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INTRODUCTION 

This tract contains the results of investigations we made into a prac

tical statistical situation. Our aim has been to make the results actually 

accessible to practicing statisticians. Therefore we give for instance sev

eral methods to compute (approximate) critical values for the test-statis

tics that occur. 

The practical situation concerns the detection of differences of pref

erences or aversions between individuals when the observations are the (re

peated) choices they have made. Suppose for instance that n persons may 

choose from k brands of chocolate. All persons may have the same absolute 

preferences, possibly changing in time, for special brands, but it is the 

difference between the persons with respect to these preferences that we 

wish to detect. (The title of this tract might thus have been "Tests for 

differences of preference"). 

The practical problem and the statistical solution of it are outlined 

in chapter 1, which gives the practicing statistician all the information 

he needs to apply the test. 

The basis of the solution of the problem is a vector of observable 
+ 

random variables,!*' of which the asymptotic normality is established un-
+ 

der certain conditions. (Section 4.2). The class of quadratic forms in!* 

+ + I T = {t'Qt Q non-negative definite} 
-* -* 

is then considered as a possible class of, in practice, useful test-statis

tics. The use of quadratic forms is given extensive intuitive (section 2.1) 

and theoretical (chapter 8) motivation. 

Two problems arose in the determination of the asymptotic distribution 
+ + 

of !;Q!*. The first problem was the singularity of the dispersion-matrix 
+ 

of!* (also asymptotically) and the second problem was that the matrix Q 

can be chosen more or less arbitrarily. It could be expected that only for 

some special choices of Q the test-statistic would (asymptotically) have a 
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x2-distribution. Both problems are solved by a theorem (theorem 3.2.1) which 

gives the distribution of a non-negative definite quadratic form in normal 

variables, also in the case that the dispersion matrix of the normal vari-
➔ ➔ 

ables is singular. Using this theorem, asymptotic distributions of !~Q!* 

are determined (both under the null-hypothesis and under alternatives) (sec

tion 4.3). 

A usual method to deal with singularity is to define a transformation 

to a lower dimensional space in which the dispersion matrix of the (trans

formed) variables is non-singular. This usually leads to complicated statis

tics and obscures the working of the tests. Using Rao's theory on g-inverses 

of matrices (RAO (1973)) it is shown that such a transformation is unneces

sary (chapter 6). MADANSKY (1963) used the method of transformation to a 

lower dimension when he proposed a generalisation to Cochran's Q-test 

(COCHRAN (1950)). Both Madansky's and Cochran's test are a special case of 

the tests we investigated (chapter 6). 

Consistency properties and power of the tests from Tare considered in 

chapter 4. The asymptotic relative efficiencies of pairs of tests from T, 

according to Pitman and Bahadur are established in chapter 5. Neither of 

these efficiency concepts gives a clear indication which Q to use when an 

overall type test is desired. 

Therefore, again mostly motivated by intuitive arguments, a x2-type 

statistic is recommended for practical use (section 6.4). The recommenda

tions are supported by the results of simulation which we give in chapter 9. 

It is shown there also that the tests can effectively be directed towards 

a special alternative by a suitable choice of the matrix Q. 

Finally, in order to find a good and simple approximation for the dis

tribution under H0 , the expectation and variance of the test-statistics are 

established for some special choices of Q (chapter 7). 
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CHAPTER 1 

PRACTICE: A RECOMMENDED STATISTIC 

1.1. A TESTING PROBLEM: GENERAL REMARKS 

In this study, we investigate the properties of a class of statistical 

tests for a certain testing problem. As a result of the investigations a 

member of this class can be recommended for practical use. In this first 

chapter, we give the possible user all the information he needs when he 

wants to apply the recommended test. 

A more formal approach is started in chapter 2 and the problem is 

developed further in chapters 3-8. Finally some numerical results are given 

as illustration in chapter 9. 

In this section we begin with the statement of the problem. Although 

the proposed testing procedure is applicable in many other situations, it 

is convenient to adopt the terminology of the following example. This not 

only makes the description of the situation easier, but it is also natural, 

because this investigation was motivated by this example. 

In 1975 KNEEPKENS (1975) wrote a report "De voornaamste kop op de 

voorpagina's van een vijftal landelijke Nederlandse dagbladen in de eerste 

twee maanden van 1964 en 1974", (in Dutch), in which he compared 5 Dutch 

newspapers in 1964 and 1974. In this report, Kneepkens asks the question 

if there exists a statistical test for the following situation. 

'Newspaper' Problem 

Each day, every one of n newspapers chooses a subject for its 'front

page' article from a category of subjects. The different categories are 

elements of a given categorical system 

(1.1.1) C 

On the basis of the observed choices made by then newspapers on m 

different days, we want to find out if there are one or more newspapers 
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differing, more or less persistently from the others with respect to their 

preferences for categories from C. 
Formulated as a testing problem, we would want to test the null-hypoth

esis that the newspapers do not differ among themselves with respect to 

their choices, against the alternative that at least one newspaper has a 

persistent preference or aversion for at least one subject-category. 

Although this is still somewhat loosely formulated, it follows that we 

need to construct an overall-test not unlike Friedman's m rankings test. As 

in Friedman's case, the test that we shall construct is not likely to work 

well against all deviations from the null-hypothesis. 

Now, let's be more specific. The mathematical model that we make for 

the 'newspaper'-problem will be based on the following assumptions 

(1.1.2) the newspapers make their choices independently of each other; 

(1.1.3) the choices which are made on different days are independent. 

Let 

(1.1.4) 

denote an observation on the i'th day, i.e. 

(1.1.5) C (v) is the category that is chosen on the i'th day by 
-i 

the v'th newspaper. 

Introduce the following random variables 

(1.1.6) X,' -J.J 
(V) 

= { 
1 if the v'th newspaper chooses cj on the i'th dayi 

0 otherwise. 

*) and probabilities 

(1.1. 7) (v) g P(x .. (v) = 1) 
pij -J.J 

P(C_(v)=C,), 
-J. J 

*>11 Q_ II 

indicates a definition. 



5 

with 

(1.1.8) 1. 

(When an index is replaced by a"+" sign, we mean that the indexed quantity 

has been summed over that index, i.e. 

We define 

(1.1.9) a .. 
-l.J 

k (v) 
I piJ' i. 

j=l 

i.e. a .. is the number of times that the category CJ. has been chosen on the 
-1.J 

i'th day, and 

(1.1.10) h. (v) d (v) 
-J = :!:+j 

i.e. ~j (v) is the number of times that the v'th newspaper has chosen cate

gory cj. Note that 

(1.1.11) ~j (+) - ~+j. 

Because every newspaper chooses one category at a time, we have 

(1.1.12) - 1. 

The assumptions (1.1.2) and (1.1.3) mean that in our model we must take 

(1.1.13) :!:ij (v) and :!:hl(µ) to be independent whenever if h or v f µ. 

This completes our basic mathematical model. We can now formulate the null

hypothesis in terms of this model 

(1.1.14) (2) 
pij = ••• for all i and j. 

Denote the common value of pi. (v), under H0 , by p ..• It is then clear that 
J l.J 

the model still contains the mxk unknown parameters p ... 
l.J 
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All the unknown (nuisance) parameters p .. , however, can be eliminated when 
J.J 

we condition on the event 

(1.1.15) A A 

where 

~11 ~12 

~21 ~22 

( 1.1.16) A -

~ml ~m2 

and A is a similarly defined m x k matrix which contains the observed values 

of A. 

When we consider the random variables x .. (v), but now conditioned on 
-J.J 

A A, i.e. 

(1.1.17) t .. (v) ~ (x .. (v) IA = A) 
-J.J -J.J -

then the joint distribution of the t .. (v) contains, under H0 , no more un
-J.J 

known parameters. In fact, it is evident that, under H0 , given~= A, all 

the ('generalised') permutations of 

( 1.1.18) 

are equally likely to occur as outcomes of (1.1.4). That is, each 

generalised permutation has (conditional) probability 

(1.1.19) 
ail! ai2! ··· aik! 

n! 

Therefore we can use the observable random variables t .. (v) as building
-J.J 

stones for possible test-statistics. 

Finally we define, analogous to (1.1.10) 

(1.1.20) f (V) ~ t . (V) 
-j -+J 



1.2. PRESENTATION OF THE DATA 

Assume that the matrix A contains the observed values of a ..• Then 
-J.J 

under the condition of the event A= A, we may represent the data as 

follows. 

Table 1.2.1. Presentation of the data. 

newspaper category 

V = j = 

1 2 . n 1 2 k 

1 S:1 
(1) 

S:1 
(2) 

S:1 
(n) 

all a12 . alk 

2 S:2 
(1) 

S:2 
(2) 

S:2 
(n) . . . a21 a22 . . a2k 

. . . . . . 
. 

. . . . . . . 

m C 
( 1) 

C 
(2) 

C 
(n) . am1 am2 amk -m -m -m 

n 

n 

. 

. 
n 

a+1 a+2 . . . a+k mn 

1 
(1) (2) (n) :J. . 

!:1 !:1 . . !: 1 a+1 . 
2 !:2 

( 1) 
!:2 

(2) 
!:2 

(n) . . . a+2 . . . . . . . . 
. . . . . 

k !k 
(1) 

!k 
(2) 

!k 
(n) 

a+k 

m m . . m nm -~-

EXAMPLE 1.2.1. In this example we present the data of 6 Dutch newspapers 

in 1964. 

1 • De Telegraaf 4. Algemeen Handelsblad 

2. De Volkskrant 5. N.R.C. 

3. Het Parcel 6. De Waarheid. 

We consider the following categories 

7 
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cl. Dutch economy c4. America 

c2. Dutch politics CS. Africa & Middle East 

c3. remaining Dutch news c6. remaining foreign news. 

The source of the following table of data is KNEEPKENS ( 1975). 

Table 1. 2. 2. Example of data of 6 Dutch newspapers. 

newspaper category 

date 1 2 3 4 5 6 1 2 3 4 5 6 

2-1-'64 CS cl c4 CS c4 cl 2 0 0 2 2 0 6 

7-1-'64 c6 c6 c6 c6 Cl cl 2 0 0 0 0 4 6 

11-1-'64 c4 c4 c4 c4 c4 c4 0 0 0 6 0 0 6 

17-1-'64 c6 Cl CS CS c6 cl 2 0 0 0 2 2 6 

23-1-'64 cl CS c6 c6 c6 c3 0 1 0 3 6 

29-1-'64 CS CS c6 CS c6 CS 0 0 0 0 4 2 6 

4-2-'64 c3 c3 c3 c3 cl cl 2 0 4 0 0 0 6 

10-2-'64 c3 c3 c3 c3 c3 c3 0 0 6 0 0 0 6 

15-2-'64 c3 CS CS CS c6 cl 0 1 0 3 1 6 

21-2-'64 c2 c6 c6 c6 c6 c2 0 2 0 0 0 4 6 

27-2-'64 c2 c2 c6 c2 c2 cl 1 4 0 0 0 6 

category 11 6 12 8 12 17 66 

1 1 2 0 0 2 6 11 

~ 2 2 1 0 1 6 

3 3 2 2 2 2 12 

4 1 2 1 2 1 8 

5 2 3 2 4 0 1 12 

6 2 2 5 3 5 0 17 

11 11 11 11 11 11 66 

Inspection of the data of example 1.2.1. leads to the following 

remarks. 

i. Between two subsequent days of observation, there are each time four 

days on which no observation was made (not counting sundays). This is 

done to satisfy as good as possible the assumption (1.1.3). 

ii. On 11-1-'64 and 10-2-'64 all the newspapers chose a subject from the 
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same category (c4 and c 3 resp.). Because these observations cannot 

contribute to the detection of deviations from H0 , they are "useless", 

and they should play no role in our procedure. In section 2.5 we shall 

show that we may delete such observations when we use one of the tests 

that we have developed for this problem. 

After deletion of these observations we have 

Table 1.2.3. Data of example 1. 2 .1 after deletion of "useless" obser-

vations. 

newspaper category 

date 1 2 3 4 5 6 1 2 3 4 5 6 

2-1-'64 CS cl c4 CS c4 cl 2 0 0 2 2 0 6 

7-1-'64 c6 c6 c6 c6 Cl Cl 2 0 0 0 0 4 6 

17-1-'64 c6 cl CS CS c6 cl 2 0 0 0 2 2 6 

23-1-'64 cl CS c6 c6 c6 c3 1 0 1 0 1 3 6 

29-1-'64 CS CS c6 CS c6 CS 0 0 0 0 4 2 6 

4-2-'64 c3 c3 c3 c3 cl Cl 2 0 4 0 0 0 6 

15-2-'64 c3 CS CS CS c6 Cl 1 0 1 0 3 1 6 

21-2-'64 c2 c6 c6 c6 c6 c2 0 2 0 0 0 4 6 

27-2-'64 c2 c2 c6 c2 c2 cl 1 4 0 0 0 1 6 

category 11 6 6 2 12 17 54 

1 1 2 0 0 2 6 11 ½ 2 2 1 0 1 1 1 6 

3 2 1 1 1 0 1 6 

4 0 0 1 0 1 0 2 

5 2 3 2 4 0 1 12 

6 2 2 5 3 5 0 17 

9 9 9 9 9 9 54 

1.3. THE 'CONDITIONAL' SITUATION 

Sometimes an experimental setup leads directly to the situation which 

we have in section 1.1 after the conditioning on the event A= A. We mean 

that a researcher may determine the elements of A in advance and perform 
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an experiment in which the outcomes are of the type (1.1.18), which have 

each, under a 1 H0 1 , the same probability. 

Without changing the notation, the random variable t .. (v) would now 
-lJ 

mean 

(1.3.1) 
(v) _ { 1 if in.the outcome on the i'th day Cj is in the v'th 

~ij - place, 
0 otherwise. 

The random variables f. (v) may be defined as in (1.1.20). 
-J 

In fact, once we have conditioned on the event~= A, it is not possi-

ble to discriminate between the two kinds of experiments and the two test

ing problems anymore, apart from the fact that the alternatives we are in

terested in may be chosen differently. This 'conditional' situation will 

be the starting point of the theory in chapter 2. 

We give an example of this situation. 

EXAMPLE 1.3.1. Suppose that a foreman distributes each morning n jobs 

among n workers. Among then jobs are a .. of the kind c., on the i'th day. 
l] J 

We would now want to test the hypothesis that the foreman distributes the 

jobs at random, for instance against the alternative that some worker gets 

jobs assigned to him that are persistently of the same kind. 

1.4. THE PROPOSED TEST 

For the testing problems described in sections 1.1 and 1.2 we pro

pose the following test-statistic 

k (f. 
(v) - a +j) 2 

d n 
( 1.4.1) I I -J n 

V 
a 

j=l v=1 _±1 
n 

If, under the experimental 

been chosen, we have a . = 
+J 

situation of section 1.1 some category has not 

0 and (f. (v) - a ./n) 2 = 0. In those cases we 
-J +J 

define (f. (v) - a+j) 2/ a+j _ 0. 
-J n n 

(V) 
It is easily shown that, under H0 , Ef. 

-J 
has the form of the traditional chi-squared statistic. 

so our test-statistic 

In chapter 4 and 6 we shall show that the asymptotic distribution of 

n~l ~IH0 is in a special case a x2-distribution with (n-1) (k-1) degrees of 

freedom, and in general the distribution of a linear combination of indepen-
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dent x2-variables. In both cases the following approximation is an improve

ment on these asymptotic distributions. 

Approximate c~ by a x2-distribution with n degrees of freedom, where 

c and n are determined such that, under H0 , 

( 1.4. 2) Ecv cEv n 

and 

(1.4.3) o 2 (cv) 2n, 

thus equating the first two moments of cv to those of x2[n]. Hence 

(1.4.4) 

(1.4.5) 

Ev and o2 (v) are given, under H0 , by 

k S . 
(1.4.6) Ev = n I ....1. 

E. 
j=l J 

2 k S~ -T. 
2 

Sjl -Tjl 
(1.4. 7) o 2 (v) ~{}: _J __ J + I I E E } ' n-1 j=l E. 

j;,!l J j 1 

where 

a+j = m a .. 
(1.4.8) E. I ~ J n 

i=l 
n 

-2 
m 

( 1.4. 9) S. n I a .. (n-a .. ) 
J i~l l.J l.J 

-4 
m 

i. (n-a .. / (1.4.10) T, n I J i=l l.J l.J 

-2 
m 

(1.4.11) Sjl n I aijail 
i=l 

-4 
m 

2 2 
(1.4.12) Tjl n I aijail 

i=l 

Critical values and tail-probabilities of the distribution of~ may be 
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approximated using this method. 

For practical calculations of~• we may use the following formula 

n 
{f_(v)}2 

k I 
v=l -J 

(1.4.13) V - n I run 
j=l 

a 
+j 

Finally we apply the test to the data of example 1.2.1. 

EXAMPLE 1.4.1. For the data of example 1.2.1, after the deletion of "use

less" observations (see table 1.2.3), our test-statistic takes the value 

v = 33.19. In this case we have E(~IHo) = 20.11 and o2 c~IHo) = 19.59, so 

that c = 2E/o2 = 2.0526, n = 41.27 and cv = 68.13. The critical value of 

the x2[41.27] distribution for a= 0.05 is equal to 57.26, so H0 is re

jected. The right tail-probability of 68.13 for the x2[41.27] distribution 

is equal to 0.0053. 

An estimate of the right tail-probability of 33.19 in the exact dis

tribution is equal to 0.007, indicating a close fit of the approximation. 

The estimate was obtained from 1000 simulated drawings from the exact 

distribution of v. 



CHAPTER 2 

THEORY: PRELIMINARIES 

2 . 1 . THE PROBLEM 

We consider a sequence E1 , ... ,Em of m independent experiments. The 

possible outcomes of Ei (i=l, ... ,m) are the permutations of then charac-

ters 

(2 .1.1) c1···c1 c2···c2 

'---y---' '---v---' 

13 

where Cj (j=l, ... ,k) occurs aij times, with O ~ aij < n and L~=l aij = n. 

Because of the repetitions of the characters in the permutations, we shall 

call such a permutation a 'word'. 

As indicated by the notation, the characters C. (j=l, ... ,k) and the 
J 

length n of the words will be the same for all experiments, but the numbers 

a .. may differ from experiment to experiment. In asymptotic considerations 
l.J 

we shall let m ➔ 00 with n and k fixed. 

The indices i,h will be used throughout this work to index the experi

ments, the indices j and 1 to index the characters and v,µ E {1, ... ,n} to 

indicate the v'th and µ'th place in a word. So we shall always have 

(2.1.2) i,h E {1, ... ,m}; j,l E {1, ... ,k}; v,µ e {1, ... ,n}. 

By this convention we can use these symbols without further explanation. 

Subject to this convention each given formula will hold for each value that 

the indices occurring in it can take, unless otherwise is indicated. 

The properties of the numbers a .. may be summarized by 
l.J 

(2.1.3) 
➔ 

a. 
l. 

d k 
(ai 1 , ... ,aik)' E {(a1 , ... ,ak)'laJ. E {O, ... ,n-1}, la. 

j=l J 
n}. 
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The number N. of different words for E. is 
1. 1. 

(2.1.4) N. 
n! 

1. ail! ai2! ... aik! 

Let 

(2.1.5) d R. {1, ... ,N.} 
1. 1. 

and let 

(2 .1.6) 

denote the set of words pertaining to Ei, in lexicographical order. Then 

(2 .1. 7) Q ~ Q Q 1 X • • • X m 

is the set of all possible outcomes of the composite experiment 

(2.1.8) 

To complete the mathematical model we shall use, we look at the class of 

all probability distributions on Q, with E1 , ... ,Em independent. Let Pi be 

the class of probability distributions on Qi 

(2 .1.9) 

N. 
1. 

Pi~ {(p1 , ... ,pN_l'lpr20, rERi, L pr 
1. r=l 

and let w. be random on rl. with 

(2.1.10) 

-1. 1. 

P(w. 
-1. 

7T. ) ir 

1} 

Then, according to the independence of E1 , ... ,Em we have 

m 
(2.1.11) TT Pir. 

i=l 1. 

-+ 
with r i E Ri and pi E Pi, and this is the class of probability distributions 

we consider. It will be indicated by 

(2.1.12) p 
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In order to formulate the hypotheses about P which we want to consider, we 

introduce parameters t,ir as follows 

(2.1.13) 6. 
ir 

with, obviously 

(2.1.14) 

Let 

(2.1.15) 

and 

(2.1.16) 

d 

then every element of 

(2.1.17) 

N. 
1. 

I 
r=l 

6. 
ir 

0. 

(r ER.), 
1. 

N. 
1. 

,,; 1 --J--, r E Ri, }: 
i r=l 

specifies a distribution from P and v.v .. 

The hypothesis to be tested is 

(2.1.18) V. 
1. 

➔ 

6. 
1. 

0 

The widest class of alternative hypotheses is of course 

(2.1.19) 

6 
r 

O}, 

but this class is too amorphous for our purposes. In order to formulate a 

useful subclass of Hl, 

Qi' which 

Let, 

(2.1.20) 

are used for 

for all i, j 

t .. (v) (7r) ~ 
1.J 

we first introduce elementary random variables on 

building up test-statistics. 

and v, t .. 
(v) 

S1. ➔ {0,1} be defined as : 
l.J 1. 

{ 1 if in 7f Cj occurs in the v'th place; 

0 otherwise. 

The following relations are then easily proved 
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N. 
l 

t, . (\/) (71. 
a .. 

(2.1.21) I ) N. ..2:1. 
r=l lJ ir l n 

N. a .. (a .. -1) l 
(v) t .. (µ) (71. (2.1.22) I ) lJ lJ 

(\/;-1].J) I tij (71ir) N. n(n-1) 
r=1 

l] ir l 

N. 
l 

t, . (\/) (71. (µ) aijail 
(2.1.23) I ) til (71ir) N. (vfµ,jfl). 

r=l lJ ir l n(n-1) 

Now let 

(2.1.24) 

and 

(2.1.25) 0,. (V,].J) g O (V,].J). 
lJ ijj ' 

o (v) g o ... (v,v). 
ij lJJ 

(\/) 
Let the random variables induced by P. and (2.1.20) be denoted by t.. , 

l -lJ 
then we have, under Pi, 

(v) 
a .. 

(v) 
(2.1.26) P(t .. 1) 21. + 0 .. 

-iJ n lJ I 

(\/) (µ) a .. (a .. -1) 
(V,].J) 

(2.1.27) P(t .. t .. 1) lJ lJ + o .. 
-lJ -lJ n(n-1) lJ 

(\/;,1].J) I 

(2.1.28) P(t .. 
(\/) 

!:n 
(µ) 

1) 
aijail 

0ijl 
(\/ I ]l) ---+ 

-lJ n(n-1) 
(\/;,1].J I j;-11) • 

Notice that 

(2.1.29) P(t .. 
(\/) 

!:n -iJ 
(v) 

1) 0, (jfl). 

The proof of these relations follows from the fact that the left-hand mem

bers are equal to the expected value of the product of the r.v.'s occurring 

in these expressions. For instance for (2.1.28) we have, using (2.1.13), 

(2.1.23) and (2.1.24) 

P(t .. (v) 
-lJ 

t (µ) 
-il 

1) 

0 (V,].J) 
ijl 



The other two relations are special cases. 

Note that under H0 all o's are equal to 0. Thus if 

(2 .1. 30) 

then 

(2.1.31) 

H'. 0. V. ·1 1.J \J]J 

Q (\JI jj) 
ijl 

0, 
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but not the other way around. In our setup it is not possible to discrimi

nate between the elements of HO and the elements of H0 • In fact, the asymp

totic distributions of our test-statistics for elements of HO..._ HO are the 

same as the distributions under H0 • The "alternatives" in HO '-Ho therefore 

cannot be detected by our methods. 

We can now tentatively formulate the alternative hypotheses we wish to 

consider. 

We shall say that place v has a preference for or an aversion from 

character C. respectively if 
J 

(2.1.32) 
m (V) I a ij > o 

i=l 
or < o. 

An aversion thus is the same as a negative preference. Now it is easily 

verified by means of (2.1.26) that 

n 
(2.1.33) I 

v=l 

0 .. (\J) 
1.J 

k 
0 I 0 

j=l 

thus preferences cannot occur in one place only, they are automatically 

balanced by aversions in other places and vice versa. In fact, preferences 

as defined above are relative preferences of the places with respect to 

the preferences of other places, not preferences in an absolute sense. 

These considerations lead us to consider the following class of 

alternative hypotheses 

m 
(2.1.34) H '. 1. 3. 

J\J I I 
i=l 

The statistic 

(2.1.35) ! (t .. (\J) - aij) 
i=l -1.J n 

0 .. (V) I > o. 
1.J 
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Im (v) 
has according to (2.1.26) the expected value . 1 8.. and is thus 

1= 1J 

obviously a good building stone for a test-statistic. 

Defining 

(2.1.36) 

we have 

m I t .. (V) 
i=l -iJ 

(2.1.37) E(f. (v) IH) = E(f. (v) JH') = a+j 
-J O -J O n 

m 

I aij 
i=l 

and an intuitively attractive test-statistic is 

(2.1.38) 

This statistic has the form of the traditional chi-squared statistic: it 

will assume large values under Hi and large terms will indicate the pre

ferences and aversions which cause the sum to be large. 

It would be too much, however, to expect this statistic to have a chi

squared distribution and it will be shown later that it has a more compli-

cated one (under H0 as well as under Hil, which can nevertheless be approx

imated by means of a modified chi-squared distribution. 

The choice of a quadratic form in the f. (v) will be 
-J 

to be indicated by the simultaneous asymptotic normality 

shown in chapter 4 

of the f. (v) and 
-J 

other theoretical considerations. Several degrees of generalisation of 

(2.1.38) can then be considered. The most promising one is 

n k 
(2 .1. 39) I I 

v=l j=l 

where the g. are weighing coefficients for the categories, which will gen
] 

erally (as in (2.1.38)) depend on the a ./n, but which may also express the 
+J 

experimenter's emphasis on certain characters as compared to others. One 

might also choose the weights dependent, not only on the characters, but 

also on the places: g. (v) instead of g .• We do not, however, elaborate this 
J J . 

case in this thesis. In every trial every place occurs exactly once, but 

the frequencies of the characters may be different from trial to trial. In 

the applications which led to the development of our tests the places were 

equivalent: changing their order should have no influence on the experimen

tal situation. Therefore, although the general theory developed later also 



covers this case, we do not, at this moment, aim at generalisations where 

different weights are attached to the places. 
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A further generalisation is to allow cross-terms in the test-statistic 

(2 .1.40) 
n 

I 
k k (") a . ( ) a+l 
'i' 'i' (f V _ __:i:]__)(f \) --) 

v=1 
l l gjl -j n -1 n 

j=1 1=1 

The behaviour of such a test-statistic is far more complicated than that of 

(2.1.39) and as the result of theoretical considerations (mostly of an as

ymptotic character) the form (2.1.39) will emerge as the most useful one. 

The choice of weighing coefficients will be considered in chapters 4 and 5. 

Some special cases are treated in chapter 6. 

The most general quadratic form is. of course 

n n 
(2.1.41) I I 

V=1 µ=1 

Although test-statistics of this generality are difficult to interpret and 

therefore of little practical use, the theory which will be developed in 

later chapters will completely cover this general case. For practical pur

poses specialisation to the form (2.1.39) is recommended and special atten

tion is paid to this test-statistic and to (2.1.36). 

As will appear later, tests based on (2.1.39). will, under acceptable 

conditions for the g. , be consistent for m->- 00 if 
J 

(2.1.42) 3, 
JV 

1 m 
I ✓m I 

i=1 

This holds e.g. for (2.1.38). 

2.2. NOTATION AND SIMPLE RESULTS 

Notational conventions. 

➔ 00 as m ->- oo 

If Xi denotes any quantity (scalar, vector, r.v., matrix etc.) indexed by 

the variable i which ranges (for instance) over the index set {1, ... ,m}, 

we shall frequently use the derived quantities X+, X* and x., defined by 

(2. 2 .1) 

(2 .2 .2) X 
* 

m 

I 
i=l 

X. 
1 
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(2. 2. 3) X 
1 m 

L X. 
m i=l 1. 

Note that X+, X* and X all depend on m, though this is not apparent from. 

this notation, 

Furthermore, I denotes the identity matrix 
n d 

of order n, 0 k is the n, 
0 ) , and 1 k the n x k matrix of n,n n, 

one's (1 1 ). We use the symbol 0 to denote the Kronecker product of 
n n,n 

n x k matri~ consisting of zero's (On 

a p x q matrix A = (aa.S) and an r x s matrix B, 

(2.2.4) 

i.e. A®B is a pr x qs matrix, expressible as a partitioned matrix with 

aa.SB as the (a.,S)th partition, a.=1, ... ,p, S=l, ... ,q. 

We consider the·r.v.'s defined by (2.1.20) as 

(2.2.5) = { 
if in the word obtained at the i'th trial, the 
character C. occurs in the v'th place; 

0 otherwise. J 

Let, for all i, j, v, 

(2.2.6) t (V) ~ t (V) - aij 
-ij -ij n 

and let 

(2.2.7) 

Furthermore, we shall consider 

(2 .2. 8) 

We shall use the following real, symmetric, k x k matrix of weighing factors 

gll g12 glk 

d 
g21 g22 g2k 

(2.2 .9) G (gjl=glj). 

gkl gk2 gkk 



Let 

(2.2.10) Q d I ® G. 
n 
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-1 
The test-statistic, defined in (2.1.40), may then, apart from a factor m 

be written as 

(2 .2 .11) V - ~(G) 
1 n 

I 
m v=l 

k k (\!) a . ( ) a 1 
\ \ (f - -±2) (f \) - _:I:_). 
l l g.l · n -1 n 

j=l 1=1 J -J 

Though it is not essential w.r.t. our problem, we shall wish, for practical 

reasons, that 

(2.2.12) 

with probability one. This means that we have to choose G such that Q is 
➔ ➔ 

non-negative definite (n.n.d). (A kXk matrix Q is n.n.d iff x' Qx ~ 0 for 
+ k 

each X E lR ) . 

In most of the theory it is irrelevant whether Q has the structure as 

in (2.2.10) or is an arbitrary n.n.d, real symmetric matrix. So from now 

on we shall suppose that Q is an arbitrary real, symmetric, n.n.d matrix. 

We define the test function Pm,Q: 

(2. 2 .13) 

➔ ➔ 

{ 
1 if t' Qt ~kl (m,Q); -* -* -et 

0 otherwise, 

where k 1_ct(m,Q) is determined as the smallest value such that 

(2 .2 .14) 

Sometimes we shall randomise the test for theoretical purposes, i.e. 

(2 .2 .15) 

➔ ➔ 

where ki-a (m,Q) is the highest possible outcome of !:~ Q !:* which is smaller 

than k 1_ct(m,Q), and y(m,Q) is determined such that in (2.2.14) the equality 

sign holds. It will be clear from the context whether we use Pm,Q defined 

by (2.2.15) or by (2.2.13). The decision rule for the resulting level-a 

test is derived from~ Qin the usual way. -m, 
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We define the vector of expectations oft .. (v) in the same way as 
-1.J 

(2 .2. 7) 

(2.2.16) 

It follows directly from (2.1.26), that 

(2.2.17) 
+ 

Et 
-* 

which reduces, under H0 , to 

(2 .2 .18) 

It is useful to define 

(2. 2 .19) 

The matrix of variances and covariances of the components of a vector 
+ + 

of r.v.'s x will be called the dispersion matrix of~• and will be denoted 

by 

(2.2.20) 
+ 

D(x). 

In particular we define for each i 

(2.2.21) 

(2 .2 .22) 

The entries of r 1i and r 0i may be found from the following moments, which 

may be derived from (2.1.26), ... ,(2.1.28), together with the obvious rela

tion (cf.(2.1.29)) 

(2.2.23) P(t .. (V) 
-1.J 

The moments are 

(2.2.24) 

t (V) 
-il 

1) 0, (j;t'l) . 

.. (v) - (o .. (v) >2 
1.J 1.J 



(2.2.25) 
(V) (µ) 

cov(t.. ,t.. ) = 
-l.J -l.J 

(2.2.26) 
(v) (v) 

cov(t.. ,t. 1 ) 
-l.J -1. 

(j~l) 

- aijail - aij cS (v) - ail cS •• (v) - cS •• (v) cS. (v) 
n2 n il n l.J 1.J 1.l 

(2.2.27) 
(v) (µ) 

cov(t.. ,t. 1 ) = 
-l.J -1. 

r 0i follows from r 1i by omitting all terms containing a cS (cf.(2.1.18)). 

Let, for n;;;: 2, 

1 
1 

- n-1 
1 

1 - n-1 

(2.2.28) N g 

1 1 
- n-1 - n-1 

an n x n matrix, then 

(2.2.29) 

and N is of rank n-1, with eigenvalues 0, and ~l with multiplicity n-1. n-
Furthermore, let 

ail (n-ail) -ailai2 

-ai2ail ai2(n-ai2) 

(2.2.30) 

23 
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We then have, as can easily be verified 

(2 .2. 31) 

(2.2.32) 

N ® K, 
]. 

N ® K, 

Notice that Lo, is singular, because the sums over rows and column's of K, 

and N are zero. More generally, LOi and Lli are singular because, for each 

fixed i, the following n + k - 1 linear relationships hold true for the n x k 

random variables t .. (v), both under H0 and H1 , 
-J.J 

(2.2.33) t ( +) _ ai. J' , 
-ij 

v=l, ... ,n; j=l, ... ,k. 

REMARK 2.2.1. Not only the singularity of LO•' but also its rank will play 

a part in the considerations. What can be said about the rank of L0 ,? 

Let's first consider the determinant of a matrix which has the same struc

ture as Ki, 

a 1 (n-a1) -a1a 2 

-a2a 1 a 2 (n-a2) 

(2.2.34) 

Using this relation, it can easily be shown that Ki is singular. Also the 

rank of Ki may now be found easily. Let ki be the number of positive aij's 

at the i'th experiment. Then, again using (2.2.34) it follows that 

(2.2.35) rank (K.) 
]. 

k. - 1. 
]. 

Moreover, because in our case we have n-Li=l a 1 2". 0 for j=i, ... ,k, (2.2.34) 

is non-negative for each j, j=l, ... ,k. It follows that the matrix Ki is non

negative definite. 

For rank(LOi) we find 



(2.2.36) rank(N ® K.) 
l 

Now consider the matrix K+. We have 

(2.2.37) 
-+ -+ 
x'K x 

+ 

If r denotes the rank 
-+ -+ 

of K +' there 
-+ -+ 

(rank N) (rank Ki) 

exist k-r linearly 

(n-1) (k.-1). 
l 

independent vectors 
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x, such that K X 
+ 

= o, or x'K X = 0. But this implies, because the matrices 
+ -+ -+ 

K. are non-negative definite that x'K. x 
l l 

(2.2.38) max rank(K.) 
l 

i 

= 0 for all 

max(k.-1). 
l 

i 

Because in any case rank(K+) $ k-1 we find 

(2 .2 .39) max(k. -1) 
l 

i 

i. This means that 

and similar bounds for rank(r0 .). It follows that rank(r0 .J is not a fixed 

number, but has to be determined in each separate case. 

For the expectation of~ we find 

(2.2.40) 

which reduces, under H0 , to 

(2. 2 .41 l 

And when Q 

m 
(2.2.42) trace (I ® G) (N ® K ) n • 

~ \' l trace GKi. 
m i=l 

2.3. SOME ASYMPTOTIC CONSIDERATIONS 

The choice of the weighing coefficients gjl in the matrix G, or, more 

generally, the choice of the matrix Q, will largely be determined by the 

nature of the asymptotic distribution of ~(Q) as m-+ 00 • 

-+ -+ 
Because the vectors ! 1 , ! 2 , ... are not identically distributed, it 
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is necessary to impose some asymptotic conditions. Therefore we only con

sider infinite sequences of experiments for which the following 2 assump

tions hold. 

ASSUMPTION 1. For all j and 1 the following finite limits exist, 

(2. 3 .1) lim a = a. > o, (say) , 
m-+oo 

•j J 

1 m a . a 1 
(2 .3 .2) lim I (aij _±2) (a. - 2-) djl, (say). 

m m il m m-+<» i=l 

The alternatives we consider satisfy 

ASSUMPTION 2. For all j,l,v andµ the following limits exist, 

(2 .3. 3) 

(2 .3 .4) 

lim o (v,µ) = z;; (v,µ) 
m-+oo •jl jl 

lim o . (v) 

m-+oo *J 
o. (v), 

J 

I (V) I In (2.3.4), but not in (2.3.3), we accept o. 
J 

of (2.3.3) we have 

(2 .3.5) z;;. (v) ~ z;; .• (v,v) 
J JJ 

(v) 
lim o .j 
m-+oo 

(say), 

(say). 

As a special case 

The vectors 6 and! with components o (v) and I;;. (v) are constructed as in 
j J 

(2 .2 .16). 

At first sight, these conditions may seem to be very strong. It is in

deed very easy to construct examples of infinite sequences of experiments 

that do not satisfy these assumptions. However, we have to bear in mind 

that for statistical purposes, the asymptotic distributions are only nec

essary to provide a good approximation for the finite situation. Further

more, there exist situations for which the conditions are trivially ful-
➔ + ➔ ➔ ➔ ➔ 

filled. For instance in the case that a 1 = a 2 = a 3 = ... and ~l = ~2 = ~3 

Or, more generally, if 
,➔ ➔ ➔ 

,al ,a2, ... ,am) 
+ + + 

(am+l'am+2•···•a2m) 
+ + + 

(a2m+l'a2m+2•···•a3ml 
and 

7 + + 
(lll ,~2' ... '~m) 

So if we have m0 observations, we could think of an infinite sequence of 

experiments, where the whole block of m0 experiments is repeated infinitely 



many times. Then we would have, for instance, 

1 m 1 
mo 

(2.3.6) lim I a .. I a .. m 1.J mo 1.J m-+<» i=l i=l 

etcetera. In this way, all the limiting values are equal to the values in 

the finite case. It may be expected that the approximations derived from 

the asymptotic distributions are then fairly good. 

We leave it to the reader to verify that under assumption 1, 

(2 .3. 7) lim octlH0 l lim !:O• LO , (say), 
m-+«> m-+«> 

exists. Under assumptions 1 & 2 

+ 
!:1• (2.3.8) lim D(t) lim Ll , 

-* 
(say), 

m-+<o m-+<o 

exists as well as 

+ 8 8 , (2.3.9) lim E (t ) lim 
-* * m-+<» m-+oo 

where the components of 8 may be +00 or -00 Also 

(2.3.10) lim K K , . (say), 
m-+<» 

exists, and we have 

(2.3.11) LO N ® K. 

The alternatives satisfying assumption 2 determine a subset A of V, 
the set of all possible alternatives, with (cf.(2.1.17)), 

(2. 3 .12) V 

for infinite sequences of experiments. So we have 

(2.3.13) A {d E Vld satisfies assumption 2}. 

It is convenient to split up A still further. Define 

27 
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(2.3.14) A1 ~ {a 1c Al!•! "'} ' 

(2 .3.15) A2 
d {aE: Alo< t,·t < 00 }, 

(2.3.16) A3 
d 

{a 1c Al!•! O}. 

Note that for alternatives in A2 u A3 we have 

1 
m 

(2.3.17) + I l + 
I;; lim 0 

m l 
m->= i=1 

When an expectation is taken with respect to a particular alternative 

a EA, we shall sometimes write Ea' and we shall write E0 for the expecta

tion under H0 . 

We shall establish the following results. 

i. When Q is non-singular, ~(Q) is consistent against each alternative in 

A1 . When Q is singular, ~(Q) may, or may not, be consistent against 

each alternative in A1 . In a number of cases (depending on the struc

ture of Q and the particular alternative) it can be shown that the 

asymptotic distribution of ~(Q) is the (standard) normal distribution 

(after a proper transformation). 

ii. For alternatives in A2 , ~(Q) has asymptotically a non-central x2-dis

tribution, or the distribution of a linear combination of independent 

non-central x2-variables. The test based on ~(Q) is not consistent, 

but its asymptotic power may still considerably exceed the level of 

significance. 

iii. For alternatives in A3 , ~(Q) has asymptotically a central x2-distri

bution or the distribution of a linear combination of central x2-

variables. The test is not consistent and the asymptotic power remains 

close to the level of significance. 

2.4. A SPECIAL CLASS OF ALTERNATIVES 

In testing problems that are comparable to our situation, the concept 

of contiguous alternatives is often introduced, mostly for power consider

ations. As we do not need this kind of alternatives to obtain a workable 

approximation to the power function in our case (cf. section 4.4), it is 
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not necessary for this purpose to pursue this subject. 

However, in order to obtain expressions for the asymptotic relative 

Pitman efficiencies for pairs of tests from the class of tests we consider, 

we need a class of special alternatives which is a subset of the class of 

contiguous alternatives. Therefore, we shall give a short exposition of con

tiguous alternatives as they are in our situation and then specialize to 

the subclass we really use. 

Contiguous alternatives were introduced by Le Cam in 1960 and have 

been widely used since then. We refer the interested reader to short intro

ductions to the subject, which can be found in the standard books of 

WITTING & NOLLE (1970) and HAJEK & SIDAK (1967). 

Contiguity is defined in terms of triangular arrays of probability 

distributions. Consider therefore the triangular array of random vectors 

+ + + 
(2 .4 .1) (!1 (m) •!2 (m) ''. · · •!m(m))' m 1, 2, ... 

+ + 
where each !i(m) is defined as in (2.2.7). The distribution of the !i(m) is 

supposed to be governed by the triangular array of parameters 

+ + + 
(2.4. 2) (al (m) ,a2 (m) '· · · ,am(m))' m 1, 2, ... 

+ 
with each ai(m) as in (2.1.3), and by the triangular array of parameters 

(2.4.3) 
+ + 7 
U\ (m) ,!:i2 (ml'··· ,l.lm(m))' m 1, 2, ... 

+ 
Let P1. (ml denote the distribution oft under one choice of (2.4.2) and 

-i(m) + 
(2.4.3), and let Qi(m) be the distribution of !i(m) under another. The con-

tiguity of the sequences {Pi(m)} and {Qi(m)} may then be investigated using 

the characterizations of OOSTERHOFF & VAN ZWET (1975). 

Contiguous alternatives are obtained when we consider the contiguity 

of a sequence {Qi(m)} with respect to a sequence {P~(m)} of distributions 
+ 

of !i(m) under H0 . Notice that, under H0 , only the parameters of (2.4.3) 

are completely determined. It follows that sequences of distributions 

{Qi(m)} which are contiguous to H0 may be obtained with different choices 

of (2.4.2). In order not to get away too far from a practical interpreta

tion, it is not unreasonable to limit our attention to the comparison of 

triangular sequences of experiments for which the triangular array (2.4.2) 

is the same. Adopting this point of view, we obtain from the characteriza-
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tions of Oosterhoff & Van Zwet that a sequence of alternatives (or these-

quence {Qi (m)} under these alternatives) is contiguous to HO iff 

m Ni(m) 
1:,2 (2.4.4) I I 0(1). 

i=l r=l 
ir(m) 

A formal proof of this fact may be found in DE GUNST & VAN DE GEER (1982). 

We shall now proceed to define a subclass of such contiguous alterna

tives. The class chosen is needed in order to apply theorem 5.1.1 of sec

tion 5.1. Because this is the only instance where we use this class, the 

notation of this subclass is adapted to this application. 

Consider a fixed sequence 

(2.4.5) 

and define the triangular array (2.4.2) by means of 

(2.4.6) i 1, ... ,m. 

Furthermore, let a E A1 be a fixed alternative which is determined by the 

sequence of vectors 

(2.4. 7) 

Let 

(2.4.8) 0 d [0,1], 0' d (0,1]. 

Consider a sequence {8m}:=l of values in 0' such that 

(2.4.9) as m + °' 

Define the triangular array (2.4.3) by means of 

(2 .4.10) i 1, ... ,m. 

An easy calculation shows that the so defined alternative is indeed a 

contiguous alternative. To distinguish such alternatives clearly from the 

more general contiguous alternatives, we shall call our alternatives 
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"close" alternatives. We shall denote the triangular array corresponding to 

close alternatives symbolically as 

(2.4.11) 

It is now interesting to investigate the behaviour of some already de

fined quantities under close alternatives. To distinguish quantities associ

ated with close alternatives from their "normal" counterparts, we write the 

former with an extra "(m)". Doing so we have the following straightforward 

results. 

(2. 4.12) lim o (m) (v,µ) 
m--><x> •jl 

Furthermore, 

(2. 4 .13) lim 
m--><x> 

It follows that 

lim e 
m m--><x> 

0 (m) (v) 
*j 

1 
lim Tm m--><x> 

lim e 
m m--><x> 

o (v,µ) 
• jl 0. 

N. m J. 

t .. (v) (11. }: }: ) e 
J.J ir i=l r=l 

rm O . (V) 
'J 

,- (v) 
•n r;;. • 

J 

(2 .4.14) In t . 
m--><x> 

/',, 
m ir 

For the expectation under close alternatives we therefore find 

(2. 4.15) 

For the dispersion matrix under close alternatives we obtain 

(2.4.16) 
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2.5. AN IMPORTANT PRACTICAL CASE (THE 'UNCONDITIONAL' SITUATION) 

In this section we describe another class of experiments which are im7 

portant for practical purposes. We refer to this class as 'the unconditional 

situation', because the 'unconditional situation' can be reduced to the 

'conditional situation' of section 2.1 by the imposition of a suitable 

condition. The proposed test-statistics of section 2.1 act in the 'uncon

ditional situation' as conditional test-statistics. 

We consider, again, a sequence 

(2. 5 .1) E' ~ (E' E' E') 1' 2, ... , m 

of m independent experiments. The result of each experiment is a word of 

length n consisting of characters from the fixed set {c1 , •.. ,ck}, each of 

these characters being available for each place. The number of possible 

words thus is kn and the set n• of these words is the same for all i. The 
i 

set of possible outcomes for E' then is 

(2.5.2) n•dn•x 
1 

X n• 
m 

(v) 
For each i, n x k random variables x. . are defined by means of the 

-lJ 
functions 

(2 .5. 3) x .. (V) (w') d 
lJ 

{ 1 if in w' Cj occurs in the v'th place; 

0 otherwise, 

and probabilities 

(2.5.4) (v) ~ P(x .. (v) 
pij -lJ 1) • 

(w'c:n. J 
l 

Thus in the random 

assumes the value 1 

others the value 0. 

(V) (V) 1 
vector (~il , ... ,~ik ) one of the components 

(indicating the v'th character of the word) and the 

Now, moreover, the experimental situation considered implies that the 

characters of each of the words are chosen independently: denoting the 



random element of Qi by ~i this means that the probability of the word 

(C. , ... ,C. ) is equal to 
J 1 Jn 
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n (v) n k (V) ( I) 
( ) X. , W,. 

(2.5.5) TT Pij 
v=l v 

TT TT 
v=l j=l 

{ V} lJ l 
pij 

with 

(2.5.6) 

For the whole sequence E' we get, with w' = (wi, ... ,wi:i) E St' 

m n k (V) ( I) 
( ) X,, W, 

(2 .5. 7) P(~' =w') TT TT TT { V} lJ l 

i=l v=l j=l 
pij 

The number of parameters in this model is so large that reduction is im

perative. This can be achieved by imposing a condition of the following 

character. Let 

(2.5.8) a .. 
-iJ 

d n (v) L x .. 
v=l -iJ 

then the condition is 

(2.5.9) 

where, in applications, the a,. are the values assumed by a ... (See remark 
lJ -lJ 

2.5.1). Applying A, the set Q' is reduced to its subset Q given by (2.1.6) 

and (2 .1. 7) and we have for all i and 1T' E Q' ir l 

k 
(v) 

n ( ) X, , (1T, ) 

TT TT { V} lJ lr 

j=l v=l 
pij 

(2.5.10) P(w~ = 1T. IA> -l lr N. 
k 

(V) 
l n ( ) X, , (1T, ) 

L TT TT { V} lJ lS 

s=l j=l v=l 
pij 

If we call this pir' as in (2.1.10), the conditional situation is identi

cal to the situation in section 2.1, with 

(2. 5 .11) t,. (V) 
-iJ 

<v> I - (x.. Al, 
-iJ 

and the parameters ~ir and o (v,µ) are functions of the p (v) and of 
ijl ij 
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the aij from (2.5.9). We can now apply the methods of section 2.1; in par

ticular we can test the hypothesis 

(2.5.12) 

against the alternative 

(2 .5.13) I ! (p.·. cvi 
i=l 1 J 

n 
1 }: p .. (v) i I > o 
n v=l 1J 

using one of the test-statistics from section 2.1. This is possible because 

* * evidently H0 -. H0 : under A and H0 all words in ni have the same probability. 

* It is less evident that H1 1 corresponds to Hi of (2.1.34), because of the 

complicated character of the o .. (v). They depend not only, in a rather com-
(V) 1] 

plicated way, on the p.. , but also on the a .. and are, therefore, in the 
1] 1] 

unconditional situation random variables. As a matter of fact, these random 

variables have not even been defined yet. To remedy this omission, we start 

from (2.1.26), which can now be written as 

(2.5.14) o .. (v) 
1] 

P(t .. (v) = 1) - aij = P(x .. (v) = ljA) - aij = 
-1J n -1J n 

So if we define 

(2 .5.15) ~ .. (v) d (v) I _ ~ij 
u = E(x.. a .. ) 
-1J -1J -1J n 

we have, as we should 

(2.5.16) 

while moreover 

. (2.5.17) Eo .. 
-1J 

(v) 

o .. (v) 
1] 

(\/)I EE(x.. a .. ) 
-1J -1J 

(v) 1 
n 

pij - }: 
n 

v=l 

Ea .. 
- -1J = 

n 

pij 
(v) 

(v) 
Ea .. 

Ex .. -1J = 
-1J n 

Now formula (2.1.34) for H1 is later justified by the consistency of the 

test for (2.1.42). The analogon of (2.1.42) is now 



(2.5.18) 
m 

11 I <p .. <v> 
Tm i=l l.J 

n 
1 I p .. <v> > I ➔ 00 

n v=l l.J 
form ➔ 00 

and if this condition holds we have according to (2.5.17) 

(2.5.19) 
m 

I 1 I Eo .. <v> I ➔ 00 • 

Tm i=l -1.J 
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Since, however, the o .. (v) only assume values between -1 and 1 and since, 
-l.J 

for any fixed j and v, o1 . (v), o2 , (v), ••• are independent this means that 
- J - J 

(see theorem 4.5.6) 

(2.5.20) 11 ~ o .. <v>I ~co 
Tm l -l.J 

i=l 
form ➔ 00 • 

Thus, the consistency of the test based on test-statistic (2.1.39) for the 

unconditional situation when (2.5.18) is satisfied, follows from the con

sistency in the conditional situation based on (2.1.42). 

For future use we now give analogous definitions for o,. (v,µ) and 
-l.J 

o (v,µ), based on (2.1.27) and (2.1.28), 
-ijl 

(2.5.21) 

(2.5.22) 

We have 

(2.5.23) 

(2.5.24) 

with 

(2.5.25) 

( ) d ( ) ( ) a .. (a .. -1) 
o .. v,µ = E(x .. v x .. µ la .. ) - -1.J -1.J 
-l.J -l.J -l.J -l.J n(n-1) 

Eo (v,µ) 
-ij 

(V) (µ) ___ 1_ { ( 
= pij pij n(n-1) 

Eo (v,µ) 
-ijl 

n 

(vfµ), 

(jfl,vfµ). 

(vfµ), 

(jfl,vfµ), 

(V) (µ) 1 ~ 
= Pij Pn - n(n-1) {( l 

V=l 

~ (µ)) 
l Pil -

µ=1 

Eo (v,µ) = Eo, .. (v,µ). 
-ij -l.JJ 
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Sometimes the unconditional analogon of (2.1.39), namely 

(2 .5 .26) 

which we shall call w(G), or more generally w(Q) (cf. (2.2)), will be con

sidered. (The factor-~, as in (2.2.11), ser:es asymptotic purposes; for a 
m 

test-statistic such a factor is irrelevant). The distribution of w(Q) de-
(v) -

pends on the nuisance parameters pij and is therefore unknown, also under 

* H0 . This makes (2.5.26) unfit to be used as an unconditional test-statistic. 

The asymptotic distribution of ~(Q) is, under certain conditions, neverthe

less the same as that of ~(Q). 

REMARK 2.5.1. In section 2.1 the conditions in (2.1.3) imply that a .. = n 
lJ 

never occurs. In the unconditional experimental situation the probability 

of such an occurrence is equal to 

(2.5.27) 
k n (v) 
I n piJ. 

j=l v=l 

and is thus positive. 

It is clear that such an experiment, where all characters of a word 
(v) 

are the same, cannot contribute to finding differences between the pij 

and that the experiment is then useless and had better be left out of con

sideration. 

What is the effect of the deletion of such observations? To obtain m 

'useful' observations a random number i of observations will have to be 
-m 

taken, i.e. a sequence 

(2 .5 .28) E' 

of experiments has to be performed. Let 

(2.5.29) 
d 

number of the i'th 'useful' experiment, 

where a 'useful' experiment is an experiment which does not result in an 

outcome where all characters are equal. 

Deletion of "useless" experiments yields the sequence 

(2 .5. 30) E' I (E'. , 
::1 



of m independent experiments. Let 

(2. 5. 31) ;__2"···",i__ -m 
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,i__ ) • 
m 

We shall now impose the condition I, where in applications, as in (2.5.9), 

the i. are the values assumed by the i .. Thus, given I, we consider the 
l. -1. 

sequence 

(2.5.32) E' I (I) (E '· , E '· , ••• , El ) 
-<.1 -<.2 m 

of m independent experiments. 

The i'th experiment of E'' (I), E11 (I), has as set of possible outcomes 

(2 .5.33) 

i.e. Qi' is the same set for each i. The set of possible outcomes for 

E'' (I) is then of course 

(2.5.34) QI I 

while the conditional probabilities are of course proportional to the 

unconditional ones (cf.(2.5.5)), 

(2 .5 .35) P(w!' 
-1. 

P(w'. = 
-.{.. 

l. 

n 
n 

V=l 
k 

1 - I 
j=l 

(C. I ••• ,c. 
J 1 Jn 

) I I) 

(v) 
P;__ . 

iJV 
n (V) n P;__ . 

v=l iJ 

Because, after conditioning on I, the probabilities of the 'deleted' ex

periments have become irrelevant, we may as well renumber the sequence of 

experiments, i.e. we shall replace ii by i throughout, in particular 

(2.5.36) 

If we then write 
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d 
k 

(2 .5.37) pi 1 - I 
j=l 

and define 
(\!) 

S'J '. I X .. 
l.J l. 

(2 .5 .38) P(w'.' = w.) 
-i l. 

n 
(\!) 

TT pij 
v=l 

-->- {0, 1} as in (2 .5. 3), we can write 

(\!) 
1 n k ( ) x.. (w.) 

t t { \)} l.J l. 

P l l Pij 
i v=l j=l 

(2 .5.35) as 

A further conditioning on A reduces the set S'l'' to its subset S'l and we have 

for' all i and TI. E S'l. 
ir i 

n k 
{p .. (v)} 

X .. (V) (TI. ) 

TT TT l.J ir 

pi v=l j=l l.J 

(2 .5. 39) P(w'.' TI. I A) 
-i ir N. 

k X .. (\!)(TI. ) l. 
1 

n 
{p .. (V)} I TT TT l.J l.S 

s=l pi v=l j=l l.J 

k 
(V) 

n ( ) X. . (TI. ) 
TT TT { v} l.J ir 

V=l j=l 
pij 

N. 
k 

(\!) 
l. n ( ) X.. (TI. ) 

I TT TT { \!} l.J l.S 

s=l \!=1 j=l 
pij 

This is quite the same as (2 .5 .10), so from here on we may proceed as from 

(2.5.10) on, the only difference being that the pij 
(v) 

now not the are 

original ones, because some experiments have been deleted. This has no in-

fluence, however, on the consistency of the test, because when (2.5.18) 

holds, it also holds for a sub-sequence. Furthermore it would be nice if 

for each finite m, 

(2.5.40) P(,t < co) 
-m 1. 

The reader is referred to existing probability theory on this problem. 

We conclude that we may safely delete observations for which a .. = n. 
-l.J 

REMARK 2.5.2. Similarly, a category which does not occur in any of the ex

periments should (and can) be left out of consideration. 



CHAPTER 3 

SURVEY OF THEOREMS USED 

3.1. DEFINITIONS AND THEOREMS ABOUT MATRICES 

Consider a q x s matrix A of any rank r. A generalised inverse (or a 

g-inverse) of A is an s x q matrix, denoted by A , that satisfies 

(3 .1.1) AA A A. 

If A furthermore satisfies 

(3 .1.2) A AA A 

then A is called a reflexive generalised inverse of A. The notion of g

inverse is discussed extensively in RAO (1973). 
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We shall apply the notion of g-inverse in particular to real symmetric 

matrices. Let A be a real symmetric matrix of order q. By 

(3 .1. 3) A PAP' 

we denote the canonical reduction of A. That is, A is the diagonal matrix 

of eigenvalues of A (denoted by A= diag(A 1 , ... ,Aq)) and the i'th column of 

the q x q matrix P consists of the eigenvector of A which corresponds to the 

eigenvalue Ai (i = 1, ... ,q). Because A is real and symmetric, the eigenval

ues are all real, and we shall always suppose that they occur in A in de

···~ A). Furthermore, we shall always take the 
q 

eigenvectors orthonormal, i.e. 

(3 .1.4) P'P PP' I . 
q 

Now let A be moreover non-negative definite (n.n.d) and let it have 

rank r. (Dispersion matrices are non-negative definite). Then A has 
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precisely r positive eigenvalues and zero as eigenvalue with multiplicity 

q - r. Let A+ be the r x r diagonal matrix of the first r (positive) eigen

values of A, and P + the q x r matrix of corresponding eigenvectors. Partition 

the matrices A and Pas follows 

(+ 0 ), (3.1.5) A r,q-r 

0 0 q-r,r q-r,q-r 

(3.1.6) p (11 p12), 

p21 p22 

where P 11 has order r etc., so 

(3.1. 7) p = (11). + 
p21 

It can easily be verified, using these partitionings, that 

(3.1.8) A PAP' P+A+P~. 

We shall call P+A+P~ the positive canonical reduction of A. 

REMARK 3.1.1. Although we speak about "the" canonical reduction of A, this 
+ 

decomposition is not entirely unique. Any eigenvector p from P may, for 

instance, be replaced by -p, without affecting the identity A = P A P' . Or, 

when A has two equal eigenvalues, the corresponding eigenvectors may be 

differently orthogonalised, so that P is changed but not P A P' • The decom

position is unique when all the eigenvalues of A are distinct and positive, 

and when we make the diagonal elements of P positive (SRIVASTAVA & KHATRI 

(1979), p.19). 

Because the implications of this non-uniqueness are minor, we shall 

maintain the terminology. (The question arises again in remark 3.2.1 and 

example 3.2.1 of the next section). 

The linear space spanned by the columns of a matrix X will be denoted 

by M(X), and the linear space of solutions of the equation X; 

space of x, will be denoted by N(X). For any matrix x we have 

(3.1.9) M(x) M(XX') I 

+ 
0, the null-

a result which follows easily from the equivalence y .L M (X) - y .L M (XX') . 



Because in the positive canonical reduction of A, the column vectors 

in P+ are still orthonormal, we have 

(3.1.10) P'P 
+ + 

I , 
r 
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but PP'= I does not hold, unless A is non-singular. However we have the 
+ + q 

following 

LEMMA 3.1.1. Let A be a real, symmetric n.n.d matrix of order q, with rank 

r::;q. Let A= P/\P~ be the positive canonical reduction of A. Then 

(3.1.11) 
➔ 

P P'x 
+ + 

for each ; E M(A). 

➔ 

X 

PROOF.; E M(A) implies; 

➔ 
P P'x 

+ + 

➔ ➔ 
Ay for some q-vector y. Then 

➔ 
Ay 

➔ 
x. □ 

P+P~ is the (uniquely determined) orthogonal projector on the linear 

space M(A). See RAO (1973) for further details. 

A natural way to obtain a g-inverse of A is to take 

(3.1.12) A 

because it apparently satisfies (3.1.1). A is even reflexive because it 

also satisfies (3.1.2). We shall call g-inverses defined as in (3.1.12) 

natural generalised inverses or ng-inverses. 

Any q x s matrix B such that 

(3.1.13) A BB' 

will be called a square-root of A. The set of square-roots of A is non

empty as follows from the following lemma. 
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LEMMA 3.1.2. Any real, symmetric, n.n.d matrix A has at least one square

root. 

PROOF. Let A 

(3.1.14) 

and 

(3.1.15) 

Then BB' 

P+A+P~ be the positive canonical reduction of A. Let 

PAP' 
+ + + 

A, so Bis the required square-root. □ 

The square-root of A defined by (3.1.15) will be called a natural 

square-root of A; it is a q x r matrix; r is the smallest number of columns 

that a square root of. A with rank r can have. Square roots are uniquely 

determined, up to an orthonormal transformation: 

LEMMA 3.1.3. Let A be a real, symmetric, n.n.d matrix of order q. Let 

B: q x s 1 and C: q x s 2 be two square-roots of A, with s 2 2' s 1 . Then there 

exists an orthonormal matrix U: s 2 x s 2 , such that 

(3.1.16) 

PROOF. SRIVASTAVA & KHATRI (1979), p.20. 0 

LEMMA 3.1.4. Let G be an nxm matrix and Han mxn matrix. Then the non-

zero eigenvalues of GH and HG are identical, that is, the same non-zero 

eigenvalues occur with the same multiplicities in GH and HG. 

PROOF. WILKINSON (1965), p.54. 0 

COROLLARY 3.1.1. Let Q and A be real, symmetric, n.n.d matrices of order q. 

Let Band C be arbitrary square-roots of A. Then 

i. The non-zero eigenvalues of B'QB, C'QC and QA are identical in the 

sense of lemma 3.1.4. 

ii. rank(B'QB) = rank(C'QC) 

of QA. 

r, where r number of non-zero eigenvalues 

PROOF. i. When we apply lemma 3.1.4 to QA = QBB', with G = QB and H = B', 

it follows that the non-zero eigenvalues of QA and B'QB are identical in 



the above sense. The same is true for QA and C'QC and hence the non-zero 

eigenvalues of B'QB and C'QC are identical. 

ii. Because B'QB and C'QC are real, symmetric and n.n.d, we have: 

rank(B'QB) number of non-zero eigenvalues of B'QB 

number of non-zero eigenvalues of QA = r 

number of non-zero eigenvalues of C'QC rank(C'QC). D 
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REMARK 3.1.1. It follows from coroilary 3.1.1 that, when the eigenvalues of 

QA have to be calculated, we can always take the natural square-root of A, 

B, and calculate the eigenvalues of B'QB. When A is not of full rank, 

B 'Q B is of smaller order than QA. It may then be easier to compute the 

eigenvalues of B 'Q B instead of those of QA. Moreover, it may be an advan

tadge that B'Q B is symmetric while QA is not. 

In section 4.1 we use the following (n+kl x (n•k) matrix of rank n+k-1*), 

(3.1.17) F 
(

11 ..• 1 00 ••. 0 
00 •.• o 11. .. 1 

. . . . . . 
00 ••• o 00 ••• o 

Ik Ik 

oo ... o) 00 ••• o 

•• : 11.: .1 
• . • Ik 

Notice that 

(3.1.18) 

where !i and!* were defined in section 2.2. 

LEMMA 3.1.5. Let A be a kXk matrix and Ban nxn matrix. Let the p'th 

eigenvalue of A be A and a corresponding eigenvector (p1 , ..• ,pk l '; 
p p p ➔ 

let the ,'th eigenvalue of B beµ' and a corresponding eigenvector q,. 
Then the set of eigenvalues of the matrix A® B is equal to 

{xJx 1, •.• ,k, , 1, ... ,n}. 

*) The symbols n and k have, in later applications, the same meaning as in 

chapter 2; the symbol q will usually be n•k. 
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An eigenvector corresponding to the eigenvalue Aµ is 
p T 

PROOF. ANDERSON (1958), p.348. □ 

Note that in particular it follows from lemma 3.1.5 that the eigen

values of A® B and B ® A are the same. 

LEMMA 3.1.6. Let A be a real, symmetric, n.n.d matrix of order q and rank r, 

and let A1 , ... ,Ar be the positive eigenvalues of n~l A. With N as defined by 

(2.2.28), the eigenvalues of A®N then are A1 , ... ,Ar, all >O, each with 

multiplicity n-1, and O with multiplicity q + (n-1) (q-r). 

PROOF. The eigenvalues of N are O and n~l with multiplicity n-1. The result 

now follows from lemma 3.1.5. D 

LEMMA 3.1.7. Let A be a real, symmetric, n.n.d matrix of order q and rank r. 

Let A1 2 A2 2 ••• 2 Ar 2 0 be the positive eigenvalues of A. Then 

(3.1.19) 
➔ ➔ ➔ ➔ 

A x'x S x'Ax 
r 

for each; E M(A). 

PROOF. Let A 

Then we have 

P A P' be the positive canonical reduction of A. Let ; E M (A) . 
+ + + 

➔ ➔ 
x'Ax 

➔ 
because P P'x 

+ + 
; for; E M(A) by lemma 3.1.1. The other part of the in-

equality is proved in the same way. D 

COROLLARY 3.1.2. Let A be a real, symmetric, n.n.d matrix of order q, with 

rank q, and eigenvalues A1 ~ A2 2 ••• 2 Aq 2 0. Then 

(3.1.20) 
➔ ➔ ➔ ➔ 

A x'x s x'Ax 
q 

for each ~ E lR q. 

PROOF. This follows as a special case of lemma 3.1.7. D 



LEMMA 3.1.8. Let A be a real, symmetric, n.n.d matrix of order q. If 
➔ 00 ➔ ➔ 

(xm)m=l is a sequence of vectors of q components such that x~xm ➔ 00 as 

m +oo, then 

(3.1.21) 

➔➔ 
x'x 

mm 
limm➔oo ➔ ➔ ½ 

(x' Ax ) 
m m 
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PROOF. Let "i 2: A2 2: ••• 2: A 2: 0 be the eigenvalues of A. If Al= A2 = ... =A = 0 
➔ ➔ q . q 

then x' Ax = 0 for each m and (3.1.21) follows immediately. So suppose that 
m m 

Al > 0. From lemma 3.1.7 it follows that, for each m, 

➔ ➔ ½ 
(x'x) 

mm 

➔ ➔ -½ 
(x' Ax ) , 

m m 

➔➔ 
x'·x 
mm 

or, 

or, 

Because the lefthand-side of this inequality diverges to 00 , the righthand-

side necessarily also diverges to 00 D 

3.2. DISTRIBUTION OF QUADRATIC FORMS IN NORMAL VARIATES 

➔ 
Consider a random vector x which has a q-dimensional normal distribu-

➔ 
tion with expectation vectorµ and dispersion matrix E (we denote this as 
➔ ➔ 
x ~ N (µ,E)). Various theorems are known about the distribution of quadrat-
- q 

➔ ➔ 

ic forms ~•Q~ in such normal variates. However, most of the theorems concern 

necessary and sufficient conditions under which the quadratic form has a 

(non-) central x2 - distribution. The following theorem gives a representa

tion of the quadratic form in terms of independent standard normal variables 
➔ 

for the case that Q is n.n.d and~ has an arbitrary normal distribution. 

This theorem is known for non-singular dipersion matrix E (cf. JOHNSON & 

KOTZ (1972)). We give a simple proof that includes the case of a singular E. 
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THEOREM 3.2.1. Let ; ...... N (t,L). Let Q be a real, symmetric, n.n.d matrix of 
- q + r + r 

order q. Then there exist numbers r E N, c E :JR and vectors A E :JR , w E :JR 

such that 

(3 .2 .1) 
r 

C + l 
T=l 

2 
A (u +w ) 

T -T T 

with ~~Nr(O,Ir), i.e. ~1 , •.. ,~r are independent and each has a standard 

normal distribution. 

Let B be an arbitrary square-root of E. Explicit values of r, c, ! 
+ 

and w may then be calculated from 

(3.2.2) r = rank(B'QB), 

(3.2.3) Al<! A2 <! ..• <!Ar are the positive eigenvalues of B'QB. 

If we furthermore denote the positive canonical reduction of B'QB by 

P + A+ P ~, we have 

(3.2.4) 

(3. 2. 5) 

PROOF. Let 
+ 

vector X 

(3.2.6) 

So 

(3.2.7) 

+ 
w 

B be any q x s square-root 

N (0,I ) , we have s s 

+~+ + 
~ = µ + B;t. 

+ + 
~· Q~ 

+ + + + 
(µ + B;t) 'Q(µ + B;t) 

of E (BB' E). Then for every random 

+ + + + + + 
- ;t'B' QB;t + 2µ' Q B;t + µ' Q µ. 

The matrix B'QB is a real, symmetric, n.n.d matrix, being the dispersion 
+ + + 

matrix of B's, when s ~ N (O,Q). Taking r = rank(B'QB), it follows that 
- - q 

B'QB has exactly r positive eigenvalues and zero as eigenvalue of multi-

plicity s-r. Let the eigenvalues of B'QB be\<! A2 ~ ... ~Ar> Ar+l 

As= 0. Let P+A+P~ be the positive canonical reduction of B'QB. Let T be 

a square-root of Q, i.e. TT'= Q. 



Notice that PP' projects on the linear space M(B'QB) (lemma 3.1.1). By 
+ + 

(3.1.9) we have 

(3.2.8) M(B'QB) M(B'TT'B) M(B'T). 

This means that 

P P'B'T 
+ + 

B'T ~ T'B = T'BP P' ~ TT'B 
+ + 

(3.2.9) QB 

Substitution in (3.2.7) gives 

(3. 2 .10) 
+ + ~+ + + + + + 
~·Q~ = y'P A P'y + 2µ'QBP P'y + µ'Qµ. 

- + + +- + +-

+ + + + 

TT'BP P' ~ 
+ + 

+ d + 
Now define u = P+X• so that u Nr(0,Ir). (D(u) D(P y) 

+-
+ 

P'D(y)P 
+ - + 

P' I P 
+ s + 

(3.2.11) 

where 

(3. 2 .12) 

and 

(3.2.13) 

P'P 
+ + 

+ 
w 

C 

I ) . 
r 

Then we obtain from (3. 2 .10) , 

➔ -+ -+ -+ -+ -+ 
- u'A u + 2w'A u + w'A w + c - c + 

+- +- + 

r 2 
l A (u + w ) , 

T -T T 
T=l 

This establishes the existence of the quantities c, r, ! and;, and 

the formulae ( 3 . 2 . 2) - ( 3 . 2 . 5) . D 

47 
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➔ 

COROLLARY 3.2.1. Let x 

of order q. Then 

(3.2.14) 

➔ 
with u 

➔ 

N (O,r). Let Q be a real, symmetric, n.n.d matrix 
q 

PROOF. This follows from theorem 3.2.1 and corollary 3.1.1. D 

For practical purposes, KOTZ, JOHNSON & BOYD (1967a,b) give series 

representations for the distribution-functions of the random variables as 

given by the right-hand sides of (3.2.1) and (3.2.14). These representations, 

which can be used for numerical calculations, are given in section 3.3. 

Notice that for Al= A2 = ... =Ar= 1, the distribution of (3.2.1) 

reduces to the non-central x2 - distribution: 

(3. 2 .15) 
r 2 I cu +w i ~ x2 cr,oJ, 

T=1 -T T 

where r is the number of degrees of freedom and o is the non-centrality 

parameter 

(3. 2 .16) 0 
r 2 I w . 

T=l T 

Similarly, the distribution of (3.2.14) reduces to the central x2 -distri

bution with r degrees of freedom, when each AT is equal to 1: 

(3. 2 .17) 

REMARK 3.2.1. Notice that theorem 3.2.1 is a representation theorem. That 
➔ ➔ 

is, the random variable ~•Q~ is represented by the random variable on the 

right-hand side of (3.2.1), which has the same probability distribution. 

However, because there is some freedom of choice with respect to Band the 

positive canonical reduction of B'QB, different choices of B or P+ may 

result in different random variables on the right-hand side of (3.2.1). 

We illustrate this by the following example. 



.... .... .... 
EXAMPLE 3.2.1. Take X N3 (µ,I:), with µ' = (2,6,8), 

0 
I: = (~ ~), 4 and Q = 13 . Choose B 

0 0 
0 (~ ~) = Then B'QB 4 P+A+P~, with 
0 0 4 

We find 

.... -1 .... 
w = A+ P~B'Qµ = 

i.e. ( check that c = 0), 

However, when we take P+· 

.... 
w 

i.e. (again c 0) 

(~ 
0 

0 
1/4 

0 

0 
3/5 
4/5 

0 
1/4 

0 

(~ 0 ~)-2 
0 0 2 

(~ 0 

D· p 13' A+ 4 
+ 

0 0 

JJ(g 
0 ~)(!) (~), 2 
0 2 81 '4 

-4~5), (check that B'QB 
3/5 

0 
3/5 

-4/5 

0 
2 
0 
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REMARK 3.2.2. Let us now consider in greater detail what happens when we 

use another square-root C (q x t) of I:, in our construction. From corollary 

3.1.1 it follows that QI:, B'QB and C'QC have identical non-zero eigenvalues 
........ 

and that r = rank(B'QB) = rank(C'QC). Furthermore, because ~•Q~ ~ 0 and 

lr 1 A (u + w ) 2 ~ 0 (with probability one), c is a non-negative constant. 
T= 'l" -'l" 'l" 

.... .... + 
Moreover, c is the "minimum value" that ~•Q~ can assume (~ has a positive 

density in -i~), which is of course independent of the choice of square-root 

of I:. It follows that, whatever the choice of square-root of I: is, we always 
.... .... 

obtain the same r, c and A. Differences in w may however occur as is illus-

trated in example 3.2.1 . 

.... 
Certain functions of w, however, are not affected by different choices 

for the square-root of I: or different choices for P+. For instance, from 

(3.2.13) it follows that 

(3.2.18) 
r 
l A (JJ2 

T=l 'l" 'l" 
µ'Qµ - C 
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a quantity which is clearly independent of the choice of square-root of I or 

of P+. 

Another interesting identity is, using (3.2.9), 

(3. 2 .19) 

Furthermore, using 

(3 .2. 20) p /\ P' 
+ + + 

and (3.2.9), we find 

(3. 2. 21) 

B'QB 

+ 3+ w'A w 
+ 

+ + 
µ'QBB'Qµ 

+ + 
µ'QIQµ. 

+ -1 3 -1 + 
µ'QBP A A/\ P'B'Qµ 

+ + + + + 

+ + 
µ'QBB'QBB'Qµ 

+ + 
µ'QIQIQµ. 

In general, fork 2 2, 

(3.2.22) 
+ k-1 + 
µ'(QI) Qµ. 

REMARK 3.2.3. For the constant c of theorem 3.2.1, the following holds. 

(3 .2 .23) µ E M(I) ~ c = 0. 

This can be proved as follows. Suppose thatµ E M(I). Then, by definition 

of Band by (3.1.9), µ E M(I) = M(BB') = M(B). This implies that there ex-
+ + + 

ists a vector y such thatµ= By. It then follows that 

+ + 
y'B'QBy 

because P A- 1P 1 is the natural g-inverse of B'QB. 
+ + + 

+ + 
y'B'QBy 0, 

Thus,µ E M(I) is a sufficient condition for c = 0 to hold. It is how-

ever not necessary as the reader may check by considering a suitable exam

ple. 
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Necessary and sufficient conditions are given by 

LEMMA 3.2.1. For the constant c of theorem 3.2.1 we have 

(3 .2 .24) 

PROOF. "<=" • Qt E M(QL) implies that there exists a vector 1 such that 
-->- -->-

Qµ = QLZ. Then we have 

SO C 0 follows. 

-->- -->
µ'QLZ 

-->- -->-
Z1LQLZ; 

-->- -->
z'BB'QBB'z 

-->- -->
Z1LQLZ, 

"~". First recall that c ~ 0, because c is the "minimum value" of 
->-

a n.n.d quadratic form. This means that, for allµ 

Thus the matrix 

is non-negative definite. Let Ebe a square-root of D (D 

implies 

EE'). Then C 

-->- -->- -->- -->-
IIE'µIJ 

-->- ➔ 
µ'Dµ µ'EE'µ 0 ~ 0 ~ E'µ 0 ~ 

-->- -->- -->- -->- -1 -->- -->-
~ EE'µ 0 ~ Dµ 0 ~ ( Q - QBP /1 + P ~ B IQ) µ 0 ~ 

-->-
QBP+J\:1P~B'Qµ Qµ E M(QB). ~ Qµ ~ 

The result now follows, because M(QB) M(QBB') M(QL) as the reader may 

verify. D 

0 
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Next, we prove a theorem which is closely related to theorem 3.2.1. It 

gives criteria for (3.2.1) to have a (non-)central x2 -distribution, which 

can be verified without explicit calculation of eigenvalues and eigenvectors. 

This theorem is a special case of an already known theorem, which we repro

duce here as theorem 3.2.3, but it can now be derived easily from theorem 

3.2.1, which is the reason why we treat it here. First we prove 

+ + 
LEMMA 3.2.2. Let x ~ N (µ,L). Let Q be a real, symmetric, n.n.d matrix of 

q 
order q. The following two statements 

(3 .2 .25) QL is idempotent 

(3.2.26) 

are then equivalent to 

(3.2.27) 

(3.2.28) 

QL is idempotent 

+ + 
µ 'Qµ 

PROOF. Suppose that (3.2.25) & (3.2.26) hold. Clearly (3.2.25) ,_. (3.2.27). 
+ + + 

From (3.2.26) it follows that there exists a vector y such that Qµ = QLy. 

Then, using the idempotency of QL, 

+ + 
µ'QLQµ 

so (3.2.28) follows. 

+ + 
µ'Qµ. 

Next, suppose that (3.2.27) & (3.2.28) hold. Clearly (3.2.27),.. (3.2.25). 

Let B be a square-root of r, then the non-zero eigenvalues of B'QB and QL 

are identical (cf. corollary 3.1.1). From (3.2.27) it then follows that the 

non-zero eigenvalues of B'QB are all equal to 1. The positive canonical re

duction of B'QB then reduces to P+P~. Consider now the distribution of 
+ + 
~•Q~ as given by theorem 3.2.1, in particular the constant c, as given by 

(3.2.5)·. We have, using (3.2.9), 

C 

+ + 
µ'QBB'Qµ 0 
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when (3.2.28) holds. So (3.2.27) & (3.2.28) ~ c 0. By lemma 3.2.1, 

c = 0 ~ Qµ E M(QL). So (3.2.27) & (3.2.28) ~ Qµ E M(QL). D 

We can now formulate the second main theorem. 

-+ -+ 
THEOREM 3.2.2. Let x N (µ,L). Let Q be a real, symmetric, n.n.d matrix of 

q -+ -+ 
order q. The quadratic form ~•Q~ has a non-central x2 - distribution iff 

(3.2.29) QL is idempotent, 

(3. 2. 30) 

The number of degrees of freedom is then 

(3. 2. 31) trace(QL) 

and the non-centrality parameter is 

(3. 2. 32) 
-+ -+ 
µ'Qµ. 

-+ -+ 
PROOF. The distribution of ~•Q~ is given by (3.2.1) 

r 2 
c + l ;\ (u + w ) , 

T=l T -T T 

where >- 1 , ... ,;\r are the positive eigenvalues of B'QB (cf. theorem 3.2.1) 
-+ 

and wand care given by (3.2.4) and (3.2.5) respectively. 
-+ -+ 2 

Clearly, ~ 'Q~ has a non-central x - distribution iff 

(3.2. 33) 

(3. 2. 34) C = 0. 

;\ 
r 

1, 

The equivalence between (3.2.34) and (3.2.26) is proved in lemma 3.2.2. We 

shall now prove the equivalence of (3.2.33) and (3.2.25). In view of lemma 

3.2.2, the necessary and sufficient conditions are then given by (3.2.29) 

and (3.2.30). 

"(3.2.25) ~ (3.2.33)". When QL is idempotent, then the positive eigen-

values of QL and hence of B'QB (cf. corollary 3.1.1) are all equal to 1. 
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"(3.2.33) ~ (3.2.25) ". When (3.2.33) holds, the positive canonical re-

duction of B'QB reduces to P+P~. Then, using (3.2.9), 

Qt:Qt: QBB'QBB' 

so that Qt: is idempotent. 

QBP P'B' 
+ + 

QBB' 

This proves the equivalence of (3.2.25) and (3.2.33). 

Furthermore, 

number of degrees of freedom 

number of non-zero eigenvalues of B'QB 

trace(B'QB) trace(Qt:), 

using the fact that the positive eigenvalues of B'QB are 1, that for a 

square matrix the sum of its eigenvalues is equal to its trace and the re

sults of corollary 3.1.1. 

For the non-centrality parameter (3.2.16) we find, using (3.2.19) and 

(3.2.30), 

cS 
r 2 
I w 

T=l T 

This completes the proof. D 

+ + 
µ'Qµ. 

REMARK 3.2.4. In theorem 3.2.2 we have not excluded the case that Qt: 
+ + 

in which case the distribution of ~•Q~ reduces to 

(3.2.35) 0) 1' 

0 ' q 

but this does not lead to problems, when we consider such a distribution as 

a member of the class of non-central x2 - distributions. 

Sometimes, the condition that Q is n.n.d is dropped. For completeness, 

we also quote the theorem concerning this case. 
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+ + 
THEOREM 3.2.3. Let x ~ N (µ,L). Let A be a real, symmetric matrix of order q. 

+ + q 
The quadratic form x 'Ax has a non-central x2 - distribution iff 

(3. 2. 36) 

-+-+ -+-+ 
(3.2.37) µ'ALAµ µ'Aµ, 

(3 .2 .38) 

The number of degrees of freedom is 

(3 .2. 39) trace (AL) 

and the non-centrality parameter is 

(3.2.40) 
+ + 
µ'Aµ. 

PROOF. RAYNER & LIVINGSTONE (1965). 0 

3.3. THE DISTRIBUTIONS OF AND 
r 2 l ;\ (u + w ) 

T -T T 
T=l 

,r 2 ,r 2 + + 
The distributions of lT=l AT::T and lT=l AT <::T + WT) , with :: ~ N (0, Ir) , 

1 1 lR w E lR have been studied extensively. The reader is /\ 1 , ... ,ArE +, w1 , ... , r 

referred to JOHNSON & KOTZ (1970), and KOTZ, JOHNSON & BOYD (1967a,b). 

We list here some of the facts that we used. Let 

(3. 3 .1) 

(3.3.2) 

Moments. 

(3.3.3) 

Q, ~ +++ 
Q<::,\,w) ~ 

r 

I 
T=l 

2.o 
d +++ 
= Q(::,\,0). 

r r 
EQ, = l ;\ 

T 
+ I 

T=l T=l 

;\ (u +w i2, 
T -T T 
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r 
A2 

r 
A2W2 (3.3.4) a2 <Q.l 2 I + 4 I , 

T=l 
T 

T=l 
T T 

r 
A 3 + 

r 
A 3w2 (3.3.5) µ3 (Q_) = 8 I 24 I 

T=l 
T T=l T T 

The moments of½ follow by omitting the terms containing wT's. If Al= A2 

Ar= 1, the moments reduce to those of the (non-) central x2-distri-

bution. 

Asymptotic expansions. 

The distribution function of Q_ - .,r A (u + w ) 2 , 
l1=l T -T T 

(3.3.6) 

may be represented in -an infinite series of central x2-distributions 

(3.3.7) 
➔➔ 

F(Z;A;W) 

with coefficients ak, recursively defined by 

(3. 3.8) 

(3.3.9) k 1,2, ... 

(3. 3 .10) T = 1,2, ... ,r, 

(3.3 .11) k 1, 2, ... 

62[v] a r.v. with a x2-distribution with v degrees of freedom, and S>O a 

suitably chosen constant. The choice of S leaves some room to influence the 

rate of convergence of the series. A good choice is 

(3.3.12) s 

so that IY I < 1 for T = 1, ... ,r. In our calculations in chapter 9 we 
T 

always take Sas defined by (3.3.12). 

The series is uniformly convergent for any bounded interval of z > 0. 
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A bound for the error (EN(z)) resulting from the truncation of (3.3.7) 

after the N'th term is given by 

(3. 3 .13) 

for O < µ < 1 , and 

(3.3.14) 

f (~+N+1) 

f(~)(N+1)! 
} { 

forµ> 1, f[v]is the density of the x2-distribution with v degrees of free

dom, while 

(3. 3 .15) µ 
d 1 r 

2 I 
T=l 

max I 1 -fl-, 

This expansion can.fruitfully be used for computer calculation, when 

a subroutine program for the x2-distribution is available. (See also the 

examples in chapter 9). 

Approximations. 

When no computer is available, the distribution of 2-o may be approxi

mated, using the same method as proposed in chapter 1, by an adapted x2 -

distribution, i.e. the distribution of bx 2[v], where band v are chosen 

to make the first two moments agree with those of 2-o, i.e. 

r 
A 2 

r 
(3.3.15) b I )/ ( I A 

T=l 
T 

T=l 
T 

r 

i21< 
r 

"-2 (3. 3 .16) V I A I ) 

,=1 
T 

T=l 
T 

An improvement is possible if we use a+bx 2 [v] instead of bx 2[vl. we have 

in that case, 

(3. 3 .17) 

(3. 3 .18) 

r 
a = I 

T=l 

V 

r 

I 

A 
T 

T=l 

r r 

I b I 
,=1 T=l 

r 

I 
T=l 

However, for positive a, this approximation assigns the value O to P(~ s z), 

for all OS z s a, so this approximation does not work well for small z. 
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The most simple approximation to the distribution of g is the distri

bution of ~2[v,o2J with 

r 
(3.3.19) V = l 

-r=1 
;\ 

T 

r 
I 

-r=1 

so that only the first moments of g and ~2[v,o2] agree. When we take 

(3.3.20) 

(3.3.21) 

the first two moments of g and ~2[v,o2] agree. 

And when we take c~2[v,o2J to approximate g, with 

(3.3.22) 
2cr2 + /4cr4-2µ 3E 

C = 4E· 

(3.3.23) o2 cr2 - 2cE 

2c2 

(3.3.24) E - o2, V = 
C 

then the first three moments of c~2[v,o2J agree with those of g.(E 

cr2 = cr2(gl, µ3 = µ3(g)J. 

The last approximation, however, is only possible when 

(3.3.25) 

All these approximations necessitate the use of a table of the non

central x2-distribution. The reader is referred to JOHNSON & KOTZ (1970), 

p.137, for a survey of existing tables and approximations of the non-central 

x2-distribution. 

We shall now prove a lemma concerning a slightly more general situation, 

but which we shall apply to the distribution of g. 

LEMMA 3.3.1. Let u be a r.v. with an absolutely continuous distribution. 

Suppose that the density f of~ is symmetric with respect to O and that f 

is strictly decreasing, continuously differentiable and positive on [0, 00 ). 

Let ~1 , ••• ,~r be independent and identically distributed as~- Let 
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Al , ... , Ar E lR +, w l , ... , wr E lR , 3 { l } : w f, 0. 
TE , ,. ... ,r T 

The function 

A (u + tw ) 2 $ z), 
T -T T 

t ~ 0, 

is then strictly decreasing in ton [0, 00 ) for each z E lR+. 

PROOF. Without loss of generality we may suppose that w, ~ 0 for T = 1, ... ,r, 

where at least one .of the inequalities is strict. Let, for T = 1, ... ,r, 

d A (u + tw ) 2 
X, T -T T 

with density g,(t,y) and distribution function G,(t,y), and 

d z 
-r 

r 

I 
,=1 

A (u + tw ) 2 
T -T. T 

with density hr(t,z) and distribution function Hr(t,z). 

We shall prove the lemma by induction. First consider the case r 1. 

We have 

So 

3H 1 (t,z) ;.;- C 
--,--- = -w f( ✓~ - tw) + w f(-✓~ - tw' < 0, 

at 1 Al 1 1 Al 1' 
for z > 0, 

because f is symmetric w.r.t. 0 and strictly decreasing on [0, 00 ) and w1 f, 0. 

It follows that H1 (t,z) is strictly decreasing in t for each fixed z > 0. 

Next, suppose that Hr ( t, z) is strictly decreasing in t for each z > 0. 

Then we have for r+l, 

Hr+l (t,z) 

z 

J g 1 (t,x)Hr(t,z-x)dx. 

0 
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Now we have 

3Hr+l (t,z) 

at 

z I Hr(t,z-x) :t g 1 (t,x)dx + 

0 z 

f g 1 (t,x) aat Hr(t,z-x)dx. 

0 
a 

Now g 1 (t,x) > 0 for x E [0,z] and at Hr(t,z-x) < 0 for fixed z-x by the in-

duction hypothesis. It follows that the second term is negative. 

For the first term we can write, using partial integration, 

z I Hr(t,z-x) :t g 1 (t,x)dx 

0 

0 + 

z 

I 
0 

hr(t,z-x) 
a at G1 (t,x)dx 

~ ~ 

> 0 < 0 

< 0 

So Hr+l (t,z) is also strictly decreasing in t for each z > 0. It is left to 

the reader to verify that all operations used were permissable. D 

3.4. MULTIVARIATE CENTRAL LIMIT THEOREM 

➔ 

Because of the fact that in our problem the vectors ~i do not have 

identical distributions, we need a multivariate C.L.T. for unequal compo

nents. The most general form of C.L.T. that we need is a theorem for tri

angular array's. Because we have not been able to find a suitable reference 

in the literature, we give this theorem here with its proof. The proof is 

based on theorem's 27.2 and 29.4 of BILLINGSLEY (1979). The former is a 

Lindeberg-type C.L.T. for triangular array's of random variables, while 

the latter provides a standard way in which limit theorems for random vec

tors can be derived from corresponding theorems about random variables. 

(The Cramer-Wold device). 
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+ + 
THEOREM 3.4.1. Let (~m 1 , ... ,~m ml be a triangular array of q-dimensional 

I f ➔ ➔ 

random vectors such that for each m, the vectors x 1 , ... ,x are indepen--m, -m,m 
dent, and, 

+ + 
(3 .4 .1) Ex 0 -m,i 

(3 .4.2) 
+ 

D(x . ) 
-m,1. 

L 
m,i 

Suppose that 

(3.4.3) lim .! ! 
m-+«> m i=l 

L . m,1. 

and that for every E > 0, 

(3.4.4) 

L ,f 0 
q 

i 

i 

1, .•. ,m I 

1, ... ,m 

+ 
where F . is the distribution function of x .. 

m,1 -m,1 
Then 

(3.4.5) 
+ + 
x . + N(O,L), -m,1 as m + 00 • 

0 

PROOF. Let 1: = (A 1 , ... , A ) ' be an arbitrary q-dimensional vector. Define the 
-- q 
following random variables 

Then (y 1 , ... ,y ), m = 1,2, •.. is a triangular array of one-dimensional 
-m, -m,m 

random variables with the following properties for each m and i = 1, ... ,m: 

i. the variables Xm, 1 , ... ,Xm,m are independent; 

+ + 
ii. Ey_m,1.· = EA'x O; -m,i 

iii. a2 (y .) a2 (\'; .) 
-m,1 -m,1 

Define 

2 d 
s = 

m 

m 

I 
i=l 

a2 (y . J 
-m,.1. 

Note that (3.4.3) gives 

+ + A'L A 
m,i 

+ m 
A I ( I 

i=l 

+ 
L . ) A 
m,1. 
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lim 
m-+<x> 

2 
s 
m 
-= 
m 

m 
f, (lim - l 

m-+<x> m i=l 

➔ 
,: . )A 

m,1. 

We shall proceed to show that the Lindeberg-condition of theorem 27.2 

of BILLINGSLEY (1979) is satisfied for the just defined variables ~m,i· Let 

G . be the distribPtion function of y . . Then we have, by the Cauchy-
m, 1. -m,1. 

Schwartz inequality, for every £ > 0, 

m 

> ES 
m 

2 
y dG . (y) 

m,1. 

➔ 1 

f 1t,;1 
Z: 2 

(f 1;) 2dF . (x) $ 

s i=l 
m,1. 

m > ES 
m 

1 
m 

f 1t,;1 
➔ ➔ I ➔➔ ➔ 

$ 
2 

A'A (x'x)dF . (x) 

s i=l 
m,1. 

m > ES 
m 

Jl!lr m 

f 1t,;1 
11;11 2 dF . (;). 2 Z: 

s i=l 
m,1. 

m > ES 
m 

For every £ > 0, there exists a £' > 0, such that for sufficiently large m 

(m2m' (£)), 

So we have, for m 2 m' ( £) , 

2 

1l!lL ! m 

f 11,;1 
Z: 

s2/m m i=l 
m > ES 

m 

➔ 2 m 

f 11r11 
$ fil ! Z: 2 m 

sm/m i=l 
> £'vm 

Now, f is fixed, s 2 /m converges to a constant which may be taken to be un
m 

equal to zero (treat the case f•,: f = 0 separately). With (3.4.4) it then 

follows that, for every £ > 0, 



1 m 
lim 2 }: 
m-- s i=1 

m > e:s 
m 

2 
y dG , (y) 

m,1. 0 • 

Applying the above mentioned theorem 27.2, it follows that 

1 m 
- 'I.' v -+ N(0,1) 
s2 i,;1 "-m,i 
m 
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as m-+co, for every ! € lR q. If we take ; ~N(O,E), this result may be written 

as 

as m-+ co, for every ! € lR q. 

Because s /v'm-+ c!•E!)~, as m-+co, we have also 
m 

7 1 ~-+ L"T-+ 
A'(7ni l X .) -+A'!! 1 

m i=1 -m,1. 

as m-+ co, for every ! € lR q. 

The proof is now completed with theorem 29.4 of BILLINGSLEY (1979), 

which states that ~ ~ ~ iff ! '; ~ ! '; for each ! € lR q. D 
-m - -m 
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CHAPTER 4 

CONSISTENCY, ASYMPTOTIC DISTRIBUTIONS AND POWER 

4.1. CONSISTENCY 

A sequence of level-a tests{~ Q} is consistent against a fixed alter
-m, 

native aE: A (cf. section 2.3.), iff for m->- 00 

(4 .1.1) 

It is desirable that (4.1.1) holds for each aE (0,1), so we shall call 

{~ Q} consistent only if this is the case. 
-m, 

The class of alternatives against which {~m,Q}, based on ~(Q) -

is consistent depends on the choice of Q. In this section we shall determine 

this class. 

In section 4.3 we shall prove that, under H0 and assumption 1, the 
+ ➔ 

distribution of ~;Q~* converges to a fixed distribution. It follows that 

the sequence of critical values {k 1_a(m,Q)} is at least bounded. Therefore 

(4.1.1) holds for every aE: (0,1) iff 

(4.1.2) for each M E JR • 

THEOREM 4.1.1. A necessary and sufficient condition for{~ } to be con
-m,Q 

sistent against a fixed alternative a EA, is that 

(4.1. 3) lim 6'Q8 
* * m-+<o 

for this alternative. The class of alternatives for which{~ Q} is con
-m, 

sistent forms a subclass of A1 . 

PROOF. The test {~ Q} is consistent against aE A iff (4.1.2) holds. From -m, 
the Cantelli inequality (RAO (1973)) it follows that for a sequence of ran-

dom variables {y }, 
-m 



(4.1.4) 

iff 

(4.1.5) 

P (y 2 M) + 1 
-m 

Ey + oo 
-m 

for each M E lR 

and 

First suppose that not lim 8'Q8 = 00 • This means that 8'Q8 has a 
m+oo * * * * 

f" . 1· . . d O f k d +, + . h inite imit point, 2 , say. I we ta elm= !*Q!*, wit Ealm = 

trace Qr1 • + !;Q!*, there exists a subsequence {rm }==l' such that 
k 

(4.1.6) 

So (4.1.5) is not satisfied for this subsequence, and therefore the limit 

lim P (y 2 Ml does not exist. It follows that {<.p } is not consistent. 
m+oo -m +-m,Q+ 

Next, suppose that lim 8'Q8 = 00 • With u = t - 8 , we have 
m-+<x> * * -* -* * 

(4.1. 7) + 8'Q8. 
* * 
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Take this time y_m d 28'Q~ + 8'Q8, then Ey = 8'Q8, a 2 (y l = 48*'QI1 .Q!*, 
* -* * * -m * * -m 

and it follows from lemma 3.1.8 that (4.1.5) is satisfied. The consistency 

now follows from 

(4.1.8) P (y d1) a -m 

-+ + 
which is true because Q is n.n.d, and therefore ~;Q~*20 with probability 1. 

The last statement of the theorem follows because 8'Q8 + 00 implies 
* * 

!;!* + 00 by lemma 3.1.7. This completes the proof. D 

THEOREM 4.1.2. A sufficient condition for {<.p Q} to be consistent against -m, 
each alternative in A1 , is that 8* E M(Q) for each alternative in A1 . 

PROOF. Assume 6* E M(Q) for each alternative in A1 . It follows from lemma 

3.1.7 that then!;!*+ 00 => !;Q!* + 00 • Apply now theorem 4.1.1. D 

REMARK 4.1.1. It follows in particular from theorem 4.1.2 that a sufficient 

condition for the consistency of {<.p Q} is that Q is non-singular. 
-m, 

The question naturally arises now if there exists a Q and an a E A1 for 

which 8'Q6 f 00 • The above remark shows that Q has to be singular if this 
* * 
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is to be true. A trivial example is furnished if we take Q ~In® lk, with 

rank n, because 6'Q6 = 0 (t'Qt = 0) for each m and each a E A1 for this 
* * -* -* 

choice of Q. 

A more important question is the following. Does there exist, given a 

singular Q, an alternative a E A1 for which !;Qt* f 00 , i.e. an alternative 

for which{~ } is not consistent. The answer is: not always; there are 
-m,Q 

singular matrices Q such that {~m,Q} is consistent against all alternatives 

in A1 . 

Recall that the vectors 6. and 6 are elements of the null-space N(F) 
l * 

of the matrix F defined in section 3.1. Conversely, under certain circum-

stances, any element of N(F) may, apart from a constant factor, occur as a 

vector 6., as follows from the following lemma. 
l 

LEMMA 4.1.1. Let n~k~4. Let~ be an arbitrary element from N(F). Then for 

any experiment Ei, with ail> 0, ai2 > 0, ... , aik > 0, there exist constants 

6i 1 , ... ,6iN. , and a constant c, such that 
l 

(4.1.9) 
➔ 

Et .. 
-i 

PROOF. For the experiment Ei, with ail > 0, ... , aik > 0, we have if nee k ee 4, 

N. 
l 

n! n! 
(n- (k-1))! 

n(n-1) ... (n-k+2) ee nk + 1. 

Introduce the variables x 1 , ... ,xN. and solve the following nk + 1 equations 
l 

-->- (1) (1) (2) (2) (n) (n) , 
(writing n = (n 1 , ..• ,nk ,n 1 , ... ,nk , .•• ,n 1 , ... ,nk l ). 

N. 
l 

I 
r=l 

X 
r 

o. 

Because the number of variables (Ni) exceeds the number of equations (nk+l), 

there is always a solution. 

Next, choose a constant c such that the solutions xr satisfy 

X 
~ r ~ 

C 

Then we may take 6ir 
-->

xr/c, from which follows that E!i 

We then have the following theorem. 

n/c 
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THEOREM 4.1.3. Let n~k~4. Let Q be a singular (real, symmetric and n.n.d) 

nk x nk matrix, with rank Q < (n-1) (k-1). Then there exists an alternative 

ae:A1 such that limm-+<"' !~!* = m, but limm-+<"' 6*Q!*= 0. 

PROOF. Because rank Q < (n-1) (k-1), N(Q) n N(F) ,f {O}. So take ; e: N(Q) n N(F), 

; ,f O. By lemma 4.1.1, there now exist constants c and ~i 1 , ••. ,~iN. and an 

. t d . t E h th t E+t = +n/c g -t. • l. associa e experimen i sue a -i 0 1 

Also l e: N (Q) n N (F). It follows that 
l. 

m + + 2 n'n + oo, 
C 

but 

for each m, because ; e: N (Q) • D 

This theorem shows that, if the test is not directed against a very 

specialised alternative, test-statistics with a matrix Q with rank smaller 

than (n-1) (k-1) should be avoided, because there are then always alterna

tives that cannot be detected. 

When rank Q is larger than or equal to (n-1) (k-1), two different 

situations can occur. We show, by examples, that it is possible that there 

still is an alternative for which {(I) Q} is not consistent (example 4.1.1) -m, 
and it is also possible that, even though Q is singular, {(I) Q} is consis-m, 
tent against all alternatives in A1 (example 4.1.2). 

EXAMPLE 4.1.1. Take n = k = 4. Choose a sequence E1 , E2 , ••• with ail > 0, 

ai2 > O, ••• , aik > O. Define a c and ~. 1 , ••• ,~.N such that 
l. l. i 

C(1,-1,0,Q;-1,1,Q,Q;Q,O,O,Q;Q,Q,Q,O) I 

This is possible by lemma 4.1.1. This defines an alternative a to H0 with 

so a e: A1• 

Take 

as m + m, 
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1 0 0 1 1 

1 1 0 0 

0 0 1 0 0 0 
06 I 10 

0 0 0 1 0 0 

Q 
d 1 1 0 0 1 

1 1 0 0 1 1 I --- -1-
0 10,6 I 1 10 

I 

Q is a real, symmetric, n.n.d matrix of order 16, with rank 13, which is 

larger than (n-1) (k-1) = 3•3 = 9. Obviously 8;Q8* = 0 for each m. It follows 

that for this particular alternative{~ Q} is not consistent. -m, 

EXAMPLE 4 .1 . 2. Take ri 2 2 and k 2 2 arbitrary. Let 

Q g 

Obviously, Q is a real, symmetric, n.n.d matrix of order nk, with rank 

nk-k > (n-1) (k-1). Consider an arbitrary alternative a E A1 . Now 

n-1 k 
(4.1.10) I I 

v=l j=l 

Because a E A1 , we have 8'8 + co, so at least one component of 8 must (in 
* * * 

absolute value) tend to infinity. Due to the linear relationships 
(\/) (+) 

o*+ 0 for all v, and o*j = 0 for all j, this means that 

i. 

ii. 

at least four components must in absolute value tend to infinity; 

th f t t 11 b ~ (n) ~ (n) ~ (n) 
ose our componen s canno a e among u*l ,u*2 , ... ,u*k 

It follows that at least two terms of the sum (4.1.10) must tend to in

finity, and so 8'Q8 +co. 
* * 

Because a E A1 was arbitrary, we have 

8'8 +co* 8'Q5 + co 
* * * * 

for each a E A 1 . 

From theorem 4.1.1 it then follows that {pm,Q} is consistent against each 

a'° A1 • 
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REMARK 4.1.2. Notice that, so far, Q is assumed to be a fixed, real, sym

metric and n.n.d matrix, and that such a Q is chosen irrespective of the 

number of experiments m. This applies in particular to the examples in this 

section. However, in order to avoid problems like those outlined in theorem 

4.1.3, or simply to obtain better results, the choice of Q is allowed to 
➔ ➔ 

depend on, for instance, the values a 1 , ... ,am obtained in the sequence of 

experiments E1 , ... ,Em. In the analysis of the asymptotic behaviour of our 

tests, this means that Q may depend on m, Qm say. This does not affect our 

results, provided that 

(4.1.11) Q 

exists and Q is a real, symmetric and n.n.d matrix. In order to avoid in

tricate notation we continue to write Q for Qm' unless we want to stress 

the dependence on m. 

REMARK 4.1.3. In section 6.1 we consider the following special choice for 

Q: 

(4.1.12) Q 

where L~. is any g-inverse of LO• (Because the elements of a g-inverse of 

a matrix depend in a continuous way on the elements of the matrix, and the 

limit lim LO• exists by assumption, also the limit lim L-O exists.) m->oo m->oo • 
Suppose that rank LO•= (n-1) (k-1) (this rank is usually obtained for a 

sufficiently large value of m). Depending on the choice of particular g

inverse, rank L~. may then vary from (n-1) (k-1) to nk. In section 6.1 it is 

established that the test with such a Q is consistent against each alterna

tive in A1• This is therefore a second example of the situation of example 

4.1.2. 
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4.2. ASYMPTOTIC MULTIVARIATE NORMALITY 

➔ 

In this section we shall establish the asymptotic normality of!*, 

under the assumptions 1 & 2 of section 2.3. Under these conditions, the 
➔ 

dispersion matrix of!* converges to a limit as m ➔ 

Recall that 

(4. 2 .1) Il 
d 

Il • 
➔ 

lim lim D(t ) , 
m➔oo . m➔oo -* 

(4.2.2) r ~ lim IQ• lim n<tlHo>, 0 m➔oo m➔oo 

t ~ t ➔ 

(4.2 .3) lim lim Et m-+«> * m➔oo -* 

(4.2.4) 
➔ ~ t r; lim 

m➔oo . 
THEOREM 4.2.1. Under the assumptions 1 & 2 of section 2.3, we have for 

m ➔ oo, 

(4.2.5) ➔ 

➔ ➔ 

PROOF. ~l' ~2 , ... 
➔ 

vectors, with Eu, 
-1 

is a sequence of independent n x k dimensional random 
➔ ➔ = 0 and dispersion matrix D(~i) 

assumptions 1 & 2 we have 

lim ! I 
m➔«> m i=1 

➔ 
D(u.) 

-1 

Because there exists a constant c, such that 

➔ 
D(t.). Under the 

-1 

11;. IJ 2 :5: c with proba-
-1 

bility one, for i = 1,2, ... , the 'Lindeberg' condition of theorem 3.4.1 

is trivially fulfilled. (Adaptation of theorem 3.4.1 to ordinary sequences 

of random vectors is straightforward). Therefore, all the conditions 

of theorem 3.4.1 are fulfilled and the result follows. D 

COROLLARY 4.2.1. Under the assumptions 1 & 2 of section 2.3 and H0 , we 

have for m ➔ 00 , 

(4.2.6) -+ 

PROOF. Under Ho, t D 



COROLLARY 4.2.2. Under the assumptions 1 & 2, we have for alternatives in 

A2 u A3 , 

(4.2. 7) 
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PROOF. Because t =; + 8 , ; ::;: N(O,I:1) by theorem 4.2.1, 8* ➔ 8 by assump-
-* -* * -* 

tion 2, the result follows from a Cramer-type theorem. D 

For "close" alternatives (cf. section 2.4) we have the following theorem. 

THEOREM 4.2.2. Under close alternatives we have 

(4.2. 8) 

PROOF. The proof is analogous to the proof of theorem 4.2.1, this time 

using the triangular-array method explicitly. D 

4.3. ASYMPTOTIC DISTRIBUTION OF THE TEST-STATISTIC 

➔ ➔ 

In this section we derive the asymptotic distribution of ~(Q) = !~Q!*· 

THEOREM 4. 3. 1 • Under H0 , under alternatives from A2 u A3 and under close 

alternatives, we have 

(4. 3 .1) 

where 

(4. 3. 2) 

(4. 3. 3) 

(4.3.4) 

➔ 
X 

➔ 
X 

➔ ,➔ • 
x ~ N(vn ~,I:0 ), under close alternatives. 

PROOF. In all three cases we have!*~;, where; has one of the distribu

tions (4.3.2)-(4.3.4). Because (•) 'Q(•) is a continuous function, the result 

follows. [When Q depends on m, Q say, with Q +Q, write "t 1 Q 't :: 
➔ ➔ ➔ ➔ ➔ ~ P m -* m-* 
t'Qt +t'(O -Q)t, then t'(O -Q)t ➔ O and the same result follows.] D 
-* -* -* llJ -* -* 7n -* 
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➔ ➔ 

Note that the distributions of ~•Q~ follow from theorem 3.2.1. 

For alternatives in A1 , the situation is somewhat different. Although 

{(I) Q} is consistent against a E A1 when 6'Q6 ➔ 00 , the asymptotic distribu-
-m, * * 

tion (a.d.) does not exist in all cases. We shall give some examples where· 

the a.d. does exist. 

+ ➔ 
THEOREM 4.3.2. For alternatives in A1 , ~(Q) _ !;Q!* has the following a.d. 

(4.3.5) 
t,Qt - 81 Q6 
-* -* * * 

✓m 

where 

(4.3.6) 

PROOF. From (4.1.7) it follows that 

m 

➔ ➔ 

From theorem 4.2.1 it follows that~* ➔ N(O,L1). As in theorem 4.3.1 

;;Q;* then converges to a fixed distribution. Therefore m-½(;;Q;*) ~ 0. 
--t ➔ -t ➔ L ➔ ➔ ➔ 

Furthermore, from o. ➔ sit follows that 20:Q~* ➔ 2s'Q~, where x 
➔ ➔ 2 + ➔ ➔ ➔ 

The result follows from E(2s'Q~) = 0 and a (2s'Q~) = 4s'QL1Qs. □ 

Note that it may occur that a 2 , defined by (4.3.6), is equal to zero. 

The a.d. of ~(Q) is then degenerate. Other transformations may still yield 

a proper a.d., as is illustrated by the following theorems. Let 

(4.3.7) 

THEOREM 4.3.3. For alternatives in A1 , and matrices Q such that cr~ ➔ 0, 
➔ ➔ 

~(Q) - !;Q!* has the following a.d. 

(4.3.8) 

➔ 
where x 

PROOF. Because cr 2 + 0 and; ➔ N(O,L1), the result follows from the iden-
m -* 

tity ( 4 . 1. 7) . □ 
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2 ➔ ➔ 
Note that om ➔ 0 implies that 4s'QL 1Qs 0, so the situation of theorem 

4.3.3 is not covered by theorem 4.3.2. 

THEOREM 4.3.4. For alternatives in A1 , and matrices Q such that o; ➔ 00 

7 ➔ ➔ 

and limm➔oo o*/om exists, ~(Q) _ !;Q!* has the following a.d. 

(4. 3. 9) 

PROOF. From (4.1.7) it follows that 

➔ ➔ 

Because ~;Q~* converges to a fixed 

E(2o-18 1Q~) = 0 and o 2 (2o- 18•Q~) 
m * -* m * -* 

verges because lim o-l-;s exists 
m➔oo m * 

-1➔ ➔ p 
distribution, o u'Qu ➔ 0. Furthermore 

m -* -* 

□ 

THEOREM 4. 3 . 5. For those al terna ti ves in A 1 , for which limm➔oo 8 */ 118 * 11 
➔ ➔ 

exists, ~(Q) _ !;Q!* has the following a.d. 

(4.3.10) 

where 

(4.3.11) 

PROOF. The proof is analogous to the proof of theorem 4.3.4. 0 
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4.4 APPROXIMATE CRITICAL VALUES AND APPROXIMATE POWER. 

In section 4.2 we showed 

(4.4.1) 
+ 
u 
-* 

m-+ oo, 

where 6* and L1 are calculated under a particular alternative a EA. Under 

HO we have 

(4.4.2) m + co 

Now consider the number m of experiments as fixed and suppose that 

these m experiments are either performed under HO or under the (fixed) al

ternative a EA. Obviously, only the first m components of a are now of in

terest. In view of (4.4.1) and (4.4.2), we put for sufficiently large m 

(4.4.3) 

and under HO, 

(4.4.4) 

i.e. we adopt the form of the asymptotic distribution, while using the actual 
+ 

moments oft. 
-* 

Recall that the (exact) critical value of the test was defined by 

(2.2.13) and (2.2.14). As it is impossible, in practice, to determine the ex
+ + 

act distribution of !:Q!* under HO (except for very small m), the approxi-

mation (4.4.4) is used to obtain an approximate critical value. Using the 
+ + 

approximation (4.4.4), the approximate distribution of !:Q!* is obtained 

using theorem 3.2.1. In practice, further approximations to the distribution 
+ + 

of !:Q!* may be used, as described in section 3.3. Examples of the determi-

nation of critical values are given in chapter 9. 

Let k be any critical value determined in one of those ways. The power 

of the test, against~ EA, 

(4.4.5) 

still cannot be determined exactly, except for very small m. However it may 
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be estimated through the simulation of the distribution of t 'Ot under a EA, -*--* 
with the aid of a computer. Some examples can be found in chapter 9. The as-

ymptotic power is equal to 1 for consistent tests, and this is apparently 

not a good approximation to the power for finite m. Therefore, we adopt the 

same method as under H0 , i.e. we use (4.4.3) as an approximation, thus 

(4.4 .6) 

Theorem 3.2.1 gives that (4.4.6) is equal to (we have c 0, cf. remark 6.1.c) 

(4.4. 7) 
r 2 

P ( l ;\ (u + w ) 2 kl , 
T=l T -T T 

➔ ➔ 
with u N(O,Ir), I 1 • 

➔ 
values of B'QB and w 

BB', r = rank B'QB, >- 1 , ... ,;\r the (positive) eigen

A-1P1B'Q6. The reader is referred to section 3.2 
+ + * 

for details. The asymptotic expansions of KOTZ, JOHNSON & BOYD (1967b), as 

described in section 3.3, may be used for the actual calculation of (4.4.7). 

Examples are given in chapter 9. 

For all these calculations a table of the non-central x2 - distribution 

or the aid of a computer is necessary (the approximations involve the non

central x2 - distribution) . 

However, there exists a lower bound for (4.4.7) that can be calculated 

easily using only a table of the standard normal distribution. It follows 

from the following theorem. 

➔ 

THEOREM 4.4.1. Let u 

(4.4.8) 

where 

r 2 
P ( l ;\ (u + w ) 

T=l T -T T 

r 
V ~ { I 

T=1 

and ~ ~ N ( 0 , 1 ) • 

PROOF. 

r 
P( I 

T=1 
;\ (u + w ) 2 :5: z) 

T -T T 

r 
{ I 

T=1 

r 
P( I 

T=1 

By the Cauchy-Schwartz inequality we have 

r 
;\ u2 + 2 I 

T-T 
T=1 

r 
/\ w u + I 

T T-T T=l 

\/ z 2 0. 

;\ w2 :5: z). 
T T 
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r 
,- w u J2 

r 
n:-u n:-w ) 2 

r 
>- u 2) ( I - I s I T T-T T-T TT T-T 

,=1 T=l T=l 
r 

,- w2 /:i 
r 

,_2w2/:i Writing v { I and W= { I we have 
,=1 T T ,=1 T T 1 

r 
2 

r r 2 
P( I >- u + 2 I ,- w u + I ,- w s z) = 

T=l 
T-T 

T=l 
T T-T 

T=l 
T T 

2 r 2 2 r 4 
s zv 2J P(V I >- u + 2V. l ,- w u + V s 

,=1 T-T 
T=l 

T T-T 

r 
,- w u ) 2 + 2v 2 

r 
+ v4 s P( ( I I ,- w u s 

T=l 
T T-T 

T=l 
T T-T 

r 
+ v2}2 zv 2 ) P({ I ,- w u s 

T=l T T-T 

r 
+ v2 P (-v/2" s I " w u s v/2°) 

T=l T T-T 

v2 
r 

V2) P(-v/2° - s I " w u s v/2" -
T=l T T-T 

-vrz -
2 

v/2" -
2 

V V 
) , P( W s u s - w 

where ~ ~ N ( 0 , 1 ) . D 

When we apply theorem 4.4.1 to (4.4.7) we obtain 

(4.4.9) 
r 2 

P ( }: A (u + w ) 
T=l T -T T 

-v✓k - v2 
~ k) ~ 1 - P( W 

zv 2 ) 

r 
,- w2). I T T 

T=l 

From (3.2,18), (3.2.19) and remark 3.2.3 it follows moreover that 

(4.4 .10) 

(4 .4 .11) 

2 
V 

Therefore, it is not even necessary to calculate the >-,'sand w,'s explicit

ly to determine this lower bound (the right-hand side of (4.4.9)) of the 

power of the test for finite m. 

Notice that this lower bound may also be used to make a quick estimate 

of the number of observations required to achieve a given power against a 

given alternative a EA. 
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The last question that remains to be answered is whether we can use 

the approximation to the power function to select an 'optimal' Q-matrix. 

There are two approaches to this problem. Suppose that we have a fixed 

alternative a EA and a fixed m, so that! and Ll are fixed and complete~ * • 
ly known. We could then try to select the matrix Q which maximises the 

right-hand side of (4.4.6). Alternatively, suppose that the number of ob

servations is not fixed in advance, and that we want to achieve a given 

power against a. We would then select a matrix Q that would need the least 

observations to do this. However, this would mean the recalculation of!* 

and of Ll• for several values of m. The situation is then rather complicat

ed. Both approaches may not be equivalent. Furthermore it does not answer 

the question of optimality when we consider our test as an 'overall' test. 

We do not pursue this problem here any further, because we return to 

it in the next chapter. 

However, one step towards simplification of matters can already be 

made. In order to keep the critical value k (exact, or resulting from some 

approximation) in the neighbourhood of the critical values of the x2 -dis

tribution, we shall choose Q, without loss of generality, in such a way 

that for the a.d., 

r 
(4.4.12) l A 

,=1 T 
r = rank B'QB 

where BB' = L0 • 

4.5. ASYMPTOTIC DISTRIBUTIONS IN THE UNCONDITIONAL CASE 

Although the unconditional version of our test-statistic, previously 

defined (in (2.5.26)) as 

(4.5.1) d 

is unfit to be used as a test-statistic, it is nevertheless interesting to 

investigate its asymptotic distribution. To this end we introduce similar 

notation as in section 2.2 (See also section 2.5). Let 

(4.5.2) (V) d 
X,, 
-J.J 

(v) 
X,' -J.J 

a .. -J.J 
- n' 
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(4.5.3) 

With Q In® G, or a more general Q, ~(G) may be written as 

(4.5.4) 

Let 

(4.5.5) 

Define ti as !i in (2.2.16). Then 

(4.5.6) 

* + I * + which reduces, under H0 , to E(~* H0 ) = 0. Let 

(4.5.7) 

(4.5.8) 

The entries of ~ 1i and ~ Oi may be found from 

(4.5.9) 

(4.5.10) 2 • (v) I * n-1 2 
cr (~ij HO) = n(pij - {pij} ) ' 

(4.5.11) 
• (v) • (v) n-2 (v) (v) 1 ~ (µ) (µ) 

cov(x.. ,x. 1 ) = --(-p,. P, 1 l + - 2 l (-pi.• Pi'l l, 
-iJ -i n J.J i n µ=1 J 

(4.5.12) (j;fl), 

and the independence of the variables x .. (v) (with respect to the indices i 
-J.J 

and v). 

Furthermore, let 



(4.5.13) 

then 

(4.5.14) 

(4.5.15) 

d n-1 
L. 

1. n 

pi1 (l-pi1) -pi1pi2 

-pi2pi1 pi2 ( l-pi2) 

* We shall obtain the a.d. of ~(Q), under H0 , under the following 

assumption. 

ASSUMPTION 3. 

(4.5.16) 

(4.5.17) 

Furthermore, we shall consider alternatives that satisfy 

ASSUMPTION 4. 

(4.5.18) 

(4.5 .19) 

(4.5.20) 

1. (v) 
1.m p • j 

m->-oo 

1 ~ (v) (v) (v) (v)) 
lim m l (p . . -p . ) (p . 1 -p • 1 
m->-oo i=1 1.J "J 1. 

1. (V) ( •) 
im p*j - p*j 

m->-oo 

where I £ . ( v) I may be 00 

J 

(say), 

(say). 

(say), 

(say), 

(say), 

79 

+ (V) 
Let the vector£, with components£. be constructed as in (2.2.16). 

J 

REMARK 4.5.1. The remarks that we have made on the plausability of the 

assumptions 1 & 2 in section 2.3 apply here also. Notice that assumption 

* 4 & H0 imply assumption 3. 
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(V) ( •) 
From (4.5.18) it follows that limm-+oo P.j -p•j 

( v) ( •) 
pj - pj 

For those j and v for h' h (v) (•) ~ 0 th (v) f W J.C pj - pj , e E:j 0 (4.5.19) satisfy 

k <vi I = 00 

J 

->-->
and hence E'E 

oo ( V) ( •) 
Only when pj - pj = 0 for each j and .v 

we can have I E. (v) I < 00 for each j and v, or 1 '1 < 00 • However in that case 
J 

* the alternative clearly converges to H0 , and is not very interesting to us. 
->-->-

So we shall consider mostly alternatives for which E: 1 E = 00 , being the equi-

valent of the class of alternatives for which 618 = 00 in the conditional 

case. For the sake of completeness, some results are also given for the case 
->-->-

that E: 1 E < 

Under the assumption 3, we have 

(4.5.21) ~ 0 , 

while under assumption 4, the following limits exist 

->-
(4.5.22) lim D(x) limm-+oo ~ 1 • ~1 , 

m-+oo -* 

(4.5.23) 
->- ->- ->-

lim Ex lim E E. m-+oo -* m-+oo * 

It is again useful to define 

(4.5.24) 
->- d->- ->-
z, X, - E:, 
-]_ -]. ]. 

THEOREM 4.5.1. Under the assumption 4, we have for m-+oo, 

(4.5.25) 

PROOF. The proof is analogous to the proof of theorem 4.2.1. D 

* COROLLARY 4.5.1. Under assumption 4 & H0 , we have for m-+oo, 

(4.5.26) 

PROOF. As in corollary 4.2.1. 0 

->-->
COROLLARY 4.5.2. Under the assumption 4, we have for E'E < 00 , 

(4. 5 .27) 

(say), 

(say), 
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PROOF. As in corollary 4.2.2. 0 

* THEOREM 4.5.2. Under assumption 4 we have, under H0 and under alternatives 
........ 

such that E'E < m, 

(4.5.28) 

where 

(4.5.29) 
.... 
X 

.... 
N(O,}L 0i, under * HO' 

.... .... ........ 
(4.5.30) X N(E,}l: 1), under alternatives such that E1 E < m 

PROOF. As in theorem 4.3.1. □ 

When we consider a sequence of experiments Ei, E2, ... with probabili

ties p .. (v) that satisfy ~ssumption 4, it is a natural question to investi-
1.J 

gate whether from assumption 4 it follows that the limits of the quantities 

of assumption 1 & 2 exist (or at least almost surely, because these quanti

ties are now random variables). While assumption 4 is sufficient to ensure 

the convergence of the distributions in the unconditional case, it is not 

sufficient to ensure convergence in the conditional case. We then need an 

additional assumption, which, however, is as plausible as the others, 

because it also involves the convergence of the arithmetic mean of a 

sequence. See also the remarks in section 2.3. 

ASSUMPTION 5. For all j, 1, v andµ the following limits exist 

(4.5.31) (say). 

Assumption 1 is implied by the assumptions 4 & 5 in the sense of the 

following theorem. 

THEOREM 4.5.3. Consider a sequence Ei, E2, ... satisfying assumptions 4 & 5. 

Then 

(4.5.32) 

(4.5.33) 
1 m 2 a.s. 

l (a .. -a .) --+ 
m i=l -1.J -•J 
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(4.5.34) 
a.s. --

(j#l)·. 

PROOF. The results follow with the strong law of the large numbers (RAO 
2 2 2 2 (1973), p.114) and the fact that o (a .. ), o (a .. ) and o (a .. a. 1 ) are all 

-iJ -iJ -iJ-i 
bounded, uniformly in i. D 

For the first part of assumption 2 we have an equivalent theorem. 

THEOREM 4.5.4. Let Ei, E2, ... be a sequence satisfying assumptions 4 & 5. 

Then 

(4.5.35) 

(4.5.36) 

(4.5.37) 

( ) a.s. (v ) ( ) ( ) ( ) ( ) ( ) t5 v,µ - e ,µ + p \) µ - 'i' 'i'c v,µ + \) µ ) 
- • J' 1 J' 1 J' P1 l l e · 1 p. P1 

t5 • (v,µ) 
-·J 

a.s. -
v#µ J J 

(jfl,v#µ); 

(v,µ) + (v) (µ) _ 'i' 'i'( (v,µ) + (v) (µ)) 
eJ. J' PJ, PJ, l l e . . P . P . 

v#µ JJ J J 

(v#µ); 

1 n (v) 
n I pj 

v=l 

PROOF. As in theorem 4.5.3. D 

In the second part of assumption 2, (2.3.4), it is assumed that 

limm+oo o*j (V) = oj (V), where loj (V) I may be 00 • We have 

THEOREM 4.5.5. Let Ei, E2, ... be a sequence satisfying assumptions 4 & 5. 

For each pair (j,v) such that 

(4.5.38) 

we have 

(4.5.39) 

PROOF. The result follows directly from (4.5.37) and (4.5.38). D 
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It is, 

convergence 

the test in 

however, possible that p. (v) = p. (•) for some j and v. The a.s. 
J J 

of o . (v) is then not guaranteed. But, for the consistency of 
-*J 

the conditional situation it is sufficient that 818 = 00 • We 

shall now show that (2.5.18) is sufficient to ensure the consistency of the 

test. 

THEOREM 4.5.6. A sufficient condition such that 

(4 .5 .40) 

is that 

(4.5.41) 3. 
JV 

a.s. 
--rOO 

1 ID (V) (•) I Tm I (p . . - P . . i I _,. 00 

ID i=l 1J 1J 
form+ 00 

PROOF. Consider a j and 
. d (V) 

v for which (4.5.41) holds. Take x. = o.. , 
-i -iJ 

-d 
X ' = X ' - µ . . Then Ex ' = µ . -i -i 1 -i 1 

and E~i = 0. Furthermore, 

(v) 
the variables ~l' ~ 2 , ... are independent. Because £ij can only assume 

values between -1 and 1 for each i, cr 2 (o .. (v)) 
-iJ 

formly in i. We have 

cr 2 (;.) is bounded, uni
-i 

-1 
From assumption 4 (4.5.18) it follows that limm->«> m (µ 1+ ... +µm) exists and 

therefore 

O(vrnl form+ 00 

From the strong law of the large numbers (RAO (1973), p.114) it follows that 

a.s. 
-o as m ➔ 00 

and therefore 

O(vrn) a.s. as m + 00 

-½ ~ -½ It follows that m (~1+ ... +~m) is negligible with respect tom (µ 1+ ... +µm) 

(a.s.). So (4.5.41) gives 
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I o . <v> I 
-*J 

a.s. 

and therefore 

□ 

Finally, some remarks must be made concerning the power of the test in 

the unconditional case. Recall that the proposed test is carried out con

ditionally. For the interesting alternatives in the unconditional case, 

(4.5.41) holds. Theorem 4.5.6 then gives that the (conditional) test is 

consistent (a.s.). This means also that the unconditional asymptotic power 

is equal to 1. In section 4.4 we have described for the conditional case 

what to do to approximate the power for finite m. In the unconditional case, 

the situation is even more complicated. Not only are the a .. now random 
-J.J 

variables, but also the critical values are now random. However, a possibly 

crude approximation can be obtained by computing Eoi. (v) and Ea.j from the 
- J -J. 

p,. (v) of the alternative considered and substituting these values into the 
J.J 

formulas of section 4.4 for the conditional power. 
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CHAPTER 5 

ASYMPTOTIC RELATIVE EFFICIENCIES 

5.1. PITMAN EFFICIENCIES 

To make a comparison possible between the different tests that we get 

for different choices of the matrix Q, we shall investigate the asymptotic 

relative Pitman efficiency (ARPE) and the asymptotic relative Bahadur ef

ficiency (ARBE), for two different consistent tests based on ~(Q 1) and 

~(Q2). 

We shall start in this section to give a definition of ARPE as this is 

given by ROTHE (1979). Then we shall give some theorems of Rothe and in the 

next section we shall apply his theory to our situation. 

We quote from ROTHE (1979). 

Let {P 0 , 0 E 0} be a family of probability distributions on a space 

(~,F), where 0 is an interval (finite or infinite) on the real line con

taining zero. Furthermore, {pm} is a sequence of level-a tests (a> OJ for 

H0 : 0 0 against H1 : 0 E 0'-{0}. Take 0' = 0'-{0}. We shall assume that for 

every 0 ,f 0, 

(5 .1.1) 

(5.1.2) 1. 

Usually, Pm is a test based on m observations. Now the question arises how 

many observations are necessary to achieve a given power Se: (a,1). So for 

0 <a< S < 1, we define a function N: 0' ➔ JN, which is called a Pitman ef

ficiency function for S (S - PEF) , if 

(5.1.3) 

(5 .1.4) 
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where ~O = a. 

Further, let 

(5.1.5) 

(5.1.6) 

Now let IT denote the collection of all sequences {0 }, with 
m 

{ (i)} . 
Let ~m , ~ = 1,2 be two sequences of level-a tests with 

-(i) 
NS , respectively. Then 

(5.1.7) 

N ( 2 ) (0 ) 

- ~ ~ m 
e 12 infrr lim inf 

m ➔ 00 N( 1 > ( 0 > 
S m 

resp. 

(5.1.8) 

N( 2 l (0 l 
S m 

+ ~ e 12 suprr lim sup 
m ➔ 00 N (1) (0 ) 

~ m 

0mE 0', 0m ➔ 0. 

0 -PEF N (i) 
µ ~ , 

are the lower (resp. upper) ARPE. If e 12 

ARPE of{~ (l)} with respect to{~ (2>}. 

+ e 12 = e 12 (say) then e 12 is the 

-m -m 
Now if the following three conditions are satisfied, a general theo-

rem about e 12 is applicable. 

CONDITION A. There is a strictly increasing and bijective function 

H: [0, 00 ) ➔ [a,1) such that for sequences {0} in 0 satisfying m0 2 ➔ n ~ 0, 
m m 

as m➔oo, we have 

limm➔oo E8 (pm)= H(n). 
m 

CONDITION B. For every m E JN , the function '¥m: 0 ➔ E 0 (pm) is continuous 

at 0 = 0. 

CONDITION C. For every sequence {8} EIT such that m8 2 ➔ 00 , we have 
m m 



THEOREM 5.1.1. Let{~ (il}, i = 1,2 be level-a test-sequences satisfying 
-m 

conditions A (with functions Hi' respectively), Band c. Then the ARPE of 

{~ (l)} with respect to{~ (2)} exists and is equal to 
-m -m 

(5.1.9) S E (a, 1) • 

PROOF. ROTHE (1979). □ 

5.2. DETERMINATION OF "ARPE" IN OUR CASE 

We apply the theory of section 5.1 in our situation using the 'close' 

alternatives as defined in section 2.4. So a E A1 is a fixed alternative, 

{8m}:=l is a sequence in 0' such that m8! ➔ n ~ 0, and {a0 }:=l is the as

sociated close alternative. 
m 
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We consider matrices Q such that (4.1. 3) is satisfied for a E Al, i.e. 

;'.'.(Q) is consistent against a. We use Pm,Q as defined by (2. 2 .15) . 

In view of (4.1.3), (5 .1.1) holds at least from a certain index ml on. 

When {pm,Q} is consistent against a E A1 , it is also consistent against a 0 , 

for each 0, 0 ,a; 0 ,a; 1, as follows easily from theorem 4. 1. 1 . Therefore ( 5 .1 . 2) 

is also satisfied. We proceed now to verify the conditions A, Band C of the 

preceding section. 

Condition A. 

Let {0} be a sequence in 0 such that m0 2 ➔ n. It follows from theorem 
m m 
➔ -➔ ➔ ➔ L ➔ ➔ 

4.2.2 that!* ➔ N( ✓n s,LO) and from theorem 4.3.1 that !;Q!* ➔ ~•Q~, where 

➔ - ➔ 

x N(ln s,LO), under the close alternative {a0 }. Then 
m 

where k 1_a(Q) is a critical value as defined in section 4.4. 

The question is now whether 

(5.2.1) H(n) 

is a strictly increasing function of n. 
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We have 

H(n) 
r 

P ( l ;\ (u + In w ) 2 ~ k 1 (Q)), 
T=l T -T T -a 

+ + 
for some rEJN, x. 1 ~ •.. ~;\r>O and w1, ... ,wrElR, ~~N(O,Ir). Clearly 

H(O) = a, lim H(n) = 1. 
n-+<><> 

The fact that H(n) is strictly increasing follows from lemma 3.3.1. So 

condition A is fulfilled, and H(n) has a unique inverse H-1 (8) for each 

8 € (a,1). 

Condition B. 

+ 
This follows from the fact that the exact distribution of!* depends 

on 0 in a continuous way, when 0 is in a sufficiently small neighbourhood 

of O. 

Condition C. 

Condition C follows from the fact that for sequences {0m} such that 

2 d 7 + 
m0m + 00 , E0 Xm + 00 and E0 Xm/cr0 <xml + 00 , with Xm = 2o;ca8 )Q~* + 

m m m m 

!;ca0 )Q6*(a8 ). The rest of the arguments are similar to those of theorem 
m m 

4.1.1. 

It follows that the conditions of theorem 5.1.1 are satisfied. The 

ARPE of {pm,Q1} with respect to {pm,Q2 } is thus given by 

(5.2.2) 

With 

(5 .2. 3) 

H;l (8) 

H~l (8) , 
8 E (a,1). 

i 1,2 , 

-1 
No explicit formula can be given for Hi (8), though the inverse may 

be determined numerically. See chapter 9. In general, e 12 (8) will be depen

dent on a, B, Q1 , Q2 and the particular alternative a€ A1 . 
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When two matrices Q1 and Q2 are compared, the criterion (5.2.2) selects 

as best test the one that first reaches S, as /n! tends away from 0. When 

Q1 f Q2 would imply H1 (n) s H2 (n) for all n, or H1 (n) ~ H2 (n) for all n, 

then a 'best' Q could be selected and it would be independent of S. However, 

the implication considered does not always hold and so the selection of a 

'best' Q does depend on S. The Pitman-efficiency is therefore not a helpful 

tool in selecting a 'good' Q. 

* When, however, we approximate H(n) by a function H (n), using the ap-

proximation (3.3.19), i.e. 

(5. 2 .4) 

with 

(5. 2. 5) 
r 

V = l A , 
T=l T 

r 
n I A w2 , 

T=l TT 

we have (ROTHE (1979)) 

(5.2.6) 
2 

c (v,a,S) 

1,2 

where c 2 (v,a,S) is the (uniquely determined) non-centrality parameter such 

that the S-fractile of ~2[v,c2 (v,a,S)] and the a-fractile of x2[v] coincide. 

We now compare two matrices Q1 and Q2 , for which 

(5. 2. 7) r, 

and 

(5.2.8) 
r I A (1) 

T=l T 

r I A (2) 

T=l T 

r. 

Then it follows from (3.2.18) that 

r 
1,2 n I " (1) (w (1) ,2 ➔ ➔ 

(5.2.9) n z:; 'Q1 z:; 1 T=l T T 

r 
1,2 n I A (2) (w (2) l 2 ➔ ➔ 

(5. 2 .10) n Z::'Q2Z:: 2 T=l T T 
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Then we may approximate the ARPE as follows 

(5.2.11) 
2 

c (r,ex,/3) x 

52 
2 

2 
c (r ,ex, /3) 

which is independent of r, ex and /3. Moreover this approximate value of e 12 (13) 

corresponds to the usual ARPE in the case of x2 - distributions. Note that 

this approximate value (e7 2 (say)) may be calculated directly, without prior 

calculation of eigenvalues etc. (cf. (3.2.18)). 

* When we would use e 12 as a criterion to select a Q-matrix, we would 
+ + choose the one that maximises the "non-centrality parameter", l;'Ql;, in ac-

cordance with usual practice. 

5.3 BAHADUR EFFICIENCIES 

In this section, we treat the so-called "approximate" - Bahadur asymptot

ic relative efficiency (ARBE). The reader is referred to BAHADUR (1960) for 

the definition of this concept. It is to be noted that the more interesting 

"exact" - Bahadur asymptotic relative efficiency requires knowledge of the 

exact distribution function of the test statistics, which is unavailable in 

our situation. Although the ARBE has certain serious disadvantages (cf. 

GROENEBOOM & OOSTERHOFF (1977)), it leads to interesting results in our case. 

We now give short definitions of the "standard sequence" and the 

"Bahadur slope" needed for the calculation of ARBE. 

In order to compute the "Bahadur slope" for a sequence of test-statis

tics {'!'.m}:=l , this sequence has to be a "standard sequence", i.e. it has 

to satisfy the following three conditions. 

i. There exists a continuous probability distribution function F such 

that, under H0 , 

(5.3.1) lim P(T < xlHo) 
m-+a> -m 

F(x). 

ii. There exists a constant a, 0 < a < co, such that 

(5.3.2) 
2 

ax log(l-F(x)) =--2-(1+0(1)), as x + ""· 
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iii. There exists a function b on H1 , with O s; b < 00 , such that for each 8 E H1 

T 
(5 .3 .3) limrn-><" Pe<li- b(8) I> E) 0 for every E > 0 • 

The asymptotic Bahadur slope is now defined to be 

(5 .3 .4) G(8) = a{b(8) } 2 • 

The approximate relative Bahadur efficiency (ARBE) for two standard 

sequences {T (l)} 00 and {T (2 )}00 is then defined as 
-m m=l -m m=l 

(5 .3 .5) 

5.4. DETERMINATION OF "ARBE" IN OUR CASE 

We apply the theory of ARBE for tests against alternatives in A1 , i.e. 

instead of 8 E H1 , we shall write a E A1 . 

THEOREM 5. 4 .1. When Q is chosen such that ! ;Q! * ➔ 00 for each a E A1 , then 

{ (t'Ot / 2} 00 is t d d f t t. H -*--* m=l as an ar sequence or es ing 0 • 

PROOF. We verify the three conditions for a standard sequence. 

i. By theorem 4.3.1, 

½ L ➔ ➔ !, ➔ ➔ ½ 
and so (~(Q)) ➔ (~'Q~) , and (~•Q~) has a continuous distribution. 

This proves i. 

ii. Using theorem 3.2.1, we have 

r 
1 - F(x) 1 - P( L 

,=1 

➔ ➔ 

with ~-N(O,Ir) and /\l 2 ... 2 \ > 0. 

Note that 

r 
/\ u 2 > x 2 ) 

r 
u2 > x2) P((X2[r])½> /~) P( I s; P(\ I = 

'[-'[ -'[ 
T=l T=l 1 

r 
/\u2 >x2 ) 

2 2 
P < ( X 2 [ 1 J l ½ > ✓~ l . P( I 2 P(/\l~l>x) 

'[-'[ 
T=l 1 
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iii. 

So 

BAHADUR (1960) showed for x-distributions that (5.3.2) is satisfied 

with a= 1, regardless of the number of degrees of freedom. It follows 

that 

and so 

2 
- 2\ (l+o(l)) s log(l-F(x)) 

1 

log(l-F(x)) 
2 

X 
- ~( 1 + a ( 1) ) • 

1 

2 
X 

s - ~(1 + a (1) ) , 
1 

Hence ( 5. 3. 2) is satisfied in this case, with a = ....!.... • This proves ii. 
;\1 

By 

1 + + 1 + + 
- + + 

m t'Qt 
-* -* 

- u'Qu 
m -* -* 

~ 6'Qi.i 
m * -* 

theorem 4.2.1 

1 + + p 
- u'Qu + 0. 
m -* -* 

and 
+ + 

4.3.1, ~:Q~* 

! 6 1Q6. 
m * * 

L + + 
➔ ~·Q~, so 

2 ➔ ➔ 
The expectation of m o;~* is zero, and its variance is equal to 

By assumption 2, 6. and Ll• converge to a finite limit. Therefore 

lim ~ 6'QL Q6 0. 
m➔oom • 1• • 

It follows that 

2 -t + p 
- o'Qu + 0. 
m * -* 

Furthermore, 
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lim.......,,, ! 5'Q5 
m--- m * * 

It follows that, 

and with Slutzky's theorem, 

This proves iii. 

It follows from i., ii. and iii. that (t'Qt )½ is a standard sequence. D 
-* -* 

We find that the ARBE of ~(Q 1) w.r.t. ~(Q2 ) is equal to 

1 + + 

;i_<l) 
l;'Q1 r; 

(5 .4 .1) E12 (a) 
1 
1 + + 

A (2) 
r;'Q2r; 

1 

* (1) (2) 
This is almost equal to e 12 . In the case that A1 = A1 we even have 

* * E 12 = e 12 . This supports the use of e 12 as a measure of relative efficiency. 

Notice that it is not surprising that the largest eigenvalue of Q 1L0 and 

then 

occur in E 12 , because of their influence on the distribution of ~(Qi). 

rank B'Q,B = r, and Q1 and Q2 are chosen such that (4.4.12) holds, 
(1) 1, (2) . * A1 and A1 will not differ very much, so in that case e 12 ~ E12 . 

We conclude that the measures of relative efficiency ARPE and ARBE are, in 

our situation, not essentially different. 
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CHAPTER 6 

SPECIAL CASES & PRACTICE 

6 .1 TEST-STA'l'ISTICS WITH A CHI-SQUARED ASYMPTOTIC DISTRIBUTION. 

There are several (obvious) reasons to consider the cases for which the 
+ + 

test-statistic !~Q!* has a chi-squared a.d. under H0 . It can be shown that 

there always exists a matrix Q such that the test-statistic has this proper-
+ + 

ty. Such a matrix can be constructed as follows. Suppose that~~ N(O,E). 

Let E be any g-inverse of E. Then it follows from theorem 3.2.2 that the 

quadratic form ~•E-~ has a (central) x2 - distribution, because EE-EE- = EE 

by the properties of g-inverses, so that EE is idempotent. The second con-
+ + 

dition of theorem 3.2.2 is automatically satisfied whenµ= 0. The number of 

degrees of freedom is then 

(6.1.1) rank E 

because EE is idempotent (RAO (1973)). 

By corollary 4.2.1, we have, under assumption 1 & H0 , 

(6.1.2) N®K. 

- ➔ ➔ 2 
So if we choose Q = L0 , it follows that !~Q!* has an asymptotic x - distri-

bution. Of course, in practice, LO is replaced by LO•' i.e. in fact we con

sider the statistic 

(6.1. 3) 

We now show that the distribution of this statistic is the same, what

ever the choice of g-inverse L~ 0 ; in fact ~(L~.l assumes the same numerical 
- + 

values for different choices of g-inverse LO•' for each w E Q. (Q as defined 

in (2.1.7) .) Furthermore, we shall show that this statistic is consistent 

against all alternatives in A1 . 



The results in this section are, for a large part, due to DE GUNST & V.D. 

GEER (1982). 

➔ 
LEMMA 6.1.1. For each w ED, we have 

(6.1.4) 

➔ 
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PROOF. Let x be a vector which is perpendicular to the column's of LO•' i.e. 

2 .... I .... .... Then we have cr (x'~* H0 ) = x 1L0 .x = 0, and thus, because 
.... .... .... I 0, P (x' ~* = 0 H0 ) = 1. Because D contains a finite number of ele-

➔ ➔ ➔ 
ments, all with positive probability under H0 , we have x't*(w) = 0 for each 
➔ ➔ ➔ + 
w ED, and hence t*(w) E M(L0 ,J for each w ED. D 

COROLLARY 6.1.1. For each alternative a, we have 

(6.1.5) 

➔ ➔ ➔ t 
* 

Ea~* is a linear combination of the quantities t*(w). Because 

is a linear space, the result follows with lemma 6.1.1. □ 

REMARK 6.1.1. From corollary 6.1.1 and the implication (3.2.23) it follows 

that the constant c of theorem 3.2.1 as defined by (3.2.5) is equal to zero, 

for each value of m, when we apply the definition of c formally to our test

statistic. This also means that this constant is equal to zero in the limit. 

LEMMA 6.1.2. Let G be the natural g-inverse, as defined in (3.1.11), of L0 •• 

Then 

(6.1.6) M(G) 

PROOF. Observe that 

➔ o• ➔ J\-lp, ➔ ➔ -1 ➔ 
y'G - y'P O' - y'P J\ P'P J\ 0' -+ + + + + + + + 

➔ ➔ ->- ➔ ➔ 
y'P 0' - y'PJ\P'= 0' - y'L O', 

+ + + + O• 

where L0• = P+J\+p; is the positive canonical reduction of Lo,· Any vector 

that is orthogonal to G is therefore also orthogonal to LO• and vice versa. 

Thus M(G) = M(Lo,). □ 
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LEMMA 6.1.3. Let G1 and G2 be two different versions of r~.· Then 

(6.1.6) 

-+ 
for each w En. 

-+ -+ -+ 
PROOF. From lemma 6.1.1 it follows that t*(w} E M(r0 .} for each w En. This 

➔ -+ -+ ➔ -+ 
means that for any w En there exists a vector x such that t*(w} = r0 .x. We 

then have, by the properties of g-inverses, 

□ 

REMARK 6.1.2. The test-statistic proposed along different lines in MADANSKY 

(1963) as a generalisation of Cochran's Q-test can be shown to be of the 

type (6.1.3), with a specific choice for r; •. The above lemma then shows 

that (6.1.3) is identical with Madansky's statistic. 

The consistency of the test now follows from 

THEOREM 6.1.1. The test{~ Q}, with Q = r-0 • is for any choice of g-inverse 
-m, 

r~. consistent against each alternative in A1• 

PROOF. First take Q = G, where G is the natural g-inverse of r 0 • From (6.1.5) 

it follows that 6 E McrO ). Then (6.1.6) implies that 5 E M(G}. By theorem 
* • * 

4.1.2, the test {~m,G} is then consistent against each alternative in A1 . 

Lemma 6.1.3 shows that the same is true for{~ } when Q is any g-inverse 
-m,Q 

We have thus established that the test{~ } with Q any g-inverse of 
-m,Q 

r0 • is consistent against each alternative in A1 , and that the a.d. of the 
-+ - -+ 

test-statistic !:~r0 .!:* is chi-squared. Besides the advantages that such a 

test has, there are also disadvantages. Firstly, the calculation of r~. is 

not always easy without a computer. A reduction of the calculations is pos

sible, however, when we use the special structure of r O• = N ® K. . 
n-1 

Ag-inverse of r 0 • is then Q =In® n K •. Because the order of K is 
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much smaller than the order of E0 ., the determination of a g-inverse of K 

is more practicable. Of course, the natural g-inverse of K. may be taken. 

Also, except for the cases k = 2 and k = 3, the matrix E~. cannot be brought 

into diagonal form. This complicates the interpretation of practical results 

(cf. section 2.1). Moreover it means that the exact moments of this statistic 

are not available. This affects the accuracy of the approximations. 

In the cases k = 2 and k = 3, however, matrices Q can be found, such 
➔ ➔ 

that Q is non-singular, diagonal, and such that the a.d. of ~(Q) = !;Q!* 

is chi-squared. 

6.2. THE CASE k 2 

In the case that k = 2, the eigenvalues of QE0 , necessary for the cal-
➔ ➔ 

culation of the asymptotic distribution of v(Q) _ !:,~Q!*, under H0 , may be 

found by an elementary calculation, at least when we take Q of the form 

Q = In ® G. It is even more simple when we take G diagonal, i.e. 

(6.2.1) G 

Recall that 

(6.2.2) N ® K, 

with, because k 2, 

(6. 2. 3) K c: 
in which a is equal to the following limit (cf. (2.2.30) and (3.3.10)) 

(6.2.4) a= lim 
m-><x> 

1 m ailai2 I -2-
m i=l n 

The existence of this limit is assumed in assumption 1. 
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+ + 
To find the a.d. of !;Q!*, we have to calculate the eigenvalues of 

(6.2.5) N®GK. 

By lemma 3 .1. 5, the eigenvalues of N ® GK can be found from the eigenvalues 
n 

of n-l GK. Let 

(6.2.6) ~ n 
A n-1 a. 

Then we have 

It follows that the eigenvalues of....::!..._ GK are equal to 
n-1 

(6.2.7) " 0 v A 

The eigenvalues of QL0 are therefore A= (g1+g 2)A with multiplicity n-1 

and O with multiplicity n+l. 

To obtain an a.a. which is chi-squared, we only have to choose g1 and 

g2 such that 

(6.2.8) 
n-1 1 

n a 

If we furthermore take 

(6. 2. 9) 

G, and hence Q, has full rank. The resulting test is then consistent against 

all alternatives in A1. 

In practical cases we take G 

(6.2.10) 
n-1 1 =---n a 

m 

G(m) with 
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where 

(6.2.11) 
m 

a g ! I 
m m i=l 

From (6.2.8) or (6.2.10) it would appear that we still have a choice for g 1 

and g2 . However for k = 2, in this case 

n a n a 
v_(Q) 1 , (f (\!) _....:':.!_)2 + ! , (f (\!) _ __::2)2 

- m l gl -1 n m l g2 -2 n -
v=l v=l 

1 n 
( \)) 

a 
1 

n 
- I gl <!1 

_ __:I:_!_) 2 + - I g2(m-!1 m v=l n m v=l 

n 
(\!) 

a 
1 I <!1 

_....:':.!_) 2 
- iii(gl+g2) 

v=l 
n 

So with (6.2.10) this gives 

n 
(\!) 

a n 
I <!1 

- _:I:_!_) 2 n(n-1) I (!1 
n-1 v=l 

n 
v=l (6. 2 .12) ~(Q) - -n 

1 
m m 

2 I ail (n-ail) n I ail -
n i=l i=l 

(\!) 

(\!) 

m 
I 

i=l 

nm-a+ 1) 2 _ 
n 

a 
_....:':.!_) 2 

n 

2 
ail 

Hence in this case we obtain Cochran's Q-statistic (COCHRAN (1950)). The 

asymptotic distribution, under H0 , is then x2[n-1]. 

For the diagonal matrix G of (6.2.1) with g1 and g2 given by (6.2.10) 

we shall write G2 and the corresponding statistic as ~(G2 ). 

6.3. THE CASE k = 3 

In the case that k = 3, we may proceed in the same way as for k = 2. 

Let this time, 

( ~1 

0 

:,i (6. 3 .1) G g2 

0 

and 

(: 
d e \ 

(6.3.2) K b :) f 
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with 

(6.3.3) 

and 

(6.3.4) 

Note that 

(6.3.5) 

1 m 
a=lim L 

m-+a> m i=l 

d n 
A= n-1 a, etc. 

A+D+E D+B+F E+F+C 0. 

It follows that 

(6.3.6) AB-D2 BC - F 2 DF - BE = AC - E2 

-DC+ FE CK (say). 

CK may also be written as 

(6.3.7) 

etc., 

-DC+ EF -AF + DE 

Imposing the condition that the sum of the eigenvalues of QL0 must be 
n 

equal to (n-1) (k-1) = (n~1)•2, we find for the eigenvalues of n-lGK, 

(6.3.8) 

with 

(6.3.9) 

Both non-zero eigenvalues are now equal to 1 if 

(6.3.10) 

It may be verified that this is the case only when 

(6.3.11) 
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It follows that G, and hence Q, is non-singular, and the resulting test is 

therefore consistent against each alternative in A1 . 

In practical cases we shall determine G = G(m) from K, instead of Kin 

the same way, and we shall call it G3 = G3 (m) and we shall write the corre~ 

sponding statistic as ~(G3). 

6.4. RECOMMENDATIONS 

In section 4.1 it has been shown that the test based on the test-sta-
➔ ➔ 

tistic ~(Q) = !~Q!* is consistent against each alternative in A1 , the class 

of alternatives that we wish to detect, when Q is non-singular. When Q is 

singular, the test may, or may not, be consistent against each alternative 

in A1 • Because our aim was to design an overall test which is consistent 

against each alternative in A1, we recommend the most simple form of test

statistic, i.e. with Q of the form Q = In® G, with G diagonal with non-zero 

diagonal elements, so that·Q is non-singular. The interpretation of the ob

servations is easier when only quadratic terms occur in the test-statistic, 

because, when H0 is rejected, it is possible to see from the term(s) which 

caused the rejection, where the preferences or aversions occurred. The 

drawback on the use of a diagonal G is, that for k > 3 it is not possible 

to define a G such that v(G) has a x2-distribution under all circumstances. 

But this disadvantage may be overcome by the application of a modified x2-

approximation to the distribution of ~(G). 

Therefore, if there is no special interest in interaction between 

preferences, we recommend the use of a diagonal G. If the user attaches 

special weight to some categories he can adjust the weights accordingly. 

If there is no outside reason to weigh one category differently from others, 

the most "natural" weights, dependent on the number of occurrences of the 

categories, seem to be 

(6.4.1) 

We shall call the diagonal matrix with these weights: G. The test-statistic 
g 

then has the following form 

(6.4.2) v(G) -
- g 

k 

l 
j=l 

n 

l 
v=l 

(f. (v) - a+j,2 
-J n 
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i.e. the form of the usual "goodness-of-fit" statistic. 

This choice of g. has the advantage that - as is apparent from the nu
J 

merical results of chapter 9 - the approximations by means of an adapted x2 -

distribution seems to be somewhat better in this case than with other weights. 

The a.d. of v(G ), under H0 , 
- g 

chapter 4, and when rank QL0 = r, 

may be determined using the methods of 

with Q = I ® G, we can use a correction 
n g 

factor c.= C.(m) to make sure that c.v(G) has 
- g 

r r 
(6.4.3) I with I >. r, 

T=l T=l T 

as asymptotic distribution. Then (4.4.12) is also satisfied. 

In a special case (see section 6.5) we have Al= ... = Ar 1, so that 

in that case the a.d. is x2[r]. 

In general, when l~=l A = 
T 

and the distribution of (6.4. 3) 

r, the A T's will not be very 

will then closely resemble a 

far away from 1, 

x2 [r] distri-
tr 2 bution. (The asymptotic expansion (3.3.7) for the distribution of lT=l AT~T 

seems to work best when the AT's are not too far away from 1.) 

Of course, for the actual calculation of the A 's of the a.d., the 
T 

matrix LO• is used. This makes the expectations of C.~(Gg) and its a.d. equal 

to each other, but the variances are in general still different. Because the 

shape of the distribution of c.v (G ) will resemble a x2 - distribution with r 
- g 

degrees of freedom, we can use the above mentioned approximation by means of 

a modified x2 - distribution. The first two moments of C.v(G ) are then equal 
- g 

to the first two moments of its approximating distribution. The reader is 

referred to chapter 1 for a description of this approximation. 

Because the expectation and variance have also been determined for 

~(G1) and ~(G2), and in general for ~(G) with diagonal G, see chapter 7, 

this method may also be applied to these variables. 

To conclude, we recapitulate the reasons for the choice of v(G) as 
- g 

recommended test-statistic. 

i. The test based on v(G) is consistent against each alternative in A1 ; 
- g 

ii. the test-statistic has a well-known, simple form, is easy to calculate 

iii. 

iv. 

and lends itself well for interpretation; 

in a special case, the a.d. is x2 and in general the a.d. will resem

ble a x2-distribution; 

the exact expectation and variance, under H0 , are known and a useful 

approximation exists, from which critical values may be determined. 



6.5. ONE MORE SPECIAL CASE 

In the special case that 

(6.5.1) a . ,f 0 
mJ 

for each j, 

n-1 2 the a.d. of -- v(G ), under H0 , is x [(n-1) (k-1)]. 
n - g 

This can be shown as follows. Notice that 

(6.5 .2) a. 
J 

Let 

(6.5. 3) H 
d 1 = -

n 

limn,...',.m a . 
m·-- •J 

al a2 

al a2 

al a2 

for each i and j. 

Then from a+ nit follows that His idempotent, i.e. 

(6.5.4) H. 

The diagonal elements of G, defined in (6.4.1), reduce under (6.5.1) to 
g 

(6.5.5) 

and K (defined in (2.3.10)) reduces to 

(6.5.6) K 
1 
2 

n 

a 1 (n-a 1) -a1 a 2 

-a2a 1 a 2 (n-a2 ) 

The a.d. of n-l v(G) IH0 is determined by the eigenvalues of 
n - g 

QZ::0 = n-l (I ® G ) (N ® K) 
n n g 

n-1 
N®-- GK. 

n g 

103 
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The eigenvalues may be found from the eigenvalues of __E_(n-l GK) GK. n-1 n g g 
We have 

1 
0 0 a 1 (n-a1) 

al 
-a1a2 -alak 

1 
0 - 0 -a2a1 a 2 (n-a2) -a2ak 

GK n a2 

g 2 n 

0 0 
1 

ak(n-ak) 
ak 

-aka! -aka2 

n-a1 -a2 -ak 

1 
-al n-a2 -ak 

n Ik -H. 

-a . 1 -a2 n-ak 

Now from (6.5.4) it follows that 

(6.5. 7) 

so that Ik - H is also idempotent. It follows that the eigenvalues of 

GgK = Ik - H are either 0 or 1 (RAO (1973)). Therefore the eigenvalues of 

QL0 are also either O or 1. 

The a.d. of n-l v(G) is then chi-squared with 
n - g 

(6.5.8) 
n-1 trace (QL0 ) = n trace (-- G K) 

n g 

as number of degrees of freedom. 

k a. 
cn-1, I o _-2, 

j=l n 
(n-1) (k-1) 



CHAPTER 7 

EXPECTATION AND VARIANCE 

7 .1 • NOTATION 

In the exact expectation and variance of ~(Q), which we shall derive 

for some special cases, the following quantities occur. 

d -1 m 
(7 .1.1) E. = n I aij' J i=l 

d m 
(7 .1.2) s. n-2 I aij(n-aij), 

J i=l 

m 2 2 (7 .1. 3) T, g n-4 I aij (n-aij) , 
J i=l 

g m 
(7 .1.4) Sjl n-2 I aijail' 

i=l 

m 2 2 (7 .1.5) Tjl 
g n-4 I aijail. 

i=l 

7.2. EXPECTATION 

The expectation of ~(Q), which we already mentioned in (2.2.40), 

(7.2.1) 

may be found as an application of the general formula for the expectation 

of a quadratic form (RAO (1973)). 

Under H0 , it reduces to 

(7.2.2) 

and when Q = In ®G, 

105 
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(7.2.3) 
m 

E (~(GJ IH0 ) = ~ I 
i=l 

trace(GK.). 
1 

When G is moreover diagonal, we have 

(7.2.4) 

(7.2.5) 

k 

: l gJ.SJ .• 
j=l 

n-1, 

which is thus also the expectation of Cochran's Q-statistic. For ~(G3 ) we 

have, using (6.3.7), 

(7.2.6) 

-n ....!:_ n-l[FA+EB+DC} 
CK n 

-(n-1) •....!:_•-2C 
CK K 

2 (n-1). 

Notice that for ~(G2 ) and ~(G3) it is not necessary to apply a correction

factor to make the test-statistic satisfy (4.4.24). 

Finally we have for v(G) 
- g 

k S. 
(7.2.7) E(v(G) IH0 ) = n l ...1. 

- g j=l Ej 

In the special case that 

(7.2.8) a . 
mJ 

formula (7.2.7) reduces to 

(7.2.9) 

We have 

E (v(G ) I Ho) - g 

LEMMA 7.2.1. 

(7.2.10) 

n(k-1). 

for each j, 
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with equality iff (7.2.8) holds. 

PROOF. The proof is left to the reader. 0 

7.3. VARIANCE 

The variance of ~(Q) is hard to determine in general and therefore we 

limit ourselves to a special case. Let Q = In® G, with G diagonal. We shall 

determine o2 (~(G) IH0). The determination of o2 (~(G)) under alternatives is 

completely analogous, but would take too much space to reproduce here. We 

shall therefore suppose, throughout this section, that H0 holds. Let 

(7.3.1) 

(7.3.2) e. (v) ~ f. (v) -
-J -J 

(7.3.3) ~ aij 
,rij n 

m (v) L s .. 
i=1 -l.J 

LEMMA 7.3.1. We have for all i, i 1, i 2 , j and 1, except where otherwise 

indicated. 

(7.3.4) 

(7.3.5) E 
( 1) ( 1) 

cov(t .. 
( 1) ,t. l (1)) jfl, s .. ~il -,rij,ril' -l.J -l.J -1. 

(7.3.6) 
(1) (2) (1) ,t .. (2)) 1 2 E s .. s .. cov(t .. - n-1 {,rij-,rij}, -l.J -l.J -l.J -1.J 

(7.3.7) (1) (2) 
cov(t .. 

( 1) ,:!:il(2)) = _1_ 1T 1T jfl, E ~ij ~il -1.J n-1 ij il 
, 

(7.3.8) (1) 2 (2) 2 
COV ( {Si, } , { S, l } ) 

- J -1. 
1 (1) 2 (1) 2 

- --1 cov({s.. } ,{s. 1 } ) 
n- -1.J -1. 

(7.3.9) (1) 2 (2) (2) 
cov({s.. } ,{s. 1 Hs. 1 }) = 

-l.J -l.1 -1.2 

(7.3.10) 
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PROOF. (7.3.4)-(7.3.7) follow from (2.2.24)-(2.2.27). We next prove 

(7.3.10). Write 

(7.3.11) 

Then, for each i and 1, 

( 1) (2) 2 
cov(~ ,{~il } ) 

Observe that 

(1) n ( ) 
cov(x , I t. v) 

v=l -il 
cov(x(l) ,a .. ) 

- 1-J 
o. 

Thus, using the fact that, due to symmetry, the joint distributions of the 
( 1) (2) ( 1) (n) 

pairs (~ ,!il ), ... ,(~ ,!il ) are the same, 

(1) (1) (1) (2) 
cov(~ ,!il ) + (n-l)cov(~ ,!il ) 0. 

Therefore 

( 1) (2) 
cov(~ ,!il ) 

1 (1) (1) 
- n-1 cov(~ ,!il ) . 

And thus also 

(1) (2) 2 
cov(~ ,{~il } ) 

1 (1) (1) 2 
n-1 cov(~ ,{~il } ). 

This proves (7.3.10). Simultaneous interchanging of j and 1 and (1) and 

(2) in (7.3.10) gives (7.3.9). (7.3.8) follows if we take 

instead of (7.3.11). D 

We use the following notation 



m m 
,1.3.12> I*= I I 

LEMMA 7.3.2. 

(7 .3.13) 

i1=1 i2=1 

ili2 

= { 

2 
2n I* 
n-1 

2 
2n I* 
n-1 

" 
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if j;,!l, 

if j=l. 

PROOF. Using independence when i 1 ;,!i2 , E~ij (v) = O, and (7.3.5) we have 

for j ;,! 1, 

Also, now using (7.3.7), 

These two results together give (7. 3 .13) if j ;,! 1. The case j = 1 is proved 

analogously. D 
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THEOREM 7.3.1. For diagonal G, we have 

(7 .3 .14) 

PROOF. We have 

Using permutability over the index v we have, under H0 , 

-- _1 ~ ~ n (v) 2 n (µ) 2 
a 2 (v(G)) l l g.g1cov( l {e. } , l {e1 } } 

m2 j=l 1=1 J v=l -J µ=1 -

(1} 2 (2) 2 
+ n(n-l}cov({e. } ,{e1 } )}. 

-J -

Next, observe that, using (7.3.8), (7.3.9) and (7.3.10), 

This is just the expression 0£ lemma 7.3.2; the rest of the proof is sim

ple calculation. D 

(7.3.15) 
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the variance of Cochran's Q-statistic (under H0 ). 

Substitution of (6.3.11) in (7.3.14) does not lead to a simpler form 

for a2 (~(G3 ) IH0 ). 

For v(G) we obtain 
- g 

(7.3.16) 
S~-T. 
_J_J_ + 

E. 
J 

I I 
j;il 

which reduces in the special case (7.2.8) to 

(7.3.17) a2 (v(G ) IH0 ) 
- g 

2 
~(k-l)m-1 
n-1 m 
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CHAPTER 8 

MOTIVATION OF THE CHOICE OF QUADRATIC FORMS 

+ + 
To derive tests for the simple hypothesis H0 : Vi ~i O , against 

+ + 
the composite hypothesis H1 : 3i ~if O , with certain optimality proper-

ties, there are basically only a few methods. we shall show why two stan

dard methods fail in our situation, and why we have therefore chosen for a 

third method based on asymptotic distributions. 

8.1. THE NEYMAN & PEARSON FUNDAMENTAL LEMMA - METHOD 

Consider the problem of testing the simple hypothesis 

(8.1.1) V. 
1. 

against the simple alternative 

(8.1.2) 

(8.1.3) P(w. 
-1. 

(8.1.4) P(~l 

(8.1.5) P(w. 
-1. 

+ ~-
1. 

1T. I Ho> ir 

1T 
1r1 

I\ 

11 i) Hl) 

N. I 

1. 

... /I (JJ 
-m 

1 -+ 
N. 

1. 

m 
1 

1T I Ho> TT I mr N. 
m i=l 1. 

* ~ir' 

m 
1 * (8.1.6) P(~l = 1T I\ ... /I (JJ 1T I Hl) = TT (~+ ~ir.)' 1r1 -m mr 

i=l m 1. 1. 

r E R., 
1. 

r. ER .• 
1. 1. 

According to Neyman & Pearson's fundamental lemma, the most powerful test 

rejects H0 for large values of the quotient of (8.1.6) and (8.1.4), i.e. 



m 1 * TT (- + !:,, • ) 

i=l Ni ir. m 
l * (8.1. 7) TT (1 + N. ll. 

m 
1 i=l l ir. 

TT 
l 

i=l N. 
l 

leading to the test-statistic 

(8.1.8) 

* where lli (.) is a function l"li ➔ JR , with 

(8.1.9) 

➔* 

r ER .• 
l 
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) , 

For given lli, this may lead to a useful test, with, after taking the loga-

rithm, 

m 
(8.1.10) I 

i=l 

(8.1.11) 

By the Central Limit Theorem, log !i is asymptotically normal. Critical 

values could be determined by enumerating the exact distribution, or can 

be based on the asymptotic distribution, after having computed the vari

ance of log !i· 
If, however, we are interested in the behaviour of this test also for 

other (or even all) alternatives from A1 , then it is not at all clear how 

E log !i behaves under these alternatives. Moreover, we see no way to 

adapt it to work against other alternatives in A1 too. Therefore, we do 

not pursue this method any further. 

8.2. THE LIKELIHOOD-RATIO METHOD 

Consider the problem of testing the simple hypothesis 

(8. 2 .1) 

against 

V. 
l 

t. ➔ 

0 
l 
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(8.2.2) 

The likelihood-ratio test rejects H0 for large values of 

sup + P(~l = 1Tlr 11 • • • 11 ~m = 1Tmr IH1) /:;. 

(8.2.3) A 
]. 1 m 

P (~1 = 1T lr 11 • • • 11 ~m = 1Tmr 
1_ m 

IH0 l 

m 1 
6, ) sup + TT (- + 

6, i=l Ni ir. 
1 

m 
]. ]. 

TT N,. 
m 

1 
m 

1 i=l 
]. 

TT N, TT N, 
i=l ]. i=l ]. 

The likelihood-ratio is in this case apparently a constant, and is there

fore also unfit to produce a useful test-statistic, to test H0 against this 

wide class of alternatives. 

Now suppose that we only wish to consider alternatives from H1 for 

which words beginning with the character c1 have, for each i, a higher 

probability than the other words. This restricts the possibilities consid

erably and so 

will take a lower value if the !i may only range over these restricted al

ternatives. Define 

(8.2.4) 

i.e. Ni is the number of words with c1 in the first position in the set of 

outcomes Qi of the i'th trial. Let 

(8.2.5) R g { } ! 1, ..• ,N! . 
]. ]. 

Then restricted alternatives may be formulated as follows 

(8.2.6) 6, > 0 
ir for r ER! 

]. 
and 6, S 0 

ir for r i R! • 
]. 
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** Notice that H1 _. Hi but not conversely, so that a possible test derived 

in this way only works against this much smaller class of alternatives. 

We have 

(8.2.7) 

This may be written as 

(8.2.8) 

So the likelihood-ratio becomes 

(8.2.9) A 

m 
TT 

i=l 
m 
TT 

i=l 

{ 
1 if ri E R1 , 

:. if ri i R1. 
1. 

(1) 
1 1-t. 1 (TT. ) 

( ) i ir. - 1.. 
Ni 

and the likelihood-ratio test rejects H0 for large values of 

(8.2.10) 
m 
TT 

i=l 

or, equivalently, for large values of 

(8.2 .11) 
m 

T (1) g_ t (1) 
l t log N1. .• 

-1 i=l -il 

Analogously we may define 

(8.2.12) T (V) g 
-j 

m 
l t .. (v) log Ni. 

i=l -1.J 

Aiming at an overall test, as we do, we do not know in advance where 

possible preferences occur, so we might combine these statistics to, for 

instance 

(8.2.13) T g max T (v) 
-2 -j , 

j,v 

to get an overall test-statistic for H0 • This is possible, because the 
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T (v) do not depend on any particular alternative. This would lead to a 
-j 
test for an outlier among the characters 

Let's now study the r.v.'s T (v) in greater detail. We have, using the 
-j 

results of chapter 2, 

(8. 2 .14) 

(8.2 .15) 

ET (v) 
-j 

m 

I 
i=l 

a .. 
-2:1.. log 

n 

m a .. 
I {-2:1.. .:. 

n 
i=l 

+ 

m (v) 
N, + I oij log Ni, 

l. 
i=l 

2 
a.. 2 -¥} log Ni + 
n 

The expectation and variance under H0 are found by deleting the terms con

taining o's. 

The variables T (v) are not independent, and their covariances may be 
-j 

found using (2.1.27) and (2.1.28). The (marginal) a.d.'s are normal by the 

C.L.T. The joint a.d. of the T. (v) may be found using the methods of chap
-J 

ter 4. 

The distribution of ~2 , however, is difficult to obtain, the exact 

distribution as well as the asymptotic distribution (JOHNSON & KOTZ (1972), 

p.44). The development of this outlier-test would be an interesting subject 

for further research. 

The result (8.2.14) suggests the use of a test-statistic similar to 

the one defined in (2.1.39) 

(8.2.16) 
m { I et .. (v> 

i=l -1.J 

a.. 2 
-2:1..J log N. } 

n l. 

This statistic, which gives trials with a high number of possible words 

more weight than ~(G) does, may be treated in the same way as the statistic 

v(G). Its a.d. may be determined in a similar way as that of ~(G), both 

under H0 and under alternatives. 

By these considerations we could be led to consider a class of test

statistics which is even more general than (2.1.41), of the form 

n n k k 
(8.2.17) I I I I 

v=l µ=1 j=l 1=1 

with 



(8.2.18) G. 
l 

as suggested weights. 
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Although the analysis of the behaviour of such an extensive class of 

test-statistics would lead to a new and major enterprise, the suggestion 

that the use of Gi = log Ni would possibly increase the power of our tests 

in an adapted form is worthy of future consideration. 

8.3. AN APPROXIMATE LIKELIHOOD-RATIO METHOD 

➔ ➔ ➔ 
Let X N (µ,Z). Suppose thatµ is unknown, but that Z is a known, 

q 
➔ ➔ 

fixed, positive definite matrix. For the problem of testing H0 : µ = µ 0 
➔ ➔ 

against H1 : µ ~ µ 0 , the likelihood-ratio is equal to 

(8.3.1) 

Clearly, 

(8.3.2) 

➔ 
A(x) 

1 ➔ ➔ -1 ➔ ➔ 
supH exp{-2(x-µ) 'Z (x-µ)} 

0 

Furthermore, 

(8.3.3) 1, 

➔ ➔ -1 ➔ ➔ ➔ ➔ 
because the infimum of (x-µ) 'Z (x-µ) is equal to O, atµ x. 

So the likelihood-ratio test rejects H0 for large values of the sta

tistic, 

(8.3.4) 

➔ 
i.e. a quadratic form in~, where the weighing coefficients are elements of 

the inverse of the covariance matrix Z. It follows easily from theorem 3.2.1 

that the distribution of this statistic is a central x2 -distribution with 

q degrees of freedom under H0 , and a non-central x2 -distribution with q de-
➔➔ -1 ➔ ➔ 

grees of freedom and non-centrality parameter (µ-µ 0 ) 'Z (µ-µ 0 ) under H1 . 
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The situation is not essentially changed when the dispersion matrix of 

!JH0 , r 0 (say), differs from the dispersion matrix of !JH1 , E1 (say). The 

likelihood-ratio test-statistic would become 

(8.3.5) 

with a central x2 - distribution under H0 , but, in general, not a non-central 

x2 - distribution under H1 . The distribution of (8. 3. 5) under H1 may be deter

mined with theorem 3.2.1. 

When Eis singular, for instance with rank r < q, a straightforward 
+ 

generalisation is possible. The density of x can then be represented as 

(RAO (1973), p.528), 

where the density is concentrated on the hyperplane 

+ + 
N'x N'µ 

-with probability one. E is any g-inverse of E, "1' · · · '"r are the non-zero 

eigenvalues of E and N is a q X (q-r) matrix of rank (q-r) such that N'E 
+ 

Now suppose again that µ is unknown, but that E is a known, 

negative definite matrix, and that we test the same HO as above. 
+ + 

fixed, 

= o. 
non-

Because Eis fixed, the matrix N is fixed and both~ andµ satisfy the same 

(q-r) linear constraints, under H0 and under H1 • This means that the distri
+ 

bution of x is concentrated on the same hyperplane under H0 and under H1 . 

The likelihood-ratio for this testing problem is then equal to 

(8.3.6) 
+ 

J\(x) 

+ +I + + for each x E {x N'x = N'µ 0 }. 

It is the again clear that the likelihood-ratio test-statistic is 

equal to 

(8. 3. 7) 
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Now choose a version of E which is real and symmetric. Then it follows from 

theorem 3.2.3 that this statistic has, under H0 , a central x2 -distribution 

with trace(EE) = rank(E) = r as number of degrees of freedom. This is then 

also the case for arbitrary E . However, under H1 , even when we choose a 

n.n.d. version of E-, (8.3. 7) has not necessarily a non-central x2 - distri

bution, because (3.2.36) is not necessarily satisfied. Moreover, the distri

bution of (8.3.7) under H1 will depend on the specific choice of E . Of 

course, the distribution may be determined with theorem 3.2.1. 

In our testing problem we have according to (4.4.4) and (4.4.3), 

(8.3.8) under HO 

and 

(8.3.9) t F:J N(S ,Ll ) 
-* * . under H1 , 

where "F:J" means "is approximately distributed as" (in (8.3.8) and (8.3.9)). 

When we make furthermore the crude assumption that Ll• F:J LO• for all alter

natives, then it follows from the preceding theory that 

(8.3 .10) 

is an "approximate" likelihood-ratio test-statistic. This statistic has been 

considered in section 6.1 as a special case of the general class of test

statistics, 

(8.3.11) 

that we consider in this tract. 



120 

CHAPTER 9 

NUMERICAL RESULTS 

This research would not be complete without illustrative examples of a 

numerical kind. Because of the huge number of parameters in our problem, it 

is hardly possible to cover all the situations that can occur, and there

fore the results of the numerical computations that we give must merely be 

seen as illustrations of the theory. 

There are two kinds of numerical computations that have been made. The 

first kind concerns the elaboration of most of the formula's that occur in 

the theory, for a typical practical case, like the computation of exact mo

ments, eigenvalues etc. The second kind concerns the numerical simulation 

of the exact probability distributions of the test-statistics involved. 

All calculations were performed on the CDC - CYBER 73 computer of SARA 

("Stichting Academisch Rekencentrum Amsterdam"). Several procedures were 

used from the library STATAL of statistical procedures, developed by the 

"Mathematisch Centrum", Amsterdam, and from the library NUMAL of numerical 

procedures developed by the University of Amsterdam. 

We start with the definition of a typical practical case, in the con

ditional situation. 

9.1. A TYPICAL CASE 

Suppose we have the following tableau of observations, i.e. with 

m = 10, n = 5 and k = 3. The table has the same structure as table 1. 2 .1. 

For shortness, the categories chosen are indicated by their numbers 

instead of by their names. 
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Table 9. 1. 1. Example of an observation for m = 10, n = 5 and k = 3. 

~ 1 2 3 4 5 j=l j=2 j=3 

1 1 1 2 3 3 2 1 2 5 

2 1 1 2 3 2 2 2 1 5 

3 3 3 2 2 3 0 2 3 5 

4 1 3 3 3 1 2 0 3 5 

5 2 2 3 2 2 0 4 1 5 

6 1 2 3 2 2 1 3 1 5 

7 1 3 3 2 3 1 1 3 5 

8 1 2 3 1 1 3 1 1 5 

9 1 3 3 2 1 2 1 2 5 

10 2 1 3 2 3 1 2 2 5 

14 17 19 50 

j=l 7 3 0 1 3 14 V j=2 2 3 3 6 3 17 

j=3 1 4 7 3 4 19 

10 10 10 10 10 50 

We shall test our null-hypothesis on the basis of these observations. 

The very first thing to do is to select a Q matrix for the test-statistic 

~(Q). 

We shall consider four different statistics, with Q of the form 

(9.1.1) Q I ® G, 
n 

and G diagonal, i.e. 

(9.1. 2) G 

The test-statistic that we recommend has weighing factors as given in 

(6.4.1). We obtain in this case 
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(9.1.3) 50 
19 = 2.6316. 

In order to satisfy (4.4.12), we shall modify these weighing factors a 

little by multiplying each with the same constant factor (0.9610), giving 

(9.1.4) 3.4320; 2.8263; g3 = 2.5288. 

This has of course no influence on the performance of the test. For ease of 

reference, we shall call the matrix Q defined by (9.1.1), (9.1.2) and 

(9.1.3), Q1 , and the associated test-statistic ~(Q1) or simply ~1 . 

A second possible choice is to take the weighing factors equal: 

(9.1.5) 2.8986, 

giving a matrix Q2 and a statistic ~2 • The value 2.8986 is again the result 

of a modification (we could otherwise have taken g1 = g2 = g3 = 1). 

A third statistic ~3 may be obtained when we have the impression (be

fore the actual observations were made) that there is a preference for c1 
in the first position. We can then give more weight to the first character 

by choosing (for instance) 

(9.1.6) 1; 0.5 f 

or, after modification, 

(9.1. 7) g1 = 6.7227; g2 = 1.6807; g3 = 0.8403. 

The fourth and last statistic that we consider, ~4 , has weighing fac

tors given by (6.3.11), 

(9.1.8) g1 = 3.4638; g2 = 3.2072; g3 = 2.1809. 

This gives also a g-inverse type, or Madansky-type statistic. The Q-matri

ces of ~3 and ~4 are called Q3 and Q4 resp. 

Recapitulating, we shall consider the following four test-statistics. 
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Table 9.1.2. Weighing factors of four possible test-statistics. 

weighing factors 

statistic gl g2 g3 type 

➔ ➔ 
"x2n 

:'.'.1 - t'Q t 3.4320 2.8263 2.5288 
-* 1-* 
➔ ➔ 

:'.'.2 - t'Q t 
-* 2-* 

2.8986 2.8986 2.8986 "equal weights" 

➔ ➔ 

::3 - t'Q t 
-* 3-* 

6. 7227 1.6807 0.8403 "directed" 

➔ ➔ 

"asymptotic x2" ::4 - t'Q t 3.4638 3 .2072 2.1809 
-* 4-* 

To investigate the performance of the test, we have constructed 2 al

ternatives, which we shall call a(l) and a( 2 ). 

Alternative a(l). Because we are in the conditional" situation, an alterna

tive is defined by the assignment of (unequal) probabilities to each of 

the possible words in each of the experiments Ei. We have 

Table 9.1.3. Number of possible words per experiment. 

number of possible words 
➔ 

i a. 
J. 

N. 
J. 

1 2 1 2 30 

2 2 2 1 30 

3 0 2 3 10 

4 2 0 3 10 

5 0 4 1 5 

6 1 3 1 20 

7 1 1 3 20 

8 3 1 1 20 

9 2 1 2 30 

10 1 2 2 30 

(Notice that there are 30 x 30 x 10 x ••• x 30 x 30 = 3.24 x 10 12 possible ways 

of obtaining a table of observations like the one in table 9.1.1.). 
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We have constructed an alternative in which a preference for c 1 in the 

first position is reflected in the fact that 

(9.1.9) P(t. (l) 
-il 

for those experiments for which ail 

(9.1.10) P(t. (l) 
-il 

0.4 

2, and 

in the cases that ail= 1. For the rest the probabilities are spread evenly 

over the words. For instance, in the first experiment, the 12 words commenc

ing with c 1 have probability 0.8/12 0.0~, while the other 18 of the 30 

possible words have probability 0.2/18 = O.OJ. In the sixth experiment, the 

4 words beginning with c 1 have probability 0.4/4 = 0.1 and the other 16 

0.6/16 = 0.0375. In the third experiment the words have the same probabili

ty as under H0 , namely 0.1. The probabilities in the other experiments were 

determined likewise. 

Alternative a( 2). This alternative is more intricate, because it has been 

constructed to represent three relative preferences, apreference of c 1 for 

the first position, a preference of c 2 for the second and a preference of 

c 3 for the third position. 

Probabilities have been assigned in the following way. Probability 

0.4 has been divided evenly over all the words of the type 

(9.1.11) X X 

where x stands for an arbitrary character, i.e. words which are completely 

in accordance with the presumed preferences. Probability 0.3 has been dis

tributed over all the words of one of the following types 

Cl c2 c3 X X 

(9.1.12) cl c2 c3 X X 

cl c2 c3 X X 

where c. means: not the character c .• Words of the type 
J J 
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X X 

(9.1.13) X X 

X X 

together have probability 0.2, while words of the type 

(9.1.14) X X 

get together probability 0.1. We shall call the types of words given by 

(9.1.11) - (9.1.14), type A, B, C and D respectively. When words of a certain 

type do not occur, types have been taken together. The assignment of prob

abilities is illustrated in the following tables. For the first experiment 

we have 

Table 9.1.4. Assignment of probabilities in the first experiment, under the 

alternative a( 2 ). 

word type probability 

cl cl c2 c3 c3 C 0.2/12 = 0.0166 .. 

cl cl c3 c2 c3 B o. 3/6 = 0.05 

Cl cl c3 c3 c2 B 0.3/6 = 0.05 

cl c2 cl c3 c3 B 0.3/6 = 0.05 

cl c2 c3 cl c3 A 0.4/2 = 0.2 

cl c2 c3 c3 Cl A 0.4/2 = 0.2 

cl c3 cl c2 c3 C 0.2/12 = 0.0166 .. 

cl c3 cl c3 c2 C 0.2/12 = 0.0166 .. 

cl c3 c2 cl c3 C 0.2/12 = 0.0166 .. 

cl c3 c2 c3 cl C 0.2/12 = 0.0166 .. 

cl c3 c3 cl c2 B 0.3/6 = 0.05 

cl c3 c3 c2 cl B 0.3/6 = 0.05 

c2 cl cl c3 c3 D 0.1/10 = 0.01 

c2 cl c3 cl c3 C 0.2/12 = 0.0166 .. 

c2 cl c3 c3 cl C 0.2/12 = 0.0166 .. 

c2 c3 cl cl c3 D 0.1/10 = 0.01 

c2 c3 cl c3 cl D 0.1/10 = 0.01 

c2 c3 c3 cl cl C 0.2/12 = 0.0166 .. 
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c3 Cl cl c2 c3 D 0.1/10 = 0.01 

c3 cl cl c3 c2 D 0.1/10 = 0.01 

c3 cl c2 cl c3 D 0.1/10 = 0.01 

c3 cl c2 c3 cl D 0.1/10 = 0.01 

c3 cl c3 cl c2 C 0.2/12 = 0.0166 .. 

c3 cl c3 c2 cl C 0.2/12 = 0.0166 .. 

c3 c2 cl cl c3 C 0.2/12 = 0.0166 •. 

c3 c2 cl c3 Cl C 0.2/12 = o. 0166 .. 

c3 c2 c3 cl cl B 0.3/6 = 0.05 

c3 c3 Cl cl c2 D 0.1/10 = 0.01 

c3 c3 cl c2 cl D 0.1/10 = 0.01 

c3 c3 c2 cl cl D 0.1/10 = 0.01 

In the third experiment, the character c 1 does not occur, so words of 

the type A do not occur. In such cases we have given probability 0.7 to the 

words of type B, as is illustrated in the following table 

Table 9.1.5. Assignment of probabilities in the third experiment, under the 

alternative a( 2 ). 

word type probability 

c2 c2 c3 c3 c3 B 0. 7/3 = 0.233 •. 

c2 c3 c2 c3 c3 D 0.1/3 = 0.033 .. 

c2 c3 c3 c2 c3 C 0.2/4 = 0.05 

c2 c3 c3 c3 c2 C 0.2/4 = 0.05 

c3 c2 c2 c3 c3 C 0.2/4 = 0.05 

c3 c2 c3 c2 c3 B 0.7/3 = 0.233 .. 

c3 c2 c3 c3 c2 B 0.7/3 = 0.233 .. 

c3 c3 c2 c2 c3 D 0.1/3 = 0.033 •. 

c3 c3 c2 c3 c2 D 0.1/3 = 0.033 .. 

c3 c3 c3 c2 c2 C 0.2/4 = 0.05 

The probabilities in the other experiments were determined in the same 

way. 



127 

9.2. ASYMPTOTIC DISTRIBUTIONS UNDER HO AND CRITICAL VALUES 

The a.d. of v., under H0 , is given by 
-1, 

r 
2 

(9.2.1) I ,\ u , 
T=l 

T-T 

where >- 1 , ... ,,\r are the non-zero eigenvalues of QiLO. For the actual cal

culations we work with LO•. Because Q = In® G, LO• = N ® K., the non-zero 

eigenvalues of QL0 are equal to the non-zero eigenvalues of ~l GK, each • n- • 
of which must be taken with multiplicity (n-1). We have in our example 

(9.2.2) K 
( 

0.168 

-0.068 

-0. 100 

-0.068 -0. 100) 
0.176 -0.108 

-0.108 0.208 

The eigenvalues calculated for the four statistics are given in the follow

ing table. 

Table 9.2.1. Eigenvalues for the a.d. of ~i' i 1, ... , 4. 

eigenvalues 

statistic ,\ 1 = "2 = "3 = "4 "s = ,\ = "7 = "9 6 

~1 1.0716 0.9284 

~2 '1.1328 0.8672 

~3 1.5333 0.4667 

~4 1.0000 1.0000 

Let ~(l) , ... , ~( 4 ) be random variables of the type (3.3.2), with 

eigenvalues as in table 9.2.1., i.e. their distributions are the a.d.'s 

of ~1•···•~4· 

The distribution-functions of the a.d. of ~i can be calculated using 

(3.3.7). Some results are given in the following table. 
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1 9 2 2 . 'b . f . f O (l) 0 (4) h d ' f Tab e .•• Distri ution unctions o ::0 •···•:,o , tea .. so 

~1 , •.• ,~4 , under H0 . 

z P(½ (1) :,; z) P(½ (2) :,; z) P(½ (3) :,; z) P(½(4) :,; z) 

0 0.0000 0.0000 0.0000 0.0000 
2 0.0191 0.0194 0.0283 0.0190 
4 0.1434 0.1448 0 .1770 0.1429 
6 0.3535 0.3551 0.3888 0.3528 
8 0.5669 0.5679 0.5836 0.5665 
10 0.7350 0.7350 0.7316 0.7350 
12 0.8485 0.8478 0.8333 0.8488 
14 0.9179 0.9170 0.8991 0.9182 
16 0.9573 0.9564 0.9402 0.9576 
18 0.9785 0.9778 0.9650 0.9788 
20 0.9895 0.9890 0.9798 0.9897 
22 0.9950 0.9947 0.9884 0.9951 
24 0.9976 0.9974 0.9934 0.9977 

Notice that the last column of table 9.2.2 gives the distribution

function of the x2-distribution with 8 degrees of freedom. 

Using an iterative zero-searching procedure, critical values of 
( 1) (4) . ½ , ... ,½ were obtained (we shall call this method of obtaining 

critical values: "method A"). The results are given in the following table. 

Table 9.2.3. Critical values of the distributions of½ (l) , ... ,½( 4). 

(Method A). 

CJ, ~1) 
, 1-a. 

~2) 
, 1-a, 

~3) 
, 1-a, 

~4) 
, 1-a, 

0.1000 13.3730 13.4016 14.0336 13.3616 

0.0500 15.5293 15.5824 16.6753 15.5073 

0.0250 17.5685 17.6505 19.2285 17.5345 

0.0100 20 .1432 20.2682 22.5142 20.0902 

0.0050 22.0240 22.1850 24.9520 21.9550 

0.0025 23.8545 24.0545 27.3545 23. 7745 

0.0010 26.2245 26.4745 30.4745 26 .1245 

Notice again that the last column contains the critical values of the 

x2[8] - distribution. 
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Most program-libraries of numerical methods contain procedures to cal

culate eigenvalues. They will, however, probably not contain a procedure to 

calculate the distribution of f2o(i). The possible user of our methods thus 

has to write a program for these distributions and critical values himself·. 

To avoid this, he can use the approximation to the distribution of f2o, 

which we described in section 3.3 and use a table of the x2-distribution. 

We have done this ("method B") for the approximation using two adapted mo

ments. The correction factor (b) and the degrees of freedom (v) are given 

by (3.3.15) and (3.3.16) respectively. We found 

Table 9.2.4. Approximate critical values for the distributions of f2o (l) , ... , 

f2o( 3), obtained from an approximation with two adapted moments. (Method B). 

f2o (1) f2o (2) f2o(3) 

b 1.0051 1.0176 1.2844 

V 7.9592 7.8613 6.2286 

critical values 

a k ( 1) 
B,1-a 

k (2) 
B, 1-a 

k (3) 
B,1-a 

0.1000 13.3754 13.4090 14.0786 

0.0500 15.5283 15.5795 16.6105 

0.0250 17.5627 17.6313 19.0232 

0.0100 20 .1278 20.2193 22.0879 

0.0050 21. 9996 22 .1084 24.3374 

0.0025 23.8262 23.9522 26.5416 

0.0010 26. 1855 26.3342 29.4001 

The determination of critical values may also be based on the exact 

moments of ~1 , ... ,~4 , which can be calculated from (7.2.2) and (7.3.14). 

("Method C"). We have 
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Table 9.2.5. Exact moments of ~1 , ... ,~4 , under H0 • 

i Ev.lHo -1, cr2(~i1Ho) C n 

1 8.0000 14.0337 1.1401 9.1209 

2 8.0000 14.2424 1.1234 8.9873 

3 8.0000 17.8405 0.8968 7.1747 

4 8.0000 13.9529 1.1467 9.1737 

The last two column's contain c as defined by (1.4.4) and n, defined 

by (1.4.5). Using the method described in section 1.4 we find the following 

approximate critical values of the distribution of ~i-

Table 9.2.6. Approximate critical values for the distributions of ~1, ... ,~4 , 

using the exact moments. (Method C). 

a k (1) 
c, 1-a 

k(2) 
C, 1-a 

k (3) 
c, 1-a 

k (4) 
c, 1-a 

0.1000 13. 0182 13.0558 13.6633 13.0035 

0.0500 14.9880 15.0445 15.9684 14.9659 

0.0250 16.8411 16.9164 18.1542 16.8118 

0.0100 19.1685 19.2683 20.9187 19.1296 

0.0050 20.8615 20.9797 22.9409 20.8155 

0.0025 22.5099 22.6465 24.9177 22.4568 

0.0010 24.6345 24.7952 27.4753 24.5721 

All the critical values, calculated from the a.d. of ~i' from an 

approximation to the a.d. or from the exact moments of the ~i may be used 

as approximate critical values for the performance of the test. 

The exact critical values would have to be based on the exact distri

bution of v. which is unavailable to us. See also section 9.6. 
-1, 

The outcomes of ~i' i=1, ... ,4, for the data of table 9.1.1 are as 

given in the following table. 
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Table 9.2.7. Outcomes of the four test-statistics for the data of table 

9.1.1. 

statistic outcome 

;'.1 17.24 

;'.2 16.46 

;'.3 22.49 

~4 17.03 

The outcomes are significant at the 5% level for all four tests. 

Actually, the data of table 9.1.1 were obtained from a simulation of the 

experiment under the alternative a(l)" This explains the fact that the out

come of ~ 3 is the highest of the four, because this statistic was designed 

especially to work against a(l)" 

9.3. SIMULATION RESULTS (UNDER H0 ) 

For each of the four statistics considered, we obtained 1000 pseudo

observations, under H0 , by generating for each experiment Ei a pseudo-ran

dom word. The words of each experiment were combined and an outcome of ~i 

was calculated. In this way we were able to make (pseudo-) estimates of the 

right-tail probabilities of the critical values of the preceding sections. 

These results thus also give an impression of the actual level of signifi

cance of the tests as compared to the nominal level a. 

Table 9.3.1. Estimates of the right-tail probabilities (e.r.t.p.) of the 

critical values k(i) of method A under H obtained by simulation. (See 
A,1-a ' 0' 

remark 9.3.1.). 

a k (1) 
A, 1-a 

e.r.t.p k (2) 
A, 1-a 

e.r.t.p k (3) 
A, 1-a e.r.t.p k (4) 

A, 1-a 
e.r.t.p 

0.1000 13.3730 0.073 13.4016 0.107 14.0336 0.100 13.3616 0 .104 
0.0500 15.5293 0.038 15.5824 0.058 16.6753 0.038 15.5073 0.035 
0.0250 17.5685 0.015 17.6505 0.017 19.2285 0.020 17.5345 0.015 
0.0100 20.1432 0.004 20.2682 0.009 22.5142 0.005 20.0902 0.007 
0.0050 22.0240 0.003 22 .1850 0.002 24.9520 0.003 21.9550 0.002 
0.0025 23.8545 0.000 24.0545 0.002 27.3545 0.001 23.7745 0.000 
0.0010 26.2245 0.000 26.4745 0.001 30.4745 0.000 26.1245 0.000 
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Table 9.3.2. Estimates of the right-tail probabilities (e.r.t.p.) of the 

critical values k!:~-a of method B, under H0 , obtained by simulation. 

a k (1) 
B,1-a e.r.t.p k(2) 

B,1-a e.r.t.p k (3) 
B,1-a e.r.t.p 

0.1000 13.3754 0.103 13.4090 0.084 14.0786 0.086 
0.0500 15.5283 0.055 15.5795 0.043 16.6105 0.031 
0.0250 17.5627 0.019 17.-6313 0.017 19.0232 0.014 
0.0100 20.1278 0.011 20.2193 0.006 22.0879 0.004 
0.0050 21.9996 0.006 22.1084 0.003 24.3374 0.001 
0.0025 23.8262 0.001 23.9522 0.001 26.5416 0.001 
0.0010 26.1855 0.001 26.3342 0.001 29.4001 0.000 

Table 9.3.3. Estimates of the right-tail probabilities (e.r.t.p.) of the 

critical values k~:~-a of method c, under H0 , obtained by simulation. 

a k (1) 
C,1-a e.r.t.p k(2) 

C,1-a e.r.t.p k(3) 
C, 1-a e.r.t.p k(4) 

c, 1-a e.r.t.p 

0.1000 13.0182 o·.115 13.0558 0.103 13.6633 0.101 13.0035 0.095 
0.0500 14.9880 0.060 15.0445 0.061 15.9684 0.046 14.9659 0.044 
0.0250 16.8411 0.034 16.9164 0.030 18.1542 0.024 16.8118 0.017 
0.0100 19.1685 0.012 19.2683 0.011 20.9187 0.009 19.1296 0.005 
0.0050 20.8615 0.005 20.9797 0.006 22.9409 0.003 20.8155 0.003 
0.0025 22.5099 0.003 22.6465 0.002 24.9177 0.000 22.4568 0.002 
0.0010 24.6345 0.002 24.7952 0.000 27.4753 0.000 24.5721 0.000 

REMARK 9.3.1. Due to high costs of computer time, the simulations have not 

been made for each a separately. Therefore, the estimates of° the right

tail probabilities in tables 9.3.1., 9.3.2. and 9.3.3. are dependent 

columnwise. 

Inspection of the tables 9.3.1., 9.3.2. and 9.3.3. shows that in al

most all cases the approximate critical values are slightly too high. This 

means that the actual level of the test is lower than the nominal level a. 

We shall call such tests "timid" (such tests are usually called "conserva

tive"), in contrast with the tests where the actual level is higher than 

the nominal level a, which we shall call "bold". When critical values are 

used which are obtained by method C for ~1 , the test that we recommend, 

"bold" tests are obtained. Of course we have to take the inaccuracy into 
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account resulting from the fact that we have only estimates of the right

tail probabilities at our disposal. The general tendency is however clear 

enough. 

Furthermore it seems that the estimates in table 9.3.3 (method C) are 

generally closer to the nominal values of a than in the other two cases. 

Therefore we recommend method C for the approximation of the critical 

values in all cases. 

Another impression of the goqdness of the approximation using the ex

act moments of~ (method C) may be obtained from the following figures. 

Figure 9.3.1. Pseudo-empirical distribution function of 1000 simulated ob

servations of ~1 (dashed line) and distribution function of an adapted x2-

distribution. (The same simulation results as for table 9.3.3). 
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Figure 9.3.2. Pseudo-empirical distribution function of 1000 simulated ob

servations of ~2 (dashed line) and distribution function of an adapted x2-

distribution. (The same simulation results as for table 9.3.3). 
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Figure 9.3.3. Pseudo-empirical distribution function of 1000 simulated ob

servations of ~3 (dashed line) and distribution function of an adapted x2-

distribution. (The same simulation results as for table 9.3.3). 
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Figure 9.3.4. Pseudo-empirical distribution function of 1000 simulated ob

servations of ~4 (dashed line) and distribution function of an adapted x2-

distribution. (The same simulation results as for table 9.3.3). 
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9.4. SIMULATION RESULTS (UNDER ALTERNATIVES) & POWER 

To make an estimate of the power of the four tests considered, we also 

generated 1000 pseudo-observations of ~ 1 , ... ,~4 , under each of the two al

ternatives a(l) and a( 2) that were defined in section 9.1. Estimates of the 

right-tail probabilities of the (approximate) critical values of section 

9.2 are given in the tables 9.4.3 - 9.4.8. 

In each case the estimate is compared with the approximation to the 

power of the test as calculated from formula (4.4.6), 

(9 .4.1) 

+ 
with u 

r 2 
P ( l ;\ (u + w ) ;:: k) , 

,=1 1" -1" 1" 

values of B'QB, k a critical value and 

(9.4.2) 
+ 
w 
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Table 9.4.1. Elements of the dispersion matrix of~*' under a(l), i.e. the elements of L 1 .(a(l)). 

0.1636 -0.0685 -0.0951 -0.0392 0.0432 -0.0041 -0.0412 -0.0087 0.0498 -0.0417 0.0170 0.0247 -0.0417 0.0170 0.0247 

-0.0685 0.1142 -0.0456 0.0189 -0.0386 0.0197 0.0146 -0.0128 -0.0018 0.0175 -0.0314 0.0139 0.0175 -0.0314 0 .0139 

-0.0951 -0.0456 0.1407 0.0202 -0.0046 -0.0157 0.0265 0.0214 -0.0480 0.0242 0.0144 -0.0385 0.0242 0.0144 -0.0385 

-0.0392 0.0189 0.0202 o. 1185 -0.0751 -0.0434 -0.0088 0.0149 -0.0061 -0.0352 0.0206 0.0146 -0.0352 0.0206 0.0146 

0.0432 -0.0386 -0.0046 -0.0751 0.1780 -0.1029 -0.0094 -0.0471 0.0565 0.0206 -0.0461 0.0255 0.0206 -0.0461 0.0255 

-0.0041 0.0197 -0.0157 -0.0434 -0.1029 0.1462 0.0182 0.0322 -0.0504 0.0146 0.0255 -0.0401 0.0146 0.0255 -0.0401 

-0.0412 0.0146 0.0265 -0.0088 -0.0094 0.0182 0.1053 -0.0162 -0.0891 -0.0276 0.0055 0.0222 -0.0276 0.0055 0.0222 

-0.0087 -0.0128 0.0214 0.0149 -0.0471 0.0322 -0.0162 0.1185 -0.1023 0.0050 -0.0293 0.0243 0.0050 -0.0293 0.0243 

0.0498 -0.0018 -0.0480 -0.0061 0.0565 -0.0504 -0.0891 -0.1023 0.1914 0.0227 0.0238 -0.0465 0.0227 0.0238 -0.0465 

-0.0417 0.0175 0.0242 -0.0352 0.0206 0.0146 -0.0276 0.0050 0.0227 0.1528 -0.0591 -0.0937 -0.0482 0.0159 0.0323 

0.0170 -0.0314 0.0144 0.0206 -0.0461 0.0255 0.0055 -0.0293 0.0238 -0.0591 0.1476 -0.0885 0.0159 -0.0408 0.0248 

0.0247 ·0.0139 -0.0385 0.0146 0.0255 -0.0401 0.0222 0.0243 -0.0465 -0.0937 -0.0885 0.1822 0.0323 0.0248 -0.0571 

-0.0417 0.0175 0.0242 -0.0352 0.0206 0.0146 -0.0276 0.0050 0.0227 -0.0482 0.0159 0.0323 0.1528 -0.0591 -0.0937 

0.0170 -0.0314 0.0144 0.0206 -0.0461 0.0255 0.0055 -0.0293 0.0238 0.0159 -0.0408 0.0248 -0.0591 0.1476 -0.0885 

0.0247 0.0139 -0.0385 0.0146 0.0255 -0.0401 0.0222 0.0243 -0.0465 0.0323 0.0248 -0.0571 -0.0937 -0.0885 0 .1822 

...... 
w 
°' 
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Table 9.4.2. Elements of the dispersion matrix of~*' under a( 2 ), i.e. the elements of L 1 .(a( 2 )). 

0.1360 -0.0573 -0.0787 -0.0340 0.0143 0.0197 -0.0340 0.0143 0.0197 -0.0340 0.0143 0.0197 -0.0340 0.0143 0.0197 

-0.0573 0.1225 -0.0652 0.0143 -0.0306 0.0163 0.0143 -0.0306 0.0163 0.0143 -0.0306 0.0163 0.0143 -0.0306 0.0163 

-0.0787 -0.0652 0. 1438 0.0197 0.0163 -0.0360 0.0197 0.0163 -0.0360 0.0197 0.0163 -0.0360 0.0197 0.0163 -0.0360 

-0.0340 0.0143 0.0197 0.1473 -0.0596 -0.0876 -0.0377 0.0151 0.0227 ~0.0377 0.0151 0.0227 -0.0377 0.0151 0.0227 

0.0143 -0.0306 0.0163 -0.0596 0. 1837 -0.1241 0.0151 -0.0510 0.0359 0.0151 -0.0510 0.0359 0.0151 -0.0510 0.0359 

0.0197 0.0163 -0.0360 -0.0876 -0.1241 0.2117 0.0227 0.0359 -0.0586 0.0227 0.0359 -0.0586 0.0227 0.0359 -0.0586 

-0.0340 0.0143 0.0197 -0.0377 0.0151 0.0227 0.1473 -0.0596 -0.0876 -0.0377 0.0151 0.0227 -0.0377 0.0151 0.0227 

0.0143 -0.0306 0.0163 0.0151 -0.0510 0.0359 -0.0596 0.1837 -0.1241 0.0151 -0.0510 0.0359 0.0151 -0.0510 0.0359 

0.0197 0.0163 -0.0360 0.0227 0.0359 -0.0586 -0.0876 -0.1241 0.2117 0.0227 0.0359 -0.0586 0.0227 0.0359 -0.0586 

-0.0340 0.0143 0.0197 -0.0377 0.0151 0.0227 -0.0377 0.0151 0.0227 0.1473 -0.0596 -0.0876 -0.0377 0.0151 0.0227 

0.0143 -0.0306 0.0163 0.0151 -0.0510 0.0359 0.0151 -0.0510 0.0359 -0.0596 0.1837 -0.1241 0.0151 -0.0510 0.0359 

0.0197 0.0163 -0.0360 0.0227 0.0359 -0.0586 0.0227 0.0359 -0.0586 -0.0876 -0.1241 0.2117 0.0227 0.0359 -0.0586 

-0.0340 0.0143 0.0197 -0.0377 0.0151 0.0227 -0.0377 0.0151 0.0227 -0.0377 0.0151 0.0227 0.1473 -0.0596 -0.0876 

0.0143 -0.0306 0.0163 0.0151 -0.0510 0.0359 0.0151 -0.0510 0.0359 0.0151 -0.0510 0.0359 -0.0596 0.1837 -0.1241 

0.0197 0.0163 -0.0360 0.0227 0.0359 -0.0586 0.0227 0.0359 -0.0586 0.0227 0.0359 -0.0586 -0.0876 -0.1241 0.2117 

... 
w 
--.J 

. 
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For each of the two alternatives considered, the quantities L1.and B 

have to be calculated. The matrices L1 ,(a(l)) and L1.(a(2)) are given in the 

tables 9.4.1 and 9.4.2 on pages 136 & 137. Furthermore we need the eigen-
➔ 

values A1 , ... ,Ar and the vectors w for each of the four choices of Q and 

each of the two choices of a. For those readers who might wish to check the 
➔ 

calculations, we give the eigenvalues and the components of win each of the 

eight cases in the following tables. 

➔ 
Table 9.4.3. Eigenvalues A1 , ... ,A8 and components of w, for Q1 , ... ,Q4 

and a(1). 

T A (1) w (1) A (2) w 
(2) 

T T T T 

1 1.1173 0.0000 1. 2150 0.0000 

2 1.1173 0.0000 1. 2150 0.0000 

3 1. 1173 0.0000 1. 2150 0.0000 

4 0.8645 0.0000 0. 7966 -1.7953 

5 0.8645 0.0000 0.7850 0.0000 

6 0.8645 0.0000 0.7850 0.0000 

7 0.8220 2 .1830 0.7850 0.0000 

8 0.6488 0.4574 0.6611 1.3235 

T 
A (3) w 

(3) A (4) w 
(4) 

T T T T 

1 1.3511 0.0000 1.1021 0.0000 

2 1. 3511 0.0000 1.1021 0.0000 

3 1.3511 0.0000 1.1021 0.0000 

4 1.2425 2.2260 0.8809 0.0000 

5 0.5142 0.0000 0.8809 0.0000 

6 0.5142 0.0000 0.8809 0.0000 

7 0.5142 0.0000 0.8109 2.2153 

8 0.3088 -0.1401 0.6611 -0.2586 
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➔ 

Table 9.4.4. Eigenvalues A1, ... ,A8 and components of w, for Q1 , ... ,Q4 

and a( 2). 

T 
A ( 1) w 

(1) A (2) w 
(2) 

T T T T 

1 1.2275 -3.0368 1.2119 -3.0466 

2 1.0444 0.0000 1.0237 0.0000 

3 0.9321 0.0766 0.9020 -0.1258 

4 0.8187 -0.3097 0.8386 -0 .1907 

5 o. 7778 0.0000 0.8037 0.0000 

6 0.6420 -0.1065 0.6580 0.1293 

7 0.6023 -0.1952 0.5799 -0.0350 

8 0.4519 0.0766 0.4860 0.1656 

T 
A (3) w(3) A (4) w 

(4) 
T T T T 

1 1.5245 2.3184 1. 2158 3.0036 

2 1.4650 0.0000 0.9673 0.0000 

3 1.2669 -1.0061 0.9017 -0.2752 

4 0.8740 -0.4125 0.8549 0.0000 

5 0.4039 0.0000 0.8329 -0.4308 

6 0.3942 1.2943 0.6329 -0.2373 

7 0.3595 -1.0356 0.5859 -0.1811 

8 0.2645 -0. 2725 0.5098 0.0850 

We now have 
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Table 9.4.5. Estimates of the right-tail probabilities (e.r.t.p) of the 

critical values k~:i-a of method A, under a(l), obtained by simulation. 

The values in brackets give the approximate power (a.p) calculated from 

(4.4.6). 

a k (1) e.r.t.p k (2) e.r.t.p k (3) e.r.t.p k(4) e.r.t.p 
A, 1-a (a.p) A, 1-a (a.p) A, 1-a (a.p) A, 1-a (a.p) 

0.1000 13.3730 0.304 13.4016 0.281 14.0336 0.435 13.3616 0.298 
(0.314) (0. 291) (0.395) (0.313) 

0.0500 15.5293 0.184 15.5824 0.153 16.6753 0.290 15.5073 0.167 
(0.201) (0.181) (0.269) (0.200) 

0.0250 17.5685 0.113 17.6505 0.071 19.2285 0.185 17.5345 0.088 
(0.125) (0.110 (0.178) (0 .125) 

0.0100 20. 1432 0.048 20.2682 0.029 22.5142 0.077 20.0902 0.043 
(0.065) (0.055) (0.099) (0.065) 

0.0050 22.0240 0.030 22.1850 0.017 24.9520 0.038 21.9550 0.024 
(0.039) (0.032) (0.063) (0.039) 

0.0025 23.8545 0.015 24.0545 0.007 27.3545 0.023 23.7745 0.013 
(0.023) (0.018) (0.039) (0.023) 

0.0010 26.2245 0.006 26.4745 0.000 30.4745 0.010 26.1245 0.005 
(0.012) (0.009) (0.020) (0.012) 

Table 9.4.6. Estimates of the right-tail probabilities (e.r.t.p) of the 

critical values k~:i-a of method B, under a(l)' obtained by simulation. 

The values in brackets give the approximate power (a.p) calculated from 

(4.4.6). 

a k (1) e.r.t.p k (2) e.r.t.p k (3) e.r.t.p k(4) e.r.t.p 
B, 1-a (a.p) B, 1-a (a.p) B, 1-a (a.P) B, 1-a (a.p) 

0.1000 13.3754 0.335 13.4090 0.283 14.0786 0.398 13.3616 0.322 
(0.314) (0. 291) (0.392) (0.313) 

0.0500 15.5283 0.192 15.5795 0.172 16.6105 0.276 15.5073 0.191 
(0.201) (0.181) (0.271) (0.200) 

0.0250 17.5627 0.109 17.6313 0.083 19.0232 0.180 17.5345 0.117 
(0.126) (0.110) (0.184) (0.125) 

0.0100 20.1278 0.051 20.2193 0.037 22.0879 0.092 20.0902 0.053 
(0.066) (0.056) (0.108) (0.065) 

0.0050 21. 9996 0.022 22.1084 0.026 24.3374 0.059 21.9550 0.026 
(0.040) (0.033) (0.071) (0.039) 

0.0025 23.8262 0.013 23.9522 0.010 26.5416 0.038 23.7745 0.012 
(0.024) (0.019) (0.046) (0.023) 

0.0010 ' 26. 1855 0.003 26.3342 0.004 29.4001 0.016 26.1245 0.003 
(0.012) (0.009) (0.025) (0.012) 
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Table 9.4.7. Estimates of the right-tail probabilities (e.r.t.p) of the 

critical values k~:~-a of method C, under a(l)' obtained by simulation. 

The values in brackets give the approximate power (a.p) calculated from 

(4.4.6). 

C! 
k (1) e.r.t.p k (2) e.r.t.p k (3) e.r.t.p k (4) e.r.t.p 
c, 1-a (a.p) c, 1-a (a.p) c, 1-a (a.p) C, 1-a (a.p) 

0.1000 13.0182 0.365 13.0558 0.309 13.6633 0.405 13.0035 0.339 
(0.336) (0. 312) (0.415) (0.335) 

0.0500 14.9880 0.216 15.0445 0.209 15.9684 0.272 14.9659 0.220 
(0.226) (0.204) (0.299) (0.225) 

0.0250 16.8411 0.128 16.9164 0.314 18.1542 0.175 16.8118 0.130 
(0.149) (0.131) (0.213) (0.148) 

0.0100 19.1685 0.071 19.2683 0.079 20. 9187 0.095 19.1296 0.073 
(0.084) (0.072) (0.133) (0.084) 

0.0050 20.8615 0.039 20.9797 0.044 22.9409 0.052 20.8155 0.041 
(0.054) (0.045) (0.092) (0.054) 

0.0025 22.5099 0.020 22.6465 0.021 24.9177 0.031 22.4568 0.018 
(0.034) (0.028) (0.063) (0.034) 

I 0.0010 24.6345 0.007 24.7952 0.011 27.4753 0.020 24.5721 0.007 
(0.019) (0.015) (0.038) (0.019) 

Table 9.4.8. Estimates of the right-tail probabilities (e.r.t.p) of the 

critical values k~:~-a of method A, under a( 2 ), obtained by simulation. 

The values in brackets give the approximate power (a.p) calculated from 

(4.4.6). 

C! 
k (1) e.r.t.p k(2) e.r.t.p k (3) e.r.t.p k(4) e.r.t.p 

A, 1-a (a.p) A, 1-a (a.p) A, 1-a (a.p) A, 1-a (a.p) 

0.1000 13.3730 0.694 13.4016 0.724 14.0336 0.619 13.3616 0.701 
(0.677) (0.672) (0.593) (0.671) 

0.0500 15.5293 0.590 15.5824 0.607 16.6753 0.482 15.5073 0.575 
(0.565) (0.557) (0.463) (0.558) 

0.0250 17.5685 0.478 17.6505 0.478 19.2285 0.370 17.5345 0.464 
(0.462) (0.453) (0.352) (0.455) 

0.0100 20.1432 0.349 20.2682 0.360 22.5142 0.239 20.0902 0.332 
(0.346) (0.336) (0.237) (0.340) 

0.0050 22.0240 0.281 22 .1850 0.293 24.9520 0.166 21.9550 0.261 
(0.274) (0.263) (0.172) (0.268) 

0.0025 23.8545 0.208 24.0545 0.208 27.3545 0.121 23.7745 0.201 
(0.214) (0.204) (0.123) (0.209) 

0.0010 26.2245 0.122 26.4745 0.150 30.4745 0.067 26.1245 0.147 
(0.153) (0.143) (0.077) (0.148) 
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Table 9.4.9. Estimates of the right-tail probabilities (e.r.t.p) of the 

critical values k~:i-et of method B, under a( 2), obtained by simulation. 

The values in brackets give the approximate power (a.p) calculated from 

(4.4.6). 

et k (1) e.r.t.p k (2) e.r.t.p k(3) e.r.t.p k(4) e.r.t.p 
B, 1-et (a.p) B, 1-et (a.p) B, 1-et (a.p) B, 1-et (a.p) 

0.1000 13.3754 0.680 13.4090 0.716 14.0786 0.637 13.3616 0.681 
(0.676) (0.671) (0.590) (0.671) 

0.0500 15.5283 0.588 15.5795 0.588 16.6105 0.491 15.5073 0.571 
(0.565) (0.557) (0.466) (0.558) 

0.0250 17.5627 0.470 17.6313 0.469 19.0232 0.378 17.5345 0.464 
(0.463) (0.454) (0.360) (0.455) 

0.0100 20.1278 0.327 20.2193 0.347 22.0879 0.265 20.0902 0.363 
(0.347) (0.338) (0.250) (0.340) 

0.0050 21.9996 0.262 22 .1084 0.275 24.3374 0.171 21.9550 0.271 
(0.275) (0.266) (0.187) (0.268) 

0.0025 23.8262 0.187 23.9522 0.208 26.5416 0.117 23. 7745 0.205 
(0.215) (0.207) (0.138) (0.209) 

I 0.0010 26.1855 0.130 26.3342 0 .121 29.4001 0.070 26.1245 0.138 
(0.153) (0.146) (0.091) (0.148) 

Table 9.4.10. Estimates of the right-tail probabilities (e.r.t.p) of the 

critical values k~:i-et of method C, under a( 2), obtained by simulation. 

The values in brackets give the approximate power (a.p) calculated from 

(4.4.6). 

et 
k ( 1) e.r.t.p k (2) e.r.t.p k (3) e.r.t.p k (4) e.r.t.p 
c, 1-et (a.p) C, 1-et (a.p) c, 1-ct (a.p) c, 1-et (a.p) 

0.1000 13.0182 0.735 13.0558 0. 729 13.6633 0.663 13.0035 0.705 
(0. 695) (0.690) (0.612) (0.690) 

0.0500 14.9880 0.623 15.0445 0.629 15. 9684 0.528 14.9659 0.601 
(0.593) (0.586) (0.496) (0. 586) 

0.0250 16.8411 0.518 16.9164 0.527 18.1542 0.417 16.8118 0.500 
(0.498) (0.489) (0.397) (0.491) 

0.0100 19.1685 0.403 19.2683 0.433 20.9187 0.305 19.1296 0.398 
(0.388) (0.378) (0.289) (0. 381) 

0.0050 20.8615 0.319 20.9797 0.326 22.9409 0.222 20.8155 0.317 
(0. 317) (0.307) (0.224). (0.310) 

0.0025 22.5099 0.260 22.6465 0.251 24.9177 0.169 22.4568 0.252 
(0.257) (0.247) (0.173) (0.251) 

0.0010 24.6345 0.183 24.7952 0.169 27.4753 0.114 24.5721 0.180 
(0.192) (0.183) (0.121) (0.186) 
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REMARK 9.4.1. The same remark applies as in remark 9.3.1. Notice further

more that the last column of table 9.4.4 contains the same critical values 

as the last column of table 9.4.3. The estimates, however, are independent 

of the estimates of table 9.4.3. They are given to make a better comparison 

possible. 

According to these results it appears that ~3 has the highest power 

against a(l), which is in agreement with the fact that Q3 was especially 

chosen so that ~3 would react on this kind of alternative. Furthermore, ~l 

and ~4 are equally good, though ~l seems to perform slightly better than 

~4· 
Against a( 2 ) it is ~2 that appears to work best, which is again not 

surprising because there are preferences for three positions in a( 2 ). Again 

~land ~4 are competetive while now ~3 seems to work worst. 

It seems that the highest power is obtained when the critical values 

have been determined by method C. The results may be misleading, however, 

because we have not made a correction for the fact that the actual levels 

of the tests are not equal to the nominal levels. Therefore we compare 

"bold" and "timid" tests which possibly gives a distorted picture of the 

situation. The results are nevertheless supported by the results of Pitman

efficiencies (section 9.5). 

Finally we observe that the approximate power of the tests as calcu

lated from (4.4.6) agrees in a satisfactory way with the simulation results. 

The agreement improves, as can be expected, as the number of experiments, m, 

increases. This follows from some more simulations which we made and which 

are not reproduced here because of the limited space. 

9.5. PITMAN & BAHADUR EFFICIENCIES 

The asymptotic relative Pitman efficiency (ARPE) of ~(Qi) with respect 

to v(Q .) is equal to (cf. (5.2.2)) 
- J 

(9.5.1) e •• ( Sl 
1,J 

-1 
H. (S) 
_J __ 

H-:1 <Sl , 
1, 

SE (cx,1), 

where Hi(n) is given by (5.2.3). Using an iterative zero-searching procedure 

the inverse values of H(nl were calculated. Because e .. (S) depends on cx,S 
1,J 
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and a, we cannot give a complete survey of the results. Therefore, we shall 

only give the results for a=0.05 and f3=0.25, 0.50 and 0.75 and for a(l) 

and a( 2 ). For other values of a and f3 the ARPE's show generally the same 

pattern. 

Table 9. 5. 1. ARPE' s for the 4 tests considered, with a = 0. 05 and f3 = 0. 25 

H-l(0.25) 10.43 11.55 7.85 10.47 

test 1 2 3 4 
no. 

10.43 1 1.000 1.107 0.753 1.004 

11.55 2 0.903 1.000 0.680 0.906 

7.85 3 1.329 1.471 1.000 1.334 

10.47 4 0.996 1.103 0.750 1.000 

Table 9.5.2. ARPE's for the 4 tests considered, with a.=0.05 and f3=0.50 

for a(l). 

H-l(0.50) 20.82 22.68 16.35 20.89 

test 1 2 3 4 
no. 

20.82 1 1.000 1.089 0.785 1.003 

22.68 2 0.918 1.000 0.721 0.921 

16.35 3 1.273 1.387 1.000 1.278 

20.89 4 0.997 1.086 0.783 1.000 
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Table 9. 5. 3. ARPE' s for the four tests considered, with a = 0. 05 and 13 = 0. 7 5 

for a(l). 

H-l(0.75) 33.69 36.25 27.28 36.33 

test 1 2 3 4 
no. 

33.69 1 1.000 1.076 0.810 1.078 

36.25 2 0.929 1.000 0.753 1.002 

27.28 3 1.235 1.329 1.000 1.332 

36.33 4 0.927 0.998 0.751 1.000 

Table 9.5.4. ARPE's for the four tests considered, with a= 0.05 and 13 = 0.25 

for a( 2). 

H-l(0.25) 3.74 3.73 4.70 3.75 

test 
1 2 3 4 

no. 

3.74 1 1.000 0.997 1.257 1.003 

3.73 2 1.003 1.000 1.260 1.005 

4.70 3 0.796 0.794 1.000 0.798 

3.75 4 0.997 0.995 1.253 1.000 

Table 9. 5. 5. ARPE' s for the four tests considered, with a = 0. 05 and 13 = 0. 50 

for a( 2). 

H-l(0.50) 7.46 7.45 9.32 7.47 

test 1 2 3 4 
no. 

7.46 1 1.000 0.999 1.249 1.001 

7.45 2 1.001 1.000 1.251 1.003 

9.32 3 0.800 0.799 1.000 0.802 

7.47 4 0.999 0.997 1.248 1.000 
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Table 9.5.6. ARPE's for the four tests considered, with a=0.05 and B=0.75 

for a( 2). 

H-l(0.75) 12.06 12.06 14.94 12.08 

test 1 2 3 4 no. 

12.06 1 1.000 1.000 1.239 1.002 

12.06 2 1.000 1.000 1.239 1.002 

14.94 3 0.807 0.807 1.000 0.809 

12.08 4 0.998 0.998 1.237 1.000 

These results confirm clearly the simulation results of the preceding 

section. I.e. ~3 (the ."directed" test) performs best against a(l). Second 

best is ~1 (the "x2-type" test), though only slightly better than ~4 (the 

"asymptotic x2-type" test). The "equal weights" test, ~2 performs definite

ly worse against a(l)" 

The situation under a( 2) is different, fully in accordance with our 

expectations. As in the simulation results, the "equal weights" test per

forms best against a( 2). Again ~1 is second best and is slightly better 

than ~4 . This time the directed test, ~3 performs worst. 

The approximation to eij(B), (cf. (2.5.11)), 

(9.5.2) * e •• 
1.-J 

is much easier to use, because no eigenvalues etc. have to be calculated. 

We have 
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+ 
Table 9.5.7. Components of the vectors z; for a{l) and a( 2). 

V 
+(1) z; +(2) z; 

1 0.2600 0.2683 
1 j 2 -0.1033 -0.1020 

3 -0.1567 -0.1663 
1 -0.0650 -0.1200 

2 j 2 0.0258 0.2783 
3 0.0392 -0.1583 
1 -0.0650 -0.1463 

3 j 2 0.0258 -0.1870 
3 0.0392 0.3333 
1 -0.0650 -0.0010 

4 j 2 0.0258 0.0053 
3 0.0392 -0.0043 
1 -0.0650 -0.0010 

5 j 2 0.0258 0.0053 
3 0.0392 -0.0043 

Table 9.5.8. Approximate ARPE's for the four tests considered, calculated 

according to (5.2.11), for a(l)" 

t•Q.t 
1, 

0.405 0.373 0.616 0.402 

test no. 1 2 3 4 

0.405 1 1.000 1.086 0.657 1.007 

0.373 2 0.921 1.000 0.606 0.928 

0.616 3 1.521 1.561 1.000 1.532 

0.402 4 0.993 1.078 0.653 1.000 

Table 9.5.9. Approximate ARPE's for the four tests considered, calculated 

according to (5.2.11), for a( 2). 

+ + 
l;'Qil; 1.132 1.144 1.069 1.125 

test no. 1 2 3 4 

1.132 1 1.000 0.990 1.059 1.006 

1.144 2 1.011 1.000 1.070 1.017 

1.069 3 0.944 0.934 1.000 0.950 

1.125 4 0.994 0.983 1.052 1.000 
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The reader may judge for himself whether he thinks these approximations 

good enough for his purposes. In any case, the general tendency is the same 

as in the 'exact' ARPE cases. 

Finally, the asymptotic relative Bahadur efficiency (ARBE) is equal to 

(cf. (5.4.1)) 

(9. 5. 3) E • • (a) 
1-J 

1 ➔ ➔ 
-(-.)1:;'Q.I:; 
;\ 1- 1-

1 
1 ➔ ➔ 

-(-.)1:;'Q.1,; 
;\ J J 

1 

Using the data of tables 9.1.2, 9.2.1, 9.5.8 and 9.5.9 we find 

Table 9.5.10. ARBE's for the four tests considered, calculated according to 

( 5. 4. 1) , for a ( 1 ) • 

1 ➔ ➔ 
0.378 0.402 0.402 c-i:)1:;'Qil:; 0.329 

'1 

test no. 1 2 3 4 

0.378 1 1.000 1.149 0.940 0.940 

0.329 2 0.870 1.000 0.818 0.818 

0.402 3 1.063 1.222 1.000 1.000 

0.402 4 1.063 1.222 1.000 1.000 

Table 9.5.11. ARBE's for the four tests considered, calculated according to 

( 5 • 4 . 1 ) , for a ( 2 ) • 

1 ➔ ➔ 
1.056 -(-.)1:;'Q,I:; 1.010 0.697 1.125 

;\ 1- 1-
1 

test no. 1 2 3 4 

1.056 1 1.000 1.046 1.515 0.939 

1.010 2 0.956 1.000 1.449 0.898 

0.697 3 0.660 0.690 1.000 0.620 

1.125 4 1.065 1.114 1.614 1.000 
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It is clear that the simulation results of section 9.4 are more in 

accordance with the ARPE's than with the ARBE's. The ARPE therefore seems 

to be the better measure of asymptotic relative efficiencies in our case. 

9.6. CONCLUDING REMARKS 

By computer generation of all possible n;:_1 Ni different combinations 

of words and calculation of ~(Q) for each combination, it is in principle 

possible to obtain the exact distribution of ~(Q). However, the number of 

possibilities becomes soon prohibitive. For instance in our example we have 

(9.6.1) 
m 

TT Ni 
i=1 

3.24X1012 • 

So only for relatively small m, it can be done in practice. The interested 

reader is referred to DI~ (1979), which shows that, under H0 , the number of 

possibilities can be reduced a little by symmetry arguments, and which 

gives some results, under H0 , for the case that Q = I x G • 
n, g 

He may also find there results of simulations of ~(Q), i.e. in the un-

conditional situation. Some remarks are made there also on the effects of 

the deletion of "useless" observations. 

We are aware that the numerical examples that we have given do not, 

in any way, cover all the possible situations that can occur. But the exam

ples given support clearly the recommendations that we have given in this 

thesis. 
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