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A topological space X is said to satisfy 

(0) if X is orderable. 

(CO) - if X is cyclically orderable. 

(S•) - if among every three distinct points of X, there is one which 

separates the other two. 

(K) - if among every three distinct, connected, proper subsets of X, 

there are two which together do not cover the space X. 

(E) - if the subset (X x X) \ 6 of the product space X x X is not con-

nected (where 6 is the diagonal in X x X). 

(P) - if for every two connected subsets A and B of X with a common 

endpoint p the following holds: An B = {p} or Ac B or B c A. 

(H) - if every connected subset of X has at most two endpoints. 

(Hp) - if every connected proper subset of X has at most two endpoints. 

(Hd) - if for every connected subset C of X such that Chas at least 

(Ht) 
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(B') 

(B") 

(B 1 0) 

(B 1 C) 

(Int) 

(Int') 

(Int 2) 

(W) 

three distinct endpoints, C \ {p,q} is disconnected for every 

pair of distinct endpoints p, q of C. 

- if no connected subset C of X has an endpoint triple. 

- if there do not exist three mutually disjoint segments in X. 

- if every cut point of X is a strong cut point. 

- if for every p EX: X \ p has finitely many components. 

- if every segment is open, 

if for every p EX and for every component C of X \ p 

C =Cup. 

- if the intersection of an arbitrary collection of connected 

subsets of X is connected, 

- if the closure of the intersection of an arbitrary collection 

of connected subsets of X is connected. 

- if the intersection of an arbitrary collection of closed con­

nected subsets of X is connected. 

- if the intersection of two connected subsets of X is connected, 

if for every two disjoint connected sets A, B c X it is true 

that IA n BI ~ 1. 



All spaces are assumed to be c?nnected T1. 

Lemma 3.6. 

Lemma 3.7. 

Lemma 3.8. 

Theorem 3.9. 

Theorem 3.10. 

Theorem 3.11. 

Theorem 3.12. 

Theorem 3.18. 

Theorem 3.19. 

Theorem 3.20. 

Proposition 3.21. 

Theorem 4.1. 

Theorem 4 .6. 

Theorem 4.12. 

Theorem 4.13. 

Theorem 4.21. 

Theorem l;..22. 

Theorem 4.25. 

(Ht) + (B'C) ~ (B'). 

(Ht) + (B') + (at least one cut point)= (H). 

(H) + (B') = (0). 

(H) + ('B'C) = (0). 

(Ht) + (B'C) + (at least one cut point)= (0). 

(CO) + (at least one cut point)= (0). 

-, (0) + (CO) = (no cut points) + (no endpoint 

pairs). 

-. (0) + (CO) = (Hp) + -,(H). 

-. (0) + (CO) = (Ht) + (no cut points). 

-, (0) + (CO) = (the complement of each connected 

subset is connected). 

(Ht) + (E'C) = (Hp). 

(S) + (B') = (0). 

(Ht) + (S) = (0). 

(W) + (B'C) = (B 1 0). 

(Ht) + (W) = (H). 

(Ht) + (In.t') = (0). 

(In.t') + (W) = (B 1 0). 

(In.t') + (S) = (Int). 
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INTRODUCTION 

This tract deals with connected orderable ~opological spaces. A topologi­

cal space (X,I) is called orderable if there exists an ordering< on X such 

that the interval-topology I< is contained in I. If, moreover, I<= I then 

the space is called strictly orderable. In this tract we consider a number 

of properties of connected orderable spaces. The relations between these 

properties are investigated in the wider class of connected T1-spaces. Some 

of these properties have already been studied by other authors; mostly, 

however, under the additional assumption that the space under consideration 

is locally connected. 

In Chapter I besides.the orderable and the strictly orderable spaces the 

cyclically orderable and the strictly cyclically orderable spaces are in­

troduced. A number of lemmas is proved, which are frequently used. This 

Chapter ends with the treatment of the first collection of properties. 

These properties all concern segments. 

The properties of connected T1-spaces considered in Chapter II are all 

equivalent to the orderability of such spaces. A similar property is dis­

cussed at the end of Chapter IIL 

The set of properties discussed in Chapter III deals with the notion 

"randendlich", introduced by Herrlich. After investigating the relations 

between these properties it is examined under which extra conditions they 

are equivalent to the orderability of the connected T1-space. Next we again 

pey attention to the cyclically orderable spaces. It turns out that these 

spaces can be characterized in terms of the properties treated in this 

Chapter. 

Chapter IV deals with tree-like spaces and a number of properties concern­

ing the intersection of connected subsets of a connected T1-space. Of the 

results from this Chapter we mention: 

(i) A tree-like space in which every cut point is a strong cut point is 

orderable. 

(ii) In a tree-like space in which the intersection of closed connected 

subsets is connected, the intersection of arbitrary connected subsets 

is also connected. 
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In Chapter V, it is examined which are the relations between all these 

properties if the space under consideration is not only connected and T1 , 

but also locally connected. 

In Chapter VI, several counterexamples are described, Together with the im­

plications derived in the previous Chapters, they give a complete picture 

of all internal relations between the discussed properties - except for 

some unsolved problems, 

The system of internal references is explained by the following examples: 

Theorem 2 in Chapter IV is referred to as Theorem 4.2 if the reference is 

made outside Chapter IV, and as Theorem 2 otherwise. 

Corollary 2,2 in Chapter IV (the second Corollary of Theorem 2 in 

Chapter IV) is referred to as Corollary 4.2.2 outside Chapter IV and as 

Corollary 2.2 otherwise. 



CHAPTER I 

PRELIMINARIES AND NOTATIONS 

1.1. STRICTLY ORDERABLE SPACES 

Let (X,<) be a totally ordered set; let a€ X, b € X and a< b. 

We use the following notation: 

(a,b) = {x € X a< X < b}; 

[a,b] = {x € X a 2_X 2- b}; 

in the latter case we also allow a and b to be equal; 

[a,b) = {x € X a2_x<b}; 

(a,b] = {x € X a < X 2- b}; 

(a, ) = {x € X a < x}; 

( • b) = {x € X x < b}; 

[a, ) = {x € X a 2- x}; 

,b] = {x € X x < b}. 
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A subset J of X is called an open interval if J is of the form J = (a,b) or 

J = (a, ) or J = ( ,b) or J = X. 

J is called a closed interval if J is of the form J = [a,b] or J = [a, ) or 

J = ( ,b] or J = X. A closed interval [a,b] is called degenerate if a= b. 

If [a,b] = {a,b} where a and bare distinct points of X, then we call a and 

b neighbours in X; a is the left neighbour of band bis the right neigh­

bour of a. The set {a,b} is called a jump. 

A pair (A,B) of subsets of an ordered set (X,<) is called a cut, if 

X =Au B, An B = 0, A# 0, B # 0 and if a< b for all a€ A, b € B. 

A gap of a totally ordered set (X,<) is a cut (A,B) of X, such that A has 

no largest element and B has no smallest element. 

A totally ordered set (X,<) is called order-complete if each non-void sub­

set of X which is bounded above has a supremum in X. It is clear that an 

ordered set (X,<) is order-complete iff each non-void subset which is 

bounded below has an infimum in X. Moreover, (X,<) is order-complete if and 

only if there are no gaps. 
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A topological space (X,I) is called st'!'ictly orderable if there exists a 

total ordering< on X, such that the sets of the form {x € X I x < a}, 

{x € X I a< x}, (where a runs through X) form a subbase for the topology 

I in X. In other words: X is strictly orderable iff there exists an order­

ing< on X such that I<= I, where I< is the interval topology. 

THEOREM 1. A strictly orderable space (X,I) is connected if and only if 

(X,<) has no jumps and no gaps, where< is a total orde'!'ing inducing the 

topology I of X. 

PROOF. See e.g. Kelley [18], Ch. I, Problem I. 

1.2. ORDERABLE SPACES 

A space X is called orderable if there exists a total ordering< on X, such 

that the sets of the form {x € X x < a}, {x € X I a< x}, (where a runs 

through X) are open in X. In other words: a space (X,I) is orderable iff 

there exists a total ordering< for X such that I< c I. The ordering< is 

called compatible with the topology I. 

REMARK. Frequently a space is called orderable if it is strictly orderable 

in our terminology, It is easy to see that our definition of orderability 

is the same as the definition given by Eilenberg [8]. 

THEOREM 2. A subspace A of an orderable space X is orderable. 

PROOF. Let (X,I) be an orderable space. Let< be a total ordering for X, 

such that I< c I. Let A be a subset of X. By< a total ordering <A is in­

duced in A. The relative topology of A in (X,I) will be denoted by I(A), 

and the relative topology of A in (X,I) by I~A)_ It is well-known and easy 

to see that I<A c I~A), and, as I< c I: we have I~A) c I(A)_ Hence 

I C I(A)_ 
<A 

REMARK. Observe that a subspace of a strictly orderable space need not be 

strictly orderable. 

In a strictly orderable connected space the intervals are the only con­

nected subspaces. In an orderable connected space the same is true: 
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THEOREM 3. In an orderable aonneated spaae the intewals are the only aon­

neated subspaaes. 

PROOF. Let (X,I) be an orderable connected space, and let< be a total or­

dering on X compatible with I. 

We first show that intervals in X are I-connected. 

For that purpose, suppose that J is an open I-disconnected interval in X. 

Then J =Au B, where A and Bare open in (X,I), A# 0, B # 0 and 

A n B = 0. Let p EA and q E B. We may assume p < q. 

Let C = {x E X I X < p} u {x E A X < q} and 

D = {x E X I q < x} U {x E B p < x}. 

Then C and D are open in (X,I), p E C, q E D, X =CUD and C n D = 0, 
which contradicts the connectedness of (X,I). By the connectedness of (X,I) 

it follows that the closure of an open interval in (X,I) is a closed inter­

val, and hence every interval is connected in (X,I). 

Since I< c I, (X,I) cannot have more connected subsets than (X,I<), which 

completes the proof. 

THEOREM 4. (cf. Eilenberg [8]). Let (X,I) be an orderable aonneated spaae. 

Let <1 and <2 be two total orderings on X aompatible with I. 

Then< = < or< = <- 1 • 
1 2 1 2 

-1 PROOF. Suppose <1 # <2 and <1 # <2 • 

Then we may assume without loss of generality, that there exist three dis­

tinct points p, a and bin X such that 

By Theorem 3 it follows that 

A= {x EX J x <1 p} u {x EX J p <2 x} u {x EX J p <1 x} is connected in 

(X,I). 

However, A= X \ {p} and X \ {p} is not connected in (X,I< ), so certainly 

not connected in (X,I). 1 

COROLLARY 4.1. (cf. e.g. Herrlich [12]). The total ordering for a striatly 

orderable aonneated spaae is unique up to inversion. 

THEOREM 5. An orderable aonneated svaae X is striatly orderable if and only 
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if X is ZooaZZy oonneoted. 

PROOF, 

(i) ==:;> : Let X be connected and strictly orderable. 

Then the collection of all open intervals is a base for X consisting of 

open connected sets. Hence X is locally connected. 

(ii)===: Let X be connected, locally connected and orderable. 

Then there exists a base for X consisting of open connected sets. By 

Theorem 3, these sets are open intervals. Hence the interval topology 

coincides with the topology of X. 

1,3, CYCLIC ORDERABILITY 

Let 

(i) 
X be a set. A subset R 

a:/,b:/,c:/,a} . 
(a,b,c) t R <==> 

c x3 is called a oyoZio ordering on X if: 

(c,b,a) ..: R. 

(ii) (a,b,c) ..: R = (b,c,a) f R. 

(iii) (a,b,c) ..: R} 
(a,c,d)..: R = (a,b,d) f R. 

REMARK. For a detailed discussion of the concept of cyclic orderability we 

refer the reader to Cech [6], Ch. I, §5 and Huntington [14]. 

Let (X,I) be a topological space. X is called strictly oyoZioaZZy orderabZe 

if there exists a cyclic ordering Ron X such that the sets of the form 

{x..: X I (a,x,b)..: R}, (a,b..: X) form a base for the topology I on X (or, 

which amounts to the same, form a subbase for the topology I on X). X is 

called oyoZioaZZy orderabZe if there exists a cyclic ordering Ron X such 

that the sets of the form {x..: X I (a,x,b)..: R}, (a,b..: X) are open in X. 

The cyclic ordering R is called aorrrpatibZe with I. 

PROPOSITION 6. Let X be an ord.erabZe spaae. Then X is ayaZiaaZZy orderabZe, 

PROOF. Define a cyclic ordering Ron X as follows: ~{a ; b ; c ; a 
(a,b,c) ..: R 

( a < b < c) v ( c < a < b) v (b < c < a). 



It is easily verified that R is indeed a cyclic ordering on X. 

Since {x € X I (a,x,b) € R} = {x € X I a< x < b} if a< b, 

T 

and {x € X I (a,x,b) € R} = {x € X I a< x} u {x € X Ix< b} if b < a 

the compatibility of R with the topology on X is an easy consequence of the 

orderability of X. 

REMARK. 1. We will denote the cyclic ordering R obtained from the ordering 

< as in Proposition 6 by R<, and we say that R< is induced by <. 

2. A strictly orderable space is not necessarily strictly cyclically or­

derable. One can take the half-open interval [O,1) for a counterexample. 

PROPOSITION 7. Let X be a ayaZiaaZZy orderabZe spaae, and Zet p € X. Then 

X \ {p} is orderabZe. 

PROOF. Define a total ordering< on X \ {p} as follows: 

a< b - (p,a,b) € R, 

where Risa cyclic ordering compatible with the topology on X. It is easy 

to see that< is indeed a total ordering on X \ {p}. 

Since {x € X \ {p} I x <a}= {x € X (p,x,a) € R} 

and {x € X \ {p} I b < x} = {x € X I (b ,x ,p) € R}, 

X \ {p} is an orderable space. 

REMARK. 1. We will denote the total ordering< on X \ {p} obtained from the 

cyclic ordering Ras in Proposition 7 by <~p)• and we say that <~p) is in­

duced by R. 

2. If X is a strictly cyclically orderable connected T1-space and if p € X, 

then X \ {p} is strictly orderable. This will be shown in Chapter III. 

3. From Proposition 7 and Theorem 2 it follows that every proper subset of 

a cyclically orderable space is orderable. 

4. Let (X,I) be an orderable space. Let< be a total.ordering on X compati­

ble with I. Let R = R< be the cyclic ordering on X induced by<. If p € X, 

then R induces. a total ordering <R = <~p) on X \ {p}. The total orderings 

< and <R coincide if and only if p is the smallest or the largest element of 

X. For, we have 
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a < P < b ==;. (a,p,b) E R = (p,b,a) E R = b < a, R 
a < b <p==> (a,b,p) E R = (p,a,b) E R = a <Rb, 

p < a < b ===> (p,a,b) E R = a <Rb. 

Let X be a set and R c x3 a cyclic ordering on X. Define a subset R-1 c x3 

as follows: 

-1 
(a,b,c) ER = (c,b,a) ER. 

. -1 . -1 It is easy to see that R is also a cyclic ordering on X. R is called 

the inverse of R, 

REMARK. 1. Let p EX and let there be given an ordering< of the set 

X \ {p}, Then there exists precisely onecyclic ordering Ron the set X such 

that the given ordering.< of the set X \ {p} coincides with <~p)_ For a 

proof of this assertion we refer to Cech [6], Theorem 5,2,1. As a conse­

quence we have: 

Let R1 and R2 be cyclic orderings on X. Let p EX. Let <i 

ordering on X \ {p} induced by R. (i = 
-1 7 Then R1 = R2 or R1 = R2 respectively. 

1,2). Suppose 

2. In a cyclically orderable, connected T1-space the cyclic ordering com­

patible with the topology is unique up to inversion. The proof of this 

theorem will be given in Chapter III. 

Let X be a non-orderable, cyclically orderable space. Let an interval in X 

be any set of one of the following forms (where p, a and b run through X): 

X, X \ {p}, {x EX I (a,x,b) ER}= J(a,b), J(a,b) u {a}, J(a,b) u {b}, 

J(a,b) u {a,b}. 

REMARK. In a non-orderable, cyclically orderable, connected T1-space the 

connected subsets of X are precisely the intervals. The proof of this fact 

will be given in Chapter III. In that Chapter we will also give proofs of 

the following theorems: 

(i) A strictly cyclically orderable, connected T1-space is locally 

connected. 

(ii) A non-orderable, cyclically orderable, locally connected, connected 

T1-space is strictly cyclically orderable. 



1.4. FURTHER DEFINITIONS AND NOTATIONS 

From now on we shall deal only with connected T1-spaces with more than one 

point. 

A point p € C is called a aut point of the connected set Cc X if C \ {p} 

is not connected. 
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A point p € C is called a non-aut point or an endpoint of the connected set 

Cc X if C \ {p} is connected. 

A subset C of X is called a segment if C is a component of X \ {p}, for 

some p € X; in this case we also say that C is a segment of pin X. 

When Ac X, B c X, An B = 0 and both A and Bare clopen (= closed-and­

open) in Au B, we frequently write A+ B instead of Au B. 

The pair (A,B) of subsets of X is called a separ>ation (of Au B) if 

Au B =A+ B, A~ 0 and B ~ 0, 
We say that Sc X separates y € X and z € X if there exists a separation 

(A,B) of X \ S such that y € A and z € B. In such a case we often write 

X \ S =A+ B. 
y z 

The pair (y,z) of points of X is called aonjugated, when there does not 

exist a point x € X such that x separates y and z. 

A point p € C is called a strong aut point of the connected set Cc X if 

C \ {p} has exactly two components (then there exists a unique separation 

of C \ {p}). 

If Sc X is connected and Cc S, C is called an endset of S if S \ C is 

connected. In the special case when C consists of two or three points, we 

often call Can endpoint pair, endpoint triple respectively. Observe that 

a set of endpoints is not necessarily an endset. 

We often write X \ p instead of X \ {p}. An analogous abbreviation is used 

in similar cases. 

Let (C) be a topological property and X be a topological space satisfying 

property (C).Then we often say: X is a (C)-space, instead of: X satisfies 

property ( C) . 

For some special subsets of a connected T1-space X we use the following 

notation (where a and bare distinct points of X): 
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C(a,b) = n {s C X a,b € s and s is connected}; 

K(a,b) = n {S C X a,b € s and s is connected and closed}; 

E(a,b) = {x € X x separates a and b}; 

S(a,b) = E(a,b) u {a,b}. 

It is well-known that S(a,b) is an orderable subspace of X. The ordering< 

compatible with the relative topology of S(a,b), is the sq-called 

separ-ation ordering. (cf. e.g. Hocking and Young [13], p.49-53 or Moore 

[24], p.158-160). 

For the sake of completeness we will recall the definition and some pro­

perties of the separation ordering: 

For every x € E(a,b) let (A ,B) be an arbitrary separation of X \ x such 
X X 

that a€ A and b €B. 
X X 

The separation ordering for S(a,b) is defined as follows: a is the smallest 

and bis the largest element in the ordering, and for x,y E E(a,b) we have 

x < y <==== x separates a and yin X ~ x € A ~ 
y 

~ y separates x and bin X ~ y E Bx. 

1.5. SOME LEMMAS 

In this section we list some useful lemmas. Several elementary lemmas are 

probably well-known, although exact references in these cases are diffi­

cult to find. 

X will denote a connected T1-space, and Ca connected subset of X. 

LEMMA 8. If A is alopen in X \ c. then Au C is aonneated. 

PROOF. Let X \ C =A+ B. Suppose Au C = S + T where Cc S. Then 

X = (B u S) + T; hence T = 0. 

COROLLARY 8.1. If A is alopen in X \ c. then X \ A is aonneated. 

PROOF. X \A= Cu Bis connected by Lemma 8. 

LEMMA 9. If Tisa aomponent of X \ c. then X \ T is aonneated. 

PROOF. Suppose X \ T =A+ B where Cc A. Then, by Lemma 8, B u T is con­

nected in X \ C; hence B u T = T and B = 0, 
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COROLLARY 9.1. If T. (i = 1,2, ••• ,n) are finitely many components of X \ c, 
n l. 

then X \ u T. is connected. 
i=1 1 

PROOF. T2 is a component of (X \ T1) \C. Hence, by Lemma 9, (X \ T1) \ T2 
is connected; arid so on. 

LEMMA 10. If Q is the intersection of an arbitrary collection of clopen 

subsets of X \ C, then X \ Q is connected. 

PROOF . Let Q = 

{H I a e: AL 
a 

n {H 
ae:A a 

Ha clopen in X \ c} for some indexed collection 

Consequently, X \ Q = u {X \ H 
a 

H clopen in X \ c}. 
a 

By Lemma 8, X \ Ha is connected for every a e: A. 

Since every X \ Ha contains C, (and since without loss of generality we may 

assume that C # 0) X \ Q is connected. 

COROLLARY 10.1. If Q is a quasicomponent of X \ C, then X \ Q is connected. 

REMARK. Most often these lemmas will be applied in the case when C = {p}, 

for some p e: X. For example: lemma 9 implies that the complement of. a seg­

ment is connected, and lemma 8 implies: if X \ p =A+ Band A# 0 then 

Au p (= A) is connected. References to these lemmas will usually not be 

made explicitly. 

LEMMA 11. Let X be a connected T1-space; x1 e: x. Let B be a non-void sub­

set of X \ x 1 which satisfies at least one of the following conditions: 

a) Bis a clopen subset of X \ x1 ; 

b) Bis a component of X \ x1 ; 

c) Bis a quasicomponent of X \ x1 

then, if Y = X \ B, the following holds: 

(i) Y is a connected T 1-space. 

(ii) If x 1 is an endpoint of X or if x1 is a strong cut point of X, then 

x1 is an endpoint of Y. Conversely, if x1 is an endpoint of Y, then in the 

cases b) and c) x1 is either an endpoint or a strong cut point of X; this 

is no longer necessarily true in case a). 

(iii) If x2 is an endpoint of X and if x2 e: Y, then x2 is an endpoint of Y. 

(iv) If x2 is a cut point (strong cut point) of X, and if x2 e: Y, then 

x2 is a cut point (strong cut point) of Y. 
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PROOF, 

(i) See Corollary 8,1, Lemma 9, Corollary 10,1, respectively, 

(ii) a) Let x1 be an endpoint of X: 

Then B = X \ x1 , hence Y = {x1}, So the assertion is trivial. 

B) Let x1 be a strong cut point of X: 

Then X \ x1 =A+ B, where both A_and Bare connected, hence Y \ x1 = A is 

connected, 

y) Conversely, let x1 be an endpoint of Y, 

Suppose now that x1 is a cut point of X. 

case b): Bis a component of X \ x1• 

Then X \ x1 = (Y \ x1) u B, where both Y \ x1 and Bare connected; so x1 
is a strong cut point of X, 
case c): Bis a quasicomponent of X \ x1• 

If Y n B =~.then X \ x1 = (Y \ x1) + B; hence Bis an open quasicompo­

nent, and consequently a component in X \ x1 and we are back in case b), 

So suppose Y n B; ~. Then the connected set Y \ x1 meets B, and hence B 

is that quasicomponent of X \ x1, ~hat contains Y \ x1• 

Since Y = X \ B we have Y =· {x1} and B = X \ x1, contradicting Y n B; ~. 

case a): Bis clopen in X \ x1• 

In this case it is possible that x1 is not a strong cut point of X, al­

though it is an endpoint of Y, 

Example: 

(iii) 

X = {(x,y) t:ll Ix= 0 v y = 0}; x1 = (0,0); 

B = {(x,y) t: X \ x1 I y,:: o}, 

{

a) a clopen subset of X \ x1, 

If Bis b) a component of X \ x1, 

c) a quasicomponent of X \ x1, 

then Bis also {

a) a clopen subset of (X \ x2 ) \ x1, 

b) a component of (X \ x2 ) \ x1, 

c) an intersection of clopen subsets of (X \ x2) \ x1, 

respectively, 

Consequently, by Corollary 8.1, Lemma 9 and Lemma 10 reap. 

Y \ x2 = (X \ x2) \Bis connected, 



(iv) Let X \ x2 = A1 + A2 , where A1 and A2 are non-void. 
x1 

Then A2 = A2 u x2 is connected in X \ x1 and consequently A2 u x2 c Y, 

A1 ~ B. Hence Y \ x2 = A2 + (Y n A1), and so x2 is a cut point of Y. 

If x2 is a strong cut point of X then, moreover, both A1 and A2 are con~ 

nected. 
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Since Y \ x2 = A2 + (Y n A1), the only thing left to prove in this case is 

that Y n A1 is connected. 

Since Y n A1 = A1 \Band since Bis a clopen subset of A1 \ x 1 , a component 

of A1 \ x1, or an intersection of clopen subsets of A1 \ x1 respectively, 

the connectedness of Y n A1 is an immediate consequence of Corollary 8.1, 

Lemma 9 and Lemma 10 respectively. 

LEMMA 12. Let X be a oonneoted T1-spaoe, and p Ex. Let (A,B) be a separa­

tion of X \ p, and x EA. If C is the oomponent of pin X \ x, and P is the 

oomponent of pin A\ x, then C =Pu B. 

PROOF.Pu B =Pu B =Pu (B up), hence Pu Bis connected in X \ x, so 

p u BC c. 
It remains to show that Cc Pu B: 

Suppose C \ B = E + F, and p EE. 

Then C = (E u B) + F, hence F = 0, which means that C \Bis connected in 

A\ x. 

So C \ B c P and consequently Cc Pu B. 

1.6. PROPERTIES CONCERNING SEGMENTS 

We list the following abbreviations for properties of a connected T1-

space X: 

(B) 

(B') 

(B") 

(B•O) 

(B'C) 

- There do not exist three mutually disjoint segments in X. 

vp EX X \ p has at most two components. (Every cut point is a 

strong cut point). 

- vp EX: X \ p has finitely many components. 

- Every segment is open. 

Vp EX: v component C of X \ p C =Cup. 
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THEOREM 13, In a aonneated T1-spaae X: 

(B) = (B') = (B") ==- (B 1 0) ~ (B'C). 

PROOF. 

(B) = (B'): obvious. 

(B') ~ (B"): obvious. 

(B") (B 10): Let C be a component of X \ p for some p € X. 

By (B"), X \ p has finitely many components. Since every component of X \ p 

is closed in X \ p, C is open in X \ p. Since X is a T1-space, C is open in 

x. 
(B 10) ==> (B'C): Let C be a component of X \ p for some p € X. 

C is closed in X \ p and open in X. Since X is connected: C =Cup. 

REMARK. None of the above implications can be reversed. For counterexamples 

we refer to Chapter VI. 

Property (B) occurs in a paper of Buch [5], For the relation between (B) 

and the orderability of a connected T1-space see Theorem 4 of Chapter II 

and Theorem 2 of Chapter IV. 

Finally, we remark that in a locally connected, connected T1-space property 

(B 10) holds, since local connectedness is equivalent to: components of open 

subsets are open. (B 10) does not imply the local connectedness of the space. 

In some Theorems the properties (B 1 0) and (B'C) play the role of very weak 

substitutes for the local connectedness of a space. 



CHAPTER II 

SOME PROPERTIES EQUIVALENT TO THE 

ORDERABILITY OF A CONNECTED T1-SPACE 

2.1. INTRODUCTION AND DEFINITIONS 

In this chapter we deal with more conditions on a connected T1-space X 

which are equivalent to the orderability of X. These conditions have al­

ready been studied in other papers; in some cases however only under the 

additional assumption that the space under consideration is locally 

connected. 

DEFINITION 1. A topological space X is said to satisfy 

(E) - if the subset (X x X) \~of the product space X x X is not con­

nected (where~ is the diagonal in X x X). 
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(K) - if among every three distinct, connected, proper subsets of X, there 

are two which together do not cover the space X. 

(S') - if among every three distinct points of X, there is one which se­

parates the other two. 

(0) - if X is orderable. 

Condition (E) occurs in a paper of Eilenberg [8], in which he proves that 

(E) is equivalent to the orderability of X, provided that X is a connected 

T2-space. In [21] and [22] Kowalsky showed that in a connected, locally 

connected T1-space X condition (K) is equivalent to the strict orderability 

of X. In a footnote of a paper of Duda [7] it is mentioned that 

Mrs. Zare!llba observed that connected orderable spaces can be characterized 

by property (S'). In Theorem 3 we will prove this equivalence and the 

equivalence of (K) and (0) in connected T1-spaces. 

2.2. EQUIVALENCE OF (0), (E), (S') and (K) 

LEMMA 1. Let X be a aonneated T1-spaae and let x1, x2 and x3 be three dis­

tinat points of X suah that x1 separates the other two. Then, neither x2 

nor x3 separates the other two points. 

PROOF. Since x2 and x3 belong to different components of X \ x1 and since 

the complement of a segment is connected it follows that there is a connected 
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subset of X \ x2 containing x1 and x3 and a connected subset of X \ x3 
containing x1 and x2 . 

LEMMA 2. In a aonneated T1-spaae X the following holds: 

(S•) ==> (B). 

PROOF. Suppose c1 , c2 and c3 are three mutually disjoint segments in X. 

Let x. €C., (i = 1,2,3). Since X \ C. is connected and x. € X \ C. if 
1 1 1 J 1 

j # i it follows that x. does not separate the other two points. 
1 

THEOREM 3. Let X be a aonneated T1-spaae. Then the following holds: 

(0) = (E) = (S') = (K). 

PROOF. 

(0) = (E) 

(0) = (S•) 

(S 1 ) ~ (0) 

see Eilenberg [8], Theorem I. 

evident. 

(i) By condition (S 1 ), the space X can have at most two endpoints. Since 

a connected T1-space consisting of more than one point has infinitely many 

points, we can choose a cut point pin X. 

(ii) By Lemma 2 and the fact that (B) = (B•), X satisfies property 

(B'). Hence there exist connected, non-void subsets A and B of X such 
p p 

that X \ p = A +B. 
p p 

For every x € A we can choose connected subsets A 
p X 

and B of X such that 
X 

X \ x = A + B, where possibly A is empty (this is 
X X X 

the case if x is an 
p 

endpoint of X). For every y € B we choose connected subsets A and B of p y y 
X such that X \ y = A +B. (Again, B may be empty). y y y 
( ... ) p 
111 Let x € A and y €B. Then p separates x and y, and hence, by 

p p 
Lemma 1, y € B and x €A. Since 

X y A u x is connected in X \ p, and A up 
X p 

is connected in X \ y, it follows that A € A ~ A (where~ means proper 
X p y 

inclusion). Similarly, we can prove that B « B E B. y p X 

(iv) Now we will show that for every two distinct points x and yin X 

precisely one of the following two relations holds: 
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If x = p or y = p or if p separates x and y this is a consequence of the 

previous observation. So we need only handle the case when x and y are both 

in (for instance) A: 
p 

When x EA it follows by Lemma 1 that y E B, and hence A u x is a con-y X X 
nected subset of X \ y. So A u x c A and consequently A ~A. 

X y X y 
When x E B it follows by property (S•) that y EA; since moreover A u y 

y X y 
is connected in X \ x we have A u y c A, A ~A. 

y X y X 

(v) · Next we will prove the following equivalence: 

A ~ A = x E A . 
X y y 

a) - : If A "f ID then A u x, being a connected subset of X \ y, is a 
X ·X 

subset of A; hence x EA. y y 
If A = ID, then x EA and so we may assume henceforth that y "f p. 

X p 
If p separates x and y, then p E A 

y 
If y separates p and x, then y EA 

p 
S) <====: Since x EA, it is clear 

y 

and X € A • 
y 

and hence p E B, so that x 
y 

that A ~A, so we have A y X X 

(vi) Let us now define a total ordering on X as follows: 

E A • 
y 

~ A • 
y 

By (iv) it is clear that< is indeed a total ordering and from (v) that for 

every a EX 

orderable. 

{x EX Ix< a} = A and {x EX I a< x} = B, hence X is 
a a 

(S')= (K) : Suppose that c1, c2 and c3 are three distinct, connected, 

proper subsets of X such that 

C. u C.= X, whenever i "f j. 
]. J 

Let 

x. EX\ C. 
]. ]. 

(i = 1,2,3) 

then 
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x. € c. if i # j. 
1. J 

So xj and~ belong to a connected subset of X \ xi and hence xi does not 

separate xj and~ (i # j # k # i). 

(K) = (S') : Suppose that x1, x2 and x3 are three distinct points such 

that no one of them separates the other two. 

If x1. is an endpoint, then let c: = X \ x .. 
1. 1. 

If x. is a cut point, then let C.= A.= A. u x., where A. is that element 
1. 1. 1. 1. 1. 1. 

of a separation of X \ xi which contains the other two points xj {j # i). 

Then C. is a connected, proper subset of X (i = 1,2,3). 
1. 

When x. is an endpoint, then C. u C.= X because x. EC. (i # j), 
1. . 1. J 1. J 

When i # j and both x. and x. are cut points, then A. u A. is open in X 
__ 1._ ~ - 1. J 

and also closed (A. u A.= A. u A.= A. u x. u A. u x. = A. u A.). Since X 
1. J 1. J 1. 1. J J 1. J 

is connected, A. u A.= X. 
1. J 

So also in this case 

C. u C.= X 
1. J 

(i # j). 

A (B)-space need not be orderable (every connected T1-space consisting of 

more than one point and having no cut points is a counterexample). However, 

in the next Theorem we will prove that a (B)-space is orderable if the 

space has no endpoints. 

THEOREM 4. Let X be a aonneated T 1-spaae having no endpoints and satis­

fying property (B).Then X is orderable. 

PROOF. Suppose x1, x2 and x3 are three distinct points of X such that no 

one of them separates the other two. 

Then we have the following separations: 

X \ x1 = A1 + B1 X \ x2 = A2 + B2 X \ x3 = A3 + B3, 

x2 X3 x, 
x3 x1 x2 

where both Ai and Bi are non-empty and connected in X. 

B. = B. u x. is connected in X \ x. (i # j), hence B. c A. (i ¥ j) and con-
1. 1. 1. J 1. J 

sequently Bin Bj = 0 (i # j), which means that B1 , B2 and B3 are three 

mutually disjoint segments. 
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REMARK. 1. In Theorem 4.2 we will generalize the above result. 

2. At the end of the next chapter we will introduce another condition, de­

noted by (P), which is also equivalent to the orderability of a connected 

T1-space. Since, for the proof of this equivalence, we need some results 

concerning so-called (V)-spaces and (H)-spaces, we postpone this proof to 

the next chapter. Here we will confine ourselves to the definition: 

DEFINITION 2. A topological space X is said to satisfy (P) if for every 

two connected subsets A and B of X with a co!lllllon endpoint p the following 

holds: An B = {p} or Ac B or B c A. 

Added in proof: 

Van Dalen and Wattel [ "A topologiaal aharaaterization of ordered spaaes", 

to be published in Gen. Topology Appl.] have given an interesting charac­

terization of the orderability of a topological space, which of course in 

particular yields another characterization of the orderability of a connect­

ed T 1-space. 
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CHAPTER III 

ON A PROPERTY OF ORDERED SPACES DUE TO HERRLICH 

AND SOME RELATED PROPERTIES 

3,1. INTRODUCTION AND DEFINITIONS 

The main purpose of this chapter is to discuss a property of ordered 

spaces, introduced by Herrlich in [ 11 J, and some related properties.. In 

fact, these related conditions are weaker forms of Herrlich's condition. 

With the help of these conditions we are able to characterize non-order­

able, cyclically orderable, connected T1-spaces. The last two sections of 

this chapter are devoted to property (V) and property (P), respectively. 

Property (V) was studied by Hursch and Verbeek in [15] and [16], and gene­

ralized by Brouwer [3J, Property (P), which was mentioned already in the 

previous chapter turns out to be equivalent to (0) in connected T1-spaces. 

DEFINITION 1. A (connected) T1-space X is said to satisfy 

(H) - if every connected subset of X has at most two endpoints (in par­

ticular X has at most two endpoints). 

(Hp) - if every connected proper subset of X has at most two endpoints. 

(Hd) - if for every connected subset C of X such that Chas at least three 

distinct endpoints, C \ {p,q} is disconnected for every pair of dis­

tinct endpoints p, q of C. 

(Ht) - if for every connected subset C of X such that p, q and rare three 

distinct endpoints of C, the set C \ {p,q,r} is disconnected, (i.e. 

C cannot have an endpoint triple). 

Condition (H) appeared in the doctoral dissertation [11] of Herrlich. 

Herrlich called spaces satisfying (H) "randendlich", and he proved the 

following theorem: A connected space X is strictly orderable if and only 

if X satisfies the following conditions: 

( i) X is a T1-space. 

(ii) X is "randendlich", i.e. X satisfies ( H). 

(iii) X is locally connected, 

This theorem was also published by Herrlich in [ 12]. 



3.2. RELATIONS BETWEEN {H), (Hp), (Hd) AND (Ht) 

In this section we define for temporary use the following conditions on a 

connected T1-space X: 
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(Hdd) - If Cc X is connected and p, q and rare distinct endpoints of C, 

and C \ {p,q} is connected, then C \ {p,r} is disconnected. 

(Hddd) - If Cc X is connected and p, q and rare distinct endpoints of C, 

and C \ {p,q} and C \ {p,r} are connected, then C \ {q,r} is dis­

connected. 

PROPOSITION 1. In a aonneated T 1-spaae X the aonditions (Hd) and (Hdd) al'e 

equivalent. 

PROOF. 

(i) (Hd) = (Hdd) 

(ii) (Hdd) = (Hd) 

trivial. 

Suppose, contrary to (Hd), that there exists a con-

nected set C in X with distinct endpoints p, q and r, such that C \ {p,q} 

is connected. By (Hdd), C \ {p,r} and C \ {q,r} are disconnected. 

Take an arbitrary separation (U,T) of C \ {p,r} and assume q € U. Then 

U up, U u r, Tu p and Tur are connected (since for instance C \ r is 

connected, (C \ r) \ p = U + T, etc.). 

Consequently U u {p,r} and Tu {p,r} are connected and also O ~u u {p,r}, 

T ~ T u {p,r}. 

Now, C \ {p,q,r} = S + T, where S = U \ q. Then Su {p,q,r} = U u {p,r} c 0 
is connected, and p and rare endpoints of this set. C \ {p,q} is connected, 

so Sur is also connected and since p € S the set Su {~,r} is connected. 

Hence the connected set Su {p,q,r} c Uhas endpoints p,q and r. Since 

Sur is connected, we find that Su q = U is not connected, by (Hdd). Mark 

that this holds for any separation (U,T) of C \ {p,r} with q € U. 

Let Q be the component of C \ {p,r} which contains q. Then Q is not open in 

C (otherwise Q is clopen in C \ {p,r}, so there would exist a separation 

(U' ,T') of C \ {p,r} with q € U' = Q and U' connected, contrary to the 

observation above). Hence, there exists an element x € Q \ Q0
, where Q0 is 

the interior of Qin C. Q is a segment of r in C \ p, and hence (C \ Q) \ p 

is connected. As Q is also a segment of pin C \ r, (C \ Q) \ r is con­

nected. It follows that C \ Q and (C \ Q) u x are connected too. 
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Hence the connected set (C \ Q) u x has endpoints p, rand x. However, the 

connectedness of both (C \ Q) \ p and (C \ Q) \ r is a contradiction to 

(Hdd). 

LEMMA 2. In a connected T 1-space X: ( Hp) = ( Ht). 

PROOF. It is very easy to see that a connected T1-spaceX has property (H;t) 

if and only if for every connected subset Sc X: Is\ sl < 3. So suppose 

s c X is connected and Is\ sl ~ 3. 

By (Hp) we clearly have S = X. 

Also, by (Hp), it is impossible that Is\ sl > 3. 

So we may assume: S = X and S \ S = {r1,r2 ,r3} with distinct r 1, r 2 and r 3 . 

We consider the following cases: 

a) If S has an endpoint p, then X \ p is a connected proper subset of X 

with at least three endpoints. 

b) Let Shave a strong cut point p: 

S \ p =A+ B, where A and Bare connected. We may assume r 1, r 2 EA. More­

over p EA. Hence Au {r1,r2 ,p} is a connected proper subset of X with 

three endpoints. 

c) Suppose that for some p ES, S \ p has at least 3 components, and that 

for one of these components, say A, it is true that r 1, r 2 , r 3 E (S \ p)\ A. 

Then (S \ A) u {r1,r2 ,r3} is a connected proper subset of X with three end­

points. 

d) Consequently, it remains to consider the following case: 

Vp € s : s \ p = A + B + CP and r 1 € A p' r2 € B p' r3 E c p p p 
Take a point q € A ' then p 

s \ q = A + B + C . q q q 

B u C u p is connected in s \ q, so let B u C u p C A • 
p p p p q 

r2, r 3 € X4 , hence there exists a component B of S \ q such 

r 1' r2' r3 E (S \ q) \ B which leads to a contradiction by 

PROPOSITION 3, In a connected T1-space X : (Hp) = (Hd). 

PROOF. Suppose X satisfies (Hp), but does not satisfy (Hd). 
By Proposition 1, X does not satisfy (Hdd) either. 

But then 

that 

C) • 
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Hence X.has distinct endpoints p, q and r such that X \ {p,q} and X \ {p,r} 

are connected. 

By Lemma 2, X \ {p,q,r} is disconnected. We write 

X \ {p,q,r} = S + T, 

Observe that Su {q,r} and Tu {q,r} are connected, and that consequently 

q, r € S and q, r € T. 

(i) If X \ {q,r} is connected, then also Sup (and Tu p) is connected, 

and hence p € S (and p € T). But then S =Su {p,q,r} is a connected proper 

subset of X with (at least) three endpoints. This contradicts (Hp). 

(ii) Let X \ {q,r} be disc.onnected. Since X is a connected T1-space, we 

have 

p € s or p € T. 

Say p € S. 
Then Su {p,q,r} is a connected proper subset of X with (at least) three 

endpoints. This again contradicts (Hp). 

PROPOSITION 4. In a aonneated T1-spaae X 

PROOF. 

( Hddd) <=====> ( Ht). 

a) (Hddd) ~ (Ht) follows immediately from the definitions. 

b) Conversely, suppose (Ht) is satisfied and let Cc X be connected. Suppose 

p, q and rare .distinct endpoints of C such that C \ {p,q}, C \ {p,r} and 

C \ {q,r} are connected. (Ht) implies that the set C \ {p,q,r} is not con-

nected. Let C \ {p,q,r} = u C be its decomposition into components. 
CL€A CL 

It follows from (Ht) that C is a proper subset of C u {p,q,r} for each a CL 

a€ A. 

C (if there are 
CL 

As a consequence, there are infinitely many components 

only finitely many components C then C \ {p,q,r} = C 
CL 

+ D ; since 
a CL 

C \ {p,q}, C \ {p,r} and C \ {q,r} are connected it follows that r, q and 

P € c ). 
CL 
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So we may assume that pi Ca for three distinct elements a= a 1, a 2 , 

a3 € A, 

C (i = 
ai 

1,2,3) is closed in the connected set C \ {q,r}, and hence not 

open, Consequently there exist d a. 
l. 

the interior of C a. 
l. 

in C \ {q,r}, 

€ C a. 
l. 

\ C 
0 

a. 
l. 

(i = 1,2,3), where C0 

a. 
l. 

By a repeated application of Lemma 1,9 we see that the set 

S = (C \ {q,r}) \ (C u C u C ) is connected. Moreover, 
a 1 a 2 a 3 

d , d , 
a 1 a 2 

is 

d € §. Consequently, Su {d ,d ,d } 
a 3 a 1 a 2 a 3 

is connected and has an endpoint 

triple, This contradicts (Ht). 

THEOREM 5, In a aonneated T1-epaae X: 

(0) = (H) = (Hp) = (Hd) = (Ht). 

PROOF. From the foregoing Propositions follows in fact that 

(0) = (H) = (Hp) = (Hd) = (Hdd) = (Hddd) = (Ht). 

(since (0) = (H) = (Hp) and (Hd) = (Ht) are trivial). 

REMARK. No one of the above implications can be reversed. For counter­

examples we refer to Chapter VI. However, in the present Chapter we will 

prove that cyclically orderable, non-orderable connected T1-spaces are 

precisely those connected T1-spaces which satisfy (Hp) but not (H). 

3. 3. ORDERABILITY OF ( H) - SPACES 

As we mentioned in the introduction of this chapter, Herrlich proved in 

[11] that a connected, locally connected T1-space satisfying (H) is strict­

ly orderable. In [19] the question was raised whether a connected T1-space 

satisfying (H) is orderable or not. This question was answered in the 

negative by Hursch and Verbeek [15], However, it turns out that in a con­

nected T1-space satisfying (B•C) the conditions (H) and (0) are equivalent. 

Moreover, in a connected T1-space satisfying (B•C) which has at least one 

cut point also the conditions (Ht) and (0) are equivalent. 



LEMMA 6. In a aonneated T 1-spaae X: 

(Ht) + (B'C) =- (B'). 

PROOF, Suppose that for some p € X: 

X \ p = A1 + A2 + A3 , with Ai#~ (i = 1,2,3), 

Choose x. € A. (i = 1,2,3). 
]. ]. 

Let P. be the component of pin A. \ x. (i = 1,2,3). 
]. ]. ]. 

Then, by Lemma 1.12, P. u A. u A is the component of p ]. J -ic in X \ x. 

(i # j # k #i).By (B•C) we have x. € P. u A. u A; hence 
]. ]. J -11; 

Consequently, P1 u P2 

endpoint triple. This 

u P3 u {x1,x2 ,x3} is a connected set 

contradicts (Ht). 

]. 

x. € P .. 
]. ]. 

which has an 

LEMMA 7. Let X be a aonneated T1-spaae with at least one aut point. Then 

(H:t) + (B•) ~ (H). 
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PROOF. Suppose there exists a connected set Cc X which has at least three 

distinct endpoints p, q and r. 

I. First we show that then p, q and rare also endpoints of X. 

Let X \ p = A + B, X \ q = A + B, C \pc A, C \ q c A. We will prove p p q q p q 
B =~and, by symmetry, the assertion will follow. 

p 
Suppose that B # ~. 

p 
Lets€ B and let P be the component of B \ s containing p. Then s € P. 

p p 
If also B # ~. 

q 
then let t € B and let Q be the component of B \ t con-

q q 
taining q. Then t € Q. 
Now Cu Pu Q u {s,t} is connected and has the endpoint triple {r,s,t}, 

which contradicts (H:t). 
Hence B =~.which means that q is an endpoint of X. In the same way we 

q 
can prove that r is an endpoint of X (again under the assumption B # ~). 

p 

Now, X \ p = A + B and A up= A has the three endpoints p, q and r p p p p 
(see Lemma 1.11). 

Consider A \ {q,r}. If the component c1 of A \ {q,r} containing p con-
p p 

tains both q and r in its closure, then Pu c1 u {s,q,r} is connected with 

endpoint triple {s,q,r}; which contradicts (Ht), 

Thus let qi c1 • Since A \ r is connected, A \ {q,r} must have infinitely 
p p 

many components. Let A \ {q,r} = u C be the decomposition into compo-
p a€I a 

nents. 



26 

1. If for at least three distinct components Ca' say 

is not open in A 
p 

(i = 1,2,3), where 

\ r then we can choose a point d a. 
0 

C is the interior of C a. a. 
l. l. 

l. 

in A \ r. 
p 

But then 

endpoint 

Hence C 

[(A \ r) \ (C u C u C )] u {d ,d ,d } is connected with 
p a1 a2 a3 a1 a2 a3 

triple {d ,d ,d }; contradicting (Ht). 
a1 a2 a3 

a 
c A and C open in X (since A is open in X) for all but finitely 

P a P 
many a E I. 

Let I 1 = {a EI I C c A and C is open in X}; then I 1 is an infinite set. 
a p a 

Notice that C = C u {q,r} for each a E I 1. a a 

2. Take a point x EC, for every a E I 1• 
a a 

If C \ X a a is connected for at least three elements a E I 1, 

a3 , then C 
a1 

u C u C u {q,r} is connected with endpoint 
a2 a3 

say a 1, a2 and 

triple 

{x ,x ,x } ; 
a1 a2 a3 

which contradicts (Ht). 

Consequently, if I 2 = {a E I 1 I Ca\ xa is disconnected}, then I 2 is an 

infinite set. 

3, For every a E I 2 let Ca\ xa =Sa+ Ta' where q E Sa, Ta~ 0, 
If r E Sa for at least three elements a E I 2 , say a 1 , a2 and a3 , then 

choose a point t 0 _ E T0 _ and let V0 _ be the component of T0 _ \ t 0 _ con-
1. l. l. l. l. 

taining x (i = 1,2 1 3), C is open in X, so T is clopen in X \ a. a. a. X a. 
l. l. l. l. 

since q, r i T . Hence for some R : X \ x = R + T a. a. a. a. a. Since X satis-
l. l. l. l. l. 

fies (B•) it follows from Lemma 1.11 that t is an endpoint or a strong a. 
l. 

cut point of T 
3 °i 

= X \ R (i = 1,2,3). Therefore t E a. a. 
l. l. 

Now u S u V u t is connected with endpoint triple 
i=1 °i 0 i 0 i 

which again contradicts (Ht). 
Hence I 3 = {a E I 2 I r E T0 } is an infinite set. 

4. Let D0 be the component of q in Ca\ x0 for each a E I 3 • If xa E D0 for 

at least three elements a E I 3 , 

u D u D u {x ,x ,x } 
a2 a3 a1 a2 a3 

,x ,x }; contradiction. 
a1 a2 a3 

say a 1, a2 and a3 , then 

is connected with endpoint triple 

So I 4 = {a E I 3 I Dais closed} is infinite. 



5, For each a€ I 4 , Dais closed and hence not open in Ca= Ca u {q,r}. 

So we can choose a point d € D \ D0
, where D0 is the interior of D in a a a a a 

ea. Since r €Ca\ Da for every a€ I4 the set 

(C \ D ) u (C \ D ) u (C \ D ) u {d ,d ,d } is connected and a 1 a 1 a2 a2 a 3 a3 a 1 a2 a 3 
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has the endpoint triple {da ,da ,da }, where a 1, a2 , a3 are arbitrary dis­

tinct elements if I 4 • Contrldiction~ 

We conclude that B = ~-
P 

This proves I. 

II. Now, let b be a cut point of X. 

Then X \ b = ~ + Bb, where~ and¾ are both non-empty and connected. 

We may assume: p, q €~•But then¾ is a connected subset of X having 

three endpoints b, p and q. 

From I it follows that bis an endpoint of X. Contradiction. 

This proves the theorem. 

LEMMA 8. In a aonneated T1-spaae X: 

(H) + (8 1 ) = (0). 

PROOF. In fact we will prove: (H) + (B•)= (S•). 
Let x1, x2 and x3 be three distinct points of X. 

Suppose x1 does not separate x2 and x3 , and x2 does not separate x1 and x3 . 

Then we have 

X \ x 1 = A1 + B1 X \ x2 = A2 + B2 ' 
x2 X3 

x3 x, 

where A., B. (i = 1,2) are connected. 
l. l. 

Since B1 u x 1 is connected in X \ x2 , we have B1 c A2 and consequently 

B1 n B2 = ~. B2 c x \ B1. 

By Lemma 1.11, (X \ B1) \ B2 is connected, satisfies (8 1 ) and has the 

points x1 and x2 as endpoints. Moreover, since condition (H) is clearly 

hereditary for connected subspaces, Y = (X \ B1) \ B2 is an (H)-space. 

(i) Suppose x3 does not separate x 1 and x2 in Y. Then 
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y \ x3 = p3 + Q3 

x1 

x2 

and again by Lemma 1.11, Y \ Q3 = P3 u x3 is connected and has at least 

three endpoints, namely x1 , x2 and x3 , which contradicts (H). 
Hence 

Y \ x3 = P3 + Q3. 

x1 x2 

(ii) Since B1 u P3 and B2 u Q3 both are closed in X \ x3 we have 

which means that x3 separates x1 and x2 in X. 

As a consequence of the previous lemmas we have: 

THEOREM 9. In a aonneated T1-spaae X: 

(H) + (B•C) = (0), 

and 

THEOREM 10. In a aonneated T1-space X having at least one cut point: 

(H.t) + (B•C) ====> (0). 

REMARK, A plane circle is a connected T1-space without cut points, satis­

fying (Hp) and (B•) and which is not orderable. 

3.4. CYCLIC ORDERABILITY 

In section 1.3 we introduced the notion of cyclic orderability. The next 

two sections are devoted to the study of this concept. We will show some 

theorems already announced in section 1.3 and we will prove that cyclic 

orderability is closely related to some of the conditions studied in the 

previous sections of the present chapter. 



THEOREM 11. Let X be a cyalically orderable connected T 1-space having at 

least one aut point. Then X is orderable. 

PROOF. 
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(i) Every connected proper subset of X is orderable, and hence satisfies 

(H). So X satisfies condition (Hp), and hence condition (Ht). 

(ii) We now show that X satisfies (B•). 
For that purpose suppose that p is a cut point of X having at least three 

segments. 

Then there exist non-empty sets A, Band C such that 

X \ p =A+ B + C. 

Let a EA, b E B, c EC and assume a< b < c, where<= <(p) is the total 
R 

ordering in X \ p, induced by the cyclic ordering R compatible with the 

topology on X. 

Then (a,c) = {x € X I (a,x,c) ER} is open in X \ p and 

[a,c] = X \ {x € X I (c,x,a) € R} is closed in X \ p. 

It follows that D = B n (a,c) = B n [a,c] is a clopen non-void subset of 

X \ p. Hence p ED. 

However, this is impossible, since [a,c] is closed in X. 

Consequently, X satisfies (B•). 

(iii) Since (B•) ~ (B•C) and X has at least one cut point, we conclude, 

by Theorem 10, that X is orderable. 

THEOREM 12. Let X be a connected T 1-space. Then X is a non-orderable 

cyclically orderable space if and only if: 

(i) vx EX: X \ x is connected. 

(ii) vx, y EX (x # y) : X \ {x,y} is disconnected. 

PROOF. 

1. Let X be a connected T1-space, and let X be cyclically orderable, but 

not orderable. From Theorem 11 it follows that every point of X is an end­

point of X, i.e. condition (i) holds. 

Since a cyclically orderable space satisfies (HP), X certainly satisfies 

(Hd). Since X contains no cut points, this means that X \ {x,y} is discon­

nected for every pair of distinct points x and yin X, i.e. X also fulfils 
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condition (ii) . 

2. Let X be a connected T1-space, satisfying conditions (i) and (ii). Then 

it is clear that X is not orderable. 

So we have to prove that X is cyclically orderable. 

Let x1 € X. 

a) X \ x1 satisfies property (8 1 ): 

For, suppose 

X \ {x1,x2} =A+ B + C, C # 0 then C =Cu {x1,x2} and~ 

a b 

is connected in X \ {a,b}. . . (1) 

Now let X \ {a,b} = P + Q, Q # 0. Then Q = Q u {a,b} is connected, and 

x1 

so x2 € Q (if x2 / Q, then Q c X \ {x1,x2} which is impossible). This con-

tradicts (1). 

b) X \ x1 satisfies property (B): 

For,suppose there exist three distinct points p1, p2 , p3 € X \ x1,such that 

X \ {x1,p.} =A.+ B. (i = 1,2,3), 
]. ]. ]. 

with A. and B1. non-empty and connected (i = 1,2,3) and with B. n B.= 0 
]. ]. J 

for i # j. 

Let b1 € B1 and b2 € B2 and X \ {b 1,b2} = P + Q, Q # 0. 

x1 

Now, (X \ x1) \ (B1 u B2 u B3) = Y is connected in X \ {b1,b2} by Corol­

lary 1,9, 1, 

If Y c P = X \ Q, then Q = Q u {b1,b2} is a connected set in B1 u B2 u B3 , 

meeting B1 and B2. However, B1, B2 and B3 are separated sets since 

B. C A. (i # j). 
]. J 

If Y c Q, then Yu B3 =Yu B3 u,x1 is a connected set in X \ {b1 ,b2}, 

meeting both P and Q. 

So we arrive at a contradiction. 

c) X \ x1 is a connected T1-space, having no endpoints, and satisfying 

property (B).By Theorem 2.4 such a space is orderable. 

Let< be an ordering on X \ x1• 



Let p, q € X \ x1 be such that p < q. 

Then 
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X \ { x1 ,p ,q} = { z € X \ x1 I z < p} u { z € X \ x1 I p < z < q} u 

u { z € X \ x1 I q < z} = ( ,p) u (p,q) u ( q, ) • 

Since X \ {p,q} is disconnected, x1 cannot be a limitpoint of each of these 

three connected intervals. If x1 i T"":i?) then ( ,p) is a proper clopen sub­

set of the connected space X \ p which is impossible. Thus x1 € T"":i?) and 

similarly x1 € "fq,7"; hence x1 i (p,q) .•.• (*) 

Now we can define a cyclic ordering Ron X as follows: 

If a, band care elements of X \ x1 then 

(a,b,c) € R-== (a< b < c) V (c <a< b) V (b < C < a). 

It is easily verified that R is indeed a well-defined cyclic ordering on X. 

From(*) it follows that R is compatible with the topology on X, which 

means that X is cyclically orderable. 

LEMMA 13. Let X be an orderable space, having exactly two components, say 

A and B. Then either 

Vx € A Vy€ B X < y or 

Vx € A Vy€ B y < x, 

(where < is a total ordering on X compatible with the topology on X). 

PROOF. Suppose there exist points p, q € A and r € B such that p < r < q. 

Then: 

X \ r = {x € X Ix< r} + {x € X I r < x}, 
p q 

while A is a connected subset of X \ r containing both p and q, which is 
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a contradiction. 

THEOREM 14. Let X be a cyclically orderable, connected T1-space. Let s1 and 

s2 be two cyclic orderings on X compatible with the topology on X. Then 
..:'1 

s1 = s2 or s1 = s2 • 

In other words: in a cyclically orderable, connected T 1-space the com­

patible cyclic ordering is unique up to inversion. 

PROOF. 

(i) Suppose X has at least one endpoint p. By Proposition 1.7, X \ p is 

an orderable, connected space. It follows from Theorem 1.4 that the com­

patible ordering in X \ p is unique apart from inversion. The assertion now 

is a consequence of Cech [6], Theorem 5.2.1 (cf. the second Remark follow~ 

ing Proposition 1.7). 

(ii) Suppose every point of X is a cut point. Hence, by Theorem 11, X is 

an orderable space. We denote the compatible ordering on X by <. Let 

R1 = R< be the induced cyclic ordering on X, and suppose that R2 is another 
-1 compatible cyclic ordering on x. We have to show: R1 = R2 or R1 = R2 . 

Let p EX. 

Then X \ p =A+ B, with both A and B non-empty and connected. We may 

assume: ~x EA vy E B: x < y. 

Let<.= <(p) be the ordering in X \ p induced by R. (i = 1,2). On A and 
l R. l 

l 

on B separately the orderings< and <1 coincide, while vx EA: vy E B: 

y <1 x (cf. part 4 of the first Remark following Proposition 1.7). 

Since both A and Bare orderable connected spaces, we have by Theorem 1.4: 

on A ( < =) (< =) -1 < = < or < = <2 , 1 2 1 

and ( < =) (< =) -1 
on B <1 = < or < = <2. 2 1 

a) Suppose that ( < =) < = < 2 on A, and that ( < =) 
1 

<1 = <; 1 on B. Take 

a, b EA such that a <1 band c, d E B such that c <1 d. 

Then a <2 b, which means (p,a,b) E R2 , and d <2 c, which means (p,d,c) E R2 . 

Let o1 = {x EX Ip< x < c} and o2 = {x EX I b < x < p}. 

Then p E 51 n 52 since X is connected. 

We now consider the following two cases: 

In both cases we will derive a contradiction. 



Case 1): as a <2 band b <2 c we have a <2 c, which means (p,a,c) E R2• 

Let u 1 = {x E X I (c,x,a) E R2L 
Then u 1 is open in X and p E u 1. 

Suppose u 1 n o2 # 0 and let x E u 1 n o2 • Then (c,x,a) E R2 • Moreover: 

x E o2 ~ a <1 b <1 x ~ a <2 x, which means (p,a,x) E R2 . 

(x,a,c) E R2 and (x,p,a) E R2 imply (x,p,c) € R2• Hence c <2 x. By Lemma 

13, however, it follows from x € A and c € B that x <2 c. 

Consequently u 1 n o2 = 0, which contradicts the fact that p € 52• 

Case 2): as d <2 c and c <2 b we have d <2 b, which means (p,d,b) € R2 . 

Let u2 = {x € X I (b,x,d) € R2}. 

Then u2 is open in X and p E u2 . 

Analogous to the previous case we can derive that u2 n o1 = 0, which con­

tradicts the fact that p € 51. 
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b) Now we may assume that the orderings <1 and <2 coincide both on A and on 

B. We want to show that <1 and <2 coincide on Au B. 

We know already: 

Vx € A 

Suppose that< and< do not coincide on Au B. Then we have 
1 2 

Vx € A Vy € B 

Takes€ A and t € B. Then 

s < p < t 

Let 0 = {x € X I p < X < t}. Then p € 5. 
Let u = {x € X I (t,x,s) € R2}. p 
Then U is open in X. p 
s < 

2 
t implies (p,s,t) E R2 , hence p 

1. Suppose U n 0 # 0 and let x € U 
p p 

X € 0 ==I> X < t ==I> X <1 t ===+ X 

(x,s,t) € R2 and (x,t,p) € R2 imply 

x €Bands€ A imply s <2 x. 

€ u • 
p 

n 0. Then (t,x,s) € R2• Moreover, 

<2 t - (p,x,t) € R2• 

(x,s,p) € R2 • Hence x <2 s. However, 

2. Consequently, U n 0 = 0. This, however, contradicts p € 5. 
p 
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c) From the foregoing it follows that <1 = <2 or <1 
-1 

= <- 1 on Au B. Hence 
2 

R1 = R2 , resp. R1 = R2 and the theorem is proved. 

Recall that an interval in a non-orderable, cyclically orderable connected 

T1-space X is any set of one of the following forms (where p,a and b run 

through X): 

X, X \ p, {x € X I (a,x,b) € R} = J(a,b), J(a,b) u a, 

J(a,b) u b, J(a,b) u {a,b}. 

Now we will prove the following 

LEMMA 15. In a non-orderable, cyclically orderable connected T1-space X the 

connected subsets are precisely the intervals. 

PROOF. The connectedness of every interval in X is an immediate consequence 

of the fact that J(a,b) = {x EX I a< x < b}, where<= <(p) is the order-
R 

ing induced by the compatible cyclic ordering R in X \ p, for some p with 

(a,p,b) f. R. 

Conversely, let C be a connected subset of X, such that X \ C contains at 

least two points. 

Let p, q € X \ C (p # q). 

X \ {p,q} = {x € X I (p,x,q) ER}+ {x EX I (q,x,p) € R}. 

So we may assume Cc {x I (p,x,q) ER}. 

Let r EX be such that (r,p,q) ER. 

Let<= <(r) be the ordering in X \ r induced by R. 
R 

Then Cc {x Ip< x < q} = (p,q). 

Hence, there exist a, b EX\ r such that 

C = (a,b) or C = [a,b) or C = (a,b] or C = [a,b]. 

Consequently, 

C = J(a,b), C = J(a,b) u a, C = J(a,b) u b or 

C = J(a,b) u {a,b}. 

THEOREM 16. Let X be-a strictly cyaZicaUy orderabZe, connected T1-space. 

Then X is locally connected. 
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PROOF. 

a) Let X be an orderable space. Let R be the compatible cyclic ordering on 

X and< the compatible ordering on X. By Theorem 14 we may assume R = R<. 

This means that the relation between < and R is as in Proposition 1.6. Hence 

the open intervals, with respect to the ordering<, are connected and form 

a base for the topology in X. Consequently, X is locally connected, and 

therefore strictly orderable. 

b) Let X be a non-orderable space. Since, by Lemma 15, the intervals with 

respect to the compatible cyclic ordering form a base consisting of con­

nected subsets of X, we conclude that X is locally connected. 

COROLLARY 16.1. Let X be a str>iatZy ayaZiaaZZy orderabZe aonneated T 1-spaae. 

Then: 

\fp € X X \ p is str>iatiy orderabZe. 

THEOREM 17, Let X be a non-orderabZe, ayaZiaaZZy orderabZe, ZoaaZZy aon­

neated, aonneated T 1-spaae. 

Then X is striatZy ayaZiaaZZy orderabZe. 

PROOF. Let U open in X and p € U. 

We have to show that there exist a, b € X such that 

p € {x € X I (a,x,b) € R} c U. 

So we may assume U # X. Let q € X \ U. 

X \ q is an orderable, locally connected, connected space, and consequently 

X \ q is strictly orderable. 

Since, by Theorem 12, X \ q has no endpoints, there exist a, b € X \ q such 

that 

p € {x € X I a< x < b} c U, where<= <{q). 
R 

From {x € X I a< x < b} = {x € X I (a,x,b) € R} we now conclude that X is 

strictly cyclically orderable. 

REMARK. It is not possible to omit the non-orderability of X in Theorem 17. 

The half-open interval [O,1) is a counterexample. 
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3.5. CHARACTERIZATION OF NON-ORDERABLE, CYCLICALLY ORDERABLE CONNECTED 

T1-SPACES 

In this section we want to characterize non-orderable, cyclically orderable 

connected T1-spaces in terms of the conditions introduced in the first sec­

tions of this chapter. 

THEOREM 18. Let X be a aonneated T1-spaae. Then X is a non-orderable ay­

aliaally orderable spaae if and only if X satisfies (Hp) but not (H). 

PROOF. 

1. Let X be a connected T1-space, which is cyclically orderable but not 

orderable. Then every point of X is an endpoint. Hence X does not satisfy 

condition (H). Since X is cyclically orderable, every connected proper sub­

set of X is orderable, _which means that X satisfies (Hp). 

2. Let X be a connected T1-space satisfying (Hp) but not (H).Then clearly 

X is not orderable and moreover X has at least three distinct endpoints 

p, q and r. 

(i) We shall first show that X does not have cut points. 

Suppose to the contrary that s EX is a cut point of X. 

If X \ s has exactly two components, then one of them must contain at least 

two of the points p, q and r. The closure of that component is a connected 

proper subset of X having at least three endpoints, which is impossible. 

If X \ s has at least four components there is a component C which does not 

contain any of the points p, q and r. But then X \ C is connected and has 

p, q and r for endpoints (Lemma 1.11), which again is impossible. 

It remains to consider the case that X \ s has exactly three components, 

each of them containing precisely~ of the points p, q and r. 

Let X \ s =A+ B + C. 

p q r 

Take any point a EA (a~ p). 

If a is an endpoint of X, Aus has three endpoints a, p and s. 

If a is a cut point of X, a must separate p, q and r (otherwise there is a 

proper subset of X having at least three endpoints). But this contradicts 

the fact that B u Cu sis connected in X \ a. 

(ii) Since consequently every point of X is an endpoint of X, and since X 

satisfies (Hp), (and hence (Hd)), X \ {x,y} is disconnected for every pair 
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of distinct points x, yin X. 

From Theorem 12 it now follows that X is cyclically orderable. 

THEOREM 19. Let X be a aonneated T 1-spaae. Then X is a non-orderabZe ay­

aZiaaZZy orderabZe spaae if and only if X satisfies property (Ht) and every 

point of X is an endpoint of x. 

PROOF. 

1. The necessity of the condition follows immediately from Theorems 12 and 

13. 

2, To prove the sufficiency, let X be a connected T1-space satisfying con­

dition (Ht) and having no cut points. Then it is clear that X is not 

orderable. We will prove the cyclic orderability of X from Theorem 12 by 

showing that X \ {p,q} is.disconnected for every p, q € X (p # q). 

a) 'fa, b, c € X (a # b # c #· a) : X \ {a,b,c} = Y is disconnected by con­

dition (Ht). 

b) If X \ {a,b} is connected, then X \ {a,b,c} has at least three com­

ponents (a# b # c #a).For suppose X \ {a,b,c} = c1 + c2 , where c1 and 

c2 are connected. 

Then c € c1 n C2 , and a, b € C1 U C2 = X. 

If a, b E c1 , then (C1=) c1 u {a,b,c} is connected and has an endpoint 

triple, contradicting (Ht). 

If a€ c1 \ c2 and b € C2 \ c1, then X \ c = (C1 u a)+ (C2 u b), 

which is impossible, since c is an endpoint of X. (*) 

c) 1. Now suppose that X \ {p,q} is connected for some p, q € X (p # q). 

Then it follows from b) that the set X \ {p,q,r} has at least three com­

ponents, for every r € X \ {p,q}. 

Let 

X \ {p,q,r} =A+ B + C, 

s t u 

then A u r, B u r, C u r are connected, r € A n B n C, and [ cf. ( *) J we 

may assume p, q € A. 

c) 2. Suppose X \ {t,u} is disconnected. 
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Then X \ { t , u} = D + E , D "f 0 , E "f 0 . 
If p, q, rt Ethen the connected set E u {t,u} would be contained in 

X \ {p,q,r}, which is impossible. 

If p € D and q, r €Ethen the connected set Au {p,q,r} is contained in 

X \ {t,u}, which is also impossible. 

Hence X \ {t,u} is connected. 

c) 3, From b) it follows that: 

X \ {s,t,u} = P + Q + R, (P "f 0, Q "f 0, R "f 0), 

s € P n Q n Rand Pus, Q us, Ru s are connected. 

P n {t,u} "f 0, since otherwise P would be clopen in X \ s. 

Lett€ P. 
If p, q, rt P then the connected set Pus u t is contained in X \ {p,q,r}, 

which is impossible. 

So we may assume that p € P, q € Q, r € R. Moreover, as we observed already, 

the closure of each of these three sets contains at least one of the two 

points t, u. 

Put W =(Au r) u (Ru s). Then W is connected and p, q, t, u t W. 

But W contains at least three of these four points, which contradicts (Ht). 

THEOREM 20. A aonneated T 1-spaae X is a non-orderabZe ayaZiaaZZy orderabZe 

spaae if and only if the aompZement of eaah aonneated subset of X is aon­

neated. 

PROOF, 

1. The condition is necessary: follows immediately from Lemma 15, since the 

complement of an interval is again an interval or an empty set. 

2, The condition is sufficient: X \ p is connected, since {p} is connected 

(~p € X) and X \ {p,q} is disconnected, since {p,q} is disconnected 

(~p,q € X, p "f q). The assertion now follows from Theorem 12. 

PROPOSITION 21. In a aonneated T1-spaae X: 

(B'C) + (Ht) ~ (Hp). 



39 

PROOF. 

(i) If X has at least one cut point, X is orderable by Theorem 10. Hence 

X satisfies (Hp). 

(ii) If X has no cut points, X is a non-orderable, cyclically orderable 

space by Theorem 19, Hence, by Theorem 18, X satisfies (Hp). 

3.6. ON ( V) - SPACES 

DEFINITION 2. A (connected) T1-space X is said to satisfy 

(V) - if X contains a point x0 such that every connected subset of X con-

taining x0 is closed. 

Condition (V) was studied by Hursch and Verbeek in [15] and [16]. They con­

structed a connected T2-space, satisfying (V) and consequently (as they 

showed) satisfying (H), but not satisfying (0). So they settled a problem, 

raised in [19], in the negative. A generalization of condition (V) was in­

troduced and discussed by Brouwer in [3]. 

In this section we only investigate those properties of (V)-spaces (i.e. 

spaces satisfying (V)) which we need for our purposes. For a more detailed 

discussion of (V)-spaces we refer to [15] and [3]. 

Recall that all spaces under consideration are assumed to be connected T1-

spaces containing at least two points. 

Let X be a connected T1-space satisfying (V). 

Let x0 be a point of X such that every connected subset of X containing x0 

is closed. 

Let C be a component 

X \ C is closed in X 

c = C u xo· 

of x \ x0• Since X 

and therefore C is 

\ C is connected and x0 EX\ C, 

an open subset of X. Hence 

It follows also that no other point x1 EX can have the property that every 

connected subset of X containing x1 is closed. Hence x0 is uniquely deter­

mined and x0 is called the base point of X. 

Let x EX and x ~ x0 . Let c0 be that component of X \ x containing x0• Then 

c0 is closed in X. This means that X \ x consists of infinitely many com­

ponents, since otherwise (every component of X \ x and in particular) c0 is 
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an open subset of X, which contradicts the connectedness of X. 

Let C be a component of X \ x not containing x0 • Since X \ C is connected 

and x0 € X \ C, X \ C is closed in X and therefore C is open in X. Hence 

C =Cu X, 

So in a (V)-space X with base point x0 the following holds: 

Every component of X \ x0 is open~ If x, x0 then X \ x has infinitely many 

components. The component of X \ x containing x0 is closed and all other 

components of X \ x are open. 

3,7. ON CONDITION (P) 

As we already announced at the end of Chapter II, we shall prove in this 

section that for connected T1-spaces the orderability is equivalent to yet 

another property, called (P). 

Recall that a space X is said to possess property (P), (or is said to be a 

(P)-space), iff for every pair of connected subsets A, B of X having a 

common endpoint p the following holds: 

An B = {p} or Ac B or B c A. 

THEOREM 22. In a connected T1-apace X: (P) ~ (0). 

PROOF. 

1. =: trivial, since the only connected subsets of an orderable space 

are the intervals. 

2. = 
(i) It is clear from the definition that condition (P) is hereditary for 

connected subspaces. Hence, in order to show that a (P)-space is also an 

(H)-space it suffices to prove that a (P)-space cannot have more than two 

endpoints. 

In order to do that, we suppose that, to the contrary, there exist three 

distinct endpoints p1, p2 and p3 of the (P)-space X. 

a) Suppose first that at least two of the three sets: X \ {p1,p2}, 

X \ {p2,p3} and X \ {p3 ,p1} are disconnected. (This will lead to a contra­

diction). 



For instance, let 

X \ {p1,p2} =A+ B, where B # 0, and 

P3 

X \ {p2 ,p3} = C + D, where D # 0, 
P1 

Since B u p1 is connected in X \ {p2 ,p3} we have B u p1 c C, and hence 

B n D = 0 and Au C = X \ p2 • 
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Since X \ p2 is connected and since A and Care both open in X \ p2 we have 

An c # 0, Let x €An c. 
A u {p1 ,p2} is connected and has p2 as an. endpoint. 

Cu {p2 ,p3} is connected and has p2 as an endpoint. 

However, (Au {p1,p2}) n (Cu {p2 ,p3}) ~ {p2,x}, and (since B c C) neither 

Au {p1,p2} c Cu {p2,p3} nor Cu {p2 ,p3} c Au {p1,p2}. 

This contradicts (P). 

We conclude that at least two of the three sets: X \ {p1 ,p2}, X \ {p2 ,p3} 

and X \ {p3 ,p1} are connected. 

8) For instance, let X \ {p1,p2} and X \ {p2 ,p3} be connected. Then p2 is 

an endpoint both of X \ p1 and of X \ p3 . 

But (X \ p1) n (X \ p3) # {p2} and neither X \ p1 c X \ p3 nor 

X \ P3 C X \ P1. 

This contradiction proves that a (P)-space is an (H)-space. 

(ii) Now we will show that a (P)-space cannot be a (V)-space. 

Suppose X is a (V)-space with base point x0 . 

Let p € X and p # x0 • 

Then X \ p has infinitely many components. If c0 is the component of X \ p 

containing x0 , then c0 is closed in X, and the other components C0 (o € A) 

of X \pare open in X. 

Let S = X \ c0 then Sis open in X and connected. 

Hence, there exists an element q € c0 n S. 
Choose any two o1, o2 € A (o1 # o2 ) and let pi E C0 _ (i = 1,2). 

l. 

Since C and C are clopen in X \ p, we can write 
01 02 

X \ P = 

where c0 c D. 
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Replacing p by p1 or p2 respectively, we may also conclude that there exist 

non-void connected sets s1 and s2 such that 

X \ p1 = s1 + E 

XO 

Since Siu pi= Si is connected, it follows that 

(i=1,2). 

In particular pt S. and hence p €En F. 
1 

Since Si is a component of S \ pi, it follows that S \ Si is connected 

(i=1,2). 

Since S. = S. up. and q € c0 we have qt 81.; from q € S = S. u (S \ S.) it 
1 1 1 1 1 

then follows that q € 8\8. (i = 1 ,2). 
1 

However, the sets (S \ s1) u q and (S \ s2 ) u q yield a contradiction to 

property ( P). 

(iii) The (P)-space X satisfies property (B 1 ). 

Suppose, to the contrary, that for some p € X we have 

X \ p = A1 + A2 + A3, with non-void Ai (i = 1,2,3), 

A.= A. up is connected, hence a (P)-space and consequently not a (V)-
1 1 

space, (i = 1,2,3), 

This means that there exist connected sets B. c A. such that p € B1• and 
1 1 

distinct points b. € A. such that b. € B. \ B .• (i = 1,2,3), 
1 1 1 1 1 

It follows that the set B1 u B2 u B3 u {b1,b2,b3} is connected and has an 

endpoint triple, which contradicts the fact that a (P)-space is an (H)­
space. 

(iv) Since a (P)-space is an (H)-space and satisfies property (B•), the 

orderability of X follows from Lemma 8. 

REMARK, Observe that in the proof of Theorem 22 we do not need to know that 

(V)-spaces really exist, 



CHAPTER IV 

ON TREE-LIKE SPACES AND THE INTERSECTION OF 

CONNECTED SUBSETS OF A CONNECTED T1-SPACE. 

4.1. INTRODUCTION AND DEFINITIONS 
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In this chapter our attention is mainly focussed on property (S) and pro­

perty (1n.t). A space having property (S) is sometimes called a "tree-like" 

space. Tree-like spaces have been studied by G.T. Whyburn in [28], 

G.L. Gurin in [10] and V.V. Proizvolov in [25] under the additional assump­

tion that X is locally connected and peripherally bicompact respectively, 

Property (1n.t), the 11aonneated interseation property" occurs also in 

Whyburn [28] for locally connected spaces. Some modifications of this con-
. * 

dition, the properties (1n.t 2) , (1n.t ) and (1n.t'), will also be discussed 

in this chapter, where (1n.t2) is again a property occurring in the paper 

of Whyburn [28]. 

As remarked already at the end of Chapter I the relation between (B) and 

(0) will be the subject of Theorem 2 of this chapter. 

Finally, a property (W) will be studied. An equivalent form of this pro­

perty is discussed by A.E. Brouwer [2]; some of the propositions and theo­

rems in which condition (W) is occurring have already been proved in a 

slightly different way by him in [2]. 

DEFINITION 1, A topological space X is said to satisfy 

(S) - if Vx,y € X, (x 'F y) : 3z € X : z separates x and y, 

( Int) 

(no two points of X are conjugated). (A space satisfying (S) is 

called a tree-like space). 

- if the intersection of an arbitrary collection of connected sub­

sets of X is connected. 

(1nt*) - if the alosure of the intersection of an arbitrary collection of 

connected subsets of X is connected. 

( Int• ) - if the intersection of ·an arbitrary collection of afosed con­

nected subsets of X is connected. 

( Int 2) 

(W) 

- if the intersection of two connected subsets of X is connected. 

- if for every two disjoint connected sets A, B c X it is true that 

IAn'iil.5.1. 
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4.2. PROPERTIES OF TREE-LIKE SPACES 

In this section we investigate several properties of tree-like spaces. 

First of all, we shall prove that a tree-like space is orderable if and 

only if every cut point is a strong cut point. As always, we only consider 

connected T1-spaces, 

THEOREM 1. In a aonneated T 1-spaae X: 

PROOF. 

(i) ~ trivial, 

(ii)= In fact we will prove: (S) + (8 1 )===+ (S•). 

Suppose, to the contra;y, that X satisfies (S) and (8 1 ), but does not 

satisfy (S•). Let p1, p2 and p3 be three distinct points of X, such that no 

one of them separates the other two, 

Then we have 

X \ p1 = A + B X \ P2 = A + B X \ P3 = A + B , 
P1 P1 P2 P2 P3 P3 

P2 P3 P1 
P3 P1 P2 

where (A ,B ) is a (unique) separation of X \ p1. when p1• is a cut point, 
pi pi 

and where A = 0 when p. is an endpoint of X. 
Pi l. 

In both cases A and B are connected and open in X, 
pi pi 

It is clear that 

A C B ( i 'F j) 
p. p. 

]. J 

A n A = 0(i#j) p. p. 
]. J 

B u B = X(i#j), 
p. p. 

]. J 

Now, let 

S(p1 •P2) = E(p1,p2) u {p1 ,p2} = {x € X x separates P1 and p2} u {p1 ,p2}; 

S(p2,p3) = E(p2,p3) u {p2,p3} = {x € X x separates p2 and p3} u {p2,p3}; 

S(p3,P1) = E(p3,P1) u {p3,P1} = {x € X x separates P3 and P1} u {p3,P1 }. 



In the same way S(p2 ,p1), S(p3,p2 ) and S(p1,p3 ) can be defined, 

It is clear that S(p2 ,p1 ) = S(p1 ,p2 ) etc. 

Clearly, p1,p2 € S(p1,p2 ) and p3 i S(p 1,p2 ) etc. 

Moreover, 

For, supposex € S(p1,p2 ) n S(p2 ,p3 ) n S(p3 ,p1 ). Then x rf, pi (i = 1,2,3) and 

hence x is a strong cut point, i.e. 

X \ x = A + B , 
X X 

and this separation is unique. However, this contradicts the fact that x 

must separate each two of the three points p 1 , p2 and p3 • 

Also, 

For, let x € S(p1 ,p2 ). 

If x = pi (i = 1 or 2), then certainly x € S(p2 ,p3 ) u S(p3 ,p 1). 

If x 'F pi (i = 1,2,3), then x is a strong cut point which separates p 1 and 

p2; i.e. 

X \ x = A + B . 
X X 

P1 P2 

Since p3 € Ax implies that x € S(p2 ,p3 ) and since p3 € Bx implies that 

x € S(p1,p3), the assertion follows. 

(Notice that x 'F p3 , since p3 i S(p1,p2)). 

Now, let 

Thus every point of Sis contained ir ~xactly two of the three subsets 

S(p1,p2 ), S(p2 ,p3 ) and S(p3 ,p1). 
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Let 

s1 = s \ S(p2,p3) • 

s2 = s \ S(p3,p1), 

s3 = s \ S(p1 ,p2). 

Then 

s1 = S(p1 ,p2) n S(p3,p1) S(p1 ,p2) = s1 u s 2 

s2 = S(p2,p3) n S(p1 ,p2) and S(p2,p3) = s2 u s 3 

S3 = S(p3,P1) n S(p2 ,p3) S(p3,P1) = s 3 u s1. 

Moreover, S = s 1 u s 2 u s3 and the sets s 1, s 2 and s 3 are mutually dis­

joint. 

Since S.(i = 1,2,3) is a subset of S(p.,p.) (i # j), in each of the sets 
J. J. J 

s 1, s 2 and s3 we can introduce a total ordering, namely the separation 

ordering. We recall the definition and some properties of the separation 

ordering, for example in s 1• (It will then be clear that the separation 

orderings in S(p1,p2 ) and in S(p3,p1) coincide on s 1). 

For every x € s 1, x # p1, let Ax be that component of X \ x which contains 

the point p1• 

We define the separation ordering in s 1 as follows: 

(i) pi< x for each x € s 1 \ p1• 

(ii) if x, y € s 1 \ p1, then x < y iff x E AY. 

It is well-known, that 

x < y = x separates p1 and yin X ~ y separates x and P2 in X 

~ y separates x and p3 in X = y t A u x = A u x c A. 
X X Y 

Now, let 

L. = u A (i = 1,2,3). 
J. xES. X 

J. 

L. (i = 1,2,3) is open in X, because each A is open in X. 
J. X 



We shall prove 

L. n L. = r/J (i 'F j). 
l. J 

Suppose, to the contrary, that, for example, there exists a pointy, such 

that y € L1 n L2 • 

Then y € A for some x, € s, and y € A for some x2 € s2. x, x2 
Since A n A = 0, it is impossible that·both x, = P1 and x2 = P2· P1 P2 
If x1 = p1 and x2 'F p2 we have the separations 

X \ p1 = A + B X \ x2 = A + B 
P1 P1 x2 x2 
y P2 P2 P3 

P3 y P1 

A = A u x2 is connected in X \ p1, but contains bothy and p2 , which 
x2 x2 

is impossible. 

In a similar way it can be shown that the remaining case, x1 'F p1 and 

x2 'F p2 , also yields a contradiction. 

We now want to show that at most one of the sets s 1, s 2 and s 3 has a 

largest element in its ordering. 

For this purpose we first recall that it is well-known that 

x, y € Si and x < y imply that Ax u x c Ay. 

Now suppose, to the contrary, that for instance s, and 

largest 

Then it 

and 

element, sa:y x, and x2 , respectively. 

follows from the fact that x < y -= A 

L = A (and consequently x2 ¥ L2 ). 
2 x2 

X 
U X C 

s 2 both have a 

A that y 

Since L1 n L2 = r/J and since both L1 and L2 are open, we clearly have 
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L1 n 12 = 1 1 n r.2 = ~-

If both x1 and x2 are cut points, then 

E, = A = A u x,, so x, i 12 and hence x1 € B 
x, x, x2 

and also 

r.2 = A = A u x2, so x2 i 1, and hence x2 € B 
x2 x2 x, 

If x1 is a cut point 

x1 € Bx2 , while x2 = 

and x2 = p2 then in the same 

p2 € B , because x1 € s 1• x, 
way we can prove: 

If x1 = p1 and x2 = p2 then 

So, in all cases, we have: 

By (S), there exists a pointy€ X such that y separates x1 and x2 • 

So we have: 

X \ y = A + B . y y 
x, x2 

It follows that 

B = B U y C B 
X • so P1 € A and y € B 

y y 1 
y x, 

and 

A = A Uy C B • so P2 € B and y € B y y x2 y x2 

This means that y separates P1 and p2 and consequently y € S(p1 ,p2). 

Hence y € s, or y € s2. 
If y € s, it follows from y € B that x, < y. x, 
If y € s2 it follows from y € B that x2 < y. 

x2 



In both cases we have a contradiction. 

So we may assume that for instance s1 and s2 have no largest element. 

Then 

u s. 
l. 

(i = 1,2). 

(If x. € S. there exists y. € S. such that x. < y1.; then 
l. l. l. l. l. 

A ux.cA c1.,hencex.€1.(i=1,2).) 
xi i Yi i i i 

From this it follows that certainly 11 ~ 0 and 12 ; 0. 
Since X is connected, 11 cannot be closed, and hence 11 \ 11 ; 0.(Recall 

that 11 n 12 = 12 n 11 = 0). 

Now there are two possibilities: 

a) 11 \ 1 1 = { q} 

b) q1, q2 £ 11 \ 11 for two distinct points q1 and q2• 

In both cases we shall derive a contradiction, thus finishing the proof of 

the theorem: 

a) 11 \ 11 = {q}: 

Then qt 11 and qt 12• 
C I • learly, 11 = u Ax is 

X€S1 
connected. 

Moreover, 11 is open (in X and hence open) in X \ q, and also 

1 1 = 11 n (X \ q) is closed in X \ q. 

Hence, 11 is connected and clopen in X \ q. 

Since 11 n 12 = 0, q / 12 , 12 ; 0 it follows that q is a cut point of X and 

that 

Moreover 12 c B4 , hence p1 € Aq and p2 € Bq. 

But this means that q is a point separating p1 and p2 , so 

q € S(p1,p2 ) = s1 u s2 c 1 1 u 12 , which is a contradiction. 

b) q1, q2 € E1 \ 11 and q1 ; q2 : 

From (S) it follows that there exists a point z € X, such that z separates 
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q1 and 42• 
Since 1 1 u {q1,q2} is connected, z has to be a point of 1 1• 

Thus z E Ax for some x E s1 \ p1• 

Then we have the separations: 

X \ z = A + B z z 

We may assume: x E Az, 

X \ x = A + B , 
X X 

Then B = B u z is connected in X \ x, and hence z z 

since q1 , q2 f. 1 1 it follows next that q1 , q2 E Az, 

Since (A ,B) is a unique separation of X \ z, this contradicts the fact z z 
that z separates q1 and q2 • 

We are now able to prove the following theorem concerning the relation 

between properties (B) and (0): 

THEOREM 2, Let X be a connected T1-space satisfying condition (B).Let 

E = {x EX Ix is an endpoint of X}, Let Ebe an endset of X, i.e. X \ E 

is connected. Then X \Eis orderable. 

PROOF. 

(i) X \ E satisfies condition (8 1 ): 

Let p EX\ E. Since X satisfies (B) and hence (B•) it follows that p is a 

strong cut point of X, i.e. X \ p = A + B, where both A and B are p p p p 
non-void and connected. 

Then 

(X \ E) \ p = (A \ E) + (B \ E), where possibly 
p p 

A \ E = 0 or B \ E = 0, 
p p 

We have to prove that both A \ E and B \ E are connected, 
p p 

Suppose, to the contrary, that A \ E = R + S, and hence 
p 



(X \ E) \ p = R + S + (B \ E), with R # 0 and S # 0, 
p 

Then Ru p and Sup are connected, 

Let r €Rands€ s. 
Let X \ r = A + B 

r r 
p 

Ru p is connected in X \ s, hence r € As. 

Sup is connected in X \ r, hence s € Ar. 

Since Ru S = A \ E, we have r,s €A, 
p p 

Consequently, 

and hence 

B n B = B n B = B n B = 0, 
p r p s r s 

This means that B, B and B are three mutually disjoint segments in X, 
p r s 

which contradicts property (B). 

(ii) X \ E satisfies condition (S): 
Let p1,p2 € X \ E (p1 # p2 ). 

Then 

l' I p = 
1 

X \ P2 = 

and hence 

A1 

P2 

A2 

P1 

+ B1 ( A1 # 0, B1 # 0) 

+ B2 (A2 # 0, B2 'F 0) 

(A1 \ E) + (B1 \ E) 

P2 
(A2 \ E) + (B2 \ E) 

P1 
where possibly B1 \ E = 0 or B2 \ E = 0, 
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Since B1 \ E c A2 \ E it follows that (A1 \ E) u (A2 \ E) = X \ E and since 
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X \Eis connected we have (A1 \ E) n (A2 \ E) ~ 0, 
Let p3 € (A1 \ E) n (A2 \ E), 

Then X \ p3 = A3 + B3• 

P1 
Suppose that also p2 € A3• Then, since p3 € A1 n A2 , it follows that 

B1 n B2 = B2 n B3 = B3 n B1 • 0, which is impossible by condition (B). 

Hence X \ p3 = A3 + B3, and consequently 

P1 P2 

This means that p3 separates p1 and p2 in X \ E. 

(iii) The theorem now follows from (i), (ii) and Theorem 1, 

COROLLARY 2.1. Let X be a connected T1-space, satisfying condition (B).If 
X has e:,xzctZy one endpoint p, then X \ p is orderabZe. 

PROOF. Using the notation of Theorem 2, we have E = {p}, and X \ E = X \ p 

is connected. 

COROLLARY 2.2. (cf. Theorem 2.4 and Kok [19], Theorem 1), Let X be a con­

nected T 1-space satisfying condition (B) and having no endpoints. Then X 

is ordsl'abZe. 

PROOF. E = 0 and X \ E = X is connected. 

Although all spaces under consideration are assumed to be connected T1-

spaces consisting of at least two points it is possible to prove that 

every tree-like space is a T1-space. The following proposition even states 

that every tree-like space is Hausdorff, 

PROPOSITION 3. A tree-Zike space X is Hausdorff, 

PROOF, 

(i) X is a T1-space: 

If p € X is such that {p} is not closed, then there exists a point 

q € X \ p such that q € {p}. However, then {p,q} is a connected subset of 

X, which means that p and q cannot be separated by a third point. 
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(ii) X is a T2-space: 

Let p, q € X such that p # q. Then there exists a point r € X separating p 

and q. So we have 

X \ r = A + B 
r r 

p q 

where Ar and Br are open in X, since X is a T1-space. 

THEOREM 4. In a connected T1-apace X: 

(S) ~ (8 1 0). 

PROOF. Suppose C is a component of X \ p, which is not open. Then there 

exists a point r € C such that r € X\C. Let q be a point separating p and 

r. Then we have 

X \ q = A + B . 
q q 

P r 

B = B u q is connected in X \ p, hence B c C and X \Cc A. 
q q -- - q q 

Then r € X \Cc A = A u q. Contradiction. 
q q 

THEOREM 5. In a connected T1-apace X: 

(S) ~ (W). 

PROOF. Let A and B be disjoint connected subsets of X. 

Let p, q €An B (p # q). 

Since both A1 =Au {p,q} and B1 = B u {p,q} are connected, p and q clearly 

cannot be separated by a third point. 

THEOREM 6. In a connected T1-space X: 

(Ht) + (S) ~ (0). 

PROOF. Since (S) = (8 1 0) ==> (B 1 C) and (Ht) + (B•C) = (B 1 ) 

(Lemma 3.6), the assertion follows from Theorem 1. 
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PROPOSITION 7, Let X be a connected T1-space satisfying (S). 

Let a, b € X (a 'f b), 

Let S(a,b) = E(a,b) u {a,b} = {x EX Ix separates a and b} u {a,b}, 

Then S(a,b) is cZosed in x. 

PROOF. Suppose that S(a,b) is not closed then there exists a point p € X 

such that p € S(a,b) \ S(a,b). 

For x € E(a,b) let X \ x = A + B be a fixed separation between a and b. 
X X 

a b 
Remember that in the separation ordering< we have that a (reap. b) is the 

smallest (reap. greatest) element, while for all x, y E E(a,b) we have 

Let A= {x € E(a,b) I p € B } andB = {x € E(a,b) I p € A }. 
X X 

Now Au B = E(a,b), An B = 0, 
Hence p € A or p € B. Suppose for instance that p €A.Then A cannot have 

a last element. (If z would be the last element of A, then Ac A u z = A z z 
and hence, since p € A, p €A. Then p €A, since certainly p 'f z. But z z 
this means that z € B, which is a contradiction.) 
Let R = u A. Then also R = u A. So R is an open and connected subset 

X€A X X€A X 

of X. Moreover, since Ac Rand pt R, p € oR = R \ R. 

a e Rand b EX\ R so either b E oR or oR separates a and b. 

Since p 'f band since p does not separate a and b, oR must contain a point 

q different from p. (In the first case one may always take q = b). 

As Ru {p,q} c R is connected a point r separating p and q must belong to 

R. However, if r € R, then r € A for some x € A; thus B u x is connected 
X X 

in X \rand contains p and q. This contradicts (S). 

PROPOSITION 8. Let X be a connected T1-epace satisfying (S). 
Let a, b EX (a 'f b).Then the closed set S(a,b) = E(a,b) u {a,b} has no 

jumps and no gape in the usuai separation ol'dering. 

PROOF. 

(i) We first show that S(a,b) has no jumps: 



Let x, y € E(a,b), X < y. 

Let z be a point in X separating x and y. 

Then we have the following separations: 

ii. = 
z 

X \ X = A 
X 

a 

+ B 
X 

b 

y 

X \ y = A + B 
y y 

a b 

X 

A u z is connected in X \ y, sob€ B. z z 
B 

z 
= B u z is connected in X \ x, so a e A. 

z z 

Hence z separates a and b, and x < z < y. 

X \ z = A 
z 

X 

+ B • 
z 

y 

If x = a or y = b, the assertion is proved in a similar way. 

(ii) Secondly we show that S(a,b) has no gaps: 

Suppose, to the contrary, that there exist non-empty subsets A and B of 

S(a,b) such that: 

S(a,b) =Au B; x € A and y E B implies x < y; A has no last element and 

B has no first. 

Let P = u A 
X€A X 

usual meaning, 

= u 
XEA 

A and Q = 
X 

u B 
yEB y 

u B, where A 
YEB y X 

and B 
y 

have the 
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Then P and Qare disjoint, non-empty, open, connected subsets of X; Ac P, 

BC Q. 

a) Suppose P \ P contains two distinct points p1 and p2 . 

Any point q, separating p1 and p2 , must be contained in P, since 

Pu {p1 ,p2} is connected. Hence q E Ax for some x €A.However, Bx is con­

nected in X \ q and contains p1 and p2 • Contradiction. 

b) Suppose P \ P = {p} for some p EX. 

Then Pisa clopen subset of X \ p. Since Ac P and B c Q this means that 

p separates a and b. However, pi Au B = S(a,b). Contradiction. 

THEOREM 9. In a aonneated T1-epaae X satisfying (S) the intePeeation of a 

segment and a aonneated set is aonneated. 

PROOF. Suppose C is a component of X \ p and Dis a connected subset of X. 

By Theorem 4, C is a clopen subset of X \ p, so X \ p = C + Q. 

Now, suppose C n D = S + T, with S ~ 0 and T; 0. 
Then D \ p = (C n D) + (Q n D) = S + T + (Q n D), (so that p is a cut point 

of D), hence Sup, Tu p and Su Tu pare connected. 

Let a ES and b ET, then S(a,b) = E(a,b) u {a,b} is contained in C n D, 
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thus S(a,b) =A+ B, where a€ A, b € B, A= S(a,b) n Sand B = S(a,b) n T. 

If x € A and y €Bit follows from the fact that Tu p is connected that 

x does not separate y and b, and hence x < y. (where< again denotes the 

separation ordering). So, by Proposition 8, either A has no last element 

or B has no first element. Assume for instance that A has no last element. 

Then V = u A = u A is open and connected and Ac V; also V n T = 0 
X€A X X€A X 

(for, X \ x = A + B and if x €-A, then Tu p is connected in X \ x and 
X X 

a b 
contains b) • 

By (S), av = V \ V contains at most one point; on the other hand, since X 

is connected, av cannot be empty; hence av = {q}. 

We observe first, that q € T. For, if q = b, then q € T. 

If q; b, then, since Vis clopen in X \ q, q separates a and b, and there­

fore q € B, hence q e T. 

Now, let r be any point separating p and q. Since Tu p is connected and 

q € T we haver€ T. Since V n T = 0, Vu Sup is a connected set not 

containing r, but containing p and q. This is a contradiction. 

PROPOSITION 10. If a connected space X (with moPe than one point) satisfies 

pPOpePty (S), then the space X is uncountable, 

PROOF. Let a, b € X (a; b), By Proposition 8, the set S(a,b) is continuous­

ly ordered, i.e. it has no jumps and no gaps in its (separation) ordering. 

Hence there is a subset of S(a,b) with the ordertype of the real numbers. 

(cf. e.g. A.A. Fraenkel [9], p. 174). 

4,3, ON CONDITION (W) 

PROPOSITION 11. Let X be a connected T1-space, Then X is a (W)-space if 

and only if the bound,ar,y of each component of the complement of any non­

empty connected propeP subset of X consists of exactly one point. 

PROOF. 

(i) Let S be a non-empty connected proper subset of X. Let C be a com­

ponent of X \ S. Then, by Lem:na 1,9, X \ C is connected. Since X is a (W)­

space m n C contains at most one point, and hence, by the connectedness 

of x, m n C contains exactly~ point. But m n C is precisely the 
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boundary of C. 

(ii) Let A, B be connected disjoint subsets of X. Let C be a component of 

X \ B such that Ac C. Since C n X\C = {p} for some p € X, it follows 

that C n B c {p}, and consequently An B c {p}. 

REMARK. Proposition 11 shows that condition (W) is equivalent to a con­

dition studied by A.E. Brouwer [2], as we observed already before. 

THEOREM 12. In a aonneated T1-spaae X: 

PROOF. Let C be a segment of pin X. By condition (B•C) and Proposition 11: 

{Cup}\ C0 = C \ C0 = {q} for some q € X. 

Hence, (p 
0 

= q and) C =C., i.e. C is open in X. 

THEOREM 13. In a aonneated T1-spaae X: 

(Ht) + (W) = (H). 

PROOF. Let Cc X be connected and let p, q and r be three distinct end­

points of C. 

1. Suppose first that C \ {p,q} is not connected, hence C \ {p,q} = S + T. 

Here, Sup and Tu q are disjoint and connected. 

However, Sup n Tu q ~ {p,q}, which contradicts (W). 

2. Thus we may assume that C \ {p,q}, C \ {q,r} and C \ {r,p} are connected. 

By (Ht) we have that C \ {p,q,r} is not connected. Hence C \ {p,q,r} = 

= u + v. 
Now, U up and Vu q are disjoint and connected. 

However, U up n Vu q ~ {p,q,r}, which again contradicts (W). 

4.4. CONNECTED INTERSECTION PROPERTIES 

THEOREM 14. In any topologiaal spaae X: 

a) 

b) 

(In.t)= (1n.t2) 

(In.t) == (In.t*)~ (1n.t'). 
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PROOF. Immediate from the definitions. 

THEOREM 15. In a aonneated T1-spaae X: 

a) 

b) 

(Int2)= (W) 

(Int*) = (W). 

PROOF. Let A and B be disjoint connected subsets of X. 

Let p, q EA n B (p ~ q). 

Then A1 =Au {p,q} and B1 = B u {p,q} are connected. 

However, A1 n B1 = {p,q} is closed and not connected, which contradicts 

both (In.t2) and (Int*). 

LEMMA 16. In a aonneated T1-spaae X satisfying (B'O) the following holds: 

Va, b E X ( a ~ b) C(a,b) = S(a,b). 

PROOF. Recall that C(a,b) denotes the intersection of all connected subsets 

of X, containing both a and b. 

(i) If pi C(a,b) then there exists a connected subset A of X such that 

a,b EA and pi A. Then clearly p does not separate a and bin X. Hence 

p i S(a,b). 

(ii) If p E C(a,b) and pi {a,b} then a and b certainly do not belong to 

the same component of X \ p. Since, by (8 10), components of X \pare 

clopen in X \ p, this means that p separates a and b. 

Hence p E E(a,b). 

REMARK. If X is a connected T1-space and if a,b EX (a~ b) then we will 

use the following notation: 

K(a,b) = n {Sc X J a,b ES S connected and closed}; 

L(a,b) = K(a,b) \ {a,b}. 

LEMMA 17. Let X be a aonneated T1-spaae satisfying (Int'). Then the foZ­

Zowing holds: va,b EX (a~ b): 



(i) K(a,b) is aonneated. 

(ii) L(a,b) is aonneated. 

(iii) L(a,b) = K(a,b). 

PROOF. 

(i) Immediate from the definition of (Int: 1 ). 

(ii) First, suppose that a is a cut point of K(a,b); i.e. 

K(a,b) \a= P + Q, where Q; 0. 
b 
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Then P =Pu a is a closed and connected subset of X, which contains a and 

band which moreover is a proper subset of K(a,b). This is impossible. 

Consequently, a and bare.both endpoints of K(a,b). 

Suppose K(a,b) \ {a,b} = U + V, where U; 0 and V ~ 0. 
Then U = U u {a,b} and V =Vu {a,b}. 

Moreover, both U and V are connected. 

However, Un V = {a,b} is not connected. Contradiction. 

(iii) Since X is T1, this assertion follows immediately from the fact that 

K(a,b) = L(a,b) u {a,b} is closed and connected. 

THEOREM 18. In a aonneated T1-spaae X: 

(Int: 1 ) ====- (8 1 C). 

PROOF. Let C be a component of X \ p and let r EC. 

Then L(r,p) u r is a connected subset of X \ p. Thus L(r,p) u r c C. Hence, 

p E L(r,p) c C. 

THEOREM 19. In a aonneated T1-spaae X: 

PROOF. Let C be a component of X \ p and suppose that C is not open in X. 

Since (Int*) ==-- (W) it follows from Prosition 11 that C is closed in X. 

Since (Int*) = (Int') this contradicts Theorem 18. 
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THEOREM 20. In a connected T 1-space X: 

PROOF. Let a,b EX (a~ b). 

Since a,b E C(a,b) and since C(a,b) is connected, it follows that C(a,b) 

has infinitely many points. From (In.t*) = (B 10), and from Lemma 16 we 

conclude that S(a,b) contains infinitely many points. Hence E(a,b) ~ 0, 
which means that there exists a point c EX separating a and b. 

THEOREM 21. In a connected T 1-space X: 

(Ht) + (1n.t') = (0). 

PROOF. Since (11'!.t') = (B'C) (Theorem 18), (B'C) + (Ht) ===> (Hp) 

(Proposition 3,21) and (H) + (B'C) = (0) (Theorem 3,9) it suffices to 

show that (Hp) + (11'!.t') = (H). Suppose, to the contrary, that X does 

not satisfy property (H).Then, by Theorem 3.18, X is a non-orderable 

cyclically orderable space. Hence, by Theorem 3,12, every point of X is an 

endpoint, and X \ {x,y} is disconnected for all x,y EX (x ~ y). 

Let p,q EX. Then X \ {p,q} =A+ B, where A~ 0 and B ~ 0, A= Au {p,q} 

is connected and B = B u {p,q} is connected. However, An B = {p,q}, which 

contradicts (11'!.t'). 

REMARK. Since a cyclically orderable space satisfies property (Ht) it 

follows from Theorem 13 and Theorem 21 that a non-orderable cyclically 

orderable connected T1-space does not satisfy condition (W) or condition 

(1n.t'). 

THEOREM 22. In a connected T1-space X: 

(1n.t') + (W) = (B'0). 

PROOF. (Tn.t')===!> (B'C) (Theorem 18) and (W) + (B'C) ===> (B'0) 

( Theorem 12) . 

PROPOSITION 23, A connected T1-space X satisfies (Tn.t) if and only if for 

every a,b EX (a~ b): S(a,b) is connected. 



PROOF. 

(i) Let X satisfy (In;t). Then C(a,b) is connected. Applying Theorem 14, 

Lemma 16 and Theorem 19 we conclude that S(a,b) is connected. 

(ii) Let S(a,b) be connected for every a,b € X (a ¥' b). 

Let {C} A be a collection of connected subsets of X. Suppose that CX CX€ 
n C is not connected. Then we have n C = A + B, where A ¥' 0 and 

CX€A a a€A a 
B ¥' 0. Let a € A and b € B. A point p separating a and b is contained 

every connected subset of X containing both a and b. Hence : 

S(a,b) c n 
a€A 

C • 
a 

in 

Consequently, S(a,b) = (S(a,b) n A)+ (S(a,b) n B), which contradicts the 
a b 

connectedness of S(a,b). 

61 

LEMMA 24. Let X be a connected T1-space, satisfying the conditions (In.:t') 
and (W). Let a be an endpoint of x. Let C be a closed connected subset of 

X, such that a€ C. Then a is also an endpoint of C. 

PROOF. Suppose, to the contrary, that C \a= P + Q, where P 'f' 0 and Q ¥' 0, 
Then P =Pu a and Q =Qua are closed connected subsets of X. 

Let b € P. Since K(a,b) c P, we have L(a,b) c P. Let S be that component 

of X \ L(a,b), which contains Q =Qua. 

Sis closed in X. (Otherwise, there exists some c € L(a,b) such that c € S; 
since Sn L(a,b) ~ {a,c}, this contradicts (W).) 

Hence X \Sis non-empty, open and connected, and by (W), a(x \ S) = 

= X\S n s consists of precisely one point. Then clearly a(x \ s) = {a}. 

Consequently, X \Sis clopen in X \a.Since S \a~ Q 'f' 0, this implies 

that a is a cut point of X. Contradiction. 

THEOREM 25. In a connected T 1-space X: 

(In;t: 1 ) + (S) ~ (In;t). 

PROOF. 

(i) = (In;t) = (In;t*) ==+ (In;t') (Theorem 14b) and 

( Theorem 20) . 

(ii)=: Let {C} A be a collection of connected subsets of X. CX CX€ 
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Suppose n Ca= P + Q, where P ~~and Q ~ ~­
aeA 

Let p e P and q e Q. 

By (111.t'), C = n C is a connected closed subset of X. 
aeA a 

By the definition of K(p,q} : K(p,q) c C. 

However, by the connectedness of K(p,q), we have: 

K(p,q) </. P u Q. 

We now consider the following three cases: 

a) K(p,q) \ (Pu Q) = {r} for some re X. 

b) K(p,q) \(Pu Q) = {s,t} for two distinct points s,t e X. 

c) K(p,q} \(Pu Q) contains at least three distinct points of X. 

In all three cases we shall derive a contradiction: 

a) Suppose that K(p,q) \(Pu Q) = {r} for some re X: 

Then there exists an element a0 e A such that r IC 
ao 

Let S = C \ r, then Sis connected and S \ S = {r}. 
ao 

Moreover, K(p,q} c S = C and 
ao 

K(p,q) \ r = (K(p,q) n P) + (K(p,q} n Q). 

p q 

Since it is clear that (111.t') is a hereditary property for closed connected 

subspaces and (S} is a hereditary property for connected subspaces, we now 

have the following situation: 

Sis a connected T1-space, satisfying (111.t') and (S). The point r is an 

endpoint of S. K(p,q) is a closed connected subset of Sand r is a cut 

point of K(p,q). This contradicts Lemma 24. 

b) Suppose that K(p,q) \(Pu Q) = {s,t} for two distinct points s,t e X: 

Suppose that for instances is a cut point of K(p,q}. 

Let a0 e A be such that s i C • Let S = C \ s. Then Sis connected and 
ao ao 

S \ S = {s}. Moreover, K(p,q) c Sand K(p,q) \sis not connected. This 

contradicts Lemma 24. 

Thus we may assume that sand tare endpoints of K(p,q). 

If we put P1 = K(p,q} n P and Q1 = K(p,q) n Q then we have: 



K(p,q) \ {s,t} =P1 + Q1. 

p q 

P1 us and Q1 u t ~nnected disjoint subsets of X. 

However, P1 us n Q1 u t = {s,t}, which contradicts condition (W). 

c) Suppose that K(p,q) \(Pu Q) contains at least three distinct points 

u, v, w of X: 

If at least one of these three points is a cut point of K(p,q), then we may 

derive a contradiction to Lemma 24 in a similar way to that in case a) and 

b).Thus we may assume that u, v and ware endpoints of K(p,q). 

By (S), there exists a point s 1 EX separating u and v; and s 1 # p,q 

( see Lemma 17). 

Therefore, we have X \ s 1 = A1 + B1, where we may assume w E A1• 
U V 
w 

The point s 1 also separates p and q, since otherwise it easily follows 

that either K(p,q) c A1 u s 1 or K(p,q) c B1 u s 1, contradicting the fact 

that both points u and v belong to K(p,q). We may assume p E A1 and q E B1. 

Since clearly K(u,w) c A1 u s 1, it follows that v i K(u,w). 

Now we shall show that also w i K(u,v) and u i K(v,w): 

Suppose, to the contrary, that w E K(u,v). 

Then K(u,w) c K(u,v) and K(v,w) c K(u,v). 

Let s2 EX be a point separating u and w. Then: 

and it follows that v E B2 , since otherwise K(u,v) c A2 u s2 , w i K(u,v). 

Hence u i K(v,w) c B2 u s2 . 

Now, suppose that there exists a point r E K(u,w) n K(v,w) such that r # w. 

Then K(u,r) u K(r,v) ~ K(u,v). 

Let s 3 EX be a point separating rand w. Then: 

Since r E K(u,w) n K(v,w) we then have u i B3 and v i B3 and consequently 

w i K(u,r) u K(v,r), which contradicts the assumption that w E K(u,v). 
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Hence K{u,w) n K{v,w) = {w}. 

This means that w is a cut point of the closed connected subset 

K{u,w) u K{v,w) of K{p,q). 

Since K{p,q) is a closed connected subset of X and w is an endpoint of 

K{p,q), this leads to a contradiction to Lemma 24. 

Thus we have shown that wt K{u,v). In the same way it can be proved that 

u t K{v,w). 

Let s4 E X be a point separating u and wand such that s4 £ {p,q,v,s1}. Such 

a point exists, since, by {S), the set E{u,w) is infinite. 

So we have: 

The point s4 also separates p and q {as is seen by a reasoning analoguous 

to the one given above for s1). 

Suppose first that p E A4 and q E B4• 

Since K{u,p) c 14 = A4 u s4 and wt 14 we have wt K{u,p). 

Since K{v,q) c B1 = B1 u s 1 and w i B1 we have w i K{v,q). 

But then, by w i K{u,v), K{u,p) u K{v,q) u K{u,v) is a closed connected 

subset of X, containing p and q but not containing w, which is a contra­

diction tow e K{p,q). 

Next, when we suppose q E A4 and p E B4 we can derive a contradiction to 

u E K{p,q) in a similar way {using u i K{v,w).). 

This completes the proof of the theorem. 

THEOREM 26. In a connected T1-space X: 

(Int) ~ (Int*). 

PROOF. 

{i) =- Theorem 14b. 

(ii) =: (Int*) ~ (1nt') 

{Int*) - (S) 

(Int•) + (S) - {Int) 

{Theorem 14b) 

{Theorem 20) 

{Theorem 25). 



4.5. SOME REMARKS 

1. Some conditions studied in the previous four chapters are hereditary 

for connected subspaces, some others are not. 

In fact: 

(i) The following properties are hereditary for connected subspaces: 

(0), (S'), (K), (E), (P), (H), (Hp), (Hd), (Ht), (Int), (Int*), (1nt2), 

(S) and (W). 

(ii) The following properties are not hereditary for connected subspaces: 

( B) , ( B' ) , ( B" ) , ( B' 0) , ( B' C) and ( 1 nt' ) . 

(iii) (Int') is hereditary for alosed connected subspaces. 

2. Although it is not explicitly stated in all relevant places, it is clear 

that a connected orderable space satisfies all conditions (except (V)) 

occurring in this thesis (while the exceptional condition ~V) is~ sa­

tisfied in a connected orderable space with more than one point), 

3, For convenience we list in the following scheme the implications of the 

type "a==> [3 11 , where both a and [3 stand for precisely~ condition 

treated in the foregoing four chapters: 

(0) ~ (S') ~ (K) ~ (E) ~ (P) 

1 
(In.-t) ~(Int*) 

(H) r,~ (B) 

] ~ 
(Hp) 'I/SI (BI) 

j ( Int') 1 
(Hd) 

(W) 

r l 
(Ht) (8 10) 

1 
(B'C) 
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CHAPTER V 

THE LOCALLY CONNECTED CASE 

5,1, INTRODUCTION 

In the introductary sections of the previous chapters we have already 

mentioned that some of the notions we are studying in this thesis also have 

been investigated by several other authors, mostly, however, under addi­

tional assumptions, like local connectedness or peripheral compactness. 

In this chapter we suppose that the space X under consideration is not only 

connected and T1, but also locally connected. Hence it is no surprise, that 

many of the following results are well-known. The purpose of this chapter 

is to derive these results from the more general theorems obtained in the 

previous chapters. 

5.2. THE LOCALLY CONNECTED CASE 

In this section all spaces are assumed to be locally connected, connected 

T1-spaces, which consist of at least two points. 

The most important tools in proving the theorems of this section are first­

ly Theorem 1.5, which states that a connected orderable space X is strictly 

orderable if and only if X is locally connected, and secondly the impli­

cation: local connectedness==- (B'O), which is obvious, since in a 

locally connected space components of open subsets are open and since all 

spaces are assumed to be T1• 

THEOREM 1. In a oonneoted, ZooaZZy oonneoted T1-epaoe X the foZZOIJJing eix 

aasertione are equivalent: 

(i) X is etPiotZy orderabZe. 
(ii) X satisfies (S' ) • 

(iii) Xie a (K)-epaoe. 
(iv) X is an (H)-spaoe. 
(v) Xie an (E)-spaoe. 

(vi) X is a (P)-spaoe. 

PROOF. Immediate from Theorem 1.5, and Theorem 2.3, Theorem 3,9 and 

Theorem 3.22. 



REMARK. The following parts of Theorem 1 are well-known: 

a) (i) = (iii), (see H.-J. Kowalsky [21] for the separable case and 

Kowalsky [22], Satz 15.5 for the general case). 

b) (i) = (iv) , (see H. Herrlich [11], p. 42 and Herrlich [12], 

Satz 1). 

c) (i) +==+ (v) , (see S. Eilenberg [8] and the Introduction of the 

paper by B. Banaschewski [1]). 

(The equivalence of (0) and (S•) in connected T1-spaces was observed in a 

paper by R. Duda [7]). 

THEOREM 2. In a aonneated, loaally aonneated T 1-spaae X ha:ving at least one 

aut point: 

X satisfies (Ht) = X is striatly orderable. 

PROOF. Theorem 1.5 and Theorem 3.10. 

THEOREM 3. In a aonneated, loaally aonneated T 1-spaae X the follOuJing five 

assertions are equivalent: 

(i) X is non-orderable, and striatly ayaliaally orderable. 

(ii) Xia an (Hp)-spaae, but not an (H)-spaae. 

(iii) vx € X: X \ x is aonneated and vx,y € X (x ~ y) X \ {x,y} is dis­

aonneated. 

(iv) X is an (Ht)-spaae, suah that: vx € X: X \ x is aonneated. 

(v) The aomplement of every aonneated subset of X is aonneated. 

PROOF. Theorem 3.17, Theorem 3.12, Theorem 3.18, Theorem 3.19 and Theorem 

3.20. 

THEOREM 4. In a aonneated, loaally aonneated T 1-spaae X: 

( Int) = (S). 

PROOF. See Whyburn [28], Theorem 9.3. 
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THEOREM 5. In a connected, locally connected T2-space X: 

(In:t) ~ (S) <1===> (In:t') <1===> (In:t2)~ (W). 

PROOF. 

(i) (In:t2) ~(S): see Whyburn [28], Theorem 9.1. 

(ii) (W) = (S): (see also Brouwer [2]): 

Let p and q be two distinct points in X. 

Let U and V be two disjoint open connected neighbourhoods 1of p, resp. q. 

Let A be the component of X \ U that contains q (and hence V). Then A is 

open in X. Since X \ A is connected there exists, by property (W), exactly 

one point r EA\ A. Hence A is clopen in X \ r, which means that r sepa­

rates p and q. 

(iii) ( In:t') = ( In:t): 

Let p and q be two distinct points in X. 

Recall that K(p,q) denotes the intersection of all closed connected sub­

sets of X containing p and q, while C(p,q) denotes the intersection of all 

connected subsets of X containing p and q. Then K(p,q) is closed and con­

nected. Moreover, C(p,q) c K(p,q). We have to prove the connectedness of 

C(p,q). In fact we will show that C(p,q) = K(p,q). 

Suppose, to the contrary, that there exists a point r E K(p,q) such that 

r i C(p,q). Then there exists a connected subset Sc X such that p,q ES, 

but r is. 
For every x ES let U be an open connected neighbourhood of x such that 

X 

r i U . 
X 

Then {U} Sis an open covering of the connected set S, hence there exists 
X XE 

a simple chain U , ...•. ,U from p to q. 
x1 xn 

The union of the members of that chain is connected, contains p and q, but 

its closure does not contain r. Hence r i K(p,q). 

REMARK. It is not possible to replace 11T II by "T II in the previous theorem. 2 1 
In fact, in connected, locally connected T1-spaces none of the following 

implications is true: 

( In:t• ) ~ ( In:t 2) 

( In:t 2) = ( In:t') 

( In:t') = (W) 

(W) = ( In:t') 

(see 

(see 

(see 

(see 

example 28) 

example 27) 

example 28) 

example 27). 



However, we were not able to solve the following problems: 

(i) Is it true that in a connected, locally connected T1-space X property 

(W) implies ( In.t 2) ? 

(ii) Is it true that in a connected, locally connected T1-space X proper­

ties (W) and (In.t•) together imply (In.t 2)? 

Even if we drop the condition that X be locally connected we could not find 

an example of a connected T1-space X which satisfies (W) and (In.t•), but 

which does not satisfy ( In.t 2) • We conjecture that the answer to the last 

problem is negative. 

THEOREM 6 (cf. V.B. Buch [5], Theorem 1). Let X be a connected, locally 

connected T1-space, satisfying condition (B) and hewing no endpoints. Then 

X is strictly orderable. 

PROOF. Theorem 1,5 and Corollary 4.2.2. 

5,3, JONES' CONDITION OF LINEARITY 

In 1939 F.B. Jones introduef~d in [17] the concept of linearity for Haus­

dorff spaces. We recall his definition: 

A topological space X is called linear if every point of X has a local base 

of open sets, each of which has at most two boundary points. In this 

section we will show that a linear, connected T2-space is strictly order­

able or strictly cyclically orderable, This generalizes Theorem 11 of [17], 

which asserts that a nondegenerate connected linear Moore space is a simple 

continuous curve. 

For the proof of our theorem we need the following results from Jones' 

paper: 

(a) A linear, connected T2-space is locally connected (cf. [17], Theorem 

4). 

(b) If C is an open connected subset of a connected, linear T2-space, then 

Chas at most two boundary points (cf. [17], Theorem 5). 

PROPOSITION 7, In a connected T2-space X: 

linear= (Ht) + local connectedness. 



70 

PROOF. 

(i) - : Suppose, that C is a connected subset of X with endpoint 

triple {p,q,r}. Let S be the component of X \ {p,q,r} containing the con­

nected set C \ {p,q,r}. By,(a), Sis open in X. However, since p,q,r € C, 
we have p,q,r € S \ S, which contradicts (b). 

(ii)~: Let p € X and let Ube an open subset of X containing p. Since 

X is locally connected there exists an open connected subset of X such that 

p €Sc U. By (Ht), Scan have at most two boundary points. 

THEOREM 8. A aonneated T2-epaae Xie linear if and only if Xie etriatly 

ordel'able or etriatly ayaliaally ordel'able. 

PROOF. 

(i) Let X be strictly orderable. Then, by Theorem 1.5, X is locally con­

nected and X is certainly an (Ht)-space. 

Let X be a non-orderable strictly cyclically orderable space. By Theorem 

3.16 and 3.19 it follows that X is again a locally connected (Ht)-space. 

(ii) Let X be a linear connected T2-space. Then, by Proposition 7, X is a 

locally connected (Ht)-space. 

If X has at least one cut point, then X is strictly orderable, by Theorem 2. 

If X has no cut points, then, by Theorem 3, X is strictly cyclically order­

able. 

REMARK. Theorem 8 does not hold for connected T1-spaces. See example 27. 
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CHAPTER VI 

COUNTEREXAMPLES 

6.1. INTRODUCTION 

In this chapter we describe a number of counterexamples. Each of these 

examples is accompanied with two sets of properties (out of those studied 

in the previous chapters). The first set consists of properties which are 

satisfied by the example under consideration; the second set consists of 

properties which are not satisfied. (Only in non-trivial cases we include 

a proof of the fact that a specific property is satisfied or not). 

The list of counterexamples given in section 6.3 is almost complete, in 

the following sense: except for a few cases all possible combinations of 

the studied conditions are investigated, and all implications which have 

not been proved in the foregoing chapters are refuted by a counterexample. 

Only a few questions remain, namely the questions mentioned in the Remark 

following Theorem 5.5 and related questions, such as: is a connected 

T1-space satisfying (W), (Int') and (B) an (fot2)-space or not? 

6.2. BICONNECTED AND WIDELY CONNECTED SPACES 

A topological space X is said to be biaonneated if X is connected and if X 

is not the union of two disjoint connected subsets consisting of more than 

on~ point (see [20], p. 214). A topological space X is said to be widBZy 
aonneated if X is connected and if every connected subset consisting of 

more than one point is dense in X (see [27], p. 254). 

It is easy to see that a space X is biconnected if and only if X is con­

nected and does not contain two disjoint connected subsets consisting of 

more than one point. 

Now it is clear that a biconnected T1-space is a (W)-space and that a wide­

ly connected T1-space satisfies condition (In.t'). 

6.3, LIST OF COUNTEREXAMPLES 

All spaces Xi (i = 1,2,.,.,50) listed below are connected T1-spaces. 

2 1. x 1 = {(x,y) EI I (3n E :N0 : x = ny) v (y = o)} with the subspace to-

pology ofJti. (I is the closed unit-interval and:N0 =:Nu {O}). 

x1 is a T2-space and satisfies (In.t•), but satisfies neither (8 10), (W) nor 

(Ht). 
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2, x2 = { (x,y) E I 2 I 3n E JN0 : x = ny} with the subspace topology of :n:i.2 

x2 is a T2-space and satisfies (In-t), but satisfies neither (B") nor (Ht). 

3, x 3 = {(x,y) E :IR2 I xy = O} with the subspace topology of:IR2 , 

x3 is a T2-space and satisfies (In-t) and (B"), but satisfies neither (B•) 

nor (Ht). 

4, x4 = {(x,y) E :IR2 I x2 + y2 = 1} with the subspace topology of:IR2 , 

x4 is a T2-space and satisfies (B) and (Hp), but satisfies neither (W), 

(In-t') nor (H). 

2 5. x5 = { ( x ,Y) e: :IR I o :;; x :;; 1 A I y I :;; 1} n ( x3 u x4). 
x5 is a T2-space and satisfies (B), but satisfies neither (W), (In-t: 1 ) nor 

(Ht). 

2 2 6, x6 = x4 u {(x,y) E ]R I x = 1} with the subspace topology of]R, 

x6 is a T2-space and satisfies (B"), but satisfies neither (B 1 ), (W), 

(In-t') nor (Ht). 

7, x7 is the space obtained by identifying the point (o,o) of x2 with a 

point of x4. 
x7 is a T2-space and satisfies (B•O), but satisfies neither (B"), (W), 

(In-t') nor (Ht). 

8. x8 is the space obtained by identifying the point (o,o) of x1 with a 

point of x4. 
x8 is a T2-space and satisfies (B 1C), but satisfies neither (B•O), (W), 

(In-t') nor (Ht). 

9, x9 = x2 u {(~,o)} with the following topology: 

Every z E x9 with z ~ (~,O) has the usual relativized Euclidean neighbour­

hoodsystem. For z0 = (~,O) we define a local base Bas follows: 
2 1 Let Om = {z e: ]R I d(z,z0 ) < in}, where m E JN and dis the usual Euclidean 

metric. 

Let F be a free ul trafil ter on Iii. 

Let S = {(x,y) E r 2 Ix= ny}, where n E Iii, 
n 

For F E F and m E Iii let 

Then put 

B = 
Fm 

u (s no) u {(~,o)}. 
ne:F n m 

B = {BFm I F e: F A m e: JN}. 



x9 is a T2-space and satisfies (Irtt:2), but satisfies neither (B'C) nor 

(H.t). 

10. x10 = x2 u {(~,o)} with the subspace topology ofll2 

x10 is a T2-space and satisfies (W), but satisfies neither (B'C), (IYL.t2) 

nor (H.t). 

11. x11 is the biconnected space of Knaster and Kuratowski [20], p.241. 

x11 is a T2-space and satisfies(W), but satisfies neither (B'C), (IYL.t2) 

nor (H.t). 

12. x12 is the (V)-space, constructed in [15]. 

x12 is a T2-space and satisfies (H) and (W), but satisfies neither (B'C) 
nor ( I n.t 2 ) • 

73 

REMARK. Every (V)-space satisfies (H) and (W), as was proved by Brouwer in 

[2] and [3]. 

13. x13 is the space X constructed below. It is a modification of the space 

x12 • The construction of this space is due to A.E. Brouwer. Let :N be the 

set of natural numbers, and let Pc :N be the set of prime numbers. 

Let B = {B} A be an ultrafilter onll', containing the sets of the form 
Cl Cl€ 

{n € :N I n ~ n0} for every n0 € :N. 

:: : : :
0
:.".::::·:·l,ngth x • {n 2 if x = 0 

+ 2 if X € J-rn 

We define a partial order Son X by taking O $ x for all x € X and x ~ y 

if x is an initial segment of y, i.e. if x € :Nn, y € ~. n s m and 
*) x = (a1, .•••• ,a ), y = (a1, •••.• ,a , .••.. ,a), where a1, ••... ,a €:N. 

n n m m 
We write x < y if x s y and x, y. 

If n ~ 2 and if x = (a1, .••.• ,an) € :Nn, then let x' = (a1, ••.•• ,an_1); if 

x = (a), then let x' = 0. (O' is not defined). 

If x = (a1 , ..... ,an) €:Nn then'xt' €:Nn+1 is defined by'xt' = (a1,. •••• ,an,t). 

In the same way'xtR €ll'n+2 is defined by'xtk1 = (a1, ..... ,an,t,k). 

*) for typographical reasons we use the same symbol s both for the usual 
ordering of the natural numbers and this partial ordering. Confusion 
seems unlikely. 



We introduce a topology in X by ta.king as a subbase for the open sets all 

sets 

( i) 

a € A. 

{ z E x I 3k € B 
a 

3t € :N : 'xtk' s z} u { x} for each x € X and each 

(ii) {z € X x ~ z A z ~ x'} for each x € X \ O. 

(iii) {z € X p ~ P divides length z~p € {p1 , ... ,pn}} for each finite 

set of primes p1 , ••• ,pn. 

(It follows easily from (i) that for instance each set of the form 

{z € X I x s z} is open.) 

PROPOSITION 1. X is a Hausdorffspaae. 

PROOF. Let u,v EX. We consider three cases: 

(a) u<v'. 

(b) u=v'. 

(c) u and v are not comparable. 

(a) In this case {z EX Iv$ z A z ~ v•} and {z EX Iv s z} are disjoint 

open neighbourhoods of u and v, respectively. 

(b) In this case length v = length u + 1, so 

{z € X p € P divides length z ~ p divides length u} 

and { z € X p € P divides length z ~ p divides length v} 

are disjoint neighbourhoods of u and v, respectively. 

(c) Here {z € X I us z} and {z € X Iv S z} are disjoint neighbourhoods 

of u and v, respectively. 

PROPOSITION 2. Eaah aonneated set Cc X aontaining O is aZosed. 

PROOF. Let u € X \ C and suppose that {z € X I u S z} 1 X \ C. Then u < y 

for some y € C. But then 

u = (a1, ... ,a ), y = (a1, ... ,a , •.• ,a) and n n m 

C = ( C n { z E X I 'iia'n+ 1 s z}) + ( C n { z E X I 'iia'n+ 1 $ z A z ~ u}) 

y 0 
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which contradicts the connectedness of C. 

PROPOSITION 3. Let C be a connected subset of X consisting of more than one 

point. 

(i) If u € C and u' i C for some u € X \ O, then Cc {z € X I us z}. 

(ii) If {p,q} c C and p < q, then {z € X Ip s z sq} c C. 

(iii) C contains at least two comparable points (and hence at least a pair 

(u' ,u)). 

(iv) C does not have ma.ximal members. 

PROOF. 

(i) Let u € C and u' i C, then 

C = (C n {z I us z}) + (C n {z I u $ z A z 'Fu'}), 
u 

hence C n {z I us z} = C. 

(ii) Let {p,q} c C and p < q. Suppose A= {z Ip s z sq}~ C. Then there 

exists an element u €An C such that u' €An (X \C).Consequently, by 

(i), we have Cc {z us z}, which contradicts p € C. 

(iii) Let u € C and suppose u' i C. 

Then, by (i), Cc {z I us z}. Hence, there exists an element v € C such 

that u < v. (From (ii) it follows that the pair (v',v) belongs to C.) 

(iv) Suppose w € C is a maximal member of C. 

Then C n {z I w s z} = {w} is a clopen subset of C, which contradicts the 

connectedness of C. 

PROPOSITION 4. For every u EX\ o, u and its predecessor u' do not have 

disjoint closed neighbourhoods. That is, X is a non-Vrysohn space. 

PROOF. Let u = (a1, ... ,a1 ). 

For each x EX, each a€ A and each finite family {x1, ... ,xn} such that 

x. $ x and x 'F x! we define the following neighbourhood of x: 
1 1 

n {z I vp € P 

{z I z =xv (3k E B 
(l 

3t E :N : xtk ~ z)} n 

(p divides length z ==="' p divides length x)} n 
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n 
0 0 

i=1 
{z Ix.$ z v z ~ x!}. 

1 1 

It is clear that if the x1, ••• ,xn and a vary we obtain a neighbourhoodbase 

of x. 

For x = (b1, ••• ,bn) we put max x = max {b1, ••• ,bn}. 

Now, let U(u';a;x1, ••• ,x) and U(u;B;x 1, ••• ,x} be two basic neighbour-n n+ m 
hoods of u' and u, respectively. 

Choose N ~ max {max xi I i = 1, ••• ,m} + 1 such that N € B0 n B8. 

Put L = (length u) x (length u') - 2 = (1+2)(1+1)-2 = 1(1+3) ~ 1 + 3, 

v = (a1, .• ,,a1 ,N,N, ••• ,N) € :NL, 

We will show that 

Let U(v;y;xm+1, ••• ,'1t) be an arbitrary basic neighbourhood of v. 

Choose N' ~ max {max xi I i = 1, ••• ,k} + 1 such that N' € BY. 

Let p,q € P be such that p divides length u', q divides length u and choose 

r € :N such that pr > L + 1 and qr > L + 1 • 

Then, if 

81 = ( a1 , , , , , a1 ,N ,N, ••. , N, N', .•• ,N' ) 
pr-2 

€ :N t 

L numbers 

and r 
82 = ( a1 , ••• , a1 ,N ,N, ••• ,N ,N 1 , ••• ,N 1 ) 

:Nq -2 
€ • 

L numbers 
we have 

and 

proving the assertion. 

PROPOSITION 5, X is aonneated, 



PROOF. Suppose X =A+ B, where O € A and B, ~. Let y € B be such that 

length y is minimal in B. 

Then y' £ A, and A and Bare disjoint closed neighbourhoods of y and y', 

which contradicts Proposition 4. 

PROPOSITION 6. Eaah aonneated eubeet of X hae at moet one endpoint. 

PROOF. Let D be any connected subset of X. Let u € D and suppose that 

C = D \ u is connected. 

For each a £ :N it then follows from. 

C = (C n {z l'ua's z}) + (C n {z l'ua.'$ z A z, u}) 

that at least one of both summands is empty. 

Hence, for all a £ :N, 

Cc {z l'ua's z} ••••• (1) 

or 

C c { z I ~ $ z A z , u} ( 2) • 
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If (2) applies for all a£ :N, it follows.that {z I us z} c X \ C, so that 

u / C, which contradicts the connectedness of D. 

Hence it follows that (1) applies for at least one a €ll'. 

If vis another endpoint of D, it follows similarly that 

( C u u) \ v = D \ v c { z I 'vb' s z } for some b € ll'. 

This is a contradiction, since 1vb' $ u. 

PROPOSITION 7. A eubeet Cc Xie aonneated iff 

a) 

and 

(x € C A 'xt' € C == la € A : B c {k £ :N I 'xtk' € C}) 
a 

b) (x,. C A'it' € C ==:$ vz € C :'it's z). 

PROOF. 

(i) Let Cc X be connected. 
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Suppose x ;. C and 'xE' e: C. Then, by Proposition 3, (i), 

C c { z I 'xt' s z}. 

Now, suppose x e: C and 'xt' e: C. 

Let A = { k e: l'I I ' xtk' ;. c} • 

If A;. B thenl'I \A= Be: Band the proof is finished. 

If A e: B then put 

U(x;a) = {x} u {z I 3k e: A= B 
a 

V = {z l'xt' s z}; 

O = { z I 'xt' :j; z A z :/,, x}. 

For every k e: B we have'xtk'i C. 
CL 

3s e: l'I : 1 xsk' s z}; 

Hence, by Proposition 3, (ii), for every z e: C : 'xtk':$ z. 

Consequently, Un V = ~-

But then we have 

C = ( (U u O) n C) + ( V n C) , 

X 'xt' 

which contradicts the connectedness of C. 

(ii) Let Cc X be a set satisfying a) and b). 

We may assume that C contains at least two points. From b) it easily 

follows that there exist two elements x and'xt' in X such that x e: C and 

'it' e: c. 
By choosing the element v in the proof of Proposition 4 such that v e: C 

(which is possible by a)), it follows that x and'xt' do not have disjoint 

closed neighbourhoods in the relative topology of C. 

Now, suppose C =A+ B, where both A and Bare non-empty. 

Let ye: A be such that lengthy is minimal in A. 

Letze: B be such that length z is minimal in B. 

If length y = length z it follows that y' I. C and that y and z are not 

comparable, which contradicts b). 

Hence we may assume lengthy< length z. 

Again by b) we have z' e: A. This means that z and z' have disjoint closed 

neighbourhoods in C. Contradiction. 



PROPOSITION 8. X satisfies ( Int 2) • 

PROOF. Let c1 and c2 be connected subsets of X. 

Suppose 'xt' € c1 n c2 for some x € X and some t € E. 

If x € c1 n c2 then j(l Ba c {k € E I 'xtk' € c1} 

38 Ba c {k € E I 'xtk' € c2} 

3y B c B n B0 • 

Y a " 
Hence, ;Jy BY c {k € n l'xtk'E c1 n c2L 
If x i c1 n c2 then for instance x i c2 and vz € c2 : 'xt' s z. 

Hence, for every z € c1 n c2 : 'it's z. 

By Proposition 7 it follows that c1 n c2 is connected. 

From the foregoing propositions it follows: 

x13 is a T2-space and satisfies (Int2) and (H), but does not satisfy 

(B'C). 

14. x14 is another modification of example 12. 

Let x14 be the disjoint union 

x14 = {o'} u x12 u {p}, 

with topology determined by the following requirements: 
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As a subspace, x12 has its own topology and x12 is an open subset of x14 . 

The sets {U(O) \ {o}) u {O'} form an open neighbourhood-basis for O', 

where the sets U(O) are taken from an open neighbourhood-basis of O in x12 . 

If x12 \ {O} =i~ Ci is the decomposition of x12 \ {o} into components, 

then u C. u {p} is a basic open neighbourhood of p (n = 1,2,3,,,.). 
l. i;;,,n 

(Notice that each Ci is open in x12.) 

x14 is a T1-space and satisfies (Ht), but 

nor (W). 

satisfies neither (B'C), (Hd) 

15. x15 = {(x,y) €~2 I y =sin~ and x > O} u {(O,1),(O,-1)} with the sub­

space topology ofJR. 

x15 is a T2-space and satisfies (B) and (Int 2), but satisfies neither 

(Ht), ( Int') nor (S). 

16. x16 = x15 u {(x,y) € JR2 Ix= 1} with the subspace topology ofJR2 . 

x16 is a T2-space and satisfies (B") and (Int2), but satisfies neither 

(H,t), (Int'), (S) nor (B'). 
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17, x17 is obtained by identifying the point (o,o) of x2 with a point of 

x15· 
x17 is a T2-space and satisfies (Int 2) and (8 10), but satisfies neither 

(H:t), (Int'), (S) nor (8"). 

2 1 18, x18 = { (x2y) e: I I (x e: ::N) v (y = 1) v (x = y = o)} with the subspace 

topology of ]R • 

x18 is a T2-space and satisfies (8") and (W), but satisfies neither (H:t), 

(Int2), (S), (Int') nor (8 1 ), 

19, x19 is obtained by identifying the point (o,o) of x2 with a point of 

x18' 
x19 is a T2-space and satisfies (8 10) and (W), but satisfies neither (H:t:), 

(Int2), (S), (Int') nor (811 ). 

20. x20 = x18 \ {(0,1)}. 

x20 is a T2-space and ·satisfies (811 ) and (S), but satisfies neither (H:t:), 

(Int 2) , (Int') nor (8'). 

21, x21 is the space of example 20, but with ultrafilterbasistopology at 

the point (0,0). (cf. the point z0 of example 9,) 

x21 is a T2-space and satisfies (8 11 ), (S) and ( Int 2) , but satisfies 

neither (H:t:), (Int') nor (8'). 

22, x22 is obtained by identifying the point (0,0) of x2 with a point of 

x21· 
x22 is a T2-space and satisfies (S) and (Int 2), but satisfies neither 

(H:t), (Int') nor (8 11 ). 

23, x23 is obtained by identifying the point (o,o) of x2 with a point of 

x20· 
x23 is a T2-space and satisfies (S), but satisfies neither (H:t:), ( Int1 ), 

(Int2) not (811 ). 

24. x24 = x14 \ {p}. 
x24 is a T1-space and satisfies (H), but satisfies neither (W) nor (81 C). 

25, x25 is obtained by identifying the basic point of x12 with a point of 

X4, 

x25 is a T2-space and satisfies (Hd), but satisfies neither (Hp), (8'C) 
nor (W). 

26. Let r 1, r 2 and r 3 be three copies of the unit-interval I. Identify the 
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left-endpoint of r1, I 2 and r3 , respectively with the point (1,0), the 

point (0,1) and the point (-1,0) of x4, respectively. Let x26 be the space 

thus obtained. 

x26 is a T2-space and satisfies (B•), but satisfies neither (Ht), (W), 
( In.t' ) nor (B). 

27. Let I be the closed unit-interval. 

Let x27 be the disjoint union {O'} u I with the following topology: 

As a subspace I has its own topology and I is an open subspace of x27 • 

If 0' E U(0') c x27 , then U(0') is an (open) neighbourhood of 0' iff 

(U(0') \ {0'}) u {0} is an (open) neighbourhood of 0 in I. 

x27 is a locally connected T1-space and satisfies (B) and (In.t 2), but 

satisfies neither (Ht), (In.t•) nor (S). 

28. x28 = :N with the cofinite topology. Then x28 is a widely connected, 

locally connected space. 

x28 is a T1-space and satisfies(B) and (In.t•), but satisfies neither (Ht) 

nor (W). 

29. x29 = { ( x ,Y) E nl I ( y2 = sin i " x > 0) v ( -1 s y s + 1 " x = 0) } with 

the subspace topology of JR. 
x29 is a T2-space and satisfies (B) and (In.t•), but satisfies neither (Ht) 
nor (W). 

30, x30 = :N with the following topology: 

If B = {B0 }aEA is a free ultrafilter on JN we take for open sets the empty 

set and the elements of B. 
For each Uc x30 the following four conditions are equivalent: 

( i) U0 
,;. 0 

(ii) u = U0 
,;. 0 

(iii) u = x30 

(iv) U is connected and U contains at least two points. 

Hence, x30 is a locally connected, widely connected and biconnected space. 

x30 is a T 1-space and satisfies (In.t 2) , (In.t•) and (B), but satisfies 

neither (Ht) nor (S). 

31, x31 is the subset of the plane constructed by E.W. Miller in [23], 

(For a short description of this example see Steen and Seebach [26], 

example 131.) x31 is a biconnected space without dispersion point (i.e. a 
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point p such that x31 \ p is totally disconnected) which is also widely 

connected. Since a biconnected space without dispersion point clearly 

cannot contain any cut point it is easily seen that: 

x31 is a T2-space and satisfies (W), (Int') and (B), but satisfies neither 

(Ht) nor (S). 

REMARK. We do not know whether or not x31 satisfies (Int 2). (When it is 

true that x31 does not satisfy (Int 2) , this answers in the negative the 

last question in the Remark following Theorem 5.5.) 

32. Let x32 = { (x,y) f JR2 I (y = o ii o < x s 1) v 

V(y = 1 AO S X < 1) V (y = 2 AO< X < 1)} 

with the following basic neighbourhood system: 

U. (a,0) { (a,o)} u 1 
X {0,1}) = ( [a - -:-,a) 

]. ]. 

U. (a, 1) {(a,1)} u 1 {0,1}) = ((a,a + -:-] x 
]. ]. 

U. (a,2) {(a,2)} u 1 1 
X {0,1}) = (([a - -:-,a) u (a,a + -:-]) 

]. ]. ]. 

(i = 1,2,3, ••• ) 

x32 is a T1-space and satisfies (B) and (W), but satisfies neither (Ht), 

(1nt2), (Int') nor (S). 

33. x33 is obtained by identifying the left-endpoints of three copies of 

the unit-interval I with three distinct endpoints of x32 , respectively. 

x33 is a T1-space and satisfies (B') and (W), but satisfies neither (Ht), 

(Int 2) , (lnt'), (S) nor (B). 

34. x34 is obtai~ed by identifying the left-endpoints of three copies of 

the unit-interval I with three distinct points of x28 , respectively. 

x34 is a locally connected T1-space and satisfies (Int•) _and (B•), but 

satisfies neither (Ht), (W) nor (B). 

35. x35 is obtained by identifying the left-endpoints of three copies of 

the unit-interval I with three distinct endpoints of x29 , respectively. 

x35 is a T2-space and satisfie.s (Int•) and (8 1 ), but satisfies neither 

(Ht), (W) nor (B). 
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36. x36 is obtained by identifying the left-endpoints of two copies of the 

unit-interval I with the points 0 and 0 1 of x27 , respectively. 

x36 is a locally connected T1-space and satisfies (Int 2) and (B 1 ), but 

satisfies neither (H.t), (Int 1 ), (S) nor (B). 

37. x37 is obtained by identifying the left-endpoints of two copies of the 

unit-interval I with the points (0,1) and (0,-1) of x15 , respectively. 

x37 is a T2-space and satisfies (Int 2) and (B 1 ), but satisfies neither 

(H.t), (1nt'), (S) nor (B). 

38. x38 is obtained by identifying the left-endpoints of three copies of 

the unit-interval I with three distinct points of x30 , respectively. 

x38 is a locally connected T1-space and satisfies (Int 2) , (Int 1 ) and 

(B 1 ), but satisfies neither (H.t), (S) nor (B). 

39. x39 is obtained in an . analogous way from x31 • 

x39 is a T2-space and satisfies (W), (Int 1 ) and (B 1 ), but satisfies 

neither (H.t), (S) nor (B). 

40. x40 is obtained by identifying the point (o,o) of x3 with a point of 

X28" 
x40 is a locally connected T1-space and satisfies (B") and (Int 1 ), but 

satisfies neither (H.t), (W) nor (B 1 ). 

41. x41 is obtained in an analogous way from x29 . 

x41 is a T2-space and satisfies (B") and (Int 1 ), but satisfies neither 

(H.t), (W) nor (B 1 ) • 

42. x42 is obtained in an analogous way from x30 • 

x42 is a locally connected T 1-space and satisfies (B"), ( Int 2) and ( Int 1 ), 

but satisfies neither (H.t), (S) nor (B 1 ). 

43. x43 is obtained is an analogous way from x31 • 

x43 is a T2-space and satisfies (W), (1nt') and (B"), but satisfies 

neither (B 1 ), (H.t) nor (S). 

44. x44 is obtained by identifying the point (o,o) of x2 with a point of 

X28" 
x44 is a locally connected T1-space and satisfies (B 1 0) and (Int 1 ), but 

satisfies neither (H.t), (W) nor (B"). 

45. x45 is obtained in an analogous way from x29 • 

x45 is a T2-space and satisfies(B'0) and (Int1 ), but satisfies neither 
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(Ht), (W) nor (B"). 

46. x46 is obtained in an analogous way from x30 • 

x46 is a locally connected T 1-space and satisfies ( In.t' ) and ( In.t 2) , but 

satisfies neither (Ht), (S) nor (B"). 

47. x47 is obtained in an analogous way from x31 . 

x47 is a T2-space and satisfies (W) and (In.t'), but satisfies neither 

(Ht), (S) nor (B"). 

48. x48 is obtained by identifying the point (o,o) of x3 with a point of 

x27· 
x48 is a locally connected T 1-space and satisfies ( In.t 2) and (B"), but 

satisfies neither (Ht), (In.t'), (S) nor (B 1 ). 

49. x49 is obtained by identifying the point (o,o) of x2 with a point of 

X27• 
x49 is a locally connected T1-space and satisfies (In.t2) and (B'O), but 

satisfies neither (Ht), (In.t•), (S) nor (B"). 

50. x50 = {(x,y) E,JR2 I y = sin i Ax> O} u (-1,0] x {O} with the relative 

topology of the plane. 

x50 is an orderable space which is not strictly orderable. 

In the following table we indicate schematically which properties are 

satisfied(+) and which are not satisfied(-) by each of the counterexamples 

listed above: 
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I-' 
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ &;' € ~ ~ >-3 0 c:. :I: :I: :I: R: 0:) 0:) 

~ 0:) 0:) .... .... .... I\) "' ~ ~ "ts A.. ~ - ~ ~ ~ 

~ ~ 
. 

~ ~ ~ ~ ~ c:. n f) 
~ ~ ~ 

N> - 0 
~ 

~ § 

1 . - - - - - - - - - + - - - - + + -
2. - - - - - - - - + + + + + + + + + 
3. - - - - - - - + + + + + + + + + + 
4. - - + + + + + + + + - - - - - + + 
5. - - - - - + + + + + - - - - - + + 
6. - - - - - - - + + + - - - - - + + 
7. - - - - - - - - + + - - - - - + + 
8. - - - - - - - - - + - - - - - + -
9. - - - - - - - - - - - - + + - +. -

10. - - - - - - - - - - - - + - - + -
11 . - - - - - - - - - - - - + - - + -
12. - + + + + - - - - - - - + - - + -
13. - + + + + - - - - - - - + + - + -
14. - - - - + - - - - - - - - - - - -
15. - - - - - + + + + + - - + + - + -
16. - - - - - - - + + + - - + + - + -
17. - - - - - - - - + + - - + + - + -
18. - - - - - - - + + + - - + - - + -
19. - - - - - - - - + + - - + - - + -
20. - - - - - - - + + + - + + - - + -
21. - - - - - - - + + + - + + + - + -
22. - - - - - - - - + + - + + + - + -
23. - - - - - - - - + + - + + - - + -
24. - + + + + - - - - - - - - - - - -
25. - - - + + - - - - - - - - - - + -
26. - - - - - - + + + + - - - - - + + 
27. - - - - - + + + + + - - + + - - + 
28. - - - - - + + + + + - - - - + - + 
29. - - - - - + + + + + - - - - + + -
30. - - - - - + + + + + - - + + + - + 
31. - - - - - + + + + + - - + ? + + -
32. - - - - - + + + + + - - + - - - -
33. - - - - - - + + + + - - + - - - -
34. - - - - - - + + + + - - - - + - + 
35. - - - - - - + + + + - - - - + + -
36. - - - - - - + + + + - - + + - - + 
37. - - - - - - + + + + - - + + - + -
38. - - - - - - + + + + - - + + + - + 
39. - - - - - - + + + + - - + ? + + -
40. - - - - - - - + + + - - - - + - + 
41. - - - - - - - + + + - - - - + + -
42. - - - - - - - + + + - - + + + - + 
43. - - - - - - - + + + - - + ? + + -
144. - - - - - - - - + + - - - - + - + 
45. - - - - - - - - + + - - - - + + -
46. - - - - - - - - + + - - + + + - + 
47. - - - - - - - - + + - - + ? + + -
48. - - - - - - - + + + - - + + - - + 
49. - - - - - - I - - + + - - + + - - + 
50. + + + + + + + + + + + + + + + + -
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base point, 39 

biconnected, 71 

C(a,b), 10 
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ordering, 4 
cyclic ordering, 6 

conjugated, 9 
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connected intersection property, 43 
cut, 3 

cut point, 9 

cyclic ordering, 6 

cyclically orderable, 6 

dispersion point, 81 

( E), 15 

E(a,b), 10 

endpoint, 9 

endpoint pair, 9 

endpoint triple, 9 

endset, 9 

gap, 3 

(H), 20 

( Hd), 20 

(Hdd), 21 

( Hddd), 21 

(Hy.,), 20 

(Ht), 20 
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(In-t.), 43 

(Inx.*), 43 

( In-t.' ) , 43 

(In-t. 2) , 43 

interval 

open, 3 

closed, 3 

degenerate, 3 

in a non-orderable, cyclically orderable space, 8 

inverse of a cyclic ordering, 8 

J(a,b), 8 

jump, 3 

( K), 15 

K(a,b), 10 

L( a, b), 58 

linear, 69 

neighbours, 3 

left neighbour, 3 

right neighbour, 3 

non-cut point, 9 

(0), 15 

orderable, 4 

order-complete, 3 

( P), 19 

randendlich, 20 

(S), 43 

(S'), 15 

S(a,b), 10 

segment, 9 

separates points, 9 

separation, 9 

separation ordering, 10 



91 

strictly cyclically orderable, 6 

strictly orderable, 4 
strong cut point, 9 

tree-like, 43 

(V), 39 

(W) • 43 
widely connected, 71 
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