in A consists 

of v and at most Jl(Jl-2) other vertices. Since N > Jl+Jl(Jl-2)+1, it follows 

that K' contains at least Jl vertices each of which is adjacent to each ver

tex in A. Call that set of Jl vertices B. Then v,A,B generate an HJl, con

trary to the definition of Jl. This contradiction proves that~ is symmetric. 

To prove transitivity, assume K1 ~ K2 , K2 K3 , K1 f K3 • Then KJ 

contains a vertex v not adjacent to a set C of Jl vertices in K1 . Since 

N > 2Jl+Jl(Jl-Jl)-1, and K1 ~ K2 , it follows that K2 contains a subset D of 

2Jl-1 vertices each of which is adjacent to all vertices in C. But since 

K3 K2 , D contains some subset F of Jl vertices adjacent to v. Then 
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C,F,v generate an H£ c G, which is a contradiction. D 

Henceforth, the letter E will denote any equivalence class of cliques 

in w, and V(E) will be the union of all vertices of all cliques in E. 

LEMMA 3.2. Let Ebe cm equivalence class, v E V(E). Then vis adjacent to 

all but at most R(£)-1 other vertices in V(E). 

PROOF. Let Kv EE be a clique containing v. By RAMSEY's theorem, if 

F c V(E), IF\ 2 R(£), and every vertex in F not adjacent to v, then F con

tains a K£ or its complement K£. If K£ c F, then since lv(Kv) I > £2-2£+1, 

there exists a vertex w E Kv adjacent to all vertices in K£. Thus Kl,£ c G, 

a contradiction. 

If K£ c F, then lv(Kv) I > £+£(£-2)+1 implies that Kv contains a set 

of£ vertices each adjacent to all the vertices in K£, thus generating 

an H£. D 

LEMMA 3.3. Let H be the graph famed by edges of G not in any clique in w. 
Then every vertex in H has valence at most R(N). 

PROOF. If not, then by RAMSEY's theorem we would have Kl,£ c G, or the 

vertices adjacent to v in H would contain a clique in W, contradicting the 

definition of H. D 

Results analogous to theorem 3.1 have been established for A2 (G) by 

HOWES [6]. For A1 (G), it is easy to see that its size is controlled by the 

size of the smallest t such that Kl,t i G, Kt i G. Corresponding results 

for other A, (G) or Ai(G) are not known. 
l. 

4 . QUESTION ( 2) 

Let us define 

l(G) = lim 
d-+<o 

sup 
H:::G 

d(H)>d 

where d(G) is the minimum valence of the vertices of G. Also 

lim inf 
d-+<o H=G 

d(H)>d 

A. (H). 
l. 
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It is easy to see that µ 1 (G) = 00 • Further, we shall give formulas for µ2 

and µ 1 showing that they are finite. By matrix theory arguments, this will 
i 

prove the existence and finiteness of all otherµ and µi, although we 

have no formulas for them. 

1 
THEOREM 4.1. (cf. [4]). Let lv(G) j = m and let C be the class of all (0,1) 

matrices c with m rows such that every row sum of c is positive, but this 

property is lost if any column is deleted. Then 

µ l (G) = ma:'l_ Al (A-CCT) . 
CEC 

THEOREM 4.2. Let jv(G) j = m ~ 2, and let C2 be the class of all (0,1) ma

trices c with m rows and at least two columns such that every row sum of c 

is positive, and, if c has more than two columns, no column can be deleted 

without destroying the property that c has positive row sums. Then 

We shall not make any remarks about the proof of theorem 4.2, except 

to state that, as far as the theme of this lecture is concerned, the use 

of Ramsey style theorems is analogous to the uses in the proof of theorem 

4.1. 
1 

To prove theorem 4.1, one proceeds as follows: Let any CEC be given, 

and let C have k columns. Extend G to a graph GC(n) by adjoining k cliques 
l k Kj 1·s K , ... ,K, each with n vertices, such that every vertex of clique 

adjacent to vertex i of G when c .. = 1, and not adjacent when c .. 
l.J 

0. 
. l.J Jl 

Additionally, no vertices of KJ and K, j ~ Jl, are adjacent. Then a little 
1 1 T 

algebra shows that lim >. (G(n)) = >. (A-CC), so 
n-+co 

(4.1) 
1 1 T 

µ (G) ~ max A (A-CC ) • 
CEC 1 

Note that, if d 1 > d 2 , sup 
H:t; 

d(H)>d1 

sup 
H:t; 

d(H)>d2 

>. 1 (H).Together with (4.1) 

1 
this impliesµ (G) exists and is finite. To prove that 

(4.2) 
1 

µ (G) :e; 
1 T 

max A (A-CC ) , 
CEC 1 
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let E > 0 be given. Choose an integer n such that, for all the finitely 

many graphs GC(n) discussed in the proof of inequality (4.1), we have 

(4.3) 

1 
From the definition ofµ (G), we know that, for any d, there exists H ~ G 

such that 

(4.4) d(H) > d 

and 

(4.5) 

1 
We shall choose d (depending on n (hence on E) andµ (G)) such that, for 

any H ~ G and satisfying (4.4) and (4.5), there is a c E C1 such that 

(4.6) 

which, by matrix arguments, shows 

(4.7) 

Combining (4.5), (4.7) and (4.3) yields (4.2). 

So the critical thing is to prove (4.6). Besides RAMSEY's theorem, we 

need theorem 2.2, and we write Z(n) for Z(n,2) (our set Sis {0,1}). 

z(k) (n) will be the k-th iterate of Z(n). 

By section 3 we know that there is a function i such that 

(4.8) 

(4.9) 

Let D(G) be the maximum valence of the vertices of G, let 

(4.10) N 
1 ( (1;)> 1 

R(max {t(µ ), z (max {n,t(µ )})}), 

(4.11) m-1 
d ;,: 2 N+D(G). 
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Since every vertex of H has valence at least d, every vertex of G c H 

is adjacent to at least 2m-lN vertices in H-G. For each Sc {1, ... ,m}, 

S ~ 0, let H(S) be the set of vertices in H-G, each of which is adjacent 

to the vertices in Sand to no other vertices in G. Hence, there exist sets 

s1 ,s2 , ... ,st (t $ m) of subsets of {1, ... ,m} such that every vertex in G is 

in at least one Si, discarding any Si loses this property, the sets H(Si) 

are disjoint, and each [H(S.) I ~ N. Let 
1 

z 

We contend H(Si) contains aclique ~- For, from (4.10) and RAMSEY's theo

rem, the only other possibility is that H ~ H(Si) contains Kl,t(µl)' (note 

that H(Si) is attached to at least one vertex of G), violating (4.8). 

Next, consider each of the t disjoint cliques K_ 1 , ••• ,K_t. Take any 
z z 

two of these cliques. By theorem 1.2, they either contain large subcliques 

(at least t(u1) in size) with all vertices adjacent (impossible by (4.9), 

since each is attached to a vertex of G not adjacent to the other), or 

large subcliques with no vertices of one adjacent to vertices of the other. 

Since t ~ m, we need only iterate this process at most (m-l)+(m-2)+ ... +1 = 

= ~)times.When we are done, we have the desired C and GC(n). (We have 

used here tacitly that Z(a) ~ a, of course). 

5. QUESTION (3) 

We shall show that the magnitude of e(G), defined in the introduction 

(3), is controlled by the spectrum of G. For a$ b, define A(a,b) (G) to be 

the number of eigenvalues of Geach of which is at most a or at least b. 

For the function H(n,m) in theorem 2.3, write H(n) for H(n,2) (S={0,1}). 

THEOREM 5.1. 

A((-/s-1)/2,l)(G) $ e(G) < R(H(R([5A+1]))), 

(where A on the right is the same as A on the Zeft). 

To prove the left inequality is easy. Suppose i j and i and j are 

adjacent. Then it is easy to see that if j ~ k, i and k, and j and k are 
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adjacent. If i and j are not adjacent, and j ~ k, then i and k are not ad

jacent and j and k are not adjacent. Hence each equivalence class is a 

clique or an independent set. Now if there are e equivalence classes, the 

matrix A(G) can be partitioned 

A(G) 

A11 A12 Ale 

A21 A22 A2e 

A 
ee 

such that each Aij (ilj) is O or J, each Aii is O or J-I. Thus the number 

of eigenvalues not O or -1 of A(G) is at most e. But every eigenvalue in A 

is not O or -1. 

To prove the right inequality, assume it false and that 

e(G) ~ R(H(R([5A+1]))). It follows from theorem 2.1 that there exists a 

s;ibset X of H(R([SA+l])) vertices of G which are inequivalent, and form 

either a clique or an independent set. In any case, the rows of A(G) cor

responding to these vertices, together with the columns of A(G} correspond

ing to the complementary set of vertices, form a submatrix of A(G) in 

which all rows are different. By theorem 2.3, there exists a square subma

trix of this matrix of order R([SA+l]), which, after row and column permu

tations, has the form I,J-I, or triangular. Let S be the set of vertices 

corresponding to the columns of this submatrix. By theorem 1.1, since 

lsl = R([SA+l]), S contains a subset Y of vertices, with IYI = [5A+1] where 

Y is a clique or independent set. The corresponding [SA+l] vertices of X 

form a subset w such that the incidence matrix of W versus Y is I,J-I, or 

triangular (say V). Thus, setting m = [5A+1], A(G} contains a principal 

submatrix of order (2m X 2m) of one of the following forms 

C :) ( 0 J-I) 
J-I 0 (:T :) 

e-I :) (J-I 
J-I 

J~I) (J-I 
VT :) 

(J-I I ) 
I J-I 

(J-I 
J-I 

J-I) 
J-I 

(J-I 
VT J:J 
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In each of these nine cases, the matrix has more than A eigenvalues 

s (-/5-1)/2 or~ 1, which is impossible. 

It is interesting that if 1 is replaced by 1 +£or (-/5-1)/2 repla

ced by ((-/s-1) /2 )-£, the right-hand inequality is no longer true. 

The same arguments will establish a theorem similar to theorem 5.1 if 

is replaced by (/s-1)/2 and (-ls-1)/2 is replaced by -2. 

6. QUESTION (4) 

1 
We only know some small limit points of {A 1 (G)} and of {A (G)} as G 

varies over all graphs. To be more specific, let A1 be the set of distinct 

numbers each of which is Al (G) for some G. 

n+l n-1 THEOREM 6.1. (cf. [5]). Let P (x) = x -(l+x+ ... +x ), n=l,2, .... Let 

S be the unique positive rootnof P, and a =S½+S-½. Then the numbers 
n n n n n 

2=a1<a2< ••. are all Zimit points of A1 Zess than T½+T-½, where T=½(ls+l). 

A very rough sketch of the proof proceeds as follows. If a is a limit 

point of A1, then there must exist a sequence of connected graphs G1 ,G2 , ... 

such that Al (Gil are all different, and Al (Gi) +a.But this means that the 

graphs Gi are all different, hence IV(Gi) I+ 00 , hence (theorem 2.4) for 

sufficiently large i, Gi contains a vertex of large valence (impossible, 

for this implies Al (Gi) + 00 ) or a long path. For a path Sn of length n, 

Al (Sn)+~• w~ich must be the smallest limit point. Next, assume 
2 -2 

2 <a< T +T • Then Gi cannot be a simple circuit infinitely often, for 

A 1 (circuit) = 2. One can also show that if G. contains a circuit, and at 
1 ,1 

least one additional edge, A1 (Gi) > T2+T- 2 • Hence, this cannot occur infini-

tely often, so we may assume each Gi is a tree. One can also prove that, 

if a tree G. contains at least three vertices of valence at least three, 
,1 1 

Al (Gi) > T2+T- 2• Further, if (infinitely often), 

valence at least four, then lim Al (Gil > T½+T-½. 

G. contains a vertex of 
1 

Continuing arguments and 

calculations in this vein, one finds that the desired limit points must be 
k 

limit points of the biggest eigenvalues of the sequence of graphs {Gi}, 

where k is fixed, i➔oo, and G~ is 
1 



i 

and lim A1 (G~) = ak. 
i-- i 

If we define A1 to be the set of distinct numbers each of which is 
1 

A (G) for some G, then 
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THEOREM 6.2. Let T be a tree on at least two vertices, L(T) its line 

graph, e an end of T, A(L(T,e)l be A(L(T)) modified so that there is -1 in 

the diagonal position corresponding to e. Then A1 (A(L(T,e))) >-2, and 

every Zimit point of A1 > -2 occurs in this way. 

Here again we use theorem 2.4. For if lim A1 (G.) 
i-- 1 i 

contain arbitrarily long paths s, because lim A (S) 
n ~ n 

Gi must contain at least one vertex v of large valence. 

a> -2, {G.} can not 
i 

-2. So, for i large, 

By theorem 2.1, 

the vertices adjacent to v contain a large clique or large independent set; 

but the latter is impossible, because this would imply Kl,m c Gi form lar

ge, which contradicts A1 (G1) of modest size (see section 3). Hence, we 

know that, for i large, Gi contains at least one large clique, say Kn. 

(This large clique eventually gets associated with the edge e of the tree 

which plays a special role.) The remainder of the proof uses theorems 2.2 

and 2.1 to show that no vertex not in Kn can have large valence, in spirit 

similar to other applications already described. 
1 ~ We conjecture that A (A(L(T,e))) is always a limit point, but lack a 

proof at this time. 

7. QUESTION (5) 

To illustrate some of the fun in looking at symmetric matrices with 

entries ±1, (rather than (0,1)), we indicate the proof of 
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THEOREM 7.1. (cf. [1]). There exists a function f such that, if A is any 

symmetric ±1 matrix, JA. (A) I ~ f(A 1 (A)), for all i > 1. 
l. 

The argument consists of showing that there exists a matrix M of the 

form 

where the diagonal blocks are square (not necessarily of the same size; 

indeed, one may be empty), so that A-M = P consists of a matrix in which 
1 

only !f(A ) entries per row are non-zero (Le., ±2), after which matrix 

arguments produce the desired inequality. To construct M, it turns out to 
1 be sufficient to prove that given a lower bound on A (A), A cannot have 

two rows (say 1 or 2) such that a 1j=a2j for many j, and also a 1j=-a2j for 

many j. Assume otherwise. Then we have a right to assume A has a principal 

submatrix 

±1 
±1 

+1 

A'. 
+1 

+1 

+1 

±1 
±1 

+1 

+1 

-1 

-1 

+1. •. +1 
+1 ... +1 

All 

A21=A12 

+1 ••• +1 
-1. .. -1 

By theorem 2.2, A (and hence A) has a principal submatrix (which we call 

~) of order n of the same form, where A12 = J or A12 = -J. In either case, 

"" A has a least eigenvalue which goes to - 00 for large n. 
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B.L. ROTHSCHILD 

University of California, Los Angeles, Cal. 90024, USA and 

Bell Laboratories, Murray Hill, New Jersey 07974, USA 

Recently a number of striking new results have been proved in an area 

becoming known as RAMSEY THEORY. It is our purpose here to describe some of 

these. Ramsey Theory is a part of combinatorial mathematics dealing with 

assertions of a certain type, which we will indicate below. Among the ear

liest theorems of this type are RAMSEY' s theorem, of course, VAN DER WAERDEN' s 

theorem on arithmetic progressions and SCHUR's theorem on solutions of 

x+y = z. 

To make our task easier, we will introduce the "arrow notation" of 

ERDOS and RADO. This was originally used for generalizations of Ramsey's 

Theorem to infinite cardinals, but can be easily adapted to other cases as 

well. The meaning of the arrow notation will become clear by its use in the 

examples throughout this paper. 

As our first example, consider: 

This expression is just an abbreviation for the following assertion: if the 

k-element subsets of an n-element set are partitioned into r classes, then 

for some i there is an £.-element subset L, of then-element set such that 
i i 

all the k-element subsets of L, are in the i-th class. 
i 

THEOREM. (RAMSEY). For all positive integers k,r,2;, ••. ,2r, there exists an 

N = N(k,r,\, .•. ,2r) such that if n ~ N, then n k (21 ,. .. ,2r). 

In fact, RAMSEY considered only the case where all the 2i are equal. 
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He also proved K0 k (~0 , .•. ,K0J which actually is stronger than the finite 
r 

theorem above. The consideration of such statements with large cardinals or 

ordinals is a subject in itself and will not be discussed here. For the large 

cardinals the subject is fairly complete and will be.covered in a forth

coming book of ERDOS, HAJNAL & RADO. For ordinals, the theory is develop-

ing rapidly, although there are still many open questions. To give the 

flavor of a result of this type, we mention one of the most interesting 

recent ones. 

THEOREM. (CHANG, LARSEN, MILNER). ww 2 (ww,k) 

This theorem asserts that if the pairs (i.e., 2-element subsets) of a 

set of order type ww are partitioned into two classes, then either the first 

class contains all the pairs of a subset with induced order type ww, or the 

second class contains all the pairs of some k-element subset. 

This last example illustrates the arrow notation in a case where we 

deal with sets with structure (here the structure is that of order). 

In general, in a Ramsey Theorem an assertion of the form A8 (c1 , ••. ,Cr)' 

where the symbols A, B and Ci denote objects with a certain structure. For 

example, as above, they could be sets or sets with order. Other examples 

include graphs, finite vector spaces, sets containing solutions to systems 

of linear equations, Boolean algebras and partitions of finite sets. 

In the remainder of the paper, we will consider six examples of Ramsey 

theorems. The first two concern graphs and are due to W. DEUBER and to 

J. NESETRIL & V. RODL. The next three concern systems of linear equations 

and their solution sets. These are results of N. HINDMAN, E. SZEMEREDI and 

W. DEUBER. Finally, we will discuss some results of K. LEEB on abstract 

categories which are "Ramsey". 

GRAPHS 

Recalling the previous statement of Ramsey's Theorem, we see that the 

first non-trivial case is 

6 y (3,3) 

This can be restated as follows: if the edges of the complete graph K6 on 

six vertices are 2-colored arbitrarily, theh some monochromatic triangle K3 

must be formed. This graphical form leads to several general considerations. 

The most natural of these, an immediate consequence of Ramsey's Theorem 



(with k 2), is simply: 

For every finite graph H, there is a finite graph G such that G 2 (H,H). 

Here, the arrow notation means that if the edges of G (represented by the 

2 below the arrow) are 2-colored arbitrarily, then G will contain a mono

chromatic subgraph isomorphic to H. 
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It would be stronger to require that the monochromatic subgraph above 

be an induced subgraph of G. We could write G 2 (H,H) also in this case, 

provided we understand that we mean induced subgraphs here. Actually, to be 

rigorous, we should use a "different" kind of arrow for each different 

meaning. The proper setting for this is in terms of category theory as orig

inally indicated by LEEB. We will elaborate on this when we discuss LEEB's 

recent results at the end of this paper. 

We now turn our attention to the first result, which concerns induced 

subgraphs of graphs. 

THEOREM.(DEUBER [2]). For every finite graph H, there exists a finite graph 

G such that G 2 (H,H). 

SKETCH OF PROOF. What DEUBER actually proves is the equivalent but more 

convenient statement: for every choice of finite graphs G and H there exists 

a finite graph K such that K2 (G,H). The proof is by induction on !G!+IHI 

where !G! denotes the number of vertices of G. The small cases are trivial. 

Let g be a vertex of G, G = G-{g}, and let S be the subset of G to which g 

is connected. Also, let h in H, Hand T be defined similarly. 

* * * * By induction we can find G and H such that G 2 (G,H) and H 2 (G,H). 

* -We now form a large graph K as follows: Start with G. Let G1 , ... ,Gm be all 

* the occurrences of Gas an induced subgraph of G and let s1 , .•• ,Sm be the 

corresponding subsets S (there may be more than one choice for an Si; any 

one is allowed). Now replace each vertex of S = s1u ••• us = {x1 , ... ,x~_} 
* * m * by a complete copy of H, with the copy of H replacing xi denoted by H,. 

* * J. * Connect a vertex of H. to a vertex of H. iff x. and x. are connected in G. 
J. J J. J * 

Also, if some vertex vis not in S, connect v to all the vertices of Hi iff 

* v and xi are connected in G. Thus, we have essentially "exploded" some of 

* * the vertices of G into H 's. 

Suppose, in the simplest case, that all the S, are disjoint. Let 
- * J. 

H1 , ... ,Hn be the occurrences of Hin H and let T1, ... ,Tn denote the cor-

* responding subsets T. For each fixed Si, consider the associated H 'sand 
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* choose one T. from each H. For each i and such choice of T.'s, we introduce 
J J 

a new vertex connected exactly to these T.'s. Hence, if Is. I = k, then for 
J l 

this i we have added nk new vertices. Since we have m disjoints., then 
l 

there are altogether rnnk new vertices. This completes the definition of K. 

Suppose now the edges of K are 2-colored, say, using the colors red 

* * and blue. By the construction of H, each H in K has either a red copy of 

Gora blue copy of H. If the first alternative holds, then we are done. So 

* assume each H in K contains a blue copy of H. Let y 1 , .•. ,ym be the new 

vertices corresponding to the subsets T. for these copies of H (i.e., one 
J 

Yi for each Si). If any of the yi are connected to any of the Tj by all blue 

edges, we are done since in this case we have a blue copy of H. Thus, we may 

assume that each yi is connected by a red edge to some vertex TE Tj for 

each Tj to which it is connected. Let yi be connected by red edges to 

ti 1, •.. ,tiw" Consider the graph G obtained from K by deleting all the 

* tices of all the copies of H 

ver-

except for the t .. , and deleting all the new 
lJ * 

vertices except y 1 , .•. ,ym. By construction, G is isomorphic to G together 

with the yi. Also, it is an induced subgraph of K. Since each yi is connect

ed to the corresponding Si by only red edges, we are done. For either 

G* h G contains a blue copy of Hor, it contains a red copy of G, say Gi, 

which together with yi forms a red copy of G. This completes the argument 

for the case that the Si are disjoint. 

The only obstruction preventing this from being completely general is 

that it usually happens that for some a and b, San Sb f 0 in G. This in 

turn would prevent us from choosing the same t .. for both S and Sb when 
lJ a 

necessary. To get around this, we add another step to the construction. 

* Namely, after replacing the vertices of S by copies of H, we take those in 

* * the San Sb and replace each vertex of the H itself by a copy of H, con-

necting it up in the same way as before. We can then be certain of obtaining 

* a vertex connected by only red edges to some copy of H, and we can proceed 

essentially in the same way as before. D 

Of course, the graphs K resulting from this construction are usually 

much larger than are actually required. For example, the graph K constructed 

this way for the assertion K2 (K3,K3) is K = K81 . Note also the high clique 

number K81 has relative to that of K3 . 

F. GALVIN had asked if for each finite graph H with clique number 

cl(H) = k (where cl(H) = max{n J K is a subgraph of H}), there is a graphG 
n 

also having cl(G) = k such that G2 (H,H). As above, we consider induced 
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subgraphs here. This question has been very recently answered in the affir

mative by J. NESETRIL & V. RoDL. One sees easily that this implies DEUBER's 

result. 

FOLKMAN, in response to a question of ERDOS and HAJNAL, had earlier 

shown that there exists a graph G with cl(G) = k such that G2 <¾•¾'· 
FOLKMAN also proved that for any G and H, there exists a K with cl(K) = 

= max{cl(G),cl(H)} such that Kf (G,H) (where the 1 below the arrow indi

cates that we are coloring the vertices of K instead of the edges). In fact, 

NESETRIL & RoDL also make use of this theorem. 

The second result we discuss is the following: 

THEOREM.(NESETRIL & RoDL). FoP eve!'Y finite gPaph H thePe exists a finite 

gPaph G suah that G 2 (H, H) and cl (G) = cl (H) • 

SKETCH OF PROOF. The proof uses the ingenious idea of letting the vertices 

of G be subsets of a large set. By appropriately defining when edges occur 

between them, and applying Ramsey's Theorem to certain subsets, a large 

subset is obtained with the vertices and edges determined by it being very 

well behaved. 

We will make some definitions first, and then indicate somewhat how the 

proof goes, especially for the case of cl(H) = 2, which is considerably 

simpler and more direct than the general case. We begin with the definition 

of the graphs (n,T,p). 

Let A,B be two p-subsets of [1,n] = {1,2, ••• ,n}. The type (or p-type) 

t (A,B) of A and B is the pattern of their relative order, defined as follows: 

List the elements of A u B in increasing order assuming min{ A-B} < min{ B-A} , 

say x1,x2, ••• ,xi, t ~ 2p. If xi € MB replace it by two copies of itself. 

The new list thus obtained, say y 1,y2 , ••• ,y2p, is of length 2p. The type 

t(A,B) is then defined to be the sequence (y1,y2 , ••• ,y2P), where yi = 2 if 

yi € AnB, Yi= 0 if yi € A-B, and yi = 1 if yi € B-A. We let t(B,A) = t(A,B~ 

Let T be a set of p-types. The graph (n,T,p) is defined by having as 

vertices all (n) p-subsets of [1,n], and as edges, all pairs A,B of 
p 

p-subsets with t(A,B) ET. We define the clique number of T by cl(T) = 

= sup cl((n,T,p)). (Not all T have finite clique number, e.g., {(0,1)}=T, 
n 

although some do.) 

The beautiful construction of (n,T,p) has the property that for large 

nit is extremely rich in induced subgraphs (m,T,p), form< n. This enables 

us to use Ramsey's Theorem ultimately to obtain very well behaved subgraphs. 
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The first result in the general case is to show that for each H there 

exist p and T, so that His an induced subgraph of (n,T,p) for all large n, 

and with cl(T) = cl(H). T and pare defined inductively, in general, and 

are quite complicated. However, for cl(H) = 2, we can describe T much more 

simply and, in fact, we can assert even more. Namely, for each H, let its 

vertices be ordered arbitrarily, say, x1 ,x2 , •.• ,~. Then there is a mapping 

W: H + (n,T,p) for a suitable n,T,p such that cl(T) = 2, and w maps H 

isomorphically into an induced subgraph of (n,T,p) with t(w(x.),W(x.)) de-
1 J 

pending only on j, if i < j. In the general case cl(H) = k, a similar result 

holds, but the proof is much more complicated. For the remainder of the 

discussion, we restrict ourselves to cl(H) = 2. The mapping w is defined 

inductively. T is the set of all types starting with some O's, two 2's, then 

O's and 1's only, e.g., (0,0,0,2,2,1,1,0,1,0,1,1). It is easy to see that 

cl(T) = 2. 

Now suppose for large N that the edges of (N,T,p) are 2-colored. For 

[ J J1E.:l.L(2p-2) each (2p-1)-subset S of _1,N there are 2 p-l pairs of p-subsets A,B 

with AUB = S. Of those pairs, some number m have their type in T. If we list 

these in some canonical order, say lexicographically, then we get for each 

AUB a list of m types, corresponding tom edges, and thus m colors. But 

this produces a 2m-coloring of the (2p-1)-subsets of [1,N]. Thus, for any n, 

if N is large enough, Ramsey's Theorem implies that there is a subgraph 

(n,T,p) of (N,T,p) with all edges of a given type having the same color. 

* Let H be an arbitrary graph with cl(H) = 2, and let G be such that 

* G 1 (H,H), which exists by FOLKMAN' s result. Letting w be as above, we 

* * have W(G) S (n,T,p) S (N,T,p). Each vertex x. of G is associated with a 
J 

single type t(w(x.),w(x.l) for i < j, and thus with a single color. By 
* 1. J 

. choice of G, then, we obtain a subgraph Hall of whose vertices have the 

same color. But by the definition of this coloring, all edges of H have the same 

color. This completes the case cl(H) = 2, since by letting G = (N,T,p) we 

have G 2 (H,H). As previously remarked, the proof for the general case 

cl (H) = k is similar in spirit but with somewhat more complicated details. D 

LINEAR EQUATIONS 

Let L = L(x1, ••. ,xn) denote a finite system of homogeneous linear equa

tions in the variables x 1, •.. ,xn with integer coefficients. For a set S of 

integers, we write S +{~),if L always has a monochromatic solution 
r 



for any r-coloring of S. A system Lis said to be regula,r, if, for all r, 

lP + (,L, ••• , L) , where lP denotes the set of positive integers. 
r 
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R. RADO has char~cterized all regular L by generalizing the properties 

of the two best known examples. These are, respectively, L2 : x+y z and 

L(k): x1-x2 = x2-x3 = = xk_ 1-~. That L2 is regular is SCHUR's theorem. 

Of course, the regularity of L(k) is trivial (by choosing all the xi equal}. 

However, if we rule out this possibility, then a solution of L(k) determines 

an arithmetic progression of length k. This restricted regularity of L(k) 

for all k is just VAN DER WAERDEN's well-known theorem. 

Unfortunately, however, this surprising result still does not specify 

which color these progressions have. It was conjectured some 40 years ago 

by ERDOS and TURAN that a solution must always occur in the most frequently 

occurring color. More precisely, they conjectured that if R is an infinite 

sequence of integers with positive upper density, i.e., 

IR n [1,n] I h¼lll n >O, 

then R contains arbitrarily long arithmetic progressions. No progress was 

made on this problem until 1954 when K.F. ROTH showed that if R satisfies 

(*), then Rat least contains a three-term arithmetic progression. In fact, 

he showed more, namely, that for some c > O, if IR n [1,n]I > 1 ~n then 
og og n 

R must contain a three-term arithmetic progression. The next significant 

step was not made until 1967 when SZEME~DI proved that(*) implies that R 

contains a four-term progression. However, SZEME~DI's most recent result, 

which must be considered an achievement of the first magnitude, finally 

settles the original conjecture of ERDOS and 'l'URAN in the affirmative. 

THEOREM. (SZEME~DI). (*) implies R contains a,rbitra,rily long arithmetic 

progressions. 

SKETCH OF SKETCH OF PROOF. SZEME~DI's proof is completely combinatorial in 

nature and is based on a lemma on bipartite graphs which is of considerable 

importance in its own right. We shall give a very brief discussion of the 

flavor of the proof (which runs just under 100 pages in length), although 

we can only hint at the extreme ingenuity used in the proof itself. 

Let G denote a bipartite graph with vertex sets A and B. We call G 

regular if all vertices in A have the same degree and all vertices in B have 

the same degree. We would like to assert that every sufficiently large 



68 

bipartite graph can be decomposed into a relatively small number of regular 

bipartite subgraphs, but unfortunately this is not true. However, it is true 

if the subgraphs are only required to be "approximately" regular and if we 

are allowed to ignore a small fraction of the vertices in A and B. More 

precisely, for X ~ A, Y ~ B, let 

graph induced by the vertex sets 

density of edges in this induced 

following: 

k(X,Y) denote the number of edges in the 
k(X,Y) 

X and Y and let S(X,Y) denote~, the 

subgraph. Then SZEMEREDI proves the 

LEMMA. For all s 1,s2,o,p,cr strictly between O and 1, there exist integers 

m0 ,n0 ,M,N such that for aU bipartite graphs G with IAI =m>M, IBI =n>N 

there exist disjoint ci ~ A, o $ i < m0, and for each i < m0, disjoint 

ci,j' j < n0 , such that: 

(a) IA - i<Yn0 
c. I < pm, IB - u c. . I < crn for any i < m0 ; 

l. j<no J.,J 

(b) for aU i < mo, j < no, s ~ ci, T ~ C .. , 
J.,J 

with Is I > s 1 lei I, 
ITI > s 2 lci,j I, we have S (S,T) ;:: S(C. ,c .. )-o; 

l. J.,J 

(c) for aU i < m0, j < n0 and x E ci, S({x},c .. l 5 S(C.,C .. )+o. 
l.' J l. J.,J 

Condition (a) says that we have not omitted too many vertices in the 

decomposition. Conditions (b) and (c) express the approximate regularity of 

the subgraphs induced by the vertex sets C. and c ..• 
l. l., J 

The basic objects dealt with in the proof are not just arithmetic pro-

gressions, but more general structures known as configurations. A 1-config

uration is just a finite arithmetic progression; an m-configuration is a 

finite arithmetic progression of (m-1)-configurations. 

Let R be an arbitrary fixed set of integers having positive upper 

density. The basic idea is to show inductively that there exist very long 

m-configurations which have an extremely restricted manner in which they 

intersect R. This is done by recursively defining certain special classes 

of higher order configurations in terms of rather well-behaved progressions 

of lower order configurations. Essentially, by showing that there exist 

extremely long conl:igurations of some order which are moderately "regular", 

one can deduce the existence of configurations of a higher order which are 

even more "regular". This in turn is done by forming bipartite graphs based 

on the inter~ection patterns of the configurations with R and applying the 

decomposition lemma. Needless to say, the subtlety of the ideas used can 

only be appreciated by reading the actual proof. D 



Turning our attention back to SCHUR's system L2 , we can generalize 

this to the system Lk defined as follows: for the variables xs and y8 , Lk 

consists of all equations of the form lsES x8 = y 8 where S ranges over all 

non-empty subsets of [1,k]. RADO's results imply that for all k and r, 

lP-+(~ 
r 

It is natural to ask what happens for the system 

L ={' x =y8 1s~JP, 1~1s1< 00}. 
oo lsES S 

N. HINDMAN's remarkable theorem answers this question. 

THEOREM, (HINDMAN). For aU r, ]? ➔ (L , .•• ,L ) . 
~ 

r 
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SKETCH OF PROOF. In the case Lk it is even true that for each r there is an 

N = N(k,r) such that N-+ (Lk 1 ••• ,Lk). In other words, no matter which 
\....:!. r ..:::u 

r-coloringwehave,values x 1 , ••• ,~ can be chosen from [1,N] so that all the 

sums l S x have the same color. For a fixed r-coloring of lP restricted 
SE S 

to [1,N(k,r)] it was not known whether upper bounds for the xi existed 

independent of k. The existence of such bounds would allow HINDMAN's theorem 

to be obtained directly by a "compactness" argument. 

What HINDMAN proves is that for each coloring TI of]? with a finite 

number of col ors, there is a function f TI: lP ➔ ]? such that for each m, 

0 < m < 00 , there is a set x 1 , •.• ,xm with all its finite sums the same color, 

and in addition, such that x. ~ f (i) for 1 ~ i ~ m. That is, we get mono-
l. TI 

chromatic solutions to L 
m 

for arbitrarily large m, where the sizes of the 

variables x. are bounded above 
l. 

coloring TI (of all of lP) • 

independently of k but depending on the 

We can illustrate several of the ideas of the proof, but we need some 

notation first. Let TI be a finite coloring of JP, say JP = A1u ..• UAr. For 

1 ~ k ~ n, we define 

F (k,n) 
TI 

{x E lP I x :::: n and 3i such that k,x,x+k EA., 
l. 

The FTI(k,n) are sets which can be translated by k without changing color. If 

x 1 ,x2 , ... is a sequence of integers, let S(xi) be the set of finite sums of 

the x .. 
]. 

The core of HINDMAN's proof is an "exceedingly technical" and quite 
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clever argument, which establishes that for each TI there is an infinite 

sequence x 1 , x2 , . • • and n E lP such that 

n-1 
S(xi) S k~l FTI(k,n). 

To manipulate sequences and sums conveniently, it would be nice to know 

that the numbers in the sequences were representable to base 2 in the fol

lowing manner, e.g., 

10110111 

110000100000000 

1100000000000000000 

That is, the support of x. should be all beyond the support of x. 1 for each 
J J-

j. Formally, if 2s-l ::; x. 1 , then 2slx .• Such a sequence will be called a good 
J- J 

sequence. Now for every sequence x 1,x2 , .•. there is a good sequence (not 

necessarily a subsequence of the xi's) y 1 ,y2 ,y3 , ... with S(yi) S S(xi). This 

follows from a compactness argument again. 

Hence we basically need to deal only with good sequences. The nice 

property of these is that if X = {x1,x2 , ... } is a good sequence, there is a 

bijection TX: S(xi) + JP which preserves sums, namely, 

1 s-1 
l 2 • 

SES 

That is, each block of support corresponds under T to a single binary place. 

We use this fact crucially in the following construction. Suppose TI is 

a coloring, and xTI 1 ,xTI2 ,xTI3 , .•• is a good sequence with 

S(x .) 
1Tl. 

n(TI)-1 
k~l F11 (k,n(11)). 

Then using the map T 11 determined by this sequence, we can get a new coloring 

11' of lP by letting two numbers have the same rr'-color iff their images 

under T:1 are in the same F11 (k,n(11)). This is an (n(11)-1)-coloring. 

Suppose for all rr we have defined f 11 (i) for i::; £ so that arbitrarily 

long finite good sequences have monochromatic sums and the i-th term is at 

most frr(i), i::; £, where we take frr(l) = n(11)-1 (which works for£= 1 by 



71 

the definition of n(TI)). Then consider such a sequence for the coloring TI' 
-1 

associated as above with TI. Taking TTI of this sequence, we get a similar 

sequence which is constrained by the definition of TI' to have its first t 

terms respectively less than T- 1 (f, (i)), i ~ t, and all greater than 
TI TI 

n(rr)-1. Further, they must all have the same TI-color, and for some common 

k ~ n(TI)-1, adding k does not change this color. Then adjoining k as a first 

term gives us a new sequence with the first term not exceeding frr(1). Also, 

if we let fTI(j) T; 1 (fTI(j-1)), we have the j-th term not exceeding fTI(i) 

for j ~ t+l. 

We have thus constructed, simultaneously for all rr, the bounds fTI(i). 

What we have shown, then, is that for each rr = A1uA2u •.• uAr' and each k, 

there is a sequence x 1, ..• ,~ with all its sums in some Ai(k) and xi ~ 

~ frr(i), ~ i ~ k. As we noted above, a compactness argument now completes 

the proof. 0 

We remark that because the supports of the xi in a good sequence are 

disjoint, we can interpret the x. as disjoint subsets of 1P and their sums 
. 1 

as disjoint unions. Thus, we obtain: for every r-coloring of the finite 

suhsets of 1P, there exists an infinite sequence of finite disjoint sets 

A1,A2 ,A3 , ••. such that all the finite unions have the same color. 

The last of the results on equations is that of DEUBER, who settles a 

conjecture RADO raised in his original work. We recall that a system L of 

homogeneous linear equations is called regular if for any r, JP + (~) • 

RADO defined a set S ~ JP to be regular if for every regular system Land 

any r, S +(~).What RADO conjectured and what DEUBER proves is the 

following: 
r 

THEOREM. (DEUBER). If s ~ JP is regular and s 
regular. 

AUB, then either A or Bis 

SKETCH OF PROOF. The main idea of DEUBER's proof is to define certain sets, 

called (m,p,c)-sets, and to characterize regular sets in terms of (m,p,c)

sets. He then proves a finite RAMSEY theorem for these sets. Finally, by 

considering the nice structure of (m,p,c)-sets, he uses a compactness argu

ment to establish the desired result. 

We define (m,p,c)-sets below. However, we can describe them informally 

as a kind oft-dimensional array of numbers (actually, certain subsets of 

these). 
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DEFINITION. For m,p,c positive integers, p 2 c, an (m,p,c)-set A is a set 

for which there exist m positive integers a 1,a2 , •.. ,am, such that A 

= { I:=l Aiai !Ail $ p, and the first non-zero coefficient Ai has the 

value c}. 

Now using RADO's characterization of regular systems of equations, we 

can show the following two facts: 

(a) for every regular system L there exist m,p,c such that every (m,p,c)

set contains a solution to L; 

(b) for all m,p,c there is a regular system L such that every solution set 

for L contains an (m,p,c)-set. 

As an example, consider the single equation x+y = z. Then a solution is 

any set of the form a 1 ,a2 ,a1+a2 , which is certainly contained in the (2,1,1)

set generated by a 1 and a2 . On the other hand, the equations x+y = z 1, 

x-y = z 2 , have solutions exactly of the form x,y,z 1 ,z2 = a 1 ,a2 ,a1+a2 ,a1-a2 , 

a (2,1,1)-set. These examples avoid c # 1, which can arise when the coeffi

cients are more complicated. 

By (a) and (b) we see that a regular set is any set containing (m,p,c)

sets for all m,p,c. 

Suppose now that we know the following: for each (m,p,c) there is an 

(n,q,d) such that (n,q,d) + ((m,p,c), (m,p,c)). That is, if the elements of 

any (n,q,d)-set are 2-colored, then there must be a monochromatic (m,p,c)

set. Thus for S regular, and S = AuB, either A or B must contain "arbitrar

ily large" (m,p,c)-sets and hence, by what we have noted, either A or Bis 

regular. The main part of DEUBER's proof is concerned then with establishing 

the Ramsey property (n,q,d) + ((m,p,c),(m,p,c)). 

This result is similar to one of GALLA! concerning "n-dimensional 

arrays". For our purposes, we may consider an n-dimensional array as a set 

of the form 

X 
n,p 

n 
{ao + I A,a, 

i=1 1 1 

For these we have that for n, p and r there is an N such that xN,p + 

➔ (X , ••• ,X ) • 
c.!!.L.E~___E.!.E., 

r 
However, this isn't quite good enough for our purposes, since an 

(m,p,c)-set will contain sums of the 

differences as well (e.g.'. a 1 , a 1+a2 

form ea. + L . . A . a . along with certain 
J_ "J>i J J 

and a 2 in the example above) while 



X may not contain any of its differences. To handle this problem we 
N,p 

proceed iteratively. 

First, we find a monochromatic 

where 

X 
N,p 

z 
N,p 

N 

{bl + I 
i==l 

A.a. 
l. l. 
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Then in ZN we find a monochromatic b 2+z, etc. Continuing in this manner ,p N ,p 
we can find b 1 ,b2 , ••• ,b1 such that the color of the sum 

b.+ 
l. I 

j>i 
".b. 

J J 

depends only on i. For large enough 1, we may select m of these bj to 

generate a monochromatic (m,p,1)-set. 

This completes the case c = 1. For c > 1, a similar argument can be 

applied where, however, at each step p must be adjusted to compensate for 

the effect of c. D 

CATEGORIES 

The notion of a category having the Ramsey property was introduced by 

K. LEEB. It has been used to prove the Ramsey property for the category of 

finite vector spaces, among others. A category C is said to be Ramsey if for 

any objects A,B and number r, there is an object C such that for any 

r-coloring of the A-subobjects of c, all the A-subobjects of some B-subobject 

of C have the same color. Formally this says: 

VA, B, r 3c 3 VC (~) ! [ 1 , r J , 

3 a monomorphism, B 1 Candi such that the following diagram commutes: 
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l..c1,r] 

t incl. 

-+ {i} . 

Here C(~) denotes the set of subobjects of C of isomorphism type A, and~ 

the function induced by~-

We could also abbreviate this by using the arrow notation. A categoryC 

is Ramsey if for every rand objects A,B there is an object C such that 

C + (Jl I B, , •• , B.) 
t 

To prove this property for a certain class of categories, including the 

category of sets (Ramsey's Theorem) and that of finite vector spaces, an 

elaborate induction is used. The induction is fundamentally determined by a 

generalization of the classical Pascal identity, (~:~) = (k:1) + (~). 

In his lecture notes on "Pascaltheorie", LEEB has developed more form

ally and generalized this kind of relationship and used it to prove some new 

Ramsey theorems, among other things. What we describe here is LEEB's general

ization of the ordinary notion of labeled trees to that of trees labeled 

with objects from a category. A Ramsey theorem for these structures is then 

true if it was true in the original category. 

Consider a category C. Then the category Ohd(C) is defined to be the 

category of finite sequences of objects from C. That is, the objects of 

Ohd(C) are finite sequences of objects of C, and morphisms (C 1 ,c2 , .•• ,Ck) + 

+ (D 1 ,n2 , .•. ,D2), k $ 2, are sequences (~ 1 ,~2 , .•• ,~k) of morphisms from C 

such that ~i: Ci + Dj(i) for some j(i), and 1 $ j(1) < j(2) < .•• < j(k) ~2. 

We can define the category TheM(C) similarly. We consider rooted, 

labeled trees with an orientation, or ordering, of the branches at each 

vertex. We take the labels from the objects of C. Morphisms are defined as 

follows. Let T1,T2 be two such objects, and let T1,T2 be their underlying 

rooted trees. First we "immerse" T1 into T2 . An immersion 1/J: T1 + T2 is a 

monomorphic mapping from the vertices of T1 to those of T2 such that: 

(a) For any two vertices x,y in T1, 1/J(xAy) = 1/J(x) A 1/J(y), where for two 

vertices u,v in a rooted tree T, uAv denotes the last common vertex in 

the paths from the root to u and from the root to v, respectively. 

(b) The order of the branches is preserved by 1/J. That is, let B1,B2 , .•. ,Bk 

be the vertex sets of the branches at a vertex x in T1, given in order, 
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and let o 1,o2 , ... ,Dt be the vertex sets of the branches at ~(x) in T2 , 

given in order. Then for each i, 1 $is k, ~(Bi)~ Dj(i) for some j(i), 

and 1 $ j(l) $ ... $ j(k) st. 

For example, the circled vertices in T2 below indicate an immersion of T1 

into T2 , 

J 

root root 

Once we have an immersion~ of T1 into T2 , we then find a set of mor

phisms from C taking the labels from T1 into the corresponding labels (by 

the immersion) of T2 . Such sets of morphisms of C (with restrictions deter

mined by (a) and (b)) are defined to be the morphisms of T~eeJ.i(C). If we 

denote a C-labeled tree by [a,B], where a is the root label and B the 

sequence of branches at the root (with labels), we get the Pascal identity: 

T~ev., (C)([a,BJ) 
[c,D] 

What this says is that every subtree (labeled) of type [c,D] in a tree of 

type [a,B] either has its root at the root of [a,B], or lies entirely in one 

of the branches at the root, with labels mapped accordingly. If one considers 

the identity for trees with only one branch at each point, and C the cate

gory with only a single object, then this identity becomes the classical 

Pascal identity. 

We say that a category C is directed if for any objects A and B, for 
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some object C there exist monomorphisms A ➔ C and B ➔ C. What LEEB proves 

is the following: 

THEOREM.(LEEB). If C is Ramsey a:nd directed, then T~ee&(C) is Ramsey and 

dir>ected. 

The proof uses the Ramsey property for C, together with the standard 

"product" argument, also used to prove (among other things) the result of 

GALLA! mentioned in the previous section. 

A related and less complicated result, using the same basic techniques, 

is that if C is Ramsey and directed, then so is O~d(C). 
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I. 

ON AN EXTREMAL PROPERTY OF ANTICHAINS IN PARTIAL ORDERS. 
THE LYM PROPERTY AND SOME OF ITS IMPLICATIONS 

AND APPLICATIONS *l 

D.J. KLEITMAN 

Massachusetts Institute of Technology, Cambridge, Mass. 02139, USA 

Let F be a collection of subsets of an n element set S, such that no 

member of F contains another. We call such a collection an antiahain, in 

contrast to a collection that is totally ordered by inclusion which one 

usually calls a chain. 

A well-known theorem of SPERNER states that an antichain F can have nc 

more than ([n;2]) members. YAMAMOTO and independently LUBELL and also 

MESHALKIN (and perhaps others) noticed that F satisfies a stronger property. 

If we denote the number of members of F of size k (having k elements) by fk 

these numbers must satisfy 

This result is stronger, in that the left-hand side is obviously greater 

than or equal to l fk/([n;2]) so that we may immediately deduce that 

l fk $ ([n;2]} which is SPERNER's theorem. 

It is the purpose of this note first, to explore the class of partial 

orders (possessing a rank function) which satisfy this stronger property, 

called below the LYM property; that is in which an antichain under the par

tial order obeys a relation of the form l fk/Nk $ 1 where Nk represents the 

number of members of the order of rank k. Secondly, we show that this strong 

property is equivalent to a number of other properties of the partial order, 

which we shall shortly describe. Thirdly, we prove a number of general prop

erties of such partial orders, and finally we give examples of application 

*) Supported in part by ONR Contract N00014-67-A-0204-0063. 



78 

of these properties. 

II. 

The LUBELL (and YAMAMOTO) proof of this property is remarkably simple. 

If we examine all the maximum sized chains, it is clear from symmetry among 

then elements of S that each k element subset of S appears in exactly the 

same proportion of these chains as does any other, and hence in a proportion 

1/(~) of them. Since no two members of F can lie in any maximal chain, the 

average number of members of F per chain, which is L 1/( 1~ 1) (each A in F 

/( n) AEF 
contributes 1 IAI to this average), cannot exceed one. This relation 

L 1/( 1n 1 ) ~ 1 is the LUBELL-YAMAMOTO inequality. 
Ae:F A 

The form of the argument makes it immediately evident that an analogue 

holds for any partial order possessing a symmetry that is transitive on the 

members of each rank. 

In any such order, one will again obtain that 

by the same argument. This implies that, for example, the lattice of sub

spaces of a vector space of finite dimension over a finite field, will pos

sess this property. One can also deduce from these remarks, that they hold 

equally well if we weight the members of our partial order by a weighting 

function w that depends only upon rank. That is, we can deduce that 

I 
Ae:F 

w( IAI) < max w(k), 
NIAI - k 

or alternatively, for any weighting function w defined on the rank of the 

members of our order we must have 

L w( IAI) ~ max Nkw(k) .. 
Ae:F k 

The form of the LUBELL-YAMAMOTO argument is in fact so simple that it 

leads one to expect that there is a necessary connection between the sym

metry of the partial order and the workings of the argument. 
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However, the argument does not really require this; symmetry is un

necessary; the argument does not require that each set of a given rank oc

curs in the same proportion of all maximal chains. 

What is required is that there exists some list of maximal chains that 

contains every set of each rank the same number of times. The argument will 

go through if we apply it not to the set of all possible maximal chains, but 

to this list of such chains. 

A partial order will thus satisfy the LYM property whenever there exists 

a list of maximal chains such that each member of the order of rank k occurs 

in a proportion 1/Nk of the chains. 

When then does such a list exist? 

GRAHAM & HARPER introduced the concept of noY'malized matching in a par

tial order. We define it as follows. A partial order is said to have the nor

malized matching property, if, for every k, given any collection F of rank 

k members of the order there is a collection Gk-l of rank k-1 members of the 

order, such that every member of Gk-l is ordered with respect to at least 

one member of F, and such that 

We shall now show that this normalized matching property is equivalent 

to the LYM property under discussion. We prove the following theorem. 

THEOREM 1. Let P be a partial order with a rank function and Nk members of 

rank k, then the following four conditions are equivalert: 

1. every antichain F satisfies 

(LYM property); 

2. every antichain F and real function w of k, the rank of A, satisfies 

L w(IAI) $ max Nkw(k); 
AEF k 

3. there exists a list of m=imal sized chains such that each member of P 

of rank k occurs in a proportion 1/Nk of the entries on the list; 

4. P satisfies the noY'malized matching condition; that is, for every col

lection F of rank k members of P there is a collection Gk-l such that 

each member of Gk-l is ordered with respect to at least one member of F 
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and 

PROOF. From the discussion previously, we have already noted that condition 

3 implies conditions 1 and 2 and condition 2 implies condition 1 by choosing 

w(k) to be 1/Nk. We therefore need only prove that condition 4 implies 

condition 3, and that 1 implies 4. 

We begin by proving the former. We assume that P satisfies the normal

ized matching condition. This condition can be seen to imply the ordinary 

PHILIP HALL matching condition if one takes a list of aNk-l copies of the 

rank k members of Panda list of aNk copies of the rank k-1 members for 

any integral a, and tries to match each member of the former list to one 

member of the latter ordered with respect to it in P. If we take any set 

of Q members of the former list, we will have at least rQ/aNk-ll different 

members of rank k. By the normalized matching condition these will be orde1-

ed with respect to at least fQ/aNk-l l Nk_ 1/Nk rank k-1 members of P and 

hence at least aNk times as many or aNk-l fQ/aNk_ 11 members (or at least Q 

members) of the second list. By the PHILIP HALL theorem there is a matching 

of the former to the latter. 

We obtain a list of chains as required by condition 3 by starting at 
r-1 

the highest rank r, starting with, for example, (TTk=l Nk) copies of the 

rank r members of P and performing the matching of the last paragraph for 

k=r,r-1, .•• ,2. Each entry on the list of rank r will be matched into an 

entry of rank r-1 ordered with respect to it, which will be matched into one 

of rank r-2, etc. The orbits under the matchings will be the desired maximal 

chains of condition 3. 

To prove that condition 1 implies condition 4 we prove the contraposi

tive, that not 4 implies that 1 cannot hold. 

Suppose therefore for some k there is a collection F of rank k members 

of P such that the collection Gk-l of rank k-1 members of P that are ordered 

with respect to one or more members of F satisfies 

Then consider the antichain connecting F and the rank k-1 members of P 

not in G. These satisfy, by trivial manipulation of the last inequality, 
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ill+ Nk-1 - IGk-11 

Nk Nk-1 

Thus condition 1 implies condition 4 and the theorem is proved. D 

III. 

Granted all of this, what can we conclude about partial orders satis

fying these conditions? 

GRAHAM & HARPER, and also subsequently but independently HSIEH & 

KLEITMAN proved that direct products of partial orders each satisfying nor

malized matching and logarithmic convexity (for every k, N~ ~ Nk-lNk+l) also 

satisfy normalized matching and logarithmic convexity as well. Thus the lat

tice of divisors of an integer (with "divides" as order relation) satisfies 

this condition it being the direct product of chains. ANDERSON has also 

obtained these results for divisors of integers. 

In consequence of our theorem, this lattice satisfies the LYM property: 

antichains obey the l 1/Nk() ~ 1 inequality in the divisor-of-n lattice. 
AEF A 

HSIEH & KLEITMAN proved further that if P 1 is a partial order satisfy-

ing normalized matching and P2 is a chain, then the direct product P1 @ P2 

satisfies normalized matching only if P 1 @ P2 satisfies logarithmic convex-

't (N2 > N N ) If P . d d . P O P '11 t' f 1 i y k - k-l k+l . 2 is an or ere pair, 1 ~ 2 wi sa is y norma -

ized matching if and only if P1 satisfies both normalized matching and loga

rithmic convexity. 

On the other hand, the partial order consisting of partitions of an 

integer n ordered by refinement fails to satisfy normalized matching, at 

least for even n of magnitude at least 10. (For example, for n = 10, the 

partition 22222 is ordered with respect to only one partition into four 

integers (4222) while N4 = 9 and N5 = 7 where rank here is the number of 

blocks in the partition.) It is not known whether this partial order pos

sesses the "Sperner property", that no antichain can have more than m~ Nk 

members. 

GREENE & DILWORTH found an example of a geometric lattice which fails 

to satisfy either condition, Sperner or LYM. It is not known whether the 

lattice of partitions of a set satisfies either condition. 
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IV. 

In a partial order satisfying any of the four conditions of theorem 1, 

a great many extremal properties of collections of order members can be de

duced. We begin by enunciating a general theorem (which is itself a special 

case of the next one). 

THEOREM 2. Given a collection F of order members that obeys some restriction 

Rand a weight function w of rank in P, with Pa partial order satisfying 

the conditions of theorem 1, the sum of w over the collection is not greater 

than the ma:x;irmun swn over chains satisfying R of the sum of w (IA I) NI A I 

l w( IA!) ,:; 
AEF 

max 
C 

C chain, C obeys R 

R here and below is a restriction of the form "no set of members of F satis-

fies If 

This theorem has many powerful implications including a number of 

theorems of KATONA and of ERDOS that we shall describe in the next section. 

Such theorems have a wide range of validity here - they hold in partial 

orders satisfying the LYM property. The proof is immediate; by the existence 

of our list of maximal chains we know that the average valueA~F w(IAl)NIAI 

over maximal chains is less than its maximal value for any maximal chain. 

Since A occurs in 1/NIAI of the maximal chains, it contributes w(IAI) to the 

average. 

A still more general theorem is the analogue of the KLEITMAN-KATONA 

theorem. It is the following 

THEOREM 3. Given two partial orders P 1 and P2 satisfying the LYM property; 

let F be a family of members of tne direct product partial order P1 0 P2, 

subject to some restriction R. Let w be a function of rank in P 1 and P 2 • 

Then the ma:xirmun value of the sum of w(A) for A in F cannot exceed them=

irmun over a subfamily of the direct product of two ma:ximal chains, of 

w(r1 (A) ,r2 (A)) N(l) N( 2 ) Here r. (A) is the rank of the i-th factor 
r 1 (A) r 2 (A) 0 i 

of A. That is 

l w(r1 (A),r2 (A)) ,:; 
AEF 

F'cF, F' satisfying R 

' (1) N(2) 
L. w(A)Nr (A) r2 (A~• 

AEF' 1 
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This theorem has many important applications, as we shall discuss. It 

has an obvious generalization to direct products of k LYM-partial orders. 

Its proof is also immediate, by exactly the argument previously applied 

to the lists of direct products of maximal chains in P1 and P2 whose exis

tence follows from the LYM properties. 

v. 

We now examine some specific consequences of theorems 2 and 3. If in 

theorem 2 we let R be the restriction that if A,B are in F then AtB, we have 

a portion of theorem 1. If we let R be the restriction that no k members of 

F form a chain, and set w = 1, we obtain a generalization of the theorem of 

ERDOS that the maximum size of Fis the sum of the largest (k-1) N.'s. If we 
J 

let R be the restriction that no two members of Fare ordered and differ by 

rank ~k, we obtain the sum of the k largest consecutive Nj's. If we let R be 

the restriction that no two ordered members of F differ by less than (<) k 

in rank we obtain, if P is unimodular 

m~x I;~~ Nt+jk as a bound on the size 

a result of KATONA for divisors of an 

(N. has only one local maximum), 
J 

of F (this is a generalization of 

integer, and generalized somewhat 

differently by KATONA); likewise, if R restricts F to have no m+l members 

within any rank interval k, for unimodular Pone obtains the largestm values 

of I;~~ Nt+jk for distinct t < j. This result again generalizes a result of 

KATONA for the lattice of divisors of an integer. Many other similar results 

follow as we have freedom to choose Rand was we please, always finding 

that the maximum sum over F can be evaluated by looking at the appropriately 

reweighted sum over a single chain. 

Theorem 3 has a number of consequences that generalize known theorems 

as well as some new ones. Thus if R restricts F to contain no ordered pair 

we can deduce immediately that P1 ® P2 will satisfy the SPERNER property as 

long as P1 and P2 are both unimodular, while, by some detailed argument one 

can show using theorem 3, that P1 ~ P2 will obey condition (1) of theorem 1 

if both are logarithmically convex, thus providing a proof of the HARPER

GRAHAM theorem. 

If R restricts F to contain no ordered pair that are identical in one 

factor, and if weight functions w1,w2 are chosen for P1 and P2 such that 
(1) 

when arranged in decreasing order the w1 (k)Nk are 
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and the w2 (k)N~2) arranged in decreasing order are 

then the sum of the product of the weight functions over members of F can't 

exceed 

If k +k' is a constant then this sum becomes a sum over a single rank 
j j 

in P1 @ P2 . This will occur for example if after weighting both P1 and P2 

are symmetric in rank and unimodular (a theorem of !<LEITMAN and KATONA for 

subsets of a set). It will occur also if P2 is P1 turned upside down, or if 
(2) 

P1 has only two ranks and the largest rank values of w2 (k)Nk are consecu-

tive and appropriately ordered, and in a wide variety of other circumstances. 

Notice that even for subsets or divisors of an integer the result remains 

true here for non-trivial weight functions obeying certain rules. 

Similar results hold if R restricts F to contain no ordered pair iden

tical in one factor and differing by more than(>) kin the other. For uni

modular symmetric P1 and P2 (after weighting), one obtains either the 
( 1) (2) 

maximum of the sum of N N w1w2 over k consecutive ranks in P1 @ P2 or 

a related sum. Similar results hold for P2 being P1 upside down (i.e. with 

order relation reversed) or if (after weighting) the relative sizes of the 

wN's in P1 and P2 is as if P2 was P1 with order relations reversed. 

One can obtain explicit best results when R is the restriction that no 

k members of Fin P1 @ P2 that are identical in one factor form a chain. 

The results are not beautiful. For example if ranks in Pi run from Oto ri, 
(i) 

and the population of rank kin Pi is Nk , we obtain fork= 3, and r 1 and 

r 2 even, that the size of F cannot exceed 



when P1 and P2 are symmetric and unimodular. 

Such results can be used to obtain results for direct products of 

three or more partial orders; thus for P1 ,P2 symmetric and unimodular and 

r 1 ,r2 even and r 3 = 1, the maximal size of a family F having no ordered 

pair of members differing in only one factor is, if N~3l < N~ 3l, 

N(1+2) 
r1+r2 

--2-
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It may be possible to juggle the restrictions on F to obtain SPERNER like 

conclusions in triple products, particularly through use of the "no differ·· 

ences ;;:Jc" result described above. 

If R restricts F to contain no totally ordered members identical in one 

factor that differ by rank <m, then for symmetric unimodular orders P1 and 

P2 or for P1 unimodular and P2 being P1 upside down, one obtains the maximum 

over j 0 of the sum of N~ 1)N~ 2) over ranks whose sum is congruent to j 0 modm. 

This is again a generalization of a divisor of n result of KATONA. 

VI. 

The basic method applied here to chains may be applied to other struc

tures on orders defining appropriate classes of partial orders and develop

ing properties of these. Similar ideas have been applied to partitions 

rather than chains. That is, given a list of partitions that contains 

members of identical rank the same number of times, one can draw similar 

conclusions about collections of subsets having disjointness (intersection) 

restrictions. Some examples of such results are described in [11]. 

If k divides n the ERDOS-KO-RADO theorem follows immediately from this 

approach. It states that the number of non disjoint k element subsets of an 

n set cannot exceed a proportion k/n of them. 
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VII. 

In this final section we give three examples of the application of some 

of the results in section V. 

Consider sums of the form l~ 1 E.a. for a. vectors in two-dimensional 
1.= 1. 1. 1. 

Euclidean space of magnitude at least one, and Ei = ±1. We could equally 

consider a wider coefficient set and remarks directly analogous to those 

that will follow can be made for such a set, and one in which the range of 

Ei depends on i as well. For reasons of notational simplicity we shall con

fine ourselves to the present problem. 

By elementary geometry, the sum of two or more vectors in any one quad

rant each of magnitude at least one has magnitude at least /i. While the sum 

of three or more such vectors has magnitude at least Is, and the sum of k or 

more has magnitude at least kfi. 
LITTLEWOOD & OFFORD raised the question, how many of the 2n linear 

combinations considered above can lie inside a unit circle. KATONA raised 

(and solved) the same question for radius fi. If we arbitrarily divide the 

plane into quadrants, reverse the sign of enough a's (this doesn't effect 

the 2n linear combinations) such that they all lie in two quadrants; we 

may use the facts of the last paragraph to bring these problems into the 

language of sets. 

We can imagine the indices corresponding to vectors in the two quad

rants forming sets s 1 and s2 • Each linear combination can be corresponded to 

a pair of subsets one of s1, one of s2 namely those for which E = +1. If 

two linear combinations corresponding to the same subset in s2 and to one 

subset containing the other in s2 are to lie within a circle of radius r, 

they cannot differ by more than [rfiJ indices by those remarks, or for 

r = v'5 by more than two indices. 

We may conclude by one of the theorems of section V that the number of 

linear combinations lying in a circle of radius r cannot exceed the limits 

given in the following table. Details will be described in a subsequent paper. 

r = 1 largest (KLEITMAN & KATONA) binomial coefficient, 

r = fi sum of largest two binomial coefficients (KATONA), 

r = rs sum of largest three binomial coefficients for n ~ 5, 

r = k sum of largest 2[kv'2] binomial coefficients. 

The results below /s are best possible. The general k result, while not best 

possible, is interesting because it shows that for large n and reasonable 
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sized k the number of linear combinations in a circle can grow at most 

linearly with the radius, not quadratically as does the area of the circle. 

A similar result inn dimensions would be quite interesting. 

The results up to Ii have been obtained in arbitrary dimension by the 

present author by a different method; a best result is known also for r ,.:; v'3 
in two dimensions, again proved by a different method. 

A second application of the implications of theorem 3 is the proof of 

the HARPER-GRAHAM theorem itself. The theorem states that the direct product 

of two orders each satisfying LYM and each logarithmically convex will 

satisfy LYM and logarithmic convexity. Now LYM can be stated as the condi-

tion that for every chain l 1/N ,.:; 1. By theorem 3 this reduces to the 
AEF a 

inequality 

I 
AEF 

for Fan antichain subfamily of the direct product of two chains. To prove 

the HARPER-GRAHAM theorem one must show that P1 @ P2 is logarithmically 

convex and that this inequality holds. 

The former is a straightforward exercise (see HSIEH & KLEITMAN). We 

will outline an argument for the latter in the case that P1 is itself a 

chain. In general, if P1 has only two ranks, the inequality is easily seen 

to be equivalent to logarithmic convexity on P2 • It is relatively easy to 

show by induction that if cj is a chain of length j, that 

cj ® P1 satisfying LYM implies cj+l ~ P1 satisfies LYM 

(see HSIEH & KLEITMAN). Thus logarithmic convexity and LYM for P2 implies 

that cj@ P2 satisfies LYM. 

By a slighly more detailed argument one can verify LYM for all P1 and 

P2 satisfying the given conditions. 

A final application makes use of the HARPER-GRAHAM theorem, extending 

a result of LEVINE & LUBELL. The LYM property is independent of weighting 

that is constant over rank; by the HARPER-GRAHAM theorem if the weighting 

maintains logarithmic convexity in each factor, the direct product partial 

order will possess both logarithmic convexity and LYM. Since logarithmic 
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convexity is trivial for partial orders with only two ranks, we can conclude 

that the subset lattice which is a direct product of two rank chains will 

obey LYM and logarithmic convexity with a different weight function for each 

factor, the weight of a set being the product of the weight function over 

its elements. This is the LEVINE-LUBELL result. Now similar considerations 

apply to the divisors of an integer except that care must be taken to insure 

that logarithmic convexity holds in weighting each prime factor separately. 
k a (k) 

This will hold if each factor p is weighted by (X) P for a convex 
p 

function a. In the direct product the weighting is multiplicative over 
p 

products of different prime factors. 

We can conclude that for such weighting, the lattice of divisors of n 

still satisfies LYM. Thus, all the SPERNER like theorems of section IV 

hold here. 

We content ourselves with three examples of such theorems. 

1. Consider a collection of divisors of n no one dividing another. Then 

their sum cannot exceed the maximum of the same sum over collections 

having constant total degree. 

2. Let n be a product of two relatively prime factors n 1 and n2 . Write any 

factor k of n as k 1k 2 with k 1/n1, k 2/n2 • Then the sum of k 1/k2 over a 

collection containing no chain of m+l factors one dividing the next, 

cannot exceed the same sum over them collections giving the largest 

value of this sum and having constant total degree. 

Many obvious generalizations may be made; the term k 1/k2 can be re

placed by k~/k~ for any a,b; and one can subdivide n into more than two 

relatively prime factors with the same results. 

3. In somewhat more generality, all of the results following from theorems 

2 and 3 can be deduced for the divisor lattice with multiplicative 
a (k) 

weights of the form (X) P for each prime factor and convex a. With 
p p 

weight functions not constant over a rank the theorems take the following 

form. 

THEOREM 2'. In the lattice of divisors of an integer, if a (kl is a convex 
p 

function of k, divisors containing only one prime factor p of degree k are 
a (k) 

weighted by a term (X) P and other divisors weighted with products of 
p 

such terms over their prime factors, then 

I w(f) ~ max I w<f) 
fEF CcF fEC 



with w(f) = l w(f'), r(f') = r(f), r = rank function off in the lattice. 
f' 
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THEOREM 3'. If n is written as the product of two integers, n 1 and n2, with 

similar weighting in the lattices of divisors of n 1 and n 2 the swn 

I w(f> 
fEF 

cannot exceed the maximum over c1 ,c2 , chains of divisors of n 1 and n 2, of 

I ; 1 (f1 > w2 (f2 > 
fEC 1 oc2 

with w1 (f) I 
f'/n. 

l. 

r. (f') 
l. 

w. (f') 
l. 

r. (f). 
l. 

Proofs of these theorems can be obtained by applying theorems 2 and 3 

on partial orders obtained by replacing a given factor by a number of copies 

of it proportional to its weight, each ordered with respect to everything in 

it. 

These theorems could be stated well for more general direct products. 

The author would like to acknowledge many stimulating conversations 

with C. GREENE who suggested a number of improvements incorporated above. 
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SPERNER FAMILIES AND PARTITIONS OF A PARTIALLY ORDERED SET *l 

C. GREENE 

Massachusetts Institute of Technology, Cambridge, Mass. 02139, USA 

1. INTRODUCTION 

This paper is a summary (without proofs) of the main results in a 

series of papers by the author and D.J. !<LEITMAN [14] and the author [11, 

12, 13] concerning subsets of a finite partially ordered set called Sperner 

k-famiZies. If Pisa finite partially ordered set, a subset A~ Pisa 

k-famiZy if A contains no chains of length k+l (or, equivalently, if A can 

be expressed as the union of k 1-families in P). Maximum-sized k-families 

are called Sperner k-families of P. 

The literature abounds with results about the maximum size of Sperner 
**) k-families for special classes of partially ordered sets. In this paper, 

however, we are not so much concerned with specific numbers as with struc

tural properties. The results described here fall into one or more of the 

following categories: 

(1) Bounds on the size of a k-family induced by partitions of Pinto chains. 

(2) Relationships among numbers which arise for various values of k. 

(3) Intersection theorems for collections of k-families. 

(4) Complementary theorems obtained by interchanging the ideas of "chain" 

and "antichain". 

(5) Properties of a lattice-ordering defined on k-families. 

(6) Matching theorems and properties of certain submodular functions. 

*) Supported in part by ONR N00014-67-A-0204-0063. 
**) The name "Sperner k-family" comes from a generalization (due to 

ERDOS [7]) of SPERNER's theorem on finite sets [17]. The generalization 
states that the maximum size of a k-family of subsets of an n-set is 
equal to the largest sum of k binomial coefficients(~). 

J 
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2. k-SATURATED PARTITIONS 

If k = 1, k-families in Pare also called antichains. Most of the 

results in this paper can be traced back to a deep theorem of DILWORTH [4], 

which states a basic relationship between chains and antichains of a 

partially ordered set: 

THEOREM 2.1. If every antichain of P has d or fewer elements, then P can be 

partitioned into d chains. 

The main object of [14] was to prove a similar statement about k

families. If C = {c1,c2 , ••• ,c4 } is a partition of Pinto chains ci, then, 

since chains meet k-families at most k times, it follows that no k-family 

can have more than 

q 

l min {k,jcil} 
i=l 

members. Let Sk(C) denote the bound induced by a partition C in this way, 

and let ¾(P) denote the size of the largest k-family in P. 

THEOREM 2.2. (cf. [14]). For all k, ¾(P) = min Sk(C). 
C 

A partition C which satisfies ¾(P) = Sk(C) is called a k-saturated 

partition of P. The fact that k-saturated partitions always exist is appar

ently much more difficult to prove than DILWORTH's theorem (which is a 

special case), and there are many interesting consequences. 

Another way of stating theorem 2.2 is as follows: 

THEOREM 2.3. (cf. [14]). For all k, ¾(P) = min {Is!+ k dl (P-S)}. 
SSP 

Theorem 2.3 follows from the fact that a k-saturated partition remains 

k-saturated if all of the chains of lengths k are broken up into singletons. 

Many important examples (Boolean algebras, integer divisors, subspaces 

of a vector space) have the property that P can be simultaneously k-saturat

ed for all k. That is, one can find a partition C such that Sk(C) 

for all k. However, this is not always possible if P is arbitrary. 
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ExAMPLE 2.1. Let P + 4 

3 

1 

Then d 1 (P) = 2, d2 (P) = 4, d 3 (P) = 5 and d4 (P) = 6. C = {124, 356} 

is !-saturated and 2-saturated but not 3-saturated, while C1 = {3,4,-1-2_5_6_} 

is 2-saturated and 3-saturated but not 1-saturated. It is easy to see that 

no partition is simultaneously 1-, 2- and 3-saturated. 

In view of this example, GREENE & KLEITMAN obtained the next best 

theorem on simultaneous k-saturation: 

THEOREM 2.4. (cf. [14]). For all k, there exists a partition which is sirrrul

taneously k-saturated and (k+l)-saturated. 

In fact, it was only by proving this stronger result that a proof of 

theorem 2.2 was obtained in [14]. The proof is by induction on IPI, and 

most of it is easy except for one critical step: for each i, define 6i (P) 

= di (P)-di-l (P), with 61 (P) = dl (P) by convention. Then 

LEMMA 2.1. (cf. [14]). If 6k(Pl > 6k+l (P), there exists an element x € P 

which is contained in every Sperner k-family and every Sperner (k+l)

family of P. 

There is no reason to suppose that 6k(P) ~ 6k+l (P) in general, but it 

turns out to be true. This result is more important (and less trivial) than 

it might seem at first glance: 

THEOREM 2.5. (cf. [14]). 6k(P) ~ 6k+l (P) for all k. 

We know of no elementary proof of theorem 2.5, even when k = 2 (al

though it is trivial when k = 1). One difficulty is that there is apparently 

no combinatorial interpretation of 6k(P) if k > 1. It is not always true 

that a Sperner k-family can be obtained by adding 6k(P) elements to a 

Sperner (k-1)-family, as the following example shows: 

ExAMPLE 2.2. Let P 
~ A~8~ 
3~ vv v? 

1 2 



94 

Then a1 (P) = 5 and a2 (P) = 8, but {3,4,5,6,7} is the only 1-farnily of size 

5 and {1,2,6,7} u {3,4,8,9} is the only 2-farnily of size 8. Thus no 2-farnily 

of size 8 can be obtained by adding 3 elements to a 1-farnily of size 5. 

If it is known that k-saturated partitions exist, theorem 2.5 is tri

vial, by the following easy lemma: 

LEMMA 2. 2. Suppose that C = { c 1 , ... ,cq} is a k-saturated partition of P, and 

exactly h of the chains have length~ k. Then 6k(P) ~ h ~ ~k+l (P). 

Using theorem 2.4 and lemma 2.1, it is possible to completely charac

terize when the collection of all Sperner k-farnilies of P has non-empty 

intersection. 

THEOREM 2.6. (cf. [14]). The following conditions ar•e equivalent: 

( 1) ~l (P) > 6k+l (P) . 

(2) dk+l (P) > (k+l)d1 (P). 

(3) Every set of k+l Sperner k-families has non-empty intersection. 

(4) The collection of all Sperner k-families has non-empty intersection. 

The equivalence of the last two conditions suggests HELLY's theorem in 

k-dimensional euclidean space, which states that (3) and (4) are equivalent 

for any collection of convex sets. However, it is not true that Sperner k

farnilies have the "Helly property" in a broad sense, since the property may 

not be inherited by subcollections. 

3. COMPLEMENTARY PARTITIONS 

DILWORTH's theorem (theorem 2.1) remains true if the words "chain" and 

"antichain" are interchanged. More surprising than the fact that this is 

true is its triviality by comparison with DILWORTH's theorem: define Ai to 

be the set of elements in P which have height i. (Define the height of an 

element x to be the length of the longest chain whose top is x.) If 1 is the 

length of the longest chain in P, then A1 ,A2 , ... ,A1 is a partition of Pinto 

antichains. 

Thus it is natural to ask whether a similar transformation can be 

applied to lemma 2.1 (as well as the other results in section 2). It turns 

out that almost everything remains true, although at the present time the 
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proofs do not seem to be trivial. These results were obtained by the author 

in [12]. 

We introduce the following terminology: if C is a subset of P which 

contains no antichains of size h+l, we call Can h-cofamily of P. By 

DILWORTH's theorem, c = c 1 u ••• u eh for some set of chains ci. Let dh(P) 

denote the size of the largest h-cofamily of P, and let lh (P) = c\ (P)-dh-i'P). 

If A= {A1,A2 , ... ,J\} is a partition of Pinto antichains, let 

k 

I 
i=l 

min {h, IA. I}. 
]. 

A partition A of Pinto antichains is h-saturated if dh(P) = 6h(A). 

THEOREM 3.1. (cf. [12]). For all h there exists a partition A of Pinto 

antichains which is both h-saturated and (h+l)-saturated. 

THEOREM 3.2. (cf. [12]). For all h, lh(P) ~ Eh+l (PJ. 

By virtue of theorems 2.5 and 3.2, we can think of the numbers bk(P) 

and Eh(P) as forming the parts of a partition of the integer \PI, arranged 

in decreasing order. A remarkable relationship exists between these two 

sets of numbers: they are conjugate partitions. 

THEOREM 3.3. (cf. [12]). Define two partitions of \PI as follows: b(P) = 
= {61 (P) ~ b2 (P) ~ ... ~ b1 (P), where 1 is the length of the longest chain 

in P, and l(P) = {l1 (P) ~ 32 (P) ~ ~ ld(P)}, where dis the size of the 

largest antichain in P. Then b(P) and l(P) are conjugate partitions. (That 

is, lh (P) equals the number of parts of b (P) of size ~ h, for all h. J 

As an illustration of theorem 3.3, consider the partially ordered set 

which appears in example 2.2. Since d1 (P) = 5, a2 (P) = 8 and d 3 (p) = 9, 

the partition b(P) has shape 

It is easy to check that a.1 (P) 

a5 (P) = 9, (The partition A = { 1 

saturated, and the partition A• 

4-saturated and 5-saturated.) 

3, 

2 

d2(P) 

6 7, 3 

{ 1 2, 

5, d3(P) 

4 8 9, 5} 

3 4 5 6 7, 

= 7, a4 (P) = 8, and 

is 1-, 2- and 3-

8 9} is 3-saturated, 
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A more interesting example is obtained from the theory of permutations. 

Suppose that o = <a1 ,a2 , .•• ,an> is a sequence of distinct integers. Define 

P0 to bet the set of pairs (ai,i), with a partial order defined component

wise. It is easy to see that chains and antichains of P0 correspond to 

increasing and decreasing subsequences of o. Hence k-families (h-cofamilies) 

correspond to unions of k decreasing (h increasing) subsequences of a. 

SeHENSTED [17] showed that the length of the longest increasing subsequence 

of o could be computed by constructing a Young tableau (using what is now 

known as "Schensted's algorithm"), and counting the number of elements in 

the first row. Moreover, decreasing sequences can be considered by applying 

the same algorithm too in reverse order, in which case the tableau is 

transformed into its transpose. 

In [11] the author extended SeHENSTED's theorem by giving a similar 

interpretation to the rest of the shape of the tableau associated with o. 

THEOREM 3.4. (cf. [11]). Leto be a sequence of distinct integers, and let 

P be defined as above. If Sohensted's algorithm maps o onto a tableau of 
0 

shape A= {A 1 ! A2 ! ... ~ Al}: then <\i<P0 ) = Al 

and*dk(P0 ) =Al+ A2 + •.• + Ak for all k. Hence 

Ak. 

~ A2 + •.• + Ah for all h, 

lh{P) = A and lk(P) = o h o 

Once it is proved that lh(P0 ) = Ah' it follows trivially that lk(P0 ) 

= Ak' by reversing the order of o. Hence theorem 3.3 is obvious in this 

case. It should be noted, however, that partially ordered sets of the form 

P = P are the.only ones in which the relations of comparability and in-a 
comparability are interchangeable in this way. 

Theorem 3.3 shows that we can associate a "shape" with every partially 

ordered set P, without actually constructing a tableau. When P = P 0 , this 

shape coincides with the one determined by Schensted's algorithm. 

u eh is an h-cofamily of P, we can define a partition 

of Pinto chains by taking e 1,c2 , ••• ,eh and each of the elements in P-C as 

a singleton. Denote this partition by C = {c1 , ••. ,Ch; P-C}. 

THEOREM 3.5. (cf. [12]). 

(i) 

(ii) 

If e = cl u ... u eh 

= {e1, ... ,eh; P-C} is 
* * lh(P) ~ k ~ lh+l (P). 

If C = {c1, ••• ,eh; T} 

is an h-oofamily of size dh(P), then C = 
a k-saturated partition for all k suoh that 

is a k-saturated partition, with each le. I ~ k, 
l. 



then ~k(P) ~ h ~ ~k+l (P), a:nd C 

of size dh (P) • 

c 1 u ... u eh is an h-cofcunily 
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This result shows that, in a sense, h-cofamilies are k-saturated 

partitions provided that hand k are related properly. A similar statement 

holds fork-families and h-saturated partitions of Pinto antichains. 

Next we mention a result which is the "complementary" analogue of theo

rem 2.6 (parts (3) and (4)): 

THEOREM 3.6. (cf. [12]). If every set of h+l h-cofamilies of size dh(P) has 

non-empty intersection, then there is a:n element x E P which is a member of 

every h-cofcunily of size ¾(P). 

For example, if any two maximum-length chains have a common member, 

then they all have a common member. 

The existence of "complementary" theorems makes one suspect that there 

might be a connection between these results and the theory of perfect graphs. 

A graph G is perfect if the analogue of DILWORTH's theorem holds for every 

subgraph of G. (We think of vertices connected by an edge as "comparable" 

and unconnected pairs as "incomparable". Hence chains correspond to comple

te subgraphs and antichains to independent sets.) If G is any graph, the 

complement G* of G is obtained by interchanging the relations of "adjacent" 

and "non-adjacent". BERGE [1] conjectured and LOVASZ [16] proved (using 

ideas developed by FULKERSON [10]) that G* is perfect whenever G is. 

We have the following negative results: 

(1) Theorem 2.2 need not hold for perfect graphs. That is, k-sa-turated 

partitions (into complete subgraphs) do not always exist. 

(2) If theorem 2.2 holds for all subgraphs of a graph G, it need not hold 

for G*. 

An example which illustrates both observations is obtained by taking 

* G and G to be the following graphs (both perfect): 

G 
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One easily computes 

d1 (G) 3; dl (G) * d1 (G) 3; 

d2 (G) 5; d2(G) * d2 (G) 4; 

d 3 (G) 6; d3(G) d3 (G*) 6. 

It turns out that G* has no 2-saturated partition, whereas G has 1-, 2-

and 3-saturated partitions. Note that G* also violates the condition 

fi1 ~ fi2 ~ fi3. 

On the other hand, G does not satisfy theorem 2.5. Although k-saturated 

partitions exist fork= 1,2,3, it is not possible to find a partition which 

is both 1-saturated and 2-saturated. The next theorem takes advantage of 

this loophole: 

THEOREM 3.7. (cf. [12]). Let G be a graph with the property that, for all k, 

there exists a partition of G into complete subgraphs which is both k-satu

rated and (k+1)-saturated. Then G* also has this property. 

4. THE LATTICE OF k-FAMILIES 

The technical details of [14] were based on a careful study of a natu

ral ordering which can be defined on the set of all Sperner k-families of P. 

In particular, properties of this ordering were used to prove lemma 2.1, 

after which most of the other results in section 2 follow by relatively 

simple arguments. 

Let Fk(P) denote the set of all k-families of P, and let Sk(P) denote 

the set of all Sperner k-families of P. If k = 1, we define an ordering on 

Fk(P) and Sk(P) as follows: if A and Bare antichains, we say that As B 

if every element of A is s some element of B. The following results are 

well-known: 

THEOREM 4.1. (BIRKHOFF [2]). F1 (P) is a distributive lattice. 

THEOREM 4.2. (DILWORTH [5]). Si (P) is a sublattice of Fl (P) (and hence is 

distributive). 

It is easy to describe the lattice operations in Fk(P). If U is any 

subset of P, definemax [u] to be the set of maximal elements of U, and 

define U to be the order ideal generated by U (that is, U is the set of 

elements s some member of U.) 



LEMMA 4.1. For any antichains A and BE F1 (P), 

(ll A~ B if and only if AS: B; 
(2) AV B max [Au BJ= max [Au B]; 

(3) A A B max [A n B]; 

(4) IA V BI + IA A BI ;;: IAI + IBI. 
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Theorem 4.2 above is an immediate corollary of inequality (4). To prove 

(4), it is convenient to introduce an auxiliary operation A~ B = 
= ( (AUB)-(AVB)) u (AnB). That is, A ~ B is the set of "non-maximal" elements 

of AUB (plus all elements which occur twice). It is immediate that A~ B ~ 

£AA Band IA v BI+ IA~ BI IAI + IBI, from which (4) follows. Using 

these properties alone, it is possible to obtain some interesting facts 

about antichains: 

COROLLARY 4.1. (KLEITMAN, EDELBERG & LUBELL [15]). There exists an antichain 

A of maxirrrum size in P which is invariant under every automorphism of P. 

The proof is easy: take A to be the top element of S 1 (Pl. This argument 

(due to FREESE [8]) can be used to give a one-line proof of SPERNER's 

theorem for Boolean algebras. 

Another application is the following: if A+ and A denote the top and 

bottom elements of S 1 (P), then every member of S 1 (P) lies between them. 

Hence A+ and A have non-empty intersection if and only if all of the mem

bers of S1 (P) have non-empty intersection, and we have a special case of 

theorem 2.6: 

COROLLARY 4.2. The antichains of maxirrrum size in P have non-empty inter

section if and only if any two of them have non-empty intersection. 

Next we extend the ordering defined on antichains to Fk(P) and Sk(P). 

If A is a k-family, then A can always be partitioned into antichains 

A1 ,A2 , ••• ,¾ by taking Al= max [A], A2 = max [A-A1J, A3 = max [A-A1-A2], 

and so forth. That is, Ai is the set of elements of "depth" i in A. We call 

this partition the canonical partition of A. 

If A and Bare k-families, define A~ B if A. ~ B. (1 ~ i ~ k), where 
J. J. 

Ai and Bi denote antichains in the canonical partitions of A and B. It is 

clear that this definition makes both Fk(P) and Sk(P) into partially ordered 

sets. To show that both are lattices, we must define new operations: 
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k 
A V B i~l Ai V B. I 

J. 

k 
A b. B i~l A, b. B, I 

J. J. 

I\ 
k 

A * B i~l A. I\ B,. 
J. J. 

THEOREM 4.3. (cf. [14]). Fk(P) is a lattice, in which the join of two k

families is given by A v B. 

I\ 
However, it may not be true that either A b. B or A* B coincides with 

A II B (the true g.l.b. of A and Bin Fk(P)). 

EXAMPLE 4.1. Let P 

and A= {4,3}, B = {6,5}. Then A b. B = 0 and A~ B = {2}. Yet A II B 

A procedure for computing A A B was described in [14]. 

LEMMA 4.2. For any A,B E Fk (P) 
I\ 

( 1) A b. B Sc:_A * B £ A II B; 

(2) IA V BI + IA b. BI IAI + IBI; 

(3) IA V BI + IA II BI ;::: IAI + IBI. 

{2,1}. 

It follows from inequality (3) that Sk(P) is closed under v and 11, and 

hence forms a sublattice of Fk(P). If k > 1, it is no longer true in general 

that Fk(P) is distributive (although it can be shown to be "locally distri

butive"). Hence one cannot conclude from (3) that Sk(P) is a distributive 

lattice. Surprisingly, this turns out to be true anyway. 

THEOREM 4.4. (cf. [14]). Sk(P) is a distributive sublattice of Fk(P). 
A 

Moreover, if A,B € Sk(P), then A II B = A b. B =A* B. 

The structure of Fk(P) and Sk(P) is discussed more carefully in [14]. 

We conclude this section by giving an application of theorem 4,4: 



THEOREM 4.5. (cf. [14]). If P is any pa:rtially ordered set, then for each 

k ~ 1 there exists a Sperner k-family A E Sk(P) which is inva:riant under 

every automorphism of P. 

This extends corollary 4.1 to k-families. The proof is exactly the 

same. 

5. GRADED MULTIPARTITE GRAPHS 

A different approach to the study of k-families was taken by the 

author in [13]. Essentially, the idea was to extend FULKERSON's method of 

obtaining DILWORTH's theorem from HALL's matching theorem [9]. 
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If Pisa partially ordered set, define rk(P) to be the graded multi

partite graph obtained by taking k+1 copies of P (denoted by P1 ,P2 , ... ,Pk+J 

and connecting x E Pi toy E Pi+l if x <yin P. A partial matching in 

rk(P) is a collection of disjoint paths of length (k+l) which link some 

element of P1 to some element of Pk+l· If k = 1, FULKERSON observed that 

the edges of a maximum partial matching can always be joined to form a 

minimum partition of Pinto chains. A proper interpretation of the HALL-ORE 

matching condition gives DILWORTH's theorem immediately. If k > 1, the 

situation is somewhat more complicated, since the first part of FULKERSON's 

argument is difficult to duplicate. Nevertheless, the second part carries 

over easily, and we obtain the following: 

THEOREM 5.1. (cf. [13]). The maximum number of paths in a partial matching 

in rk(P) is equal to IPI - ~(P). 

Theorem 5.1 is proved by showing that every minimal separating set in 

fk(P) is obtained by partitioning a set of the form P-A, where A is a 

Sperner k-family. Minimal separating sets can be found using a flow al

gorithm (or other methods in this case) and hence there is an effective 

procedure for constructing Sperner k-families. 

If l is the length of the longest chain in P, and k = 1-1, it is easy 

to see that disjoint paths in fk(P) correspond to disjoint maximum-length 

chains in P. Moreover A is a Sperner k-family if and only if P-A meets 

every chain of length 1. 
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COROLLARY 5.1. The maximum nwnher of disjoint 1-chains in P is equal to the 

minimum nwnber of elements in P which meet every 1-chain. 

This result is just another way of stating that (1-1)-saturated parti

tions exist. Hence we obtain an easier proof of theorem 2.2 in this case. It 

is interesting to note that corollary 5.1 remains true if chains are re

placed by antichains (theorem 3.1), although there is apparently no analogous 

proof using flows. 

If we attempt to extend FuLKERSON's proof of DILWORTH's theorem, the 

difficulty fork> 1 is that partial matchings in rk(P) cannot be readily 

transformed into collections of chains in P. However, the converse problem 

is trivial: if C = {c1 ,c2 , ••. ,cq} is a partition of Pinto chains a partial 

matching in rk(P) is obtained by taking all consecutive segments of length 

(k+l) appearing in C. Moreover, it is easy to see that the number of paths 

in the matching is exactly IPI - Sk(C). Hence another (more constructive) 

proof of theorem 2.2 follows if we show that every maximum partial matching 

in rk(P) can be "straightened out", so that it corresponds to one obtained 

from a partition C by taking consecutive segments of length (k+l). This is 

easy for small values of k but becomes more difficult ask increases. A 

general algorithm was described by the author in [13]. 

6. SUBMODULAR FUNCTIONS 

In this section we describe a class of combinatorial geometries which 

can be associated with a partially ordered set by means of submodular func

tions related to k-families. The basic tool is the identity 

( lemma 4 • 2 ) • 

LEMMA 6.1. (cf. [14]). For any k, the function dk is a super-modufor func

tion on order ideals of P. That is, if Mand N are order ideals of P, then 

dk(M u N) +<\_(Mn N) ~ dk(M) + <\_(N). 

If P is any partially ordered set, let P0 be the set of maximal ele

* ments of P, and let P = P-P0 • If x s P0 define 
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THEOREM 6.1. (cf. [14]). With the above notation, rk is the rank function 

of a combinatorial geometry on P0 • That is 

(1) rk(0) O; 

(2) rk(X) :S rk(X up) :S rk(X)+i, X s; P0 , p E P0 ; 

(3) rk(X u Y) + rk(X n Y) :S rk(X) + rk(Y), X,Y s; Po. 

* If k 1 and P has height two (so that P0 and P are both antichains) 

rk coincides with the usual rank function on bipartite graphs associated 

with the HALL-ORE matching theorem. In this case, a set X is independent if 

it forms the set of initial vertices of a matching. In general, one can give 

the following interpretation of what it means for a set to be independent: 

THEOREM 6.2. (cf. [14]). A subset x s; P0 satisfies rk(X) = Ix! if and only 

if there exists a k-saturated partition of p* and a matching of x into the 

set of tops of chains of length~ k. 

[3]) 

We conjecture that this geometry is actually induced (in the sense of 

* by another geometry on P defined by taking bases to be the sets of 

* tops of chains of length~ k formed by k-saturated partitions of P. We have 

not been able to prove or disprove this. 

* If k = 1, however, it is true. Form the bipartite graph r1 (P) (defined 

in section 5), and consider the standard transversal geometry which it de

termines on P*. A subset B £ p* is a basis if and only if for some 1-satu-

* rated partition of P, Bis the set of elements which are not tops of chains. 

If we take the dual of this geometry, then the sets which are tops of chains 

become bases and we have proved the following: 

THEOREM 6.3. If Q is any partially ordered set, let B(Q) denote the collec

tion of subsets of Q which are the tops of chains in some minimal partition 

of Q into chains. Then B(Q) is the set of bases of a combinatorial geometry. 

We conclude this paper with an application of theorems 6.1 and 6.2, 

giving a completely different proof of theorem 2.4 in the special case k=1. 

THEOREM 6.4. For any partially ordered set P, there exists a partition of P 

into chains which is 1-saturated and 2-saturated. 

PROOF. Let A be an antichain of maximum size in P, and let P+ and P denote 

the parts of P which lie above A and below A, respectively. Using the par

tially ordered set P+ u A, define a geometry G+(A) on A, whose rank function 
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r+ is obtained by taking k = 1 in the definition preceding theorem 6.1. Sim-

ilarly, define a geometry G-(A) with rank function r, by using P u A in 
+ + 

the same way. Then r (A)= IAI - (d1 (P 
+ + -u A) - d (P ) ) = d 1 (P ) , and r (A) = 

Let X be a basis of G+(A) and let Y = IAI - (dl (P- u A) - dl (P-)) = dl (P-). 

be a basis of G (A). By theorem 6.2 we can partition Xu P+ into lxl chains, 

and Yu P into IYI chains. By linking these chains together and adding the 

remaining singletons of A, we obtain a partition of Pinto d1 (P) chains 

which has exactly Ix u YI = d(P+) + d(P-) - Ix n YI chains of length two or 

more. This partition (which is trivially !-saturated) will be 2-saturated if 

the number of chains of length two or more is d2 (P) - d 1 (P). Hence we must 

show that X and Y can be chosen so that 

But this turns out to be a direct consequence of EDMONDS' matroid intersec

tion theorem [6]. According to EDMONDS' theorem, there exists a set of size 

q which is independent in both G+(A) and G-(A) if and only if q S r+(U) + 

+ r-(A-U) for all U GA. But 

min (r+(U)+r-(A-U)) = min{(lul-d (P+ u U) + d 1 (P*)) + 
UGA UGA l 

- max {d1 (P+ u U) + 
UGA 

as desired. (The last step follows if we observe that the sum in brackets 

is the size of some 2-family.) D 

It seems likely that an extension of this argument could be used to 

prove the?rem 2.4 for arbitrary k, but so far we have not been able to find 

such a proof. 
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COMBINATORIAL RECIPROCITY THEOREMS *l 

R.P. STANLEY 

Massachusetts Institute of Technology, Cambridge, Mass. 02139, USA 

A combinatorial reciprocity theorem is a result which establishes a 

kind of duality between two related enumeration problems. This rather vague 

concept will become clearer as more and more examples oit; such theorems are 

given. We shall be content in this paper with explaining the meaning of 

various reciprocity theorems via mere statements of results, together with 

clarifying examples. A rigorous treatment with detailed proofs appears 

in [11]. 

1. POLYNOMIALS 

A polynomial reciprocity theorem takes the following form. Two combina

torially defined sequences s1,s2 , ... and s1,s2 , ••• of finite sets are given, 

such that the functions f(n) = Is I and f(n) = Is I are polynomials inn for 
n _ n d 

all integers n ~ 1. One then concludes that f(n) = (-1) f(-n), where 

d = deg f. Frequently the numbers f(O) and f(O) will have a special signif

icance. 

EXAMPLE 1.1. Fix p > O. Let f(n) be the number of combinations with 

repetitions of n things taken pat a time. Let f(n) be the number of such 

combinations without repetitions. Thus f(n) = (n+p-l) and f(n) = (n). Hence 
_p p 

it can be verified by inspection that f(n) and f(n) are polynomials inn 

of degree p, related by f(n) = (-l)pf(-n). 

EXAMPLE 1.2.(THE ORDER POLYNOMIAL). Let P be a finite partially ordered set 

of cardinality p > 0. Let w: P ➔ [p] be a fixed bijection, where we use 

the "French notation" [p] = {1,2, ... ,p}. Let rl(n) denote the number of maps 

*) 
Supported by NSF Grant #p36739 at M.I.T., Cambridge, Mass., USA. 
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cr: P ➔ [n] such that (i) x ~yin P implies cr(x) ~ cr(y), and (ii) x < y 

in P and w(x) > w(y) implies cr(x) < cr(y). Let rl(n) denote the number of 

maps T: P ➔ [n] such that (i) x ~yin P implies T(x) ~ T(y), and (ii) 

x <yin P and w(x) < w(y) implies T(x) < T(y). Then it can be shown [8, 

Proposition 13.2(i)] that Q and r2 are polynomial functions inn of degree 

p related by rl(n) = (-1)PQ(-n). We call Q the order potynomial of (P,w). 

There are several ways to prove this reciprocity relationship between Q and 

n, perhaps the simplest by a judicious use of the Principle of Inclusion

Exclusion which we leave to the reader. Note that if Pisa p-element chain 

and w is order-preserving, then Q(n) = (n+p-l) and rl(n) = (n), so example 
p p 

1.1 is a special case. 

Several interesting consequences of the reciprocity between Q and Q 

are derived in [8, §119]. For instance, if w is order-preserving then for some 

integer 2 we have Q(n) = (-l)PQ(-2-n) for all n if and only if every maximal 

chain of P has length£. 

EXAMPLE 1. 3. (CHROMATIC POLYNOMIALS). Let G be a finite graph without loops 

or multiple edges, with vertex set V of cardinality p. Let x(n) denote the 

number of pairs (O,cr), where (i) 0 is an acyclic orientation of the edges of 

G, and (ii) cr: V ➔ [n] is any map V + [n] such that if u ➔ v in O (so 

u,v E V and uv is an edge of G) then cr(u) > cr(v). Let i((n) be the number of 

such maps with the condition cr(u) > cr(v) replaced with cr(u) 2:: cr(v). It is 

easily seen that x(n) is the chromatic polynomial of G. In [9] two proofs 

are given of the reciprocity theorem x(n) = (-l)Px(-n). In particular, 

(-l)Px(-1) is the number of acyclic orientations of G. 

EXAMPLE 1.4. (ABSTRACT MANIFOLDS). Let/:, be a finite simplicial complex 

with vertex set V, with IV I = p. Thus /:, is a collection of subsets S of V such 

that {v} E /:, for all v E V, and if SE/:, and Tc s, then TE!:,. Let 

fi(/:,) be the number of (i+1)-sets contained in!:,. Hence f_ 1 

p. Define the polynomial A(l,n) by 

1 and 

Note that A(l,O) = f 0-f1+f2- ••• = x(6),the Euler characteristic of 6. 

Now suppose that the underlying topological space 161 of!:, is homeo

morphic toad-dimensional manifold with boundary. Hence deg A(6,n) = d. 

Denote by a1:, those elements oft:, such that la61 = 3161, in the obvious 
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sense. Hence aA is itself a simplicial complex, with vertex set contained 

in v. It follows from a result of MACDONALD [5, Proposition 1.1] that 

(1.1) 
d 

(-1) A(A,-n) = A(A,n) - A(aA,n) • 

For instance, let A consist of ABCD, BCDE, and all their subsets 

(ABCD is short for {A,B,C,D}, etc.) Then d = 3, IAI is a 3-ball, and aA 

consists of ABC,ABD,ACD,BCE,CDE,BDE, and all their subsets. Moreover, 

(n-1) (n-1) (n-1) A(A,n) = 5 + 9 1 + 7 2 . + 2 3 

and 

(n-1) (n-1) A(aA,n) = 5 + 9 1 + 6 2 · 

It follows from (1.1) that 

A special case of particular interest occurs when aA 

IAI is a manifold. We then have from (1.1) that 

(1.2) 
d (-1) A(A,-n) = A(A,n) • 

(,J, i.e., when 

Now (1.2) imposes certain constraints on the numbers fi which define A. 

When IAI is a sphere, these constraints are simply the well-known 

DEHN-SOMMERVILLE equations [4, Chapter 9] [6, Chapter 2.4]. 

EXAMPLE 1.5. (CONCRETE MANIFOLDS). Let M be a subset of the s-dimensional 

euclidean space with the following properties: (i) Mis a union of finitely 

many convex polytopes, any two of which intersect in a common face of both, 

(ii) the vertices of these convex polytopes have integer coordinates, and 

(iii) Mis homeomorphic toad-dimensional manifold with boundary. If n > O, 

then let j(n) be the number of points a€ M such that na has integer coordi

nates, and let i(n) be the number of such points not belonging to aM. Then 

a result due essentially to E. EHRHART [2] (for the generality considered 

here, one also needs [5, Proposition 1.1]) states that j(n) and i(n) are 

polynomial functions of n of degreed satisfying 
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(1.3) j(O) = x(M), i(nl = (-1)dj(-n) • 

We remark that condition (ii) can be replaced by the requirement (ii') the 

vertices have rational coordinates. In this case i and j need no longer be 

polynomials, but instead there is some N > 0 and polynomials j 0 ,j 1 , ••• ,jN-l 

and i 0 ,i1, ••• ,iN-l such that j(n) = ja(n) and i(n) = ia(n) whenever 

n = a(mod N). We then have in place of (1.3) that j 0 (0) = x(M) and ia(n) 

= (-l)dj (-n), where the subscripts are taken modulo N. 
-a 

An interesting application of (1.3) is to the problem of finding the 

volume V(M) of a subset M satisfying conditions (i), (ii), (iii), and the 

additional condition that s = d. It is easy to see that then the leading 

coefficient of j(n) is V(M). Hence from (1.3) we see that if we know any 

d+l of the numbers x(M), j(n), i(n), n ~ 1, then we can compute V(M). For 

a further discussion of this result (including references), see [11]. 

ExAMPLE 1.6. (MAGIC SQUARES), As a special case of example 1.5, take M to 

be the set of all doubly stochastic N x N matrices, so s = N2 and d = (N-1)~ 

It is well-known that Mis a convex polytope whose vertices have integer co

ordinates, so j(n) and i(n) are polynomials inn of degree (N-1) 2 • It is 

easy to see that j(n) is the number of N x N matrices of non-negative 

integers with every row and column sum equal ton, while i(n) is the number 

of such matrices with positive entries. Clearly i(O) = i(1) 

= 0 and i(N+n) = j(n) for n ~ 0. There follows from (1.3), 

j(-1) j(-2) = j (-N+l) 0 , 

j (n) 
N-1 

(-1) j (-N-n) 

••• = i(N-1) = 

These results were first obtained in [10]. Another proof is given in [3]. 

2. HOMOGENEOUS LINEAR EQUATIONS 

Consider the homogeneous linear equation x = y. Let F(X,Y) = Ix0 Ya, 

where the sum is over all solutions (x,y) = (a,S) to x =yin non-negative 

integers a,S. Let F(X,Y) be the corresponding sum over all solutions in 

positive integers. Clearly F(X,Y) = 1/(1-XY) and F(X,Y) = XY/(1-XY). Hence 

as rational functions we have F(X,Y) = -F(l/X,1/Y). It is this result we 
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wish to extend to more general systems of equations. 

THEOREM 2.1. [10, Theorem 4.1]. Let Ebe a system of finitely many linear 

homogeneous equations with integer coefficients, in the variables 

x 1,x2 , .•• ,xs. Define 

(2. 1) 

where (a 1 ,a2 , ••• ,as) ranges over all solutions xi = ai of E in non-negative 

integers ai, while (S 1,s2 , ••• ,Ssl ranges over all solutions in positive 

integers. Then F and Fare rational functions of the xi's {in the algebra 

of formal power series, or for Ix. I < 1). A necessary and sufficient 
l. 

condition that 

as rational functions, is for E to possess a solution in positive integers. 

In this case the correct sign is (-l)K, where K is the cora:nk (= s-rank E) 

of E. 

Many of the results in section 1 can be deduced from the above theorem. 

We require a connection between evaluating polynomials at +n and -n, and 

substituting 1/Xi for Xi in a rational function. Such a connection is provid

ed by the next result, which EHRHART [1] attributes to POPOVICIU [7]. 

PROPOSITION 2.1. Let H(n) be a function from the integers z to the complex 

numbers c of the form 

r 
H(n) = L P, (n)a~, 

i=l 1. 1. 

where the a. 's are fixed non-zero complex numbers and each P is a polynomial 
l. i 

inn. Define 

F (X) L H(n)Xn, F(X) 
n=O 

l H(-n)Xn. 
n=l 
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Then F and F a;r,e rational funations of X3 related by F(Xl = -F(1/X). 

Theorem 2.1 suggests that we try to find "rational function analogues" 

of examples 1.4 and 1.5. 

PROPOSITION 2.2. Let 6 be a finite sirrrpliaial aomplex with vertiaes 

v1,v2, ... ,vp. Suppose 161 is homeomo-rrphia to a d-manifoid with bounda;r,y. 

Define the generating funations 

where (o 1 ,o 2 , ••• ,op) ranges over all p-tuples of non-negative integers suah 

that {Vi I oi>O} € 6~ while (e 1,e2 , ••• ,e) ranges over all p-tuples of non-
I p -

negative integers suah that jl) 'f {vi · ei>O} € 6-at. Then F and F a;r,e ratior.-
al funations of the Vi 's related by 

Proposition 2.2 is a consequence of MACDONALD's result [5, Proposition 

1.1] mentioned earlier. It is easily seen that 

co 

F(X,X, ••• ,X) l A(6,n)Xn, 
n=O 

co 

F(X,X, ••• ,X) l [A(6,n)-A(o6,n)]xn, 
n=l 

in the notation of example 1.4. Thus (1.1) follows from propositions 2.1 

and 2.2. 

PROPOSITION 2.3. Let M satisfy properties (i)~ (ii') and (iii) of example 

1. 5. Define 
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ai and positive integers n such that (a 1/n,a2/n, .•• ,as/n) EM, while 

(S 1 ,s2 , ••• ,S 5 ,n) ranges over all such (s+l)-tuples with (S 1/n,S2/n, ••• ,Ss/n) 

E M-oM. Then F and Fare rational functions related by 

If we put each Xi = 1 and apply proposition 2.1, then we get (1.3). 

3. RECIPROCAL DOMAINS 

In theorem 2.1, we considered solutions ai ~ 0 (i=l,2, .•. ,s) and 

Sj > 0 (j=l,2, ••• ,s) to a system of homogeneous linear equations. It is 

natural to consider the following generalization. Let Ebe a system of 

finitely many linear homogeneous equations with integer coefficients, in 

the variables x 1 ,x2 , ••• ,xs (as in theorem 2.1). Let Sc [s]. Define 

(3.1) 

where (a 1,a2 , ••. ,as) ranges over all solutions to E in non-negative integers 

such that ai > 0 if i Es, while (S 1,s2 , ••. ,Ss) ranges over all solutions to 

E in non-negative integers with Si> 0 if ii S. Thus F8 = F[s]-s" Note that 

F~ = F and F~ = F, where F and Fare given by (2.1). 

We now ask under what conditions do we have 

(3.2) 

where K is the corank of E. It seems plausible that (3.2) will hold whenever 

E has a solution in positive integers, as in theorem 2.1. In [11], however, 

we show that this is not the case; and we show why it is likely that there 

are no simple necessary and sufficient conditions for (3.2) to hold. 

There is, however, an elegant and surprising sufficient condition. 

THEOREM 3.1. [11, Proposition 8.3]. A sufficient condition for (3.2) to hold 

is that there exists a solution (y 1 ,y2 , •.. ,ys) to E in integers yi such that 
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y. > O if i E s and y. < O if i ,t s. 
l. l. 

The proof of theorem 3.1 depends on a rather complicated geometric 

argument suggested by a result of EHRHART [1, p.22] on "reciprocal domains". _ 

It is much easier, on the other hand, to give a necessary condition for 

(3.2) to hold. 

PROPOSITION 3.1. If (3.2) holds, then either F 

solution in positive integers. 

F = o, or eZse E has a 

PROOF. Assume (3.2) holds but not F = F = O. Then F ~ 0 and Ff 0, so E has 

solutions a= (a1,a2 , .•• ,as) and B = (B 1 ,B2 , .•. ,Bs) as given in (3.1). Then 

a+ Bis a solution to E in positive integers. D 

4. INHOMOGENEOUS EQUATIONS 

Another way of extending theorem 2.1 besides theorem 3.1 is to consider 

inhomogeneous linear equations. Suppose we have a system 

( 4. 1) 
s 

Ia.jx.=b, 
i=l 1 1 j 

j E [p] , 

of p inhomogeneous linear equations with integer coefficients a .. and 
l.J 

integer constants bj, in the variables x1,x2 , ••• ,xs. It turns out that the 

correct reciprocal notions to consider in this context are (i) solutions 

to (4.1) in non-negative integers, and (ii) solutions in positive integers 

to the "reciprocal system" 

(4.2) 
s 

l a .. xi = -bj, 
i=l l.J 

j E [p] • 

Suppose, for example, that Sc [s] and that 

b. = - l ai., 
J iES J 

j E [p] • 

Hence a solution (a 1, .•• ,as) to (4.1) in non-negative integers corresponds 

to a solution (B 1, ... ,Bs) of the system Iaijxi = 0 in integers Bi satisfying 

Bi~ 0 if ii S, Bi> 0 if i ES (set Si= ai if ii S, Si= ai+l if i ES). 

Moreover, a solution (a1 , ... ,as) to (4.2) in positive integers corresponds 

to a solution (S 1, .•. ,Ss) of the system Iaijxi = 0 in integers Si satisfying 
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Si> 0 if i £ S, 6. ~ 0 if i € S (set 6. = a. if i £ S; 6. = ai-1 if i € S}. 
1 1 1 1 

Hence our notion of reciprocity for inhomogeneous systems includes the 

reciprocity of section 3 as a special case. 

We therefore define 

(4. 3) 

a 
X s 

s 

where (a1,a2 , ••• ,as) ranges over all solutions to (4.1) in non-negative 

integers, while (6 1,a2 , ••• ,6s) ranges over all solutions to (4.2) in posi

tive integers. As usual, we seek conditions when F(x1,x2 , ••• ,Xs) = 

= (-1)KF(1/x1,1;x2 , ••• ,1/Xs), where K is the corank of (4.1) or (4.2). We 

shall say that (4.1) has the R-property if F(x1,x2 , ••• ,xs) = 

= (-1)KF(1/x1,1/x2 , ••• ,1/Xs). The possibility of obtaining reasonable 

necessary and sufficient conditions for E to have the R-property appears 

hopeless, and even reasonably general sufficient conditions are rather 

complex and not very edifying. We shall now discuss the nature of the suf

ficient conditions obtained in [11]. 

Let {i1,i2 , ••• ,ik} be a set of k < p elements from [s] such that the 

determinant of coefficients taken from the first k rows and from columns 

i 1,i2 , ••• ,ik of (4.1) is non-zero. Hence we can solve the first k equations 

(i.e., j E [k]) of (4.1) for xi ,x. , ••• ,xi in terms of the remaining xi's 
1 1 2 k 

and substitute these values in the remaining p-k equations, obtaining p-k 

equations in s-k unknowns. Let E(i 1,i2 , ••• ,ik) denote the first of these 

p-k equations (i.e., the equation resulting from making the above substi

tution into the (k+l)-st equation of (4.1)). Thus in particular E(~) is just 

the first equation Iailxi = b1 of (4.1). Note that the equations 

E(i 1,i2 , ••• ,ik) are really determined only up to a non-zero multiplicative 

constant. This need not concern us since we will be interested only in 

solutions to these equations. 

ExAMPLE 4.1. Consider the system 
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Then we obtain the equations 

E (fill : X -
1 x2 + 3x3 b1 

E ( 1): 2x2 - X -
3 x4 b2 

E(2): 2x1 + Sx3 - x4 2b1 + b2 

E(3): xl + Sx2 - 3x4 -b1 + 3b2 

THEOREM 4.1. A sufficient condition that the system (4.1) has the R-property 

is the following. For every set {i 1,i2 , ... ,ik} c [s] for which 

E(i 1,i2 , .•• ,ik) is defined, the single equation E(i 1,i2 , ... ,ik) should pos

sess the R-property. 

It should be mentioned that in [11] theorem 4.1 is strengthened so 

that only a special subset of the equations E(i 1,i2 , ..• ,ik) need be con

sidered. However, the definition of this subset is rather complicated and 

will be omitted here. Theorem 4.1 is proved in [11] using iterated contour 

integration. Contour integration may seem like an unwarranted artifice for 

a result like theorem 4.1. While it i.s undoubtedly possible to dispense 

with contour integration, the next results show that it is not too un

natural in the present context. We would like to complement theorem 4.1 

by obtaining conditions for a single equation to possess the R-property. 

THEOREM 4.2. Let a 1x 1+a2x2+ ••• +asxs = b be a single Zinear equation E with 

integer coefficients a. and integer constant te1'm b. Then the following 
l. 

three conditions are equivalent. 

(il The rational functions 

-a -a -a 
(4.4) Ab-l/(1-A 1) (1-A 2 ) ••• (1-A s) 

and 

(4.5) 

have zero residues at A= O. Here b = -b-a1-a2- .•. -as. 

(ii) The following two conditions are both satisfied. 

(a) There does not exist a solution (a1,a2, ..• ,as) to E in integers 

such that 

at< 0 if at> 0, and 

at~ 0 if at< 0 
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(b) There does not exist a solution (B 1,B2, •.. ,Bsl to E in integers 

suah that 

if 

if 

a >O,and 
t 

at< 0 

(Note: It is alear that at least one of (a) or (b) always holds.) 

(iii) E has the R-property. 

THEOREM 4.3. With the hypotheses of theorem 4.2, the following two aonditicns 

are equivalent. 

(i) The rational functions of (4.4) and (4.5) have no poles at A= O. 

(ii) I a < - b < l a, where I a (resp. la) denotes the sum of all at 
t-:.. t t+ t t- t t+ t 
satisfying at< O (resp. at> 0). 

If, moreover, either of the two (equivalent) conditions (i) or (ii) is 

satisfied, then E has the R-prope:r•ty. 

EXAMPLE 4.2. Consider the system E of example 4.1. By theorems 4.1 and 4.3, 

we see that E has the R-property if 

-1 < - b 1 < 4 

-2 < - b2 < 2 

-1 < -2b1 - b2 < 7 

-3 < b 1 - 3b2 < 6 

These conditions hold if and only if (b1 ,b2 ) 

(-2,-1) or (-2,0). 

(0,-1), (0,0), (-1,-1), (-1,0), 

Analogously to proposition 3.1, we have a simple necessary condition 

for a system (4.1) to have the R-property. The proof is essentially the 

same as the proof of proposition 3.1. 

PROPOSITON 4.1. Suppose the system (4.1) has the R-property. Then either 

F = F = O, or else the homogeneous system l~=laijxi = O, j ~ [p], has a 

solution in positive integers. 

We have given a sampling of what we believe to be the most interesting 

examples of combinatorial reciprocity theorems. Some additional types of 

reciprocity theorems are given in [11]. There are many other combinatorial 

relationships which can be viewed as reciprocity theorems and which we have 
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not touched on. Examples include the inverse relationship between the 

Stirling numbers of the first and second kinds, and the Macwilliams identi

ties of coding theory. We believe that many new interesting results and 

unifying principles are awaiting discovery in the field of combinatorial 

reciprocity. 
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