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A topological space X is said to satisfy

(0) - if X is orderable.
(CO) - if X is cyclically orderable.
(S') - if among every three distinct points of X, there is one which

separates the other two.

(K) - if among every three distinct, connected, proper subsets of X,
there are two which together do not cover the space X.

(E) - if the subset (X x X) \ A of the product space X x X is not con-
nected (where A is the diagonal in X x X).

(P) - if for every two connected subsets A and B of X with a common
endpoint p the following holds: An B = {p} or Ac Bor Bc A,

- if every connected subset of X has at most two endpoints.

(Hp) - if every connected proper subset of X has at most two endpoints.

(Hd) - if for every connected subset C of X such that C has at least
three distinct endpoints, C \ {p,q} is disconnected for every

pair of distinct endpoints p, q of C.

(HZ) -~ if no connected subset C of X has an endpoint triple.

(B) - 1if there do not exist three mutually disjoint segments in X.

(B') - if every cut point of X is a strong cut point.

(B") - if for every p € X : X \ p has finitely many components.

(B'0) - if every segment is open.

(B'C) - if for every p € X and for every component C of X \ p :
C=cCcu p.

(Int) - if the intersection of an arbitrary collection of connected

subsets of X is connected.

(Int*) - if the closure of the intersection of an arbitrary collection
of connected subsets of X is connected.

(Int') - if the intersection of an arbitrary collection of closed con-
nected subsets of X is connected.

(Int 2) - if the intersection of two connected subsets of X is connected.

(W) - if for every two disjoint connected sets A, B ¢ X it is true

that |A n B| < 1.
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(Ht) + (B'C) = (B").

(Ht) + (B') + (at least one cut point) == (H).
(H) + (B') == (0).

(H) + (B'C) = (0). ,

(Ht) + (B'C) + (at least one cut point) = (0).
(CO) + (at least one cut point) == (0).
—(0) + (CO0) == (no cut points) + (no endpoint

pairs).

—(0) + (CO0) == (Hp) + —(H).

—(0) + (C0) == (Ht) + (no cut points).

— (0) + (C0) <= (the complement of each connected
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(Ht) + (B'C) == (Hp).

(8) + (B") == (0).

(He) + (S) = (0).
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(HE) + (W) == (H).
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INTRODUCTION

This tract deals with connected orderable popological spaces. A topologi-
cal space (X,I) is.called orderable if there exists an ordering < on X such
that the interval-topology I, is contained in I. If, moreover, I, =T then
the space is called strictly orderable. In this tract we consider a number
of properties of connected orderabl¢ spaces., The relations between these
properties are investigated in the wider class of connected T1—spaces. Some
of these properties have already been studied by other authors; mostly,
however, under the additional assumption that the space under consideration

is locally connected.

In Chapter I besides the orderable and the strictly orderable spaces the
cyclically orderable and the strictly cyclically orderable spaces are in-
troduced. A number of lemmas is proved, which are frequently used. This
Chapter ends with the treatment of the first collection of properties.

These properties all concern segments.

The properties of connected T, -spaces considered in Chapter II are all

1
equivalent to the orderability of such spaces. A similar property is dis-

cussed at the end of Chapter III.

The set of properties discussed in Chapter III deals with the notion
"randendlich", introduced by Herrlich. After investigating the relations
between these properties it is examined under which extra conditions they

are equivalent to the orderability of the connected T,-space. Next we again

1
pay attention to the cyclically orderable spaces. It turns out that these
spaces can beé characterized in terms of the properties treated in this

Chapter.

Chapter IV deals with tree-like spaces and a number of properties concern-
ing the intersection of connected subsets of a connected T1—space. Of the

results from this Chapter we mention:

(i) A tree-like space in which every cut point is a strong cut point is
orderable.

(ii) In a tree-like space in which the intersection of closed connected
subsets is connected, the intersection of arbitrary connected subsets

is also connected.



In Chapter V, it is examined which are the relations between all these
properties if the space under consideration is not only connected and T1,
but also locally connected.

In Chapter VI, several counterexamples are described. Together with the im-
plications derived in the previous Chapters, they give a complete picture
of all internal relations between the discussed properties - except for

some unsolved problems.

The system of internal references is explained by the following examples:

Theorem 2 in Chapter IV is referred to as Theorem 4.2 if the reference is
made outside Chapter IV, and as Theorem 2 otherwise.

Corollary 2.2 in Chapter IV (the second Corollary of Theorem 2 in
Chapter IV) is referred to as Corollary 4.2.2 outside Chapter IV and as

Corollary 2.2 otherwise.



CHAPTER I
PRELIMINARIES AND NOTATIONS

1.1. STRICTLY ORDERABLE SPACES

Let (X,<) be a totally ordered set; let a € X, b e X and a < b.

We use the following notation:

{xeX| a<x<nbl

(a,b)
la,pl = {x e X | a < x < b};

in the latter case we also allow a and b to be equal;

[a,b) ={xeX | a < x < bl

(a,pl = {x € X | a<x <D}

(a, ) ={x e X | a < x};

(,b) ={xex | x<0bl

la, ) ={x e X | a<x}

( ,01={x e x| x <1l
A subset J of X is called an open interval if J is of the form J = (a,b) or
J=1(a, J)orJd=( ,b) or J = X.
J is called a closed interval if J is of the form J = [a,b] or J = [a, ) or

J=( ,b] or J =X. A closed interval [a,b] is called degenerate if a = b.
If [a,b] = {a,b} where a and b are distinct points of X, then we call a and
b neighbours in X; a is the left neighbour of b and b is the right neigh-
bour of a. The set {a,b} is called a jump.

A pair (A,B) of subsets of an ordered set (X,<) is called a cut, if
X=AUB,AnB=¢g,A# @, B# @ and if a < b for all a € A, b ¢ B.
A gap of a totally ordered set (X,<) is a cut (A,B) of X, such that A has

no largest element and B has no smallest element.

A totally ordered set (X,<) is called order-complete if each non-void sub-
set of X which is bounded above has a supremum in X. It is clear that an
ordered set (X,<) is order-complete iff each non-void subset which is
bounded below has an infimum in X. Moreover, (X,<) is order-complete if and

only if there are no gaps.



A topological space (X,I) is called strictly orderable if there exists a
total ordering < on X, such that the sets of the form {x € X | x < a},

{x € X | a < x}, (where a runs through X) form a subbase for the topology
I in X. In other words: X is strictly orderable iff there exists an order-

ing < on X such that I, =1, where I is the interval topology.

THEOREM 1. A strictly orderable space (X,I) is connected if and only if
(X,<) has no jumps and no gaps, where < is a total ordering inducing the
topology I of X.

PROOF. See e.g. Kelley [18], Ch. I, Problem I.

1.2. ORDERABLE SPACES

A space X is called orderable if there exists a total ordering < on X, such
that the sets of the form {x ¢ X | x < a}, {x € X | a < x}, (where a runs
through X) are open in X. In other words: a space (X,I) is orderable iff
there exists a total ordering < for X such that I_ < I. The ordering < is

called compatible with the topology I.

REMARK. Frequently a space is called orderable if it is strictly orderable
in our terminology. It is easy to see that our definition of orderability

is the same as the definition given by Eilenberg [8].
THEOREM 2. A subspace A of an orderable space X ig orderable.

PROOF. Let (X,I) be an orderable space. Let < be a total ordering for X,

such that I_ c I. Let A be a subset of X. By < a total ordering VY is in-

duced in A. The relative topology of A in (X,I) will be denoted by I(A),

and the relative topology of A in (X,I() by IEA). It is well-known and easy

to see that I< c IiA), and, as I_ < I, we have IgA) c I(A)

A

. Hence

REMARK. Observe that a subspace of a strictly orderable space need not be

strictly orderable.

In a strictly orderable connected space the intervals are the only con-

nected subspaces. In an orderable connected space the same is true:



THEOREM 3. In an orderable connected space the intervals are the only con—

nected subspaces.

PROOF. Let (X,I) be an orderable connected space, and let < be a total or-

dering on X compatible with I.

We first show that intervals in X are I-connected.

For that purpose, suppose that J is an open I-disconnected interval in X.

Then J = A U B, where A and B are open in (X,I), A# @#, B# @ and

AnB

Let C
D={xeX|q<xtuixeB]|pc<x}

Then C and D are open in (X,I), pe€ C, q e D, X=CuDand Cn D= g,

]

@#. Let p € A and q € B. We may assume p < q.

{xeX| x<plu{xea]| x<qland

which contradicts the connectedness of (X,I). By the connectedness of (X,I)
it follows that the closure of an open interval in (X,I) is a closed inter-

val, and hence every interval is connected in (X,I).

Since I_ < I, (X,I) cannot have more connected subsets than (X,I<), which

completes the proof.

THEOREM 4. (cf. Eilenberg [81). Let (X,I) be an orderable connected space.
Let <, and < be two total orderings on X compatible with I.

_ _ =1
Then < = <2 or <1 = <2 .

PROOF. Suppose <1 # <2 and <1 # <;1_
Then we may assume without loss of generality, that there exist three dis-
tinct points p, a and b in X such that

a <1 P <1 b and p <2 a, p <2 b.

By Theorem 3 it follows that

A={xeX|x < pluixex|p <5 x}uilxex|op < x} is connected in
(x,I).

However, A = X \ {p} and X \ {p} is not connected in (X,I_ ), so certainly
not connected in (X,I). !
COROLLARY L4.1. (cf. e.g. Herrlich [121). The total ordering for a strictly

orderable connected space is unique up to inversion.

THEOREM 5. An orderable connected spvace X is strictly orderable if and only



if X ig locally connected.

PROOF.

(i) == : Let X be connected and strictly orderable.

Then the collection of all open intervals is a base for X consisting of
open connected sets. Hence X is locally connected.

(ii) <===: Let X be connected, locally connected and orderable.

Then there exists a base for X coﬁsisting of open connected sets. By
Theorem 3, these sets are open intervals. Hence the interval topology

coincides with the topology of X.

1.3. CYCLIC ORDERABILITY

Let X be a set. A subset R c X° is called a cyelic ordering on X if:
(i) a#b#c#a _
(a,b,c) d R e (c,b,a.) € R.

(ii) (a,b,c) € R == (b,c,a) € R.

(ili) (&,b,c)
(a,c,d) € R

m

= (a,b,d) € R.

REMARK. For a detailed discussion of the concept of cyclic orderability we
refer the reader to Cech [6], Ch. I, §5 and Huntington [1h4].

Let (X,I) be a topological space. X is called strictly cyclically orderable
if there exists & cyclic ordering R on X such that the sets of the form

{x ¢ X | (a,x,b) € R}, (a,b € X) form a base for the topology I on X (or,
which amounts to the same, form a subbase for the topology I on X). X is
called cyclically orderable if there exists a cyclic ordering R on X such
that the sets of the form {x ¢ X | (a,x,b) € R}, (a,b € X) are open in X.
The cyclic ordering R is called compatible with I.

PROPOSITION 6. Let X be an orderable space. Then X is cyelically orderable.

PROOF. Define a cyclic ordering R on X as follows:
afb#c#a
(a,b,c) € R =

(a<b <e) vic<a<b)Vv(b<ecc<a)



It is easily verified that R is indeed a cyclic ordering on X.

Since {x € X | (a,x,b) e R} ={x e X | a<x<blifac<h,

and {xeX| (ayx,b) eR}={xeX|a<xtu{xeX|x<blifb<a
the compatibility of R with the topology on X is an easy consequence of the

orderability of X.

REMARK. 1. We will denote the cyclic ordering R obtained from the ordering

< as in Proposition 6 by R_, and we say that R_ is induced by <.

2. A strictly orderable space is not necessarily strictly cyclically or-

derable. One can take the half-open interval [0,1) for a counterexsmple.

PROPOSITION T. Let X be a cyelically orderable space, and let p € X. Then
X \ {pl s orderable.

PROOF. Define a total ordering < on X \ {p} as follows:
a <b &= (p,a,b) € R,

where R is a cyclic ordering compatible with the topology on X. It is easy
to see that < is indeed a total ordering on X \ {p}.
Since {x ¢ X \ {p} | x < a} = {x ¢ X | (p,x,a) € R}
and {x e X\ {p}|b<x}={x € X | (b,x,p) € R},

X \ {p} is an orderable space.

REMARK. 1. We will denote the total ordering < on X \ {p} obtained from the
cyclic ordering R as in Proposition T by <§p), and we say that <ép) is in-
duced by R. '

2. If X is a strictly cyclically orderable connected T1—space and if p € X,
then X \ {p} is strictly orderable. This will be shown in Chapter III.

3. From Proposition 7 and Theorem 2 it follows that every proper subset of

a cyclically orderable space is orderable.

k. Let (X,I) be an orderable space. Let < be a total ordering on X compati-
ble with I. Let R = R_ be the cyclic ordering on X induced by <. If p € X,
then R induces a total ordering g = <;p) on X \ {p}. The total orderings
< and R coincide if and only if p is the smallest or the largest element of

X. For, we have



a<p<b=—> (a,p,b) ¢ R < (p,b,a) ¢ R == Db <_ a,

b,

R

a<b<P=‘>(&,b’P)€R<==’(Pa8-,b)€R<=’a<R

p<a<b=— (p,a,b) e R == a <g b-

3 1 3

Let X be a set and R € X~ a cyclic ordering on X. Define a subset R c X

as follows:
(a,b,c) € R\ <= (c,b,a) € R.

It is easy to see that R"1 is also a cyclic ordering on X. R"1 is called

the Znverse of R.

REMARK. 1. Let p € X and let there be given an ordering < of the set

X \ {p}. Then there exists precisely onecyclic ordering R on the set X such
that the given ordering < of the set X \ {pl} coincides with <§P). For a
proof of this assertion we refer to ech [6], Theorem 5.2.1. As a conse-
quence we have:

Let R1 and R2 be cyclic orderings on X. Let p € X. Let <i = <£p) be the

ordering on X \ {p} induced by Ri (i = 1,2). Suppose < = <por < =<,
Then R, = R, or R, = R;1 respectively.

2. In a cyclically orderable, connected T, -space the cyclic ordering com-

1
patible with the topology is unique up to inversion. The proof of this

theorem will be given in Chapter III.

Let X be a non-orderable, cyclically orderable space. Let an interval in X
be any set of one of the following forms (where p, a and b run through X):
X, X\ {p}, {x € X | (a,x,b) € R} = J(a,b), J(a,b) u {a}, J(a,b) v {b},
J(a,b) u {a,b}.

REMARK. In a non-orderable, cyclically orderable, connected T, -space the

1
connected subsets of X are precisely the intervals. The proof of this fact
will be given in Chapter III. In that Chapter we will also give proofs of

the following theorems:

(i) A strictly cyclically orderable, connected T,-space is locally
connected.

(ii) A non-orderable, cyclically orderable, locally connected, connected

T1-space is strictly cyclically orderable.



1.4, FURTHER DEFINITIONS AND NOTATIONS

From now on we shall deal only with connected T, -spaces with more than one

1
point.

A point p € C is called a cut point of the connected set C < X if C \ {p}
is not connected.

A point p € C is called a non—cut point or an endpoint of the connected set
C cXif C \ {p} is connected. _

A subset C of X is called a gsegment if C is a component of X \ {p}, for
some p € X3 in this case we also say that C is a segment of p in X.

When Ac X, Bc X, AnB=( and both A and B are clopen (= closed-and-
open) in A U B, we frequently write A + B instead of A u B.

The pair (A,B) of subsets of X is called a geparation (of A u B) if
AuB=A+B,A# @ andB#¢.

We say that S c X gseparates y € X and z € X if there exists a separation
(A,B) of X \ S such that y ¢ A and z € B. In such a case we often write

X\ 8=A+B.
y oz

The pair (y,z) of points of X is called conjugated, when there does not
exist a point x € X such that x separates y and z.
A point p € C is called a strong cut point of the connected set C < X if
C \ {p} has exactly two components (then there exists a unique separation
of ¢\ {p}).
If S ¢ X is connected and C ¢ 8, C is called an endset of S if 8 \ C is
connected. In the special case when C consists of two or three points, we
often call C an endpoint pair, endpoint triple respectively. Observe that

a set of endpoints is not necessarily an endset.

We often write X \ p instead of X \ {p}. An analogous abbreviation is used

in similar cases.

Let (C) be a topological property and X be a topological space satisfying
property (C). Then we often say: X is a (C)-space, instead of: X satisfies

property (C).

For some special subsets of a connected T1—space X we use the following

notation (where a and b are distinet points of X):
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c(a,p) =n {ScX | a,b € S and S is connectedl};

K(a,b) =n {S<X | a,b € S and S is connected and closed};
E(a,b) = {x € X | x separates a and b};

sS(a,b) = E(a,b) u.{a,b}.

It is well-known that S(a,b) is an orderable subspace of X. The ordering <
compatible with the relative topology of S(a,b), is the so~-called
geparation ordering. (cf. e.g. Hocking and Young [13], p.49-53 or Moore
[24k]1, p.158-160).

For the sake of completeness we will recall the definition and some pro-
perties of the separation ordering:

For every x € E(a,b) let (Ax,Bx) be an arbitrary separation of X \ x such
that a € Ax and b € Bx.

The separation ordering for S(a,b) is defined as follows: a is the smallest

and b is the largest element in the ordering, and for x,y € E(a,b) we have
X <y <> x separates a and y in X < Xx ¢ Ay =
<> y separates x and b in X <> y ¢ Bx.

1.5. SOME LEMMAS

In this section we list some useful lemmas. Several elementary lemmas are
probably well-known, although exact references in these cases are diffi-
cult to find.

X will denote a connected T1-space, and C a connected subset of X.
LEMMA 8. If A <s clopen in X \ C, then A U C i8 connected.

PROOF. Let X \ C = A + B, Suppose AU C =S + T where C c S, Then
X=(BuUuS)+T; hence T = g.

COROLLARY 8.1. If A 28 clopen in X \ C, then X \ A <g connected.
PROOF. X \ A = C U B is connected by Lemma 8.
LEMMA 9. If T <8 a component of X \ C, then X \ T <8 connected.

PROOF. Suppose X \ T = A + B where C < A. Then, by Lemma 8, B U T is con-
nected in X \ C; hence BUT =T and B = §.
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COROLLARY 9.1. If T, (i =1,2,...,n) are finitely many components of X \ C,
n

then X \ U Ti 18 connected.

i=1
PROOF. T, is a component of (X \ T1) \C. Hence, by Lemma 9, (X \ T1) \ T,
is connected; and so on.

LEMMA 10. If Q Z8 the intersection of an arbitrary collection of clopen
subsets of X \ C, then X \ Q 18 connected.

PROOF. Let Q = n {Ha | H, clopen in X \ C} for some indexed colleétion
{Ha | o € A}, och

Consequently, X \ @ = u {X\ H, | H, clopen in X \ C}.
: aeh Co
By Lemma 8, X \ H is connected for every o € A.

Since every X \ H, contains C, (and since without loss of generality we may
assume that C # @) X \ Q is connected.

COROLLARY 10.1. If Q <8 a quasicomponent of X \ C, then X \ Q is connected.

REMARK. Most often these lemmas will be applied in the case when C = {p},
for some p € X. For example: lemma 9 implies that the complement of a seg-
ment is connected, and lemma 8 implies: if X \ p = A + B and A # ¢ then
A up (= K) is connected. References to these lemmas will usually not be
made explicitly.
LEMMA 11. Let X be a connected T -space; x, € X. Let B be a non-void syb—
set of X \ X, which satisfies at least one of the following conditions:

a) B 28 a clopen subset of X \ X3

b) B is a component of X \ X3

e) B is a quasicomponent of X \ X,
then, if Y = X \ B, the following holds:
(2) Y is a connected T,-8space.
(zz) If x, 18 an endpoint of X or if x, i8 a strong cut point of X, then
X, <8 an endpoint of Y. Conversely, If X, 8 an endpoint of Y, then in the
cases b) and c) Xy ig either an endpoint or a strong cut point of X; this
i8 no longer necessarily true in case al.

(iii) If x, s an endpoint of X and if x, €Y, then x_ 18 an endpoint of Y.

2
(iv) If X, 18 a cut point (strong cut point) of X, and if x, € Y, then

X, t8 a eut point (strong cut point) of Y.
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PROOF.
(i) See Corollary 8.1, Lemma 9, Corollary 10.1, respectively.

(ii) o) Let %, be an endpoint of X:
Then B = X \ X1 hence Y = {x1}. So the assertion is trivial.
8) Let x,

Then X \ X, = A + B, where both A and B are connected, hence Y \ x, = Ais

be a strong cut point of X:

1
connected.,

vy) Conversely, let x, be an endpoint of Y.

1

Suppose now that x, is a cut point of X.

1
case b): B is a component of X \ X
Then X \ x, = (Y \ x1) u B, where both Y \ x
is a strong cut point of X.

case ¢): B is a quasicomponent of X \ x,.

and B are connected; so x

1 1

If ¥ nB=¢, then X \ x, = (Y \ x1) + B; hence B is an open quasicompo-

nent, and consequently a component in X \ x, and we are back in case b).

1
So suppose ¥ n B # @. Then the connected set ¥ \ X, meets B, and hence B

is that quasicomponent of X \ x,, that contains Y \ x

1° 1°
Since Y = X \ B we have Y = {x1} and B = X \ X contradicting ¥ n B # #.
case a): B is clopen in X \ Xy

In this case it is possible that x, is not a strong cut point of X, al-

1
though it is an endpoint of Y.

Example:
X = {(x,y) ¢ B | x=0vy=0}; x, = (0,0);
B = {(x,y) € X\ %, | ¥y > 0}.

(iii) a) a clopen subset of X \ x

19
If Bis <{b) a component of X \ Xqs

c) a quasicomponent of X \ X1s

a) a clopen subset of (X \ x2) \ Xy
then B is also b) a component of (X \ x2) \ xg,
¢) an intersection of clopen subsets of (X \ x2) \ X5

respectively.

Consequently, by Corollary 8.1, Lemma 9 and Lemma 10 resp.

Y\ x, = (x N\ x2) \ B is connected.
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(iv) Let X \ x, = A, + A2, where A, and A, are non-void.

x: 1 2
Then Kg = A2 ux, is connected in X \ Xy and consequently A2 U x, < Y,
A, > B. Hence Y \ X, = Ay *+ (Y n A1), and so x, is a cut point of Y.
If X5 is a strong cut point of X then, moreover, both A1 and A2 are con-
nected.

2 2

Since Y\ x, =A_+ (Y n A1), the only thing left to prove in this case is
that Y n A, is connected. '

Since Y n A1 = A1 \'B and since B is a clopen subset of A1

of A1 \ Xy» Or an intersection of clopen subsets of A1 \ X, respectively,

the connectedness of Y n A1 is an immediate consequence of Corollary 8.1,

Lemma 9 and Lemma 10 respectively.

\ X5 8 component

LEMMA 12. Let X be a connected T1-spaee, and p € X. Let (A,B) be a separa-
tion of X \ p, and x € A. If C <s the component of p in X \ x, and P <& the
component of p in A \ x, then C = P u B.

PROOF. PuB=PuB=Pu(BuU p), hence P U B is connected in X \ x, so
Pu B c C.

It remains to show that C < P u B:

Suppose C \ B=E + F, and p € E.

Then C = (E U B) + F, hence F = @, which means that C \ B is connected in
A\ x.

So C \ B © P and consequently C < P u B.

1.6. PROPERTIES CONCERNING SEGMENTS

We list the following abbreviations for properties of a connected T1-

space X:

(B) =~ There do not exist three mutually disjoint segments in X.

(B') - vpeX: X\ phas at most two components. (Every cut point is a
strong cut point).

(B") - vpeX: X\ phas finitely many components.

(B'0) - Every segment is open.

(B'C) - ¥p e X : ¥ component C of X\ p : C=C u p.
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THEOREM 13. In a connected T,-space X:

(B) == (B') == (B") == (B'0) = (B'C).

PROOF.

(B) == (B'): obvious.
(B') ==> (B"): obvious.

(B") ==> (B'0): Let C be a component of X \ p for some p € X.

By (B"), X \ p has finitely many components. Since every component of X \ p
is closed in X \ p, C is open in X \ p. Since X is a T
X.

(B'0) ==> (B'C): Let C be a component of X \ p for some p € X.

-space, C is open in

C is closed in X \ p and open in X. Since X is connected: C = C v p.

REMARK. None of the above implications can be reversed. For counterexamples
we refer to Chapter VI.

Property (B) occurs in a paper of Buch [5]. For the relation between (B)
and the orderability of a connected T,~space see Theorem 4 of Chapter II

and Theorem 2 of Chapter IV.

1

Finally, we remark that in a locally connected, connected T1—space property
(B'0) nolds, since local connectedness is equivalent to: components of open
subsets are open. (B'0) does not imply the local connectedness of the space.
In some Theorems the properties (B'0) and (B'C) play the role of very weak

substitutes for the local connectedness of a space.



15
CHAPTER II

SOME PROPERTIES EQUIVALENT TO THE
ORDERABILITY OF A CONNECTED T1-SPACE
2.1. INTRODUCTION AND DEFINITIONS

In this chapter we deal with more conditions on a connected T1—space X
which are equivalent to the orderability of X. These conditions have al-
ready been studied in other papers; in some cases however only under the
additional assumption that the space under consideration is locally

connected.
DEFINITION 1. A topological space X is said to satisfy

(E) - if the subset (X x X) \ A of the product space X x X is not con-
nected (where A is the diagonal in X x X).

(K) - if among every three distinct, connected, proper subsets of X, there
are two which together do not cover the space X.

(8') - if among every three distinct points of X, there is one which se-
parates the other two.

(0) - if X is orderable.

Condition (E) occurs in a paper of Eilenberg [8], in which he proves that
(E) is equivalent to the orderability of X, provided that X is a connected
T,-space. In [21] and [22] Kowalsky showed that in a connected, locally

connected T, -space X condition (K) is equivalent to the strict orderability

1
of X. In a footnote of a paper of Duda [7] it is mentioned that

Mrs. Zaremba observed that connected orderable spaces can be characterized
by property (S'). In Theorem 3 we will prove this equivalence and the

equivalence of (K) and (0) in connected T,-spaces.

2.2. EQUIVALENCE OF (0), (E), (S8') and (K)

LEMMA 1. Let X be a connected T,-space and let Xys X and Xq be three dis-

2

tinet points of X such that x, separates the other two. Then, neither %,

nor x, separates the other two points,

PROOF. Since X, and xq belong to different components of X \ X, and since

the complement of a segment is connected it follows that there is a connected
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subset of X \ X, containing X, and xq and a connected subset of X \ Xq

containing X, and Xy

LEMMA 2. In a connected T,-space X the following holds:
(8') == (B).

PROOF. Suppose C1, 02 and C3 are three mutually disjoint segments in X.
Let x; € Ci’ (i =1,2,3). Since X \ Ci is connected and x'j € X\ Ci,if

j #1i it follows that X, does not separate the other two points.

THEOREM 3. Let X be a connected T,-space. Then the following holds:
(0) == (E) <= (8') <= (K).

PROOF .

(0) &= (E) : see Eilenberg [8], Theorem I.
(0) == (8') : evident.
(8') = (0)

(i) By condition (S'), the space X can have at most two endpoints. Since
a connected T1—space consisting of more than one point has infinitely many

points, we can choose a cut point p in X.

(ii) By Lemma 2 and the fact that (B) ==> (B'), X satisfies property
(B'). Hence there exist connected, non-void subsets Ap and Bp of X such
that X \ p = Ap + Bp.

For every x € Ap we can choose connected subsets Ax and Bx of X such that
X\ x= Ax + Bx’ where possibly Ax is empty (this is the case if x is an

. b
endpoint of X). For every y € Bp we choose connected subsets Ay and By of

X such that X \ y = Ay + By. (Again, By may be empty).

(iii) Let x € Ap and y € BP. Then p separates x and y, and hence, by

Lemma 1, y € Bx and x € Ay' Since Ax U x is connected in X \ p, and Ap up
is connected in X \ y, it follows that Ax € Ap « Ay (where « means proper
inclusion). Similarly, we can prove that By a Bp € 3B
(iv) Now we will show that for every two distinct points x and y in X

precisely one of the folloving two relations holds:
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Ax « Ay or Ay c Ax'
Ifx=pory=por if p separates x and y this is a consequence of the
previous observation. So we need only handle the case when x and y are both
in (for instance) AP:

When x € Ay it follows by Lemma 1 that y € Bx’ and hence Ax U x is a con-
nected subset of X \ y. So Ax Ux c A and consequently Ax [ Ay'
When x € By it follows by property (S') that y € A since moreover A.y Uy

is connected in X \ x we have A, Uy c A , A <A,
y Ty X

(v) - Next we will prove the following equivalence:
A ¢ A &= x¢eA.
X y ¥

a) = : If A # @ then AU x, being a connected subset of X \ y, is a
subset of Ay; hence x € Ay.

If Ax = @, then x € Ap and so we may assume henceforth that y # p.

If p separates x and y, then p € Ay and x € Ay.

If y separates p and x, then y € Ap and hence p € By, so that x € Ay.

s Si it i A .
B) <= : Since x € Ay’ it 1s clear that Ay ¢ Ax’ so we have Ax [ -

(vi) Let us now define a total ordering on X as follows:
X <y <> A <A,
X y

By (iv) it is clear that < is indeed a total ordering and from (v) that for
every a € X : {x e X | x < a} = A, end {xeX | a<x}= B_, hence X is

orderable.

C, and C, are three distinct, connected,

(8')==> (K) : Suppose that C1, o 3

proper subsets of X such that
Ci v Cj = X, whenever i # j.
Let

x; € X\ C; (i =1,2,3)

then
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X, € Cj ir i # j.

So xj and X, belong to a connected subset of X \ X and hence x; does not
separate x; and x, (i#3#x#1i).

(K) == (8') : Suppose that Xys X, and x4 are three distinet points such
that no one of them separates the other two.

X\ ;.

If x, is an endpoint, then let Ci

If x; is a cut point, then let Ci A, = Ai U X, where Ai is that element

i

of a separation of X \ x; which contains the other two points x5 (i #1).

Then C; is a connected, proper subset of X (i = 1,2,3).

When x. is an endpoint, then C; v Cj = X because x. € Cj (i #3).

When i # j and both x; and x. are cut points, then Ai ] Aj is open in X

and also closed (A, UA, = A, UA, = A, Ux, UA, Ux, = A, UA,). Since X
1 J 1 J 1 1 J Jd 1 J

is connected, Ai u Aj = X.

So also in this case

cich.=x (i#3).

A (B)-space need not be orderable (every connected T, -space consisting of

1
more than one point and having no cut points is a counterexample). However,
in the next Theorem we will prove that a (B)-space is orderable if the

space has no endpoints.

THEOREM k4. Let X be a connected T,-space having no endpoints and satis—
fying property (B). Then X is orderable.

PROOF. Suppose Xy X, and x5 are three distinect points of X such that no
one of them separates the other two.

Then we have the following separations:

= K = H = +
XA\ X, A1 + B1 D G\ x, A2 + 32 3 X\ X3 A3 B3,
X3 1
X X1 X2

where both Ai and Bi are non-empty and connected in X.
Ei =B, Ux, is connected in X \ x5 (i # j), hence Ei c Aj (i # j) and con-

sequently Bi n Bj =@ (i # j), which means that B1, B2 and B3 are three

mutually disjoint segments.
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REMARK. 1. In Theorem 4.2 we will generalize the above result.

2. At the end of the next chapter we will introduce another condition, de-
noted by (P), which is also equivalent to the orderability of a connected
T1-space. Since, for the proof of this equivalence, we need some results
concerning so-called (V)-spaces and (H)-spaces, we postpone this proof to

the next chapter. Here we will confine ourselves to the definition:

DEFINITION 2. A topological space X is said to satisfy (P) if for every
two connected subsets A and B of X with a common endpoint p the following
holds: A n B = {p} or Ac Bor BcA.

Added in proof:

Ven Dalen and Wattel ["A topological characterization of ordered spaces",
to be published in Gen. Topology Appl.] have given an interesting charac-
terization of the orderability of a topological space, which of course in
particular yields another characterization of the orderability of a connect-

ed T1—space.



20
CHAPTER III

ON A PROPERTY OF ORDERED SPACES DUE TO HERRLICH
AND SOME RELATED PROPERTIES

3.1. INTRODUCTION AND DEFINITIONS

The main purpose of this chapter is to discuss a property of ordered
spaces, introduced by Herrlich in [11], and some related properties. In
fact, these related conditions are weaker forms of Herrlich's condition.
With the help of these conditions we are able to characterize non-order-

able, cyclically orderable, connected T, -spaces. The last two sections of

1
this chapter are devoted to property (V) and property (P), respectively.
Property (V) was studied by Hursch and Verbeek in [15] and [16], and gene-

ralized by Brouwer [3]. Property (P), which was mentioned already in the

previous chapter turns out to be equivalent to (0) in connected T,-spaces.
DEFINITION 1. A (connected) T,-space X is said to satisfy
(H) - if every connected subset of X has at most two endpoints (in par-

ticular X has at most two endpoints).

(Hp) - if every connected proper subset of X has at most two endpoints.

(Hd) - if for every connected subset C of X such that C has at least three
distinct endpoints, C \ {p,q} is disconnected for every pair of dis-
tinct endpoints p, q of C.

(Ht) - if for every connected subset C of X such that p, q and r are three
distinet endpoints of C, the set C \ {p,q,r} is disconnected, (i.e.

C cennot have an endpoint triple).

Condition (H) appeared in the doctoral dissertation [11] of Herrlich.
Herrlich called spaces satisfying (H) "randendlich", and he proved the
following theorem: A connected space X is strictly orderable if and only

if X satisfies the following conditions:

(i) X is a T,-space.
(ii) X is "randendlich", i.e. X satisfies (H).

(iii) X is locally connected.

This theorem was also published by Herrlich in [12].
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3.2. RELATIONS BETWEEN (H), (Hp), (Hd) AND (H%)

In this section we define for temporary use the following conditions on a

connected T1-spacevX:

(Hdd) - If C © X is connected and p, q and r are distinct endpoinfs of C,
and C \ {p,q} is connected, then C \ {p,r} is disconnected.

(Hddd) - If ¢ ¢ X is connected and p, q and r are distinct endpoints of C,
and C \ {p,q} and ¢ \ {p,r} are connected, then C \ {q,r} is dis-

connected.

PROPOSITION 1. In a connected T,-space X the conditions (Hd) and (Hdd) are

equivalent.

PROOF.
(i) (Hd) ==> (Hdd) : trivial.

(ii) (Hdd) == (Hd) : Suppose, contrary to (Hd), that there exists a con-
nected set C in X with distinct endpoints p, q and r, such that C \ {p,q}
is connected. By (Hdd), ¢ \ {p,r} and ¢ \ {q,r} are disconnected.

Take an arbitrary separation (U,T) of C \ {p,r} and assume q € U. Then
Uup,Uur, Tupand T U r are connected (since for instance C \ r is
connected, (C \' r) \ p=U+ T, etc.).

Consequently U u {p,r} and T u {p,r} are connected and also U > U v {p,r},
T o7 u {p,r}.

Now, C \ {p,q,r} =8 + T, where S =U \ q. Then S U {p,q,r} = U v {p,r} cT
is connected, and p and r are endpoints of this set. C \ {p,q} is connected,
S0 S U r is also connected and since p € S the set S u {p,r} is connected.
Hence the connected set S U {p,q,r} ¢ U has endpoints p,q and r. Since

S U r is connected, we find that S U q¢ = U is not connected, by (Hdd). Mark
that this holds for any separation (U,T) of C \ {p,r} with g € U.

Let Q be the component of C \ {p,r} which contains q. Then Q is not open in
C (otherwise Q is clopen in C \ {p,r}, so there would exist a separation
(u',7') of ¢ \ {p,r} with q € U' = Q and U' connected, contrary to the
observation above). Hence, there exists an element x € Q \ Qo, where Q° is
the interior of Q in C. Q is a segment of r in C \ p, and hence (C \ Q) \ p
is connected. As Q is also a segment of pin C \ r, (C\ Q) \'r is con-
nected. It follows that C \ Q and (C \ Q) U x are connected too.
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Hence the connected set (C \ Q) U x has endpoints p, r and x. However, the
connectedness of both (C \ Q) \ p and (C \ Q) \ r is a contradiction to
(Hdd) .

LEMMA 2. In a connected T,-space X: (Hp) == (HZ).

PROOF. It is very easy to see that a connected T1—space X has property (Ht)
if and only if for every connected subset S c X : !§ \ 8| < 3. So suppose
S © X is connected and |§ \ s| = 3.

By (Hp) we clearly have S = X.

Also, by (Hp), it is impossible that |S \ s| > 3.

So we may assume: S = X and S \ S = {r1,r2,r3} with distinct Ty T, and r3.
We consider the following cases:

a) If S has an endpoint p, then X \ p is a connected proper subset of X

with at least three endpoints.

b) Let S have a strong cut point p:
S\ p=A+ B, where A and B are connected. We may assume r1, r2 € A. More-
over p € A. Hence A v {r1,r2,p} is a connected proper subset of X with

three endpoints.

c) Suppose that for some p € S, S \ p has at least 3 components, and that
e (S \ p)\ A.
3 p

Then (S \ A) v {r1,r2,r3} is a connected proper subset of X with three end-

for one of these components, say A, it is true that Tys Tps T

points.

d) Consequently, it remains to consider the following case:

eB,r eC_.
P p

vwpeS:S\p=A +B +C andr, ¢l ,r
P P D P P P’ 3

1 2

Take a point q € AP, then
S\g=A +B +C.
4 q q q

B uC_uUpis connected in S \ g, so let B U C_ U p< A . But then
P P P D q

r2, r3 € Aq, hence there exists a component B of S \ q such that
Tys Ty Ty € (s \ q) \ B which leads to a contradiction by c).

PROPOSITION 3. In a connected T,-space X : (Hp) == (Hd).

PROOF. Suppose X satisfies (Hp), but does not satisfy (Hd).
By Proposition 1, X does not satisfy (Hdd) either.
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Hence X has distinct endpoints p, q and r such that X \ {p,q} and X \ {p,r}
are connected.

By Lemma 2, X \ {p,q,r} is disconnected. We write
X\ {psq,r} =85+7T, S#¢, T#4g.

Observe that S u {q,r} and T v {q,r} are connected, and that consequently
qQ, r € 3 and q, r € T.

(i) 1f X \ {q,r} is connected, then also S U p (and T U p) is connected,
and hence p € 5 (and p € T). But then § = S v {p,q,r} is a connected proper
subset of X with (at least) three endpoints. This contradicts (Hp).

(ii) Let X \ {q,r} be disconnected. Since X is a connected T -space, we

1
have

Say p € 5.
Then S v {p,q,r} is a connected proper subset of X with (at least) three

endpoints. This again contradicts (Hp).
PROPOSITION 4. In a connected T,-space X : (Hddd) <= (HZ).

PROOF.
a) (Hddd) == (Ht) follows immediately from the definitions.

b) Conversely, suppose (Hf) is satisfied and let C c X be connected.‘Suppose
P, q and r are .distinct endpoints of C such that C \ {p,q}, ¢ \ {p,r} and
¢ \ {q,r} are connected. (Ht) implies that the set C \ {p,q,r} is not con-
nected. Let C \ {p,q,r} = u Ca be its decomposition into components.

oA
It follows from (Ht) that ﬁu is a proper subset of C_ U {p,q,r}vfor each
o € A. v
As a consequence, there are infinitely many components Ca (if there are
only finitely meny components C_ then C \ {p,q,r}l = C, + D5 since
¢ \ {p,a}, ¢ \ {p,r} and ¢ \ {q,r} are connected it follows that r, q and
D€ Ea).
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So we may assume that p ¢ Ea for three distinct elements o = Gys Oy
a3 € A.
C, (i = 1,2,3) is closed in the connected set C \ {q,r}, and hence not
open. Consequently there exist a, ecC, \ C; (i = 1,2,3), where C; is
i i i i

the interior of Cy in ¢ \ {q,r}.

i
By a repeated application of Lemma 1.9 we see that the set

s

8= (c\ {q,r}) \ (Ca uc, uc, ) is connected. Moreover, d, » 4

1 2 3 1 %
d € §. Consequently, S u {d ,4& ,d 1} is connected and has an endpoint
aq e, ey
triple. This contradicts (H%).
THEOREM 5. In a comnected T,-space X:
(0) (H) (Hp) (Hd) (Ht).

PROOF. From the foregoing Propositions follows in fact that

(0) == (H) == (Hp) == (Hd) (Hdd) (Hddd) «<==> (HZ).

(since (0) === (H) ==> (Hp) and (Hd) == (Ht) are trivial).

REMARK. No one of the above implications can be reversed. For counter-—
examples we refer to Chapter VI. However, in the present Chapter we will
prove that cyclically orderable, non-ordereble connected T1—spaces are

precisely those connected T, -spaces which satisfy (Hp) but not (H).

1
3.3, ORDERABILITY OF (H) - SPACES

As we mentioned in the introduction of this chapter, Herrlich proved in

[11] that a connected, locally connected T, -space satisfying (H) is strict-

1
1ly orderable. In [19] the question was raised whether a connected T1-space

satisfying (H) is ordersble or not. This question was answered in the
negative by Hursch and Verbeek [15]. However, it turns out that in a con-

nected T, -space satisfying (B'C) the conditions (H) and (0) are equivalent.

1

Moreover, in a connected T, -space satisfying (B'C) which has at least one

1
cut point also the conditions (HZ) and (0) are equivalent.
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LEMMA 6. In a connected T,-space X:
(Ht) + (B'C) == (B').

PROOF. Suppose that for some p € X:
X\ p=A +A *Ap, witha #0(i=1,2,3).
Choose x, € A, (i =1,2,3). '
Let P, be the component of p in Ki \ x; (i = 1,2,3).
Then, by Lemma 1.12, Pi u Aj u Ak is the component of p in X \ x;
i j i). B'C . . . ; . e B..
(i#j#%k#1i). By (B'C) we have x; € P, U AJ U A s hence x; € P,

Consequently, P1 u P2 u P3 u {x1,x2,x3} is a connected set which has an

endpoint triple. This contradicts (HZ).

LEMMA T. Let X be a connected T,-space with at least one cut point. Then
(Ht) + (B') == (H).

PROOF. Suppose there exists a connected set C ¢ X which has at least three

distinct endpoints p, q and r.

I. First we show that then p, q and r are also endpoints of X.

Let X \ p = AP + Bp’ X\q-= Aq + Bq’ C\pc Ap’ C\gqc Aq. We will prove
Bp = ¢ and, by symmetry, the assertion will follow.

Suppose that Bp # @

Let s € Bp and let P be the component of ﬁp \ s containing p. Then s € B.
If also Bq # @, then let t € Bq and let Q be the component of Eq \ t con-
taining q. Then t € Q.

Now C uPuQu {s,t} is connected and has the endpoint triple {r,s,t},
which contradicts (HZ).

Hence Bq = @, which means that q is an endpoint of X. In the same way we

can prove that r is an endpoint of X (again under the assumption Bp £ 0).

Now, X \ p = AP + Bp and Ap up = Kp has the three endpoints p, q and r
(see Lemma 1.11).

Consider Kp \ {q,r}. If the component C, of A\ {q,r} containing p con-

tains both q and r in its closure, then1P u C1 u {s,q,r} is connected with
endpoint triple {s,q,r}; which contradicts (H%).

Thus let q ¢ 51. Since Kp \ r is connected, KP \ {q,r} must have infinitely
many components. Let Kp \ {gq,r} = u Ca be the decomposition into compo-

nents. ael
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1. If for at least three distinet components C , say C_ , C and C_ , C
o @’ Yo, ag? Yoy

is not open in Kp \ r then we can choose a point d, ¢ Ca \ C;
i i i
(i = 1,2,3), where C; is the interior of Cy in Kp \ r.
i i
uc, uc )ufla ,a ,da 1} is connected with
1 oy oy a e,
endpoint triple {d_ ,d ,d }; contradicting (Ht).
e, ag
Hence C, < Ap end C, open in X (since Ap is open in X) for all but finitely

1
But then [(A_ \ r) \ (C
P a

many o € I.

Let I, = {a eI Cy €A and C, is open in X}; then I is an infinite set.
Notice that Ea =C, v {q,r} for each a € I,.
2. Take a point x, € Ca’ for every a € I1.
If Ea \ X, is connected for at least three elements a € I1, say o, o, and

oz, thenC, uC uC, U {q,r} is connected with endpoint triple

1 2
{x +x ,x_}; which contradicts (HZ).
Mo, Moy
Consequently, if 12 = {a e I1 | Ea \ X, is disconnected}, then I2 is an

infinite set.

3. For every o € I, let Ca \ X, = Sa + T, where q € 8,» Ta # 8.

2

If re Sa for at least three elements a € 12, say o,, a,

choose a point ta € Ta and let V. be the component of Ta \ ta con-
i i & i i
taining x (i =1,2,3). C, is open in X, so T is clopen in X \ x,

i i i i
since q, r ¢ Ta.' Hence for some Rai HED G\ xai = Rai + Tai. Since X satis-
fies (B') it follows from Lemma 1.11 that ty is an endpoint or a strong

i .
cut point of T =X\ R (i = 1,2,3). Therefore t_ e V (i = 1,2,3).
a. 'R a. a.
3 i i i i
Now U S UV U+t is connected with endpoint triple {t ,t ,t 1};
N Ols O . a o o
i=1 i i i 1 2 3
which again contradicts (HZ).

and a3, then

Hence 13 = {a € I, | r e Ta} is an infinite set.

L, Let D, be the component of q in Ea \ x, for each a € I
then

.Ifx €D for
3 o o
at least three elements a € I3, say a1, a2 and a3,
D uD uD wuix ,x ,x } is connected with endpoint triple
a o a o, "0, a
1 2 3. 1 2 3
{xa1,xa2,xa }; contradiction.

So I, = {a € I3 | D, is closed} is infinite.
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5. For each a € Ih’ Da is closed and hence not open in Ea = Ca u {q,r}.
So we can choose a point da € Da \ D;, where D; is the interior of Da in
C.Sincere C \ D for every a € I, the set

a o a L

(ca1 \ Du1) 1) (Cm2 \ Daz) v (Ca3 \ Da3) 0] {da1’da2’du3} is connected and

has the endpoint triple {da ’da ’da }, where @y Oy 05 BTE arbitrary dis-

tinct elements if Ih' Contr;dic%ion?
We conclude that Bp =@,

This proves I.

ITI. Now,.let b be a cut point of X.

Then X \ b = Ab + Bb’ where Ab and Bb are both non-empty and connected.

We may assume: p, q € Ab' But then Kb is a connected subset of X having
three endpoints b, p and q.
From I it follows that b is an endpoint of X. Contradiction.

This proves the theorem.

LEMMA 8. In a connected T,-space X:
(H) + (B') == (0).

PROOF. In fact we will prove: (H) + (B')=—= (S').

Let Xys X, and x., be three distinct points of X.

3

Suppose x, does not separate x does not separate x, and x,.

and x3, and x 1 3

1 2

Then we have

2

where A, B, (i = 1,2) are connected.
Since B1 ux, is connected in X \ Xy, Ve have B1 c A2 and consequently

B1n32=¢,132cx\131.

By Lemma 1.11, (X \ B1) \ 32 is ¢onnected, satisfies (B') and has the
points Xy and x, as endpoints. Moreover, since condition (H) is clearly
hereditary for connected subspaces, ¥ = (X \ B1) \ B2 is an (H)-space.

does not separate x, and x,. in Y. Then

(i) Suppose x 1 o

3
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3 3
*
*2
and again by Lemma 1.11, Y \ Q3 = P3 u xq is connected and has at least
three endpoints, namely Xqs X, and x3, which contradicts (H).

Hence
Y\ x3 = P3 + Q3.
X, X,

(ii) Since B, u P_ and B

1 3 o V] Q3 both are closed in X \ x_ we have

3

X\ xq = (B1 U P3) + (B

*

which means that Xg separates X, and X, in X.

As a consequence of the previous lemmas we have:

THEOREM 9. In a connected T,-8pace X:

(H) + (B'C) == (0),

and

THEOREM 10. In a connected T,-space X having at least one cut point:
(Ht) + (B'C) == (0).

REMARK. A plane circle is a connected T, -space without cut points, satis-

1
fying (Hp) and (B') and which is not orderable.

3.4. CYCLIC ORDERABILITY

In section 1.3 we introduced the notion of cyclic orderability. The next
two sections are devoted to the study of this concept. We will show some
theorems already announced in section 1.3 and we will prove that cyeclic
orderability is closely related to some of the conditions studied in the

previous sections of the present chapter.
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THEOREM 11. Let X be a cyclically orderable connected T,-space having at
least one cut point. Then X 18 orderable.

PROOF .

(i) Every connected proper subset of X is orderable, and hence satisfies

(H). So X satisfies condition (Hp), and hence condition (H%).

(ii) We now show that X satisfies. (B').
For that purpose suppose that p is a cut point of X having at least three
segments.

Then there exist non-empty sets A, B and C such that

X\p=A+B+C.

(p)

Let a € A, be B,ceC gnd assume & < b < ¢, where < = <R is the total
ordering in X \ p, induced by the cyclic ordering R compatible with the
topology on X.

Then (a,c) = {x € X | (a,x,c) € R} is open in X \ p and

[a,e]l =X\ {x € X | (c,x,8) € R} is closed in X \ p.

It follows that D = B n (a,c) = B n [a,c] is a clopen non-void subset of
X \ p. Hence p € D.

However, this is impossible, since [a,c] is closed in X.

Consequently, X satisfies (B').

(iii) Since (B') === (B'C) and X has at least one cut point, we conclude,
by Theorem 10, that X is orderable.

THEOREM 12. Let X be a connected T,-space. Then X 18 a non-orderable
eyclically orderable space if and only <if:

(i) vx e X : X\ x 28 connected.

(i1) vx, y e X (x #y) : X\ {x,y} <s discomnected.

PROOF .

1. Let X be a connected T1-space, and let X be cyclically orderable, but
not orderable. From Theorem 11 it follows that every point of X is an end-
point of X, i.e. condition (i) holds.

Since a cyclically orderable space satisfies (Hp), X certainly satisfies
(Hd). Since X contains no cut points, this means that X \ {x,y} is discon-

nected for every pair of distinct points x and y in X, i.e. X also fulfils
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condition (ii).

2. Let X be a connected T -space, satisfying conditions (i) and (ii). Then

1
it is clear that X is not orderable.
So we have to pfove that X is cyclically orderable.

Let Xy € X.

a) X\ X, satisfies property (B'):

For, suppose

X\ {x1,x2} =A+B+C,C#@thenC=Cu {x1,x2} and T
a b

is connected in X \ {a,b}. . . . . . (1)
Now let X \ {a,b} =P +Q, Q # #. Then § = Q u {a,b} is connected, and
X,

80 X, € Q (if x, £ Q, then Qex\ {x1,x2} which is impossible). This con-

tradicts (1).

) X \ x, satisfies property (B):
For,suppose there exist three distinct points Pys Pps Py € X\ x1,such that

X\ {x1,pi} = A, +B (i =1,2,3),

with A; end B, non-empty and connected (i = 1,2,3) and with B, n Bj =0
for i # j.

Let b, e B, and b, € B, and X \ {b1,b2} =P+Q, Q# 0.

X4

Now, (X \ x1) \ (B1 u B
lary 1.9.1.
IfFYcP=X\Q, then@=Qu {b1,b2} is a connected set in B, v B, U B>
are separated sets since

5 U B3) =Y is connected in X \ {b1,b2} by Corol-

meeting B1 and B2. However, B1, B2 and B

By <A (i# ).
If YcQ, then Y u §3 =YUuB ux
meeting both P and Q.

3

1 is a connected set in X \ {b1,b2},

So we arrive at a contradiction.

e) X\ X, is a connected T, -space, having no endpoints, and satisfying

1
property (B). By Theorem 2.4 such a space is orderable.

Let < be an ordering on X \ X,
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Let p, @ € X \ Xy be such that p < q.
Then

X\ {x1,p,q} ={zeX\x, |l z<plu{zeX\x, | p<z<qlu

1 1

ufzeX\x | a<z}=(,p) v (p,a)u(a,).

1
three connected intervals. If x, ¢ ( ,p) then ( ,p) is a proper clopen sub-

Since X \ {p,q} is disconnected, x, cannot be a limitpoint of each of these
set of the connected space X \ p which is impossible. Thus x, € ( ,p) and
similarly X, € (a, ); hence X, ¢ (psa) « v v v v . (%)

Now we can define a cyclic ordering R on X as follows:

(a,b,x,) € R = (x1,a,b) e R = (b,x1,a,) € R +—

1

> (a<Db,a#b# X, # a).

If a, b and c are elements of X \ x1 then

(a,b,c) e Re= (a<b<c)V(c<a<b)VvVi(b<ecc<a)l.

It is easily verified that R is indeed a well-defined cyclic ordering on X.
From (%) it follows that R is compatible with the topology on X, which

means that X is cyclically orderable.

LEMMA 13. Let X be an orderable space, having exactly two components, say
A and B. Then either

Vx e A: Yy e B:x<y or

Vx e A : Vy e B:y <x.

(where < is a total ordering on X compatible with the topology on X).

PROOF. Suppose there exist points p, q € A and r € B such that p < r < q.
Then:

X\r=1{xeXx|x<rt+{xex|r<xl,
p q
while A is a connected subset of X \ r containing both p and q, which is
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a contradiction.

THEOREM 1k4. Let X be a cyelieally orderable, connected T,-space. Let S, and
S, be two cyelic orderings on X compatible with the topology on X. Then
= = g1
S1 = 82 or S1 = 52 .
In other words: in a cyclically orderable, connected T,=space the com—

patible cyclic ordering is unique up to inversion.

PROOF.

(i) Suppose X has at least one endpoint p. By Proposition 1.7, X \ p is
an orderable, connected space. It follows from Theorem 1.4 that the com-
patible ordering in X \ p is unique apart from inversion. The assertion now
is a consequence of dech [6], Theorem 5.2.1 (cf. the second Remark follow-

ing Proposition 1.7).

(ii) Suppose every poih@ of X is a cut point. Hence, by Theorem 11, X is
an orderable space. We denote the compatible ordering on X by <. Let

R1 = R_ be the induced cyclic ordering on X, and suppose that R2 is another
' -1

compatible cyclic ordering on X. We have to show: R1 = R2 or R1 = R2 .
Let p € X.

Then X \ p = A + B, with both A and B non-empty and connected. We may
assume: ¥x € A : Vy € B : x < y.

Let <, = <§p) be the ordering in X \ p induced by R, (i =1,2). On A and
i

on B separately the orderings < and <, coincide, while Vx € A : Vy € B :

1
Y x (ef. part L of the first Remark following Proposition 1.7).

Since both A and B are orderable connected spaces, we have by Theorem 1.h4:

on A : (<=)<, =< or (<=) <1 = <;1’
and on B : (< =) < =<, or (< =) < = <;1_
a) Suppose that (< =) <, = <, on A, and that (< =) <, = <;1 on B. Take

2 1
a, b € A such that a <, b and ¢, 4 € B such that ¢ <, d.

1
o and d <5 Cs which means (p,d,c) € R
={xeX|b<x<ph

1

Then a <, b, which means (p,a,b) € R

Let 01 ={xeX | p<x<cland O2

Then p € 61 n 52 since X is connected.

We now consider the following two cases:

o

1) b <, c.

2) ¢ <2 b.

In both cases we will derive a contradiction.
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Case 1): as a <2 b and b <2 ¢ we have a <_ ¢, which means (p,a,c) € R

Let U, = {x e X | (c,x,a) € RZ}'

Then U1 is open in X and p € U

Suppose U

2 2°

1
10 O2 # ¢ and let x € U1 n 02. Then (c,x,a) € R2.

xe€0,=>a< b< x=>ac<,x, which means (p,a,x) € R

and (x,p,a) € R, imply (x,p,c) € R

Moreover:

X
. < 3

> 5 Hence ¢ 5 x. By Lemma
13, however, it follows from x € A and ¢ € B that x <2 c.

n o, =@, which contradicts the fact that p € 5,

(x,a,c) € R

Consequently U1

Case 2): as d <, cand c <, bwe have d <, b, which means (p,d,b) € R

2
Let U, = {x e X | (v,x,4) € R2}.

Then U2 is open in X and p € Ug.

Analogous to the previous case we can derive that U
tradicts the fact that p € O

o

5, N0, = #, which con-

1°
b) Now we may assume that the orderings <1 and <, coincide both on A and on

2

B. We want to show that <1 and <2 coincide on A U B.

We know already:
Vx € A: VyeB:y <1 X.

Suppose that <1 and <2 do not coincide on A U B. Then we have

Vx € A: Yy € B : x <2 y.
Teke s € A and t € B. Then

s<p<ti;t< s;s <, t.

1 2

Let O ={x e X | p<x <t} Then p € 0.
Let Up = {x e X | (t,x,s) € R2}.
Then Up is open in X.

s <, t implies (p,s,t) € R,, hence p € Up.

1. Suppose Up nO# @ and let x € UP n 0. Then (t,x,s) € R, Moreover,
Xe0==x<t=>x< t=>>x< t— (p,x,t) € R,

(x,s,t) € R, and (x,t,p) € R2 imply (x,s,p) € R, Hence x <, s. However,
x € Band s € A imply s <2 X.

2. Consequently, Up n 0 = @. This, however, contradicts p € 0.
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c) From the foregoing it follows that <= <2 or <1 = <;1 on A U B. Hence

R1 = RE’ resp. R1 = R;1 and the theorem is proved.

Recall that an interval in a non-orderable, cyclically orderable connected
T1-space X is any set of one of the following forms (where p,a and b run

through X):

X, X\ p, {xeX| (é,x,b) € R} = J(a,b), J(a,b) U a,

J(a,b) U b, J(a,b) U {a,b}.

Now we will prove the following

LEMMA 15. In a non—orderable, cyclically orderable connected T,-space X the

connected subsets are precisely the intervals.

PROOF. The connectedness of every interval in X is an immediate consequence
of the fact that J(a,b) = {x € X | a < x < b}, where < = <;p) is the order-
ing induced by the compatible cyclic ordering R in X \ p, for some p with
(a,p,b) ¢ R.

Conversely, let C be a connected subset of X, such that X \ C contains at
least two points.

Let p, g € X\ C (p # q).

X\ {p,a} = {x € X | (p,x,q) € R} + {x € X | (q,x,p) € R}.

So we may assume C < {x | (p,x,q) € R}.

Let r € X be such that (r,p,q) € R.

Let < = <§r) be the ordering in X \ r induced by R.
Then C < {x | p < x < q} = (p,a).

Hence, there exist a, b € X \ r such that

¢ = (a,b) or ¢ = [a,b) or C = (a,b] or C = [a,b].

Consequently,
¢ =J(a,b), C = J(a,b) Ua, C=J(a,b) ub or
C = J(a,b) u {a,bl}.

THEOREM 16. Let X be-a strictly cyclically orderable, connected T,-8pace.

Then X is locally comnected.
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PROOF.

a) Let X be an orderable space. Let R be the compatible cyclic ordering on
X and < the compatible ordering on X. By Theorem 14 we may assume R = R_.
This means that the relation between < and R is as in Proposition 1.6. Hence
the open intervals, with respect to the ordering <, are connected and form
a base for the topology in X. Consequently, X is locally connected, and

therefore strictly orderable.

b) Let X be a non-orderable space. Since, by Lemma 15, the intervals with
respect to the compatible cyclic ordering form a base consisting of con-

nected subsets of X, we conclude that X is locally connected.

COROLLARY 16.1. Let X be a striectly cyclically orderable connected T,-space.
Then:

vp e X : X \>p ig strictly orderable.

THEOREM 17. Let X be a non-orderable, cyclically orderable, locally con-
nected, connected T,-8pace.

Then X is strictly cyclically orderable.

PROOF. Let U open in X and p € U.
We have to show that there exist a, b € X such that

pe{xeXx ]| (a,x,b) € R} cU.

So we may assume U # X. Let q € X \ U.
X \ q is an orderable, locally connected, connected space, and consequently
X \ q is strictly orderable.
Since, by Theorem 12, X \ q has no endpoints, there exist a, b € X \ q such
that
{ - (Q)

pefxeX | a<x<blcU, where < = A

From {x e X | a <x <b} ={x € X | (a,x,b) € R} we now conclude that X is

strictly cyclically orderable.

REMARK. It is not possible to omit the non-orderability of X in Theorem 17.

The half-open interval [0,1) is a counterexample.
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3.5. CHARACTERIZATION OF NON-ORDERABLE, CYCLICALLY ORDERABLE CONNECTED

T1-SPACES

In this section we want to characterize non-orderable, cyclically orderable

connected T -spaces in terms of the conditions introduced in the first sec-

1
tions of this chapter.

THEOREM 18. Let X be a connected~T1-space. Then X i8 a non-orderable cy-
elically orderable space if and only if X satisfies (Hp) but not (H).

PROCF.

1. Let X be a connected T1-space, which is cyclically orderable but not
orderable. Then every point of X is an endpoint. Hence X does not satisfy
condition (H). Since X is cyclically orderable, every connected proper sub-

set of X is orderable, which means that X satisfies (Hp).

2. Let X be a connected T, -space satisfying (Hp) but not (H). Then clearly

1
X is not orderable and moreover X has at least three distinct endpoints

P, q and r.

(i) We shall first show that X does not have cut points.
Suppose to the contrary that s € X is a cut point of X.
If X \ s has exactly two components, then one of them must contain at least
two of the points p, q and r. The closure of that component is a connected
proper subset of X having at least three endpoints, which is impossible.
If X \ s has at least four components there is a component C which does not
contain any of the points p, q and r. But then X \ C is connected and has
P, q and r for endpoints (Lemma 1.11), which again is impossible.
It remains to consider the case that X \ s has exactly three components,
each of them containing precisely one of the points p, q and r.
Let X \' s =A+ B +C.

P a r

Take any point a ¢ A (a # p).

If a is an endpoint of X, A u s has three endpoints a, p and s.

If a is a cut point of X, a must separate p, q and r (otherwise there is a
proper subset of X having at least three endpoints). But this contradicts

the fact that B u C U s is connected in X \ a.

(ii) Since consequently every point of X is an endpoint of X, and since X

satisfies (Hp), (and hence (Hd)), X \ {x,y} is disconnected for every pair



of distinct points x, y in X.
From Theorem 12 it now follows that X is cyclically orderable.

THEOREM 19. Let X be a comnected T,-8pace. Then X'i8 a non-orderable cy-
elically orderable space if and only if X eatisfies property (HL) and every
point of X <8 an endpoint of X.

PROOF.

1. The necessity of the condition follows immediateiy from Theorems 12 and
13.

2. To prove the sufficiency, let X be a connected T, -space satisfying con-

. 1
dition (Ht) and having no cut points. Then it is clear that X is not
orderable. We will prove the cyclic orderasbility of X from Theorem 12 by

showing that X \ {p,q} is disconnected for every p, q € X (p # q).

a) Va, b, ce X (a#Db#c#a): X\ {a,b,c} = Y is disconnected by con-
dition (Ht).

b) If X \ {a,b} is connected, then X \ {a,b,c} has at least three com-

ponents (a # b # ¢ # a). For suppose X \ {a,b,c} = C, + C,» where C, and

1
02 are connected.
Then c € Cl n 02, anf a, b e C1 u C2 = X. ,
If a, b'e C), then (C1=) c,u {a,b,c} is connected and has an endpoint
triple, contradicting (Ht). ‘

C 5 C C = + U
Ifa.eC1\CeandbeCZ\C1,thenX\c (C1Ua) (02 b),

which is impossible, since ¢ is an endpoint of X. N €2

¢) 1. Now suppose that X \ {p,q} is connected for some p, q € X (p # q).
Then it follows from b) that the set X \ {p,q,r} has at least three com-
ponents, for every r € X \ {p,ql. »

Let '

X\ {p,q,r} = A+ B +C,

s t u

then Aur, Bur, CuUrare connected, r ¢ A n B n C, and [cf. (*)] we

may assume p, q € A.

c) 2. Suppose X \ {t,u}l is disconnected.
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Then X \ {t,u} =D+ E,D# ¢, E#¢.

If p, q, r ¢ E then the connected set E u {t,u} would be contained in

X \ {p,q,r}, which is impossible.

If pe D and q, r € E then the connected set A v {p,q,r} is contained in
X \ {t,u}, which is also impossible.

Hence X \ {t,u} is connected.

¢) 3. From b) it follows that:
X\{Sstsu}=P+Q+Ra (P#¢’Q¢¢9R#¢),

s e€Pan Q nRand Pu s, Q U s, RuU s are connected.

P n {t,ul # @, since otherwise P would be clopen in X \ s.

Let t € P.

If p, g, r ¢ P then the connected set P U s U t is contained in X \ {p,q,r},
which is impossible. A

So we may assume that p € P, ¢ € Q, r ¢ R. Moreover, as we observed already,
the closure of each of these three sets contains at least one of the two
points t, u.

Put W= (Aur)u(Rus). Then W is connected and p, q, t, u ¢ W.

But W contains at least three of these four points, which contradicts (H%).

THEOREM 20. A comnected T,-space X 28 a non-orderable cyclically orderable
space if and only if the complement of each commected subset of X is con—
nected.

PROOF .

1. The condition is necessary: follows immediately from Lemma 15, since the

complement of an interval is again an interval or an empty set.

2. The condition is sufficient: X \ p is connected, since {p} is connected
(vp € X) and X \ {p,q} is disconnected, since {p,q} is disconnected
(vp,q € X, p # q). The assertion now follows from Theorem 12.

PROPOSITION 21. In a connected T,-space X:

(B'C) + (Ht) —> (Hp).
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PROOF .

(i) If X has at least one cut point, X is orderable by Theorem 10. Hence

X satisfies (Hp).

(ii) 1If X has no cut points, X is a non-orderable, cyclically orderable

space by Theorem 19. Hence, by Theorem 18, X satisfies (Hp).

3.6. ON (V) - SPACES

DEFINITION 2. A (connected) T,-space X is said to satisfy

(V) - if X contains a point x. such that every connected subset of X con-

0

taining X, is closed.

Condition (V) was studied by Hursch and Verbeek in [15] and [16]. They con-
structed a connected T2-space, satisfying (V) and consequently (as they
showed) satisfying (H), but not satisfying (0). So they settled a problem,
raised in [19], in the negative. A generalization of condition (V) was in-

troduced and discussed by Brouwer in [3].

In this section we only investigate those properties of (V)-spaces (i.e.
spaces satisfying (V)) which we need for our purposes. For a more detailed
discussion of (V)-spaces we refer to [15] and [3].

Recall that all spaces under consideration are assumed to be connected T1-

spaces containing at least two points.

Let X be a connected T, -space satisfying (V).

Let X, be a point of X such that every connected subset of X containing x

is closed.

0

Let C be a component of X \ Xy Since X \ C is connected and Xy € X\C,
X \ C is closed in X and therefore C is an open subset of X. Hence
C=Cu xo.

It follows also that no other point x. e X can have the property that every

1
is closed. Hence x

connected subset of X containing x is uniquely deter-

9

mined and X, is called the base point of X.

0

Let x € X and x # Xy Let C,. be that component of X \ x containing Xge Then

0

C0 is closed in X. This means that X \ x consists of infinitely many com-

ponents, since otherwise (every component of X \ x and in particular) CO is
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an open subset of X, which contradicts the connectedness of X.
Let C be a component of X \ x not containing Xy Since X \ C is connected

and Xy € X\ C, X\ C is closed in X and therefore C is open in X. Hence

C=Cu x.

So in a (V)-space X with base point x . the following holds:

0

Every component of X \ Xy is open. If x # x. then X \ x has infinitely many

0

components. The component of X \ x containing x  is closed and all other

0
components of X \ x are open.

3.7. ON CONDITION (P)

As we already announced at the end of Chapter II, we shall prove in this

section that for connected T,-spaces the orderability is equivalent to yet

. 1
another property, called (P).

Recall that a space X is said to possess property (P), (or is said to be a
(P)-space), iff for every pair of connected subsets A, B of X having a

common endpoint p the following holds:
AnB={plorAcBor BcA.

THEOREM 22. In a connected T,-8pace X: (P) —= (0).

PROOF .

1, <= : trivial, since the only connected subsets of an orderable space

are the intervals.
2, > :

(i) It is clear from the definition that condition (P) is hereditary for
connected shbspaces. Hence, in order to show that a (P)-space is also an
(H)-space it suffices to prove that a (P)-space cannot have more than two
endpoints.

In order to do that, we suppose that, to the contrary, there exist three

distinct endpoints Pys Py and 1 of the (P)-space X.

o) Suppose first that at least two of the three sets: X \ {P1»P2}’
X\ {pg,p3} and X \ {p3,p1} are disconnected. (This will lead to a contra-

diction).
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For instance, let

X\ {p1,p2} = A + B, where B # ¢, and
P3
X\ {Pz,p3} = C + D, where D # §.

Py
Since B v P, is connected in X \ {pg,p3} we have B U Py € C, and hence
BnD=¢and AuC=X\p,. ‘
Since X \ Py is connected and since A and C are both open in X \ pz‘we have
AnC#@. Let x e An C.

Avu {p1,p2} is connected and has p, as an endpoint.

"

Cu {pz,p3} is connected and has P, as an endpoint.

However, (A u {p1,p2}) n(cu {pz,p3}) > {pg,x} and (since B c C) neither
Au {p1,p2} cCu {p2,p } nor Cu {p2,p3} cAu {p1,p2}

This contradicts (P).

We conclude that at least two of the three sets: X\ {p1,p2}, X\ {p2,p3}
and X \ {p3,p1} are connected.

B) For instance, let X \ {p1,p2} and X \ {pz,pB} be connected. Then p, is
an endpoint both of X \ P, and of X \ p3.

But (X \ p1) n (X \ p3) # {p2} and neither X \ P, <X \ P, nor

X\ Py c X\ -

This contradiction proves that a (P)-space is an (H)-space.

(ii) Now we will show that a (P)-space cannot be a (V)-space.
Suppose X is a (V)-space with base point Xqe
Let p € X and p # Xye

Then X \ p hgs infinitely many components. If CO is the component of X \ p

containing x., then C. is closed in X, and the other components Ca (0 € A)

0° 0
of X \ p are open in X.
Let S =X\ CO then S is open in X and connected.
Hence, there exists an element q € C0 n 8.
5 € A (a1 # a2) and let p. € Cai (i =1,2).

Since Ca and Ca are clopen in X \ p, we can write

Choose any two a5 o

X\p=cC, +C, +D,

where C. < D.
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Replacing p by p1 or p2 respectively, we may also conclude that there exist
non-void connected sets S1 and S2 such that

= + =
X\ P, S1 i and X \ p, = S, + i.
0 0
Since S, U p; = §i is connected, it follows that

8, up, €C (i =1,2).

Q.
1

In particular p ¢ Si and hence p € E n F,

Since Si is a component of S \ p;» it follows that S \ Si is connected
(i =1,2).

Since §i =8, up, an§:3:1F0 we have q ¢ §i; from q € § = §i u'ﬁi‘??i{T it
then follows that q € S \ S; (i = 1,2).

However, the sets (S \ S1) Ugq and (S \ Sg) U q yield a contradiction to

property (P).

(iii) The (P)-space X satisfies property (B').

Suppose, to the contrary, that for some p € X we have

X\p-= Aj+ A+ A3, with non-void Ay (i =1,2,3).

ii =A UD is connected, hence a (P)-space and consequently not a (V)-
space. (i = 1,2,3).

This means that there exist connected sets Bi c Ki such that p € Bi and
distinet points b, € A, such that b, ¢ Ei \ B.. (i = 1,2,3).

It follows that the set B1 u B2 u 33 u {b1,b2,b3} is connected and has an
endpoint triple, which contradicts the fact that a (P)-space is an (H)-

space.
(iv) Since a (P)-space is an (H)-space and satisfies property (B'), the

orderability of X follows from Lemma 8.

REMARK. Observe that in the proof of Theorem 22 we do not need to know that
(V)~spaces really exist.
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CHAPTER IV

ON TREE-LIKE SPACES AND THE INTERSECTION OF
CONNECTED SUBSETS OF A CONNECTED T1-SPACE
4.1. INTRODUCTION AND DEFINITIONS

In this chapter our attention is mainly focussed on property (S) and pro-
perty (Int). A space having property (S) is sometimes called a "tree-like”
space. Tree-like spaces have been studied by G.T. Whyburn in [28],

G.L. Gurin in [10] and V.V. Proizvolov in [25] under the additional assump-
tion that X is locally connected and peripherally bicompact respectively.
Property (Int), the "comnected intersection property" occurs also in
Whyburn [28] for locally connected spaces. Some modifications of this con-
dition, the properties (Int?), (Int*) and (Int'), will also be discussed
in this chapter, where (Int?) is again a property occurring in the paper
of Whyburn [28].

As remarked already at the end of Chapter I the relation between (B) and
(0) will be the subject of Theorem 2 of this chapter.

Finally, a property (W) will be studied. An equivalent form of this pro-
perty is discussed by A.E. Brouwer [2]; some of the propositions and theo-
rems in which condition (W) is occurring have already been proved in a

slightly different way by him in [2].

DEFINITION 1. A topological space X is said to satisfy

(8) -if Yx,y € X, (x #y) : 3z € X : z separates x and y.
(no two points of X are conjugated). (A space satisfying (S) is
called a tree-like space).

(Int) - if the intersection of an arbitrary collection of connected sub-
sets of X is connected.

(Int*) - if the elosure of the intersection of an arbitrary collection of
connected subsets of X is connected.

(Int') - if the intersection of an arbitrary collection of closed con-
nected subsets of X is connected.

(Int2) - if the intersection of two connected subsets of X is connected.

(W) - if for every two disjoint connected sets A, B € X it is true that

I n Bl < 1.
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4.2. PROPERTIES OF TREE-LIKE SPACES

In this section we investigate several properties of tree-like spaces.
First of all, we shall prove that a tree-like space is orderable if and
only if every cut point is a strong cut point. As always, we only consider

connected T1-spaces.

THEOREM 1. In a connected T,-space X:
(8) + (B') = (0).

PROOF.

(i) == : trivial.

(ii) ==> : In fact we will prove: (S) + (B')== (S').

Suppose, to the contrary, that X satisfies (S) and (B'), but does not
satisfy (S'). Let Pys P, &nd 18 be three distinct points of X, such that no

one of them separates the other two.

Then we have

X\p =A +B ;X\p,=A +B ;x\p3='A + B

Py P Py 2 Pz P3
P, Py P,
P3 Py Po
where (Api,Bpi) is a (unique) separation of X \ p; When p, is a cut point,
and where Api = @ when p; is an endpoint of X.

In both cases AP and Bp are connected and open in X.

i i
It is clear that
A <B (1#3J)
Pi Pj
A nA =9 (i#3)
Pi Pj
B uB =XI(i#]).
pi Pj

Now, let

S(p1,p2) = E(p1,p2) u {p1,p2} = {x € X | x separates P, and p2} ] {p1,p2};
S(pz,p3) = E(Pz’p3) U {p2,p3} = {x € X | x separates p, and p3} U {pe,p3};

S(p3,p1) = E(p3,p1) U {p3,p1} = {x € X | x separates Py and p1} U {p3,p1}.
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In the same way S(p2,p1), S(p3,p2) and S(p1,p3) can be defined.
It is clear that S(p2,p1) = S(p1,p2) etc.

Clearly, PysP, € S(p1,p2) and 18 ¢ S(p1,p2) ete.

Moreover,

S(p1,p2) n S(p2.p3) n S(p3,p1) = ¢.

For, supposex € S(p,,p,) N S(pg,p3) n S(p3,p1)- Then x # p; (i =1,2,3) and

hence x is a strong cut point, i.e.
X\x=A +B,
X X

and this separation is unique. However, this contradicts the fact that x

must separate each two of the three points Pys Py and p3.

Also,
S(P.l ;PZ) < S(Pz,P3) U S(P39P1) ete.

For, let x € S(p1,p2).

If x = p; (i =1 or 2), then certainly x € S(p2’p3) u S(p3,p1).
If x # p; (i
Pys i.e.

1,2,3), then x is a strong cut point which separates P, and

X\x=A_ +B.
x X
P1 Py
Since p3 € Ax implies that x € S(p2,p3) and since p3 € Bx implies that
X € S(p1,p3), the assertion follows.
(Notice that x # ) I since 1 ¢ S(p1,p2)).

Now, let
s = S(p1.p2) u S(pz,p3) v S(p3,p1).

Thus every point of S is contained ir »xactly two of the three subsets

8(p;5p,)» S(p2,p3) and S(p3,p1).
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Let
S1 =8\ S(P29P3)s
85 =5\ 8(pysp,).
Then
s, = s(p1.p2) n S(p3,p1) S(p1,p2) =85, U8,

8, = 8(p,spy) n S(p,5p,) and  S(p,,py) =8, U S,

1
wm
(o4
(0]

83 = S(p3,p1) n S(pz,p3) S(p3,p1) =

Moreover, S =S, u S, uUS are mutually dis-

1 5 and the sets S1, 82 and S

3 3

joint.
Since Si(i = 1,2,3) is a subset of S(pi’Pj) (i # j), in each of the sets

S,, S, and S_ we can introduce a total ordering, namely the separation

s
o;dergng. We3recall the definition and some properties of the separation
ordering, for example in S1. (It will then be clear that the separation
)

For every x € S1, x # Pys let Ax be that component of X \ x which contains

orderings in S(p1,p2) and in S(p3,p1) coincide on S

the point py-

We define the separation ordering in S1 as follows:

(i) p; < x for each x € 5, \ p,.

(ii) if x, y € 5, \ Py» then x <y iff x € Ay.

It is well-known, that

x < y <> x separates P, and y in X <= y separates x and Py in X

&=> y separates x and p3 in X = y ¢ Ax U x &= Ax Uuxec Ay.

Now, let

L.= v A (i=1,2,3).
1 xeSi x

Li (i = 1,2,3) is open in X, because each A, is open in X.
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We shall prove

L;n L, = g (i43J).

Suppose, to the contrary, that, for example, there exists a point y, such
that y ¢ L, n L_.

1 2
Then y € Ax1 for some X, € S1 and y € sz for some X, € Sz.
Since Ap n AP = @, it is impossible that both X, =P, and X, = p27

1 2
If x, = p, end X, # p, we have the separations

X\ p, = Ap + B 3y X\x,=A +8B

1 Py 2 X X
y o, P, P
Py y P
A=A ux_ is connected in X \ p,, but contains both y and p., which
x2 x2 2 1 2

is impossible.
In a similar way it can be shown that the remaining case, X, # P, and
x, # Py» also ylelds a contradiction.

S, and S_ has a

We now want to show that at most one of the sets S1, > 3

largest element in its ordering.

For this purpose we first recall that it is well-known that
. < i U .
X, ¥ € S1 and x < y imply that Ax X < Ay

Now suppose, to the contrary, that for instance S1 and 82 both have a

largest element, say x., and x2, respectively.

1
Then it follows from the fact that x < y <= Ax Uxc Ay that

Ly

A (end consequently x, ¢ L)
X, 1 1

and

L, = sz (and consequently X, ¢ L2).

Since L, n L, = @ and since both L

1 > and L

are open, we clearly have

1 2
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L1 n L2 = L1 n L2 = g.

If both X, and x, are cut points, then

L1 = Ax1 = Ax1 U X, so x, ¢ L2 and hence X, € Bx
2
and also
L2 = Ax2 = Ax2 U X,s 80 X, ¢ L1 and hence x, € Bx1.

If x, is a cut point and x, = Py then in the same way we can prove:

1 2
x1 € sz, while x2 = p2 € Bx1’ because x1 € S1.
If X, = P, and x2 = p2 then

X, = p1 e.Bp and x2 = p2 e B .
So, in all cases, we have:

x1 € Bx and x2 € Bx .
2 1

By (8), there exists a point y € X such that y separates X, and X5e

So we have:

X\y=A +B.
y y y

X %

It follows that

o]
L]

1] c
y By y Bx1’ so p1 € Ay and y € Bx1

and

Ay Ay Uy < Bxe, 80 p, € By and y € sz.

This means that y separates p, and p, and consequently y € S(p1,p2).
Hence y € S1 or y € 82.

If y € S, it follows from y € Bx that Xy <y.
1
it follows from y € Bx that X, <vy.

2

1

Ifye 82
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In both cases we have a contradiction.

So we may assume that for instance S, and S, have no largest element.

1 2
Then
L.2A U Si (i =1,2).

(If x. € S. there exists y. € S. such that x. < ¥y.; then
i i i i i i
A Ux,<A < L., hence x. € L. (i = 1,2).)
X. i . i i i
i i
From this it follows that certainly L, # ¢ and L, # @.
4 cannot be closed, and hence i1 \ L1 # @.(Recall

that L1 nL,s= L2 nL,= @).

Since X is connected, L

Now there are two possibilities:
a) L \ L, = {q}

D) a4y 9, € i1 \ L, for two distinct points q, and q,.

In both cases we shall derive a contradiction, thus finishing the proof of

the theorem:
a) L \ L, = {q}:

Then q ¢ L1 and q ¢ L2.

Clearly,'L1 = v Ax is connected.
xeS1

Moreover, L, is open (in X and hence open) in X \ q, and also

1

L, = E1 n (X \ q) is closed in X \ q.

Hence, L, is connected and clopen in X \ gq.

1
Since L, n L2 =@, q ¢ L2, L2 # @ it follows that q is a cut point of X and

1
that

X =A + B, where A =1L,.
\ q a qs q 1

Moreover L2 c Bq, hence p1 € Aq and p2 € Bq.

But this means that q is a point separating P, and Pys 8O

q € S(p1,p2) = S1 v S2 c L1 U L2, which is a contradiction.
b) 4 9, € Ly \ L1 and q, # 4,

From (S) it follows that there exists a point z ¢ X, such that z separates
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q1 and q2.

Since L1 u {q1,q2} is connected, z has to be a point of L

Thus z € Ax for some x € S1 \ P,

9
Then we have the separations:

X\z=A +B 3 X\ x=A +B_.
z Z X X

We may assume: x € Az.

Then ﬁz =B, Uz is connected in X \ x, and hence

since a9y ¢ L1 it follows next that 9y, q, € Az.
Since (AZ,BZ) is a unique separation of X \ z, this contradicts the fact

that z separates q, and 9-

We are now able to prove the following theorem concerning the relation

between properties (B) and (0):

THEOREM 2. Let X be a connected T,-space satisfying condition (B). Let
E={x e X | x Zs an endpoint of X}. Let E be an endset of X, ©.e. X \ E
18 comnected. Then X \ E <s orderable.

PROOF.

(i) X \ E satisfies condition (B'):

Let p € X \ E. Since X satisfies (B) and hence (B') it follows that p is a
strong cut point of X, i.e. X \ p = Ap + Bp, where both Ap and Bp are
non-void and connected.

Then

(X \E)\p-= (Ap \ E) + (BP \ E), where possibly
Ap \E=6¢ or Bp \ E = ¢g.

We have to prove that both Ap \ E and Bp \ E are connected.
Suppose, to the contrary, that Ap \ E =R+ S, and hence
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(X\E)\p=R+8S + (Bp \ E), with R # @ and S # 9.

Then R U p and S U p are connected.
Let r ¢ Rand s € S.
Let X\ r=A +B (B #¢) end

Y
X\s=A +B_ (B #¢).

p

R U p is connected in X \ s, hence r € As.
S U p is connected in X \ r, hence s € Ar'
Since Ru S = AP \ E, we have r,s ¢ Ap.
Consequently,

B_.cA,B cA andB_cA_,
o) r’ p s r s

and hence

This means that Bp’ Br and Bs are three mutually disjoint segments in X,
which contradicts property (B).
(ii) X \ E satisfies condition (S):

Let p,sp, € X \ E (p, # pz).

Then
X\ p, =A +B (A1 # 0,8, # 8)
Py
X\ p, = A, +B, (A2 # 0, B, # 0)
Py
and hence
(X\E)\ p, = (A, \E) + (B, \ E)
Py
(x \ E) \ p, = (A \ E) + (32 \ E)

p
1
where possibly B1 \E=0 or B2 \ E

8.

Since B1 \ Ec A2 \ E it follows that (A, \ E) u (A2 \ E) = X \ E and since

1
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X \ E is connected we have (A1 \ E) n (A2 \ E) # 9.
Let Py € (A1 \ E) n (A,2 \ E).

Then X \ Py = A3 + B3.
By

Suppose that also P, € A3 X it follows that

B, n B, = B, n B3 = B3 nB, = #, which is impossible by condition (B).

. Then, since Py € A1 n A

Hence X \ Py = A3 + B3, and conséquently

P, b,
= + .
(X \E) \py = (A; \E) + (B, \ E)
This means that Pq separates P, and P, in X \ E.
(iii) The theorem now follows from (i), (ii) and Theorem 1.

COROLLARY 2.1. Let X be a connected T,-space, satisfying condition (B). If
X has exactly one endpoint p, then X \ p i8 orderable.

PROOF. Using the notation of Theorem 2, we have E = {p}, and X \ E=X \ p

is connected.

COROLLARY 2.2. (cf. Theorem 2.4 and Kok [19], Theorem 1). Let X be a con-
nected T,-space satisfying condition (B) and having no endpoints. Then X
18 orderable.

PROOF. E = ¢ and X \ E = X is connected.

Although all spaces under consideration are assumed to be connected T1-
spaces consisting of at least two points it is possible to prove that
every tree-like space is a T1-space. The following proposition even states

that every tree-like space is Hausdorff.
PROPOSITION 3. A tree-like space X is Hausdorff.

PROOF,

(i) X is a T,-space:
If p e X is such that {p} is not closed, then there exists a point
q € X \ p such that q ¢ {p}. However, then {p,q} is a connected subset of

X, which means that p and q cannot be separated by a third point.
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(ii) X is a T, -space:

Let p, @ € X such that p # q. Then there exists a point r € X separating p

and q. So we have

X\r=A_+3B_,
r r
P q

where Ar and Br are open in X, since X is a T, -space.

1

THEOREM 4. In a comnected T,-space X:
(S) — (B'O).

PROOF. Suppose C is a component of X \ p, which is not open. Then there
exists a point r € C such that r € X \ C. Let q be a point separating p and

r. Then we have

X\g=A +B.
¢ q a
P r

Eq = Bq U q is connected in X \' p, hence Eq cCand X\ Cc Aq.
Thenr e X\ Cc Kq = Aq U q. Contradiction.

THEOREM 5. In a connected T,-space X:
(8) == (W).

PROOF. Let A and B be disjoint connected subsets of X.
Let p,aeAnB (p#4q).
Since both Ap =AU {p,q} and B,

cannot be separated by a third point.

= B u {p,q} are connected, p and q clearly

THEOREM 6. In a connected T,-space X:
(Ht) + (S) == (0).

PROOF. Since (8) === (B'0) == (B'C) and (Ht) + (B'C) == (B')

(Lemma 3.6), the assertion follows from Theorem 1.
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PROPOSITION 7. Let X be a connected T,-8pace satisfying (8).

Let a, b € X (a # b).

Let S(a,b) = E(a,b) u {a,b} = {x ¢ X | x separates a and b} u {a,b}.
Then S(a,b) Zs closed in X.

PROOF. Suppose that S(a,b) is not closed then there exists a point p € X
such that p € S(a,b) \ 8(a,b).
For x € E(a,b) let X \ x = Ax + Bx be a fixed separation between a and b.

a b .
Remember that in the separation ordering < we have that a (resp. b) is the

smallest (resp. greatest) element, while for all x, y € E(a,b) we have
X<ye—>xelA —>yeB L =A Uxclh ==
y X X X Y

¢===>‘§y = By UyeB.
Let A ={x € E(a,b) | p e Bx}andB = {x € E(a,b) | p € Ax}.

Now A U B = E(a,b), A n B = @, '

Hence p € i or p € B. Suppose for instance that p € A. Then A cannot have
a last elemeht. (If z would be the last element of A, then A c Az ugz= Kz
and hence, since p € A, p € Kz' Then p € Az, since certainly p # z. But

this means that z ¢ B, which is a contradiction.)

Let R= U Ax' Then also R = U Kx. So R is an open and connected subset
xeA x€A

of X. Moreover, since Ac Rand p ¢ R, p € 3R = R \ R.

a € Rand b € X \ R so either b € 3R or 3R separates a and b.

Since p # b and since p does not separate a and b, 3R must contain a point
q different from p. (In the first case one may always take q = b).

As R U {p,q} < R is connected a point r separating p and q must belong to

R. However, if r ¢ R, then r € Ax for some x € A; thus Bx U x is connected

in X \ r and contains p and q. This contradicts (S).

PROPOSITION 8. Let X be a connected T,-8pace satisfying (S).
Let a, b € X (a # b). Then the closed set S(a,b) = E(a,b) U {a,b} has no
Jumps and no gaps in the usual separation ordering.

PROOF.

(i) We first show that S(a,b) has no jumps:
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Let x, y € E(a,b), x < y.
Let z be a point in X separating x and y.

Then we have the following separations:

X\x=A +B_ ;X\y=A +B ;X\z=A +B.
p X Y Yy z z
a b a b b4 y
y . X

. Az U z is connected in X \ y, so b ¢ Bz'

(o= B
n

. Bz U z is connected in X \ x, so a € Az'

Hence z separates a and b, and x < z < y.

If x=aory="b, the assertion is proved in a similar way.

(ii) Secondly we show that S(a,b) has no gaps:

Suppose, to the contrary, that there exist non-empty subsets A and B of
S(a,b) such that: A

S{a,b) = AUB; xe€ Aand y € B implies x < y; A has no last element and
B has no first.

LetP=UA=quxandQ=uB=u§,whereAxandB heve the
xeA ¥ xeA yeB ¥ YeB y
usual meaning.

Then P and Q are disjoint, non-empty, open, connected subsets of X; A c P,
B c Q.

a) Suppose P \ P contains two distinet points Py and Py-
Any point q, separating P, and Pys must be contained in P, since
Pu {p1,p2} is connected. Hence q € Ax for some x € A. However, ﬁx is con-

nected in X \ q and contains P, and Pye Contradiction.

b) Suppose P \ P = {p} for some p ¢ X.
Then P is & clopen subset of X \ p. Since A ¢ P and B © Q this means that

p separates a and b. However, p ¢ A U B = S(a,b). Contradiction.

THEOREM 9. In a connected T,-space X satisfying (S) the intersection of a
segment and a connected set is connected.

PROOF. Suppose C is a component of X \ p and D is a connected subset of X.
By Theorem 4, C is a clopen subset of X \ p, so X \ p =C + Q.

Now, suppose C n D =S + T, with S # § and T # 0.

Then D\ p=(CnD)+(QnD)=8+T+ (QnD), (so that p is a cut point
of D), hence s P, TUp and S UT U p are connected.

Let & ¢ S and b € T, then S(a,b) = E(a,b) u {a,b} is contained in C n D,
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thus S(a,b) = A + B, where a € A, b € B, A = S(a,b) n S and B = S(a,b) n T.
If x € A and y € B it follows from the fact that T U p is connected that
x does not separate y and b, and hence x < y. (where < again denotes the
separation ordering). So, by Proposition 8, either A has no last element
or B has no first element. Assume for instance that A has no last element.

Then V.= U Ax = u A_is open and connected and A < V; also VN T=¢
xeA X€eA
(for, X \ x = Ax + Bx and if x € .A, then T U p is connected in X \ x and

a b
contains b).

By (S), 9V = V \ V contains at most one point; on the other hand, since X

is connected, 3V cannot be empty; hence 3V = {q}.

We observe first, that q € T. For, if ¢ = b, then q € T.
If q # b, then, since V is clopen in X \ q, q separates a and b, and there-

fore q € B, hence q € T.

Now, let r be any point separating p and q. Since T U p is connected and
qeTwe have r € T. Since Vn T = ¢, ¥V usupis a connected set not

containing r, but containing p and q. This is a contradiction.

PROPOSITION 10. If a commected space X (with more than one point) satisfies
property (S), then the space X is uncountable.

PROOF. Let a, b € X (a # b). By Proposition 8, the set S(a,b) is continuous-
ly ordered, i.e. it has no jumps and no gaps in its (separation) ordering.
Hence there is a subset of S(a,b) with the ordertype of the real numbers.
(cf. e.g. A.A. Fraenkel [9], p. 17h4).

4.3. ON CONDITION (W)

PROPOSITION 11. Let X be a comnected T,-space. Then X ie a (W)-space if
and only if the boundary of each component of the complement of any non-—
empty comnected proper subset of X consists of exactly one point.

PROOF.

(i) Let S be a non-empty connected proper subset of X. Let C be a com-
ponent of X \ S. Then, by Lemna 1.9, X \ C is connected. Since X is a (W)-
space X \ C n C contains at most one point, and hence, by the connectedness

of X, X \ C n C contains exactly one point. But X \ C n T is precisely the
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boundary of C.

(ii) Let A, B be connected disjoint subsets of X. Let C be a component of
X \ B such that A < C. Since Cn X \ C = {p} for some p € X, it follows
that C n B ¢ {p}, and consequently A n B c {p}.

REMARK. Proposition 11 shows that condition (W) is equivalent to a con-~

dition studied by A.E. Brouwer [2], as we observed already before.

THEOREM 12. In a connected T,-space X:
(W) + (B'C) == (B'0).

PROOF. Let C be a segment of p in X. By condition (B'C) and Proposition 11:
(cup)\ c=ct\c = {q} for some q € X.

Hence, (p = q and) C = Cé, i.e. C is open in X.

THEOREM 13. In a connected T1-space X:
(Ht) + (W) == (H).

PROOF. Let C c X be connected and let p, q and r be three distinct end-
points of C.

1. Suppose first that C \ {p,q} is not connected, hence C \ {p,a} = S + T.
Here, S U p and T U q are disjoint and connected.

However, S u p n T u q > {p,q}, which contradicts (W).

2. Thus we may assume that C \ {p,aq}, C \ {q,r} and C \ {r,p} are connected.
By (Ht) we have that C \ {p,q,r} is not connected. Hence C \ {p,q,r} =
=U+ V.

Now, Uu p and V U q are disjoint and connected.

However, Uu p n V U q ® {p,q,r}, which again contradicts (W).
4.4, CONNECTED INTERSECTION PROPERTIES

THEOREM 14. In any topological space X:

a) (Int) = (Int?2)
b) (Int) == (Int") = (Int').
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PROOF. Immediste from the definitions.

THEOREM 15. In a connected T,-space X:

a) (Int2) == (W)

b) (Int") =— ).

PROOF. Let A and B be disjoint connected subsets of X.
Let p, a e An B (p#a).

Then A, = A U {p,q} and B,

However, A1 n B1 = {p,q} is closed and not connected, which contradicts

both (Int?) and (Int”).

= B u {p,q} are connected.

LEMMA 16. In a connected T,-space X satiefying (B'0) the following holds:
va,b € X (a # b) :  C(a,b) = S(a,b).

PROOF. Recall that C(a,b) denotes the intersection of all connected subsets

of X, containing both a and b.

(i) If p ¢ C(a,b) then there exists a connected subset A of X such that
a,b € A and p ¢ A. Then clearly p does not separate a and b in X. Hence
p ¢ s(a,b).

(ii) If p € C(a,b) and p ¢ {a,b} then a and b certainly do not belong to
the same component of X \ p. Since, by (B'0), components of X \ p are
clopen in X \ p, this means that p separates a and b.

Hence p € E(a,b).

REMARK. If X is a connected T1-space and if a,b € X (a # b) then we will

use the following notation:

K(a,b) = n {ScX | a,b € S ; S connected and closed};

L(a,b) = K(a,b) \ {a,b}.

LEMMA 17. Let X be a connected T,-8pace satisfying (Int'). Then the fol-
lowing holds: vVa,b € X (a # b):
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(i) KX(a,b) is connected.
(ii) L(a,b) Zs connected.

(iii) L(a,b) = K(a,b).

PROOF.
(i) Immediate from the definition. of (Int').

(ii) First, suppose that a is a cut point of K(a,b); i.e.
K(a,b) \ a = P + Q, where Q # #.
b

Then P = P U a is a closed and connected subset of X, which contains a and
b and which moreover is a proper subset of K(a,b). This is impossible.
Consequently, a and b are.both endpoints of K(a,b).

Suppose K(a,b) \ {a,b} = U + V, wvhere U # @ and V # @.

Then U = U v {a,b} and V = v v {a,bl}.

Moreover, both T and V are connected.

{a,b} is not connected. Contradiction.

However, U n V

(iii) Since X is T1, this assertion follows immediately from the fact that

K(a,b) = L(a,b) U {a,b} is closed and connected.

THEOREM 18. In a connected T,-space X:
(Int') == (B'C).

PROOF. Let C be a component of X \ p and let r € C.
Then L(r,p) U r is a connected subset of X \ p. Thus L(r,p) U r © C. Hence,

p € L(r,p) < C.
THEOREM 19. In a connected T,-space X:
(Int") = (B'0).

PROOF. Let C be a component of X \ p and suppose that C is not open in X.
. * . ey s . .
Since (Int ) == (W) it follows from Prosition 11 that C is closed in X.

Since (Int*)====> (Int') this contradicts Theorem 18.
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THEOREM 20. In a connected T1-space X:
(Int*) — (S).

PROOF. Let a,b € X (a # b).

Since a,b € C(a,b) and since C(a,b) is connected, it follows that C(a,b)
has infinitely many points. From (Int*) == (B'0), and from Lemma 16 we
conclude that S(a,b) contains infinitely many points. Hence E(a,b) # @,

which means that there exists a point ¢ € X separating a and b.

THEOREM 21. In a connected T,-space X:
(Ht) + (Int') == (0).

PROOF. Since (Int') =—=> (B'C) (Theorem 18), (B'C) + (Ht) —= (Hp)
(Proposition 3.21) and (H) + (B'C) == (0) (Theorem 3.9) it suffices to
show that (Hp) + (Int') == (H). Suppose, to the contrary, that X does
not satisfy property (H). Then, by Theorem 3.18, X is a non-orderable
eyclically orderable space. Hence, by Theorem 3.12, every point of X is an
endpoint, and X \ {x,y} is disconnected for all x,y € X (x # y).

Let p,q € X. Then X \ {p,q} = A + B, where A # @ and B # §. A = A u {p,q}
is connected and B = B u {p,q} is connected. However, A n B = {p,q}, which
contradicts (Int').

REMARK. Since a cyclically orderable space satisfies property (Ht) it
follows from Theorem 13 and Theorem 21 that a non-orderable cyclically
orderable connected T, -space does not satisfy condition (W) or condition

1
(Int').

THEOREM 22. In a connected T,-space X:
(Int') + (W) == (B'0).

PROOF. (Int')==> (B'C) (Theorem 18) and (W) + (B'C) =—= (B'0)
(Theorem 12).

PROPOSITION 23. 4 connected T,-space X satisfies (Int) 2f and only if for
every a,b ¢ X (a # b): S(a,b) Zs connected.



PROOF.

(i) Let X satisfy (Int). Then C(a,b) is connected. Applying Theorem

Lemma 16 and Theorem 19 we conclude that S(a,b) is connected.

(ii) ©Let S(a,b) be connected for every a,b € X (a # b).
Let {ca}aeA be a collection of connected subsets of X. Suppose that

n C_1is not connected. Then we have n C, = A + B, where A # @ and
aeh . oe€A
B# (. Let a € A and b € B. A point p separating a and b is contained

every connected subset of X containing both a and b. Hence :

S(a,b) € n Cy
o€

Consequently, S(a,b) = (S(a,b) n A) + (S(a,b) n B), which contradicts the

a b
connectedness of S(a,b).

1k,

in

LEMMA 24. Let X be a connected T,-space, satisfying the conditions (Int')
and (W). Let a be an endpoint of X. Let C be a closed connected subset of

X, such that a € C. Then a <8 also an endpoint of C.
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PROOF. Suppose, to the contrary, that C \ a = P + Q, where P # § and Q # #.

Then P = P U a and Q = Q U a are closed connected subsets of X.

Let b € P. Since X(a,b) < P, we have L(a,b) ¢ P. Let S be that compon
of X \ L(a,b), which contains § = Q U a.

S is closed in X. (Otherwise, there exists some ¢ € L(a,b) such that

since § n L(a,b) > {a,c}, this contradicts (W).)

Hence X \ S is non-empty, open and connected, and by (W), 3(X \ S)

=X \ S n S consists of precisely one point. Then clearly (X \ S)

ent

c €

{al}.

Consequently, X \ S is clopen in X \ a. Since S \ a > Q # @, this implies

that a is a cut point of X. Contradiction.

THEOREM 25. In a connected T,-space X:

(Int') + (8) < (Int).

(i) == : (Int) == (Int") —> (Int') (Theorem 14b) and
(Int*) = (8) (Theorem 20).

(ii) = : Let {Ca}aeA be a collection of connected subsets of X.

[2]]
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Suppose n C, =P + Q, where P # @ and Q # 8.
ol
Let p € P and q € Q.

By (Int'), C= n Ea is a connected closed subset of X.
ach
By the definition of K(p,q) : K(p,q) © C.

However, by the connectedness of K(p,q), we have:

K(PQQ) ¢ Pu Q.

We now consider the following three cases:

{r} for some r e X.

a) K(p,a) \ (Pu Q)

b) K(p,a) \ (Pu Q) = {s,t} for two distinct points s,t e X.

e¢) K(p,a) \ (P u Q) contains at least three distinct points of X.
In all three cases we shall derive a contradiction:

a) Suppose that K(p,q) \ (P u Q) = {r} for some r € X:

Then there exists an element ao € A such that r ¢ Ca .

. 0

Let S8 = Ea \ r, then S is connected and § \ S = {r}.
0

Moreover, K(p,q) ¢ § = Ea and
0

K(p,a) \ r = (K(p,a) n P) + (K(p,q) n Q).
P q

Since it is clear that (Int') is a hereditary property for closed connected
subspaces and (S) is a hereditary property for connected subspaces, we now
have the following situation:

§ is a connected T,-space, satisfying (Int') and (S). The point r is an
endpoint of §. K(p,q) is a closed connected subset of S and r is a cut

point of K(p,q). This contradicts Lemma 2L,

b) Suppose that K(p,a) \ (P u Q) = {s,t} for two distinct points s,t e X:
Suppose that for instance s is a cut point of K(p,q).

Let a, € A be such that s ¢ Cao. Let S = an \ s. Then S is connected and
§ \ s = {s}. Moreover, K(p,q) c § and X(p,q) \ s is not connected. This
contradicts Lemma 2k,

Thus we may assume that s and t are endpoints of K(p,q).

If we put P1 = K(p,q) n P and Q1 = K(p,q) n Q then we have:
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K(Pﬁq) \ {SQt} = P1 + Q1-
p q

P1 U s and Q1 U t are connected disjoint subsets of X.

However, P

qusn Q1 Ut = {s,t}, which contradicts condition (W).

c) Suppose that K(p,q) \ (P u Q) contains at least three distinct points

u, v, w of X:

If at least one of these three points is a cut point of K(p,q), then we may
derive a contradiction to Lemma 24 in a similar way to that in case.a) and
b). Thus we may assume that u, v and w are endpoints of K(p,q).

By (S), there exists a point s, € X separating u and v; and 8, # p,q

1
(see Lemma 1T).

Therefore, we have X \ s1 = A1 + B1, where we may assume W € A1.
u v
w
The point s, also separates p and q, since otherwise it easily follows

1

that either K(p,q) < Ay us, or K(p,q) < B, U s,

that both points u and v belong to K(p,q). We may assume p € A

» contradicting the fact

1 and q € B1.

Since clearly K(u,w) < A1 us,, it follows that v ¢ K(u,w).

Now we shall show that also w ¢ K(u,v) and u ¢ K(v,w):
Suppose, to the contrary, that w € K(u,v).
Then K(u,w) < K(u,v) and K(v,w) < K(u,v).

Let 8, € X be a point separating u and w. Then:

X\ 8, = A2 + B2,

u w

and it follows that v € B2, since otherwise K(u,v) < A. U Sy W ¢ K(u,v).

2

Hence u ¢ K(v,w) < B2 U s,

Now, suppose that there exists a point r € K(u,w) n K(v,w) such that r # w.
Then K(u,r) u K(r,v) 2 K(u,v).

Let s3 € X be a point separating r and w. Then:

X\ s3 = A3 + B3.

r w

3 and v ¢ 33 and consequently

w ¢ K(u,r) v K(v,r), which contradicts the assumption that w e K(u,v).

Since r € K(u,w) n K(v,w) we then have u ¢ B
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Hence K(u,w) n K(v,w) = {w}.

This means that w is a cut point of the closed connected subset

K(u,w) U K(v,w) of K(p,q).

Since K(p,q) is a closed connected subset of X and w is an endpoint of

K(p,a), this leads to a contradiction to Lemma 2.

Thus we have shown that w ¢ K(u,v). In the same way it can be proved that
u ¢ K(v,w).

Let 5) € X be a point separating u and w and such that sh.é{p,q,v,si}. Such
a point exists, since, by (S), the set E(u,w) is infinite.

So we have:

X\Shr'Ah"'Bh-

u W

The point 5), also separates p and q (as is seen by a reasoning analoguous
to the one given above for s1).

Suppose first that p € Ah and q € Bh'

Since K(u,p) < Eh =4 U s), and w ¢ Kh we have w ¢ K(u,p).

Since K(v,q) < §1 =B Uus andw ¢ §1 we have w ¢ K(v,q).

But then, by w ¢ K(u,v), K(u,p) U K(v,q) U K(u,v) is a closed connected
subset of X, containing p and g but not containing w, which is a contra-

diction to w e K(p,q).
Next, when we suppose q € Ah and p € Bh we can derive a contradiction to
u € K(p,q) in a similar way (using u ¢ K(v,w).).

This completes the proof of the theorem.

THEOREM 26. In a connected T,-space X:
(Int) = (Int").

PROOF.
(i) == : Theorem 1kb.

(ii) —=: (Int") — (Int') (Theorem 1kb)
(Tnt*) = (8S) (Theorem 20)
(Int') + (S) == (Int) (Theorem 25).
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4,5. SOME REMARKS

1. Some conditions studied in the previous four chapters are hereditary
for connected subspaces, some others are not.

In fact:

(i) The following properties are hereditary for connected subspaces:
(0), (8*), (K), (E)s (P), (H), (Hp), (Hd), (Ht), (Int), (Int*), (Int?2),
(S) and (W).

(ii) The following properties are not hereditary for connected subspaces:

(B), (B'), (B"), (B'0), (B'C) and (Int').
(iii) (Int') is hereditary for closed connected subspaces.

2. Although it is not explicitly stated in all relevant places, it is clear
that a connected orderable space satisfies all conditions (except (V))
occurring in this thesis (while the exceptional condition (V) is never sa-

tisfied in a connected orderable space with more than one point).

3. For convenience we list in the following scheme the implications of the

|

type "o == B", where both o and B stand for precisely one condition

treated in the foregoing four chapters:

(0) = (8') & (K) & (E) & (P)

|

(Int) &= (Int™)
(H) (B)

() ”W)/(S) (8")
| (Int') v L
! )
(Hd) (B")
U
(Ht) (B'0)
\LL
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CHAPTER V
THE LOCALLY CONNECTED CASE

5.1. INTRODUCTION

In the introductary sections of the previous chapters we have already
mentioned that some of the notions we are studying in this thesis also have
been investigated by several other authors, mostly, however, under addi-
tional assumptions, like local connectedness or peripheral compactness.

In this chapter we suppose that the space X under consideration is not only
connected and T1, but also locally connected. Hence it is no surprise, that
many of the following results are well-known. The purpose of this chapter
is to derive these results from the more general theorems obtained in the

previous chapters.

5.2. THE LOCALLY CONNECTED CASE

In this section all spaces are assumed to be locally connected, connected
T

The most important tools in proving the theorems of this section are first-

-spaces, which consist of at least two points.

ly Theorem 1.5, which states that a connected orderable space X is strictly
orderable if and only if X is locally connected, and secondly the impli-
cation: local connectedness ==> (B'0), which is obvious, since in a
locally connected space components of open subsets are open and since all
spaces are assumed to be T1.
THEOREM 1. In a comnected, locally connected T,-space X the following six

assertions are equivalent:

(i) X Zs strictly orderable.
(ii) X satisfies (S').
(iii) X Zs a (K)-space.
(iv) X Zs an (H)-space.
(v) X Zs an (E)-space.

(vi) X Zs a (P)-space.

PROOF. Immediaste from Theorem 1.5, and Theorem 2.3, Theorem 3.9 and
Theorem 3.22.
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REMARK. The following parts of Theorem 1 are well-known:

a) (i) <= (iii), (see H.-J. Kowalsky [21] for the separable case and

Kowalsky [22], Satz 15.5 for the general case).

v) (i) == (iv) , (see H. Herrlich [11], p. 42 and Herrlien [12],
Satz 1).

¢) (i) <= (v) , (see S. Eilenberg [8] and the Introduction of the
paper by B. Banaschewski [1]).

(The equivalence of (0) and (S') in connected T,-spaces was observed in a

paper by R. Duda [7]).

1

THEOREM 2. In a connected, locally connected T,-space X having at least one

cut point:
X satisfies (Ht) <— X is strictly orderable.

PROOF. Theorem 1.5 and Theorem 3.10.

THEOREM 3. In a connected, locally connected T,-space X the following five
assertions are equivalent:

(i) X <8 non-orderable, and strictly cyclically orderable.

(ii) X Ze an (Hp)-space, but not an (H)-epace.

(iii) vx € X : X \ x Z8 connected and ¥x,y € X (x # y) : X \ {x,y} Zs dis-

connected.
(iv) X s an (Ht)-space, such that : vx € X : X \ x i8 connected.

(v) The complement of every comnected subset of X is comnected.

PROOF. Theorem 3.17, Theorem 3.12, Theorem 3.18, Theorem 3.19 and Theorem
3.20.

THEOREM 4. In a connected, locally connected T,-space X:
(Int) <= (S).

PROOF. See Whyburn [28], Theorem 9.3.
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THEOREM 5. In a comnected, locally connected T -space X:
(Int) == (§) == (Int') = (Int?) <= (W).

PROOF.
(i) (Int2) <= (S): see Whyburn [28], Theorem 9.1.

(ii) (W) == (S): (see also Bfouwer [21):

Let p and q be two distinct points in X.

Let U and V be two disjoint open connected neighbourhoods/of p, resp. q.
Let A be the component of X \ U that contains q (and hence V). Then A is
open in X. Since X \ A is connected there exists, by property (W), exactly
one point r € A \ A. Hence A is clopen in X \ r, which means that r sepa-

rates p and q.

(iii) (Int') == (Int):

Let p and q be two distinct points in X.

Recall that K(p,q) denotes the intersection of all closed connected sub-
sets of X containing p and q, while C(p,q) denotes the intersection of all
connected subsets of X containing p and q. Then K(p,q) is closed and con-
nected. Moreover, C(p,q) < K(p,a). We have to prove the connectedness of
C(psq). In fact we will show that C(p,a) = K(p,q).

Suppose, to the contrary, that there exists a point r ¢ K(p,q) such that

r ¢ C(p,q). Then there exists a connected subset S ¢ X such that p,q € S,
but r ¢ S.

For every x € S let Ux be an open connected neighbourhood of x such that

r ¢ ﬁx'

Then {Ux}xes

a simple chain Ux seeens ,Ux from p to q.
1 n
The union of the members of that chain is connected, contains p and q, but

is an open covering of the connected set S, hence there exists

its closure does not contain r. Hence r ¢ K(p,q).

REMARK. It is not possible to replace "T." by "T1" in the previous theorem.

2
In fact, in connected, locally connected T1-spaces none of the following

implications is true:

(Int') == (Int 2) (see example 28)
(Int 2) == (Int') (see example 27)
(Int') == (W) (see example 28)

(W) = (Int') (see example 27).
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However, we were not able to solve the following problems:

(i) Is it true that in a connected, locally connected T,-space X property
(W) implies (Int2) 2

(ii) Is it true that in a connected, locally connected T
ties (W) and (Int') together imply (Int2)?

1-space X proper-

Even if we drop the condition that X be locally connected we could not find
-space X which satisfies (W) and (Int'), but
which does not satisfy (Int2). We conjecture that the answer to the last

an example of a connected T

problem is negative.

THEOREM 6 (cf. V.B. Buch [5], Theorem 1). Let X be a comnected, locally
connected T,-space, eatisfying condition (B) and having no endpoints. Then
X Zg strictly orderable.

PROOF. Theorem 1.5 and Corollary L4.2.2.

5.3. JONES' CONDITION OF LINEARITY

In 1939 F.B. Jones introduég@ in [17] the concept of linearity for Haus-
dorff spaces. We recall his definition:

A topological space X is called limear if every point of X has a local base
of open sets, each of which has at most two boundary points. In this

section we will show that a linear, connected T,_-space is strictly order-

able or strictly cyclically ordersble. This geniralizes Theorem 11 of [17],
which asserts that a nondegenerate connected linear Moore space is a simple
continuous curve.

For the proof of our theorem we need the following results from Jones'

paper:

(a) A linear, connected T,~-space is locally connected (cf. [17], Theorem

L),

2

(b) If C is an open connected subset of a connected, linear T -space, then

C has at most two boundary points (cf. [17], Theorem 5).

PROPOSITION 7. In a connected T,-space X:

linear <> (Ht) + local connectedness.
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PROOF.

(i) =——> : Suppose, that C is a connected subset of X with endpoint
triple {p,q,r}. Let S be the component of X \ {p,q,r} containing the con-
nected set C \ {p,q,r}. By .(a), S is open in X. However, since p,q,r € C,

we have p,q,r € 8 \ S, which contradicts (b).

(ii) === : Let p € X and let U be an open subset of X containing p. Since
X is locally connected there exists an open connected subset of X such that

p e Sc U. By (Ht), S can have at most two boundary points.

THEOREM 8. A conmnected T, -space X 18 linear if and only if X is strictly
orderable or strictly cyclically orderable.

PROOF .

(i) Let X be strictly orderable. Then, by Theorem 1.5, X is locally con-
nected and X is certainly an (Ht)-space.

Let X be a non-orderable strictly cyclically orderable space. By Theorem
3.16 and 3.19 it follows that X is again a locally connected (H%)-space.

(ii) Let X be a linear connected T,-space. Then, by Proposition T, X is a
locally connected (Ht)-space.

If X has at least one cut point, then X is strictly orderable, by Theorem 2.
If X has no cut points, then, by Theorem 3, X is strictly cyclically order-
able.

REMARK. Theorem 8 does not hold for connected T1-spaces. See example 27.
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CHAPTER VI
COUNTEREXAMPLES

6.1. INTRODUCTION

In this chapter we describe a number of counterexamples. Each of these
examples is accompanied with two sets of properties (out of those studied
in the previous chapters). The first set consists of properties which are
satisfied by the example under consideration; the second set consists of
properties which are not satisfied. (Only in non-trivial cases we include
a proof of the fact that a specific property is satisfied or not).

The list of counterexamples given in section 6.3 is almost complete, in
the following sense: except for a few cases all possible combinations of
the studied conditions are investigated, and all implications which have
not been proved in the foregoing chapters are refuted by a counterexample.
Only a few questions remain, namely the questions mentioned in the Remark
following Theorem 5.5 and related questions, such as: is a connected
T,-space satisfying (W), (Int') and (B) an (Int 2) -space or not?

6.2. BICONNECTED AND WIDELY CONNECTED SPACES

A topological space X is said to be bicomnected if X is connected and if X
is not the union of two disjoint connected subsets consisting of more than
one point (see [20], p. 214). A topological space X is said to be widely
connected if X is connected and if every connected subset consisting of
more than one point is dense in X (see [27], p. 25h4).

It is easy to see that a space X is biconnected if and only if X is con-
nected and does not contain two disjoint connected subsets consisting of
more than one point.

Now it is clear that a biconnected T -space is a (W)-space and that a wide-

1

ly connected T -space satisfies condition (Int').

1
6.3. LIST OF COUNTEREXAMPLES

All spaces Xi (i = 1525044,50) listed below are connected T, -spaces.

1

1. X, = {(x,y) € 1° | (IneXN_ : x=ny) v (y =0)} with the subspace to-

1 0
pology of B°. (I is the closed unit-interval and N =N v {o}).
X1 is a T -space and satisfies (Int'), but satisfies neither (B'0), (W) nor
(Ht).
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2 .
2. X, = {(x,y) €e I | In €N, : x= ny} with the subspace ‘topology ofiRe.

X2 is a Te—space and satisfies (Int), but satisfies neither (B") nor (HZf).

3. X
3
X is a T_-space and satisfies (Int) and (B"), but satisfies neither (B')

nor (Ht).

{(x,y) € R | xy = 0} with the subspace topology of B°.

L, X, = {(x,y) « R | NC y2 = 1} with the subspace topology of R°.

X, is a T,-space and satisfies (B) and (Hp), but satisfies neither (W),
(Int') nor (H).
5. X5={(x,y)€]R2|OSxS1A [yl < 1} n (x3uxh).

X5 is a Tg-space and satisfies (B), but satisfies neither (W), (Int') nor

(Ht).

6. Xg =X, U {{x,y) € R | x = 1} with the subspace topology of:Be.

Xg is a T -space and satisfies (B"), but satisfies neither (B'), (W),

(Int') nor (Ht).

Te X7 is the space obtained by identifying the point (0,0) of X, with a
point of Xh'

X7 is a T -space and satisfies (B'0), but satisfies neither (B"), (W),
(Int') nor (Ht).

8. Xg is the space obtained by identifying the point (0,0) of X with a
point of Xh'
X8 is a T2-space and satisfies (B'C), but satisfies neither (B'0), (W),

(Int') nor (Ht).

9. X9 = X2 u {(3,0)} with the following topology:
Every z € X9 with z # (3,0) has the usual relativized Euclidean neighbour-
hoodsystem. For zy = (3,0) we define a local base B as follows:

Let 0m = {z € R2 | a(z,z.) < %}, where m € N and d is the usual Euclidean

0
metric.

Let F be a free ultrafilter on N.

Let 8 = {(x,y) € 1° | x = ny}, where n € N,

For F e F and m € IN let

Bp, = U (5, n0)u {(3,0)}.
neF

Then put

B = {BFm | Fe FAmeN}.
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X_ is a T_-space and satisfies (Int?2), but satisfies neither (B'C) nor

2
(Ht).

10. X0 =X, U {(3,0)} with the subspace topology of .

X0 is a T,-space and satisfies (W), but satisfies neither (B'C), (Int2)

nor (Ht).

1. X11 is the biconnected space of Knaster and Kuratowski [20], p.241.

X is a Te-space and satisfies (W), but satisfies neither (B'C), (Int?2)
nor (Ht).

12. X,, is the (V)-space, constructed in [151].

12

X5 is a T,-space and satisfies (H) and (W), but satisfies neither (B'C)

nor (Int?).
REMARK. Every (V)-space satisfies (H) and (W), as was proved by Brouwer in
[2] and [3].
13.

X .
12
set of natural numbers, and let P ¢ NN be the set of prime numbers.

X13 is the space X constructed below. It is a modification of the space

The construction of this space is due to A.E. Brouwer. Let N be the

Let B = {Ba}aeA be an ultrafilter on N, containing the sets of the form
lneW | n2 no} for every n_ € N.

0
Put X = {0} v ( uN").

elN .
n 21ifx =0

For x € X we define : length x = n
n+2if x el .

We define a partial order < on X by taking 0 £ x for all x e X and x £ y

if x is an initial segment of y, i.e. if x e I, y el\lm, n <m and

*)

X = (a1,.....,a.n), y = (a1,.-....,an,.....,am), where &, ,.....,a €X.
We write x < y if x £ y and x # y.
Ifn 22 and if x = (a1,.....,an) el\In, then let x' = (9.1,.....,an_1); if

x = (&), then let x' = 0. (0' is not defined).
If x = (800058 ) € T° then %€ ¢ N1 is defined by xT = (8y500eeest st).

In the same way 'xtk ¢ *2 is definea by "xtk' = (a1,.....,a.n,t,k).

*)

for typographical reasons we use the same symbol < both for the usual
ordering of the natural numbers and this partial ordering. Confusion
seems unlikely.



Th

We introduce a topology in X by taking as a subbase for the open sets all

sets

(i) {zex | BkeBa : 3t e N : xtk* < z} u {x)} for each x € X and each
o € A. )

(ii) {ze X1 x¥ 2z Az #x'} for each x € X \ 0.

(iii) {z € X | p € P divides length z=>p ¢ {p1,...,pn}} for each finite

set of primes PyseesP -

(It follows easily from (i) that for instance each set of the form

{z e X | x <z} is open.)
PROPOSITION 1. X <8 a Hausdorffepace.

PROOF. Let u,v € X. We consider three cases:
(a) u<v'.
(b) u=v'.
(c) u and v are not comparable.
(a) In this case {z e X | v$ 2 A 2z # v'} and {z € X | v < 2} are disjoint
open neighbourhoods of u and v, respectively.
(b) In this case length v = length u + 1, so
{z ¢ X | pe P divides length z=>p divides length u’}
and {z € X | p € P divides length z=>p divides length v}
are disjoint neighbourhoods of u and v, respectively.
(c) Here {z € X | u < 2z} and {z € X | v < 2} are disjoint neighbourhoods
of u and v, respectively.

PROPOSITION 2. Each connected set C < X containing O 78 closed.

PROOF. Let u € X \ C and suppose that {z ¢ X | u$ 2z} ¢ X\ C. Thenu <y

for some y € C. But then
u = (a1,...,an), y = (a1,...,an,...,am) and

C=(cnfzexlma,, sz})+(cnfzex I’EE;+1 £z Az #ul)

X n+1
y 0
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which contradicts the connectedness of C.

PROPOSITION 3. Let C be a connected subset of X consisting of more than one
point.

(i) IfuecCandu' ¢ C for someue X\ O, then Cc {z e X | us< z}.
(ii) If {psql c Cand p <q, then {z e X | p <z < q} < C.

(iii) C contains at least two comparable points (and hence at least a pair

(u',u)).
(iv) ¢ does not have maximal members.

PROOF.

(i) Letu e C and u' ¢ C, then

c=(Cn{z 1 u<zl)+(Cn{zlufzaz#ul),
u

hence Cn {z | u< z} = C.

IA

(ii) Let {p,q} © C and p < q. Suppose A = {z | p £ z < q} ¢ C. Then there
exists an element u € A n C such that u' ¢ A n (X \ C). Consequently, by
<

(i), we have C < {z | u < 2z}, which contradicts p ¢ C.

(iii) Let u e C and suppose u' ¢ C.
Then, by (i), C € {z | u £ z}. Hence, there exists an element v € C such
that u < v. (From (ii) it follows that the pair (v',v) belongs to C.)

(iv) Suppose w ¢ C is a maximal member of C.
Then C n {z | w £ z} = {w} is a clopen subset of C, which contradicts the

connectedness of C.

PROPOSITION 4. For every u e X \ 0, u and <ts predecessor u' do not have
disjoint closed neighbourhoods. That is, X 18 a non-Urysohn space.

PROOF. Let u = (a1,...,a1).
For each x € X, each o € A and each finite family {x1,...,xn} such that
x5 4 x and x # xi we define the following neighbourhood of x:

U(x3a3x ..,xn) ={z]lz=xv (ke Ba : 3t e N :'xtk € z)} n

1°°

n{z | vp e P: (p divides length z == p divides length x)} n



>
nos

{z | x.tzvVvaz#x'l}.
. i i
i=1

It is clear that if the XyseeosXy and o vary we obtain a neighbourhoodbase
of x.

For x = (b1""’bn) we put max X = max {b1,...,bn}.

Now, let U(u'ja;x ..,xn) and U(u;B3x ..,xm} be two basic neighbour-

1°° n+1*’

hoods of u' and u, respectively.

Choose N 2 max {max x5 | 1= 1,.;.,m} + 1 such that N € Ba n BB'

Put L = (length u) x (length u') - 2 = (1+2)(1+1)-2 = 1(1+3) = 1 + 3.
v = (a1,...,a1,N,N,...,N) € ]\IL.

We will show that

v e U(u';aszx ..,xn)— n U(u;B;xn+1,...,xm)*.

1°°

Let U(v;y;xm+ ,...,xk) be an arbitrary basic neighbourhood of v.

1
Choose N' 2 max {max X | i=1,...,k} + 1 such that N' € BY'
Let p,q € P be such that p divides length u', q divides length u and choose

r € N such that pr >L + 1 and qr > L+ 1.

Then, if
Fo2
5, = (81500058 NN, 0 0N, N0, NY) e T %,
AV “ /
L numbers
and qr_2
s, = (a1,...,a.l,N,N,...,N,N',...,N') eN ,
A" v— 7
L numbers
we have
s, € U(u';u;x1,...,xn) n U(v;Y;xm+1,...,xk)
and

s, € U(u;B;xn+1,...,xm) n U(v;Y;xm+1,...,xk),

proving the assertion.

PROPOSITION 5. X 28 connected.



7

PROOF. Suppose X = A + B, where O ¢ A and B # . Let y € B be such that
length y is minimal in B.
Then y' € A, and A and B are disjoint closed neighbourhoods of y and y',

which contradicts Proposition k.
PROPOSITION 6. Each comnected subset of X has at most one endpoint.

PROOF. Let D be any connected subset of X. Let u € D and suppose that
C =D\ uis connected.

For each a € N it then follows from
C=(cnf{z |ua<z})+(Cniz |TastzAz#ul)

that at least one of both summands is empty.

Hence, for all a e W,

Cciz |wa<z} ..... (1)
or
Ccl{z |TWatzAaz#ul..... (2).

If (2) applies for all a € N, it follows that {z | u £ z} < X \ C, so that
u ¢ C, which contradicts the connectedness of D.

Hence it follows that (1) applies for at least one a e N.

If v is another endpoint of D, it follows similarly that

(CUu)\v=D\VC{zI/v_t>\5z}forsémebell.

This is a contradiction, since vb % u.
PROPOSITION T. A subset C c X ig8 connected iff

a) (xeCAXt e C=—> JoacA: B < {k e N |"xtk' e C})
and

b) (x€CAXL e C=—= vz e C :’xt < z).

PROOF.

(i) ©Let C ¢ X be connected.
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Suppose x ¢ C and Xt € C. Then, by Proposition 3, (i),
cc iz |"xt's z}.

Now, suppose x € C and‘xt' e C.

Let A =1{k e N |"xtk ¢ C}.

If A¢ BthenN \ A =3B ¢ B and the proof is finished.

If A € B then put

U(xsa) ={x} ulz | 3k e A = B, : s e N :"xsk < z};

V={z |"xt < z};
0=1{z |"xt'¢ z A z # x}.

For every k € Ba we have xtk ¢ C.
Hence, by Proposition 3, (ii), for every z € C : 'xtk % z.
Consequently, U n V = §.

But then we have

c=((Uuo)nc)+(vnec),
x Xt

which contradicts the connectedness of C.

(ii) Let C c X be a set satisfying a) and b).

We may assume that C contains at least two points. From b) it easily
follows that there exist two elements x and’xt in X such that x € C and
At e C.

By choosing the element v in the proof of Proposition 4 such that v e C
(which is possible by a)), it follows that x and’xt do not have disjoint
closed neighbourhoods in the relative topology of C.

Now, suppose C = A + B, where both A and B are non-empty.

Let y € A be such that length y is minimal in A.

Let z € B be such that length z is minimal in B.

If length y = length z it follows that y' ¢ C and that y and z are not
comparable, which contradicts b).

Hence we may assume length y < length z.

Again by b) we have z' € A. This means that z and z' have disjoint closed

neighbourhoods in C. Contradiction.
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PROPOSITION 8. X satisfies (Int?).

PROOF. Let C1 and C2 be connected subsets of X.

Suppose Xt € C1 n 02 for some x € X and some t € N.

If xe Con 02 then Ja : B < {k e W | 5tk ¢ c1}
I8 : By © {k e W | xtk € c2}
Jy : BY c Ba n 36'
Hence, 3y : BY c {k e N |xtk‘e C1 n 02}.

If x ¢ C, n C, then for instance x ¢ C, and vz € C, :'xt < z.

2
Hence, for every z e Cyn 02 :xt < z.
By Proposition T it follows that C1 n 02 is connected.

From the foregoing propositions it follows:

X13 is a T2-space and satisfies (IntZ) and (H), but does not satisfy
(B'C).

14, X1h is another modification of example 12.

Let X1h be the disjoint union
= [
Xy {0'} v X, U {p},

with topology determined by the following requirements:

As a subspace, has its own topology and X,, is an open subset of X1h'

X2 12

The sets (U(0) \ {0}) u {0'} form an open neighbourhood-basis for 0',

where the sets U(0) are taken from an open neighbourhood-basis of 0 in X

If X5 \ {0} =i§m C, is the decomposition of X5

then U C, U {p} is a basic open neighbourhood of p (n = 1,2,3,¢0.).
i>n

(Notice that each C; is open in X12.)

X, is a T,-space and satisfies (Ht), but satisfies neither (B'C), (Hd)

nor (W).

12°
\ {0} into components,

15. X15 = {(x,y) e R | y = sin % and x > 0} v {(0,1),(0,-1)} with the sub-
space topology'ofiﬁz.
X15 is a Tz—space and satisfies (B) and (Int?), but satisfies neither

(Ht), (Int') nor (8).

16. X = X15 u {(x,y) ¢ R | x = 1} with the subspace topology of B°.

X6 is a T,-space and satisfies (B") and (Int?) , but satisfies neither

(Ht), (Int'), (S) nor (B').
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17. x1 is obtained by identifying the point (0,0) of X, with a point of

T 2

X, .

15 .

X17 is a T2—space and satisfies (Int?) and (B'0), but satisfies neither
(Ht), (Int'), (S) nor (B").

18. X8 = {(xéy) e 1° ! (% eN) V(y=1) Vv (x=y=0)} with the subspace
topology of R™.

X,g is a T,-space and satisfies (B") and (W), but satisfies neither (Ht),
(Int2), (S), (Int') nor (B').

19. X1 is obtained by identifying the point (0,0) of X, with a point of

9 2

X, oe
18

X,g is a T,-space and satisfies (B'0) and (W), but satisfies neither (Ht),
(Int2), (S), (Int') nor (B").

20. X,0 = X \ {(0,1)3.
X,. is a T -space and satisfies (B") and (S), but satisfies neither (H%),

20 2
(Int2), (Int') nor (B').

21. X21 is the space of example 20, but with ultrafilterbasistopology at

the point (0,0). (cf. the point zy
X,, is a T,-space and satisfies (B"), (S) and (Int?), but satisfies
neither (Ht), (Int') nor (B').

of example 9.)

22, X_. is obtained by identifying the point (0,0) of X

50 with a point of
X

2
21"

X, is a T,-space and satisfies (S) and (Int?), but satisfies neither

(Ht), (Int') nor (B").

23. X, is obtained by identifying the point (0,0) of X, with a point of

X

3 2

20°

X23 is a Tg-space and satisfies (S), but satisfies neither (Ht), (Int'),

(Int?) not (B").

2L, X, = X, \ {p}.

X,), is a T,-space and satisfies (H), but satisfies neither (W) nor (B'C).
25. X25 is obtained by identifying the basic point of X12 with a point of
Xh'

X25 is a T2-space and satisfies (Hd), but satisfies neither (Hp), (B'C)
nor (W).

26. Let I,, I, and I3 be three copies of the unit-interval I. Identify the

1 72
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left-endpoint of I,, I, and I3, respectively with the point (1,0), the

point (0,1) and the point (-1,0) of X),» respectively. Let X

thus obtained.

o6 be the space

Xog is a T2-space and satisfies (B'), but satisfies neither (HZ), (W),
(Int') nor (B).

27. Let I be the closed unit-interval.

Let X27 be the disjoint union {0'} U I with the following topology:

As a subspace I has its own topology and I is an open subspace of X27.
If 0' € U(0') < x27, then U(0') is an (open) neighbourhood of 0' iff
(u(o') \ {0'}) v {0} is an (open) neighbourhood of O in I.

X27 is a locally connected T,-space and satisfies (B) and (Int?), vput
satisfies neither (Ht), (Int') nor (S).

28. X28 = N with the cofinite topology. Then X 8 is a widely connected,

2
locally connected space.
X0 is a T -space and satisfies (B) and (Int'), but satisfies neither (HZ)

nor (W).

29. x29 = {(x,y) ¢ R’ | (y = sin % Ax>0)V (-1<ys+1Ax=0)}with

2
the subspace topology of R .

X,q is a T,-space and satisfies (B) and (Int'), but satisfies neither (H%)

nor (W).
30. x30 =N with the following topology:
Ir B = {Ba}aeA is a free ultrafilter on N we take for open sets the empty

set and the elements of B.

For each U © X__ the following four conditions are equivalent:

30
(1) U #8 .
(ii) u=U #¢
(iii) T = X35

(iv) U is connected and U contains at least two points.

Hence, is a locally connected, widely connected and biconnected space.

%30

X30 is a T,-space and satisfies (Int2), (Int') and (B), but satisfies

neither (Ht) nor (S).

31. X31 is the subset of the plane constructed by E.W. Miller in [23].
(For a short description of this example see Steen and Seebach [26],

example 131.) X31 is a biconnected space without dispersion point (i.e. a
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point p such that X_., \ p is totally disconnected) which is also widely

connected. Since a g;connected space without dispersion point clearly
cannot contain any cut point it is easily seen that:

X31 is a T,-space and satisfies (W), (Int') and (B), but satisfies neither
(Ht) nor (S).

REMARK. We do not know whether or not X31 satisfies (Int?). (When it is

true that X31 does not satisfy (Int2), this answers in the negative the

last question in the Remark following Theorem 5.5.)

32. LetX32={(x,y)€]R2|(y=0A0<xS1)V

V(y=1/\0Sx<1)V(y=2AO<x<1)}

with the following basic neighbourhood system:

U;(2,0) = {(2,0)} U ([a = $,8) x {0,1})

U, (a,1) = {(a,1)} U ((a,a + 11 x {0,1})

U, (2,2) u%w}uuu_%m)umﬂ+%nx{mn)

(i = 1,2,3,...)

'

X32 is a T1-space and satisfies (B) and (W), but satisfies neither (HZ),

(Int2), (Int') nor (S).

33. X33 is obtained by identifying the left-endpoints of three copies of

the unit-interval I with three distinct endpoints of X32, respectively.
X33 is a T,-space and satisfies (B') and (W), but satisfies neither (HZ),
(Int2), (Int'), (S) nor (B).

3k. X3h is obtained by identifying the left-endpoints of three copies of
the unit-interval I with three distinct points of X28’ respectively.

X3, is a locally connected T -space and satisfies (Int') and (B'), but

1
satisfies neither (Ht), (W) nor (B).

35. X35 is obtained by identifying the left-endpoints of three copies of

the unit-interval I with three distinct endpoints of X29, respectively.
X._ is a T, -space and satisfies (Int') and (B'), but satisfies neither

35 2
(Ht), (W) nor (B).
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36. X36 is obtained by identifying the left-endpoints of two copies of the

unit-interval I with the points O and 0' of X.,, respectively.

27
X36 is a locally connected T,-space and satisfies (Int2) and (B'), but

satisfies neither (Ht), (Int'), (S) nor (B).

37. X37 is obtained by identifying the left-endpoints of two copies of the
unit-interval I with the points (0,1) and (0,-1) of X15, respectively.
X3 is a T2-space and satisfies (Int2) and (B'), but satisfies neither

(Ht), (Int'), (S) nor (B).

38. X38 is obtained by identifying the left-endpoints of three copies of
the unit-interval I with three distinct points of X30, respectively.

X38 is a locally connected T1-space and satisfies (Int?), (Int') and
(B'), but satisfies neither (HL), (S) nor (B).

39. X39 is obtained in an analogous way from X31.

X39 is a T,-space and satisfies (W), (Int') and (B'), but satisfies

neither (Ht), (S) nor (B).

4o. X0 is obtained by identifying the point (0,0) of X_ with a point of

3
X28'
XhO is a locally connected T1-space and satisfies (B") and (Int'), but

satisfies neither (Ht), (W) nor (B').

b1, X, is obtained in an analogous way from X29.
X, is a T,-space and satisfies (B") and (Int'), but satisfies neither

(Ht), (W) nor (B').

4o, Xh2 is obtained in an analogous way from X o
X, is a locally connected T, -space and satisfies (B"), (Int?) and (Int'),
but satisfies neither (Ht), (S) nor (B').

43, X5
X3 is a T,-space and satisfies (W), (Int') and (B"), but satisfies
neither (B'), (Ht) nor (S).

is obtained is an analogous way from X31.

Lk, X)), is obtained by identifying the point (0,0) of X

X g

28
X)), is a locally connected T -space and satisfies (B'0) and (Int'), but
satisfies neither (Ht), (W) nor (B").

> with a point of

Ls. th is obtained in an analogous way from X29.
th is a T,-space and satisfies (B'0) and (Int'), but satisfies neither
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(Ht), (W) nor (B").

46. Xh6 is obtained in an analogous way from X30.
X6 is a locally connected T -space and satisfies (Int') and (Int2) , but
satisfies neither (Ht), (S) nor (B").

b7, Xh7 is obtained in an analogous way from X31.
X, is a T -space and satisfies (W) and (Int'), but satisfies neither
(Ht), (S) nor (B").

48. X8 is obtained by identifying the point (0,0) of X_ with a point of

KXo

27

X8 is a locally connected T,-space and satisfies (Int2) and (B"), but
satisfies neither (Ht), (Int'), (S) nor (B').

3

with a point of

49, Xh9 is obtained by identifying the point (0,0) of X,

X\
27
th is a locally connected T,-space and satisfies (Int2) and (B'0), but

satisfies neither (Ht), (Int'), (S) nor (B").

50. XSO = {(x,y) e R | y = sin %~A x > 0} u (-1,0] x {0} with the relative
topology of the pléne.

X50 is an orderable space which is not strictly orderable.

In the following table we indicate schematically which properties are
satisfied (+) and which are not satisfied (-) by each of the counterexamples

listed above:
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(B'") 1 IR I I AR E A e R R e A A I I I I I I I A
(B) 1 vpnfefau o afafaf o uf o el efap ol oo f+
(Ht) 1 AR N I I R A O I I R N I nne.
(Hd) 1 IR AR I I I I R I I I O R R I R I e
(Hp) 1 IR I I I R I I I I I I I e
(H) 1 IR I NN,
(0) 1 vpeppepaepaofapafepopalafalafaofopaafoafal o afap ol of ool ol afafafofa] o]+

- b ] 3 o ) 0 e o e o o K e K B e A e s e
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ordering, 4
cyclic ordering, 6
conjugated, 9
connected intersection property, U43
cut, 3
cut point, 9
cyclic ordering, 6

cyclically orderable, 6
dispersion point, 81

(E), 15

E(a,b), 10
endpoint, 9
endpoint pair, 9
endpoint triple, 9
endset, 9

gap, 3
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(Int), L3
(Int*), 143
(Int'), b3
(Int2) , 43
interval
open, 3
closed, 3
degenerate, 3
in a non-orderable, cyclically orderable space, 8

inverse of a cyclic ordering, 8

J(a,b), 8
Jump, 3

(K), 15
k(a,b), 10

L(a,b), 58

linear, 69

neighbours, 3
left neighbour, 3
right neighbour, 3

non-cut point, 9

(0), 15
orderable, U

order-complete, 3
(P), 19

randendlich, 20

(8), 43
(8'), 15
8(a,b), 10
segment, 9

separates points, 9
separation, 9

separation ordering, 10



strictly cyclically orderable, 6
strictly orderable, U

strong cut point, 9
tree-like, 43
V), 39

(W), 43

widely connected, T1
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