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Introduction 

These are the proceedings of the third QMIPS workshop, held in Torino, Italy, 
on September 25 and 26, 1993. The QMIPS project is a collaborative research 
project supported by the European Union, and it is carried out by 8 organi
zations from 6 different European countries. It is concerned with quantitative 
modeling in parallel and distributed systems. Within the framework of the 
QMIPS project several workshops are being organized. After workshops in 
Sophia-Antipolis (France) on Petri nets, and in Erlangen (Germany) on mod
eling formalisms, this workshop focused on solution methods. 

Three steps can be distinguished in the analysis of parallel or distributed sys
tems. The first is modeling, using one of the available formalisms. Depending 
on the formalism used, a solution method is employed to obtain performance 
measures for the system. This second step is the subject of these proceed
ings. The third step is the optimisation of the system. Research in this area is 
presented at the fourth QMIPS workshop in London, on April 14 and 15, 1994. 

The proceedings start with two survey papers, one on solution methods for 
queueing models, and one on solution methods for Petri net models. The other 
16 papers, all concerned with current research topics, are divided in three parts, 
depending on the formalism used: queueing, Petri nets or the (Max,+) algebra. 

The first formalism is queueing. The paper by ETTL AND MITRANI analyses 
two queueing models using the recently developed spectral expansion method. 
BOXMA AND VAN HOUTUM apply the compensation approach to a 2 x 2 switch, 
and MITRANI AND WRIGHT solve a two-dimensional queueing problem using 
the boundary value technique. The next two papers deal with queueing models 
with negative customers, which are customers with the ability to cancel regular 
customers. The paper by FOURNEAU, GELENBE AND SUROS extends product 
form results for regular queueing networks to networks with negative customers. 
The paper by HARRISON AND PITEL studies tandem models which do not have 
product form solutions, and analyses them using the boundary value technique. 
KOOLE shows that the power series algorithm, which has been applied to many 
queueing models, can also be used for general Markov chains. 

The part on Petri nets starts with the paper by BouCHERIE AND SERENO. It 
characterises product form Petri nets in terms of the structure of the net. The 
paper by SERENO AND BALBO considers product forms as well, but focuses 
on computational algorithms. Also the paper by CHIOLA, ANGLANO, CAM
POS, COLOM AND SILVA studies a technique originating from queueing, namely 
operational analysis, which_ leads them to performance bounds. FRANCESCHI
NIS AND MUNTZ derive performance bounds for certain Petri nets that exhibit 
symmetry. CAMPOS, COLOM, SILVA AND TERUEL study a model consisting of 
several sequential processes communicating through buffers, and derive both 
qualitative and quantitative results. The paper by BACCELLI AND GAUJAL is 
concerned with free choice Petri nets. For this class of nets qualitative prop
erties are derived. In the paper by CAMPOS, COLOM, JUNGNITZ AND SILVA 
marked graphs (Petri nets where each place has only one input and output arc) 
are considered, and a technique is introduced to approximate the throughput of 



marked graphs. CANALES AND GAUJAL also study marked graphs, and exhibit 
the inherent parallelism to derive efficient parallel simulation procedures. 

Marked graphs are strongly related to the (Max,+) algebra, and as such the 
two papers on this algebra are relevant to the study of Petri nets. JEAN-MARIE 
studies stochastic event graphs by an analysis based on the (Max,+) algebra. 
MAIRESSE derives some deep results on small matrices in the (Max,+) algebra. 

Finally, a few words of thanks. We thank the local organizer G. Balbo and 
his co-workers (University of Torino) for taking care of the local arrangements 
and for selecting such a wonderful location for the workshop. We should like 
to express our gratitude to the Centre for Mathematics and Computer Science 
(CWI) for its support in publishing these proceedings. We are in particular 
grateful to Yvonne Samseer from the CWI typesetting department for her 
many valuable contributions to the preparation of the final manuscript, and 
to managing editor Wim Aspers. 

Onno Boxma and Ger Koole 



A Structural Characterisation of Product Form 

Stochastic Petri Nets 

Richard J. Boucherie* 
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Matteo Serenot 
Universita di Torino 
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Product form results for the equilibrium distribution of stochastic Petri nets 
are available in the literature. These results are based on assumptions for 
the Markov chain describing the Petri net, and not on the structure of the 
Petri net. The structure of the Petri net is one of the most important parts 
in the analysis of Petri nets, and many results on this structure are available 
in the literature. Hence, it seems natural to characterise the product form 
property on a structural level. This paper provides such a characterisation: 
it gives a necessary and sufficient condition for the existence of a solution for 
the traffic equations (the basic equations allowing product form), completely 
in terms of the T-invariants of the Petri net. 

1 INTR.ODUCTION 

157 

Performance is an important issue in the design and implementation of real life 
systems such as computer systems, telecommunication networks, and flexible 
manufacturing systems. In many theoretical and practical studies of perfor
mance models involving stochastic effects, the statistical distribution of items 
over places is of great interest since most of the performance measures such 
as throughput and utilization can be derived from this distribution. If we 
are interested in quantitative results we can use approximation and simulation 
techniques. Analytical results, however, yield vital insight into the qualita
tive behaviour of the system. In particular, qualitative results related to the 
structure of the system are of great importance. 

*ERCIM fellow at INRIA from September 1st, 1992 to May 31st, 1993, and at CWI from 
June 1st, 1993 to February 28th, 1994. ERCIM stands for European Research Consortium for 
Informatics and Mathematics and comprises 10 institutes: AEDIMA (Spain), CNR (Italy), 
CWI (The Netherlands), FORTH (Greece), GMD (Germany), INESC (Portugal), INRIA 
(France), RAL (UK), SICS (Sweden), SINTEF DELAB (Norway). 

tPartially supported by the Italian National Research Council "Progetto Finalizzato Sis
temi Informatici e Calcolo Parallelo (Grant N. 92.01563.PF69)" and by the European Grant 
BRA-QMIPS of CEC DG XIII 
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. For queueing networks an important analytical result is the product form 
equilibrium distribution for the number of customers at the stations. Product 
form distributions were found by Jackson [17], and are nowadays known for a 
fairly wide class of queueing models (e.g., Baskett et al. [2], Boucherie and van 
Dijk [4], Henderson and Taylor [15], Serfozo (23]). The obvious advantage of 
these product form distributions is their simplicity which makes them easy to 
use for computational issues as well as for theoretical reflections on performance 
models involving congestion as a consequence of queueing. 

Recently, product form results were found for the marking process of stochas
tic Petri nets by Lazar and Robertazzi (18]. Although these results were shown 
for a very special class of stochastic Petri nets consisting only of linear task se
quences, the notion of competition over resources incorporated in these models 
cannot be included in queueing networks without the introduction of state
dependent routing. Still, product form results very similar to those obtained 
by Jackson (17] were found. Since these first product form results various exten
sions have been found. In a number of papers, Henderson et al. [13], [14], (16] 
derive product form results for stochastic Petri nets similar to those obtained 
for batch routing queueing networks (Boucherie and van Dijk [4], Henderson 
and Taylor [15]). Frosch (11], [12] derived product form results for closed syn
chronized systems of stochastic sequential processes, a class of Petri nets in 
which state machines are synchroni1r:ed via buffers. 

The product form results for stochastic Petri nets are based on the assump
tion that a positive solution exists for a linear set of equations similar to the 
traffic equations for queueing networks. However, a characterisation of this 
assumption based on the structure of the Petri net is not available in the liter
ature. This paper provides such a characterisation. We show that a necessary 
and sufficient condition for the existence of a positive solution for the traffic 
equations is that all transitions of the Petri net are covered by closed sup
port T-invariants. A T-invariant is a closed support T-invariant if the firing 
sequence is a linear chain of transitions, that is a closed support T-invariant 
closely resembles the 'task sequences' used by Lazar and Robertazzi (18] to 
prove their product form result. As will be shown via examples, the class of 
Petri nets used in the present paper is substantially larger than the class of 
Lazar and Robertazzi. 

Product form results for stochastic Petri nets of a completely different type 
are derived by Boucherie (3]. There the equilibrium distribution for a stochastic 
Petri net containing several subnets linked via buffer places is shown to be a 
product over the subnets under some conditions. Also, closed form expressions 
for the equilibrium distribution of stochastic Petri nets are derived by Florin 
and Natkin [9]. In that paper the equilibrium distribution of a stochastic 
Petri net with finite reachability set is shown to be a sum of product form 
distributions. The number of product form distributions in this sum is related 
to the number of distinct markings of the Petri net, a number that is usually 
substantially smaller than the cardinality of the reachability set. We do not 
consider these types of closed form equilibrium distributions in this paper. 

In section 2 we present the basic Petri net notation. In section 3 we present 
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the structural characterisation of the Petri net allowing us to provide necessary 
and sufficient conditions for the existence of a solution for the traffic equations. 
We will also give some known product form theorems based on the existence 
of such a solution. This allows us to illustrate the results by means of some 
simple examples in section 4. 

2 MODEL 

This section presents the basic definitions of stochastic Petri nets. For addi
tional results and definitions, see the recent survey of Murata [21]. The specific 
assumptions and definitions needed to obtain product forms for stochastic Petri 
nets will be given in section 3. 

DEFINITION 2.1 (MARKED STOCHASTIC PETRI NET) A marked stochastic 
Petri net is a 6-tuple 

SPN = (P,T,I,O,R,mo), 

where P = {pi, ... , PN} is a fi.nite set of places; T = { t 1 , ... , tM} is a fi.nite set 
of transitions; P n T = 0 and PUT -:j:. 0; I, 0 : P x T -t 1N0 are the input 
and output functions identifying the relation between the places and the tran
sitions; R = (r(ti), ... , r(tM )) is a set of fi.ring rates drawn from exponential 
distributions; and m 0 is the initial marking. 

A marking m = (m(n), n = 1, ... ,N) of a Petri net is a vector in 1N{:, where 
m(n) represents the number of tokens at place Pn, n = 1, ... , N. 

Distributions associated with different transitions are independent, and each 
transition of the Petri net is due to exactly one transition t E T that fires. The 
execution policy of the stochastic Petri net is the race model with age memory 
(cf. Ajmone Marsan et al. (1]). 

From I(·,·) and O(·, ·) we obtain the vectors I(t) = (J1(t), ... ,IN(t)), and 
O(t) = (O1(t), ... ,ON(t)), where Ji(t) = I(pi,t), and Oi(t) = O(pi,t). The 
vectors I(t), and O(t) are called input, and output bags of transition t E T, 
representing the number of tokens needed at the places to fire transition t, 
and the number of tokens released to the places after firing of transition t. 
Furthermore, define the sets of places corresponding to input and output bags 
of transitions as •t = {p E PII(p, t) > 0}, the set of places giving input to 
transition t, t• = {p E PIO(p, t) > 0}, the set of places receiving output from 
transition t. If transition t is enabled in marking m and fires, then the next 
state of the Petri net ism'= m-I(t) + O(t). Symbolically this will be denoted 
as m[t > m'. A necessary and sufficient condition for t to be enabled is that 
m(n) ~ In(t), n = 1, ... , N. 

A finite sequence of transitions a = tu1 tu2 • • • tuk is a finite fi.ring sequence 
of the Petri net if there exists a sequence of markings mu1 , •.• , muk for which 
mu, [tu, > mu,+ 1 , i = 1, ... , k - 1. In this case marking muk is reachable 
from marking mu1 by firing a, denoted as mu1 [a > muk. The reachability set 
M(mo) is a subset of 1N{: and gives all possible markings of the Petri net with 
initial marking mo. 
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The incidence matrix is the N x M matrix A with entries A(i, t) = Oi(t) -
Ii(t) describing the change in the number of tokens in place Pi if transition t 
fires, i = 1, ... , N, t E T. A vector ii is the firing count vector of the firing 
sequence a if ii(t) equals the number of times transition t occurs in the firing 
sequence a. If m0 [a > m, then m = m0 + Aii, an equation referred to as the 
state equation for the Petri net. 

A vector x E N~ is a T-invariant if x =f. 0, and Ax = 0. From the state 
equation we obtain that a T-invariant corresponds to a firing sequence that 
brings a marking back to itself (Murata [21]). The support of a T-invariant x 
is the set of transitions corresponding to non-zero entries of x, and is denoted 
by llxll, i.e. llxll = {t E Tlx(t) > 0}. AT-invariant x is a minimal T-invariant 
if there is no other T-invariant x' such that x'(m) ::; x(m) for all m. A sup
port is minimal if no proper nonempty subset of the support is also a support 
of a T-invariant. From Memmi and Roucairol [19] we obtain that there is a 
unique minimal T-invariant corresponding to a minimal support (minimal sup
port T-invariant), and any T-invariant can be written as a linear combination 
of minimal support T-invariants. A vector y EN{; is a P-invariant (sometimes 
called S-invariant) if y =f. 0, and y A = 0. P-invariants correspond to conser
vation of tokens in subsets of places. For example, the set of places of a Petri 

· net corresponding to a closed Jackson network is a P-invariant. Definitions of 
and results for minimal support etc. are analogous to those for T-invariants. 

The stochastic process describing the evolution of the Petri net is a contin
uous-time Markov chain with state space isomorphic to the reachability set, 
that is with state space M(m0) (Molloy (20]). The transition rates of this 
Markov chain are denoted by Q = (q(m, m'), m, m' E M(mo)). A collection 
of positive numbers, m = (m(m), m E M(m0)), is called an invariant measure 
if it satisfies the global balance equations, 

L {m(m)q(m,m') - m(m')q(m',m)} = 0, m E M(m0). 

ID'EM(mo) 

When m is a proper distribution over M(m0) it will be called an equilibrium 
distribution, and will be denoted by 1r = (1r(m), m E M(m0)). 

As the Markov chain is chosen such that it describes the evolution of the 
stochastic Petri net under consideration, irreducibility and positive recurrence 
properties necessary to obtain a unique equilibrium distribution for the Markov 
chain should be characterised directly from the Petri net structure. A Petri 
net is live if, no matter what marking has been reached from m 0 , it is pos
sible to ultimately fire any transition of the net by progressing through some 
further sequence. For unicity of the equilibrium distribution we must add the 
assumption that the Petri net is (strongly) connected. An extensive discussion 
of liveness, and related concepts is given in Murata [21]. 

3 PRODUCT FORM RESULTS 

Without loss of generality, we may assume that the firing rate associated with 
transition t E T with input bag I(t) and output bag O(t) can be written as 



161 

r(t) = µ(t)p(I(t), O(t)), a form chosen in accordance with the literature on 
product form results (e.g., Jackson [17], Baskett et al. [2]). 

Assume that the stochastic Petri net can be represented by a stable and 
regular, continuous-time Markov chain X = {X(t), t 2:: O} at state space 
M(m0). Then the transition rates of X are 

q(l(t), O(t); m - I(t)) = µ(t)p(I(t), O(t)), 

for all t ET, m E M(m0) such that m-I(t) E JNt Here q(I(t), O(t); m-I(t)) 
is the transition rate associated with transition t bringing m to m-I(t) + O(t). 
The total transition rate from m to m' = m - I(t) + O(t) is q(m, m') = 
:E{n, tET:n+l(t)=m, n+O(t)=m'} q(l(t), O(t); n). 

Let x 1 , ... , xh denote the minimal support T-invariants found from the in
cidence matrix. The following definition and assumption are essential to the 
analysis presented in this paper. Closedness of T-invariants was first defined 
by Donatelli and Sereno [8] as a unifying principle to obtain product form 
distributions for stochastic Petri nets. A necessary condition for a product 
form equilibrium distribution similar to closedness is presented in Henderson 
et al. [13], Corollary 1. 

DEFINITION 3.1 (CLOSED SET) For TC T define R(T), the set of input and 
output bags for the transitions in T, as 

R(T) = LJ {I(t) u O(t)}. 
tET 

Tisa closed set if for any g E R(T) there exist t, t' ET such that g = I(t), as 
well as g = O(t'), that is if each output bag is also an input bag for a transition 
in T. 

ASSUMPTION 3.2 (MINIMAL CLOSED SUPPORT T-INVARIANTS) Assume that 
all transitions t ET are covered by minimal closed support T-invariants, that 
is assume that for all t ET there exists an i E {1, ... , h} such that t E llxill 
and llxi II is a closed set. 

Observe that the essential part of the assumption is that all transitions are 
contained in a closed support. The assumption that all transitions are covered 
by minimal support T-invariants ( closed or not closed) is a natural assumption 
if we are interested in the equilibrium or stationary distribution of a stochastic 
Petri net. If this assumption is not satisfied, then there exists a transition, say 
to, that is enabled in a reachable marking m, and to (/. u~=l llxill (if to is never 
enabled, then we can delete t0 from T). Let t0 fire in marking m. Then there 
exists no firing sequence from m - I(t0) + O(t0 ) back tom (otherwise t0 would 
be contained in a T-invariant). Thus m is a transient state and does not appear 
in the equilibrium description of the stochastic Petri net. As a consequence, 
both m and t0 can be deleted from the equilibrium description of the Petri net. 

The structural characterisation of product form results for stochastic Petri 
nets is completely based on Assumption 3.2. We now proceed with a characteri
sation of minimal closed support T-invariants. This shows the relation between 
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minimal closed support T-invariants and 'task sequences' (corresponding to a 
number of tasks that must be executed consecutively) as introduced by Lazar 
and Robertazzi [18]. This turns out to be a key-notion when product form 
equilibrium distributions are desired. 

THEOREM 3.3 Assume that x is a minimal closed support T-invariant. Then 
the firing sequence of x is 'linear', that is for each t E llxll there is a unique 
t' E llxll such that O(t) = I(t'). As a consequence Xi :=::; 1, i = 1, ... , M. 
Conversely, if the firing sequence of a T-invariant x is linear, then x is a closed 
support T-invariant. 

Proof Let t E llxll- The existence oft' E llxll such that O(t) = I(t') follows 
from the closedness of llxll. To proof the unicity, let t E llxll, and t', t" E llxll 
such that O(t) = I(t') = I(t"). Without loss of generality, assume that O(t') -:/= 
O(t") (otherwise t' = t"). As a consequence there exists a place p = Pi such 
that max{Oi(t'), Oi(t")}-min{Oi(t'), Oi(t")}-:/= 0. Without loss of generality, 
assume that Oi(t') > Oi(t"). 

From the closedness of llxll we obtain that there exist two distinct transitions, 
say ti E llxll, and tr E llxll such that O(t') = I(tD, and O(t") = I(tf), and we 
must have one of the following three situations: 

(a) O(tD = O(tf), but this implies that there exist two firing sequences 
within llxll that can fire independently from I(t) to O(ti), in contrast 
with the assumption that x is a minimal T-invariant. 

(b) 3 p' = p3 such that max{O3(tD, O3(tr)} - min{O3(ti), 0 3(tr)}-:/= O, and 
0 3(tD > 0 3(tf). This is the situation observed when we considered t' 
and t" and is either followed by situation (a), (b), or (c). 

(c) as (b), but now O3(ti) > 0 3(tf). It is obvious that this is followed by (a), 
(b), or (c) as well. 

Finally, since x is a T-invariant, it must be that the firing sequences starting 
with t' and t" say t't' • • · t' and t"t" • · · t" are such that O(t' ) = O(t" ) , 1 a' 1 a" , o..1 a.11 

for some a', a", that is situation (a) must occur finally, which contradicts the 
assumption that x is a minimal T-invariant, because we have created two firing 
sequences that can independently be fired from I(t) to O(t~, ). This establishes 
unicity. 

Unicity implies that each transition t Ex can occur at most once in the firing 
sequence associated with x, i.e. that Xi :=::; 1, i = 1, ... , M. 

If the firing sequence of a T-invariant x is linear, then for each t E llxll there 
exist s,s' E llxll such that O(s) = I(t), O(t) = I(s') implying that x has closed 
support. □ 

The important property of closed support T-invariants with respect to prod
uct form results is that the residual marking of tokens that remain at the 
places during one complete firing of the T-invariant is the same for all transi
tions, that is the firing sequence can be represented by the sequence of markings 
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m = n+J(ti,)--+ n+J(ti2 )--+ · · ·--+ n+I(tik)--+ n+J(ti,), with n = m-I(ti,) 
the residual marking. This observation is the basis of the classification of the 
transitions into equivalence classes as presented below. This classification is 
based on a classification presented in Frosch [10], Frosch and Natarajan [11] 
for cyclic state machines. In the case of cyclic state machines the input bag 
of a transition basically contains only one place, whereas the generalisation to 
closed support T-invariants incorporates more general input bags. The classi
fication will then be used to construct a solution to the traffic equations, a set 
of linear equations defined by analogy with the traffic equations for queueing 
networks. 

DEFINITION 3.4 (TRAFFIC EQUATIONS) Fort ET, an invariant measure, y = 
(y(I(t)), t E T), for the traffic equations is a mapping y : "JNf --+ JR+ that 
satisfies the traffic equations for all t E T ( recall the definition of the transition 
rates (1)) 

L {y(I(t))µ(t)p(l(t),I(t')) -y(I(t'))µ(t')p(I(t'),I(t))} = 0. (2) 
t'ET 

REMARK 3.5 (TRAFFIC EQUATIONS) The definition of the traffic equations re
lies heavily on the assumption that all transitions are covered by closed support 
T-invariants. Otherwise p(l(t), I(t')) may be zero for all t' E T since without 
the assumption of closedness O(t) need not be an input bag for some transition 
t'. In fact, from Assumption 3.2 we obtain that for each t there exists at' such 
that O(t) = I(t'), and the first summation in the traffic equations is equiva
lent to I:o(t}ENb" y(I(t))µ(t)p(I(t), O(t)). Obviously, the second summation is 

equivalent to I:r(t'}ENb" ,O(t')=l(t) y(l(t'))µ(t')p(I(t'), O(t')), which shows that 
under Assumption 3.2 the traffic equations do not exclude any transitions de
positing or consuming I(t). In particular, Assumption 3.2 implies that the 
traffic equations are equivalent to the global balance equations for the Markov 
chain with transition rates (1), a result used below to prove that Assumption 
3.2 is necessary and sufficient for the existence of a solution for the traffic 
equations. D 

We will now show that Assumption 3.2 is necessary and sufficient for the 
existence of an invariant measure for the traffic equations (2). Before proving 
this result we first characterise the minimal support T-invariants that are con
nected as (2) decomposes into disjoint sets of equations, one set of equations 
for each equivalence class of connected T-invariants. 

Assume that the minimal support T-invariants x 1 , . .. , xh are numbered such 

that CIT ~r {x1, ... , xk} ·is the set of minimal closed support T-invariants 
(k ~ h). 

DEFINITION 3.6 (COMMON INPUT BAG RELATION) Let x, x' E CIT. We say 
that x, x' are in common input bag relation ( notation: x C I x') if there exist 
t E llxll, t' E llx'II such that I(t) = I(t'). The relation CJ* is the transitive 
closure of CJ. 
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The transitive closure of a relation is defined as follows: if x, x', x" E C lT, 
and x CI x', x' CI x", then we define x CJ* x', x' CJ* x", and x CJ* x". 
This reflects the property that we can go from x to x" via x'. This makes the 
common input bag relation CJ* an equivalence relation on ClT. 

The common input bag relation characterises the irreducible sets of the 
Markov chain Y = (Y(t), t ~ 0) at finite state space S = {I{t), t E T} 
with transition rates q(l(t), I(t')) = µ(t)p(l(t), l(t')). This Markov chain Y 
corresponds to the routing chain as defined in Henderson et al. [13], [16]. Let 
CI(x) be the equivalence class of x E ClT, that is CJ(x) = {x'lx CJ* x'}. 
The equivalence classes partition ClT: each x E ClT belongs to exactly one 
equivalence class. · 

Let x E ClT with equivalence class CJ(x). Define S{x) CS, the input bags 
corresponding to CJ{x), as 

S{x) = {I(t)l3 x' E CJ(x) such that x~ > 0}. 

The following theorem shows that the partition of ClT into equivalence 
classes {CJ(x)}xec1r induces a partition {S(x)}xeCIT of S into irreducible 
sets of the Markov chain Y if and only if Assumption 3.2 is satisfied. 

·THEOREM 3.7 (STRUCTURAL CHARACTERISATION) Assumption 3.2 is neces
sary and sufficient for the existence of an invariant measure for the traffic 
equations (2). 

Proof Observe that the state-independent traffic equations (2) are the global 
balance equations of Y at state space S. Therefore it is sufficient to prove that 
Assumption 3.2 is necessary and sufficient for the partition of S into irreducible 
sets {S{x)}xec1T-

Let x,x' E ClT. If x' E CJ(x) then S{x') = S{x), since CJ{x) = CI(x'). 
If S(x') n S{x) #- 0, then 3 t E T such that I(t) E S(x') n S(x) implying 
that 3 x" E CJ(x) for which 3 s E T such that x~ > 0 and I(s) = I(t), 
and 3 x 111 E CJ(x') for which 3 s' such that x~! > 0 and I(s') = I(t). Thus 
CI(x") = CI(x111 ) implying CJ(x) = CI(x'), in turn implying that S{x') = 
S(x). This shows that S(x') = S(x) if CJ(x') = CI(x), and S(x') n S{x) = 0 
if CI(x') n CJ(x) = 0. 

Assumption 3.2 implies that for all t ET, 3 x E ClT such that t E llxll, i.e. 
3 S{x) such that I(t) E S(x). As a consequence {S(x)}xeczr forms a partition 
of S. 

Let I(t), I(t') E S{x). Then 3 x', x" E CJ(x) for which 3 s, s1 ET such that 
x~ > 0 and x~, > 0, and I(s) = I(t) and I(s') = I(t), but also x'CJ*x". Thus 
3 u, firing-sequence, such that I(t)[u > I(t'). Let I(t) E S(x), l{t') E S(x'), 
S(x) n S{x') = 0. Assume 3 u, firing sequence, such that I(t)[u > I(t') then 
x' E CJ(x) implying that S(x) = S(x'). As a consequence {S(x)}xeCIT forms 
a partition of S into irreducible sets. The Perron-Frobenius theorem ( cf. Seneta 
[22]) implies that a positive solution exists to the marking independent traffic 
equations. 

Conversely, assume that an invariant measure exists to the marking inde
pendent traffic equations. This immediately implies that for all t E T 3 t' E T 
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such that O(t) = I(t'). Furthermore, the existence of this invariant measure 
implies that S is partitioned in irreducible sets. Let ¼, i = 1, ... , v, denote 
the irreducible sets of Y. Let t E T and i0 such that I(t) E Via. Since Via is 
an irreducible set we have that for all v E ¼a :3 u,u' such that I(t)[u > v, 
and v[u' > I(t). Thus ii= uu' is a closed support T-invariant. Similarly, from 
the irreducibility we may conclude that all T-invariants contained in Via have 
closed support. From Memmi and Roucairol [19] we obtain that each support 
of an invariant can be decomposed into a union of minimal supports which 
implies that t is covered by a minimal closed support T-invariant. D 

REMARK 3.8 (STRUCTURAL CHARACTERISATION) In the literature, one usu
ally assumes that a solution for the traffic equations exists, and necessary con
ditions are derived from this assumption (e.g., Henderson et al. [13]). Theo
rem 3. 7 provides a necessary and sufficient structural condition for the existence 
of a solution of the traffic equations, only. We will now illustrate the difference 
between Assumption 3.2 and the conditions of Henderson et al. [13], [16] that 
are necessary for the existence of a solution for the traffic equations. This 
also shows that Assumption 3.2 is a new condition for the characterisation of 
product form results. 

Henderson et al. [13] introduce the following necessary condition for the 
existence of a solution for the traffic equations (Corollary 1): for all g E R(T) = 
UtET{I(t) U O(t)} there exist t, s E T such that g = I(t), g = O(s), that is 
R(T) is a closed set. Obviously, Assumption 3.2 implies this condition, since 
Assumption 3.2 not only assumes that such t, s E T exist, but also that t, s 
are elements of the support of a single minimal closed support T-invariant. 
The reversed statement is not true, as is shown in the following example taken 
from Coleman [6], where the example is given to illustrate that the condition 
of Corollary 1 from Henderson et al. [13] is not sufficient for the existence of a 
solution for the traffic equations. 

Consider the Petri net depicted in Figure 1. From the incidence matrix 

( 

-1 

A= 1 
-1 

1 

0 -1 
-1 -1 

1 1 
0 1 

1 
-1 

1 
-1 

_t) 
-1 

we obtain that this net has 3 minimal support T-invariants: x 1 = (10010), 
x2 = (00101), x 3 = (12001), of which x 1 and x2 have closed support, but x 3 

does not have closed support. (This can be seen from Theorem 3.3, or from 
the definition of closed sets.) Since transition t2 is contained in llx3 II only, t2 

cannot be covered by a minimal closed support T-invariant, which contradicts 
Assumption 3.2. In contrast, the condition of Corollary 1 from Henderson et 
al. [13] is satisfied, also for transition t2 • 

The state space of the routing chain is 

and the solution of the traffic equations (2) is ( up to a multiplicative constant) 
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FIGURE 1. Petri net violating Assumption 3.2 

which shows that the condition of Corollary 1 from Henderson et al. [13] is not 
sufficient for the existence of a positive solution of the traffic equations. D 

We are now able to present a first product form theorem for stochastic Petri 
nets. This theorem is formulated by analogy with similar results for batch 
routing queueing networks, and shows the similarity between stochastic Petri 
nets and batch routing queueing networks at the Markovian level. 

THEOREM 3.9 Assume that an invariant measure y exists to the marking in
dependent traffic equations (2), and a function 'Try : M(m0 ) -+ JR+ such that 
for all n + J(t) E M(m0), t, s ET with p(l(t), I(s)) > 0, 

1ry(n + I(t)) y(I(t)) 
1ry(n + I(s)) y(l(s)) · 

(3) 

Then 1ry(m), m E M(mo), is an invariant measure of the Markov chain Y 
describing the stochastic Petri net. If B-1 = EmEM(mo) 1ry(m) < oo, then 
1r(m) = B1ry(m), m E M(mo), is an equilibrium distribution of the Markov 
chain describing the stochai,tic Petri net. 

The proof of Theorem 3.9 can be found in the literature (Boucherie and van 
Dijk [4], Henderson and Taylor [16]). The key-idea of Theorem 3.9 is that the 
marking independent solution y(·) of the traffic equations is translated into 
a marking dependent solution with the same properties. This is reflected in 
Condition (3). This establishes the product form nature of the equilibrium 
distribution. 
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Note that Condition (3) is a condition on y and not on the structure of the 
Petri net. Furthermore, as is shown in section 4.2, if a solution y( ·) of the traffic 
equations is found, a function 1ry(·) satisfying (3) cannot always be found with
out additional assumptions on the Petri net. We will now provide a structural 
characterisation of the Petri net guaranteeing (3). The rank condition is taken 
from Coleman et al. [7]. The result of this characterisation is that condition 
(3) is satisfied with a function 1ry that is a product over the places of the Petri 
net. 

THEOREM 3.10 Assume that all transitions are covered by minimal closed sup
port T-invariants. Then, with y the invariant measure for the traffic equations, 
1l"y satisfying (3) has the form 

N 

1ry(m) = IT ci(Y)m(i) (4) 
i=l 

if and only if 

Rank(A) = Rank([AIC(y)]), (5) 

where [AIC(y)] is the matrix A augmented with the row C(y), defined as 

In this case the N-vector c(y) = (log ci(Y ), i = 1, ... , N) satisfies the matrix 
equation 

c(y)A + C(y) = 0. (6) 

Observe that the solution y for the state-independent traffic equations is defined 
up to multiplicative factors at the irreducible sets of the routing chain Y at 
state space S only. This cannot give rise to problems in the above theorem, 
since we only use the ratios y(I(t))/y(I(s)), where I(t) and I(s) are in the same 
irreducible set of Y, in the definition of C(y). This quotient is unique at each 
irreducible set, and therefore C(y) is uniquely determined. 

Theorem 3.10 and its proof are taken from Coleman et al. [7]. This theorem 
characterises product forms for stochastic Petri nets based on the incidence 
matrix. The product form ( 4) is of the Jackson-type since it is a product over 
the places similar to the result of Jackson [17]. Note that the Petri nets are 
substantially more complex than Jackson networks. 

Observe that Theorem 3.10 states that a product form solution ( 4) exists 
if and only if the invariant- measure y( •) for the traffic equations is such that 
C(y) is orthogonal to the right null space of A containing all T-invariants. The 
product form distribution ( 4) contains one term for each token in the Petri 
net. Therefore, the only dependence between tokens lies in the normalising 
constant. 

REMARK 3 .11 (GENERALISATIONS) The results of this section can immedi
ately be generalised to also include marking dependent firing rates 
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q(I(t), O(t); m - I(t)) = µ(t) 'ljJ(~(-:n~(t)) p(I(t), O(t)), 

where 'ljJ(m - I(t))/cf>(m) is the marking dependent firing rate. This does not 
affect the analysis as can be seen from the literature on batch routing queue
ing networks (cf. Boucherie and van Dijk [4]: I(t) and O(t) correspond to the 
batches of departing and arriving customers, µ(t)'ljJ(m - I(t))/cf>(m) is the ser
vice rate, and p(I(t), O(t)) is the routing probability for the customers in the 
batch). The equilibrium distribution becomes 

7r(m) = Bcf,(m)7r11 (m). 

The inclusion of a marking dependent part in the firing rates allows for more 
general Petri nets. The structural analysis based on p(l(t), O(t)) is not af
fected, but some marking dependent properties can be modelled using 'ljJ. Fur
thermore, p(l(t), O(t)) can be generalised to a marking dependent function 
p(l(t), O(t); m - I(t)), which allows us to introduce inhibitor arcs in the Petri 
net formalism. The Petri nets obtained via these two generalisations cannot 
be completely characterised at the structural level: some of the transitions 
that are enabled in the net with firing rates µ(t)p(l(t), O(t)) can be excluded 

. in a marking dependent way. Some results in this direction can be found in 
Boucherie and Sereno [5]. □ 

4 EXAMPLES 

In this section we present some examples illustrating the structural character
isation presented above. First, in example 4.1 we present the product form 
results obtained by Lazar and Robertazzi [18]. In example 4.2 we present some 
examples of Petri nets that are covered by closed support T-invariants, but 
with different behaviour: a net that always has a product form equilibrium 
distribution, a net that sometimes has such a distribution, and a net that does 
not have an equilibrium distribution at all. This shows that closed support 
T-invariants can be rather complex, and illustrates the theoretical results of 
section 3. 

4.1 The dual processor system 

The Petri nets discussed by Lazar and Robertazzi [18] are of the form pre
sented here. We will illustrate the framework of Lazar and Robertazzi with an 
example. 

Consider the dual processor system. It consists of two processors sharing a 
single memory. The processors may refer to the shared memory through a bus. 
A processor is allowed to work only if the bus is available (!), hence conflicts 
between the processors occur as only one of the processors may utilize the 
bus. The assumption that the processors are allowed to work only if the bus 
is available is necessary to obtain a product form equilibrium distribution, and 
is reflected in the assumption of Robertazzi and Lazar that a task sequence is 
only allowed to proceed if there is a non-zero probability that it can return to 
its current state without the need for a state change in other task sequences. 
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active 

bus request 

memory write 

Processor 1 Processor 2 Processor 1 Processor 2 
a: original Petri net model b: modified Petri net model 

FIGURE 2. 

The practical consequence of this assumption is that arcs are added in the Petri 
. net of Figure 2a representing the dual processor system without modifications. 
This results in the Petri net of Figure 2b representing the dual processor system 
in which processors can work only when the bus is available. 

The Petri nets of Figure 2 have two T-invariants x 1 = (111000), x 2 = 
(000111). As a consequence of the extra arcs which are added because we 
have assumed that a processor is allowed to work only if the bus is available, 
both T-invariants for the Petri net of Figure 2b are minimal closed support 
T-invariants. Note that the Petri net without the extra arcs has the same two 
minimal support T-invariants. This is an immediate consequence of the fact 
that the extra arcs do not contribute to the incidence matrix A, which shows 
that Assumption 3.2 cannot be verified on the basis of the incidence matrix 
A only, but needs to be verified directly from the input and output functions 
I(·,·) and O(·, ·). 

The transition rates of the Petri net are of the form (1): 

q(l(ti), O(ti); m - I(ti)) = µ(ti), 

for i = 1, ... ,6, such that m - I(ti) E JNS'- In Lazar and Robertazzi [18] 
initially one token is present at places 1, 4 and 7. The equilibrium distribution 
IS 

6 

7r(m) =BIT (1/ µ(ti))m\ m E M(mo), 
i=l 

where the reachability set M(m0 ) is 

M(m0 ) = M(1001001) = {(1001001), (0101001), (0011000), (1000101), 
(0100101),(0010100),(1000101),(1000101)}. 



170 

From Theorem 3.9 we obtain that except for the normalisation constant B, the 
equilibrium distribution has the same form if the assumption of safeness (at 
most one token in each place) made by Lazar and Robertazzi [18] is removed. 
The only difference is the reachability set M(m0). This result shows the power 
of the use of T-invariants in the analysis of Petri nets: the form of the equilib
rium distribution is completely determined by the T-invariants, regardless of 
the shape of the reachability set. 

4.2 Closed support T-invariants 

This example considers three stochastic Petri nets that are covered by closed 
support T-invariants, but with completely different behaviour. The Petri net 
of Figure 3a has a product form equilibrium distribution, the net of Figure 3b 
has a product form equilibrium distribution for a specific choice of the firing 
rates (related to conflicting T-invariants), and the net of Figure 3c may not 
possess an equilibrium distribution (due to a possibly unbounded number of 
tokens). 

Consider the Petri net depicted in Figure 3a. From the incidence matrix 

-1 1 
0 -1 
1 -2 
1 0 
0 0 

we obtain that this net has two minimal support T-invariants x 1 = (10100), 
x 2 = (01111), which are both minimal closed support T-invariants, and two 
minimal support P-invariants y 1 = (11011), y 2 = (20112). Since the T
invariants share I(t1) they are in common input bag relation, which implies 
that the routing chain has one irreducible set: S = {I(t1), I(t3), I(t4), I(t5)} 
(I(t1) = I(t2)). 

Denote µ(t12) = µ(t1) + µ(t2), b = µ(t2)/µ(t12), the probability that tran
sition t2 fires before transition t1 when transitions t1 and t2 are enabled. The 
solution of the traffic equations is (up to normalisation) 

The solution 7ry to (3) is not immediately obvious from these relations, therefore 
we apply Theorem 3.10 to derive this solution. The vector C(y) can be obtained 
from the solution of the traffic equations: 

C(f) = (log [%S13.l)] ,fog [b~f::~)] ,log [~(tt132l] ,log [b:((t:·n ,log [~~!:l]) • 
It can easily be verified that Rank(A) = Rank(AIC(y)) without any conditions 
on the firing rates. The solution c(y) of the system of equations (6) is (we have 
set c1 (y) = c3 (y) = 1 as normalisation) 

µ(t12) bµ(t12) bµ(t12) 
c1(y) = 1, c2(Y) = µ(t3), c3(y) = 1, c4(y) = µ(ts) , cs(Y) = µ(t4 ) 
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FIGURE 3. a. FIGURE 3: b. FIGURE 3: c. 

is a solution to (6), and the equilibrium distribution is (cf. Coleman et al. [7)) 

7r m = (µ(t12))m( 2) (bµ(t12))m( 4) (bµ(t12))m(S) 
y( ) µ(t3) µ(ts) µ(t4) 

is an invariant measure for the Petri net at reachability set 

M(mo) = {m: y 1 • (m - mo) = 0, y 2 • (m - mo) = 0}, 

where • denotes the inner product of the two vectors. 
Consider the Petri net depicted in Figure 3b. This Petri net has incidence 

matrix 

= ( -1 1 -2 2) 
A 1 -1 2 -2 . 

Observe that each transition is covered by the minimal closed support T
invariants x 1 = (1100), x 2 = (0011), but that x 3 = (2001), and x 4 = (0210), 
are also minimal support T-invariants that do not have closed support. 

The routing chain has two irreducible sets S(x1 ) = {I(t1 ), I(t2 )}, and S(x2 ) = 
{I(t3 ),I(t4 )}. Theorem 3.9 implies that the traffic equations have a positive 
solution. This solution is 

y1(J(t2)) µ(t1) y2(J(t4)) µ(t3) 
y1(J(t1)) = µ(t2)' y2(J(t3)) = µ(t4)' 

with corresponding vector C(y) 

C(y) = (log [:H!~l] , log [:$~l] , log [:;f !:l] , log [:;f !:l]) . 
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The matrix [AIC(y)] is 

[AIC(y)] = ( -! -! -; _; ) 
C1 C2 C3 C4 , 

and Rank([AIC(y)]) = Rank(A) = 1 if and only if C1 + C2 = 0, 2C1 - C3 = 0, 
2C1 + C4 = 0, that is if and only if 

If this is the case, the Petri net has an equilibrium distribution 

1r(m) = B (µ(t2))m(1), 
µ(t1) 

at reachability set 

M(mo) = {m: m(l) + m(2) = mo(l) + mo(2)}. 

(7) 

This example provides an interpretation and explanation of the rank con
dition (5) of Theorem 3.10. As can be seen from Figure 3b, for two tokens 
to move from place 1 to place 2 we have two possibilities. In the first case 
(via t1) the tokens jump one after the other, in the second case (via t3) the 
tokens jump simultaneously. The probability flow for these two possibilities 
must be the same. This is reflected in the condition (7) on the firing rates: two 
transitions with rate µ(t1) must be proportional to one transition at rate µ(t3). 

Finally, consider the Petri net of Figure 3c. The Petri net has one T-invariant 
x = (1111) covering all transitions, and x has closed support. From Theorem 
3. 7 we obtain that the traffic equations have a positive solution. This solution 
is ( up to a multiplicative constant) 

y(l(t1)) = l/µ(t1), y(l(t2)) = l/µ(t2), y(I(t3)) = l/µ(t3), 

y(I(t4)) = l/µ(t4), 

and the Petri net has an invariant measure 

From Figure 3c we can see that the number of tokens in the net is unbounded 
(repetitive firing of transitions t1 and t4 increases the number of tokens by 
1), but that for every marking a firing sequence to m 0 = (100) exists. If 
µ(t3)µ(t4) < µ(t1)µ(t2), µ(t3) < µ(t2), µ(t4) < µ(t2) the Petri net has an 
equilibrium distribution 

1r(m) = Bm(m), m E M(mo) = :N~ \ {O}. 
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The combinatorial explosion of the state space of Stochastic Petri Nets 
(SPN) is a well known problem that inhibits the exact solution of large 
SPNs and thus a broad use of this kind of formalism as a modelling tool. 
In this paper we show that the steady state probability distribution of SPNs 
with product form solution can be efficiently computed using an algorithm 
whose space and time complexities are polynomial in the number of places 
and in the number of tokens in the initial marking of the SPN. 
Basic to the derivation of such an algorithm is a product form solution crite
rion proposed by J. Coleman, W. Henderson and P.G. Taylor. The algorithm 
relies on the derivation of a recursive expression of the normalization con
stant that is a generalization of that derived by J.P. Buzen for multiple class 
product form queueing networks with load independent service centers. 

1 INTRODUCTION 
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Stochastic Petri Nets (SPN) are a powerful tool for modelling and evaluat
ing the performance of systems involving concurrency, non determinism and 
synchronization, such as parallel and distributed systems and communication 
networks. 

SPNs have been proven to be equivalent to Continuous Time Markov Chains 
and their steady state analysis can thus be expressed as the solution of a system 
of equilibrium equations, one for each possible marking of their state space. 
The major problem in the computation of performance measures using SPNs is 
thus the size of the reachability set of these models that increases exponentially 
both with the number of tokens in the initial marking and with the number 
of places in the net. As a consequence, except for special classes of models, 
the dimension of this reachability set and the time complexity of the solution 
procedure preclude the exact numerical evaluation of many interesting models. 
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©1993 IEEE. Reprinted, with permission, from Proceedings of the 5th lnt. Workshop on 

Petri Nets and Performance Models, Toulouse (France), October 19-22, 1993, pages 98-107. 
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Recently, certain classes of SPNs have been discovered [9, 10, 11, 13] that 
are characterized by a steady state probability distribution of their markings 
that can be factorized, yielding a so called Product Form Solution (PFS). In 
particular, for the class of SPNs identified with the criterion proposed by Cole
man, Henderson, Lucic and Taylor [9, 10, 11, 6], the factorization contains as 
many terms as there are places in the net. In this case the PFS resembles that 
of a class of Queueing Networks (QN) [12, 8, 2] for which efficient computa
tional algorithms have been derived, making QN models truly effective for the 
performance evaluation of many real systems [4, 16, 15, 3]. 

In this paper we consider this last class of SPN and we derive an efficient 
algorithm for the computation of the PFS that has polynomial time and space 
complexities and that recalls the convolution algorithm derived by Buzen [4] 
for PFS Queueing Networks. 

The balance of the paper is the following : Section 2 presents the necessary 
notation; in Section 3 we briefly introduce the criterion used to identify the SPN 
with PFS that we consider, and we recall the basic results that characterize 
this class of models. Section 4 contains the actual contribution of this paper, 
presenting a set of recursive equations that yield a convolution algorithm to 
compute the normalization constant and several performance measures for this 
class of SPN. Section 5 presents an example of application of this algorithm for 
the evaluation of an interesting model. Finally Section 6 concludes the paper 
outlining possible future works on this topic. 

2 NOTATION AND BASIC DEFINITIONS 

In this section we introduce the notation that will be used throughout the 
whole paper and we list the basic definitions that characterize the Petri Net 
formalism. 

DEFINITION 1 [Stochastic Petri Net] A continuous time Stochastic Petri 
Net can be defined as a six-tuple: 

(P, T,I,O, R,mo), 

where: 

• P = {p1,P2, ... ,PP} is a set of places; 

• T = { t1 , t2 , ..• , tr} is a set of transitions; 

• I, 0 : T x P - JN are the input and output functions, identifying the 
arcs that connect places to transitions and transitions to places; 

• R = {µ(t1), µ(t2), ... , µ(tr)} is a set of firing rates for the exponentially 
distributed transition firing times; 

• mo is the initial marking. 
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From the functions J(., .) and 0(., .) we derive the vectors I(t) = [Ii(t), 
J2 (t), ... , Jp(t)] and O(t) = [O1 (t), O2 (t), ... , Op(t)], 'ef t E T; where Ji(t) = 
J(t,Pi) and Oi(t) = 0(t,pi) 'ef Pi,Pi E P. The vectors I(t) and O(t) 'ef t E 
T, are called input and output bags of transition t. The input bag I(t) of 
transition t gives the enabling condition of t, i.e., a transition t is enabled 
in a given marking m iff m 2: I(t). Any transition t that is enabled in a 
marking m can fire producing a new marking m' = [m'(p1), ... , m'(pp )] where 
m'(pi) = m(pi) - Ji(t) + Oi(t), with 1 :Si :S P (symbolically m[t> m'). 

DEFINITION 2 (Reachability Set] Given a SPN (P, T,I, 0, R, mo), the reach
ability set, [mo >, is defined as follows: 

• m 0 E [mo> 

• if mi E [mo> and 3 t ET: mi[t> mi+l then mi+l E [mo>

DEFINITION 3 [Incidence Matrix] The incidence matrix A is a TxP matrix. 
The entries A[t,p] = I(t,p) - O(t,p), with t E T and p E P, represent the 
change in the number of tokens at place p when transition t fires. 

DEFINITION 4 [S-invariant] AS-invariants is a non negative row vector over 
the places of the net such that A.s = 0. The weighted sum of the number of 
tokens distributed over the places corresponding to non-zero entries of a S
invariant remains constant as the marking process evolves. An invariant s is 
called minimal if there is no other invariant s1 such that s1 :S s (component
wise inequality). All S-invariants can be obtained as linear combinations of 
a set of minimal S-invariants. S is the matrix whose rows are the minimal 
S-invariants. 

DEFINITION 5 [T-invariant] AT-invariant x is a non negative vector over the 

transitions of the net such that AT .x = 0. An invariant x is called minimal if 
there is no other invariant x' such that x' :S x. All T-invariants can be obtained 
as linear combinations of a set of minimal T-invariants. 

Invariants characterize the structural properties of a SPN: T-invariants repre
sent sequences of transitions whose firing may bring the net back to its initial 
state; S-invariants identify bounded SPNs (i.e., SPNs such that the maximum 
number of tokens in their places in any reachable marking is finite) when they 
cover all the places of the nets. There are results showing that any live and 
bounded SPN is covered by T-invariants [17]. In the following we restrict our
selves to nets that are live and bounded. 

3 PRODUCT FORM SOLUTION FOR STOCHASTIC PETRI NETS 

The aim of this section is the definition of the PFS framework in which the 
algorithms for the computation of the solutions will be derived. The PFS 
for SPN criterion considered here is that proposed by Coleman, Henderson, 
Lucic and Taylor [9, 10, 11, 6]. Since our interest is focused on the algorithms 
developed from the PFS concepts (the algorithms will be presented in Section 
4), in this section we only recall the results concerning these models; interested 
readers can find the details of the derivations in the cited references. 
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3.1 The preliminary transformation 

We can assume that there is a one to one correspondence between input bags 
and transitions. Any SPN that does not satisfy this requirement can be modi
fied according to the following definition: 

DEFINITION 6 [Input bag transformation (I-bag)] 
Given a SPN (P, T,I, 0, R, mo), if there are two transitions t', t" E T such 
that I(t') = I(t") with firing rates µ(t') and µ(t"), we amalgamate the transi
tions t' and t" into a single transition t with firing rate µ(t) = µ(t') + µ(t"). 
If O ( t1) and O ( t") are the output bags of t' and t", transition t has two output 
bags: 0 1 (t) = 0(t') and 02(t) = 0(t"). If t fires in a marking m, the next 
marking is m' = m - I(t) + 0i(t) with probability P(I(t), 0i(t)) (j = 1, 2), 

where P(I(t), 01 (t)) = µ(t')~~)(t") and P(I(t), 02(t)) = µ(t0~~~t"). 

Obviously the I-bag transformation can be applied to any set of transitions 
sharing the same input bag. In this case the generalization of the previous def
inition is immediate. Denoting with Bt the number of output bags of transition 
t, we identify with 0j(t) the j-th output bag of transition t, with j = 1, ... , Bt. 
Bis the set of all the output bags of a SPN, with B = IBI = I:tET Bt. Given a 
marking m, we denote with P(I(t), Oj(t)) the probability that the next mark
ing is m' = m - I(t) + 0j(t). 

For any t E T, if there exists an integer j, with j = 1, ... , Bt, such that 
0j(t) = I(s) for a certain transitions ET, we denote the transitions as Ei(t) 
and we write P(t, s) = P(I(t), 0i(t)). 

Remark: Every transition in the original net can be identified with the 
pair input/output bag, hence the original and transformed SPN have the same 
incidence matrix. 

3.2 The routing process 

The main feature of this approach for identifying SPNs with PFS is to consider 
the transitions of the SPN to be themselves states of a Markov Chain, which has 
been called routing process [9]. This interpretation is obtained by considering 
the input and output bags as states of a Markov chain and by finding a one to 
one correspondence between the states of this chain and the set of transitions 
of the SPN that holds under certain conditions. The conditions that a SPN 
has to satisfy in order for this correspondence to exist and that thus represent 
the characterization of the class of SPNs for which this PFS can be found, are 
resumed by the following definition. 

DEFINITION 7 [Structural Conditions] 

1. No two transitions have the same input bag. 

2. For each transition t E T, j = 1, ... , Bt, 0j(t) = I(s) and for some 
transition s E T, we denote the transition s by Ej(t) and we write 
P(t, s) = P(I(t), 0i(t)). 



3. For every transition s ET there must exist a transition t ET and a 
j = 1, ... , Bt, such that I(s) = Oj(t). 
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These conditions allow to identify a discrete time Markov chain on the set 
of transitions of a SPN whose single step transition probabilities are given by 
P(t,s). 

DEFINITION 8 [Routing Chain] The Markov chain with state space T and 
{one step} transition probabilities P(t,s),t,s ET is called routing chain for 
the SP N. We denote the transition matrix of this Markov chain by P. 

The set D of functions d from T to [O,oo) such that d(t)µ(t) is an invariant 
measure for the routing chain, plays an important role in this PFS criterion. 
This set is formally defined as 

D = {d(.), T - [O, oo): µ(t)d(t) = L µ(s)d(s)P(s, t), V t ET}. (1) 
sET 

The authors of this PFS proposal showed that Definition 7 gives necessary 
conditions for the SPN to be such that the set D is not empty. 

It is interesting to observe that the system of linear equations contained 
in (1) is homogeneous and hence admits (if the SPN satisfies the conditions 
of Definition 7) an infinite number of solutions. These solutions differ by a 
multiplicative constant. 

3.3 The Product Form Solution 

The equilibrium distribution for SPNs satisfying the conditions of Definition 7 
is given by the following theorem proven by Henderson, Lucic, and Taylor in 
[9]. 

THEOREM 1 [Product Form Solution] Assume that there exists a function 
d(.) ED and a function h(.) : [mo >- R such that 

h(m + I(t)) d(t) 
-----= 
h(m + I(s)) d(s) 

V s,tET : P(s,t)>O (2) 

Then the equilibrium distribution of the SPN is given by 

1 
7r(m) = G • h(m) mE [mo>, (3) 

where G is a normalization constant. ◊ 

The function h(m) represents the PFS of this type of SPNs. In order to 
obtain computationally efficient algorithms for its evaluation, it is convenient 
that the PFS contains as many terms as there are places or transitions in the 
SPN. In [6] the PFS has been found to be a product over the places of the SPN 
subject to the minimal S-invariants when the following additional condition 
holds. 

Assume that a column vector C(d) is defined in the following manner [6] : 
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log ( d(i(1(i))) 

C(d) = (4) 

l ( d(T) ) og d(Ei(T)) 

( d(T) ) 
log d(EsT(T)) 

for i = 1, ... , Bt, t ET and E;(t) as defined in the conditions of Definition 7. 

THEOREM 2 [Form of h(.); see [61] Let (P,T,I,O,R,mo) be a SPN such 
that V is non empty. The function h(m) required to satisfy Theorem 1 is of 
the form 

h(m) = II fi(dr(i) (5) 
iE'P 

· if and only if 

Rank([A]) = Rank([A I C(d))), (6) 

where [A I C(d)) is the matrix A augmented with the matrix C(d). 
In this case Ji( d), i E 'P, satisfies the matrix equation 

[ 
log (~1 ( d)) ] · 

-A . = C(d). 
log (f p(d)) 

(7) 

◊ 

4 THE NORMALIZATION CONSTANT CALCULUS 

The straightforward computation of the normalization constant G that derives 
from definition (3) 

G= L h(m) 
me[mo> 

is still exponentially complex and a calculus based on relationships among nor
malization constants computed for a smaller set of places of the net is needed 
in order to overcome this problem. In this section we show that indeed inter
esting recursive expressions can be found that yield a convolution algorithm 
that has polynomial complexity in terms of the number of places and of the 
initial marking of the net. 
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4.1 The Reachability Condition 

The major problem in finding the performance indices of a SPN with product 
form equilibrium distribution is the computation of the normalization constant. 
To devise an algorithm for the computation of the PFS for a SPN we first 
restrict the class of nets that we are considering to that for which the following 
reachability condition holds. 

Let S be the matrix whose rows are the minimal S-invariants. 

DEFINITION 9 [Reachability Condition] Given a SPN with initial marking 
mo and the matrix S, a necessary and sufficient condition for the reachability 
of any marking m is 

T T S.m0 = S.m (9) 

With S.m6 we denote the product of S by m6 that gives the initial dis
tribution of tokens for each S-invariant. In the following the vector K, such 

that K = S.m6, is called load vector, while the SPNs satisfying (9) are called 
S-invariant reachable. 

Note that (9) is always necessary for the reachability of a certain marking 
m; in this case we are also requiring that the condition be sufficient. There 
are several classes of SPNs which fall into this category. In particular, Equal 
Conflict systems, that naturally generalize the ordinary subclass of Free Choice 
systems, are S-invariant reachable in some cases (18]. 
Given a S-invariant reachable SPN (P, T, I, 0, R, mo) with load vector K = 
S.m6, the following notation represents an alternative way of denoting the 
reachability set: 

t'(K, P) = { m: S.m T = K} . (10) 

The reachability set of these SPNs can be partitioned according to several 
criteria. The first is that of classifying the markings according to the total 
number of tokens they exhibit for each S-invariant. 

Let Iv= [Jv1 , Jv2 , ... , lvp] be a row vector of P components, with £[m2lv] 
(K, P) we denote the set 

(11) 

where m 2: Iv is a component-wise inequality. 
A second partition of the reachability set is that of grouping together all 

the markings that are characterized by a constant number of tokens in a given 
place. In this case with £[m(p)=ll(K, P), where 1 :S p :S P and l > 0, we denote 
the set 

£[m(p)=1l(K, P) = {m E £(K, P): m(p) = l}. (12) 

From Definition 9 follows the next lemma. 

LEMMA 1 [State Space Lemma] For any S-invariant reachable SPN (P, T, 
I, 0, R, mo) with load vector K = S.m6, the following relations hold: 
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Mx,,(K) 
t: (K, P) = LJ t:fm{p)=il(K, P); (13) 

j=O 

t:(K-S.IvT,P) = 
= { m - Iv: m E £[m;:=,:lvJ(K, P)}; (14) 

t:(K-l·Sp,P-{p}) = 
= { m - l · ep : m E t:fm{p)=IJ (K, P)} ; (15) 

where 

M x (K) = l K[r] J 
P S[r,p] 

is an upper bound for the number of tokens in place p with a load vector K, 
K[r] is the minimum among the components of the K vector corresponding to 
S-invariants that cover place p (with 1 ::; r ::; Q where Q is the number of 
minimal S-invariants), S[r,p] is the entry of the matrix S corresponding to the 
r-th S-invariant and to place p, Sp is the column of the matrix S corresponding 
to place p, Iv is a row vector of P components and l is an integer such that 
0::; l::; Mxp (K). ◊ 

The notation t:(K, P) can be generalized to any subset of places p ~ P and 
any load vector k ::; K as follows: 

t:(k,p) t:(k, p - p) 

{m E t:(k, P): m(p) = 0 \:/ p E p}, 

where p = P - p. 

DEFINITION 10 [Marking Set] Given a S-invariant reachable SPN with a load 
vector k, for any p ~ P, and \:/ p E p, the set 

Mp(k, p) = {i: 3 m E t:(k, p) and m(p) = i} 

is called the marking set of p. 

4.2 The Recursive Expressions 

(16) 

In a SPN satisfying the hypothesis of Theorems 1 and 2 we can express the 
equilibrium distribution as, 

1r(m) = .~ · IT fi(d)m(i), 
iE'P 

(17) 
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and hence, 

G= 
mEe(K,PJ iEP 

The normalization constant depends on the number of places, and on the load 
vector K, through the initial marking mo (recall that K = S.mo)- We can thus 
express this dependency explicitly by defining an auxiliary function g(k, p), 
where k ~Kand p ~ P, as 

ma(k,p) iEp 

from which follows that 

G = g(K,P). 

(18) 

(19) 

The following theorem (adapted from [6]) derives a convolution equation by 
sub-dividing the state space and by conditioning on the number of tokens in 
one particular place. 

THEOREM 3 [Normalization Constant (I)] The following relationship ex
ists between the normalization constant of a PFS S-invariant reachable SPN 
with a set of places P and a load vector K, and the normalization constants 
of SPN with smaller set of places and smaller load vectors. Let be k and p 
respectively a load vector and a subset of places, with k ~ K and p ~ P, we 
have that 

g(k,p)= L fp(d)1g(k-j-Sp,p-{p}) pEp 

jEMp(k,p) 

where 

g(O,p) = 1 

g(k, {p}) = 

g(k,p) = 0 \/ k: £(k,p) = 0. 

Proof: Consider the partitioning of the reachability set £(k, p) given by 

£(k, p) = u 
The auxiliary function can be rewritten in the following manner 

(20) 

(21) 

(22) 

(23) 
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by Condition 15 of Lemma 1 we have that 

L fp(d)ig(k-j. Sp, p- {p}). 
jEMp(k,p) 

When k = 0 the only marking in t'(k, p) is the zero marking. Substituting the 
zero marking in 

g(k,p) = L 
me£(k,p) iEp 

we obtain 
g(O, p) = 1. 

When only place p is left in the sub net it is immediate to derive that 

g(k, {p}) = 

The last boundary condition follows when the load vector k is such that there 
is no marking m in the set t'(k, p). ◊ 

Remark: It must be clear that Theorem 3 is the same as Theorem 4.1 of refer
ence [6]. The reason for including it into this paper is that the introduction of 
an auxiliary function and of a state partitioning makes, in our opinion, the proof 
simpler and provides a direct basis for the derivation of our computationally 
efficient algorithm. 

Equation (20) has the structure of a convolution and this is the reason for 
calling the algorithms derived from equations of this type Convolution Algo
rithms. It is important to note that in the previous theorem we have to com
pute the marking sets Mp(k, p) for each place p E p. Finding these marking 
sets involves the solution of an equal number of systems of linear Diophantine 
equations. In the following we will show how it is possible to use the special 
feature of this kind of SPNs (S-invariant reachable) to make the solution of this. 
problem computationally feasible (and simple). 

THEOREM 4 [Normalization Constant (II)] Given a S-invariant reachable 
SPN with PFS and load vector K. Then the following relationship exists be
tween the normalization constant of a PFS S-invariant reachable SPN with a 
set of places P and a load vector K, and the normalization constants of SPN 
with smaller set of places and smaller load vectors. Let be k and p respectively 
a load vector and a subset of places, with k ~ K and p ~ P, we have that 

g(k, p) = g(k, p - {p}) + fp(d) · g(k - Sp, p). (24) 
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Proof : From Theorem 3 we have that 

L fp(d)j g(k - jSp, p - {p} ). 
jEMp(k,p) 

Let M Xp (k) be an upper bound for the number of tokens in place p with a 
load vector k, we call the set 

candidate marking set of place p, given p and k. Obviously we have that 
Mp(k, p) ~ CMp(k, p). For any i E {CMp(k, p) - Mp(k, p)} we have that 
t'(k - iSp, p) = 0, and hence from (23) it follows that 

g(k, p) 

Mxp(k) 

L fp(d)j g(k - jSp, p - {p}) 
j=O 

Mxp(k) 

= g(k,p-{p})+L fp(d)ig(k-jSp,p-{p}). 
j=l 

Since we have that 

Mxp(k) 

L fp(d)jg(k-jSp,p-{p}) = 
j=l 

Mxp(k) 

= fp(d) L fp(d)i-lg (k- jSp-(j-l)Sp, p-{p}) 
j=l 

Mxp(k)-1 

fp(d) L fp(d)ig(k1 - iSp, p - {p}) 
i=O 

with k 1 = k - Sp, the theorem is proved. ◊ 

This recursive expression for g(k, p), that we believe to be new, provides the 
key for the construction of an algorithm to compute the desired normalization 
constant without having to generate the whole reachability set of the SPN. 

4.3 The Algorithm 

Similarly to what has been done for the convolution method for Product Form 
Queueing Networks [4], the operations of our new algorithm can_ be described 
with the help of a two dimensional "tableau" with as many columns as there are 
places in the SPN and as many rows as there are possible load vectors from an 
empty net to a net with initial marking mo, The first row and the first column 
of the tableau are initialised according to Eq. (21) and (23). The tableau 
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LOAD VECTORS 

k• 1 

0 

0 

0 

kmx 0 

Pl 

1 

PLACES 

Pi-1 PP 

1 1 1 

G = g(kmx,P) 

FIGURE 1. Two dimensional "tableau" for computing the normalization con
stant of a PFS S-invariant reachable SPN. 

is filled column-wise starting from the upper left corner. Figure 1 depicts 
the operations of the convolution algorithm. Let ko, k1, ... , kmx be a load 
vector sequence such that ko = [0, 0, ... , OJ, kmx = K = [K1 , K 2 , ... , KQ] 
(Q is the number of S-invariants). This is the sequence of all load vectors 
k' ~ K. The length of this sequence is I]~1 (Ki + 1). Using Theorems 3 and 
4 we can derive the algorithm. At the step corresponding to the set of places 
{Pl,···,Pj}, the normalization constant g(ki,{P1, ... ,pj}) can be computed 
using Theorem 4, and hence g(ki,{P1, .. ,,pj}) = g(ki,{P1,Pz, .. ,,pj-d) + 
fp;(d) · g(ki - Sp., {P1,P2, ... ,Pi}). 

J 
The time complexity to compute the normalization constant of a PFS SPN 

with a load vector K = [K1, K2 , •.. , KQ] is O(P·mx), where mx = I]~1 (Ki+ 
1) ( Q is the number of S-invariants) and P = IP/. In terms of space the 
complexity is O(mx). 

4.4 Performance Indices using the Normalization Constant 

The previous algorithm can be used to find the normalization constant of any 
S-invariant reachable SPN with PFS. The importance of this method is that the 
computation of the normalization constant allows an easy evaluation of the SPN 
since many performance measures can be expressed in terms of normalization 
constants with smaller set of places and load vectors. In this section we describe 
how to derive relationships for transition throughputs, place utilizations and 
average number of tokens in places. 

LEMMA 2 [Transition Utilization] Given a S-invariant reachable SPN with 
PFS, the steady state probability that a transition t is enabled, given a load 
vector K, is provided by 

(25) 



ALGORITHM FOR COMPUTING THE NORMALIZATION CONSTANT 

f* Input: S,f(.)(d), ko,kt,··•,kmx 
Output: G *f 

(1) begin 
/ * Declarations * / 

(2) g, old_g : array [O, ... , mx] of real 

/ * Initialization * / 
(3) old_g[O] := 1 
( 4) for i := 1 to mx do 
(5) old_g[i] := 0 

(6) for each p E P do 
(7) begin 
(8) g[O] := 1 
(9) for j := 0 to mx do 
(10) begin 
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(11) ind := "index corresponding, in the sequence 
ko,kt, ... ,kmx, to vector load kj - Sp" 

(12) g[j] := old_g[j] + fp(d) · g[ind] 
(13) end 
(14) for j := 0 to mx do 
(15) old_g[j] := g[j] 
(16) end 

(17) G := g[mx] 
(18) end 

FIGURE 2. Algorithm for computing the normalization constant of a PFS 
S-invariant reachable SPN. 

Proof: The steady state probability that a transition t is enabled is given by 

P([t>;K) = n(m) 

from Condition 14 of Lemma 1, it follows that 

P([t>;K) = (; P) II Ji(d)I,(t) L II Ji(d)m, 
g ' i,Ii(t)>o mEt:(K-S.I(t),P) iEP 
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(; P) II fi(d) 1;(t) . g(K - S.I(t), P) 
g ' iE'P 

g(K - S.I(t), P) II fi(d)l;(t) 
g(K, P) iE'P 

where Ji(t) is the i th element of the input bag for transition t. ◊ 

Since all transitions have independent marking firing rates, the utilisation and 
the throughput of a transition t, given a load vector K, are respectively 

Ut(K) = P([t>;K), (26) 

and 

(27) 

LEMMA 3 [Place Utilization] Given a S-invariant reachable SPN with PFS, 
the steady state probability that a place p is not empty, given a load vector K, 
is provided by 

P(m(p) > O· K) = 1- g(K, p - {p}) 
' g(K, P) . 

Proof: The steady state probability that a place p is empty is given by 

P(m(p) = O; K) = 7r(m), 
IDEt:[,n(p)=0l(K, 'P) 

from Condition 15 of Lemma 1 we have that 

1 
P(m(p)=O;K) = g(K,P) L II!i(dri 

IDEt:(K, 'P-{p}) iE'P 

= 
g(K, p - {p}) 

g(K, P) 

◊ 

Remark: Lemma 2 and Lemma 3 were proven in [6]. 

(28) 

LEMMA 4 [Place Marking] Given a S-invariant reachable SPN with PFS, the 
steady state probability that in place p there are l tokens, given a load vector 
K, is provided by 

P( ( ) = l· K) = g(K - l. Sp, p - {p}) · f (d)1 
m P ' g(K, P) P • 

(29) 

Proof: The steady state probability that there are l tokens in place p is given 
by 

P(m(p) = l; K) = 7r(m), 
IDEt:[,n(p)=ll(K,P) 
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from Condition 15 of Lemma 1 we have that 

P(m(p) = l; K) 

g(K - l. Sp, p - {p}) f (d)1 
g(K, P) P . 

◊ 

Let us note that g(K - l • Sp, P - {p}) is the normalization constant of the net 
with the first P - 1 places and a load vector K - l • Sp. 

Theorem 4 gives us an efficient way to compute the distribution of the number 
of tokens in a place only for the place pp ( the last one of the SPN). Moreover if 
we have to compute the distribution of the number of tokens in a place Pi -:/:- pp, 
we can change the order in which places are considered devising the computa
tion of G putting the place Pi in the last position (place re-indexing). However, 
this problem can be solved in a computationally more efficient way by using 
the following inverse convolution algorithm. Let us denote the normalization 
constant g(k - l · Sp, p - {p}) by glPl(k - l · Sp, p), where p ~ P and k :SK. 

LEMMA 5 [Inverse Convolution] The following relationship exists between 
the normalization constant of a PFS S-invariant reachable SPN with a set of 
places P and a load vector K, and the normalization constants of SPN with 
smaller set of places and smaller load vectors. Let be k and p respectively a 
load vector and a subset of places, with k :S K and p ~ P, we have that 

(30) 

Proof: The proof of this lemma follows from Theorem 4. The inverse convo
lution values can be iteratively computed starting with the initial condition 

◊ 

It is important to note that the algorithm for the inverse convolution can be 
numerically unstable. The problem follows from the cancellation error (see [7] 
for details) that may derive from the subtraction in (30) and suggests that 
the use of this expression must be carefully controlled in order to avoid unsafe 
situations in which error becomes predominant [3]. 

Using Lemma 5 we can compute the average number of tokens in a place p: 

Kr 

Li• P(m(p) = i; K) (31) 
i=O 

(32) 

where Kr is the maximum among the components of the load vector K corre
sponding to S-invariants that cover place p. 
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Events Conditions 
Transition Activity Place Condition 

ti First internal activity Pl Server waiting to restart 
the cyclic sequence 

t2 Second internal activity P2 Server waiting to perform 
second internal activity 

t3 Third internal activity p3 Server waiting to perform 
third internal activity 

t4 Server acquisition by p4 First class customer 
a first class customer requesting a service 

t5 Service of a p5 First class customer 
first class customer waiting to be served 

t6 Server acquisition by P6 Second class customer 
a second class customer requesting a service 

t7 Service of a p7 Second class customer 
second class customer waiting to be served 

TABLE 1. Description of the SPN of Figure 3. 

5 NUMERICAL RESULTS 

The following example shows how to use all previous concepts to find the 
equilibrium distribution and some performance indices for a SPN satisfying 
the conditions of Definition 7. 

Example 
Consider a system composed of n servers, q first class customers and r second 

class customers. Each server performs two kinds of activities: A sequence of 
internal activities is started when the server is idle to detect possible faults and 
to repair them if needed; the external activities correspond instead to servicing 
customer requests. External operations are divided into an acquisition phase 
and a service phase. Customers belonging to the first class can be served 
only if there is an available server waiting to restart its cyclic diagnose/repair 
sequence of internal operations. Second class customer requests can be served 
only if there is a server acquired by a first class customer whose service has not 
been started yet. 

Figure 3 shows a SPN that models this system. The servers are represented 
by the tokens in place P1, the tokens in places p4 and p6 represent respec
tively the first and the second class customers. In this SPN is represented the 
system with three internal activities, three servers, two first class customers 
and the second class customer. Table 1 summarizes the correspondence among 
transitions, places and states of the system. 
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Figure 3. Example SPN used as a test case for the algorithm developed in 
Section 4. 

The incidence matrix A and the vector C( d) are given by, 

-1 1 0 0 0 0 0 
0 -1 1 0 0 0 0 
1 0 -1 0 0 0 0 

A= -1 0 0 -1 1 0 0 
1 0 0 1 -1 0 0 
0 0 0 0 -1 -1 1 
0 0 0 0 1 1 -1 

and, 

(5!ill) log d(2) 

(~) log d(3) 

(~) log d(l) 

C(d) = (~) log d(5) 

( ~) log d(4) 

(~) log d(7) 

( ~) log d(6) 
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-Let ci be the ith element of the column vector C(d). The set D, given by (1), 
contains functions d(.) such that 

µ(l)d(l) = 
µ(4)d(4) 

µ(6)d(6) = 

µ(2)d(2) = µ(3)d(3) = a1 

µ(5)d(5) = a2 

µ(7)d(7) = a3 

where a 1, a2, and a 3 are constants; in this case we assume a1 = a2 = a3 = 1 
and hence d(i) = µ(~,), for i = 1, ... , 7. 

The SPN has three S-invariants: [1, 1, 1, 0, 1, 0, 1], [0, 0, 0, 1, 1, 0, 1] and [0, 0, 0, 
0,0, 1, l]. The matrix Sis 

( 
1 1 1 0 1 0 1 ) 

S= 0 0 0 1 1 0 1 . 
0 0 0 0 0 1 1 

The augmented matrix [A I C(d)] is row equivalent to the fully row reduced 
matrix 

0 0 0 0 0 0 0 C1 + C2 + C3 
0 -1 1 0 0 0 0 C2 
1 0 -1 0 0 0 0 C3 
0 0 0 0 0 0 0 C4 + C5 
1 0 0 1 -1 0 0 C5 
0 0 0 0 0 0 0 C5 + C7 
0 0 0 0 1 1 -1 C7 

The three rank conditions are 

C1 + C2 + C3 0 

C4 + C5 0 

C5 +c7 0, 

which after substituting for the c's are translated in conditions on the µ(.)'s. 
In this case they are identities 

µ(t2) µ(t3) µ(t1) 
= 1 

µ(t1) µ(t2) µ(t3) 

µ(ts) µ(t4) 
1 

µ(t4) µ(ts) 

µ(t1) µ(t5) 
1, 

µ(t5) µ(t7) 

and imply that the PFS holds for any possible set of µ(.)'s. 
Letting fi(d} = fs(d) = h(d) = 1 gives, 

h(m) = [µ(t1)] m(2} [µ(t1)] m(3) [µ(ts)] m(4} [µ(7)] m(6} 
µ(t2) µ(t3) µ(t4) µ(6) 
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Let us show now how it is possible to compute some performance indices for 
the SPN of Fig. 3. Assume that the following firing rates are associated with 
the transitions of the net R = {1, 2, 3, 5, 6, 7, 8}. 

Let mo = [3, 0, 0, 2, 0, 1, O] be the initial marking of the SPN; the load vector 
in this case is K = [3, 2, l]. Table 2 corresponds to the "tableau" filled by the 
algorithm of Figure 2. 

Load Vector Pl P2 p3 p4 p5 P6 p7 
[0,0,0] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
[0,0, 1] 0.000 0.000 0.000 0.000 0.000 1.143 1.143 
[O, 1, OJ 0.000 0.000 0.000 1.200 1.200 1.200 1.200 
[O, 1, 1] 0.000 0.000 0.000 0.000 0.000 1.371 1.371 
[O, 2, OJ 0.000 0.000 0.000 1.440 1.440 1.440 1.440 
[O, 2, 1] 0.000 0.000 0.000 0.000 0.000 1.646 1.646 
[1,0,0] 1.000 1.500 1.833 1.833 1.833 1.833 1.833 
[1, 0, 1] 0.000 0.000 0.000 0.000 0.000 2.095 2.095 
[1, 1,0] 0.000 0.000 0.000 2.200 3.200 3.200 3.200 
[1, 1, 1] 0.000 0.000 0.000 0.000 0.000 3.657 4.657 
[1, 2, O] 0.000 . 0.000 0.000 2.640 3.840 3.840 3.840 
[1, 2, 1] 0.000 0.000 0.000 0.000 0.000 4.389 5.589 
[2, 0, O] 1.000 1.750 2.361 2.361 2.361 2.361 2.361 
[2, o, 1] 0.000 0.000 0.000 0.000 0.000 2.698 2.698 
[2, 1, O] 0.000 0.000 0.000 2.833 4.667 4.667 4.667 
[2, 1, 1] 0.000 0.000 0.000 0.000 0.000 5.333 7.167 
[2,2,0] 0.000 0.000 0.000 3.400 6.600 6.600 6.600 
[2, 2, 1] 0.000 0.000 0.000 0.000 0.000 7.543 10.743 
[3,0,0] 1.000 1.875 2.662 2.662 2.662 2.662 2.662 
[3,0, 1] 0.000 0.000 0.000 0.000 0.000 3.042 3.042 
[3, 1, O] 0.000 0.000 0.000 3.194 5.556 5.556 5.556 
[3, 1, lJ 0.000 0.000 0.000 0.000 0.000 6.349 8.710 
[3,2,0] 0.000 0.000 0.000 3.833 8.500 8.500 8.500 
[3, 2, 1] 0.000 0.000 0.000 0.000 0.000 9.714 14.381 

TABLE 2. "Tableau" for the SPN of Fig. 3 up to the load vector K = [3, 2, 1]. 

The normalization constant in this particular case is G = 14.381. The sparse
ness of the "tableau" and the presence of many entries with identical values 
illustrate the behaviour of the algorithm and the peculiarities that distinguish 
SPNs of the type considered in this paper, from multiclass product form queue
ing networks. 

In particular place p1, p2 and p 3 are covered by only one S-invariant and 
the entries of the corresponding columns are obtained by summing the term 
corresponding to the same load vector in the previous column with the term 
corresponding to a load vector with one token less in the first S-invariant. 
The large number of zero entries in the corresponding columns derives from 
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the fact that many load vectors are "unfeasible" when a net comprising only 
these first three places is considered. Place p5 is covered by two S-invariants; 
some of the entries of column "p5 " are identical to those of column "p4": this 
happens when the load vector is such that removing one token both from the 
first and the second S-invariant yields a load vector that is unfeasible. Place 
p7 is covered by all the three S-invariants and the computation of each entry 
of the corresponding column depends on values that are quite distant in the 
tableau. 

After computing the normalization constant tableau, the throughput of all 
the transitions in the net and the average number of tokens in each place have 
been computed using (27) and {31). The results are presented in Table 3. 
The throughputs of transitions t1, t4, and t5 provide the rates with which the 
tests and services for first and second class customers are performed in this 
net. Having computed the average number of tokens in each place, adding up 
the throughputs of all the transitions that have a given place in their input 
bag, and using Little's formula (14], it is possible to obtain the average time 
spent by tokens in that place. Finally, in order to assess the effectiveness of 
the proposed algorithm, the solution of the net has been computed for several 
load vectors ( different initial markings) and the results have been compared 
with those obtained using the package GreatSPN1.5 [5] (when possible). The 
computation time of GreatSPN1.5 and of our new algorithm are reported in 
Table 4 that summarizes the comparisons showing the convenience of using our 
new approach when the SPNs are large. 

K = (3,2, 1] 24 States 
Transition Throughput Place Average numbers 

of tokens 
t1 0.747020 Pl 1.250066 
t2 0.747020 P2 0.484967 
t3 0.747020 p3 0.296423 
t4 2.990066 p4 1.031457 
t5 2.990066 p5 0.644040 
t5 2.596026 P6 0.675497 
t7 2.596026 p7 0.324503 

TABLE 3. Performance Measures for K = (3, 2, 1]. 

All calculations were performed on a SunSparcl ELC workstation with 16 
Mbytes of memory. 

6 CONCLUSIONS 

In this paper we have shown that the steady state probability distribution of 
SPNs with product form solution can be efficiently computed using algorithms 
whose space and time complexities are polynomial in the number of places and 
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Load Vector Convolution GreatSPNl.5 
Columns Time States Time 

[3,2, 1] 24 0.03 24 0.001 
[10,9,8] 990 2.12 987 2.01 

[30,20, 10] 7161 1.93 35101 87.3 
[40,30,20] 26691 7.35 122276 354.9 
[50,40,30] 64821 17.69 --- ---

TABLE 4. Time Comparisons. 

in the initial marking of the SPN. Basic to the derivation of such algorithms is 
a recursive expression of the normalization constant that is a generalization of 
that derived by J.P. Buzen for multiple class product form queueing networks 
with load independent service centers. The main algorithm is characterized 
by two loops, one over the places of the SPN and the other over the feasible 
loadings of the SPN. The maximum loading of the SPN is computed from the 
initial marking using the invariant structure of the SPN. The S-invariants pro
vide also an easily computable upper bound on the number of feasible loadings 
of the SPN. 

The peculiar structure of these new algorithms is based on the constraints 
deriving from the synchronization conditions that are typical of the SPN. 

A numerical example is developed to show the quality of the results that can 
be obtained with this method. The results obtained with the algorithms are 
validated with those provided by the package GreatSPN1.5 [5] using a classical 
Markov chain solution approach. An initial marking is also considered that 
yields a state space whose size exceeds the capability of GreatSPN1.5. 

Several extensions of this work are currently under study. One corresponds 
to the generalization of the criteria used to identify SPNs with PFS in order to 
recognize Generalized Stochastic Petri Nets [1] that enjoy this same product 
form property. Another direction of research consists of using the basic recur
sive results contained in this paper to develop a Mean Value Analysis method 
for SPNs similar to that existing for product form queueing networks [16, 15, 3]. 
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We use operational analysis techniques to partially characterize the behaviour 
of timed Petri nets under very weak assumptions on their timing semantics. 
New operational inequalities are derived that are typical of the presence of 
synchronization and that were therefore not considered in queueing network 
models. We show an interesting application of the operational laws to the 
statement and the efficient solution of problems related to the estimation 
of performance bounds insensitive to the timing probability distributions. 
The results obtained generalize and improve in a clear setting results that 
were derived in the last few years for several different subclasses of timed 
Petri nets. In particular the extension to Well-Formed Coloured nets appears 
straightforward and allows an efficient exploitation of models symmetries. 

1 INTRODUCTION 

Operational analysis is a conceptually very simple way of deriving mathemat
ical equations relating observable quantities in queueing systems [11]. In [10] 
the reader can find some nice examples of how the application of operational 
analysis techniques can help in explaining and proving fundamental results in 
queueing network analysis. Here we apply operational analysis techniques to 
derive linear equations and inequalities relating interesting performance mea
sures in timed Petri net models. The main conceptual difference between queue
ing and Petri net models is the presence of a synchronization primitive in the 

*This work was performed while G. Chiola was visiting the University of Zaragoza, Spain, 
in the framework of the European Grant BRA-QMIPS of CEC DG XIII. 
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©1993 IEEE. Reprinted, with permission, from Proceedings of the 5th Int. Workshop on 
Petri Nets and Performance Models, Toulouse (France), October 19-22, 1993, pages 128-137. 
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latter. Early works on extensions of operational analysis to Petri nets include 
(12], where however synchronization was neglected. New operational inequali
ties are derived here for synchronization elements that have no counterpart in 
operational laws for queueing networks. 

Some classical results of queueing networks were already proven to hold in 
stochastic Petri net models. In this paper we derive, under much weaker con
ditions, a generalization of the classical utilization law for the case of multiply 
enabled transitions and several inequalities that relate throughput, average 
marking, and average transition firing time in case of synchronization transi
tions. All these results are derived for each possible observable sample path. 
Therefore, in order to compare to classical queueing laws stated in a stochastic 
framework, the additional hypothesis of unique limit behaviour for each sample 
path must be assumed. 

In addition to the mathematical interest of these derivations, we propose 
also an application of these results to the computation of performance bounds 
based on linear programming techniques. Such performance bounds are fairly 
inexpensive to compute compared to the cost of discrete event simulation or 
exact Markovian analysis, and moreover provide results that are insensitive of 
the probability distribution of the transition firing times. The linear program
ming problems (LPP's) presented in this paper represent also a generalization 
of some recent results published in (3, 4, 2] since they can be applied to arbi
trary Petri net structures and reduce to the previous ones when the Petri net 
structure satisfies some particular constraints. 

The paper is organized as follows. Section 2 presents the operational anal
ysis of timed Petri nets and the derivation of the main equations. Section 
3 shows the application of the operational laws, also considering the case of 
Well-Formed Coloured nets, to the statement of LPP's for the computation of 
performance bounds depending only on the average transition firing times, the 
structure, and the initial marking of the net. Section 4 provides an example of 
computation of such bounds in the case of a Coloured Well-Formed timed Petri 
net model. Finally, Section 5 contains some concluding remarks and ideas for 
future research on the topics. 

2 OBSERVABLE QUANTITIES AND OPERATIONAL LAWS 

In this section we start by defining measurable quantities that characterize the 
state and the behaviour in time of a Petri net model. Then we derive and 
prove in a very simple and direct way some fundamental relations that hold 
true "operationally" among them, i.e. that are verified in any sample path that 
one can measure in an exp~riment. 

We assume the reader to be familiar with the Petri net formalism and no
tation. We refer to (13] or (15] for an introduction to Petri nets and most of 
their behavioural properties and analysis techniques. We also refer to (1] for a 
detailed discussion of different timing semantics and related operation mech
anisms. We just resume here the notation conventions that are used in the 
following of this paper. 
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N = (P, T, W, M0 ) is a net system, where P is the set of places, T is the 
set of transitions, W : P x T U T x P - IN is the incidence function, and Mo 
is the initial marking (in general, a marking is M : P - IN, and Vpi E P, 
M[pi] is the number of tokens in Pi)- The input (output) set of x E PUT is 
•x = {y E PUT I W(y,x) ~ 1} (x• = {y E PUT I W(x,y) ~ 1}). 

2.1 Basic operational quantities 

Assume that a generic timed Petri net is available for measurement, and that 
the following quantities can be collected during an experiment, starting at time 
T = 0 and ending at time T = 0 > 0, at which all transitions have been fired 
at least once. The total number of transitions firings during the experiment is 
assumed finite. 

Instantaneous marking: Vpk E P, Vr: 0 :ST :S 0, M[pk](r) represents the 
number of tokens in place Pk at time r. 

Average marking during the experiment interval: 

Instantaneous enabling degree: Vti ET, Vr : 0 :ST :S 0, ei(r) represents 
the internal concurrency of transition ti at time r, i.e. 

ei(r) = max{k E IN: Vp E •ti, M[p](r) ~ k W(p, ti)} 

The following relation holds by definitions: 

Vti ET, Vr, . lM[p](r)J ei(r) = mm W( ) 
pE •t; P, ti 

(where Va E IR, LaJ denotes the largest integer not greater than a). 

(1) 

Average enabling degree: Vti E T, ei(0) = ½ J: ei(r)dr represents the 
average number of servers active in transition ti during the experiment interval. 

Since we use an "infinite-server" semantics for transition enabling, we need 
to consider the activities of the different servers in a given transition ti indepen
dently. Without loss of generality we assume an ordering of the servers asso
ciated with transitions such that busy servers always come before idle servers, 
i.e., at any point in time 7 the first ei(r) servers are active inside transition ti, 
while the remaining ones are idle. 

Under this assumption we can define the: 

Number of firings completed by the j-th server in ti from time O up 
to time 0, denoted Fi,j(0). 
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Total number of firings of ti during the experiment interval 

00 

Fi(0) = L Fi,;(0) 
j=l 

(by assumptions, 0 < Fi(0) < oo). 

Throughput ofti Xi(0) = F,~ 9) that represents the average number of firings 
completed per time unit. 

2.2 Conflict-free nets 
In case of nets without conflicts one can easily define the average service time 
of transitions as a function of the busy times of all servers. In particular we 
define: 

Instantaneous enabling of j-th server in ti 

ei,;(r) = if ei(r) ?. j then 1 else 0 

· characteristic function that evaluates to 1 if and only if the j-th server in tran
sition ti is busy at timer. 

Busy time for the j-th server of ti 0i,;(0) = J: ei,;(r)dr 

Service time for the j-th server of ti Si,;(0) = ~-d~~~ .. , 
A , , _ ( ) I:':° 1 8;,;(8) 

verage service time for ti Si 0 = '.E& .. ( ) 
;=i F,,, 8 

The following equation holds for any measurement experiment: 

Enabling operational law 

(2) 

I:00 F.· ·(8) 
Proof: By definition Xi(0) = ;-i9 '·' . 

then multiplying and dividing by I::,1 0i,;(0) and recalling the definition of 
Si(0) we obtain: 

and then substituting the definition of 0i,;(0) and exchanging the integral and 
the sum signs: 
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1 /0 oo 
'vti ET, xi(0)Si(0) = O }o I>i,j(r)dr 

0 j=l 

Now it is trivial to identify the integrand to be the instantaneous enabling 
degree ei(r), so that the result follows. Q.E.D. 

The above enabling law is the well-known "utilization law" derived in the 
framework of multiple server queues. From the enabling law it follows that if the 
average firing time of a transition is known, then its throughput is proportional 
to its average enabling degree. Of course in case of immediate transitions 
Si(0) = 0, so immediate transitions are never enabled for non-null intervals of 
time. 

We are now in a position to state our synchronization inequalities that relate 
the throughput and the average marking of the input places for any transition. 

Upper bound inequality. 'vti ET, 

(3) 

The inequality becomes an equality whenever I:PE •t; W(p, ti) = l. 

Proof: We start from Equation (1) that is valid in each instant of the experi

ment. Of course this implies that 'vpk E •ti, 'vr : 0 ST S 0, ei(r) S ~~1;,1:1.\:?-
Therefore 'vpk E •ti, ei(0) S ~[~:1,~~l, and applying the enabling operational 
law the result follows. Q.E.D. 

This inequality establishes an upper bound for the average enabling (hence 
for the transition throughput once the service time is defined) in the case of 
transitions with more than one input place that model a synchronization. In 
the following we derive other inequalities that establish lower bounds as well. 
We shall see that in the particular case of transitions with a single input place 
the two inequalities reduce to a single equality. 

Lower bound inequality for single input arc (W(p, ti) > 1). 'vti E T 
•ti = {p}, 

Xi(0) Si(0) > M[p](0) - W(p, ti) + 1 
W(p, ti) 

(4) 

Notice that in case W(p, ti) = 1 this reduces to Xi(0) Si(0) 2: M[p](0), that 
combined with the upper bound inequality (3) reduces to the equation 
Xi(0) Si(0) = M[p](0). 

Proof: First define some auxiliary punctual marking functions: 

'vp E P, 'vr, Mv[p](r) 

'vp E P, 'vr, Mt[p](r) 

max(0,M[p](r) -v) 

M 1[p](r) - Mu[p](r) 
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Consider now the following properties of the auxiliary function Vk E JN : k > 0, 

0 $ Mk:~l{w-l[p](r) $ w 

Moreover, notice that the k-th server in transition ti is enabled if and only if 
M~:~1w-l [p](r) ~ 1 in case w = W(p, ti)- Therefore we can conclude that: 

Vti ET : •ti = {p}, Vk ~ 1, Vr, 

ei,k(T) ~ 1 M(k+l)W(p,t;)-l[p](r) 
W(p, ti) kW(p,t;)-l 

Hence we derive: Vti ET : •ti = {p}, 

\;j (- ) > 1 "00 M(k+I)W(p,t;)-l [p]( ) _ 
T, ei T - W(p,t;) L.k=l kW(p,t;)-l T -

_ M[pj(r)-W(p,t;}+l 
- W(p,t;) 

Finally, taking the average over the experiment interval and applying the en
abling law, the result follows. Q.E.D. 

Observe that in the case that the right-hand expression in (4) is negative, a 
trivial inequality can be used: xi(0)Si(0) ~ 0. 

Improvement for bounded nets: Vti ET : •ti = {p}, ifVr, M[p](r) $ Bp 

and Wip = W(p, ti) and 3k E JN : Wipk $ Bp < (k + l)wip 

Xi(0) Si(0) ~ k M[p](0) - Wipk + 1 
Bp -Wipk + 1 

Proof: Firstly note that Vti ET, Vj E JN 

_ (0) > . _ (0) . 0i,j(0) ei _ J ei,j = J - 0-

(5) 

Secondly, note that the marking in the input place p can be expressed as the 
sum of two components: 

00 

Vr, M[p](r) = Wip I>i,j(r) + N[p](r) 
j=l 

where the component N[p](r) $ Wip -1 represents the portion of marking not 
used to enable the transition. Now taking the integral and dividing by 0 one 
obtains: 

M[p](0) = wip ei(0) + N[p](0) 

This equation shows that tlie average enabling depends only on the mean values 
of the input place marking and of the unused portion of the marking. 
The worst case from the point of view of enabling the transition k times occurs 
when the place is marked with Wipk - 1 tokens most of the time and with Bp 

tokens for the rest of the time, since this case maximizes the unused portion of 
the average marking in the input place. From these considerations the result 
follows. Q.E.D. 
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Lower bound inequality for binary synchronization with ordinary arcs. 
Vti ET : •ti = {p1,P2} and W(p1, ti) = W(p2, ti) = 1, if M[p1](r) :s; B1 and 
M[p2](r) :s; B2 and B1 :s; B2 then 

- - B1 -
Xi(0) Si(0) 2:: M[pi](0) + B2 M[p2](0) - B1 (6) 

Proof: Similarly to the previous case we can write two equations relating 
the average marking, the average enabling, and the average portion of unused 
marking for each of the two input places: 

ei(0) = M[pi](0) - N[p1](0) 

ei(0) M[p2](0) - N[p2](0) 

Now we can compute upper bounds on the unused part of the marking as 
follows. The maximum fraction of time during which N[p1]( r) may be greater 
than zero is equal to the minimum time during which M[p2](r) = 0 (otherwise 
the transition would be enabled and the marking of p1 would contribute to the 
enabling instead); since place P2 is B2 bounded, this fraction of time is less than 

or equal to 1 - M[~;(O); moreover during this maximum time, the maximum 
value of the marking in p1 is less than or equal to B1. Hence 

and from this the result follows trivially. Q.E.D. 

A general lower bound for bounded nets: Vti ET •ti = {p1,P2, ... ,Pn}, 
Vj :s; n, M[pi](r) :s; Bj and B1 :s; Bi 

x·(O) S·(O) > M[p1](0) - W(p1, ti) + 1- B1 max(fi) 
' ' - W(p1,ti) · 

(7) 

where 'r:/3" : 2 < 1· < n f· = 1 - M[p;](0)-W(p,,t,)+1 
- - ' J B;-W(p;,t,)+1 

Proof: Similar to the previous ones writing the upper bound for the quantity 
N[p1](0). Q.E.D. 

2.3 General nets with conflicts 

In the general case in which transitions may be enabled in conflict the defini
tions of service time and average enabling degree must be modified in order to 
take the possibility of preemption into account. In the literature two types of 
timed Petri net semantics have been proposed: race and preselection conflict 
resolution policies [l]. According to the race policy all enabled transitions start 
working, and the first one that completes its firing time seizes the tokens from 
the input places, thus possibly preempting other transitions. Instead, the pre
selection policy requires that conflicts be solved at the enabling time instant, 
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so that only selected transitions put their servers to work and fire for sure after 
the elapsing of their firing time. In any case the same kind of results can be 
derived. 

Conditional instantaneous enabling of j-th server in ti: 

e~,;(r) = if "ei(r) ~ j and the enabling is not 
preempted" then 1 else 0, 

characteristic function that evaluates to 1 if and only if the j-th server in transi
tion ti is busy at timer and its work will not be wasted due to the preemption 
from a conflicting transition. Of course e~,;(r) ~ ei,;(r) by definition. 

Useful busy time for the j-th server of ti 0~,; ( 0) = J: e~,j ( 'T )dr 

Useful service time for the j-th server of ti 

. Useful average service time for transition ti 

The enabling operational law is extended as: 

S( -(0) = 9:.;(9) •,J F;,;(/1) 

(8) 

and the proof is similar to the one shown above. From the comparison with 
Equation 2 it also follows that 8' i ( 0) ~ Si ( 0) independently of the probability 
distribution of the firing time processes. 

Equation (1) however becomes an inequality in case of nets with conflicting 
transitions: 

e~(r) < min (M[pk](r)) 
• - PkE •t; W(pk, ti) 

(9) 

The upper bound inequality (3) still holds in this more general setting by just 
substituting SL(0) for Si,;(0). 

2.3.1 Race versus preselection policy 

The quantities e\(0) and 8'i(0) are in general measurable from an off-line. 
processing of an experiment record without any further assumption. 

Using the preselection policy, the useful service time of a transition is exactly 
the transition firing time. This allows one to derive an improved version of the 
upper bound inequality: 'r/pk E P, 

L (W(pk, ti) Xi(0) Si(0)) < M[pk](0) (10) 
t,ev: 
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In the case of race policy, instead, the useful average service time S\(0) 
might be strictly less than the nominal transition firing times due to the effect 
of preemption from conflicting transitions. Inequality (10) holds true in a race 
policy model only if all transitions that are output for place Pk are behaviourally 
persistent (i.e. their enabling is mutually exclusive). In other words, only the 
following modified version of inequality (3) holds true for behaviourally con
flicting timed transitions with race policy: 

xi(0) S'i(0) ~ min (M[pk](e)) 
PkE •t; W(pk, ti) 

(11) 

For what concerns the synchronization lower bounds, inequalities ( 4-7) in 
general apply only to persistent or immediate transitions (in the latter case 
Si= S'i = 0). The case of conflicting transitions with preselection policy may 
be treated by net transformation as follows, while for the case of conflicting 
timed transitions with race policy no synchronization lower bound inequality 
applies. 

Consider transition ti timed, potentially in conflict with other timed transi
tions and with preselection conflict resolution policy. Split ti in two transitions 
t~ and t~' and add a new place p~ such that Vp E P W(p, t~) = W(p, ti) and 
Vp E P W(t~',p,) = W(ti,P) and W(t~,PD = W(p~, t~') = 1 and t~ is imme
diate and s~,, = Si. In the transformed net t~' is persistent with single input 
arc (by construction), so that Inequality ( 4) applies. Transition t~ is instead 
immediate, so that a subset of inequalities (4-7) applies even in presence of 
conflict. 

3 PERFORMANCE BOUNDS BASED ON OPERATIONAL LAWS 

The inequalities that we derived in the previous section can be used to compute 
upper and lower bounds for the throughput of transitions or for the average 
marking of places for general timed Petri nets using linear programming tech
niques. The idea is to compute vectors M and x that maximize or minimize 
the throughput of a transition or the average marking of a place among those 
verifying the previous operational laws and other linear constraints that can 
be easily derived from the net structure. 

A first set of linear equality constraints can be derived from the fact that the 
vector Mis an average weight ofreachable markings: M = '2::MrERS(Mo) f3rMr. 
Since for each reachable marking Mr = Mo+ C · ifr, we obtain that also the 
average marking must satisfy the same linear equation: 

M = M0 +c .if (12) 

where if= I:MrERS(Mo) f3rifr. 
The following set of linear inequalities imposes that for each place the token 

flow out is less than or equal to the token flow in: Vpk E P, 

(13) 
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· If place Pk is known to be bounded, then the above inequality becomes an 
equality which represents the classical flow balance equation: C[pk] · x = 0. 

On the other hand, for each pair of transitions ti, ti in (behavioural) free 
conflict (i.e., such that they are always simultaneously enabled or disabled) the 
following equation is verified: 

(14) 

where ai, O.j are the routing rates that define the resolution of the conflict 
between ti and ti. 

Additionally, most of the operational inequality laws that were derived in the 
previous section linearly relate the average marking of places with the through
put of their output transitions. Hence they can be considered as constraints 
for an LPP. 

3.1 Extension to TWN's 

For timed Well-Formed Coloured nets (TWN's) [8] it is possible to derive, 
directly from the inequalities developed in the previous sections, operational 
relations allowing an. efficient computation of performance bounds. Given a 
TWN, the basic idea is to consider the corresponding unfolded net and to 
apply the relations developed in the previous sections. The relations for the 
TWN are then obtained combining the partial results for the unfolded one. 

A fundamental property that TWN's must have in order to be able to com
bine the results for the unfolded one is the symmetry, meaning that in the 
unfolded nets obtained from the Well-Formed ones all colour instances of a 
given place and of a given transition must be equivalent. To be more precise, 
if a transition t has average service time St, then all of its instances have the 
same average service time. Moreover if a place p is bounded, then we assume 
that the maximum number of tokens that each of its instances can contain is 
the same. 

In the rest of this section we show, as an example, the derivation of lower 
bound inequality for single input arc for TWN's. More details on the deriva
tions can be found in [7]. 

3.1.1 Notation 

In this section we give some notations used in the derivations of relations for 
TWN's ([8]). 

Generic function f = L1=l Fi, where Fi is the jlh tuple and its arity l 
is given by the number of colour classes composing the colour domain of the 
place. This definition of function is slightly different from the classical one, 
since here we allow linear combinations only outside the tuples (i.e. each tuple 
is composed only by elementary functions). For example the function 
F =< S - x,y > is written as F' =< S,y > - < x,y >. 
Cardinality of function 111= L1=1 I Fj I, where I Fj I= O.j X rr!=l I (Fj)i I is 
the cardinality of the jlh tuple. The coefficient O.j denotes the product of the 
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coefficients of the elementary functions composing the tuple and (Fj )i is the 
ith function of the ih tuple. For example if Fj =< 3x, 2y >, then O:j = 6. 
Family of arcs Each tuple Fj of a function f identifies a set of arcs ( with 

weight O:j), whose cardinality is A(Fj) = rt=l l(Fj)hl- The global number of 

arcs corresponding to function f is A(J) = L~=l A(Fj), where each A(Fj) has 
the sign of the corresponding tuple Fj. When A(J) = 1, then we denote as 0:1 
the weights associated to the unique family of arcs corresponding to f. 
Input and Output relations If t is an input transition of place p (with 

function J), then I N(p, t) = ~f;~I A(j) is the number of input instances of t 
for each instance of p. Similarly if t is an output transition of place p, then 
OUT(p, t) = · ~f;~I A(J) is the number of output instances oft for each instance 
of p. 

3.1. 2 Lower bound inequality for single input arc 

To apply this inequality to an unfolded net, the conditions for its applicability 
must be met for all transition instances. This means that each instance ti 
of a coloured transition t must have only one input place. This condition is 
met if the function f labelling the arc contains only projection and successor 
elementary functions (that is A(J) = 1). 
Inequality for single input arc 

\:/tET: •t={p},W-(p,t)=f, A(J)=l 

o:1xtSt ~ OUT(p,t)M[p]- IC(t)I (0:1 -1) 

Proof: Assume to have a portion of a TWN containing transition t and its 
input place p and that I C(t) I= n and I C(p) I= m. Considering then instances 
of t we can write the following set of inequalities 

where Pt, is the unique input place of transition instance ti. Summing the 
left-hand sides and the right-hand sides of the above inequalities we obtain: 

n 

o:1xtSt ~ (I: M[pt.l- I C(t) I (0:1 - 1)) (15) 
i=l 

Since each instance of p appears exactly OUT(p, t) times in the summation of 
the above expression we can rewrite inequality (15) as 

.m 

o:1xtSt ~ (OUT(p,t) I:M[pi]- IC(t)I (0:1 -1)) (16) 
i=l 

and the result follows. Q.E.D. 
In a similar way it is possible to derive, for TWN's, the equivalent of relations 
devised for timed Petri nets. 
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9.2 LPP formulation 
Performance bounds for TWN's can be computed solving the LPP of table 1 
(whose constraints are the relations derived in the previous sections) where / 
is a linear function of M and x. The linear programming problem for bounds 
computation for non coloured timed Petri nets can be obtained from that of 
table 1 setting OUT(p, t) =I C(p) l=I C(t) I= 1, \/p E P, t E T and observing 
that condition A(!) = 1 always holds true. 

maximi■e (or minimi■ej /(14, Z) 

"1[pJ = Mo[P) + L If; I "•; - L I g; I "";; 

t,e •,, 1c;ep• 

L lf;l"t; ~ L lg;l"1o;; 

i,e •,, •;e,,• 

L lf;I .. ,; = L lg;I "";; 

t,e •,, 
*i z; -=-, a:, °'j 
If I ,,.,s, :S OUT(p, t)"1[p] 

. "'f"tSt ~ OUT(p, t)"1[p)- 1-C(t)I (al - 1) 

.. ,s, ~ k OUT(p,t)"1[p)+ IC(t)I (1- ,..,.,> 
OUT(p, t)+ I C(t) I (1 - ka f) 

"tSt ~ OUT(p, t)("1[p) + Bp "1[q) - Bp) 
Bq 

subject to 

(c3) 't'ti, t; ET: behaviourally free choice 

(c4) VtET,VpE •t:W-(p,t)=f 
(c5) Vt ET peraiatent or immediate •t = {p}, 

w-(p,t) = f, A(f) = 1 

( c~) 'v't E T persistent or immediate • t = {p} 1 

w-(p, t) = f, A(f) = 1 
/\lo E IN : loaf $ Bp $ (lo+ l)a f 

(c5) Vt ET peraiatent or immediate: •t = {p, q}, 

W(p, t) = ,. W(q, t) = g, A(f) = A(g) = 1, I/ l=I gl= 1 
a f"tSt ~ OUT(p, t)"1[p)+ I C(t) I (1 - a f )+ (c~) Vt E T peraiatent or immediate : •t = {p, q}, 

( 
OUT(q,t)"1[q)+IC'(tHl-a ) ) 

-OUT(p, t)Bp • I C(t) I - OUT(q,t)Bq+ld(tHl-ag~ Bp :S Bq, W(p, t) = f, W(q, t) = g, A(f) = A(g) = 1 

°'l"tSt ~ OUT(pl, t)"1[pl)- IC(t)I (-a1 + l)+ (c7) Vt ET persistent or immediate: 
-OUT(pl,t)Bpt max /j •t={pl, ... ,pn},Bpt ~Bp;,JE{2, ... ,n}, 

1:5;:5n. 
. _ l _ OUT(pj,t)"1[piJ+IC'(pi~(-a;+1) 

1:, - Bp; /lci(Pil-a; +1 
M,ar,a > o 

W(pi, t) = f;, A(/1) = 1 

(c ) 

TABLE 1. Linear programming problem. 

The average marking equation is written here in explicit form, but it could 
be written also in matricial form. Moreover relation ( c7) has been derived for 
TWN's under the hypothesis of strong symmetries. In particular we assumed 
that, for each input place of transition t in inequality ( c7), the weights of the' 
arcs belonging to the families corresponding to the function labelling the arc 
are the same. Obviously the uncoloured version of ( c7) has no such restriction. 

As we remarked in the case of timed Petri nets, also for TWN's constraint ( c2 ) 

becomes an equality for bounded places ( c;). The equality sign also holds true 
in (c4) if a, = 1 (i.e. the unique family of arcs corresponding to function/ have 
weight 1) since in this case it may be combined with the opposite inequality (c5). 

For the case of places with several output conflicting transitions, inequality 
(10) derived in previous section (or its coloured counterpart) can be added if 
preselection policy is assumed for the resolution of the conflict. The constraint 
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labelled with (cs) can be improved if the input place to ti is bounded, by 
introducing the additional constraint (c~). 

The LPP of table 1 provides a general method to compute upper and lower 
bounds for arbitrary linear functions of average marking of places and through
put of transitions. For instance, if J(M, x) = xi, then the problem can be used 
to compute an upper or a lower bound (depending on the selection of "max" or 
"min" optimization for the objective function) for the throughput of transition 
ti. In an analogous way, upper or lower bounds for the average marking of a 
given place Pi can be derived by solving the LPP of table 1 for the objective 
function J(M, x) = M[pj]- The bounds are insensitive to the timing proba
bility distributions since they are based only on the knowledge of the average 
service times. 

Notice also that most equalities and inequalities contain coefficients that 
depend only on the net structure and on the (known) average transition firing 
times (and probabilities in case of free choice immediate conflicts). The only 
coefficients that may be unknown at the time of the formulation of the model 
are the actual bounds for places Bi, If the modeller has no a-priori more 
precise knowledge of these bounds, notice that an upper bound for them that 
can be used in the LPP of table 1 may be computed from a simplified LPP 

· that contains only constraint c1 (structural marking bound). 
An improvement of the proposed bounds can be obtained if additional con

straints that improve the linear characterization of the average marking in 
terms of the equation M = Mo + C · if are considered. For instance, if a trap 
PT (i.e., PT ~ P, P,;. ~ •PT) is not a P-semiflow, the net is live, and we are in
terested only in the steady state performance, then we can add the constraint: 

LpkEPT M[pk] 2:: 1. 
Similarly, if a siphon Ps (Ps ~ P, • Ps ~ P!,) is not a P-semiflow and the 

net is live, then we can add the constraint: LpkEPs M[pk] 2'. 1. 
The systematic method for the improvement of linear characterization of 

reachable markings based on the addition of implicit places, presented in [9], 
can be also applied as in [5]. 

We remark that linear programming problems can be solved in polynomial 
time [14], therefore the above presented method for the computation of (upper 
and lower) bounds for the throughput and for the average marking of general 
timed nets has a polynomial complexity on the number of nodes of the net. 
Moreover, the simplex method for the resolution of LPP's proceeds in linear 
time in most cases even if it has a theoretically exponential complexity. 

Similar results, based on linear programming techniques, were presented in 
previous works [3, 4, 2] for the computation of throughput upper bounds for 
particular net subclasses, such as marked graphs or free choice nets. The new 
approach derived in this section generalizes those recent results in two ways: 
first, it can be applied to arbitrary Petri net structures; second, it allows one 
to compute upper and lower bounds for throughput and average marking in a 
simple and unified way. The proposed method produces the same results as 
previous ones [3, 4, 2] when the same net subclasses are considered. 
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ExtBus 

FIGURE 1. TWN model of a shared-memory multiprocessor. 

4 AN EXAMPLE OF. APPLICATION 

Let us present an example of application for the computation of bounds in the 
case of the TWN of figure 1. The architecture comprises a set of processing 
modules interconnected by a common bus called the "external bus". A proces
sor can access its own memory module directly from its private bus through 
one port, or it can access non-local shared-memory modules by means of the 
external bus. In case of contention for the access to one shared-memory mod
ule, preemptive priority is given to external access through the external bus 
with respect to the accesses from the local processor. The experiments on the 
shared-memory model have been carried out assuming to have 4 processors and 
that the average service time of all the transitions are equal to 0.5. According 
to the arguments presented in the previous sections, bounds can be computed 
solving LPP's with constraints included in table 2, where the first letters of 
each transition name have been used for reasons of space. The solution for the 
LPP leads to upper and lower bounds, for the throughput of transitions, given 
by 181 ~ Xe_e_a ~ 2, while the "exact" solution with exponential distribution is 
Xe_e_a = 1.71999. An improvement in the lower bound can be obtained observ
ing that when a token arrives in place Choice transition choose_m is enabled at 
least for one transition instance. This implies that the average marking of place 
Choice is equal to O (transition choose_m is immediate), so M[Choice] = 0 and 
Bchoice = 0 (only tangible markings are considered) can be added to the set of 
constraints. Moreover place Memory is implicit w.r.t. the enabling of transition 
b_exLacc, so we can consider this transition as having only two input places, so 
constraint ( c5) can be applied instead of constraint ( c7). Finally BQueue = 3 
can be added since the output transition of place Queue is immediate, and from 
the behaviour of the model it is clear that at most 3 processors can be waiting 
in the queue. The relations ( c7) in the above LPP can thus be replaced with 



(ci) M[Active] = 4 + ae_e_a + ae_o_a+ 
-c;r_e_a - (J'b_o_a; 
M[Memory] = 4 + ae_e_a - (J'b_e_a; 
M[OwnM emAcc] = (J'b_o_a - ae_o_a; 
M[Queue) = c;r_e_a - (J'b_e_a; 
M[Choice] = (J'b_e_a - ac_m; 
M[ExtMemAcc] = ac_m - ae_e_a; 
M[ExtBus] = 1 + ae_e_a - (J'b_e_a; 

(c~) Xe_e_a + Xe_o_a = Xr_e_a + Xb __ o_a; 
Xb_e_a = Xc_m = Xe_e_a = Xr_e_a; 

(ea) 

Xb_o_a = Xr_e_a; 
X S _ M[Active]. b_o_a b_o_a - 2 , 

X S _ M[Active]. 
r_e_a r_e_a - 2 , 

Xe_e_aSe_e_a = M[ExtM emAcc]; 
Xe_o_aSe_o_a ::; M[OwnM emAcc]; 
Xe_0 _aSe_0 _a ::; M[M emory]; 
Xe_o_aSe_o_a ~ M[OwnMemAcc]+ 
+BownMcrnd<<M[Memory] - BM • 

BMemory emory, 

4(M[ExtBus]-BEmtBus(l- "!,[Memory] )):s;o 
Memory 

4(M[ExtBus]-BEmtBus(l- "!,[Queue] )):s;O; 
Queue 

TABLE 2. Constraints for the model in figure 1. 

the new constraint: 

- BExtBus -
4(M[ExtBus] + B M[Queue] - BExtBus) ::; 0 

Queue 
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where BQueue = 3. Solving this reduced linear programming problem the values 
obtained for the upper and lower bounds are: 

5 CONCLUSIONS 

Operational analysis of timed Petri net models has been introduced. In particu
lar, we have defined adequate observable quantities that allow the derivation of 
fundamental relations among them. These relations hold true "operationally," 
i.e., in each sample path that one can measure in an experiment. Among these 
relations the enabling operational law constitutes a restatement of the classical 
utilization law ( derived in the framework of multiple server queues) for each 
timed transition of a general Petri net model with infinite server semantics. 
Bounding inequalities in both directions between throughput of a transition 
and average marking of its input places have also been derived. These re
sults are typical on network models containing synchronization, and represent 
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a novel result of operational analysis. Under the hypothesis of strong symme
tries, analogous relations have been derived for Timed Well-Formed nets. 

A direct and interesting application of the obtained operational laws is the 
computation of performance bounds insensitive to the timing probability dis
tributions. Indeed the bounding technique proposed in this paper guarantees 
that the exact value of a given performance index falls in the computed interval, 
whatever its probability distributions is. In this sense this bound technique is 
substantially more robust with respect to practical application than any perfor
mance evaluation technique based on Markovian analysis or simulation (where 
in any case some hypothesis on the timing distribution must be introduced in 
order to produce sample execution traces). 

Proper linear programming problems including the derived operational laws 
as constraints allow one to estimate upper and lower bounds for arbitrary lin
ear functions of ihe throughput and the average marking (in particular, the 
throughput of a single transition or the average marking of a particular place). 
This approach constitutes a clear improvement and generalization of previous 
results valid only for particular net subclasses. An important characteristics 
of this new method is that it is "open" to the introduction of additional con
straints besides the. ones already described in this paper provided that they 

· are expressed in linear algebraic form. The straightforward addition of some 
constraints deriving from a specific knowledge about some peculiar behavioural 
characteristics of a WN model may improve the quality of the bounds based 
on results developed for the analysis of the qualitative behaviour of untimed 
Petri net models. 

The proposed method for bounds computation is cheap, since the solution 
of the LPPs is practically extremely fast in terms of CPU time compared to 
Markovian numerical analysis (not to mention simulation). 

The size of the LPP depends only on the net structure (number of places, 
transitions and arcs); in particular it is also independent of the cardinality of 
the basic colour classes, thus adding a dimension on the parameterization of the 
results. If the computation of bounds for a 4 processor system takes less than 
1 second of CPU time, it will take the same order of magnitude to compute 
bounds for a 1,000 processor system. 
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Structural symmetries in Stochastic Well-Formed Colored Petri Nets (SWN) 
lead to behavioral symmetries that can be exploited using the Symbolic 
Reachability Graph (SRG) construction algorithm: it allows to compute 
an aggregated Reachability Graph (RG) and a "lumped" Continuous Time 
Markov Chain (CTMC) that contain all the information needed to study 
the qualitative properties and the performance of the modeled system re
spectively. Some models exhibit qualitative behavioral symmetries that are 
not completely reflected at the CTMC level, we call them quasi-lumpable 
SWN models. In these cases, exact performance indices can be obtained 
by avoiding the aggregation of those markings that are qualitatively but not 
quantitatively equivalent. An alternative approach consists of aggregating 
all the qualitatively equivalent states, and computing approximated perfor
mance indices. In this paper a technique is proposed to compute bounds on 
the performance of SWN models of this kind, using the results presented in 
[4]. The technique is based on the Courtois and Semal's bounded aggrega
tion method [2]. 

1 INTRODUCTION 

215 

The Coloured Petri Net (CPN) formalism [7] was initially introduced for model 
design convenience: indeed more compact and parametric models can be built 
using CPN instead of the classic PN. Structural symmetries in CPN models, 
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often lead to behavioral symmetries that can be exploited to reduce the compu
tational cost of analysis methods based on the reachability graph construction 
[6, 5]. When stochastic (exponential) timing is associated to transitions, the 
modeled system performance can be computed by analyzing the continuous 
time Markov chain (CTMC) isomorphic to the model reachability graph, hence 
in case behavioral symmetries apply also at the CTMC level, they can be used 
to lower the cost of performance analysis as well [3, 9]. 

The Stochastic Well-Formed Colored Petri Net (SWN) formalism [1] has 
been introduced to systematize the symmetry exploitation technique: behav
ioral symmetries of models described with this formalism can be automatically 
discovered and exploited by defining equivalence classes of markings called sym
bolic markings. A Symbolic Reachability Graph (SRG) can be directly generated 
from a SWN; it retains enough information to study the qualitative properties 
of the model and to derive a lumped CTMC from which all the desired per
formance indices can be computed. The core of the SRG generation method 
relies on the definition of object types, the basic color classes, and of their 
partition into a number of disjoint subsets of homogeneously behaving objects. 
Equivalence classes of markings are defined as sets of markings that are equal 
up to a permutation of homogeneously behaving objects. As a consequence of 

· this equivalence relation definition, the potential aggregation decreases as the 
partitioning of classes into subclasses increases. As we'll see, it may happen 
that the partitioning of classes into several subclasses is needed only for the 
correct specification of the quantitative behavior of the model (i.e., the tran
sition rates), while they're not used to describe the qualitative behavior (i.e., 
the token flow in the net). Hence the subclasses used only for the definition of 
transition rates could be merged when performing a qualitative analysis. By 
merging them also in the performance analysis phase an error is introduced, 
and approximated performance results are obtained. In this paper we propose 
a technique that allows to obtain bounds (rather than just approximations) on 
the performance indices of SWN models when the states aggregation is per
formed according to qualitative behavioral symmetries that are not completely 
reflected at the CTMC level. The bound computation algorithm used, is the 
one proposed in [4]. The contribution of this paper is a method for defining the 
state aggregates for the application of the above bounding method. Actually the 
presented result is stronger since the proposed method also allows to directly 
compute the aggregated MC that is actually solved to compute the bounds, 
without ever computing the complete quasi-lumpable chain. The method can· 
thus be considered as an extension of the SRG exact aggregation method. 

The paper is organized as follows: in Section 2 the SWN formalism and the 
associated RG aggregation techniques are informally defined; in Section 3 the 
method for computing bounds of quasi-lumpable MC is summarized; in Section 
4 the main contribution of this paper is described: it comprises a structural 
analysis algorithm to check whether a given SWN is quasi-lumpable, and a 
modified SRG generation algorithm for the generation of the aggregate MC 
used for the bounds computation. In Section 5 two application examples are 
shown. Finally in Section 6 we draw some conclusions and discuss the possible 
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future developments of the method. 

2 STOCHASTIC WELL-FORMED COLORED PETRI NETS: AN INFORMAL IN
TRODUCTION 

In this section the SWN formalism and the Symbolic Reachability Graph gen
eration technique are informally introduced by means of two examples. 

Let's consider a polling system comprising a set of waiting rooms (of limited 
capacity) where customers can queue up, and a set of servers that cyclically 
visit the waiting rooms to serve the customers. A GSPN model of such a 
system can be built up by properly linking several subnets: one subnet for 
each waiting room and one subnet to represent the servers behavior. If the 
system is homogeneous, i.e., if the system components of the same type behave 
similarly, a more compact representation can be obtained by explicitly modeling 
only one component of each type, and adding some annotation to specify how 
many instances of the submodel are present in the whole net, and how they are 
connected. 

The SWN model of the polling system in Figure 1 implements this idea: the 
net represents the possible states of a generic queue and of a generic server: 
tokens in place Thinking represent customers still out of the waiting room, 
tokens in place Waiting represent customers queued up in the waiting room, 
tokens in place busy_servers represent customers being served, tokens in place 
pos_server represent idle servers looking for some customer to be served, while 
tokens in place serv_out represent a server moving from a queue to the next 
one. Transitions represent the possible state changes. 

The tokens contained into places are no more undistinguishable, they carry 
some information needed to distinguish either customers associated with dif
ferent queues or different servers. The type of data associated with tokens in 
a given place - the place color domain - can be structured, i.e., it can com
prise several "fields", each with an associated basic data type. The basic data 
types are finite and non empty sets called basic color classes; in the polling 
system example there are two basic color classes: Servers = { w1 , ... , wn} 
and Queues = { q1, ... , Qm}. The color domain of place busy servers is struc
tured: it comprises a type Queues field and a type Servers field representing 
the customer being served and the server performing the service respectively. 
Hence the tokens contained in this place are pairs (q;, w1). 

The basic color classes may be ordered (in this case a successor function must 
be defined on the class) and may be partitioned into several static subclasses, 
each containing homogeneously behaving objects. In our example, if the servers 
visit the queues in cyclic order, the class of queues could be ordered according to 
the visit sequence: the successor function on the Queues class could be defined 
as E9 Qi q(i+l) mod m. If some queues must be served by at most one 
server at a time, while others can be served by many servers concurrently, then 
the corresponding class could be partitioned into two subclasses: Queues = 
OneSrvQ U MltSrvQ. If two types of servers exist that have different service 
speed, class Servers should be partitioned into two subclasses: Servers = 
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FastSrv U SlowSrv. Observe that the Queues class partitioning is used to 
distinguish objects with different qualitative behavior, while the Servers class 
partitioning is used to distinguish objects with same qualitative but different 
quantitative behavior. 

A transition in a SWN model actually represents several transitions in the 
corresponding "unfolded" GSPN model: for example transition end_serv rep
resents a generic end of service happening at any queue. In SWNs transitions 
are parameterized: the parameter types are chosen among the set of basic color 
classes. Transition end_serv has two parameters, srv and queue, of type Servers 
and Queues respectively. A transition instance is obtained assigning actual ob
jects of proper type to the transition parameters; enabling and firing is defined 
only for transition instances. We denote [t, c] an instance of t, where c is a 
tuple belonging to the transition color domain whose elements are the objects 
assigned to the transition parameters. The set of "colored" tokens that are 
withdrawn from/added to the input/output places of a given transition when 
one of its enabled instances fires, are defined through arc expressions labelling 
the net arcs. 

The enabling of a transition instance depends both on the multiset of colored 
tokens contained in its input and inhibitor places and on the evaluation of 
an optional predicate associated with the transition. In the polling system 
model, predicates are associated with three transitions: starLsrv1, starLsrv2 
and Walk. The predicate [d(queue) = OneSrvQ] ([d(queue) = MltSrvQ]) 
indicates that the instances of starLsrv1 ( starLsrv2) that may be enabled 
are only those with an object from subclass OneSrvQ (MltSrvQ) assigned to 
parameter queue. Indeed this transition represents the start of a service for a 
customer in a queue allowing only one (multiple) service at a time. Finally, the 
predicate [nextq = EBqueue] indicates that in order for a Walk instance to be 
enabled, the parameter nextq must be assigned the successor ( EB) of the object 
assigned to parameter queue; this predicate is used to model the cyclic path 
followed by the servers. 

< srv, nextq > 
[nextq = El,queue] 

ueue > 

< srv, queue 

srv ueue 

< srv, queue > 

FIGURE 1. SWN model of a polling system 

There are two more functions to be defined to complete the SWN definition: 
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the transition priority and weight functions (denoted 1ft and 0t respectively). 
Transition instances may have different priority levels, the enabling rule must 
be modified to take into account priority. 

The transition weight function 0t defines the firing rates of transition in
stances and is used to solve probabilistically the conflicts that may arise during 
the net evolution. The transition rates may depend on the particular transition 
instance, however there are constraints on the kind of dependence allowed, nec
essary to guarantee that all the objects belonging to the same static subclass 
behave homogeneously by construction. 

The Symbolic Reachability Graph A major interest of SWNs is that 
they provide a modeling framework in which symmetries appear naturally as 
a way of reducing both the complexity of the representation and the state 
space explosion problem [l]. Symmetries in SWN are implicitly defined at 
the color class level, by means of symmetry functions. A symmetry function 
Si on an ordered/unordered color class Ci is any rotation/permutation of the 
objects in the class, preserving static subclass partition. A symmetry function 
s applicable to place markings and transition color instances is a family of 
symmetry functions on col or classes: s = { s1, s2, ... , Sn}. We denote ( the set 
of all such functions. 

The marking equivalence classes, called symbolic markings, are defined as 
follows: 

DEFINITION 1 (SYMBOLIC MARKING) Let Eq be the equivalence relation de
fined by: 

M Eq M' {=? :ls E (, M' = s.M 

An equivalence class of Eq is called a symbolic marking, denoted with M. 

In [1] some propositions can be found, stating that the possible future qualita
tive and quantitative evolution of the model is the same for all the markings 
in an equivalence class. 

Let us illustrate the above concepts through an example. Consider a closed 
queueing system composed of two service centers in tandem; let's assume that 
there are 5 customers in the system. Customers cycle between the two service 
centers. The first one is a single server machine with an associated exponen
tially distributed random delay with parameterµ. The second is a four servers 
machine, and each server Si has the same exponentially distributed delay with 
parameter ,\, A customer chooses randomly one of the four servers on each visit 
to the multiserver node; the same probability is associated with each server. 
In Figure 2 a SWN representation of the system is depicted. 

Only one color class is used in this model, namely Lines = { li, ... , l4 }, 

representing the four servers in the multiserver queue. The presence of n 
tokens with associated color li in place Linel means that n customers are 
queued up to get service from server Si. A possible marking of this model 
is M = Linel((l1), (l2), (l3),2(l4)) .. There are three markings equivalent to M, 
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servo Make_choice Servl 

Lines Lines 
LineO Choice Linel 

FIGURE 2. A SWN model of a queueing system 

that can be obtained by applying all the possible Lines objects permutations 
to M. Thus M belongs to a symbolic marking M of cardinality four, that 
could be represented as follows: M = Linel((z1),(z2),(z3),2(z4)), where Zi 

are variables representing objects in Lines and all the ordinary markings be
longing to M can be obtained by assigning actual objects to the variables. 
Four transition instances are enabled in all the markings belonging to M: 
[Servl, li], i = 1, ... , 4, all with the same rate..\. It is possible to relate the arcs 

I I 1 1 

I I 1 1 

I I 1 1 

I I 1 1 

FIGURE 3. Difference in state aggregation when changing the color class par
titioning. 

exiting from pairs of equivalent markings: in Figure 3 related arcs are repre
sented with similar dashed lines ( equivalence classes are represented by dotted 
boxes). In the same figure it is possible to observe that from the symbolic 
marking M, two symbolic markings can be reached: M 1 (containing only one 
ordinary marking) and M 2 (containing twelve ordinary markings). Three out 
of four firing instances exiting from M end up in the same symbolic marking 
M2, Actually it is possible to know in advance which firing instances lead to 
markings in the same equivalence class since all the objects that have the sam~ 
distribution of tokens in places can be interchanged in a firing instance without 
changing the reached symbolic marking, this is the case of objects li, l2 and 
[3 in marking M. In order to exploit this property, it is convenient to use a 
representation for symbolic markings that keeps objects with the same distri
bution of tokens grouped into sets. We call these sets dynamic subclasses and 
denote them z!lass. The new representation of M using dynamic subclasses 
is: M = Linel((ZLnea),2(ZLnes)) where IZtinesl = 3 and IZiinesl = 1. The 
symbolic firing instances enabled in Mare [Servl, ZLnesl and [Servl, Ziinesl, 
the former actually represents three ordinary firing instances. 
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If the servers in the multiserver queue had not the same service rates, for 
example if two servers were slower (rate .X1 ) while the other two were faster 
(rate .X2 > .Xi), then we should have partitioned class Lines into two static 
subclasses, Linesi, i = 1, 2, each containing two servers with service rate Ai
This partition causes a splitting of some symbolic marking as shown in Figure 
3 ( equivalence classes are represented by white boxes). Symbolic marking M 
is now split into two symbolic markings: this is needed to distinguish the case 
where the server with two customers in its queue is a slow one from the case 
in which that server is a fast one. Similarly M 2 is now split into four symbolic 
markings. 

Observe that in this case qualitative analysis can be performed on the more 
compact SRG, while exact performance results can be obtained only from the 
larger SRG. In the following sections we'll show a method to compute bounds 
for the performance indices, working with a MC of size equal to that of the 
more compact SRG. 

3 BOUNDS FOR QUASI-LUMPABLE MARKOV CHAINS 

In this section the method presented in [4] to compute bounds for quasi
lumpable Markov chains is summarized. It is based on the bounds compu
tation method proposed by Courtois and Semal in [2]. The main result from 
[2] we use, is a theorem stating that it is possible to compute upper and lower 
bounds for the steady state probability vector of a DTMC P, when only a 
(componentwise) lower bound p- :::; P of the transition probability matrix is 
available. 

In [2] two applications of the above theorem are presented: (1) computa
tion of bounds on conditional steady state probability of a subset of states S' 
in a DTMC when the transition probability among the states in the subset 
is known while only partial or no information is available about the transi
tion probability between states in S - S' and states in S'; (2) computation of 
bounds on the steady state probability vector of a large system by decompo
sition into smaller subsystems: this is called the bounded aggregation method. 
This method consists of two steps: (a) computation of bounds on the condi
tional state probabilities within each aggregate using the method just explained; 
( b) computation of bounds on the probability of being in each aggregate ( this 
requires the derivation of a lower bound p- for the inter-aggregate probability 
matrix P using the results of the previous step). 

Finally the results obtained in the two steps can be combined to compute 
bounds on the steady state probability of the original states. 

The proposed method The method proposed in [4] allows to compute 
bounds for quasi-lumpable Markov chains. We first give a definition of quasi
lumpable MC, then intuitively describe the bounding method. 

DEFINITION 2 A Continuous Time Markov Chain is said to be E-quasi-lumpable 
with respect to a given state space partition A if its infinitesimal generator Q 
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can be rewritten as Q = Q- +Q' , where Q- is a maximal lower bound (compo
nentwise} for Q that satisfies the strong lumpability conditions /8/ with respect 
to A, and no element in Q' is greater than E in value. 

The intention is that Q' is a matrix with many more zero elements than Q- and 
with relatively small non-zero elements. Henceforth we use the term "quasi
lumpable CTMC" for a CTMC that is E-quasi-lumpable for some E. 

The CTMC corresponding to the RG of the SWN model of Figure 2 when 
the servers in the multiserver station do not have all the same rate, is E-quasi
lumpable with respect to the aggregation induced by the SRG generation al
gorithm when Lines is not partitioned into static subclasses; in this case E is 
proportional to the difference >.2 - >.1 . 

The bounds computation method we have proposed in [4], can be described 
as a simplified version of the bounded aggregation method. Actually we apply 
only the second step of the bounded aggregation algorithm, because our aim is 
to deal directly with the lumped process. The lower bound Q- for the aggregate 
matrix Q is obtained by computing the minimum row sum in each submatrix 
Qi,i of transition rates from states in the ith aggregate to states in the lh 

aggregate; from matrix Q- lower and upper bounds on the aggregates steady 
state probability can be computed by means of the Courtois and Semal method. 
As we'll see later, matrix Q- can be computed without ever computing the 
complete matrix Q. Observe that it is also possible to compute an upper bound 
Q+ for the transition rates between aggregates, by taking the maximum among 
the row sums of each submatrix. Using the following theorem it is possible to 
exploit the knowledge of an upper bound Q+ to get improved bounds: 

THEOREM 1 /4/ Let Q be the infinitesimal generator of an ergodic CTMC with 
n states. Let Q- be a lower bound (componentwise) for Q, i.e., Q- SQ. Let 
yT = ( Q - Q-)e T and finally let Q 8 = Q..,. + yT x where x is an unknown row 
vector such that xe T = I. There exists a vector x such that the steady state 
probability of Q 8 is equal to that of Q. 

Proof: The theorem is proven by showing that x = 1r(~:!Q:!)~) T is a vector 
that satisfies the required property. The complete proof can be found in [4]. D 

The bounds improvement method can be applied after a first set of bounds 
1r- and 1r+ have been computed by means of the Courtois and Semal's method. 

4 AUTOMATIC DERIVATION OF THE AGGREGATED MC FOR BOUNDS COM-

PUTATION 

In order for the bounding method to be convenient (from a computational cost 
point of view), the ideal situation would be to derive the lumped matrices 
Q- and Q+ directly from the high level model without having to compute 
(or at least to store) the large complete matrix. In this section we present 
a method that allows to reach this goal for a subclass of SWN models called 
quasi-lumpable SWNs. 

The issue of automatic construction of the lumped matrix is closely related 
to that of the detection of symmetries on the state space that induce a partition 
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into state aggregates. The same problem has to be faced when exact lumping 
methods are used, the above requirement of constructing automatically the ag
gregated CTMC for bounds computation, is similar to that of directly obtaining 
the lumped CTMC from the SRG. We now show that the same approach used 
to derive the lumped CTMC from the SRG can be extended to our bounding 
method, that is the upper and lower bound aggregated matrices Q- and Q+ 
can be automatically built using a modified version of the SRG algorithm. 
The bounding matrices can be computed at different accuracy levels; as usual 
higher accuracy can be achieved with higher computational cost. 

In Section 2 we introduced the concept of color classes and subclasses in 
SWN. The color classes are used to define sets of "similar" objects and the 
partition of a class into static subclasses is used to identify subsets of objects 
in a class that share the same behavior. As already pointed out, it is possi
ble to distinguish between two possible situations: (1) the objects in different 
subclasses have different qualitative behavior, i.e., they cannot play the same 
"role" in the system because they have different possible evolutions, (2) the ob
jects in different subclasses have the same qualitative behavior, but the event 
sequences happen with different rates depending on which subclass the object 
belongs to. For example, in the model of Figure 2 the colored tokens repre
senting customers in the "multiserver" station follow the same route through 
transition Servl, independently of their color, however, the firing rate of the 
transition depends on the token color. 

Hence, given a SWN model of the system under study, a first analysis is 
needed to detect all the subclasses in each class with similar "qualitative" be
havior. This permits automatic determination of the candidate quasi-lumpable 
state aggregates. Then two approaches are possible, (1) apply the usual Sym
bolic Reachability Graph generation algorithm to the system as it is specified 
and use the information about aggregate states to compute the lumped ma
trices Q- and Q+ in a second step; (2) apply the SRG generation algorithm 
to a modified model where some of the homogeneously behaving subclasses 
are merged, and apply a modified CTMC transition rate computation rule to 
directly derive Q- and Q+ from the SRG. 

In the sequel we present the subclasses merge algorithm and the modified 
MC transition rate computation rule. 

Subclasses merge algorithm For each basic color class, the following static 
classes merge procedure has to be performed: 

old_statici = (set of static subclasses in the original Ci) 
new_statici = 0 
while old_statici -f. 0 do 

( remove a subclass sc from old_statici) 
lsc = sc 
sc_list = emptylist 
append(sc, sc_list) 
for each sc' E old_statici do 

if semilumpable(sc', sc_list) then 



224 

end if 
end for 

lsc = lsc U sc' 
( remove sc' from old_statiCi) 
append( sc', sc_list) 

old..scJist[lsc] = sdist 
( add static subclass lsc to new_statici) 

end while 

A set of static subclasses old..statici is the input for this procedure. The 
output is a new set new_statici, of static subclasses. The cardinality of the 
new set is less than or equal to that of the old set. For each new static subclass 
lsc, a list old..sc_list[lsc] of the old static subclasses that have been merged into 
lsc is maintained. 

Function semilumpable(sc', scJist) implements the most important part of 
the algorithm. Let e' be the set of symmetry functions that satisfy the con
straint of allowing only permutation of objects within the same static subclass 
for all classes C; -:f. Ci, while allowing the exchange of objects in { sc'} U scJist; 
function semilumpable is meant to return true iff for any s E e', every pred-

. icate 4> occurring in the model satisfies the equation 4>(c) = 4>(s.c) and ev
ery arc function f occurring in the model satisfies f(s.c) = s.f(c). This 
is surely true when no references to the subclasses in sc' U sc_list occur in 
any arc function and predicate of the model, and predicates do not contain 
clauses like [d(x) = d(y)] (where x and y are transition parameters of type 
Ci), More complex sufficient conditions may be defined, for example predicates 
4> /function elements Ji containing occurrences of the subclasses to be merged 
may be allowed if they have the form 4> = (VvsbcEsc'UscJist[d(x) = sbc]) I\ 4>' 
and /i = a: I:sbcE sc'UscJist Sabe + ff respectively, and the subclasses to be 
merged do not occur in 4>1 or in f I, furthermore 4>1 does not contain clauses 
like [d(x) = d(y)]. 

Modified MC transition rates computation rule The aggregate ma
trices Q- and Q+ are computed by applying the SRG generation algorithm 
to a modified model where static subclasses containing objects with the same 
qualitative behavior but different associated rates are merged. 

In a SWN, the transition firing rate of a generic transition t is defined as a 
function 0t from tuples of static color classes to reals. For example transition 

<proc> 
Jobs 

Processors 
<Ob> 

FIGURE 4. A simple SWN transition example. 

Compute in Figure 4 takes a token with its two component color from its input 
place: the first component represents a processor and the second represents a 
job. If the jobs class J is divided into two subclasses of short jobs J8 and long 
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jobs J1 and the processors are divided into two subclasses of fast processors Pi 
and slow processors Ps, then a possible definition for the transition rate could 
be: 0t((< P., J5 >)) = 0.3, 0t((< Pi, J5 >)) = 1, 0t((< P., J1 >)) = 0.15, 
0t((< P1, J1 >)) = 0.5. 

When a symbolic transition instance [t, z] is fired, its rate .X([t, z]) is computed 
as follows: (1) derive from z the tuple d of corresponding static subclasses 
(each dynamic subclass is associated with exactly one static subclass, see [1]); 
(2) .X([t, z]) = m 0t(d) where m is a factor that depends on the cardinality of 
both the subclasses in z and in d. The reason for the multiplicative factor is 
that a symbolic firing instance is an aggregation of m ordinary firing instances 
all with the same rate 0t(d). In our example a possible symbolic instance for 
transition Compute could be [Compute, (Z}, Z})] with IZ}I = 2, Z} E P., and 
IZ}I = 1, ZJ E Jz meaning that there are 2 (= IZ}I) slow processors each of 
which is processing 1 ( = IZ}I) long job. This symbolic instance stands for 2 
"ordinary" instances that are grouped in the lumping process. 

In the following we show how to derive the modified rate for a firing instance 
that involves objects belonging to some merged static subclass. We denote Di,j 
the new static subclasses and {DL} the set of the original subclasses that are 
aggregated into Di,j· The rates of the resulting new transition instances, in 

· general will depend on the cardinality of the dynamic subclasses in the color 
instance. Let [t, z] be the symbolic transition instance for which a rate has to 
be computed. Let d be the associated static subclasses tuple. Let d' be the 
subtuple of d composed of merged static subclasses and z' the corresponding 
subtuple of z. For each element dk = Di,j in d', compute the set Zk of possible 
partitions of dynamic subclass Zk into one or more new dynamic subclasses, 
each associated with a different static subclass DL of Di,j (see Figure 5). 
The Cartesian product of the Zks leads to a set of sums of original transition 

--- -71cl,,Dl Zk " .. ,, J 

FIGURE 5. Possible partitions of Zk with respect to the "merged" static subclass 
Di,i· 

instances. From each sum a rate can be computed that corresponds to a value 
for a row sum in the aggregate transition matrix corresponding to [t, z]. The 
minimum and maximum in this set of rates gives the value for the corresponding 
transition rate in the aggregate matrices. 

In the example of Figure 4 assume that IP.I= IP1I = 2 and IJ.I = 2, IJzl = 1, 
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and suppose we want to merge slow and fast processors into a unique class P 
and short and long jobs into a unique class J. Hence the symbolic transition 
instance [Compute, (Z}, Z;)] with IZ}I = 2, Z} E P and IZJI = 2, ZJ E J 
incorporates the following six possible instances with respect to the old classes 
partition. 
• [Compute, (z}a, z}a)] + [Compute, (z}a, z}b)] with jz}ai = 2 and z}a E Ps, 
Iz}aI = 1 and z}a E Js, Iz}bl = 1 and z}b E J1; rate = 2. 0.3 + 2. 0.15 = 0.9 
• [Compute, (Z]f, z}a)] + [Compute, (z}a, z}b)] with jz}al = 2 and z}a E Pt, 
Iz}aI = 1 and z}a E Js, IZYI = 1 and z}b E J,; rate = 2. 1 + 2. 0.5 = 3 
• [Compute, (z}a, z}a)] with jz}al = 2 and z}a E Ps, jz}al = 2 and z}a E Js; 
rate = 4 • 0.3 = 1.2 
• [Compute, (z}a, z}a)] with jz}al = 2 and z}a E P1, IZ}al = 2 and z}a E Js; 
rate = 4 · 1 = 4 
• [Compute, (z}a, z}a)] + [Compute, (z}a' z}b)]+ [Compute, (z}b, z}a)l+ 
[Compute, (Z}b, z}b)] with Iz}aI = 1 and z}a E Ps, Iz}bl = 1 and z}a E Pi, 
Iz}aI = 1 and z}a E Js, Iz}bl = 1 and z}6 E J1; rate = 0.3+0.15+1+0.5 = 
1.95 
• [Compute, (z}a, z}a)] + [Compute, (z}b, z}a)] with IZ}ai = 1 and z}a E Ps, 
Iz}bl = 1 and z}a E Pt, Iz}aI = 2 and Z}6 E Js; rate = 2. 0.3 + 2. 1 = 2.6 

There is a computationally less expensive but not always accurate method 
for computing lower/upper bounds for the elements of Q- and Q+. Given a 
transition t and a tuple d of aggregate static subclasses, compute the Cartesian 
product D of the sets of original subclasses in the component aggregate sub
classes. Associate with d the min(max)d'ED0t(d'). In this way the computed 
Q- and Q+ are bounds for Q, but they can be very inaccurate in some cases. 
In the previous example this simplified method would have predicted correctly 
the maximum rate (= 4), while the minimum (= 0.6) would have been less 
than the correct one (0.9). 

Observe that even if the computation of the aggregate transition rates has 
a certain cost, it could be performed once and for all in a way that the re
sult is easily reusable for models differing only in the actual parameter values. 
Moreover the computation has to be done only for the transition instances in
volving merged static subclasses: if the model has many transitions that do not 
contain the merged color class in their color domain definition there are good 
chances that the complex rates computation method has to be applied only 
to a minority of transition instances and that the corresponding overhead be 
compensated by the computation saving due to the stronger state aggregation. 

5 Two EXAMPLES 

In this section the proposed method is applied to two example models: the first 
model represents the two servers in the tandem system introduced in Section 2, 
while the second model represents a simple concurrent program mapped onto 
a parallel architecture. 
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5.1 Two servers in tandem 
The model of Figure 2 is a good candidate for the application of the method. In 
fact this is a typical case in which the partition of the servers in two subclasses 
with equal speed within each subclass leads to a quasi-lumpable MC structure. 
We assume that the rates A1 and A2 associated with the two classes of servers 
are A1 = 1.00 and. A2 = 1.01. Observe that in this case it is trivial to find 
mergeable static subclasses since neither functions of type Ssubclass appear on 
any arc nor predicates involving any static subclass are used. 

Let's consider some transition instances to see how the lower bound matrix 
Q- has been computed. There are two colored transitions that may be in
stanced to objects of Lines, namely M ake..choice and Servl. We describe 
the transition rate bounds computation for transition Servl only, a similar ar
gument applies to M ake..choice. Let's consider the generic symbolic instance 
[Servl, zLnesl• We have to consider four cases: IZLnesl = k, k = 1, ... , 4. 
i) IZLnesl = 1: There are only two possibilities to take into account: zLnes E 

Linesl and zLnes E Lines2. Hence min_rate([Servl, zLnesD = A1 and 
max_rate([Servl, zLnesD = A2. 
ii) IZLnesl = 2: There are three possibilities to consider: (1) both objects 
in zLnes belong to Linesl, (2) both objects in zLnes belong to Lines2 or 
(3) one object belongs to Linesl, while the other one belongs to Lines2. 
Thus we have min_rate([Servl, zLnesD = min(2A1, 2A2, A1 + A2) = 2A1 while 
max_rate([Servl, zLnesD = 2A2. 
iii) IZLnesl = 3: There are two possibilities to consider: two out of three 
objects belong to Linesl and the remaining object belongs to Lines2 or vice 
versa. Hence min_rate([Servl, zLnesD = min(A1 + 2A2, A2 + 2A1) = A2 + 2A1 
while max_rate([Servl, zLnesD = A1 + 2A2. 
iv) IZLnesl = 4: There is only one possible assignment of objects to static sub
classes in this case: two objects belong to Linesl while the other tw:o belong 
to Line2 so that min_rate([Servl, ztnesD = max_rate([Servl, ZiinesD = 
2A1 + 2A2. 

The bounds are obtained solving 17 aggregated CTMCs each comprising 18 
states. The following table contains mean queue length (MQL), and through
put (THRU) bounds as well as the corresponding exact values. 

Lower Exact Upper Spread 
bound value bound % 

MQL 1.250705 1.273430 1.385868 11.0 
THRU 0.967612 0.98284 0.983502 1.6 

For this model it has been possible to get better bounds by applying the 
bounds improvement method cited in Section 3: 

Lower Exact Upper Spread 
bound value bound % 

MQL 1.250705 1.273430 1.295075 3.5 
THRU 0.980303 0.98284 0.983502 0.3 
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FIGURE 6. The SWN model of the Master-Slave Program. 

The simplicity of this example is such that an intuitive argument could be 
. found that would easily allow to compute mean queue length and throughput 
bounds for this model. In the next section a more complex example is presented 
in which the presence of synchronization among the system components makes 
it difficult to find any intuitive argument for bounds computation. 

5.2 A simple concurrent program 

In this section we present a more complex system consisting of a parallel pro
gram organized according to a master-slave computation paradigm. The pro
gram is mapped on a parallel architecture: we assume there is a processor for 
each process, that the processors are homogeneous, and that due to the type of 
the interconnection network the communication time between the master and 
the slaves is not homogeneous. This is the case for the example of a master
slave program mapped onto a mesh architecture depicted in Figure 6. The 
processors are represented by squares, while the processes are represented by 
circles. In the figure both the physical channels ( connecting the processors) 
and the logical channels ( connecting the processes) are depicted. 

The master divides the problem to be solved into several subproblems, and 
as long as there are free slaves it delivers the tasks to be executed to them. 
When no more free slaves are available, the master waits for some slave to 
complete its current task. The master also performs some computation in 
parallel with communicating, to process the results received to prepare new 
data to be distributed. A SWN model of the master-slaves system is depicted 
in Figure 6. The model of the program resembles a flow-chart so that its 
semantics is rather intuitive. The transitions stand for statements in a process 
code. Places represent pointers to instructions in a given process code. 

The model is composed of two subnets, the first (leftmost) one represents 
the master's behavior while the second (rightmost) one represents the common 
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behavit>r of the slaves. The distinction among the three slaves is obtained by 
using distinguishable tokens, i.e., tokens in the slave behavior subnet are la
beled with a slave identifier. The behavior model has been simplified as much 
as possible to make the picture readable. The master is composed of two parts 
that work in parallel: the computation part, consisting of a certain number 
of iterations of two procedures (transitions inLoop, cmpMstA, cmpMstB), and 
the synchronous communication part consisting of a certain number of itera
tions of send/receive operations (transitions snd, rxl, rx2 plus the transitions 
representing actual communication, shared with the slaves net: begRx, endRx, 
begSnd, endSnd). The slaves behavior can be described as repeated iteration of 
three operations: receive (transitions begRx and endRx), compute (transition 
cmpSL), send (transitions begSnd and endSnd). There is only one color class 
needed: the slaves class S. It has cardinality three and is divided into two static 
subclasses S1 of cardinality 2 and S2 of cardinality 1. Subclass S1 represents 
the slaves that are closer to the master while subclass S2 represents the farther 
slave. As a consequence the transitions representing communication between 
the master and the slaves have a rate that depends on the slave identity. 

The detailed state representation for this model is a list of program counter 
values, one for each process in the program. This SWN model is quasi-lumpable 
with respect to the color class of slaves: indeed the qualitative behavior of slaves 
is identical but the quantitative behavior is not because one slave is farther from 
the master. We thus aggregate all the states that are equal up to a permu
tation of slaves identities. It is immediate to verify that the static subclasses 
S1 and S2 could be merged. Concerning the symbolic firing instances to be 
considered for the computation of the lower bound aggregate matrix, we have 
only to take into account transitions endRx and endSnd. From the struc
ture of the net it is possible to know in advance that only instances of kind 
[endRx, Z1] and [endSnd, Z1] with IZ11 = 1 are possible so that only two cases 

have to be considered: Z1 E S1 or Z1 E S2 so that min_rate = com-rate1 

and max_rate = com_rate2 (where com_ratei is the inverse of the mean time 
required for a communication between processing nodes at distance i). 

The performance measures we have considered are three: (i) throughput of 
the system, (THRUPUT); (ii) mean number of slaves waiting to receive a task 
from the master (MNSWRx); (iii) mean number of slaves waiting to send the 
result of their computation to the master (MNSWSnd). 
We have done three experiments varying the values of rates associated with 
the communication between master and slaves ( transitions endRx and end
Snd). We have fixed the values of 0(endRx, S2) and 0(endSnd, S2) to 0.5 and 
3.5 respectively, while the rates for (endRx, S1) and (endSnd, S1) that have 
been used in the three experiments are the following: 
0(endRx, S1) = (1) 0.51, (2) 0.525, (3) 0.55; 0(endSnd, S1) = (1) 3.57, 
(2) 3.675, (3) 3.85. 



230 

Perf. Ind. Lower bnd Upper bnd Spread 
1 THRUPUT 0.012396 0.014595 18% 

MNSWSnd 0.079165 0.137257 73% 
MNSWRx 2.547911 2.726692 7% 

2 THRUPUT 0.011936 0.016718 40% 
MNSWSnd 0.056813 0.180464 218% 
MNSWRx 2.436226 2.802309 15% 

3 THRUPUT 0.011333 0.019553 73% 
MNSWSnd 0.039295 0.257986 557% 
MNSWRx 2.249367 2.861513 27% 

The results shown in the table above are obtained from the direct method. 
We have also applied the bounds improvement method: it resulted in tightened 
bounds in the first experiment but it did not give any substantial improvement 
in experiments 2 and 3. 

Clearly there is a strict correlation between the difference Q+ - Q- and the 
spread in the bounds. It might be worthwhile to assess a priori the sensitivity 
of the system on variations of the transition probabilities that are positive in 
Q+-Q-. 

In this example we have also observed that significant bounds refinement 
could be obtained by the consideration of the high level model (see [4]). Of 
course, the kind of property to be proved about the high level model in order to 
obtain improved estimates of Q- and/or Q+ and the technique used to prove 
it depend heavily on the kind of high level formalism adopted and is difficult 
to achieve automatically. 

6 CONCLUSIONS 

In this paper an extension to the SRG-based performance analysis technique 
has been presented for a class of SWN models called quasi-lumpable SWNs. 

The idea behind this method came from the observation that a system may 
contain objects that behave homogeneously from a qualitative point of view 
but the symmetry disappears when quantitative aspects are taken into account. 
Using the bounds computation method presented in [4] it is possible to take 
advantage of the stronger aggregation achievable when only the qualitative 
behavior is taken into account. In this case bounds on the system performance 
indices are computed instead of exact results; this precision loss can be accepted 
whether the state space size reduction transforms a model whose state space is 
too huge to be analyzed into an analyzable model. Observe also that the fact 
that bounds are obtained instead of approximate results of uncertain precision 
makes the method more robust than approximation methods especially those 
that do not give error bounds. 

We have shown two application examples, belonging to the class of SWN 
models just described. Future developments of this work will be in the direc
tion of (1) devising new techniques to further improve the bounds, possibly 
by using some information from the high level model ( e.g. from the SWN 
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model structural analysis), (2) studying the sensitivity of performance mea
sure bounds spread as a function of the difference Q+ - Q-, and (3) finding 
new model classes to which the method could apply, as for example those rep
resenting systems whose arrival/ departure rates are state dependent and are a 
smooth function of the system population. 

REFERENCES 

1. G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. Stochastic well
formed coloured nets for symmetric modeling applications. IEEE Transac
tions on Computers, 42:1343-1360, 1992. 

2. P.J. Courtois and P. Semal. Computable bounds on conditional steady-state 
probabilities in large Markov chains and queueing models. IEEE Journal on 
Selected Areas in Communications, SAC-4(6):926-937, 1986. 

3. C. Dutheillet and S. Haddad. Regular stochastic Petri nets. In Proc. 10th 
Intern. Conf. Application and Theory of Petri Nets, Bonn, Germany, June 
1989. 

4. G. Franceschinis and R. Muntz. Bounds for quasi-lumpable Markov chains. 
In Proc. of Performance 93, Rome, Italy, September 1993. 

5. S. Haddad. Une Categorie Regulier de Reseau de Petri de Haut Niveau: 
Definition, Proprietes et Reductions. PhD thesis, Lab. MASI, Universite P. 
et M. Curie (Paris 6), Paris, France, Oct 1987. These de Doctorat, RR87 /197 
(in French). 

6. P. Huber, A.M. Jensen, L.O. Jepsen, and K. Jensen. Towards reachability 
trees for high-level Petri nets. In G. Rozenberg, editor, Advances on Petri 
Nets '84, volume 188 of LNCS, pages 215-233. Springer Verlag, 1984. 

7. K. Jensen. Coloured Petri nets and the invariant method. Theoretical Com
puter Science, 14:317-336, 1981. 

8. J.G. Kemeny and J.L. Snell. Finite Markov Chains. Van Nostrand, Prince
ton, NJ, 1960. 

9. Chuang Lin and Dan C. Marinescu. On stochastic high level Petri nets. In 
Proc. Int. Workshop on Petri Nets and Performance Models, Madison, WI, 
USA, August 1987. IEEE-CS Press. 





Functional and Performance Analysis of 

Cooperating Sequential Processes1 

J. Campos J.M. Colom M. Silva E. Teruel 
Departamento de lngenierfa Electrica e lnformatica 

Centro Politecnico Superior, Universidad de Zaragoza 

Marfa de Luna 3, E~50015 Zaragoza, Spain 

This paper presents some results concerning the functional and performance 
analysis of sequential processes connected through buffers using structural 
analysis techniques, mainly linear algebraic ones. From the functional point 
of view the following properties are considered: boundedness, deadlock
freeness, liveness and the existence of home states. From the performance 
point of view the considered properties are marking ergodicity, computation 
of visit ratios and computation of insensitive throughput bounds. 

1 INTRODUCTION 

233 

The design of distributed systems is usually a complex task, compelling the 
use of formal methods. A major trend in the modelling of concurrent and 
distributed systems is the use of a single formalism during the entire design 
process [10]. Such formalism should provide: 

• Basic modelling features like: simple primitives for the modelling of se
quence, choice, and concurrency; a powerful communication support for 
designers; hierarchical and modular modelling methodologies; the possi
bility of parameterization of models ... 

• A well founded logical theory providing the definition of functional prop
erties like deadlock-freeness or the absence of (buffer) overflows, and val
idation algorithms for them. 

• A natural representation of time and the possibility of qualitative and 
quantitative analysis of performance properties. 

In [17] it is claimed that the interleaving of functional and performance the
ories for the analysis of systems produces important benefits for both kinds of 
analysis. The present work supports such claim. 

1This work has been partially supported by the projects P IT-6/91 of the Aragonese 
CONAI (DGA), CICYT TIC-91-0354 and ROB-91-0949 of the Spanish Plan Nacional de 
Investigaci6n, and Esprit BRA Project 7269 (QMIPS) and W.G. 6067 (CALIBAN). 
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FIGURE 1. Two sequential processes communicating through a buffer. 

At present, two modelling paradigms satisfying the above requirements are 
available in the literature: that based on programming language constructs, 
like CCS [12] or CSP [11], and that based on graphical constructs, like Petri 
nets [3, 16, 14], extended with the corresponding time representations. In 
this paper we consider the latter and, in particular, we concentrate on sys
tems obtained by the application of a simple modular design principle: several 
sequential processes execute concurrently and cooperate using asynchronous 
communication by message passing through a set of buffers. (The restrictions 
imposed upon the connectivity of buffers prevent competition.) As soon as 
a sequential process S, the sender, needs to communicate with another se
quential process R, the receiver, S deposits messages (tokens) in a buffer, the 
medium of communication. When R is ready, if there are enough messages in 
the corresponding buffer, R takes them (see Figure 1). The possible informa
tion contained in messages can be disregarded, paying attention to the control 
flow only. In other words, messages can be considered as authorizations. Ap
plication domains where this class of systems appears are computer networks, 
information systems, operating systems, real-time systems, nonsequential pro
gramming languages, and discrete part manufacturing systems, among others. 

Several works exist concerning functional and performance analysis of sys
tems of sequential processes communicating through buffers modelled with 
Petri nets. Various aspects of modelling and functional analysis can be found 
in [15, 18, 19], including definitions of different subclasses, structural analysis of 
properties, compositionality concepts, etc. A first approach to efficient (with 
polynomial time complexity on the net size) performance analysis was pre
sented in [6], stressing both functional and performance aspects. Two results 
were presented in that work: a characterization of ergodicity of the marking 
process for certain subclasses with exponentially distributed service times of 
transitions, in terms of two structural properties, namely consistency and some 
synchronic distance relations; and a polynomial time algorithm to compute the 
exact throughput of transitions in the steady state. 

In this paper we try to bridge qualitative and quantitative aspects of Deter
ministic Systems of Sequential Processes, with the goal of obtaining benefits 
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in both· the validation of functional properties and the evaluation of perfor
mance indices of such net systems. The paper is organized as follows: in 
Section 2 the class of Deterministic Systems of Sequential Processes is defined. 
Section 3 deals with some aspects concerning the functional analysis, and Sec
tion 4 considers performance properties such as ergodicity and the computation 
of quantitative indices. 

2 DETERMINISTIC SYSTEMS OF SEQUENTIAL PROCESSES 

In this section we formally define the class of Deterministic Systems of Sequen
tial Processes as a subclass of Petri net systems, and we explain how time is 
introduced in the model. Previously, some basic definitions and notations of 
Petri nets are recalled. 

The class that we consider in this paper is an extension of that introduced 
in [18], although we keep the same name. In that work, sequential processes 
are modelled with safe State Machines while the communication among them 
is described by their connection through particular places called buffers: their 
buffers are private in the sense that each of them has only one input and only 
one output State Machine. Our extension allows that several State Machines 
deposit messages (tokens) in a buffer. 

2.1 Basic Definitions and Notations of Petri Nets 

Let us recall some definitions and notations about Petri nets (we refer the 
reader to [3, 16, 14] for more comprehensive presentations). 

A P/T net is a 4-tuple .N = (P, T, Pre, Post), where P and Tare disjoint 
sets of places and transitions (IPI = n, ITI = m), and Pre (Post) is the 
pre- (post-) incidence function representing the input (output) arcs: Pre: P x 
T - IN = {O, 1, 2, ... } (Post: P x T - JN). A Petri net can be seen as a 
bipartite directed graph in which places and transitions are the two kinds of 
nodes. Places are usually drawn as circles while transitions are depicted as 
bars or boxes. Ordinary nets are Petri nets whose pre- and post-incidence 
functions take values in {O, 1}. The incidence function of a given arc in a 
non-ordinary net is called weight or multiplicity. The pre- and post-set of 
a transition t E T are defined respectively as •t = {plPre(p, t) > O} and 
t• = {pjPost(p, t) > O}. The pre- and post-set of a place p E P are defined 
respectively as •p = {tjPost(p, t) > O} and p• = {tjPre(p, t) > O}. The 
incidence matrix of the net is defined as C = [Post(pi, tj) - Pre(pi, ti )], i = 
1, ... , n, j = 1, ... , m. Similarly the pre- and post-incidence matrices are 
defined as PRE= [Pre(pi, tj)] and POST= [Post(pi, tj)]. Flows (semi.flows) 
are integer (natural) annullers of C. Right and left annullers are called T- and 
P-(semi)flows respectively. A semiflow is called minimal when its support, IIXII, 
is not a proper superset of the support of any other, and the greatest common 
divisor of its elements is one. Unless explicitly stated, we shall not consider 
the trivial flow, i.e. vector 0. Flows are important because they induce certain 
invariant relations which are useful for reasoning on the behaviour. Actually, 
several structural properties are defined in terms of the existence of certain 
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annullers, or similar vectors: 

N' is consistent (structurally repetitive) {:} 

3X ~ I such that C • X = (~) 0 

N' is conservative (structurally bounded) {:} 

3Y ~ I such that Y • C = (~) 0 

A function M: P--+ JN (usually represented in vector form) is called mark
ing. A P /T system, or marked Petri net, (N', Mo), is a P /T net N' with an 
initial marking Mo. A transition t E T is enabled at marking M iff "Ip E P: 
M(p) ~ Pre(p, t). A transition t enabled at M can fire yielding a new mark
ing M' (reached marking) defined by M'(p) = M(p) - Pre(p, t) + Post(p, t) 

(it is denoted by M __!_.M'). A sequence of transitions u = t1t2 ... tn is a 
firing sequence in (N', Mo) iff there exists a sequence of markings such that 

Mo..!!...M1 ~M2 ... ~Mn. In this case, marking Mn is said to be reach

able from Mo by firing u, and this is denoted by Mo_!!__.Mn. The function 
ii: T --+ JN is the firing count vector of the firable sequence u, i.e. u[t] rep-

resents the number of occurrences oft E T in u. If Mo_!!__.M, then we can 
· write in vector form M = Mo+ C • i1, which is referred to as the linear state 
equation of the net. A marking M is said to be potentially reachable iff 3i1 ~ 0 
such that M = Mo + C • ii ~ 0. The reachability set R(N', Mo) is the set 
of all markings reachable from the initial marking. Denoting by PR(N', Mo) 
the set of all potentially reachable markings we have the following relation: 
R(N',Mo) ~ PR(N',Mo). 

A place p E P is said to be k-bounded iff \/M E R(N', M 0 ), M(p) ~ k. A 
P /T system is said to be (marking) k-bounded iff every place is k-bounded, 
and bounded iff there exists some k for which it is k-bounded. A P /T system is 
live when every transition can ultimately occur from every reachable marking, 
and it is deadlock-free when at least one transition is enabled at every reachable 
marking. Mis a home state in (N', Mo) iff it is reachable from every reachable 
marking, and (N', Mo) is reversible iff Mo is a home state. The home space is 
the set of home states. Boundedness is necessary whenever the system is to 
be implemented, while liveness is often required, specially in reactive systems. 
They are so important that the name well-behaved has been coined for live and 
bounded systems. A net N' is structurally bounded when (N', Mo) is bounded for. 
every Mo, and it is structurally live when there exists an Mo such that (N', Mo) 
is live. Consequently, if a net N' is structurally bounded and structurally live 
there exists some marking Mo such that (N', Mo) is well-behaved. In such case, 
non well-behavedness is exclusively imputable to the marking, and we say that 
the net is well-formed. A well-known polynomial necessary condition for well
formedness, based solely on purely structural properties (i.e. properties that can 
be defined without any reference to the behaviour) is structural boundedness 
and structural repetitiveness. For convenience sake, a structurally bounded 
and structurally repetitive net will be called well-structured. Some well-known 
relations between these concepts are summarized as follows [3, 16, 14, 4]: Let 



237 

(N, Mo) be a connected P /T system. If N is well-formed, then it is well
structured, which is equivalent to consistent and conservative. If N is well
structured, then it is strongly connected. If (N, Mo) is well-behaved, then N 
is strongly connected and consistent. 

2.2 Deterministic Systems of Sequential Processes, and Other Subclasses 

State Machines are ordinary Petri nets such that every transition has only one 
input and only one output place (Vt ET: 1•tl = lt•I = 1). State Machines allow 
the modelling of sequences, decisions (or conflicts), and re-entrancy (when they 
are marked with more than one token) but not synchronization. Some well
known results from the structure theory of State Machines are the following [3, 
16, 14]: 

• The rank of their incidence matrix equals their number of places minus 
one 

• They are conservative (thus, structurally bounded) 

• A State Machine is structurally live iff it is strongly connected, which is 
equivalent to being consistent 

• A marked State Machine is live iff it is strongly connected and it contains 
at least one token 

• If a marked State Machine is live, then it is k-bounded iff it contains k 
tokens. 

(Regarding the timing, it is assumed that every cycle in a State Machine con
tains at least one timed transition.) Topologically speaking, strongly connected 
State Machines are the Petri net counterpart of classical closed monoclass 
queueing networks. In closed networks, no customer leaves the system or ar
rives from the outside, hence the population is preserved. The corresponding 
property in Petri nets terminology is conservativeness, which leads to global 
token conservation laws for any initial marking. 

Deterministic Systems of Sequential Processes are used for the modelling and 
analysis of distributed systems composed by sequential processes communicat
ing through output-private buffers. Each sequential process is modelled by a 
safe (1-bounded) State Machine. The communication among them is described 
by buffers (places) which contain products/messages (tokens), which are pro
duced by some processes and consumed by others. Each buffer is output-private 
in the sense that it is an input place of only one State Machine (see Figure 2, 
where grey places are buffers). 

DEFINITION 1 A marked Petri net (N, M 0 ) = (Pi U ... U Pq U B, T1 U ... U 

Tq, Pre, Post, M0 ) is a Deterministic System of Sequential Processes (DSSP) 
ifj: 

1. Vi, j E {1, ... , q}, i =fa j: pin Pj = 0, Tin Tj = 0, pin B = 0 
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FIGURE 2. A Deterministic System of Sequential Processes. 

2. Vi E {l, ... ,q}: (SMi,Moi) = (Pi,Ti,Prei,Posti,Moi) is a strongly 
connected and 1-bounded State Machine (where Prei,Posti, and Moi are 
the restrictions of Pre, Post, and Mo to Pi and T;) 

3. The set B of buffers is such that rib E B: 

(a) l•bl 2: 1 and lb•I 2: 1 

(b) 3i E {I, ... , q}, such that b• C Ti 

(c) rip E Pi U ... U Pq: t, t' E p• ⇒ Pre(b, t) = Pre(b, t'). 

The first two items of the previous definition state that a DSSP is composed 
by a set of State Machines (SMi, i = I, ... , q) and a set of buffers (B). By item 
3. a, buffers are neither source nor sink places. The output-private condition is 
expressed by condition 3.b. Requirement 3.c justifies the word "deterministic" 
in the name of the class: the marking of buffers does not disturb the decisions 
taken by a State Machine, i.e. choices in the State Machines are free. This 
definition generalizes the class of DSSP's defined by Souissi and Beldiceanu [18], 
where buffers are required to have not only a single output State Machine 
(output-private) but also a.single input State Machine (input-private). From 
a queueing network perspective, DSSP's are a mild generalization of Fork
Join Queuing Networks with Blocking where servers are complex (safe State 
Machines with a rich connectivity to buffers). 

From the definition of a DSSP, it follows that the incidence matrix has the 
following structure: 
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C1 0 ... 0 
0 C2 ... 0 (1) 

0 0 ... Cq 
B1 B2 ... Bq 

where Ci represents the incidence matrix of SMi = (Pi, Ti, Prei, Posti), while 
B; represents the connections of State Machine SM; to the buffers. 

From the particular structure of C, the following can be written: 

q q 

rank(C) ~ L rank(Ci) + rank(CB) = L IPil - q + rank(CB) (2) 
~1 ~1 

where CB= (B1IB2I · · · IBq) is the submatrix of C formed by the rows corre
sponding to the buffers. 

Another interesting subclass of P /T nets are Equal Conflict nets [22]: 

DEFINITION 2 Let .N be a P /T net. Two transitions, t, t' E T, are in Equal 
Conflict relation if! t = t' or •t n •t' =p 0 =? 'vp E P: Pre(p, t) = Pre(p, t'). 
This is an equivalence relation on the set of transitions of a net, and every 
equivalence class is called an Equal Conflict {set). The set of all Equal Conflict 
sets is denoted by £ . 

.N is an Equal Conflict (EC) net if! 'vt, t' E T: •t n •t' =p 0 =? 'vp E 
P: Pre(p, t) = Pre(p, t'). 

EC nets are such that every choice is free, so they generalize the ordinary 
subclass of Free Choice nets. Many nice results from the Free Choice theory 
have been recently extended to EC net systems: 

• [22] The potential reachability graph of a live EC system is directed. Thus, 
live EC systems do not have killing spurious solutions (spurious solutions 
that do not enable any transition), and live and bounded EC systems have 
home states. Since a bounded strongly connected EC system is live iff it is 
deadlock-free, liveness can be determined by checking absence of solutions 
to certain systems of linear inequalities in the integer domain [20] 

• [23] .N is well-formed iff it is consistent, conservative, and the rank of 
its incidence matrix fulfills some simple condition based on the topology. 
Therefore, the possibility of marking boundedly and lively a given EC net 
can be determined in polynomial time. Moreover, if .N is well-formed, it 
can be decomposed in a meaningful way, similarly to the decomposition of 
a Free Choice net into State Machines and/or Marked Graphs. Liveness 
of the whole system can be compositionally characterized in terms of the 
liveness of the analogues to State Machine components. 
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FIGURE 3. Example of transformations (preserving boundedness, liveness, the 
existence of home states, etc.) to convert a DSSP into a DSSP /EC. Some 

· DSSP nets cannot be transformed, though. 

Observe that, in a DSSP, all the private conflicts of the State Machines are 
Equal Conflicts by the "deterministic" assumption. All the remaining transi
tions are elementary Equal Conflict sets. In the sequel, for ease of presentation, 
Equal Conflict sets will be supposed to have at most two transitions ( otherwise 
serialize choices into binary ones). 

Neither DSSP's are a subclass of EC nets nor the converse. Nevertheless, 
if it happens that all buffers of a DSSP have exactly one output transition 
("lb E B: lb•I = 1), that is, if they are strictly output-private, then obviously 
they are EC, and they are called Equal Conflict DSSP (DSSP/EC) (the net in 
Figure 2 is indeed EC). Naturally, DSSP /EC's inherit all the nice properties of 
EC nets and systems. In fact, by means of several transformations preserving, 
among other properties, boundedness, liveness and the existence of home states 
(see Figure 3 top for two examples), the results that are valid for the DSSP /EC 
subclass can be extended to many non EC nets. Observe, though, that not all 
DSSP's can be transformed into EC (see Figure 3 bottom). 

2. 3 Time Representation 
One of the advantages of Petri net models for the design and analysis of con
current and distributed systems is that they can be naturally extended by time 
attributes in order to achieve performance evaluation. We consider net sys
tems with timed transitions. Marking and time independent Coxian random 
variables associated to the firing of transitions define their service time. The 
mean values of these variables are denoted Si for each transition t; of the net. 

For the modelling of conflicts we use immediate transitions with the addi-
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tion of (marking and time independent) routing rates [l]. In other words, for 
the subset of immediate transitions { t1 , ... , tk} C T being in conflict at each 
reachable marking, we assume that the constants r 1 , ... , rk E (Q+ are explic
itly defined in the system interpretation in such a way that when t1 , ... , tk 
are simultaneously enabled, transition ti, i = 1, ... , k, fires with relative rate 
ri/(:E~=l ri)- Consequently, routing is completely decoupled from duration of 
activities. The only restriction that this decoupling imposes upon the system 
is that preemption cannot be modelled with two timed transitions (in conflict) 
competing for the tokens. (In other words, a race policy cannot be modelled. 
Our constraint is equivalent to the use of a preselection policy for the resolution 
of conflicts among timed transitions.) 

Assuming the above described time interpretation, the timed model has al
most surely the fair progress property, that is, no transition can be permanently 
enabled without firing. Additionally, it has the local fairness property, that is, 
all output transitions of a shared place simultaneously enabled at infinitely 
many markings will fire infinitely often. (In other words, all possible outcomes 
of any conflict have a non-null probability of firing.) 

The visit ratio of transition ti with respect to ti, v~i), is the average number 
of times ti is visited (fired) for each visit to (firing of) the reference transition 
ti. The computation of visit ratios is interesting for the performance analysis of 
formal models. For example, it is well-known that the steady-state probability 
of a state in a product-form queueing network with single-server semantics [9] 
depends on the average service demands of customers from station i, defined 
as: 

i = 1, ... ,m (3) 

The computation of average service demands is also very important in the 
performance analysis of stochastic Petri net models. In Section 4, applying the 
theory presented in [8], we use these values to compute upper and lower bounds 
for the throughput of transitions, i.e. the average number of service completions 
(firings) per time unit, in a well-behaved DSSP. 

3 FUNCTIONAL ANALYSIS OF DSSP's 
Associated to the net N of a DSSP, two nets, the Regulated Net and the Con
trol Net, can be defined. In the first one, a particular conflict resolution policy 
respecting the relative occurrence of transitions in (private) conflicts, is imple
mented by means of some "arbiter" subnets, that reduce the non-determinism. 
The second one, derived from the first, tries to capture the essentials of the 
intercommunication schema, somehow abstracting from the details of the se
quential processes. One of the benefits of using restricted subclasses of nets 
is the availability of results that facilitate the analysis. In the case of DSSP, 
we have a special necessary condition for well-formedness, that we conjecture 
to be also sufficient (actually, it is proven to be for DSSP /EC), and a simple 
algebraic sufficient condition for liveness, based on the equivalence of liveness 
and deadlock-freeness (it is also proven to be necessary for DSSP /EC). 
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FIGURE 4. Regulated and Control Nets. 

3.1 The Regulated Net, N R, and the Control Net, N c 
The regulated net associated to N for some given routing rates, N R, is obtained 
adding to Nan appropriate Regulation Circuit [4] per (binary) Equal Conflict 
set (i.e. a circuit around the two conflicting transitions, the weights of arcs being 
such that the transitions should be fired at long run according to the routing 
rates; see Figure 4 top). It is easy to see that, if (N, M 0 ) is live, it is always 
possible to mark appropriately the Regulation Circuits, so that (N R, Ml/-) is 
also live (Mo = Ml/- !P, i.e. the projection of Ml/- on P). 

Let us now define N c, the parametrically weighted control net associated to 
N (the control net in the sequel). Let NR be the net in which the routing rates 
are leaved in parametric form (i.e. the rates Ti are not given a numerical value). 
Apply (partially) the basic algorithm to compute all minimal T-semiflows of a 
net [13, 7] with the aim of eliminating only certain rows (places): 

Phase 1. Eliminate places· belonging to the State Machines (Figure 4 bottom, 
left) 

Phase 2. Eliminate places belonging to the Regulation Circuits (Figure 4 bot
tom, right) 

The outcome of Phase 1 is a matrix, C1 , that in net terms can be interpreted 
as follows: 
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• Each transition represents a minimal T-semiflow of a State Machine 

• Places are the buffers and those derived from the Regulation Circuits. 

The outcome of Phase 2 is another matrix, C2. The submatrix of C2 obtained 
removing the null rows, i.e. considering only the rows corresponding to buffers: 
Cc = C2 Ls, is of course the incidence matrix of a P /T net, and this will be 
precisely the control net N c: 

• Each transition represents a State Machine of the DSSP 

• All places are buffers 

• The weights of arcs are parametrized by the routing rates. 

PROPOSITION 3 Let N be a well-structured DSSP with q State Machines: 

• N c is a strongly connected and conservative structurally persistent net 
(or Choice-free, see {21]) with parametric weights 

• rank(Cc) = q-1 or ritnk(Cc) = q. 

It is interesting to observe that all the T-semiflow structure of N (derived 
from the Equal Conflicts) is represented in the control net thanks to the para
metric weighting, as can be checked working out the example of Figures 2 
and 4. 

From the above, an important lower bound for rank(C) is obtained: 

PROPOSITION 4 Let N be a well-structured DSSP, with incidence matrix C, 
and with 1£1 Equal Conflict sets: 

(4) 

Proof. The left inequality is simply a rewriting of inequality (2), taking into account 
that, for strongly connected State Machines, there is exactly one place per Equal 
Conflict set, so L~=l IAI = ll'I-
For the right inequality the following matrix should be considered: 

Since C2 is obtained through linear combinations of columns of C, rank(CIC2 ) = 
rank(C). Therefore: 

rank(C) ~ L IAI - q + rank(CB) ~ ll'I - q + q - 1 = ll'I - 1 (5) 

◊ 
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3.2 Well-Formedness and Liveness 
Using the bound obtained in Proposition 4, and also the particular structure 
of DSSP's we obtain the following result regarding liveness of a DSSP: 

THEOREM 5 Let (N, M0 ) be a DSSP. 

• If N is well-formed, then N is well-structured and rank(C) = 1£1- 1 

• If (N, Mo) is strongly connected and bounded, it is live if! it is deadlock-
free. 

Proof. For Part 1, according to [4], rank(C) $ IEI -1 for any well-formed P/T net. 
But rank(C) ~ IEI - 1 for a DSSP. 
For Part 2, if tj is a non-live transition of SM,., none of the transitions of SM,. would 
be live. Since the input buffers to SM,. are bounded by assumption, the transitions 
of all their input State Machines should be non-live. By finiteness and strong con
nectedness of .N', non-liveness is propagated to all transitions, hence the system is 
deadlocked. ◊ 

If N is not well-s.tructured, then it cannot be well-formed. If N is well
structured but rank(C) ~ 1£1, then it is not structurally live (part 1 of The
orem 5} and for every initial marking the system would deadlock (part 2 of 
Theorem 5). In performance terms, in both cases, assuming boundedness, 
the system would present null throughput for any initial configuration of re
sources/ customers due to a problem that is rooted on the net structure. The 
problem can be detected in polynomial time (both well-structuredness and the 
rank are analysed in polynomial time}, so this test should be applied prior to 
any other - more complex - analysis. For DSSP /EC, the condition of part 1 
of Theorem 5 is also sufficient [23], result that can be extended to many non EC 
nets by the corresponding net transformations (see Figure 3}. We conjecture 
that the result is valid for the complete DSSP class. 

In case N is well-formed, the problem is determining whether the initial 
marking makes the system live or not. To achieve this, part 2 of Theorem 5 
can be used, so only deadlock-freeness needs to be proven, instead of liveness. 
(We want to mention here that being well-formed is not proven sufficient, in 
general, to guarantee existence of an initial marking making the system live 
and bounded and DSSP, due to the definition imposing safeness of the State 
Machines. Nevertheless, in the case of DSSP /EC, and thanks to the composi
tional characterization of liveness [23], if a DSSP /EC is well-formed then there 
exists a "DSSP marking" such that the system is well-behaved, because one 
token is sufficient for the P-components corresponding to State Machines to 
be live.) In [20] a general sufficient condition for deadlock-freeness in terms of 
the absence of integer solutions to a set of systems of linear inequalities is pre
sented. The basic idea is to ask for absence of potentially reachable markings 
not enabling any transition of the net. In the particular case of DSSP's, among 
other subclasses, such algebraic condition can be expressed as a single system of 
inequalities ( use the rules presented in [20] plus the particular transformation 
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FIGURE 5. A transformation preserving deadlock-freeness. (Place p must not 
be a choice place.) 

shown in Figure 5, that preserves deadlock-freeness - actually it preserves the 
language modulo a projection - thanks to the output-private and the State 
Machines' safeness hypothesis). 

For instance, absence of (potential) deadlocks in the system of Figure 2 is 
characterized by the absence of solutions to the following system of inequalities. 
The first two sets define the set of potentially reachable markings (i.e. they are 
the state equation). The following three sets express disabledness of "private" 
transitions of the three State Machines (i.e. transitions whose only input is a 
State Machine place), and the last three express disabledness of the transitions 
having some buffer as input (SB(b) denotes the structural (marking) bound of 
buffer b, that is defined as max{M(b) IM E PR(N, M 0)}; the structural bound 
of State Machine places is obviously one). 
M= Mo +C-iJ 
M 2'.: O;iJ 2'.: 0 
M(p}) = M(p~) = M(p½) = M(pl) = 0 
M(p~) = M(p~) = 0 
M(pf) = M(pi) = M(p~) = M(p~) = 0 
SB(b2) · M(pg) + M(b2) ~ SB(b2) 
SB(b1) · M(pD + M(b1) ~ SB(b1) + 1 
SB(b3) · M(p~) + M(b1) ~ SB(b3) 

This general sufficient condition for deadlock-freeness is also necessary in 
the case of EC systems [22], and we conjecture that it is so also for DSSP's. 
(Safeness of the State Machines is necessary here. There are examples of DSSP 
nets with a 2-bounded State Machine having killing spurious solutions.) 

4 PERFORMANCE ANALYSIS OF DSSP's 

4.1 Home States and Ergodicity 
It is well-known that under (possibly marking-dependent) exponentially dis
tributed random variables associated to the firing of transitions and Bernoulli 
trials for the successive resolutions of each conflict, the underlying Continuous 
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FIGURE 6. A refinement into exponential stages of a Coxian single server timing 
oft. 

Time Markov Chain (CTMC) is isomorphous to the reachability graph of the 
untimed net model [2]. Thus, the existence of a home space leads to ergodicity 
of the marking process for bounded net systems with exponential firing times. 

PROPERTY 6 Let (N,M0 ) be a live and bounded DSSP/EC with Coxian ran
dom variables associated to the firing of transitions and Bernoulli trials for the 
successive resolutions of each conflict. The underlying CTMC is ergodic. 

Proof. Live and bounded Equal Conflict net systems have home states [22]. By 
1-boundedness of the State Machines of a DSSP (i.e. they work under single server 
semantics) two transitions of the same State Machine cannot be fired simultaneously. 
Therefore, the refinement of a Coxian-timed single-server transition using exponen
tially timed stages can be applied (Figure 6). Since the (refined) exponentially timed 
net system is a DSSP /EC, its_ underlying CTMC is ergodic. ◊ 

Although the property is stated for DSSP /EC, again the result can be ex
tended to many non EC nets by the corresponding net transformations pre
serving the existence of home states (see Figure 3). We conjecture that DSSP 
have also home states, that is, that the ergodicity result holds for the entire 
DSSP class of models. 
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4.2 Computation of Visit Ratios 

The computation of the average service demands of tokens from transitions, 
Equation (3), is useful for the performance analysis of timed systems. Assuming 
that the average service times of transitions, Si, are known, then it is necessary 
to compute the vector of visit ratios to transitions, iJ(j). 

If .N is well-structured, the visit ratio vector normalized for tj, iJ(j), should 

be a T-semiflow of .N. Otherwise stated (observe that v~j) ~ 0 by definition): 

C · if..j) = 0 (6) 

The conflicts in the State Machines of a DSSP are free, because the buffers 
do not condition the conflict resolution, by the "deterministic" assumption. 
Structurally speaking, these conflicts correspond to Equal Conflicts at the net 
level. Let ta and tb be in Equal Conflict relation. The corresponding visit ratios 
should verify the following equation: 

(7) 

An equation like (7) holds for every (binary) Equal Conflict. Rewritten in 
vector form: Tab · iJ<j) = 0, which for the set of all Equal Conflicts leads to: 

R, if..j) = 0 (8) 

where Risa matrix with m-1£1 (number of binary Equal Conflicts) rows and m 
columns. In other words, m -1£1 is the number of independent linear relations 
fixed by the routing rates at (binary) Equal Conflicts, so rank(R) = m - 1£1. 

THEOREM 7 Let .N be a well-formed DSSP net. The system of equations: 

( ~ ) · if..j) = 0, v;j) = 1 (9) 

has only one solution (i. e. the vector of visit ratios depends neither on the 
marking, provided it allows infinite behaviours, nor on the service times). 

Proof. The above statement is equivalent to saying that }\( R has a unique consistent 

component (in fact it is consistent) under locally fair Rand rank ( ~ ) = m -1. If 

}\( is well-formed, the addition of a Regulation Circuit to a (binary) Equal Conflict 
increases by one the rank of the incidence matrix (4]. To produce}\( R from J\f, m-1£1 
regulation circuits must be added, so: 

rank ( ~ ) = rank (C) + m -1£1 = m - 1 (10) 

The addition of regulation circuits preserves well-formedness, thus consistency. ◊ 

Consistency of .N R means that in any infinitely long run, all transitions 
appear infinitely often. In other words, this fact can be enlightened as follows: 
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Let N be a well-formed DSSP net. Any locally fair conflict resolution policy for 
an M 0 such that (N, M 0 ) is live leads to global fairness (impartiality). If the 
system of inequalities ( 4) has no solution for a given conservative DSSP net and 
for some given routing rates defined by Ro, N Ra should not contain a consistent 
component and there is no possibility of infinite behaviours. Thus N is not 
structurally live and a total deadlock can be reached sooner or later. Moreover, 
N being conservative, (N, Mo) should be bounded, then if conflicts are solved 
under time and marking independent discrete probability distributions and 
there is no null probability of firing an enabled transition (i.e. local fairness is 
assumed), the stochastic net system will inevitably reach a deadlock. 

4.3 Performance Bounds 

This section is devoted to present some insensitive (i.e. holding for any proba
bility distribution function for the firing times) performance bounds. Basically, 
throughput upper bounds are computed by finding the slowest isolated subnet 
among those generated by P-semi:fl.ows of the net, and are presented in the next 
theorem. 

THEOREM 8 [8] . 
For DSSP systems, a lower bound for the mean interfiring time rU) of tran

sition tj ( or its inverse an upper bound for the throughput uj) can be computed 
by solving the following linear programming problem: 

r(j) ~ maximum yT . p RE . jj(j) 
subject to yT · C = 0 

yT ·Mo= 1 
Y~O 

(LPPl) 

where PRE and C are matrices representing the Pre and global incidence func
tions of the net, Mo is the initial marking, and jjU) is the vector of average 
service demands for transitions. 

We remark that the computation of the above bound has polynomial time 
complexity on the net size. This is because the computation of vector jjU) 
is polynomial and because linear programming problems can also be solved in 
polynomial time. 

If the solution of (LPPl) is unbounded and since it is a lower bound for the 
mean interfiring time of transition tj, the non-liveness can be assured (infinite 
interfiring time). If the visit ratios of all transitions are non-null, the unbound
edness of the problem (LPPl) implies that a total deadlock is reached by the 
net. This result has the following interpretation: if (LPPl) is unbounded then 
there exists an unmarked P-semi:fl.ow, and the system is non-live. 

Concerning throughput lower bounds, provided the net system is live, they 
can be derived by adding the service time of all transitions, weighted by the 
visit ratios. This computation implies a complete sequentialization of all the 
activities represented in the model. 
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THEOREM 9 [8) For well-behaved DSSP systems, an upper bound for the mean 
interfiring time rU) of transition ti ( or its inverse a lower bound for the 
throughput) is: 

(11) 
i=l i=l 

where Si, vii), and nii) are the mean service time, visit ratio, and average 
service demand, respectively, for transition ti, i = 1, ... , m. 

We remark that the above bound, provided the system is well-behaved, can 
also be computed in polynomial time, since the vector of visit ratios can be 
computed with such complexity. 

Bounds for other performance indices can be computed using classical for
mulas in Queuing Networks theory such as Little's formula. 

The number of tokens in a place defines the length of the represented queue 
(including the customers in service!). Thus it may be important to know bounds 
on average marking of places. 

As an example, in [5) it has been shown that the following are lower and 
. upper bounds for the average marking, M: 

(12) 

Jvlb(p) T T -lb 
max { M(p) I B · M = B · Mo , M 2'.: M } (LPP2) 

where S = diag (si), a~lb is the vector of throughput lower bounds, and the 
rows of BT are the basis of left annullers of C ( the incidence matrix of the net). 

As an interesting remark, the reader can check that a structural absolute 
bound for the marking of a place is given for conservative nets (i.e., 3Y > 0, 
yT • C = 0) by the following expression: 

SB(p) (LPP3) 

The constraint in (LPP3) being weaker than that in (LPP2) (M 2'.: M 1b is 

transformed into M 2'.: 0), it is obvious that lvlb $ SB(p). 

5 CONCLUSIONS AND FUTURE WORK 

We have introduced a new structured subclass of Petri nets which generalizes 
the Deterministic Systems of Sequential Processes (DSSP) introduced in [18]. 
This class permits the modelling of cooperating sequential processes: the pro
cesses are modelled by safe State Machines while their cooperation is repre
sented by places called buffers. The output-private and the deterministic as
sumptions, together with safeness of the State Machines, preclude competition. 
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. We have presented several results concerning the functional and performance 
analysis of these models, and we have outlined some extensions and conjectures. 
The conjectures can be re-stated as follows: 

• The potential reachability graph of a live DSSP is directed 

• a DSSP is well-formed iff it is well-structured and rank(C) = 1£1 - 1 

The first one implies existence of home states in well-behaved systems and 
the characterization of liveness by the absence of solutions to a system of linear 
inequalities over the-l,ntegers. The second is related to decomposability concepts 
and a compositional characterization of liveness. At present we are working out 
these topics. 

REFERENCES 

1. M. Ajmone-Marsan, G. Balbo, and G. Conte. A class of generalized stochas
tic Petri nets for the performance evaluation of multiprocessor systems. 
ACM Transactions on Computer Systems, 2(2):93-122, 1984. 

2. M. Ajmone-Marsan, G. Balbo, and G. Conte. Performance Models of Mul
tiprocessor Systems. MIT Press, 1986. 

3. G.W. Brams. Reseaux de Petri: Theorie et Pratique. Masson, 1983. 
4. J.M. Colom, J. Campos, and M. Silva. On liveness analysis through linear 

algebraic techniques. In Procs. of the Annual General Meeting of ESPRIT 
Basic Research Action 3148 Design Methods Based on Nets (DEMON), 
Paris, June 1990. 

5. J. Campos, G. Chiola, and M. Silva. Properties and performance bounds 
for closed Free Choice synchronized monoclass queuing networks. IEEE 
Trans. Automatic Control, 36(12):1368-1382, 1991. 

6. J. Campos and M. Silva. Steady-state performance evaluation of totally 
open systems of Markovian sequential processes. In M. Cosnard and C. Gi
rault (ed.) Decentralized Systems, 427-438. North-Holland, 1990. 

7. J.M. Colom and M. Silva. Convex geometry and semiflows in P /T nets. A 
comparative study of algorithms for computation of minimal P-semiflows. 
In G. Rozenberg (ed.) Advances in Petri Nets 1990, volume 483 of LNCS, 
77-112. Springer-Verlag, 1991. 

8. J. Campos and M. Silva. Structural techniques and performance bounds of 
Stochastic Petri Net models. In G. Rozenberg (ed.) Advances in Petri Nets 
1992, volume 609 of LNCS, 352-391. Springer-Verlag, 1992. 

9. E. Gelenbe and G. Pujolle. Introduction to Queuing Networks. Wiley, 1987. 
10. U. Herzog. Performance evaluation and formal description. In Procs. of the 

IEEE Conference CompEuro 91, 750-756, Bologna, Italy, May 1991. 
11. C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, Engle

wood Cliffs, NJ, 1985. 
12. R. Milner. A Calculus of Communicating Systems. Prentice Hall, London, 

1989. 
13. J. Marti'.nez and M. Silva. A simple and fast algorithm to obtain all invari

ants of a generalized Petri net. In C. Girault and W. Reisig (ed.) Application 



251 

and Theory of Petri Nets, volume 52 of Informatik-Fachberichte, 301-310. 
Springer-Verlag, 1982. 

14. T. Murata. Petri nets: Properties, analysis, and applications. Proceedings 
of the IEEE, 77(4):541-580, 1989. 

15. W. Reisig. Deterministic buffer synchronization of sequential processes. 
Acta Informatica, 18, 117-134, 1982. 

16. M. Silva. Las Redes de Petri en la Automatica y la Informatica. AC, 1985. 
17. M. Silva. Interleaving functional and performance structural analysis of net 

models. In M. Ajmone Marsan (ed.) Application and Theory of Petri Nets 
1993, volume 691 of LNCS, 17-23. Springer-Verlag, 1993. 

18. Y. Souissi and N. Beldiceanu. Deterministic Systems of Sequential Pro
cesses: Theory and tools. In F.H. Vogt (ed.) Concurrency 88, volume 335 
of LNCS, 380-400. Springer-Verlag, 1988. 

19. Y. Souissi. Deterministic Systems of Sequential Processes: A class of struc
tured Petri nets. In G. Rozenberg (ed.) Advances in Petri Nets 1993, volume 
674 of LNCS, 406-426. Springer-Verlag, 1993. 

20. E. Teruel, J.M. Colom and M. Silva. Linear analysis of deadlock-freeness of 
Petri net models. In J.W. Nieuwenhuis et al. (ed.) Second European Control 
Conference, volume 2, 513-518. North-Holland, 1993. 

21. E. Teruel, J.M. Colom and M. Silva. Structure theory of Choice-free sys
tems. Research Report GISI-RR-93-09, Dpto. Ing. Elect. Inform. Univ. 
Zaragoza, 1993. (Short version available in Procs. of the ICDDS '93, ap
pearing with the title "Modelling and analysis of deterministic concurrent 
systems with bulk services and arrivals".) 

22. E. Teruel and M. Silva. Liveness and home states in Equal Conflict systems. 
In M. Ajmone Marsan (ed.) Application and Theory of Petri Nets 1993, 
volume 691 of LNCS, 415-432. Springer-Verlag, 1993. 

23. E. Teruel et al. Work in progress. 





253 

Stationary Regime and Stability of Free-Choice Petri Nets* 
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The aim of this paper is to give conditions under which a class of stochastic 
Petri nets called free choice nets satisfies a set of monotonicity and sep
arability conditions ensuring the existence of a finite stationary regime for 
the marking process (or a finite periodic regime in the deterministic case). 
The scheme of conflict resolution is via a stochastic routing sequence. This 
assumption is essential for ensuring basic monotonicity properties. The main 
tool for proving these properties is ergodic theory. 

1 THE SEPARABLE-MONOTONE FRAMEWORK FOR COUNTERS AND DATERS 

We consider a discrete event system composed of a set of nodes, and submitted 
to an input point process N = {Tn}nE7j;· Let c.N be the c-dilation of N, namely 
the point process with arrivals c.N = {cTn}nE7j;· Let N[m,n] be the [m,n]
restriction of the point process N, namely the point process {T1}m::;t~n· We 
will say that N[m,n] S N{m,n] if T1 S T{ for all m S l S n. In what follows, this 
point process will also be characterized through its counting measure R[m,n] : 
m---> IN, where R[m,n](t) counts the number of points of N[m,n] which are less 
than t. 

The discrete event system is characterized by two equivalent sets of variables: 

• The daters: X[~,n](k) E fil will denote the epoch of the k-th event on 
node i, when the system is submitted to N[m,n] (here, we take k E JN 
and X[~,n](k) = oo if there are less than k events on node i). 

• The counters: X{m,n](t) E JN will denote the number of events which took 
place on node i before time t (we will take this function left-continuous). 

Note that counters and daters are related by 

xtm,n](t) = L l{x[~,n/k)9} · 
kEIN 

The separable-monotone framework consists of the following set of assumptions: 

*Supported by the European Grant BRA-QMIPS of CEC DG XIII. Also presented at the 
llth International Conference on Analysis and Optimization of Systems, DES'94. 
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External Monotonicity If N[m,n] :::; N{m,n]' then for all k and i (with ob

vious notations), X[~,n](k):::; {X'}tm,n](k), which is equivalent to the property 

that for all t and i X{m,n](t) ~ {X'}rm,n](t). 

Conservation Let 

X[im n] = lim X[im nJ(t). 
' t-+oo ' 

(2) 

This limit exists since the function is non-decreasing. In words, X[i l counts m,n 
the total number of events on node i for N[m,n]. We assume that X{m,n] is finite 
and independent of the values taken by the variables Ti, n ::; l ::; m (provided 
m, n and {T1} are finite of course). Of particular interest to us will be the 
maximal dater defined by: 

(3) 

Separability The separability assumption states that if T1+1 ~ X[m,1] + M, 
for some non-negative M, then 

X[~,nJ(k) = X[~,11 (k), k::; Xi[m, l] 

X[~,nl(k + X{m,iJ) X[~+i,mJ(k), k ~ I (4) 

or equivalently 

X{m,n](t) = X{m,1](t), t < T1+1 

X{m,n](t) = X{m,I] + X{1+1,m](t), t ~ T1+1- (5) 

It is easy to check that the separation and the conservation properties imply 
that for all m:::; l < n, X{m,n] = X{m,I] + X{i+l,n] regardless of {T1}. 

Homogeneity The homogeneity assumption states that if T( = T1 + c, then 
{X'}rm,n](k) = X[~,n](k) + c for all k and i or equivalently that {X'}rm,n](t + 
c) = X{m,n](t) for all t and i. 

Let 

W[m,n] - X[m,n] - Tn, 

W[~,n](t) = X{m,nJ - X{m,n](Tn + t), t ~ 0. 

The following theorems are proved in [4]: 

THEOREM 1 Under the above properties, for all n, W[m-1,n] ~ W[m,n]; for all 
t ~ 0, i and n, W[~-l,n](t) ~ W[~,n](t), so that 

3 m~~oo i W[m,nJ = W[-oo,n], 3 m~~oo j W[~,nl(t) = W[i-oo,nJ(t) (6) 

where the notation limm--.-oo j x(m) implies that x(m) is a non-decreasing 
function of m. 
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THEOREM 2 If the system has stationary ergodic input point process defined 
on some probability space (fl, :F, P, 0), where 0 is a shift on n which is ergodic 
and leaves P invariant, and if it is such that W[n,n+k] = W[o,k] o on, then the 
following a.s. limit takes place for all c ~ 0: 

:3 lim W[o,n](c.N) = 'Ye (7) 
n---+oo n 

where 'Ye is a constant. If the intensity ,\ of the input point process is such 
that A"fo < l, then W[-cx,,n](l.N) = W[-cx,,n] < oo, for all n. If in addition 
W[~,n+k](t) = W[i,k](t) o on for all n, i and t and 

{W[-n,O] --+n--+cx, 00} ad· { 3i/Wt-n,O] --+n--+CXJ 00} (8) 

then, if >.'Yo< l, Wt-cx,,n](t) < oo for all n, i and t. 

Remark Often, one also defines classes of events like Xi,i ( k), which count 
departures from node i to node j, and the above framework extends naturally 
to this type of variables ( and the associated counters). In this case, it is natural 
to define the variables: 

Qfm,n](t) = w[~,n](t) - ~ w(~,ni(t) (9) 
j 

which represent the number of objects ( customers, tokens) on node i at time 
t + Tn for N[m,n]· So, if A"f(O) < 1, we have constructed a stationary (0-
compatible) version of the Qi(t) process. For instance, Q[-cx,,n](t) for t E 
[Tn,Tn+1) provides a stationary process Q for the [-oo,+oo]-restriction of N, 
namely N. 

2 TIMED PETRI NET 

A Petri net is a t-uple (P, T,C,M 0 ) where P is the set of places, T is the set 
of transitions, C the set of arcs between places and transitions and between 
transitions and places (C is a subset of P x TU T x P). Mo is the initial 
marking in the places. We denote by •t the set {p E P : (p, t) E C} (i.e. the 
set of all the input places oft). We define similarly the sets t•, •p, p• as the 
set of the output places oft, the set of the input transitions of p and the set of 
the output transitions of p, respectively. 

A timed Petri net is a Petri net with timings attached to transition firings: 
a-t(n) is the duration of the n-th firing of transition t. This means that if 
transition t begins to fire for the n-th time at epoch e, this firing will end at 
epoch e + a-t(n) and tokeris are taken out of input places and put in output 
places oft according to the firing rule of a Petri net. 

2.1 Free Choice Nets 

Free choice nets (FCN) are Petri nets verifying the following conditions: Yp E 
P, t1, t2 E p•, t1 -:/= t2, •ti = •t2 = {p}. In other words, whenever two 
transitions share an input place, they have no other input place. 
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Free choice nets have been extensively studied in the 70's (6] and have re
gained interest recently (7], (9] because they constitute a nice compromise be
tween power of description and tractability of problems. 

For any place p with several output transitions, the dynamic is characterized 
by a routing function vP : JN -+ p• associated with place p, where vP(k) is 
the transition to which the k-th token to enter place p is routed. The routing 
function can be a deterministic or a random sequence. For comments on this 
type of routing policy, see (1]. 

2.2 Decomposition into Marked Graphs Components 

A place pin a FCN Fis serial if 1•pl = IP•I = 1. 
First we define a relation .C by: t, t' E T, t.Ct' if there is a serial place p 

verifying {9p,p•} = { t, t'}. Let JC be the transitive closure of .C. JC is a 
parallelism relation. We partition the set of transitions T into its maximal 
JC-classes, 1i., · · ·, T;.. We construct a decomposition of F in the following way: 
Pi= {p E 'Pjp serial and •p,p• ET.;} for all I~ i ~ n. 

The marked graph component {MGC) Gi of F is the sub-Petri net of F 
(Pi, T.;,Cn(Pi x T.; U T.; x 'Pi)). One can easily check that Gi is a marked graph 
and is maximal in the sense that no marked graph included in F contains Gi, 

· except Gi itself. 
The places which do not belong to any component Gi are the places with 

several input transitions and/or several output transitions. These places will be 
called routing places in the following. The set of the routing places is denoted 
n. 

2.3 Classification of Free Choice Nets 

We propose a classification of the marked graph components of a FCN based 
upon its links with the routing places. 

A MGC Gi is said Single Input {SI) if #{ t E T.;, •t (/. 'Pi} = 1. Gi is said 
Multiple Input {MI) if #{t ET.;, •t (/. Pi} > 1. A MGC Gi is said Single Output 
{SO) if #{t E T.;, t• (/. 'Pi} = 1. A MGC Gi is said Multiple Output {MO) if 
#{ t E T.;, t• (/. 'Pi} > 1. 

Thus all the MGC of a FCN can be put in one of the four classes, SISO, 
SIMO, MISO, MIMO. A FCN is said SI {resp. SO, MI, MO , SISO , SIMO, 
MISO, MIMO) if all its MGC are SI (resp. SO, MI, MO , SISO, SIMO, MISO, 
MIMO). 

3 EVOLUTION EQUATIONS FOR COUNTERS 

Consider a FC net satisfying the following assumption: a transition t with more 
than one incoming arc (i.e. with an and-convergence) is never preceded by a 
place p with more than one incoming arc {i.e. with an or-convergence). This 
restriction introduces no loss of generality: because of the FC constraint, a 
transition t as above cannot be preceded by a place with multiple outcoming 
arcs; in addition, each place p as above can be replaced by a triple p1, t', p", 
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where •p1 = •p, p110 = p• = t, and where p1• = t', •t' = p', t 1• = p", •p" = t', 
without altering the evolution of the net. 

Let xt ( u) denote the counter associated with t, namely, the number of firings 
initiated by transition t by time u. We will consider the version of this process 
that is continuous to the right. Let A be the set of transitions such that all 
their upstream places are serial, and let B be the set of transitions which do 
not belong to A. Let Y(u) be the vector {Xt(u), t EA}, where the transitions 
are arranged in some order, and let Z ( u) be the vector { Xt ( u), t E B}. Note 
that each transition of B has at most one non-serial upstream place due to the 
FC constraint. However, this place may precede several transitions of B. 

Constant Firing Times We shall first consider the case when firing times 
are constant, positive, and all multiple of a common number, which will be 
taken equal to 1 without loss of generality. These assumptions are essentially 
for the sake of easy exposition. We will in particular show in Section 6 how 
to address the case with stochastic times, which can be treated with a similar 
method. We will denote M the (integer-valued) upper bound on the firing 
times. We will denote vP(m) the m-th routing decision from place p (vP(m) E 
p•) and rrt ( m) the sum 

m 

rrt(m) = L lv"'(l)=t, t E B. (10) 
l=l 

Similarly, for sake of easy exposition, we will limit ourselves to the case when 
the jump times Tn of R are integer-valued. 

LEMMA 1 Under the above assumptions, for all integers n, the counting vectors 
{Y ( k), Z ( k)} satisfy the following evolution equation, which is valid for n > M: 

M 

Y(k) EB (A1@ Y(k - l) EB B1@ Z(k - l)) 
l=l 

Z(k) IT (t, (P1 x Z(k - l) + Q1 x Y(k - l)) + R(k)), 

where ( EB, @) is (min, +) (see {2]), ( +, x) is the usual algebra, and 

(11) 

(12) 

• The matrix A1 on Ax A is defined by A1(t, t') = c if the firing time of 
t E A is l and there is a serial place with c initial tokens between t' E A 
and t; oo otherwise. If there are more than one serial place between t' 
and t, we take c equal to the minimum of their initial markings. 

• The matrix B1 on AX B is defined by B1(t, t') = c if the firing time of 
t is l and there is a serial place with c initial tokens between t' E B and 
t E A; oo otherwise. 

• The matrix P1 on B x B is defined by P1(t, t') = 1 if the firing time of 
t E B is l and there is a place connecting t' to t; 0 otherwise. 
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. • The matrix Q1 on B x A is defined by Q1(t, t') = 1 if the firing time of 
t E B is l and there is a place connecting t' to t; 0 otherwise. 

• R(O) is the matrix of initial markings: R( t', t) = c if t E B is such that •t 
has an initial marking of c. More generally, R( k) ( t', t) is the cumulated 
external input in that place up to time n. R(k)(t',t) = R(k- l)(t',t) + 
I(k)(t, t'). (thus I(k) =fa O iff k E {Tn}n)-

• For all vectors of integers Z = (Z1 , ..• ,Zq), where q = IBI, IT(Z) is the 
vector of integers (1r1(Zi), ... , 1rq(Zq)). 

Prooflmmediate from definitions, the key observation being that due to our 
preliminary assumption, a transition which belongs to B will never have more 
than one input arc, which allows us to write (12). ■ 

Total Number of Firings Let Z = Z(oo) and Y = Y(oo) denote the vectors 
counting the total number of firings of the transitions. One can easily check 
the absence of deadlocks (a deadlock is a marking where no transition can fire) 
and related properties, from Y and Z: for instance, the system is deadlocked 
for the initial marking (Vk, R(k) = R(O)) if and only if Zand Y are finite. 

LEMMA 2 The integer-valued vectors Z and Y satisfy the system of equations 

Y = A®YE9B®Z 

z = II (P X z + Q X y + R) ' 

(13) 

(14) 

where A El,~1 A1, B = El,~1 B1, P = I:~1 P1, Q = L~1 Q1, R = 
limk->oo R(k) are independent of n. 

A notable property is that this system does not depend on the variables at 

anymore: in other words, all properties like liveness, deadlock and intermedi
ates are associated with the switching functions, the topology and the initial 
marking only, and not with timing variables. 

3.1 Assumptions on the Function IT 

We assume that at the origin of time, the network is in a configuration where 
no transition can fire. Such a marking is called the original deadlock. 

In the following, we add two assumptions on the function II. 

ASSUMPTION 1 (A1) The total firing vectors Z and Y are finite if R is finite. 

This assumption is a property of the function II since the total firing vector 
does not depend on the timing variables at of the system. This assumption 
says that if the number of arrivals is finite, the system reaches a deadlock after 
a finite number of firings. 

ASSUMPTION 2 (A2) If the network reaches a deadlock, then this deadlock is 
the original deadlock. 



259 

We can give a characterization of this property in terms of the vector X = 
(Z, Y). If the network reaches a deadlock, then X is finite. If this is the 
original deadlock, then in any MGC G, all the transitions have fired the same 
number of times, Vt1 , t2 E G, xt1 = xt2 • Conversely if X is finite and for all 
MGC G, Vt1 , t 2 E G, Xt1 = Xt2 , then the network has reached the original 
deadlock. 

3.2 Restriction of the Arrival Process 

Let R{m,n] be the counting measure of N[m,n] on place •t. 
The assumption (Ai) allows us to say that the network with the input process 

(R[o,n](k))kE.lN reaches a deadlock. We denote by Z[o,n] and ¥[o,n] the total 
firing vectors for this system. With II[o,oo] = II, they verify: 

Yio,n] A 0 Yio,n] EB B 0 Z[o,n] 

Z[o,n] II[o,oo] (PX Z[o,n] + Q X Yio,n] + R[o,nJ) 

If t E B, we denote by U[~~n] the total number of tokens that entered the place 

•t and U[o,n] = {U[~~n]' t E B}. We have 

U[o,n] = P X Z[o,n] + Q X Yio,n] + R[o,n] • (15) 

Since Z[o,n] and Yio,n] are finite, U[o,n] is also finite. 
Now, we introduce the system generated by the restricted input process 

(R[m,n](k))kElN· We connect this system with the original one by taking 

v[m,oo](k) = vP(k + U{o,m-1]), (16) 

for all t E T and for all p E R. Thus the function II[m,oo] is defined by 

Finally we define the vectors Yim,n](k) and Z[m,n](k), which verify the equations 

M 

Yim,n](k) = E9 (A1 Q9 Yim,n](k - l) EB B1 Q9 Z[m,n](k - l)) 
l=l 

M 

II[m,oo] ( L (P1Z[m,n](k - [) + Q1¥[m,n](k - l)) + 
l=l 

R[m,n](k)), 

with the initial conditions: Vk < Tm, Yim,n](k + 1) = 0 and Z[m,n](k) = 0. 
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4 THE SATURATION RULE 

We prove that the variables X[m,n](k) satisfy the extended saturation condi
tions. We need a preliminary lemma. 

LEMMA 3 If Tm> X[o,m-1] + M then for all k ~ Tm, X[o,n](k) = X[o,m-1] + 
X[m,n](k). 

Proof The proof holds by induction on k. For k = Tm, X[1,m-l] = 
X[1,m-1J(k - l) 'vl > 1 yields 

Yio,n](k) = Yio,m-1] · 
Z[o,n](k) = II {(PZ[o,m-1] + Ql'[o,m-1] + R[o,m-1] + I(Tm)) • 

So, by definition of II[m,oo] : 

l'[o,n](k) = l'[o,m-1] + l'[m,n](k) 
Z[o,n](k) = Z[o,m-1] + Z[m,n](k) • 

For the case k > Tm, the induction property yields 

M 

l'[o,nJ(k) = E9(A1®(1'[0,m-1J+l'[m,nJ(k-l))EBBRSl 
l=l 

(Z[o,m-1] +Z[m,n](k-l))) 
M 

Z[o,n](k) = rr(tt{P1(Z[o,m-1J + Z[m,n](k - l)) 

+Qz(l'[o,m-1] + l'[m,n](k - l))) + R[o,m-1] + R[m,n](k)) • 

Using the characterization of assumption (A2) for l'[o,m-1], 

M 

l'[o,n](k) = l'[o,m-1] + EB {Az ® l'[m,n](k - l) EB B1 ® Z[m,n](k - l)) 
l=l 

M 

Z[o,n](k) = IT(I:(P1Z[m,n](k - l) + Q1Yim,n](k - l))+ 
l=l 

U[o,m-1] + R[m,n](k)). 

This yields 

l'[o,n](k) = l'[o,m-1] + l'[m,n](k) 
Z[o,n](k) = Z[o,m-1] + Z[m,n](k) • 

■ 

COROLLARY 1 X[o,n] = X[o,m-1] + X[m,n]. 

Proof This is an immediate corollary of the previous lemma considering 
the fact that X[o,n] does not depend on Tm. ■ 
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LEMMA 4 (EXTERNAL MONOTONICITY) With two arrival counting measures 
R[m,n](k) ~ R[m,n](k), then X{m,n](k) ~ X[m,n](k). 

Proof The vector X[m,n](k) is an increasing function of (X[m,n](k - l)) l=l···M 

and of R[m,n](k). The proof follows by a straightforward induction. ■ 

LEMMA 5 (CONSERVATION) X[m,n] is finite and independent of the arrival 
times. 

Proof Corollary 1 says that X[m,n] = X[o,n] - X[o,m-1]. Therefore, X[m,n] 
is finite and independent of the arrival times. ■ 

LEMMA 6 (SEPARABILITY) Suppose Tr > W[m,n] + M. Then for all m ~ n, 
if k < Tr, then X[m,n](k) = X[m,r-1J(k), 
if k ~ Tr, then X[m,n](k) = X[m,r-1] + X[r,n](k). 

Proof The case t < Tr is trivial. For the case t ~ Tr, the proof holds by 
induction on k. It is very similar to the proof of lemma 3 and is not reported 
h~. ■ 

LEMMA 7 (HOMOGENEITY) Let R'[ ] be the arrival process shifted by a con-m,n 
stant C, R[m,n](k) = R[m,n](k + C). Then, X{m,n](k) = X[m,n](k + C). 

Proof This holds by immediate induction on k. ■ 

4.1 Stochastic Assumptions 

All the random variables defined in what follows are assumed to be carried by 
some probability space (0, :F, P, 0), where 0 is an ergodic shift which leaves P 
invariant. We assume that the point process associated with the counting mea
sure R[-oo,+oo](k) is 0-stationary and ergodic, and that it has a finite intensity. 
When taking {To = O}, this 0-stationarity assumption here means that 

(17) 

for all k E fil and n. Consider the I-valued sequences V[o,oo] = {v(O,oo](k)}, p E 
R, k E JN} describing the routing decisions; we also assume that the following 
compatibility relation holds for all n. 

(18) 

Ifµ= {µ(k)h:::,:o denotes a sequence, for all integers V ~ 0, we will denote Tyµ 
the shifted sequence {µ(V + k)}k:::,:0 • If U = (UP, p E R) is a vector of non
negative integers, we will denote Tuv the sequences (TupvP, p ER). Equation 
(16) and the above relation imply that 
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(19) 

where U[~~n] is the function defined in Equation (15). 

It should be clear that under the above assumptions, the functions II[n,oo] 
satisfy the compatibility property 

(20) 

so that the compatibility relations of Theorem 2 hold for the counters and the 
daters of the FCN. Besides this, since all the firing times are positive, one can 
easily check that condition (8) is satisfied. Thus, Theorem 2 holds for this class 
of systems under the above assumptions. 

Remark Note that since v[o,00/k) = v[n,n](l) for l = k - U[O,n-i] :S U[n,n]' 
the infinite sequences V[o,oo] are fully determined by the finite sub-sequences 

(vfn,n/k), p ER, 0 :S k :S U[n,n])n~o 

Thus, with our framework, for all nodes p, the whole routing sequence v[o,oo](k) 
is simply the concatenation of the routing sequences vfn,n/l), 1 :S l :S U[n,n]· 

5 ANALYSIS OF AN EXAMPLE: THE SI-FCN 

The aim of this section is to give sufficient conditions for the assumptions of the 
preceding section to hold. We will limit ourselves to the SI-FCN case, where 
certain simplifications take place. 

A MGC Gi is input-connected if for each transition in Gi, there is a path 
from its input transition to t. This is equivalent to: B has no lines the values 
of which are all +oo. 

LEMMA 8 Let F be a SI-FCN with all its MGC input-connected. If F can reach 
a deadlock, then this deadlock is unique. 

Proof If a routing place p contains a token, then one of the transitions in 
p• is enabled, thus this marking is not a deadlock. Let t be a transition in 
G;, let us follow the longest path in G; without tokens. This path leads to a 
transition which is enabled except if it is the input transition. Now, a marking 
verifying these conditions is necessarily unique. ■ 

Therefore, for SI-FCN with input-connected components, assumption (A2 ) 

is redundant. 
For all t E B n G;, let ot ·be the set 

where q is counted with multiplicity n if there are n arcs going from G; to q. 
We will then say that q is an offspring oft with multiplicity n. 

We now describe the dynamics of a pseudo marking process ( this marking 
process is different from the one in the real system) on the set of places of R, 
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which is driven by the routing functions only. Fix an arbitrary priority order 
on the nodes of R: Pi has priority over Pi+I etc. Assume that the jump of R 
at To brings m •t tokens to place •t, for all t E B. If mP1 > O, one token of PI is 
moved following the routing decision t = v[01, 01 (1). Let nP• be the multiplicity 

of the offspring Pi oft (this multiplicity is zero if Pi does not belong toot). By 
definition, such a move leads to the new marking defined by mP• + nP• for all 
i > 1 and mP1 + nP1 - 1 for PI. If the new marking of PI is still positive, we 
move one token of PI as above, but according to the routing decision v[01, 01 (2), 
which leads to a new marking; the procedure is repeated up to the time when 
no tokens are left in PI (this may never happen in which case this first step 
of the procedure never stops). We then move one token of type P2 according 
to the routing decision v[O~o](l), provided there is at least one token in place 
P2 in the last obtained marking. This may possibly create new tokens of type 
PI. The general rule is actually to move the token with highest priority at 
each step, according to the residual routing decisions. The procedure stops 
whenever there are no tokens left in the routing places. 

LEMMA 9 The assumptions (AI) (and therefore (A2 )) are satisfied if and only 
if the above procedure stops after an almost surely finite number of steps. 

The proof is omitted. It is based on a generalization of the Euler property for 
directed graphs called the Euler-Ordered property, which is introduced in [3]. 
Note that if the above stopping property holds for this specific ordering of the 
moves, it will hold for any other ordering. 

In the particular case of i.i.d. routing decisions, independent on different 
nodes, one can naturally associate a multitype branching process with the set R 
by saying that an individual of type p has a set of offspring ot with probability 
P = P(vP = t). Properties (AI) (and (A2 )) will then a.s. hold whenever this 
multitype branching process is subcritical (namely whenever its population dies 
out a.s. for all finite initial conditions). This property boils down to checking 
that the maximal eigenvalue of the branching matrix is strictly less than 1 ([8]). 

6 GENERALIZATION TO VARIABLE FIRING TIMES 

Variable Firing Times We now consider the case when firing times are still 
integer-valued and bounded, but variable with time. Let G't(m) be the firing 
time of the m-th firing of transition t. Let (t(k) be the minimum of Mand the 
time which elapsed since the last time t has started firing before time k. If we 
consider the variables to be left-continuous, we have: 

LEMMA 10 

M 

Y(k) EB (A1(k) Q9 Y(k - l) ffi B1(k) Q9 Z(k - l)) (21) 
l=I 

Z(k) IT (t, (P1(k) x Z(k - l) + Q1(k) x Y(k -1)) + R(k)) , (22) 
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with A1(k)(t, t') = c, the number of tokens in the initial marking of the place 
between t' and t if c;t ( k) = l, oo otherwise ( with a similar definition for B} and 
P1(k)(t, t') = c, the number of tokens in the initial marking of the place between 
t' and t if (t(k) = l, 0 otherwise (with a similar definition for Q). 

A system with variable firing times also falls within the monotone separable 
framework and the same method as in the constant case can be applied (see 
[5]). 

6.1 Future Research 

The constant 10 was computed for Jackson networks ([3]) which happen to be 
a simple case of SI-FCN. Its computation within the more general framework 
of this paper is considered in [5). Other results can also be obtained along the 
lines of [3) including conditions for coupling convergence with (and uniqueness 
of) the stationary regime. 
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A general iterative technique for approximate throughput computation of 
stochastic strongly connected marked graphs is presented. It generalizes 
a previous technique based on net decomposition through a single input
single output cut, allowing the split of the model through any cut. The 
approach has two basic foundations. First, a deep understanding of the 
qualitative behaviour of marked graphs leads to a general decomposition 
technique. Second, after the decomposition phase, an iterative response 
time approximation method is applied for the computation of the throughput. 
Experimental results on several examples generally have an error of less than 
3 %. The state space is usually reduced by more than one order of magnitude; 
therefore the analysis of otherwise intractable systems is possible. 

1 INTRODUCTION 

Stochastic Marked Graphs (SMG's) are a well-known subclass of stochastic Petri 
net models. They allow concurrency and synchronization but not decisions. 
From a queueing network perspective, it can be seen [13] that, provided strong 
connectivity, they are isomorphic to fork/join queueing networks with blocking 
(FJQN/B). 

In this paper we consider strongly connected SMG's with time and marking 
independent exponentially distributed service times associated with transitions. 
For this class of models, several computation techniques have been presented in 
the literature. Exact performance results can be obtained from the numerical 
solution of the underlying continuous time Markov chain (CTMC) [3], but the 
state explosion problem makes intractable the evaluation of large systems. The 
efficient computation of exact performance indices of SMG's cannot be done 
analytically because local balance property does not hold in general [15]. The 
alternative approach of bounds computation has been studied by several authors 
using different techniques (see, e.g., [5, 8]). 

*This work was partially supported by the European ESPRIT BRA Project 7269 QMIPS, 
the Spanish PRONTIC 354/91, and the Aragonese CO~AI-DGA P-IT 6/91. 
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Concerning approximation techniques, several proposals have been done. In 
[4], a method is proposed for nets that admit a time scale decomposition based 
on near-complete decomposability of Markov chains. Near decomposability 
properties are also used in [10] for an iterative approximate solution of weakly 
connected nets. In [6], some particular queueing networks with subnetworks 
having population constraints are analyzed using flow equivalent aggregation 
(i.e., a non-iterative technique) and Marie's method [20] (the idea is to replace 
a subsystem by an equivalent exponential service station with load-dependent 
service rates obtained by analyzing the subsystem in isolation under a load
dependent Poisson arrival process). An alternative approach is presented in 
[18] to compute approximate throughput for SMG's. In that work, the original 
system is also split in subsystems and a delay equivalence criterion is used for 
throughput approximation. The service rates for the aggregated subsystems 
are marking dependent. In [16], response time approximation is applied for an 
iterative computation of the throughput of SMG's. The main differences with 
respect to the work in [18] are two: first, the splitting of the MG is more firmly 
based on qualitative theory of MG's and second, the service rates for aggregated 
subsystems are constant (similar accuracy of the throughput is obtained with 
simpler and more robust algorithms). 

A discussion of the above recalled techniques is presented in [17] for the 
throughput approximation of SMG's. We summarize now some of the con
clusions. Flow equivalent aggregation is clearly the most efficient method (it 
is not an iterative method). In this method, the behaviour of the subsystem 
is assumed to be independent of the arrival process and depends only on the 
number of customers in the system. In many cases, this assumption is violated 
(see [16]), therefore the method cannot be applied. 

Marie's method behaves correctly in many cases. As with many iterative 
methods, the uniqueness of the solution cannot be proven although numeri
cal experience has shown that a unique point does indeed exist. The main 
drawback is that convergence sometimes presents a problem [7]. 

Concerning the delay equivalence technique presented in (18], its conver
gence may sometimes constitute a problem. The robustness of the method 
is improved in [19], where the service rates of the aggregated subsystems are 
made constant. Some problems of this approach have been reported in [16] 
where it is shown that the speed ofconvergence strongly depends on the initial 
values estimated for the service rates that represent the aggregated subsystem. 
Moreover, for several models the authors were not able to find initial values for 
which the method would converge. 

Finally, the response time approximation method introduced in [16] shows 
similar accuracy as delay equivalence, but at a greatly reduced computational 
cost. The method seems to be insensitive with respect to the initial values of 
service rates and is the one which requ:ires the least amount of iterations. The 
main drawback of this method is that the original MG must be decomposed 
into two subsystems each one with only one input place and ·only one output 
place (single input-single output or SISO cut), and such decomposition is not al
ways possible. A generalization to SIMO (single input..:multiple output), MISO 
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(multiple input-single output), and MIMO (multiple input-multiple output) 
cuts has been proposed but it presents serious problems concerning the quality 
of the results [17]. These problems are due to the fact that the structure of the 
net must be modified, by adding a "dummy synchronization" transition, to get 
a SISO cut, and this transformation can lead to a system with a considerably 
different behaviour. 

In this paper, we follow an iterative response time approximation technique 
that avoids the problems derived from the application of the method in [16] for 
the general cases (SIMO, MISO, or MIMO cuts). The approach is deeply based 
on qualitative theory of MG's. More precisely, given an arbitrary cut (subset 
of places producing a net partition), a structural decomposition technique is 
developed in this paper that allows us to split a strongly connected MG into 
two aggregated subsystems and a basic skeleton system. And what is more 
important, the behaviours of the subsystems, including steps, language of firing 
sequences and reachable markings, are equivalent to the whole system behaviour 
(projected on the corresponding subsets of nodes). The better the qualitative 
behaviour of the system is represented by the aggregated subsystems, the more 
accurate the quantitative approximation will be. 

The paper is organized as follows. In Section 2, basic notation and fun
damental properties on MG's and implicit places are presented. Section 3 
includes the structural decomposition of MG's used in the rest of the paper. 
The iterative technique for approximate throughput computation is described 
in Section 4. Section 5 includes several application examples to illustrate the 
introduced technique. Finally, concluding remarks are presented in Section 6. 

2 BASICS ON STOCHASTIC MARKED GRAPHS 

2.1 Basic notations 

We assume that the reader is familiar with concepts of P /T nets. In this section 
we present notations used in later sections, for further extensions the reader is 
referred to [21, 22]. 

N = (P, T, F) is a net if P and T are disjoint sets of places and transitions, 
respectively and F ~ (P x T) U (T x P). We shall only consider nets with finite 
and nonempty sets of places and transitions. A net is connected if and only if 
the least equivalence relation which includes Fis (PUT) x (PUT). 

Let N = (P, T, F) be a net. A path of N is a sequence x1 ... Xk of elements 
(places and transitions) of)\/ satisfying (x1,x2), ... ,(xk-1,xk) E F. It is a 
circuit if (xk, x1 ) E F. A path (circuit) is called simple if all elements in the 
sequence defining the path (circuit) are different. In this paper we only consider 
simple paths and circuits. We denote by P(x, y), x, y E PUT, the set of simple 
paths from x toy. This notion is extended to sets of elements: P(X, Y) is the 
union of the P(x, y) for all x EX and for ally E Y. 

N is strongly connected if for every two elements x, y of N there exists a 
path x ... y. Pre- and Post-sets of elements are denoted by the dot-notation: 
•x = {yl(Y, x) E F} and x• = {yl(x, y) E F}. This notion is extended to sets 
of elements; • X is the union of the pre-sets of elements of X, x• is the union 
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of the post-sets of elements of X. 
A function M: P-, {O, 1, ... } (usually represented in vector form) is called 

a marking. A net system is a couple (.N, Mo) of a net .N and an initial marking 
M 0 • A transition t is enabled at marking M if for all p E •t, M[p] > 0. 
An enabled transition can be fired. The fact that M' is reached from J\.1 by 
firing t is represented by M[t)M'. A sequence of transitions a = t1 t2 ... tk is 
a firing sequence of (.N, Mo) if there exist a sequence of markings such that 
Mo[t1)Mi[t2) · · · Mk_i[tk)Mk, it can be written as Mo[a)Mk, and Mk is said 
to be reachable from Mo by firing a. A step at a marking M is a maximal set 
of transitions concurrently firable from M. 

The reachability set R(.N, M0 ) is the set of all markings reachable from 
M0. L(.N, Mo) is the language of firing sequences of (.N, Mo) (L(.N, Mo) = 
{alMo[a)}). 

A marked graph (MG) is a Petri net such that each place has exactly one in
put transition and exactly one output transition. MG's allow synchronization 
but no choice. MG's are a subclass of ordinary Petri nets for which a sim
ple, powerful, and elegant theory allows very efficient analysis and synthesis 
algorithms. A summary of structure theory of MG's can be found in [21]. 

· 2.2 Implicit places and MG's 

An implicit place never is the unique restricting the firing of its output tran
sitions. Let .N be any net and .Af P be the net resulting from adding a place p 
to .N. If Mo is an initial marking of .N, MC denotes the initial marking of .Af P 
and mo (p) = MC [p]. The incidence matrix of .N is C and lp is the incidence 
vector of place p. 

DEFINITION 2.1 [22] Let (.N, Mo) be a net system and p (/. P be a place to be 
added. Then p is an implicit place (IP) with respect to (.N, Mo) (or equivalently, 
it is an implicit place in (.NP, Mb)) iff the languages of firing sequences of 
(.N, Mo) and (.NP, M[) coincide. That is, L(.N, Mo)= L(.NP, MC). 

A place is an IP depending on the initial marking, M 0 • Places which can be 
implicit for any Mo are said to be structurally implicit (SIP). Inside the class 
of SIP's we are interested in the so called marking structurally implicit places 
(MSIP) whose structural characterization is given in the following result. 

THEOREM 2 .1 [12] Let .N be a net and p be a place with incidence vector lp. 
The place p is an MSIP in )\f P iff there exists Y 2: 0 such that yT • C = lp. 

From this characterization of an MSIP, p, a method to compute an initial 
marking of p making it implicit with respect to (.N, Mo) is presented in [12]. 

In the following, we characterize a special class of MSIP's with respect to 
strongly connected MG's called TT-MSIP's. These places have only one input 
arc and one output arc and therefore, .NP will be also an MG. The row of 
the incidence matrix corresponding to a TT-MSIP can be obtained from the 
summation of rows corresponding to the places in any path from the input 
transition to the output transition of the place. Moreover, we characterize the 
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minimum initial marking making these places implicit with respect to (N, Mo} 
and preserving its steps. 

THEOREM 2.2 Let N = (P, T, F) be a strongly connected MG and p f/. P be a 
place to be added with one input transition ti E T (•p = { ti}) and one output 
transition t0 E T (p• = { t0 } ). The place p is a TT-MSIP with respect to N 
and \f1r E P(ti, to), lp = EP;E1r lp;. 

Proof: If N is a strongly connected MG, for all paths, 7r E P(ti, t 0 ), of the form 
ti(= t1)p1t2 ... tk-lPk-ltk(= t0 ): •pj = {tj}, p/ = {tj+i}, j = 1, ... , k - l. 
Therefore, the summation of the rows in the incidence matrix corresponding 
to the places in 1r, V = EP; E1r lp;, verifies: 
(1) V[t] = 0, \ft f/. 1r; 
(2) V[ti] = V[t1] = EP;E1r lp; [t1] = if ti # t 0 then lp, [ti] = 1 else lp, [ti] + 
[Pk-1 [to] = O; 
(3) V[tr] = Ep;E1r lp; [tr] = lPr-l [tr] + [Pr [tr] = 0, 'vtr E 7r, r = 2 ... (k - 1); 

(4) V[to] = V[tk] = Ep;E1r lp; [tk] = if ti -:p to then lPk-i [tk] = -1 else 

lp, [ti] + lPk-1 [tk] = 0. 
That is, vector V coincides .with the incidence vector, lp, of p, and according to 
Theorem 2.1, p is an MSIP (with Y[pj] = if Pj E 1r then 1 else 0, 'vpj E P) 
and also a TT-MSIP. Q.E.D. 

The following result characterizes the minimum initial marking of a TT
MSIP to be implicit preserving all steps of the net system (N, M0 }. This mark
ing is computed from the contents of tokens of the existing paths from the 
input transition of p to its output transition. 

THEOREM 2.3 Let (N, Mo} be a strongly connected and live MG, and p f/. P 
be a TT-MSIP to be added with •p = {lj} and p• = {t0 }. The minimum initial 
marking of p to be an IP in (NP, MC} preserving all steps of (N, Mo} is 
moin(p) = min{Ep;E1r Mo[pj]l1r E P(ti, to)}, 

Proof: First we prove that p is an IP with an initial marking m 0(p) = m 0in(p) 
(i.e., L(N, Mo)= L(NP, MC)). 
L(NP, MC) <; L(N, M0). Removing place p from NP, we remove constraints 
for firing transitions. Therefore, all sequence(]' E L(NP, MC) are also firable in 
(N,Mo}. 
L(N,M0 ) <; L(NP,MC), We prove this part by contradiction. Let (J' be a 
sequence firable in (N, M0} but not firable in (NP, MC}. Let (]'1 be the max
imal prefix of (J' firable in (N, M0 } and (NP, MC}: M0 [(]'1}M and MC[(J'1}MP. 
Obviously, MP[pi] = M[pi] for all Pi E P. The only transition preventing to 
finish the firing of (J' after the firing of (]'1 in (NP, MC} is t0 • This means that 
m(p) = mo(p) + lp · (J'l = 0. Now, we select a path 1r E P(ti, t 0 ) such that 
mo(p) = EP;E1rMo[pj], Moreover, according to Theorem 2.2, lp = Ep;E1rlP;· 

Therefore, substituting these last expressions in the above expression of m(p) 

we obtain, 0 = m(p) = EP; E1r Mo [pj] + EP; E1r lp; · (]'1 = EP; E1r M[pj]. But this 



270 

contradicts the hypothesis from which a is firable in (N, Mo) and therefore the 
place Pi E •t0 in the path 7r must contain at least one token. 

In order to prove that m 0 (p) = mgiin(p) is the minimum initial marking 
making pan IP preserving the steps of (N, Mo) we distinguish two cases. 
Case 1 (ti ¥ t0 , i.e., p is self-loop free). In this case, since p is an IP for mo(p), 
it is step preserving [11]. We prove that m 0(p) is the minimum initial marking. 
First we build a sequence, a, of maximal length in (N,M0 ) firing only transi
tions of T \ { t;}. All reached markings throughout the sequence are different, 
on the contrary we have a reproducible sequence without transition ti and this 
is not possible in MG's. This sequence is finite because the number of different 
markings in a bounded net is finite. Since the sequence is maximal, we reach 
a marking M from which t; is the unique firable transition (the net system is 
live), M0 [a)M. 
In (N, M) there exists a path, 1r', from t; to t0 where all places contain zero 
tokens. In effect, the only firable transition from M is ti, then all transitions 
of T \ { ti} have at least one input place with zero tokens. Therefore, t0 has 
an empty input place with an input transition that has another empty input 
place, and so on. This sequence cannot be a circuit because the MG is live and 
then one of the places in the sequence is an output place oft;. 
Taking into account that p is an IP with respect to (N, Mo), a is also firable 
in {NP, Mg) and the number of tokens in p is: m(p) = m0(p) + lp · if. Let 1r 

be a path of P(t;, t0 ) such that mo(p) = Ep,E1r Mo[pj]- Moreover, according 

to Theorem 2.2, lp = Ep,E1r lp, = EPkE1r' lpk, because 1r' E P(t;, t 0 ), but in 
general m 0 (p) ::S: I,:Pk E1r' Mo [pk]. Considering these expressions, we can rewrite 
the contents of tokens of p in the following way: m(p) = Ep,E1r Mo[pj] + 

(Ep,E1r lp,) · if :'.S: EPkE1r' Mo[pk] + (EPkE1r' lPk) ·if= EPkE1r' M[pk] = 0. 
Therefore, m 0 (p) is a minimal initial marking because there exists a firable 
sequence in (NP, MC) that empties the place. 
Case 2 (t; = t 0 , i.e., p is a self-loop). In this case, the minimal initial marking 
to make p an IP is equal to one. We prove that in order to preserve the steps 
of (N, Mo) we need at least the initial marking stated. 
From (N, Mo) we can obtain a new net (N', M6) by splitting the transition 
t; into two transitions t and t' such that: •t = •t; and t'• = t;•; and a new 
ordinary place Pi such that: •pi= {t} and Pi•= {t'} and M6[p;] = 0. Let M 
be the set of reachable markings of (N', M6) in which the marking of place Pi 
is equal to zero. It is trivial to verify that the set M projected with respect 
to the set of places P coincides with the set of reachable markings of (N, M0). 

Therefore, the set of steps of (N, Mo) is enclosed in the set of steps of (N', M6) 
renaming the appearings oft by t; and removing the appearings of t'. 
Let us consider a place p with •p = { t'} and p• = { t} with respect to (N', M6)
Applying the previous Case 1 to place p we conclude that the minimum initial 
marking to make implicit place p with respect to (N', M6) and preserving the 
steps of the net is equal to the minimal contents of tokens in the paths from t' 
to t (i.e., the circuits of the net system (N, M0 ) traversing the transition t;). 
Therefore, according to the previous paragraph a self-loop, p, with this initial 
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FIGURE 1. An SMG (a), its decomposition in aggregated systems AS1 (b), 
AS2 (c), and the basic skeleton (d). 

marking preserves the steps of (N, M0). Moreover, it is minimal because the 
steps requiring the maximum amount of tokens in p are the steps of (N, Mo) 
(they contain the output transition of p). Q.E.D. 

COROLLARY 2.1 Let (N, Mo) be a strongly connected and live MG, and p (/. P 
be a TT-MSIP to be added with •p = {lj} and p• = {t0 }. The place p is 
an IP in (NP, M[) preserving all steps of (N, M0 ) for all initial markings 
mo(p) 2 m0in(p). 

Proof: If we remove m 0 (p) - m0in (p) tokens from p, then p is an IP in (NP, M'C) 
preserving all steps of (N, M0 ) (Theorem 2.3). Therefore, all sequences and 
steps of (N, M0 ) are firable in (NP, M[). On the other hand, m 0 (p) - m0in(p) 
tokens in pare frozen, hence the sequences and steps of (NP, M[) coincide with 

those of (N, M0 ). In effect, add the place p to a net system (NP', Mg') where 
p' is a place such that •p' = {ti}, p1• = {t0 } and its initial marking is m0in(p'). 

(NP', Mg') has the same sequences and steps that (N, Mo) (Theorem 2.3), and 

there exists a sequence in (Np', M{) that empties the place p'. The place p is 
identical to the place p', he.nee the minimum marking of p is reached when p' 
is empty (i.e. it contains m 0(p) - m0in(p) tokens). Q.E.D. 

The Theorem 2.3 characterizes the minimum initial marking of a TT-MSIP 
to be an IP with respect to (N, Mo) in terms of the contents of tokens of 
the paths P(ti, t 0 ). The computation of this minimum initial marking can be 
done applying an algorithm from the graph theory to determine the cost of 
the shortest path from a source vertex to a sink vertex of a directed graph, 
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G = (V, E), obtained from the original MG (see [2] for implementations of 
these algorithms). In this graph, each vertex corresponds to a transition of 
the net. There exists a directed arc between two vertices if and only if there 
exists a place in the net connecting the two transitions that represent the two 
vertices. The sense of the arc is the sense of the tokens' flow between the 
transitions through the place. Each arc has a non-negative cost equal to the 
initial marking of the place that represents. Moreover, we add an arc t-+ t for 
each vertex t with a cost equal to oo. 

Therefore, if we apply the algorithm to solve the shortest path problem in 
the directed graph G, we obtain the smallest length of any path from ti to 
to, denoted length(ti, t 0 ). Observe, that length(ti, t 0 ) = minU::P;E1r Mo(p;]l1r E 

P(ti, t 0 )} = mlj'in(p). 

3 STRUCTURAL DECOMPOSITION OF MG's 
The basic idea is the following: a strongly connected and live MG (see Fig. 1.a) 
is split into two subnets by a cut Q defined through some places ( Q = { Zl, Z2, 
Z3}, in Fig. 1.a). From the cut we define three nets: two aggregated subnets 
(.AA!\ and .A.N2 ; see Figs. 1.b and 1.c) and a basic skeleton net (BN; see 

. Fig. 1.d). These nets will be obtained by substitution of the so called aggregable 
subnets, defined from the cut Q, by a set of places. We select an initial marking 
for each added place such that the behaviour of the aggregated subnet is the 
behaviour of the original MG hiding the behaviour of the aggregable subnet. 

DEFINITION 3 .1 Let N = (P, T, F) be a strongly connected MG. A subset of 
places, Q ~ P, is said to be a cut of N ifj there exist two subnets, N1 = 
(Pi,T1,F1) andN2 = (P2,T2,F2), of N verifying 
i} T1 U T2 = T, T1 n T2 = 0 
ii} Pi= T1· u •T1, P2 = T2· u •T2 
iii} Pi U P2 = P, Pin P2 = Q 
iv) Fi= F n ((Pi x Ti) U (Ti x J'i)), i E {1, 2} 

DEFINITION 3.2 Let N = (P, T, F) be a strongly connected MG, Q ~ P a cut 
of N, andN1 = (Pi,T1,F1), N2 = (P2,T2,F2) the two subnets associated with 
the cut (by Def. 9.1). The subnets NA; = (PA;, TA;, FA;), i E {1, 2}, are called 
the aggregable subnets of the cut Q, where 
i} PA;= pi\ Q 
ii} TA; =Ti\ (TQ n Ti), where TQ = •Q U Q• 
iii} FA; =Fin ((PA; x TA;) u (TA; x PA;)) 
The places p EPA; such that •pnTA; = 0 (resp., p•nTA; = 0) are called source 
places (resp., sink places) of NA;. The set of input transitions of the source 
places and output transitions of the sink places are called interface transitions 
of NA;• 

We denote PA; the set of paths in the net NA; from a source place to a 
sink place. IP A; denotes the set of TT-MSIP's with respect to N obtained 
from each path of PA; by the linear combination of the rows in the incidence 
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matrix corresponding to the path's places. In the sequel, we define the so called 
aggregated subnets of an MG (N, M 0) with respect to a cut Q. These subnets 
will be obtained by substituting in N of an aggregable subnet NA, by the set of 
places IP A,. This substitution is an abstraction of the subnet NA,. We select 
an initial marking for each place p E IP A; ( called aggregation's initial marking, 
m0(p)) equal to m0(p) = min{I:P E1r Mo[pj]llp = Lp,E1r lP, and 7r E PAJ
With this initial marking we prove that the behaviour of the aggregated subnet 
is the behaviour of the original MG by hiding the behaviour of NA,. 

DEFINITION 3.3 Let (N, M0) be a strongly connected and live MG, Q ~ P 
a cut of N, and NA., i = 1, 2, be the aggregable subnets defined by the C'Ut 
Q. The aggregated subsystem ASi = (AN'i, MF;) is the net system obtained 
from (N, Mo) by substituting the subnet NA, by the set of places IP A, with 
mo(p) = m 0(p), for all p E IPA, i = 1,2;j = 1,2 and j =/- i. The basic 
skeleton system, BS = (BN, MfN°), is the system obtained from (N, Mo) by 
substituting the subnets NA1 and NA 2 by the set of places IP A 1 and IP A 2 

with mo(p) = m0(p) = min{I:p,E1r Mo[pj]llp = Lp,E1r lp, and 11" E PA.}, for 
all p E IP A 1 U IP A 2 • 

. THEOREM 3.1 Let (N, Mo) be a strongly connected and live MG, Q ~ P a cut 
of N and ASi be the aggregated subsystem obtained from (N, Mo) by substi
tuting the subnet NA, by the set of places IP A, with MF• [p] = if p E IP A, 
then m 0(p) else M 0 [p], i = 1, 2;j = 1, 2, and j =/- i. 
i} L(N, Mo)lr\TA = L(AN'i, Mf'N•). 

3 

ii) R(N,Mo)IP\PA· = R(AN'i,MF•)IPAN"\IPA· 
3 • 3 

Proof: L(N,Mo)lr\TA ~ L(AN'i,MF•). If we add the places of IPA, to 
3 

(N, Mo) then L(N, M0 ) is preserved because all places of IP A, are IP with 
respect to (N, Mo) preserving its steps (Corollary 2.1, taking into account that 
m0(p) 2 m0i0 (p)). All sequences firable in this net are also firable in the net 
ASi after the removing of transitions in TA,. This is because in ASi we have 
removed all firing constraints appearing in (N, Mo) imposed by NA,. 
L(AN'i, MF;) ~ L(N, Mo)lr\TA . We prove this part by contradiction. Let a 

3 

be a sequence of L(AN'i, MF•) for which there is no a' E L(N, Mo) such that 
a = a'lr\TA .. Let ao be the maximal prefix of a for which there is a sequence 

' ab E L(N, Mo) verifying ao = ablT\TA . If Mo[ab)M and MF• [ao)MM\ it is 
' trivial to verify that M[p] = MAN•[p] for allp E (P\PA,)- The next transition 

to ao, t, in a must be an output transition of a sink place of NA,, because 
these transitions are the unique transitions of ASi with additional constraints 
to fire in (N, M 0). These constraints arise from NA, but not from the places 
IP A, because they are implicit with respect to (N, M0). All maximal firable 
sequences in (N, M) containing only transitions of NA, never can enable the 
transition t because a 0 is the maximal prefix of a for which there is a sequence 
ab E L(N, Mo) verifying ao = ab lr\TA . Let M' be a marking reachable in 

1 

(N, M) firing a maximal sequence, a 1 , in (N, M) containing only transitions 
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of NA,. At M' there exists an empty path in the NA, from a source place 
to a sink place that inputs to transition t. In effect, at M' all transitions of 
NA, are not enabled, hence have at least one empty input place. Moreover, t 
has at least one empty input place being a sink place of NA, because t is not 
enabled at M'. Therefore, t has an empty input place whose input transition 
has an empty input place, and so on, until we reach a source place of NA,. 
This means that a place in IP A, corresponding to this path is an input place 
oft containing zero tokens, but this contradicts the hypothesis from which t is 
firable in ASi. 
R(N,Mo)IP\PA· = R(ANi,Mfll•)IPAN·\IPA·" To prove this, observe that 

J • J 

P \ PA, = PAN, \IPA, from the definition of AN i. Taking into account the 
part (i) of this theorem, the stated equality of markings' sets holds. Q.E.D. 

COROLLARY 3.1 Let (N, Mo) be a strongly connected and live MG, Q ~ P a 
cut of N, and BS the basic skeleton system obtained from (N, Mo) by substitut
ing the subnets NA 1 and NA, by the set of places IP Ai and IP A,, respectively, 
and MfN[p] = if p E IPA 1 UIP A, then m0(p) else Mo[p]. 
i) L(N, Mo)lr\(TA 1 urA,) = L(BN, MfN). 
ii) R(N, Mo)IP\(PA 1 uPA,) = 
R(BN, MJ38 )1PaN\(IPA1 UIPA 2 ) • 

Proof: The proof of the corollary can be decomposed into two steps: (1) The 
proof of the behaviour equivalence between (N, M0) and AS1 (that is, the 
previous theorem); (2) The proof of the behaviour equivalence between AS1 
and BS. Taking into account that ASi is a strongly connected and live MG, 
the proof of this second part is the same as that of the above theorem renaming, 
for example, AS1 as (N, Mo) and BS as AS2. Q.E.D. 

The main drawback of the above theorems concerns the great number (ex
ponential in the worst case) of places in IP A,. In the following we present a 
method to reduce the number of places to add, characterizing a subset of IP A,, 
denoted BIP A,, with the property that all places of IP A, \ BIP A, are implicit 
with respect to the places BIP A,. Therefore, in order to build the aggregated 
subnet we only add the set of places BIP A, instead of IP A,. 

Let us consider the aggregable subnet NA, together with its interface transi
tions. We derive from this net a directed graph GA, = (V, E) in the same way 
to that presented at the end of previous section. 

If we apply the algorithm of R.W. Floyd to solve the all-pairs shortest paths 
problem (see [2] for implementations of this algorithm) to the directed graph 
GA., we obtain for each ordered pair of vertices (i.e., transitions) (t,t') the 
smallest length of any path from t to t', denoted length( t, t') (if this value 
is equal to oo, there is no path from t to t'). Observe, that length(t, t') = 
min{I:p,E,r Mo[pj]l1r is a path from t tot'}. The computational complexity of 

this algorithm is O(m3 ), where m is the number of transitions of the considered 
net. From these values we define the set of places BIP A, as BIP A; = {pj•p = 
{t};p• = {t'};t,t' E TQ;length(t,t') =/= oo}. 
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For all p E BI'P A, we select an initial marking mo(p) = length(t, t'). It 
is trivial to verify that this initial marking coincides with the previously de
fined aggregation's initial marking, m 0(p). For instance, in the case of Fig. Lb, 
BIP A, = { beta_1, beta_2} and mo(beta_1) = mo(beta_2) = 0. 

The following result states that all places of IP A, \ BIP A, are implicit 
with respect to the places BIP A,. Therefore, in order to build the aggregated 
subsystem we only add the set of places BIP A; instead of IP A;. 

PROPERTY 3.1 Each place p E IP A; \ BIPA, with an initial marking equal 
to m0 (p) is implicit with respect to the set of places BIP A, each one with an 
initial marking equal to the aggregation's marking. 

Proof: Let p E IP A, \ BIP A; be a place obtained from the summation of 
the rows in the incidence matrix corresponding to the places of a path. Let 
t, t' E TQ be the interface transitions of this path. Because of the existence of 
this path, after the application of the Floyd's algorithm we have length(t, t') # 
oo, therefore there exists an identical place in BIP A; with the same initial 
marking. Q.E.D. 

In many cases the set BIP A; is bigger than necessary because some places 
can be implicit in ASi. In order to remove one of these unnecessary places, 
p, we can apply the method described at the end of the previous section to 
compute the shortest path from •p to p•. The place p can be removed if the 
output of this algorithm is less than or equal to the aggregation's marking of 
p. Observe that in the case of Fig. 2.b, the set BIP A, contains 16 places but 
a further removing of places leads to a minimum set of 6 places, named /3;, 
i = 1, ... , 6 in the figure. 

4 ITERATIVE TECHNIQUE FOR APPROXIMATE THROUGHPUT COMPUTATION 

In the previous section, an algorithm to decompose an MG into two aggregated 
subsystems and a basic skeleton system (being also MG's) has been presented. 
In aggregated subsystem AS; (i = 1, 2), the subnet N°j (j # i) is represented 
by the places in the cut Q, by the interface transitions of N°j, T1; = TQ n Tj, 
and by the new places that substitute the subnet .NA;. 

The technique for an approximate computation of the throughput that we 
present now is, basically, a response time approximation method [1, 16, 17]. 
The interface transitions of N°j in AS; approximate the response time of all 
the subsystem .Nj (i = 1, 2;j # i). A direct (non-iterative) method to compute 
the constant service rates of such interface transitions in order to represent 
the aggregation of the subnet gives, in general, low accuracy. Therefore, we are 
forced to define a fixed-point search iterative process, with the possible drawback 
of the presence of convergence and efficiency problems. 

4- 1 First approach: Ping-Pong algorithm 

The first algorithm that we explored, called "Ping-Pong", follows. 
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select a cut Q; 
derive aggregated subsystems AS;, i = 1, 2; 
give value µ~ for each t E Tr1 in AS2; 
compute value of throughput xg of AS 2; 
k := O; { counter for iteration steps} 
repeat 

k := k + 1; 
compute µt for each t E Tr2 such that the throughput 

xf of AS1 is close enough to x~-1; 
compute µt for each t E Tr1 such that the throughput 

x~ of AS2 is close eno:ugh to xt; 
until convergence of xt and X~; 

In the above procedure, once a cut has been selected and given some initial 
values for the service rates of interface transitions of N1 ( which approximate the 
response time of all the subsystem Ni), the underlying CTMC of aggregated 
subsystem AS2 is solved. From the solution of that CTMC, the first estimation 
xg of the throughput of AS2 can be computed. Then, the initial estimated 
values of service rates of interface transitions that approximate the response 
time of subsystem N2 must be derived. This must be done in such a way that 

· the throughput xi of AS1 is "close enough" to xg. Then, a better estimation 
of rates µf for each t E Tr1 must be computed such that the throughput x~ of 
AS2 is close enough to x~. The process is iterated until x~-l and x~ are "close 
enough". 

The first problem of the above sketch of approximation algorithm is that a 
multidimensional search on the parameters of a complex CTMC in order to 
get a given throughput cannot be done in an efficient way. A possible solution 
to this problem is the following. In the iterative process, each time that an 
aggregated subsystem ASi, i = 1, 2, is solved, the ratios among the service 
rates µf of all the transitions in Tr, are estimated. After that, when the other 
subsystem AS j, j =/:- i, is solved, only a scale factor for these service rates must 
be computed. The goal is to find a scale factor of µf for all t E Tr, (and fixed 
k) such that the throughput of ASj and the throughput of ASi, computed 
before, are the same. And this can be achieved with a linear search of the scale 
factor in AS j. 

At this point, the main technical problem is the following: How to estimate 
from the solution of ASi the ratios among the service rates of all transitions 
in Tr, that in the next step (solution of ASj) will be scaled to obtain an 
approximation of the response time of the subsystem Ni,? 

We explain our answer to this question by means of the example depicted in 
Fig. L Figure Lb represents the aggregated subsystem AS1 derived from the 
original MG. It is necessary to compute the ratio between the service rate of T2 
and T3 to be used as input data for the linear search of the scale factor in AS2 

(Fig. Le). In order to do that, the aggregated subsystem AS1 is transformed 
(as depicted in Fig. Lb) with the addition of places BIPA1 = {alph_1,alph_2}. 
The obtained system is behaviourally equivalent to AS 1 because the added 
places (which are those that will substitute NA 1 ), are implicit. These new 
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.AS .AS2 
x, tau_l tau..2 ta.u_3 coeff X? rho_l rho..2 rho_3 coeff 
0.17362 0.05170 Q.16810 0.88873 1.01167 0.12714 0.89026 0.21861 0.14354 0.98468 
0.14093 0.06265 0.19707 0.91895 1.01218 D.13795 0,88267 0.21363 0.13509 0.98582 
0.13866 0.06325 0.19821 0.92064 1.01306 0.13841 0.88239 0.21343 0.13467 0,98692 
0.13844 0.06328 0.19827 0.92062 1.01306 0.13843 0.88237 0.21342 0.13465 0.98692 
0.13843 0.06328 0.19827 0.92084 1.01307 0.13843 0.88238 0.21342 0.13486 0,98593 

TABLE 1. Iteration results for the SMG in Fig. 1. 

places allow to estimate the ratio between the "aggregated service times" of 
transitions T2 and T3 (representing the response time approximation of Ni), 
as the quotient of the mean marking of alph_1 by the mean marking of alph_2, 
because the throughput of all transitions is the same. 

Now, two problems arise. First, the linear search of the scale factor must be 
done in the aggregated subsystems, that can have a considerably large state 
space, thus the efficiency of the method falls down. Additionally, we have found 
convergence problems in many cases. A solution for both problems is proposed 
in the next subsection. 

4.2 A solution: Pelota1 algorithm 

The more practical solution of the problem we found makes use of the third 
system (another MG) derived from the original one, in the previous section: 
the basic skeleton. The basic skeleton contains the interface subsystem and a 
simplified view ( using the places BTP A., i = 1, 2, computed by the algorithm 
in previous section) of subsystems NA,, i = 1, 2. 

The idea is to use the basic skeleton as an intermediate point (fronton) 
between the two aggregated subnets (rackets), as explained in this algorithm: 

select a cut Q; 
derive AS;, i = 1, 2 and BS; 
give initial value µ~ for each t E T12 ; 

k := O; { counter for iteration steps} 
repeat 

k := k + 1; 
solve aggregated subsystem AS1 with 

input: µ:- 1 for each t E T12 , 

output: ratios among µt of t E T11 and ;xt; 
solve basic skeleton system BS with 

input: µ:- 1 for each t E T12 , 

ratios among µt oft E T11 , and xt, 
output: scale factor of µt oft E T11 ; 

solve aggregated subsystem AS 2 with 
input: µt for each t E T11 , 

output: ratios among µt of t E T12 and xt 
solve basic skeleton system BS with 

1 Game played by two players who use a basket strapped to their wrists or a wooden racket 
to propel a ball against a specially marked wall, called fronton. 
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(b) 

(c) 

(d) 

FIGURE 2. A second example of SMG and its decomposition. 

input: µ} for each t E T11 , 

ratios among µ} of t E Tr2 , and xt 
output: scale factor of µ} of t E Tr2 ; 

until convergence of xf and X~; 

In this iterative process, each time that an aggregated subsystem ASi, i = 
1, 2, is solved, only the throughput x~ and the ratios among the service rates 
µ: of all the transitions in T1, are estimated (with the method explained in the 
previous subsection). After that, a scale factor for these service rates must be 
computed. This is achieved by using the basic skeleton system BS. The goal is 
to find a scale factor ofµ: for all t E T1, such that the throughput of the basic 
skeleton and the throughput of AS;, computed before, are the same. A linear 
search of the scale factor must be implemented, but now in a net system with 
considerably fewer states (the basic skeleton). In each iteration of this linear 
search, the basic skeleton is solved by deriving the underlying CTMC. 

Now, the existence and uniqueness of the solution, and the convergence of 
the method should be addressed. Although no formal proof gives positive 
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answers so far to the above questions, extensive testing allows the conjecture 
that there exists one and only one solution, computable in a finite number of 
steps, typically between 2 and 5 if the convergence criterion is that the difference 
between the two last estimations of the throughput is less than 0.1 %. 

5 EXAMPLES 

In this section we present several numerical results of the application of the iter
ative technique previously introduced. Among all the tested examples, we have 
selected two different Petri net structures because of their following character
istics: the first one (already introduced in Fig.1) is structurally asymmetric 
while the second has symmetries; for the second one, the effect of timing asym
metries on the iterative algorithm can be studied by changing the service rates 
of transitions (preserving the strong structural symmetry). In all cases, the 
obtained approximations are compared with exact values obtained from the 
numerical solution of the underlying CTMC ( GreatSPN package was used [9]). 

Let us consider again the SMG depicted in Fig. 1.a. The exact value of the 
throughput is equal to 0.138341 (if single-server semantics is assumed). The 
underlying CTMC has 89358 states. The aggregated systems AS1 and AS2 

are depicted in Figs. l.b and 1.c, respectively. The corresponding basic skeleton 
system is that in Fig. l.d. 

Table 1 shows the iterative results obtained for this example. The values in 
AS1 columns have been obtained from the solution of the aggregated system 
in Fig. l.b: x1 is the throughput of AS1 ; columns tau_1, tau_2, and tau_3 
are the estimated values of the service rates of the aggregated transition tau_l, 
tau.2, and tau_3, computed in AS1 ; column coeff is the scale factor of previous 
estimated service rates, obtained by the linear search in the basic skeleton of 
Fig. l.d. Columns related with AS2 represent the analogous values for the 
aggregated system in Fig. l.c. Convergence of the method can be observed 
from the third iteration step. The error is -0.064333 %, after the fifth step. The 
following additional fact must be remarked: the underlying CTMC's of AS1 , 

AS2 , and the basic skeleton have 8288, 3440, and 231 states, respectively, while 
the original SMG has 89358 states. 

As a second example, let us consider the SMG depicted in Fig. 2.a. Any 
splitting of the net will generate two strongly coupled aggregated subnets. We 
select the following cut: Q = {P21, P22, P23, P24, P25, P26, P27, P28}. The 
corresponding aggregated systems are depicted in Figs. 2.b and 2.c. The basic 
skeleton is that in Fig. 2.d. The CTMC underlying the original SMG has 49398, 
while those underlying the aggregated systems have 6748. The basic skeleton 
has 771 reachable states. 

We consider three different situations arising from different transition service 
rates ( we assume infinite-server semantics in all cases). In the first case, we 
suppose that the service rates of all transitions are equal to 1.0. In this case, 
the exact throughput of the SMG is 0.295945. 

Table 2 shows the iteration results for three different selections of initial 
values of aggregated service rates of transitions rho_1, rho_2, and rho_3. It 
can be seen that in all cases convergence occurs at the third iteration step, 
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1n1ha va ue■ o ■erv1ce rate■ OT r o_t, rno-2, ann rho..3 equal to 0.1 
AB, -a• 

)(1 tau_l tau-2 tau..3 t&U-4 coeff )(2 rho-1 rho..2 rho..3 rho-4 coeff 
0.07830 1.02121 1.02462 1.01112 0.80930 1.06357 0.33294 0.29834 0.60973 0.61699 0.71668 1.03611 
0.29244 0.84674 0.72462 0.66766 0.30802 1.06833 0.30079 0.29864 0.64035 0.70609 0.83610 1.06260 
0.29710 0.84301 0.71383 0.64364 0.29813 1.06382 0.29733 0.29768 0.64270 0.71310 0.84299 1.06427 
0.29711 0.84340 0.71364 0.64286 0.29761 1.06436 0.29711 0.29747 0.64281 0.71362 0.84343 1.06440 

Initial value■ of eerv1ce rate■ of rho_l 1 rho..2 1 and rho_3 equal to 1.0 _ .. , 
A82 

)( tau_l tau_2 tau_3 tau_4 coen )(2 rno_t rno .. 2 rho-3 rho .. 4 coeff 
0.33318 0.70982 0.61646 0.&1044 0.29917 1.03518 0.29266 0.30871 0.65771 0.72423 0.84621 1.06804 
0.30096 0.83671 0.70681 0.64034 0.29877 1.06233 0.29712 0.29817 0.64366 0.71378 0.84293 1.06378 
0.29734 0.84296 0.71307 0.64270 0.29769 1.06426 0.29712 0.29761 0.64286 0.71364 0.84339 1.06436 
0.29712 0.84343 0.71362 0.54281 0.29747 1.06440 0.29710 0.29746 0.64282 0.71364 0.8434& 1.06439 

Intttal value, of ■ervtce rate• of rho .. 1 1 rho..2, and rho..3 equal to 10.0 
.AB, .AB2 

)( tau .. 1 tau .. 2 tau .. 3 tau .. 4 coeff )(• rho .. 1 rho .. 2 rho..3 rho .. 4 coeff 
0.33419 0.68611 0.69766 0.49474 0.280&3 1.03311 0.28661 0.30812 0.56325 0.73687 0.85741 1.06091 
0.30136 0.83550 0.70455 0.53890 0.29791 1.06293 0.29679 0.29807 0.54392 0.71447 0.84356 1.06392 
0.29735 0.84299 0.71304 0.54263 0.29753 1.06430 0.29710 0.29750 0.54287 0.71358 0.84343 1.06437 
0.29711 0.84343 0.71362 0.54281 0.29747 1.06440 0.29710 0.29746 0.54282 0.71355 0.84346 1.06441 
0.29710 0.84346 0.71366 0.54282 0.29746 1.06441 0.29710 0.29745 0.54281 0.71355 0.84346 1.06441 
0.29710 0.84346 0.71356 0.54282 0.29746 1.06441 0.29710 0.29746 0.54282 0.71355 0.84346 1.06441 

TABLE 2. Iteration results for the SMG in Fig. 2 with all service rates of 
transition equal to 1.0. 

A81 ..s, 
)(1 tau ... 1 tau .. 2 tau..3 tau .. 4 coeff x• rho .. 1 rho .. 2 rho-3 rho .. 4 coeff 
0.33318 0.70983 0.61546 0.51045 0.29917 1.03519 0.34424 0.70118 1.49390 1.84123 1.92737 1.06187 
0.33362 0.71500 0.60522 0.49836 0.28554 1.03U7 0.33345 0.68342 1.50320 1.85362 1.93598 1.06255 
0.33345 0.71616 0.60538 0.49834 0.28660 1.03656 0,33345 0.68281 1.50288 1.85362 1.93692 1.06251 
0.33346 0.71621 0.60639 0.49834 0.28660 1.03666 0.33346 0.68278 1.60284 1.85348 1.93688 1.06249 

TABLE 3. Iteration results for the SMG in Fig. 2 with service rates of transition 
Tl to TB equal to 1.0 and of transitions T9 to T16 equal to 2.0. 

independently of the initial values given to the aggregated service rates. This 
fact illustrates the robustness of the method with respect to the seed. The 
error of the approximation in all cases is 0.4 %. 

As a second case, consider again the SMG in Fig. 2.a but now with asymmet
ric service rates associated with transitions. Assume that the service rates of 
transitions Tl to TB are all equal to 1.0, while service rates of transition T9 to 
T16 are equal to 2.0. In this case the exact throughput of the original system is 
0.333356. The iteration results are shown in Table 3. Now, the initial values of 
aggregated service rates of transitions rho_1, rho_2, and rho_3 are equal to 1.0. 
Convergence can be observed from the second iteration step and the error of 
the obtained value is 0.02 %. Finally, consider once more the SMG of Fig. 2.a, 
but now with the following service rates associated with transitions: the rates 
of Tl, T2, T5, T6, T9, TlO, T13, and T14 are equal to 2.0, while the rest 
are equal to 1.0. In this case, the exact throughput is 0.362586. The iteration 
results are shown in Table 4. Again, convergence can be observed from the 
second iteration step. The error is now 0.19 %. 
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AS AS2 
x, tau_l tau_2 tau_3 tau_4 coeff l<2 rho_l rho_2 rho-3 rho_4 coeff 
0.40526 1.64486 1.58029 0.60759 0.36042 1.00568 0.35214 0.36948 0.69530 0.61363 0.80667 1.07872 
0.36392 1.81297 1. 72253 0.66348 0.38291 1.01927 0.36239 0.37446 0,68764 0.59809 o. 79673 1.08484 
0.36326 1.80988 1. 72268 0.68584 0.38570 1.01711 0.36321 0.37614 0.68748 0.59702 0. 79566 1.08508 
0.36328 1.80942 1.72245 0.66596 0.38696 1.01688 0.36328 0.37520 0,68748 0.59694 o. 79566 1.08510 
0.36329 1.80938 1.72243 0.66598 0.38599 1.01686 0.36329 0.37521 0.68747 0.59693 o. 79566 1.08510 
0.36329 1.80938 1. 72243 0.66598 0.38599 1.01686 0.36329 0.37621 0.68748 0.69694 0. 79556 1.08610 

TABLE 4. Iteration results for the SMG in Fig. 2 with service rates of transition 
Tl, T2, T5, T6, T9, TlO, T13, and T14 equal to 2.0, and the rest equal to 1.0. 

6 CONCLUSIONS 

In order to derive a general, efficient, and accurate technique for throughput 
approximation of stochastic marked graphs using the divide and conquer prin
ciple, qualitative theory ought to guide the decomposition phase (this principle 
underlies several previous works on the topic [6, 14, 16, 17, 18, 19)). 

This was the first objective of the paper: the presentation of a general struc
tural decomposition technique allowing to split a given marked graph through 
an arbitrary cut (subset of places) and to derive two aggregated subsystems 
whose qualitative behaviours are projections of the whole system qualitative 

· behaviour. The technical tool to achieve this problem has been the use of im
plicit places: a subsystem of the original marked graph can be substituted by 
a minimal set of implicit places that represent an abstraction of the subsys
tem, leading to an aggregated subsystem. If the same process is applied to two 
complementary subsystems, two aggregated subsystems are derived, each one 
representing a portion of the behaviour of the whole system. 

The second phase of the analysis problem is the selection of an approxi
mate throughput computation algorithm. Iterative response time approxima
tion technique was selected after a wide comparison with other approaches 
present in the literature. In order to assure the convergence of the method, a 
third subsystem was used for a correct tuning of parameters, the basic skele
ton. It is obtained after the substitution of both subnets by the corresponding 
implicit places. Its behaviour is simple enough to allow a linear search of the 
correct value of a parameter in order to get a given throughput (the one ob
tained in the previous iteration step). 

Extensive numerical experiments using the method sketched in previous 
paragraphs showed very good results with respect to efficiency and accuracy. 
Convergence is generally observed after a couple of iteration steps and the 
approximate computation of throughput can be achieved with a considerable 
saving of time and memory (more than one order of magnitude) and with a 
very small error (less than 3 % ) . 

Even though we have considered only strongly connected nets, the approach 
can be applied to non-strongly connected marked graphs: The iterative tech
nique is used to compute the approximate throughput of each strongly con
nected component in isolation and, after that, [8, Theorem 5.1] applies. 

An obvious generalization of the presented technique can be derived if the 
original system is partitioned into more than two subsystems, leading to the 
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classical tradeoff between efficiency and accuracy. The extension to more gen
eral net subclasses, like macroplace-macrotransition nets proposed in [14], is 
being considered by the authors. 
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Marking Optimization and Parallelism of Marked Graphs 
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B.P. 93, 06902 Sophia-Antipo/is Cedex, France 

The aim of the paper is to provide a formalization of the notion of parallelism 
of a marked graph exploitable by parallel simulation. We show that there 
exists an optimal starting point for equational simulations which gives a 
speed of simulation in the order of the intrinsic sequentiality of the system. 
Furthermore, under few assumptions, the modification of the marking will 
accelerate the simulation without altering its results for the stationary regime. 
We also derive algorithms to compute this optimal marking. 

1 INTRODUCTION 

Marked graphs constitute a good formalism to model manufacturing systems 
combining parallel tasks and synchronizations. They have been extensively 
studied either in the deterministic or in the stochastic context [9],[3]. These 
systems were shown to have a linear behavior if considered in the semi-field 
(max,+) and this property was the starting point of an extensive ergodic theory 
developed by F. Baccelli [3] and of a new method of parallel simulation based 
on recursive equations introduced in [9] and used in [4] and [13]. These parallel 
simulations of marked graphs are of a new kind: they are not really event driven 
as in [14] or [18], but rather, equation "driven". The evolution is described by 
the successive application of linear transformations to the state variables. The 
aim of this paper is to improve the efficiency of these simulations by changing 
its starting state which is the initial marking of the graph. 

Marking optimizations have been obtained in the deterministic case [20]. 
Here, we introduce the marking M* which allows one to run parallel equational 
simulations more efficiently. Indeed, the cost of these algorithms depends on 
L(M), the longest path without tokens in the marked graph under the initial 
marking M. The marking M* will be chosen so that L(M*) is minimum. We 
show that L(M*) roughly equals the intrinsic sequentiality of the system so 
that little hope of increasing the speed of these algorithms is left. We also 
provide an algorithm to compute the couple (M*, L(M*)). Then, we show 
that changing the starting point of the system (i.e. its initial marking) will not 

*Supported by the European Grant BRA-QMIPS of CEC DG XIII. 
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alter the stationary behavior of the system, provided that the system is stable 
of course, under fairly general assumptions. 

In section 2, we give some preliminaries, in section 3, we give a formal mean
ing to the notion of intrinsic parallelism of a marked graph. In section 4, we 
define the marking M* and we derive a computation of this marking. In the 
fifth section, we show that the evolution of a stochastic marked graph that sat
isfies the conditions of stability does not depend on the initial marking. This 
result is true for strongly connected graphs and for open systems with a single 
initial component. In the last section we apply the notions introduced in sec
tions 3, 4 and 5 to give the optimal starting point for a parallel simulation of 
a marked graph. 

2 PRELIMINARIES 

In the preliminaries, we will describe the model of marked graph that we will 
use in the following. This model is more precisely presented in [2]. 

A marked graph is a Petri Net where each place has exactly one input tran
sition and one output transition. We will denote it by E = (P, T, A) where 
T is the set of transitions, P the set of places and A is the set of the links. 
A is included in P x .T U T x P. We denote by •p the transition preceding 
place p and by •t the set of the input places of transition t. p• denotes the 
output transition of p and t• is the set of the output places of transition t. 
The vector M denotes the marking of the net; M(p) represents the number 
of tokens in place p. We will denote the graph along with the marking by 
G = (E,M) = (P,T,A,M). 

Now we introduce the temporized model. We attached durations to the firing 
of transitions and to the holding time of places. 

S = (E, <I>, I:, Y, U, M 0 ) is a timed marked graph if (E, M0 ) is a marked 
graph, <I>= (<Pt(n))t,n is the set of the firing time sequences of the transitions, 
I: = (t7p(n))p,n is the set of the holding time sequences in the places, Y = 
(Y (p, l) )p,I is the set of the lag times of the initial tokens and U = ( Ui ( n) )i,n is 
the set of the arriving sequences of the inputs. 

• <Pt(n) denotes the duration of the n-th firing time of transition t. If 
transition t begins to fire for the n-th time at epoch e, this firing will end 
at time e + <Pt ( n) and at this very moment, tokens are taken out of the 
places in •t and put in the places in t•. 

• t7p(n) is the holding time in place p of the n-th token to enter this place. 
If the n-th token enters place pat epoch e, it is not available for enabling 
the transition in p• b_efore epoch e + t7p(n). 

• Y(p, l) is defined only for l ~ M 0 (p). It represents the lag time of the 
l-th initial token in place p. The lag time of a token is a holding time of 
an initial token (it does not come from the firing of a transition). 

• If the system has inputs ( i.e. transitions with no input places) the firing 
of these transitions is determined by the sequences (u;(n)). The input 
transition i fires for the n-th time at epoch ui(l) + · · · + ui(n). 
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FIGURE 1. A token in the place recycling each transition guarantees the FIFO 
discipline. 

We make some basic assumptions on our model. 
FIFO Assumption: 
First, all the transitions and all the places are assumed to be FIFO. 
For every transition t, the n-th firing completion (token departure) oft corre

sponds to the n-th firing that t has started. A simple condition for a transition 
to be FIFO is to be recycled (i.e. it is the output and the input transition of 
a place with one token in the initial marking, as is shown in Figure 1). In the 
following, the transitions are always recycled. The place recycling transition t 
is denoted Pt. 

For an arbitrary place p, the FIFO condition says that the n-th token to enter 
that place must become available for firing of the output transitions before the 
( n + l )-st token to enter this place. In other words tokens cannot overtake each 
other in the places. A simple condition for places to be FIFO is to consider 
only constant holding times in the places: Vn,<1p(n) = <1p- In the following this 
assumption will always be fulfilled. 

Initial Conditions: 

• Once the initial marking M 0 is given, a non-timed net is defined by 
(E, M 0 ). We denote by R(M) the set of all the markings reachable from 
M. It is well known that M E R(M') is a parallelism relation if E is a 
marked graph [24]. 

• The lag times must verify two conditions to be weakly compatible ([2] p. 
70): The lag times must respect the FIFO feature. This means that for 
any place p, Y (p, 1) ::; · · · ::; Y (p, M (p)). Moreover, lag times of tokens in 
place p cannot exceed the firing time of the transition •p plus the holding 
time in place p. This means that this token could be the result of a firing 
of •p. In the stochastic case, the lag time must belong to the support 
of the distributions of the firing times of •p plus the holding time of p. 
Note that the lag times in the places recycling the transitions (there is 
only one token in these places) are not constrained by the first condition 
of weak compatibility. This remark will be useful in the following. 
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Stochastic Assumptions: 
All the random variables considered here are defined on a common probability 

space (D., F, P). 
The holding time sequences as well as the firing time sequences are sequences 

of non-negative real random vectors. 
We make the following assumptions (see [3] for further insight on these as

sumptions): 

• Stationarity and ergodicity: 

The sequences {o-t(n)} and {</>p(n)} are ergodic and stationary for all t 
and p. 

• Integrability: 

The random variables O-t(n) and </>p(n) are integrable. 

• Coupled ergodicity: 

If the system has several inputs with temporizations ( u 1 ( n ), · · ·, uk( n) ), 
all the variables (ui(n)), (ui(n)-uj(k)) are jointly ergodic and stationary 
for all couples of inputs i, j and for all n, k. 

We denote by M(S, e) the marking in the system Sat epoch e and by M(p, e) 
the marking in place p at epoch e. 

3 PARALLELISM IN A MARKED GRAPH 

Measures of parallelism for discrete event systems are presented in [5], [15]. 
However, we are looking for a parallelism exploitable by parallel equation driven 
simulations and we present notions useful in this particular frame. Since the 
efficiency of parallel simulations depends on the availability of sufficient paral
lelism in the model itself, we present the notion of sequentiality of a marked 
graph. It will be further related to the complexity of the simulation algorithm 
we are interested in. In other words, we will see that the sequentiality is an 
appropriate measure of the parallelism present in the marked graph. 

3.1 Graph of Precedence 

In this section we consider a marked graph without the timings: G = (E, M0 ). 

We introduce a different structure based on the dependence relations in the 
marked graph. Such a graph belongs to the class of task graphs called PERT 
( or activity network [12]). This graph is also called the developed graph and is 
presented in [7] for example. However our view is slightly different since we are 
not interested in analyzing the performance of the system but in discovering 
the available parallelism present in it. 

The notion of parallelism present in a marked graph will be independent 
of the temporizations of the transitions and only be based on the precedence 
relations between the firing epochs. 

In that purpose, we construct a graph of precedence T which can be con
structed in the following way. The graph T has T x IN U { J_} as the set of 
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FIGURE 2. A marked graph and its associated graph of precedence. Since all the 
transitions are recycled, each column of T is a total order. 

vertices. The vertex .l is special and represents the "initiation" of the graph 
of precedence. T has an edge between the vertex ( t, n) and the vertex ( t', n') 
if the n'-th firing of transition t' uses a token produced by the n-th firing of 
transition t. We also put the edges ((.l), (t, 1)), • • •, ((.l), (t, m(t))) for all tran
sitions t, where m(t) = maxpE1r(t)(M0 (p)). Figure 2 depicts a marked graph 
and its graph of precedence. 

We establish a few properties that help to see the relations between the two 
structures. We do not pretend to be exhaustive here. Indeed there exist a lot 
of relations between the graph of precedence and the marked graph. We will 
present only the few properties useful in the following. 

Remark: The graph T does not essentially depend on Mo but rather on the 
class R(Mo)-

Let M1 be a marking in R(M0 ) and T1 its associated graph of precedence. 
We show that T and T1 are nearly isomorphic. Consider the firing vector 

( n1, · · · , n1r1), ni being the number of times transition ti has to be fired to go 
from marking Mo to marking M1. If there is an arc ((t1, k1), (t2 , k2 )) in T, this 
means that there is a place between transitions t1 and t2 with k2 - k1 tokens 
under marking M 0 . Now, we know that the number of tokens in this place 
under M1 is (k2 -' k1) + (n1 - n2). Therefore there is an arc in T1 between 
(t1, k1 - n1) and (t2, k2 - n 2 ) as long as k1 - n1 > 0. If k1 - n 1 ::; 0 then this 
means that there is an arc between .l and ( t2, k2 - n2) in T1. 

We can construct the mapping : 



290 

f: 7 -t 71 
( ti, n) f---7 (t· n - n·) i' i if n > ni 
( ti, n) f---7 (..L) if n::; ni 
( ..L) f---7 (..L) 

f is a morphism and nearly an isomorphism between 7 and 71 because only 
a finite number of vertices are contracted into ..L. 

Eventually, in the same way that (E, M0 ) and (E, M1) are considered equiv
alent, we can also consider the graphs 7 and 71 to be equivalent. 

This remark reinforces the fact that 7 is a good model to study the paral
lelism of the marked graph. Indeed, the parallelism present in a marked graph 
should not depend on the starting point of the system but only on the overall 
"dependencies" between the events taking place during the evolution of the 
system. 

PROPOSITION 3.1 The marked graph G is live if and only if 7 is acyclic. 

Proof: 
Suppose that 7 contains a cycle ((t1,ni),···,(tk,nk)). This implies that 

(t1, · · ·, tk) is a cycle in the Marked Graph G. By definition of 7, this means 
that the n 1-th firing of transition t1 depends on the nk-th firing of tk which 
depends on the nk-1-th firing of tk-1 and so on. Eventually, the n1-th firing 
of transition t1 depends on the n1 -th firing of transition t1. This implies that 
the cycle (t1, · · ·, tk) does not contain any token which means that the marked 
Graph is not live. 

Conversely, if G is not live, then it contains a cycle with no token, t1, · · · , tk. 
In the graph of precedence we can exhibit the cycle (t1, 1), · · ·, (tk, 1). Ill 

Remark: In the following, the marked graph will be live and 7 may be consid
ered as a partial order as a consequence. We will refer to antichains (pairwize 
uncomparable subsets of 7) and chains (totally ordered subsets), following the 
usual notations and definitions (presented in (11]). 

We define the level n in 7 as the set {(t,n),t ET}. A chain up to level n in 
7 is an oriented path from ..L to any element of the level n. 

3.2 Degree of Parallelism 

The degree of parallelism of a system is usually defined by the number of events 
than can take place in parallel in the system. 

DEFINITION 1 The degree 9f parallelism 8 of a marked graph G is the length 
of the maximum antichain in 7. 

The degree of parallelism is equal to the maximum concurrency of a marked 
graph, i.e. the maximal number of transitions which are concurrently enabled at 
a marking M reachable from M0 • Indeed, suppose that transitions {t1, • • •, tk} 
form a maximum concurrent set and are enabled by marking M, which is 
reached from Mo with the firing vector ( n 1, · · · , n1r1). Then, the nodes ( t1, n 1 + 
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1), · · · , (tk, nk + l) form an anti chain in the graph of precedence. Conversely, 
if (t1,n1 + l),···,(tk,nk + 1) is a maximum antichain in r, {t1,··•,tk} form 
a concurrent set and are enabled by the marking reached from Mo with the 
firing vector ( n1, · · · , n1r1). 

An algorithm to compute 8 has been derived in [21] (see also [24]). Anyway, 
some trivial bounds on 8 are easy to find. !TI is an upper bound of 8 since 
(t, n) <T (t, k) whenever O < n < k. This will happen to be good enough 
for parallel simulation of marked graphs on massive parallel machines as the 
Connection Machine. Indeed, for most systems, it is possible to allocate at 
least one processor per transition. 

3.3 Sequentiality 

We introduce a dual notion of the degree of parallelism which will be of interest 
in the following. 

We consider the longest sequence of totally ordered firings during an evolu
tion of the marked graph up to the level n in r. The longer this sequence, the 
less parallel the marked graph. To get a finite value, we take the ratio of this 
sequence over n, the level in T. To get rid of the influence of the initial part of 
the graph T that depends an the initial marking, while it does not essentially 
depend on it ( see proposition 3.1), we take the limit to infinity. 

DEFINITION 2 The sequentiality s(G) of a marked graph G is defined by: 

s( G) = lim Sn, 
n->oo 

h length of the longest chain in T up to level n 
w ere Sn= L n . 

We will show in the following that this limit exists. However, it is easy to 
see that Sn ~ ITI for all n, so that s is bounded. 

We define the critical cycle Gr in the marked graph ( G, Mo) as the cycle 
with the maximum average length, where the average length of a cycle C is its 
length l(C) divided by the number of tokens it contains w(C). We call .X the 
average length of the critical cycle in ( G, M0 ). 

l(C) 
.X = max (C)" CEC W 

PROPOSITION 3.2 The average length of the critical cycle of a marked graph is 
equal to the sequentiality of the associated graph of task 

s(G) = .X. 

Proof: 
Similar results have been obtained earlier in [25] for example. We restate the 

proof in our formalism without pretending originality. Let us add temporisa
tions in the transitions of the marked graph G . Each firing of each transition 
is assumed to last for a time unit. Therefore the length of the longest chain in 
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, starting with l.. and ending with the node (t, n) equals the time it takes in 
the marked graph to reach the nth firing of transition t, denoted Xt(n). 

But now, if one uses the language of marked graphs developed in [2] , one can 
use the periodicity result shown in [9] and write for any transition t, Xt(n) = 
k>.. + Xt ( n - k), n > no for some bounded k and for n0 large enough, in the case 
G is strongly connected. In the general case, one can also write maxt Xt(n) = 
k>.. + maxt Xt(n - k), n > no. 

In terms of the graph ,, this last equality can be rewritten 

Sn(,)= n1Sn1 (,) + >..(n -n1), 
n 

where n1 is bounded and defined by : n 1 = n - kl ( n - no)/ k J. Finally when 
n goes to infinity in the equality (1), we gets(,)=>... ■ 

PROPOSITION 3.3 If M' E R(M), G = (E, M) and G' = (E, M'), then s(G) = 
s(G'). 

Proof: 
In marked graphs, the number of tokens remains constant in all the cycles 

(see [24]). Therefore, the critical cycles are the same in both G and G'. Since 
the sequentiality of a marked graph equals the average length of a critical cycle 
(proposition 3.2), we get the equality, s( G') = >.. = s( G). ■ 

3.4 PRAM Model 

In this section, we consider a parallel algorithm whose task graph is , and 
that would run on a PRAM machine. This sort of models is studied in [8] for 
example, based on notions first introduced in [19]. 

The typical method to do so is to allocate one processor per "column" of, 
( corresponding to one transition in G). Since the degree of parallelism 8 of the 
system is smaller than ITI, this allocation is optimal. 

Now the time it takes to compute the firing epochs up to level n is pro
portional to the longest path in the graph of tasks, that is proportional to 
n.s(G). 

In the following we will compare the complexity of real implementation of • 
the simulation of the marked graph with this theoretical performance. 

4 SHORTEST LONGEST PATH WITHOUT TOKENS 

We introduce yet another notion: the longest path without tokens. Let M E 
R(M0 ). L(M) is the length of the longest path in the marked graph (E, M) 
with no tokens. L(M) is finite because (E, M) is live. 

DEFINITION 3 
L* = min (L(M)) 

MER(Mo} 
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FIGURE 3. This is the form of a critical cycle in the graph under the marking M*. 
For all i, Li= L* or L* - 1. 

and M* is a marking such that L(M*) = L*. 

Note that a marking M achieving the equality L(M) = L* is not unique. 
However we will denote by M* any marking verifying this equality. 

PROPOSITION 4.1 L* = fs(G)l -1 

Remark: This proposition establishes the relation between the sequentiality 
of the marked graph and the longest path without tokens under the appropriate 
marking. 

Proof: 
We will prove that L * = I .X l - 1 which is equivalent to the result using 

proposition 3.2. The proof of this proposition will come from a way to compute 
L *. We will show that L * is obtained in a critical cycle which will be of the 
form shown in figure 3. 

Let M* be the marking in R(M0 ) achieving L* as rarely as possible. Consider 
a path Po of length L *. We construct a set S of transitions in the following way: 
The transition at the beginning of path Po ( denoted t0 ) belongs to S. Note 
that t0 is enabled. Now consider the input places of t0 with only one token and 
all the paths of length L * or L * - 1 ending in one of these places. Call these 
paths P1, P2, · · · Pk1 • The origin transitions of these paths t 1, t2, · · ·, tk1 are put 
in S. These transitions are all enabled. For each path Pi, we consider again all 
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the paths of length L* or L* - 1 ending in transition ti. The origin transitions 
of all these paths are also put in S. We continue this operation until no new 
transition is put in S. 

Suppose that no transition ending the original path P0 with only one token in 
the place between this transition and Po belongs to S. We fire all transitions in 
S once. All the paths A,· · ·, P1s1 are modified into paths P{, · · · , P(81 with the 
same lengths; however, path P0 is transformed into a path P~ of length L* - 1 
so we have reduced the number of paths of length L *. This contradicts the 
definition of M*, therefore, there must exist a transition t~ ending the original 
path and belonging to S. This means that path Po belongs to a circuit formed 
by paths P0 , Pn1 , Pn2 , • • ·, Pnc of length L * or L * - 1. 

This cycle has the form depicted in figure 3 and is called a critical cycle. 
Now, this cycle C has say k tokens and has a length greater than k + (k -

1)(£* - 1) + L*. So>,.~ 1 + L* - 1 + 1/k = L* + 1/k. On the other hand, 
assume that >,. > L • + 1 + a with a > 0. The critical cycle has say m tokens 
so its length ism+ mL* + ma. As a> 0 and ma is an integer, then, ma~ 1. 
But now, this means that one path without token in the critical cycle is longer 
than L * which is impossible. 

Finally, we have shown that L* + 1/k '.5 >,. :5 L* + 1. This implies that 
L* = r>..l - 1 = r s(G)l - 1. ■ 

Note that proposition 4.1 says that L* is the integer approximation of the 
sequentiality of the system. This remark gives an insight on the reason why 
the complexity of the parallel simulations of a marked graph are linear in L * 
in the best case. See section 6 for a detailed discussion on this topic. 

4- 1 Computation of ( M*, L *) 
The previous proposition of L* allows one to derive an algorithm to compute 
a couple (M*, L*). 

4-1.1 Computation of L* 
One can use Karp's theorem to compute L*. Karp's theorem [17] provides a 
method to compute the maximal average weight W of a circuit in a weighted 
graph with n vertices. The graph is described by the weighted incidence matrix: 
A;,j = the weight of the arc (i,j). If there is no arc between i and j, Ai,j = -oo. 

Pick a vertex j. 

W= max mm 
i=l,··•,n k=l,• .. ,n n-k 

For our problem, consider the graph formed by the transitions of a marked 
graph. We put a weight -Mo(i,j) (- the initial marking in the place between 
i and j) on the arc between transitions i and j. We apply Karp's algorithm to 
this graph and we get the cycle with the maximal average weight of a cycle, W, 
which corresponds to the maximal length per token of a circuit: ,\ = -1/W. 
Proposition 4.1 implies L* = r-1/Wl - 1. 
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a) b) 

L(M) = 4 L(M) = 3 

c) d) 

L(M) = 3 L(M) = 2 

FIGURE 4. First notice that the critical cycle is of length 5 with 2 tokens. Therefore 
L* = 2. At each step we show the path P that was picked by the algorithm with 
bold arcs and the set S p as dashed transitions. 

4-1.2 Computation of M* 
The previous computation does not provide a marking M*. We derive an 
algorithm to compute M*. 

While L(M) > L* do 
choose one empty path P of length L( M) . 
compute S p ' • 

fire all transitions in Sp. 

This algorithm computes a marking of the kind M*. Indeed, suppose M 
is a reachable marking bu~ not a marking of the kind M*. Then, using the 
properties of the set Sp given in the proof of proposition 4.1, the firing of all 
transitions in Sp for some empty path P of length L(M), Will either reduce 
L(M) or the number of paths of length L(M). After some iteration L(M) will 
decrease and eventually a marking M with L(M) = L* will be reached. 

Figure 4 shows an application of this algorithm to a small marked graph. 
A detailed and parallelized version of this algorithm is presented in [6]. 

This version does not compute L* first but combines the computation of both 
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(M*,L*): we fire all the transitions which belong to all the sets Sp for all 
empty paths P of length L(M). We stop when neither L(M) nor the number 
of paths of length L(M) are reduced. This version has the advantage to provide 
a marking M* that minimizes the number of paths of length L *. 

5 INSENSITIVITY WITH RESPECT To THE INITIAL MARKING 

In this section, we show that for systems with a stationary regime that does 
not depend on the initial lag times, the initial marking does not alter this 
stationary regime. 

For technical reasons, we distinguish two cases: strongly connected nets and 
open nets. However the results will be very similar in both cases. 

5.1 Strongly Connected Nets 
A marked graph E is strongly connected if there exists an oriented path from 
any transition of T to any other transition in T. In the following we will 
denote strongly connected marked graphs by SCMG. Note that the systems 
under study here have no inputs. 

The following theorem has been shown in (10]. 

THEOREM 5.1 Let G1 = (E, M1) and G2 = (E, M2) be two live SCMG which 
differ only in their initial markings. If M2 E R(M1 ), then by blocking an 
arbitrary transition t, G1 and G2 will reach the same marking M where no 
transition but t is enabled. 

Now we consider a temporized system S = (E, ~, :E, Y, M0 ). 

In (2] the following theorem has been established. 

THEOREM 5.2 If one transition has a firing sequence with an unbounded sup
port distribution, the system is stable and admits a unique stationary regime 
regardless of the initial condition Y. 

This condition of stability can be considered fairly general. However it is not 
necessary. A necessary and sufficient condition of stability of SCMG is given in 
(22]. In fact only few and classified systems admit several stationary regimes 
depending on the initial lag-times (see (23]). In the following we will only use 
the condition given in theorem 5.2. 

Now, we can formulate the following key theorem: 

THEOREM 5.3 Let S1 = (E,~1,:E1,Y1,M1) and S2 = (E,~2,:E2,Y2,M2) be 
two SCMG with weakly compatible lag-times and the same joint distribution 
of the sequence of the firing times. Assume that the firing times form jointly 
stationary and ergodic sequences of integrable r.v. 's and that the sequences of 
firing times at different servers are mutually independent. Assume that one 
transition has an unbounded support firing distribution. Then, conditions of 
stability are satisfied. If M2 E R(M1 ) then the stationary regimes of the two 
systems are identical. 
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Proof: 
Consider the systems Sf= (E,4>1,~ 1 ,Y{,M1 ) and S~ = (E,4>2,~2 , Y{,M2) 

where Y{(Pta, 1) = Y{(Pta, 1) = oo for a transition to with unbounded firing 
distribution support and Y{(p, l) = Y1 (p, l), Y{(p, l) = Y 2 (p, l) Vp -1- Pto· 

According to theorem 5.1, these two systems will eventually reach the same 
marking D if t0 is blocked. We denote by kf and k; the numbers of times 
transition t has fired in Sf and S~ respectively before reaching the marking D. 

We define TJ and T(f by: 

kJ M 1 (p) 

TJ = L L 4>} (l) + L k;Pu~ + L L Yi (p, l), 
tET l=l pEP pEP l=l 

k~ M2(p) 

TJ = L L <f>;(l) + L k!Pu; + L L Y2(P, l). 
tET l=l pEP pEP l=l 

TJ (resp. T(f) is chosen large enough so that at time TJ (resp. T(f) the 
system Sf (resp. S~) is blocked. Transition t0 is the only transition that is 
enabled. 

Finally we set To = max{TJ, T(f}. At time To both systems have reached the 
marking D. 

We consider the systems Sf' = (E, 4> 1 , ~ 1 , Y{', M 1 ) and S~ = (E, 4> 2 , ~ 2 , Y{', M2) 
where Y{'(pt 0 ,l) = To, Y{'(pt 0 ,l) = To and Y{'(p,l) = Y 1(p,l) Vp -1- Pta, 
Yd'(P, l) = Y 2 (p, l) Vp -I- Pto· We obtain m(Sf', To) = m(S~', To) = D. Note 
that systems Sf' and S~ have weakly compatible lag-times. Furthermore, the
orem 5.2 allows one to say that Sf' and S~ are stable and that they have the 
same stationary regime as S1 and S2 respectively. 

We just have to show that Sf' and S~ have the same stationary regime. 
Since the sequences of firing times are mutually independent and stationary, 

we can couple the firing times in Sf' and S~ in the following way: 

These sequences are independent and stationary. Under such coupling, one 
sees that at any epoch e ~ T0 , the marking in both systems is the same: 

m(S~',e) = m(S~',e) Ve~ To. 

This implies that the two original systems S1 and S2 have the same station-
ary regime. ■ 

We have run some experiments to give an idea of the speed of coupling. 
Indeed, the theorem 5.3 does not say anything on that feature. 

Figure 5 depicts a Petri net consisting in a single circuit. Figure 6 shows 
the evolution of the average number of tokens in the place p6 , for two different 
simulations. In one, six tokens were assigned to place p1 and O to the others, 
and in a second simulation the six tokens were assigned to the place p6 . The 
firing times of all the transitions are i.i.d. exponential variables with the same 
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FIGURE 5. A circuit marked graph. 
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FIGURE 6. Stationary distribution of tokens for the graph depicted in Figure 5. 
A is the evolution of the marking in p6 with Mo = (0, 0, 0, 0, 0, 6) and B with 
Mo = (6, 0, 0, 0, 0, 0). 

parameter. One can observe in figure 6 that the convergence to the same 
marking does not occur before the coupling with the stationary regime for 
both systems as it is suggested by the proof. The speed of convergence to the 
stationary regime is a difficult problem [1], and it is not addressed here. 

5.2 Non Strongly Connected Nets 

If a marked graph is not strongly connected, it is decomposable into strongly 
connected components interlinked by an acyclic oriented net (I). Therefore, the 
components can be partially ordered by I. Let C and C' be two components. 
C <1 C' means that there ·are arcs from C to C' ( and no arcs from C' to C). 
In figure 8, the order of the components is Co <1 C1 <1 C2. 

In particular, we call initial components the minimal components according 
to I. These initial components can be either SCMG or input transitions. 
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5.3 Networks With a Single Initial Component 

We do not distinguish in this subsection between the case where this compo
nent is merely an input transition or an entire SCMG. We give the theorems 
corresponding respectively to theorems 5.1, 5.2, 5.3 in the case of a marked 
graph with a single initial component. 

First we extend theorem 5.1 to open networks with a single input component. 

THEOREM 5.4 Let G = (E, M) and G' = (E, M') be two connected and live 
marked graphs and Co be the initial component of E. If one blocks any transi
tion to E Co, then if ME R(M'), G and G' reach the same marking Mt 0 where 
no transition can fire but to. 

Proof: 
Since the graph E is connected, for any transition t( t -/=- to) in E, there is an 

oriented path from t0 to t. Let us consider the path from t0 to t that contains 
the smallest number of tokens under the current marking M. This path is 
simple because, since G is live, all the cycles contain tokens. However, it may 
not be unique. In this case, we choose the path with the smallest indices of 
transitions and we denote this path Wt. We shall denote by Mt the number of 
tokens on such a path under the marking M. 

Now, block transition t0 • It is easy to see that transition t cannot fire more 
than Mt times before blocking. Indeed when a transition distinct from t0 or t 
is fired no token is added or removed in Wt. If t is fired, tokens are removed 
from all the simple paths from t0 tot and in particular from Wt. This implies 
that after some firings, the whole network will eventually block (no transition 
is enabled except to). 

Now, we will see that t blocks after exactly Mt firings, which means that 
the path Wt is empty when t blocks. Let us say that the network reaches a 
complete deadlock under the marking D. Under D, no transition is enabled 
except t0 • Under D, let us follow the longest path without tokens Lt which 
ends in transition t. This path begins in transition t0 otherwise this beginning 
transition would be enabled. Now this path from t0 to t is empty and by the 
token cycle conservation law in marked graphs, this path contained Mt tokens 
under the initial marking so the path Wt is also empty, see figure 7. 

We construct a subgraph S of E in the following way: For each transition t, 
t-/=- to in G we only keep one path from t0 to t, the path Wt. 

First, let us remark that S is a spanning tree of G: indeed, 

• S is connected: Each transition has a least one path which links it with 
to in E. 

• S contains no cycle: The existence of a cycle in S would mean that some 
transition in G is linked to t0 by more than one path. 

Now, we can note that S does not depend on M. If we construct S' starting 
with another marking M' E R(M), we would get the same spanning tree, i.e. 
S=S'. 
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FIGURE 7. The two paths Lt and Wt are necessarily empty under marking D 
because Lt is empty by definition and D(Lt) - D(Wt) = M(Lt) - M(Wt) 2'.: 0. 

Lett be a transition in E. Let E1 and E2 be 2 paths from t0 tot. M'(E1) -
M'(E2) = M(E1) - M(E2). So the minimum path Wt is the same in both 
markings. 

The final step is to describe the marking D (which will necessarily be the 
same for any starting marking). All the places in S are empty. Now, we add 
one place of E to the spanning tree S. We create a cycle. If this cycle is a 
circuit C then all the weight of the circuit M(C) must be put in this place. 
Otherwise, if the edge is (t1, t2) consider the paths from t0 to t1 and t2 respec
tively Wt 1 and Wt 2 • In the original marking, we know by construction of S 
that M(WtJ + M(t1, t2) 2'.: M(Wt 2 ). So there must be a non-negative weight 
M(Wt 1 ) +M(t1,t2)-M(Wt2 ) on the edge (ti,t2). This marking is the same 
for any starting marking in R(M) indeed. ■ 

Now, we give the conditions of stability of an open system. These conditions 
are established in [2]. Here we give only the conditions of stability of a system 
with a single initial component. 

THEOREM 5.5 If the initial component verifies the condition of stability when 
considered in isolation as a strongly connected system given in theorem 5. 2, 
and if for any components Ci and C;, Ci <1 C; implies that the cycle time 
of Ci (isolated} is bigger than the cycle time of C; (isolated}, then the marked 
graph is stable and its unique stationary regime does not depend on the initial 
lag-times. 

These two results allow us to derive the insensitivity of the stationary regime 
for open networks with one initial component. The formulation of the theorem 
is similar to theorem 5.3. 

THEOREM 5.6 Let S1 = (E,cJ1,:E1,Y1,M1) and S2 = (E,cJ2,E2,Y2,M2) be 
two MG with one input component and with the same joint distribution of the 
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sequence of the firing and holding times. Assume that the firing and hold
ing times form jointly stationary and ergodic sequences of integrable r. v. 's and 
that the sequences of firing times at different servers are mutually indepen
dent. Assume also that the system satisfies the conditions of stability and that 
one transition in the input component has an unbounded firing distribution. If 
M2 E R(M1 ) then the stationary regimes of the two systems are identical. 

Proof: The proof is the same as for theorem 5.3. 
Consider the systems St= (E,<l> 1 ,~1,Y{,M1 ) and S~ = (E,<l>2,~2 ,Y;,M2) 

where Y{ (Pto, 1) = Y; (Pto, 1) = oo for some transition to with an unbounded 
support for its firing distributions and Y{(p, l) = Y 1 (p, l), Y;(p, l) = Y 2 (p, l) 'rip -1-
Pto · 

According to theorem 5.4, these two systems will reach the same marking 
M. We denote by k} and k; the numbers of times transition t has fired in St 
and S~ respectively before reaching the marking M. 

We define TJ- and T5 by: 

k! M1 (p) 

TJ = I:I:<ti}(l)+ I:k!P0"1+ L L Y1(p,l), 
tET l=l pEP pEP l=l 

k~ M2(P) 

TJ = L L <ti;(l) + L k:PO"; + L L Y2 (P, l), 
tET l=l pEP pEP l=l 

and finally T0 = max{TJ-, T5}. 
We consider the systems Sf'= (E, <1>1, ~ 1 , Y{i, M1 ) and S~ = (E, <1>2, ~2, Y;', M2) 

where Y{' (Pto, 1) = To, Y;'(Pto, 1) = To and Y{' (p, l) = Y 1 (p, l) 'rip #- Pto, 
Yd' (p, l) = Y2 (p, l) 'rip -::f:. Pto. These two systems have weakly compatible lag
times. To is chosen large enough so that we obtain m(Sf', To) = m(S~, To) = M. 
Furthermore, theorem 5.5 allows one to say that St' and S~ are stable and that 
they have the same stationary regime as S1 and S2 respectively. 

We just have to show that Sf' and S~ have the same stationary regime. 
Since the sequences of firing times are mutually independent and stationary, 

we can couple the firing times in St' and S~ in the following way: 

</i}(n + k}) = </iJ(n + kJ) 'r/j ET, 'r/n ~ 0. 

These sequences are also mutually independent and stationary. Under such 
coupling, one sees that 

m(S~', t) = m(S~, t) 'r/t ~ to. 

Therefore, the two systems reach the same stationary regime. 11111 

The convergence is illustrated by an example depicted in figure 8. Figure 9 
shows the evolution of the average marking in the place between transitions 4 
and 5 with two different initial markings. For A we used the initial marking 
(0, 0, 0, 0, 2, 0, 3, 0). For B we used the initial marking (1, 1, 1, 1, 1, 1, 1, 0) which 
is reachable from the previous one. 



302 

r- - - - - - - - - - - - - - - - - - - - - - -, 

Co 

r---------

0 

P2 3 

-----{ ·•----1-----1 • 
4 

Ps 

FIGURE 8. Open system with three components Co < C1 < C2 . All the transitions 
are recycled with places containing one token but this is not shown in the figure 
for simplicity. 
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FIGURE 9. Evolution of the number of tokens in the place p6 with two different 
initial markings. For A, we used the initial marking (0, 0, 0, 0, 2, 0, 3, 0). For B we 
used the initial marking (1, 1, 1, 1, 1, 1, 1, 0). 
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5.4 Open Systems With Several Initial Components 
An input is slightly different from an initial component in the sense that it 
is not really part of the system but generated by an outside system which is 
considered unknown. No modelisation efforts have been made to describe more 
precisely the input. On the contrary an initial component is part of the system 
which is described and only represents the first part of the process. This is the 
reason why we distinguish these 2 cases in the following. 

5.4.1 System With Several Initial SCMG 
If our system has several initial components which are not all inputs, and if 
these components are really independent one with each other, the system is 
never stable [3], therefore an initial marking optimization may not be appro
priate in this case since any initial modification may have an influence on the 
whole future of the system that does not couple with any stationary regime. 
If some dependency exists between the different initial components, then this 
could mean that there is a hidden dependency on an external phenomenon. In 
this case, we face a modelisation problem and the system was not correctly put 
under the form of a marked graph for our purpose. 

5.,4.2 System With Several Inputs 
Several inputs are jointly ergodic and stationary (see the assumptions presented 
in the preliminaries). This can be interpreted as a common dependency on a 
preceding phenomenon. More precisely, we can see this system as a system 
with only one input as depicted in figure 10. 

Suppose that a system has two input sequences u(n) and v(n). We construct 
a system with entry w( n) = min( u( n), v( n)) and two places with temporizations 
max(u(n),v(n)) -v(n) to get u(n) and max(u(n),v(n)) - u(n) to get v(n). 

The joint ergodicity of the sequences u( n) and v( n) implies that their ergodic 
shift O is the same: u(n) = u o on,v(n) = v o on. Therefore, min(u(n),v(n)) = 
min(u o on,v o on) = (min(u,v)) o on. Similarly, max(u(n),v(n)) - v(n) = 
(max(u,v) - v) o on and max(u(n),v(n)) - u(n) = (max(u,v) - u) o on. The 
firing sequences of the transitions in the new system are stationary and ergodic, 
so the general theory of single input marked graphs applies to the new system. 
As for marking optimization, Theorem 5.6 applies when blocking the new input 
which is equivalent to blocking both inputs in the original system. 

Indeed, in spite of the dependency between the firing sequences of the tran
sitions that were added to the system, when we block the input, we also block 
these transitions in the system. 

The coupling for these new transitions that is needed in the proof of theorem 
5.6 becomes: 4>} ( n) = 4>~ ( n), for all the transitions j that have been introduced 
between the input and the system. This coupling is compatible with the de
pendencies of the firing sequences. Therefore, the proof of theorem 5.6 holds 
in this case. 
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max(u(n), v(n)) - v(n 

System 

min(u(n), v(n)) Q 
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max(u(n),v(n)) - u(n) 

FIGURE 10. Transformation of a system with two inputs into a system with only 
one input. The firing times of the transitions are written on the figure. 

6 OPTIMAL MARKING OF MARKED GRAPHS 

In this section we discuss the practical interest of the markings M* for parallel 
simulation of marked graphs. 

6.1 Equational Simulations 
Marked graphs can be very efficiently simulated using massive parallelism (see 
[4] and [13]). We describe briefly two kinds of equational simulation of a marked 
graph. In both cases we show that the complexity is linear in L(M) and is close 
to the ideal case of a PRAM model. 

The evolution of a Stochastic marked graph can be described by a linear 
system in the semi-field JR(max, + ): 

X(n) = A(n)X(n -1). 

The parallel algorithm developed in [4] uses these equations to compute 
the vector X(n) of the firing times of the transitions. The computation of 
A(n) involves L(M) + 1 operations of cost log(ITI) each if made in parallel 
on a Connection Machine. Then, the matrix vector multiplication is done in 
parallel in log(MITI) where M = maxp M(p). The complexity depends heavily 
on the initial marking. It is of the form O(n(L(M) + l)l(ITI)) with l being a 
logarithmic function. If the system fulfills the condition of theorems 5.6 or 5.3, 
then one can choose the initial marking which gives the best running time of 
the simulation, without altering the results of the simulation. This marking is 
a marking minimizing L(M), i.e. a marking of the kind M*. 

This first algorithm only makes algebraic manipulations of the equations and 
ignores the underlying structure of the marked graph. A different approach uses 
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the topology and the marking of the marked graph to establish an order on 
the utilization of these equations. The transitions are distributed in the L(Mo) 
classes , Ck = { t / C ( t) = k}. All the equations associated with places in a same 
class are used in parallel. The simulation algorithm consists in: 

for (n = 0 to N) 
for (i = 0 to L(Mo)) 

fire all the transitions in Ci. 

In this approach, each transition is assigned to a different processor. "fire a 
transition t" means the application of the equation involving Xt which requires 
d operations, d being the entry degree oft (i.e. #•t). The complexity is yet 
again linear in L(M0 ): n(L(M0 ) + l)d where dis the max of all the degrees of 
the transitions. Once again, the marking M* is the best initial marking of the 
system. 

In both cases, the complexity of the algorithm is very close to the cost of 
any PRAM algorithm whose task graph is r when started with a marking M*. 
This seems to leave little hope for substantial improvement in this type of 

. simulations (i.e. conservative) of marked graphs. 

6.2 Applications 

These results can be used in two different ways during a simulation of a given 
system. First, someone can choose an initial marking of type M* that will sat
isfy the property L(M*) = L *, to start the simulation. Second, sometimes it is 
hard to find such a marking M* by hand and furthermore, this marking may 
not correspond to the natural initial state of the system modeled by a marked 
graph. In these cases, the simulation may begin by a pre-computing step pro
viding M*. This initializing optimizer is available in the package MAGMAS© 
presented in [6] that provides simulation tools of marked graphs on a Connec
tion Machine. 

6.3 Experiments 

We have run some experiments to show the improvement a marking optimiza
tion can provide on the speed of simulation. The jobshop model J depicted in 
figure 11 has an initial marking Mo with L(Mo) = 3. A marking optimization 
gives the initial marking M* depicted in figure 12 and L(M*) = 0. The new 
jobshop model is called J*. 

The result is given in figure 13. The improvement in the running time with 
the optimized system is substantial (more than twice quicker). In any case, the 
initial step of a simulation that consists in optimizing the initial marking takes 
a negligible fraction of the total simulation time and provides a considerable 
speed-up. 
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FIGURE 11. A jobshop model J with 4 types of machines and 4 types of products. 
There are 4 machines. of each type with exponentially distributed firings of mean 1 
and 4 pallets for carrying each type of product. The initial marking is not optimized. 
L(Mo) = 3. 

FIGURE 12. Jobshop J* is the same as J but a different initial marking. We have 
computed the marking M* for this system and L(M*) = 0. 
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FIGURE 13. The performance of the optimized system is more than twice better 
than with the original one. 
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We consider a simple stochastic model with synchronization, representing 
for instance the evolution of an elementary event graph. We develop a 
computational technique that leads in some cases to the complete, exact 
solution for both transient and stationary quantities of the model. The 
technique consists in translating the (max, +) linear system which describes 
the evolution of the event graph into a (standard) linear recurrence for the 
joint transforms of the state variables. In the continuous case, the technique 
is based on formulas of the calculus of the complex variable. In the discrete 
case, one may use similar formulas, as well as others involving linear algebra. 
These exact results can be used as a basis for evaluating the relative merits 
of several bounding schemes. 

1 INTRODUCTION 

309 

The study reported here was initially motivated by the paper of Baccelli and 
Konstantopoulos [3]. In that paper, the authors give a methodology to derive 
bounds for the cycle time in a class of stochastic discrete event systems de
scribed by evolution equations involving addition and maximization. Our aim 
is to obtain the exact solution for models in this class, and to use the solution as 
a test bed for evaluating the accuracy of these bounds. We therefore study the 
simplest model in this class, represented in figure 1. It may be interpreted as 
the infinite and periodic task graph describing the execution of an elementary 
cyclic parallel program on two processors. It may also represent the evolution 
of a stochastic Petri Net (with a particular convention concerning the handling 
of tokens). 

Let {crij(n)}1 , i,j E {1,2} be four independent sequences of i.i.d random 
variables (RVs), hereafter called "input sequences". We are interested in solving 
the stochastic recurrence: 

max{X1(n - 1) + cr11(n), X2(n - 1) + cr21(n)} 

max{X1 (n - 1) + cr12(n), X2(n - 1) + cr22(n)} 

*Supported by the European Grant BRA-QMIPS of CEC DG XIII. 
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0 X1(2) X1(n - 1) X1(n) 

• • • 

• • • 

0 

FIGURE 1. Representation of the stochastic recurrence 

with initial conditions X 1 (0) = X 2 (0) = 0. 
This system is the simplest linear recurrence in the semi-field (max, +) which 

has the "strong connectivity" (or irreducibility) property. This property essen
tially means that the sequence {X2 (n)} depends on the sequence {X1 (n)} and 
conversely. On the other hand, if in (1) we had o-21(n) = -oo for all n, then 
the system is known to model the evolution of a GI/GI/l queue. In that case, 
the sequence { X 1 ( n)} does not depend on the sequence { X2 ( n)}. 

The general theory of such recurrences is developed in [1], and it is known 
that under natural conditions on the input sequences, the RVs X 1(n)/n and 
X 2(n)/n both converge almost surely to a constant,,, often referred to as the 
"Lyapunov Exponent" (anciently, "Kingman constant") of the system. This 
constant may be interpreted in terms of cycle times and throughput. It is an 
essential performance measure of the discrete event system modelled by (1), and 
as such, its computation or estimation has recently received much attention in 
the literature. 

In [10], a method is proposed to obtain the cycle time of the system. It is 
based on the fact that the variables {X1(n) - X2(n)}n form a Markov Chain. 
The cycle time I can be expressed in terms of its stationary distribution. In 
the case where the input sequences are not discrete, this involves the solution 
of integral equations. In [10], computations are carried out when all four se
quences have the same distribution (the "totally symmetric case"), and when 
this distribution is exponential, Bernoulli or uniform. 

The investigation of the "transients" of the system is interesting from many 
points of view, First, it allows to appreciate the speed of the convergence of 
the distributions of Xi(n)/n (i = 1, 2) and X1(n) - X2(n) to their respective 
limits. Secondly, one may use the successive distributions of X 1 (n) to compute 
bounds, either by using known "oversynchronization" and "undersynchroniza-
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tion" techniques for task graphs [2] with the representation of figure 1, or 
following the method exposed in [3]. The comparison of these different approx
imation schemes, based on exact results obtained in this paper, is currently 
under development. 

In a first part of this paper, we revisit the method of Resing et al. for 
discrete distributions, and show how the joint generating functions of the state 
vector can be computed recursively by a linear recurrence (theorem 2.1). As a 
corollary, we obtain two distinct ways of computing the Lyapunov exponent of 
the system. 

In a second part, we propose a method to compute the successive joint dis
tributions of the couple (X1(n),X2(n)) in the case where the distributions are 
continuous. We prove that the joint Laplace transforms are given by a linear 
recurrence (theorem 3.1). 

The rest of the paper gives examples of practical computations in simple 
cases. We study the case of exponential random variables in the "symmetric" 
(section 4.1) and "semi-symmetric" (section 4.2) cases. In these cases, the 
linear recurrence can be expressed as a simpler recurrence on a small number of 
polynomials (lemma 4.1 and (28)). This method is then developed for discrete 
distributions with infinite support, for which the case of Bernoulli RV's with 
arbitrary parameters is solved (section 5). 

2 THE LINEAR RECURRENCE IN THE DISCRETE CASE 

Assume in this section that o-1,1, 0-1 ,2, 0-2,1 and o-2,2 all have a discrete distri
bution. In this case, we shall refine the technique proposed by Resing et al. 
in [10] and obtain two ways to compute the cycle time 'Y and the asymptotic 
variance a- of the system. 

Let, for all n 2: 0, 

It is known [10] that under the independence assumption of the input sequences, 
Z = {Z(n)}n is a homogeneous Markov chain with state space in Z. If the 
distributions of the lTi,i are all bounded, the state space of this Markov chain 
is bounded as well. 

It is easy to show that: 

71(n) + max{Z(n)+ + o-11(n + 1), Z(n)- + £T21(n + 1)} 
= TJ(n) + max{Z(n)+ + £T12(n + 1), Z(n)- + £T22(n + 1)} . (2) 

and 

Vn 2: 0, 71(n + 1) 71(n) + min {Z(n)- + max(o-11 (n + l),o-12(n + 1)), 

Z(n)+ + max(o-21(n + 1), £T22(n + 1))} , (3) 

where, by notation: x+ = max(x, 0) and x- = -min(x, 0). 
Finally, let <I>n(s, t) = IE(sXi(n)tX2(n)) . 

THEOREM 2.1 The sequence <I>n is given by: 



312 

<I>n(s, t) = L p~k\st) sk+ tk- , 
kEZ 

(4) 

where P~k) (x) = IE(x7J(n) l{z(n)=k})- Moreover, the sequence of vectors Pn(x) = 

(P~k\x))kEZ satisfies the linear recurrence: 

Pn+i(x) = M(x) Pn(x) , (5) 

with 

(6) 

IE(xmin{k-+max(u11(n),u12(n)),k++)"Ilax(u21(n),u22(n))}l{z(n)=j}IZ(n _ 1) = k) . 

Note that the definition of the matrix M(x) in (6) does not depend on n 2: 1 
because the chain Z is homogeneous. 

PROOF Decomposing <I>n according to the value of Z(n) and using the variable 
'T/(n), one obtains: 

'°' IE(s'l(n)+k+ t'l(n)+k- l ) L.., {Z(n)=k} 
kEZ 

" k+ k- ( ) L.., s t IE((st)'l n l{z(n)=k}) . 

kEZ 

This proves (4). Assume now that n 2: 1. Conditioning on Z(n - 1), 
making use of (3) and the Markov property, one has: 

p~il(x) = 

and 

"" IE(x7J(n-l)+min{k- +max(o-11 (n),u12(n)),k+ +max(u21(n),u22(n))} 1 . 
L.., L.., {Z(n+l)=1} 
iEN kEZ 

IZ(n - 1) = k,'T/(n -1) = i) IP(Z(n - 1) = k,'T/(n - 1) = i) 

= L L ximjkIP(Z(n - 1) = k, 'T/(n - 1) = i) 
iEN kEZ 

= L mjkIE(x'l(n-I) IZ(n - 1) = k)IP(Z(n - 1) = k) , 
kEZ 

which proves (5). 
One immediately notices that the matrix M(l) = II is the transition matrix 

of the Markov chain Zand that 7rn = p(l) is the probability distribution vector 
of Z(n). 

The representation of theorem 2.1 allows to compute transient and station
ary quantities of the system in two (seemingly) distinct ways: one using the 
stationary distribution of Z (theorem 2.2), and one using uniquely the charac
teristic polynomial of M(x) (theorem 2.3). 

Let d(n) = X1(n) - X 1(n -1). the quantity d(n) is therefore the increase of 
X1 at the n-th step, and we expect naturally that when the system is station
ary, its mean value will be the growth rate of the system (i.e. its Lyapunov 
exponent), that is: 
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, = IE1r(d(n)) . 

We are going to analyze some properties of the sequence { d( n )}n. The prop
erties of the variables X 2 (n) - X 2 (n - 1) will follow easily. 

THEOREM 2.2 

i/ We have: 

IEd(n) = h 7l"n-l 

where h is the vector: 

h = eM'(l) + f(II - I) , 

with e = (l)kEZ and f = (k+)kEZ· 

ii/ The covariances of the sequence { d( n)} are given by: 

(7) 

n ~ 2: IE(d(n)d(l)) = hlln- 2 (M'(l) + IIF II - F)7ro (8) 

IE(d(1) 2 ) = E(d(l)) + (eM"(l) + 2fM'(l) - 2hF)7ro , (9) 

where F is the diagonal matrix with F ii = i+. 

iii/ If Z is stationary and ergodic with stationary distribution 7r, one has: 

lim IEd(n) = , = eM'(l)7r , 
n->oo 

and, in distribution: 

~n---+oo Y, 

with Y normally distributed with mean O and variance a- given by: 

a-2 = 1 -31 2 + e[M"(1)+2M'(l)(I-Il-7re)-1M'(l)] 7r .(10) 

PROOF From Theorem 2.1, we have: 

(11) 

where f(s) = (sk+)kEZ· The vectors f(s) and Pn(s) are obviously differentiable 
with respect to s. Moreover, f(l) = e and f'(l) = f. Therefore: 

Using the relation: Pn(s) = M(s)Pn-i(s), we have: 



314 

It follows that for n ~ 1: 

EX1(n) - EX1(n - 1) = 

f(II7rn-1 - 7rn-1) + eM'(l)7rn-1 + e(JI - J)p~-1(1) • 

But ell= e, and this relation rewrites as (7). This proves i/. 

The covariance of d(l) and d(n) is: 

IE( d(l)d( n)) = IE( d( n )X1 (1)) - IE( d( n )X1 (0)) . 

For all n ~ 2, one has: 

IE(d(n)X1(l)) = h1In- 2IE(1r1X1(l)). 

(12) 

But the k-th component of IE(1r1X1(l)) is IE(l{Z(l)=k}X1(l)) = p(k)~(l) + 

k+ P?)(l), from the definition of Plk\x). Therefore, 

IE(1r1X1(l)) = p~(l) + F1r1, 

and likewise, 

Computing the difference and using Pi (1) = M'(l)1ro + Jip~(l), one obtains 
(8). 

Let us compute the variance of d(l). Differentiating (11) twice, we have: 

E[X1(n)(X1(n) - 1)] = g1rn + 2fp~(l) + ep~(l) , 

with g = f"(l) = 0. Moreover, p~(l) = M'(l)1rn+2M'(l)p~_1 (1)+1Ip~_ 1 (1). 
Then, writing: 

and using previous calculations, one obtains: 

E[d(1) 2 ] = Ed(l) + 2f(M'(1)1r0 + (JI - I)p~(l)) 

+ e(II - I)pi(l) - 2h(F1ro + p~(l)) 

Ed(l) + 2(fM'(l) - hF)1ro + 2(f(JI - I) - h)p~(l) , 

because e(II - I) = 0. This finally rewrites as (9). 

If Z has a stationary distribution 1r, then for all non-zero vectors 1r0 , we 
have: limn--+oo 1In1ro = 7r (see e.g. (11]). Therefore, limn__,00 IE(d(n)) = h1r = 
eM'(l)1r (because II1r = 1r). The validity of the central limit theorem for 
X1 ( n) has been proved in [10]. In this paper, the asymptotic variance is given 
by the formula: 
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00 

u2 = IE1r(d(l)2) + 2 L IE1r[(d(l) - -y)(d(l) - -y)] , 
1=2 

where lE,r denotes the expectation given that the distribution of Z(O) is given 
by ,r (that is, Z is stationary). Assume first that n ~ 2. From (8), and 
remembering that limn-+oo IIn = ,re, one writes: 

IE1r[(d(l) - -y)(d(n) - -y)] = IE1r(d(l)d(n)) - -y2 
= h[IIn-2 - ,re+ ,rel[M'(l) + (I - II)F],r - -y2 
= h[IIn-2 - ,re]M'(l),r + h[IIn-2 - ,re](I - II)F,r + -y2 - -y2 
= h[IIn-2 - ,re]M'(l),r + h[.lln-2 - IIn-1]F,r 
= eM'(l)[IIn-2 - ,re]M'(l),r + f[IIn-l - IIn-2]F 
+h[IIn-2 - IIn-l]F,r. 

It follows that: 
00 

LIE1r[(d(l) - -y)(d(l) - -y)] = 
1=2 

( eM'(l)(~[IIn - ,re])M'(l) + f(,re - I)F + h(I - ,re)F) ,r . 

To compute the series, notice that if n > 0, IIn - ,re= (II - ,re)n. Therefore, 
I:;::='=0 [IIn - ,re] = (I - II - ,re)-1 - ,re. The above expression then reduces 
to: 

00 

LIE1r[(d(l) - -y)(d(l) - -y)] = eM'(l)(I - II - ,re)-1M'(l),r 
1=2 

+ h(I - ,re )F,r - -y2. 

Together with (9), one obtains (10). 

THEOREM 2.3 Let P(z,x) = Det(M(x) - zl) be the characteristic polynomial 
of M(x). Let: 

8P 8P 8 2 P 
P., = Bx (1, 1), P,, = Bz (1, 1), P.,., = ax2 (1, 1), 

a2p a2p 
P.,,, = axaz (1, 1), and P,,,, = 822 (1, 1). 

Then: 

'Y = (13) 

and 

2 1 ( 2 ) u = 'Y - 'Y - P,, P.,., + 2-yP.,,, + -y Pzz . (14) 
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PROOF Let x;(n)(s) = IE(sXi{n}). Using, for instance, the generating matrix 
I::=o tnM(x)n, one can show that for all n 2 0 and in a neighborhood Vi of 
s = 1, one has (see [11, p. 9]): 

L m;-l 
x;(n)(s) = <Pn(s, 1) = L L nja,j(s),\r(s) , 

l=l j=l 

where ,\1 , ... , A£ are the L distinct eigenvalues of M( s ), mz the multiplicity of 
A/ and the a1j are functions independent of n, analytic in V1 . 

The Perron-Frobenius eigenvalue of M(s), say ,\1 (s), is real, isolated (m1 = 
1) and less than 1, because M(s) is substochastic for s E [O, l]. Moreover, 
A1 (1) = 1 and there exists p < l such that 

'r/sEVi, 'r/l,2::;t::;L, 

Consequently, 

A straightforward asymptotic expansion in x;(n)(e-slvn) allows to conclude 
. that as n---. oo, 

X1(n)-wy w y 
r.:: - , Uy1• 

with Y ~ N(O, 1) and with 

,=,\~(1) and u 2 =,\r(l)+,-,2 . 

The derivatives of ,\1 (s) at s = l can hopefully be computed without an explicit 

expression for this function. It suffices to note that P(z, s) = flf=l (z-,\1(s ))m1 , 

so that: 

L 

L m1(z - A1(s))mz-l Il(z - Aj(s))m; ls=l,z=l 
l=l j#l 

and 

L 

P., = - L,\i(s)m1(z - A1(s))m,-l Il(z - Aj(s)rj ls=l,z=l = -,\~(l)Pz · 
l=l j#l 

The expression for ,\~(1) follows. A similar calculation yields ,\~(1). □ 

3 THE CONTINUOUS CASE 

For the moment, we do not assume anything particular on the distribution of 
the input sequences. For i,j E 1,2, let us denote Sij(x) = IP(uij(n)::; x). Let, 
for all n 2 0: 
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and 

Wn(s, t) = E(e-•X1(n}-tX2(n}) = L L e-sx-tydFn(X, y) . 

This Laplace Transform is defined a priori on the domain ilRl. x ilRl.. If the random 
variables X 1 (n) and X 2 (n) are known to be positive (the most common case), 
the domain can be extended to { ~( s) 2: 0} x { ~( t) 2: 0}. It is well known that 

f f e-•x-tyFn(x,y)dxdy = ...!_Wn(s,t). (15) 
J.IR j/R st 

The initial values of these functions are naturally Fo(x,y) = l{x,y~O} and 
Wo(s, t) = 1. 

From (1), one has: 

Fn+i(x,y) = IP(X1(n) + o-u(n + 1)::; x,X2(n) + CT21(n + 1)::; x, 

X1(n) + o-12(n + 1)::; y, X2(n) + CT22(n + 1)::; y) 

kk IP(a-u(n + 1)::; x -u,o-21(n + l)::; x -v, 

~12(n + 1)::; y-u,a-22(n + 1)::; y -v)dFn(u,v) 

J
inf(x,y} Jinf(x,y) 

-oo -oo S(x,y,u,v)dFn(u,v), 

where S(x, y, u, v) = Su(x - u)S21(x - v)S12(Y - u)S22(Y - v). 

(16) 

Obeying to a standard reflex in such a context, we turn to Laplace transforms, 
hoping to obtain a more appealing recurrence relation. From (15) and (16), we 
have: 

= LL e-•x-ty LL l{u:','.inf(x,y)}l{v:','.inf(x,y)}S(x,y,u,v)dFn(u,v)dxdy 

= LL e-sx-ty LL (l{u:','.v:','.inf(x,y)} + l{v<u:','.inf(:z:,y)}) S(x,y,u,v)dFn(u,v)dxdy 

= LL l{u>v} l 00 loo e-•x-tys(x,y,u,v)dxdydFn(u,v) 

+ LL l{u:','.v} 100100 
e-sx-tyS(x,y,u,v)dxdydFn(u,v) 

= f f l{u>v}e-u(s+t) f f e-•x-tyS(x+u,y+u,u,v)dxdydFn(u,v) 
j/R j/R JJR+ 1/R+ 
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Defining the functions: 

An(s, t) 

= k,k, l{u>v}e-u(s+t) k_k, S(x+u,y+u,u,v)e-sx-tydxdydFn(u,v) 

Bn(s, t) 

= 11 l{v?:u}e-v(s+t) 11 S(x + v, y + v, u, v)e-sx-tydxdydFn(u, v) 

= 11 l{u?:v}e-u(s+t) 11 S(x + u, y + u, v, u)e-sx-tydxdydFn(v, u) , 

equation (17) reduces to: 

1 
-Wn+i(s, t) = An(s, t) + Bn(s, t) . 
st 

(18) 

Note that the definitions of An and Bn are slightly asymmetric. This is due 
to the fact that Fn may in all generality have a mass on the diagonal u = v. 
A more symmetric approach would be to isolate this diagonal and introduce 
three functions, as will be done in the discrete case (see (38) in section 5 and 
appendix A). In the cases we shall analyze in the following, this problem does 
not arise, and the decomposition (18) will be sufficient. 

The rest of this section is devoted to the proof of the following theorem: 

THEOREM 3.1 There exists a function K(z, s, t) such that, for all n:::: 1: 

Wn+i(s,t) = -2~ / K(z,s,t) '1!n(s+t+z,-z) dz. 
i1r lrn. 

The function K is a 4-linear functional of the Laplace transforms of the distri
butions of the RV's (J'ij, l :S i, j :S 2. 

PROOF The inner integral of A and B equals: 

k_ S11(x)S21(x+u-v)e- 9"'dx k, S12(y)S22(y+u-v)e-tYdy. (19) 

Each of these terms is a Laplace transform. The first one is the Laplace trans
form of the r.v. max{(J'1 1 ,(J'21 + u - v}. Denote this r.v. by S, and let S* be 
its Laplace transform. According to lemma A.3 (see also (8, p. 128)), we have: 

S*(s) = - lim [~ / (J'i1(s+y)(J';1(-y)ey(u-v)~ 
z-->0,!R{z-)>0 2t7r }i!R y - Z 

+~ { (J'i1(-y)(J';1(s+y)e-(s+y)(u-v)~] 
2i7r Ji!R y - z 

If follows that equation (19) can be rewritten as 

lim (-.-)2 H(s, t, YI, Y2)eY1(u-v)eY2(u-v) l 11 z1,z2-->0,!R(z1),!R{z2)>0 2i7r i!R i!R 



dy1 dy2 

Y1 - z1 Y2 - z2 

with 
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H(s, t, Y1, Y2) = cri1 ( s + Y1 )cr:h ( -y1)cri2( s + Y2)cr:22 ( -y2)e(Yi +Y2 )(u-v) 

+cri1 (s + Y1)cr:h (-yi)cri2(-y2)cr:h(s + Y2)e(Yi -y2 -t)(u-v) 

+cri1 (-y1)cr21 (s + Y1)cri2(s + Y2)cr22(-y2)e(YrYi-s)(u-v) 

+cri1 (-y1)cr21 (s + Y1)cri2(-Y2)cr22(s + Y2)e-(Yi +Y2 +•+t)(u-v) 

Integrating the exponential term of the first term on the domain { u > v} 
against e-(s+t)udFn(u,v), we obtain 

--;-1 W n ( s + t + z, - z) dz . 
2i 7f ilR z + Yl + Y2 

Repeating the process for the three other terms, we get: 

. 1 211 1 1 { An(s, t) = hm (-.) -. 
z1,z2->0,!Jl:(z1),!Jl:(z2)>0 2i7f ilR ilR 2i7f ilR 

cri1(s+y1)cr21(-y1)cri2(s+y2)cr22(-y2) + 1 + 
z Yl Y2 

+cri1(s+y1)cr21(-y1)cri2(-y2)cr22(s+y2) 1 t 
z + Y1 -y2 -

+cri1 (-y1)cr21 (s + yi)cri2( 8 + Y2)cr22(-y2) 1 
z + Y2 -y1 - s 

+cri1 (-y1)cr21 (s + Y1)cri2(-y2)cr22(s + Y2) 1 t} z -y1 -y2 - s -
dy1 dy2 

Wn(s + t + z, -z)dz---- (20) 
Y1 - z1 Y2 - z2 

Likewise, the function Bn(s, t) has a similar form. This proves the theorem. 

4 APPLICATION TO EXPONENTIAL DISTRIBUTIONS 

Assume now that the four input sequences are made of i.i.d. exponential vari
ables, and let a, b, c and d be the parameters of the variables 0-11, o-12 , 0-21 and 
o-22 respectively. This amounts to say that: 

S(x,y,u,v) = (1- ea(u-x))(l - eb(u-y))(l - ec(v-x))(l - ed(v-y)). 

If a = d and b = c, then it is easy to convince oneself that the variables X 1 ( n) 
and X2(n) are exchangeable for any n, that is to say the function Fn(x, y) is 
symmetric in (x, y), and the function Wn(s, t) is symmetric in (s, t). In that 
case, A(s, t) = B(t, s). We shall call this case "semi-symmetric" hereafter. 

Instead of applying the general framework developed in the previous section, 
we adopt a more direct approach to obtain the functional recurrence on Wn. 
Indeed, it is simpler to obtain the kernel K of theorem 3.1 by integrating first 
equation (19) than by using formula (20). 

In this semi-symmetric case, we have from (19): 
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[ [ S(x+u,y+u,u,v)e-sz-tydxdy 
JR lroo 00 

= 1 (1- e- 0 "')(1- eb(v-u-z))e- 8"'dx 1 (1- e-by)(l - ea(v-u-y))e-tYdy 

( 
a aeb(v-u) ) ( b bea(v-u) ) 

= s(s+a) - (s+b)(s+a+b) t(t+b) - (t+a)(t+a+b) · 

The computation of 'Pn+l is therefore reduced to that of: 

2ab1oo 1u e-u(s+t) (-1- -_ __,,se...,.b(_v_-u_)_-:--) 
o o s+a (s+b)(s+a+b) 

( 
1 . tea(v-u) ) 

-t+-b - (t+a)(t+a+b) dFn(u,v) · 

(21) 

4, 1 The totally symmetric case 

We assume in this section that a = b. We will actually take a = l. It can be 
easily checked that A(s, t) is now symmetric in (s, t) so that the expression for 
'Pn+i reduces even more to yield: 

'Pn+i(s, t) 

- 2 . 100 1u -u(s+t) (1 sev-u) (1 tev-u) dF. ( ) 
- (s + l)(t + 1) o o e - s + 2 - t + 2 n u, v 

2 s t 
= (s+l)(t+l)(Jn(s+t,0)-( 8 + 2 + t+ 2 )Jn(s+t+l,-l) 

st 
+(s+ 2)(t+ 2)Jn(s+t+2,-2)), 

where 

(22) 

In order to obtain a functional recurrence for the sequence 'Pn, there remains 
to express the function Jn in terms of 'Pn, This can miraculously be done using 
lemma A.2 in appendix A. One obtains (the function Kn is null if n > 0): 

l 1 dz Jn(s,t) = --2 . 'Pn(s+t+z,-z)--, 
Z11' iR Z + t 

for !R(t) < 0. This leads to: 

2 
'P (s t) -

n+l ' - (s + l)(t + l)(s + 2)(t + 2) 

-2~ f ((s + 2)(t + 2)! - 2(st + s + t)__!___l + st__!_2 ) 
Z11' jiR Z Z - Z -

(23) 

'Pn(s + t + z, -z)dz . 

In this integral, the term "1/z" is to be interpreted as: "lim0 .... 0+ 1/(1 - c)". 
This follows from the fact that for any fixed x E ilRt, the function c H Jn(x + 
c, -c) is analytic for !R(c) > 0 (see the Appendix), so that Jn(x, 0) can be 
obtained from the integral formula above by letting t go to o-. 

When n = 0, we substitute 'Po(s, t) = 1 in this equation, which becomes: 
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2 1 
= ( )( )( )( ) ((s + 2)(t + 2) - 2(st + s + t) + st) (24) s+l t+l s+2 t+2 2 

4 

- (s+l)(t+l)(s+2)(t+2)' 

by virtue of lemma A.5. This computation was of course hardly necessary: one 
obtains directly from (16) the value Fi(x,y) = (1- e-"')2(1- e-Y) 2 • 

The computation of '1i 2 is much more interesting, as it gives the intuition for 
the general result. We shall omit it for the sake of brevity, and state instead 
the principal lemma. 

LEMMA 4.1 For all n?: 1, the function '1in has the following form: 

4n N(s, t) 
'1in(s, t) = (s + l)(s + 2)(t + l)(t + 2) V(s + t) ' 

where: 

V(x) = [(x + l)(x + 2)2 (x + 3)2 (x + 4)2t-1 

N(s, t) = Pn(s + t) + st Qn(s + t) , 

and Pn, Qn are polynomials. The degree of Pn is 3(n - 1), and the degree of 
Q n is 3n - 5 for n > l. 

PROOF The proof is by induction. The case n = l is already solved in view of 
(24): take Pi(x) = 1 and Q1 (x) = 0. The degree of Pi is zero. 

Assume the lemma holds for some n. Then, by (23), we have, denoting 
X = S + t: 

2 
'1in+i(s, t) = 

(s + l)(t + l)(s + 2)(t + 2) 

2~7rLi ((s+2)(t+2);-2(st+x)z~l +stz~ 2 ) 

Pn(x) - z(x + z)Qn(x) dz . ( ) 
'Dn(x)(x + z + l)(x + z + 2)(z - l)(z - 2) 25 

All that is needed is therefore a way to compute the integral: 

I(()= _1_ { Pn(x) - z(x + z)Qn(x) __!!:_!_ 
2i1r Jm. (x + z + l)(x + z + 2)(z - l)(z - 2) z - ( 

for a fixed, pure imaginary number x and a nonnegative number ( (see the 
remark above concerning the term 1/ z ). 

The integrand of J(() is a rational function in z, and the degree of the 
numerator ( =2) is less than that of the denominator ( =5). A decomposition in 
elementary fractions yields: 

Pn(x) - z(x + z)Qn(x) 

(x + z + l)(x + z + 2)(z - l)(z - 2)(z - () 

a(x, () + f3(x, () + 1 (x, () + 8(x, () + c:(x, () . 
x+z+l x+z+2 z-l z-2 z-( 

(26) 
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With the use of lemma A.5, integration of this equation yields: 

I(() = a(x, ()sgn(-l - x) + f3(x, ()sgn(-2 - x) + 1(x, ()sgn(l) 
1 

+8(x, ()sgn(2) + c(x, ()sgn(() = 2(a + /3 - ')' - 8 - c) . 

On the other hand, it is clear from the decomposition (26) that a+/3+1+8+c = 
0 (multiply by z and let z go to infinity). Therefore, J(() = a(x, () + f3(x, (). 
The values of a(x, () and f3(x, () are respectively: 

a(x, () 

/3(x, () = 

Pn(x) - (x + l)Qn(x) 
(x + 2)(x + 3)(x + 1 + () 
Pn(x) - 2(x + 2)Qn(x) 

(x + 3)(x + 4)(x + 2 + () · 

Plugging these expressions in (25) and reducing to the same denominator (the 
help of the MAPLE software was valuable here), one obtains: 

W (s t) - - 2 
n+i ' - ( s + l) ( t + 1) ( s + 2) ( t + 2) 

_2_ A(x)Pn(x) + B(x)Qn(x) + st(C(x)Pn(x) + D(x)Qn(x)) 
Dn(x) (x + l)(x + 2)2(x + 3)2 (x + 4)2 

where: 

A(x) = 2(x + 4)(5x2 + 20x + 18) 

B(x) = x(x + 1)2 (x + 4)(3x + 8) 
C(x) 5x + 14 

D(x) (x + l)(x2 - 8) . 

(27) 

The lemma is therefore proved, and the polynomials Pn+l and Qn+i are given 
by the recurrence: 

(28) 

One easily checks that the degree of Pn+l is max{ 3 + 3( n - l), 4 + 3n - 5} = 3n 
and that of Qn+l is 2 if n = l and max{3(n - 1) + 1, 3n - 5 + 3} = 3n - 2 if 
n > l. 

The recurrence (28) may be solved by elementary means. 

LEMMA 4.2 For all n ~ l, the polynomials Pn and Qn are given by: 

where 
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,\i(x) = ~ ( A(x) + D(x) ± J(A(x) - D(x))2 + 4B(x)C(x)) 

PROOF Let Yn(x) be the column vector whose entries are Pn(x) and Qn(x), 
and let M(x) denote the 2 x 2 matrix which appears in (28). We then have: 
Yn+i(x) = M(x)Yn(x) for n:::: 1, with Y1(x) = (1,0)t. If Y(z,x) = I:::=l 
Yn(x)zn-I, then Y obeys the matrix equation: Y(z,x)(I- zM(x)) = Y1(x). 
Inversion of this equation (at points where I - zM(x) is not singular) yields: 

1 ( 1 - zD(x) -zB(x) ) ( 1 ) 
Y(z,x) = P(z,x) -zC(x). 1-zA(x) 0 ' (29) 

where P(z, x) = det(I-zM(x)) = z 2(A(x)D(x)-B(x)C(x))-z(A(x)+D(x))+ 
1 = (1- z,\1 (x) )(1- z.\2 (x) ). An expansion in series of z of the right-hand side 
of (29), followed by the identification of the coefficients proves the lemma. Note 
that such computations are known as the spectral expansion in the literature. 

We are now in position to state a number of properties of the solution of the 
system (1): 

PROPOSITION 4.3 Let {(X1(n),X2(n))}0 be the solution of (1). We have: 

407 344 126(-lr 
EX1 (n) = EX2(n) = 228 n + 1083 + 361 ~ . (30) 

In particular, the Lyapunov exponent of the system is: 

In particular, 6-(n) converges (geometrically fast) in law to a RV 6-(oo) with 
distribution (/10)): 

P(A(oo) :'.S x) = l~ ( 2
2
3 e"' - 2e2"') l{x<O} 

PROOF The Laplace transform of X 1 ( n) is: 

4n N(s, 0) 
2(s + l)(s + 2) 'D(s) 

4n Pn(s) 

2(s + l)(s + 2) [(s + l)(s + 2)2(s + 3)2(s + 4)2Jn-l 
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Formula (30) follows by differentiation, with or without the help of MAPLE. 
Likewise, the Laplace transform of A(n) is given by: 

Pn(O) - s2Qn(O) 
----------,---
(1 + s)(2 + s)(l - s)(2 - s) V(O) 

1 76-7s2 (1-(-18)1-n) 
19 (1 + s)(2 + s)(l - s)(2 - s) 

Inverting this Laplace transform yields the distribution of A(n). 

Other properties of the couple (X1 (n),X2 (n)) can be derived from the value 
of Wn, such as their higher moments and their covariance. 

4.2 The semi-symmetric case 

We now turn to the solution of the semi-symmetric case. Il follows the same 
steps as in the totally symmetric case, and many details will be omitted. It 
should be emphasized here that the use of an algebraic manipulation package 
(in our case, MAPLE) seems essential to be able to complete these calculations. 

At the end of section 3, we were left with the formula: Wn+l (s, t) = st(An(s, t)+ 
• An(t, s)), An being given by (21). Expanding the product gives: 

An(s, t) = (32) 

ab[(s + a)(s + b)(t + a)(t + b)(s +a+ b) (t +a+ b)J- 1 

( (s+b)(t+a)(s+a+b)(t+a+b) Jn(s+t,0) 

-t(s + b)(t + b)(s +a+ b) 

-s(s + a)(t + a)(t +a+ b) 

+(s + a)(t + b) 

Jn(s + t + a,-a) 

Jn(s+t+b,-b) 

Jn(s+t+a+b,-a-b)), 

where Jn is still given by (22). As in section 4.1, the computation of \J!2 allows 
to guess what the general structure of \Jin is. Again, we skip it to state directly: 

LEMMA 4.4 For all n 2". 1, the function \Jin has the following form: 

(abt+l Nn(s, t) 
= (s + a)(s + b)(s +a+ b)(t + a)(t + b)(t +a+ b) V(s + t)n-l ' 

where: 

V(x) = (a+ x)(b + x)(a + b + x) 2 (2a + x) 2 (2b + x) 2 

(2b +a+ x)2 (2a + b + x) 2 (2a + 2b + x) 2 

Nn(s, t) = Pn(s + t) + st Qn(s + t) + (st) 2 Rn(s + t), 

and Pn, Qn and Rn are polynomials. 

PROOF The proof is similar to that of lemma 4.1. The case n = 1 is easily 
proved since it is clear that Fi (x, y) = (1- e-a"')(l - e-b"')(l - e-ay)(l - e-by), 
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the Laplace Transform of which is \Jl1(s, t) = a2 b2 (a + b + 2s)(a + b + 2t)/(s + 
a)(s + b)(s +a+ b)(t + a)(t + b)(t +a+ b). We have therefore Pi (x) = 2x(a + 
b)+(a+b)2, Q1(x) =4andR1 =0. 

For the general case, one computes the integral 

I(()= -2~ 
Z'lr 

f Pn(x) - z(x + z)Qn(x) + z2 (x + z) 2 Rn(x) dz 
Ji'~. (x + z + a)(x + z + b)(x + z +a+ b)(a - z)(b - z)(a + b - z) z - ( 

by expanding the integrand in elementary fractions of z ( the degree of the 
numerator is still less than that of the denominator). The use of the induction 
hypothesis and algebraic manipulations show that the vector of polynomials 
Yn = (Pn(x), Qn(x), Rn(x ))t is given by a linear recurrence Yn+l = M(x)Yn(x ), 
as in (28). A MAPLE program implementing this recurrence and computing 
the Lyapunov exponent of the system is given in appendix 5.3. D 

Repeating the analysis of the totally symmetric case, we introduce the vec
tor Yn(x) = (Pn(x), Qn(x), Rn(x)/ and the generating function Y(z, x) 

. I:;:"=1 Yn(x)zn-l, which satisfies: 

Y( ) [J - zM(x)]Y1(x) 
z,x = (1- z,\1(x))(l - z,\2(x))(l - z,\3(x)) ' 

(33) 

where [A] denotes the comatrix of some matrix A, and (l-z,\1 (x ))(l-z,\2(x ))(l
z,\3(x )) is the determinant of I-zM(x). It follows that Yn(x) can be expressed 
in terms of the function 

1 
</Jn(x) = [zn-l] (1- ZA1(x))(l - z,\2(x))(l - z,\3(x)) (34) 

A1 (x t+1 (,\3 (x) - A2(x)) + A2(x r+1 (,\1 (x) - ,\3 (x)) + ,\3 (x r+l (,\2 (x) - A1 (x)) 
(,\1 (x) - A2 (x) )(,\2 (x) - ,\3(x) )(,\3 (x) - ,\1 (x)) 

at points where all three roots ,\i(x) are distinct. A similar expansion exists 
in the other cases. We skip the painful details as the explicit expansion of 
Pn, Qn and Rn (and therefore '11n) is too complicated to learn us anything. 
Note however that if the parameters a and b are given a particular numerical 
value, computations with MAPLE become again feasible, and the results are 
compact enough. 

We instead concentrate on the computation of the Lyapunov exponent of the 
system. This is a simpler problem owing to the fact that the Laplace transform 
of X1(n) is simply: 

X*(n)(s) - (ab)n 1 Pn(s) 
1 - (a+ b)(a + s)(b + s)(a + b + s) (a+ s)n-l(b + s)n-l [D(x)Jn-l' 

where D is given in Lemma 4.4. The expected value of X 1 ( n) is therefore: 
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EX1(n) = - P~(O) + (n - I) 
Pn(0) 

(! + ! + 2 (-1- +_!_+_!_+_I_+ _I_+ I )) 
a b a + b 2a 2b 2b + a 2a + b 2( a + b) 

I I I 
+~ + b + a+b · (35) 

The value of Pn(0) is easily shown to be Pi (0).X1 (or-1, where -X1 (0) = M1,1(0) = 
64a2b2(a + 2b)2(2a + b)2 (a + b)4 : this is simply due to the fact that M1,2(0) = 
M1,3 (0) = 0. This eigenvalue is actually the dominant eigenvalue of M(0), that 
is, the one with largest modulus (which is not shown here). 

Let e1 = (I, 0, 0). Then we have: 

so that: 

(36) 

Differentiating equation (33) with respect to x, we have: 

f P~(0)zn-l = !! (z, 0) 
n=l 

The right-hand side of this formula is a rational function of z whose first sin
gularity is at z = I/.X1(0) (because .X1(0) is the dominant eigenvalue of M(0)). 
This singularity is a pole of order 2. It follows (see for instance [6]) that: 

P~(0) = [zn-11!! (z,0) = 

( _ I)-X (0)n-2 -X~ (0) e1 [J - (-X1 (0) )-1 M(O)]Y1 (0) ( ( )) 
n 1 (l--X2(0)/-X1(0))(l-.X3(0)/-X1(0)) l+ol . 

Using (36), we obtain: 

P~ (0) .X~ (0) 
Pn(0) = n -X1(0) (I+ o(I)). 

It remains to evaluate A~ (0), which we do as in theorem 2.2. If II(z, x) = 
(z - -X1(x))(z - -X2(x))(z - A3(x)) is the characteristic polynomial of M(x), we 
have: 



327 

,\~(0) = _ 8II(z,x)I (8II(z,x)I )-l 
8x z=A1(0),z=0 8z z=A1(0),z=0 

(37) 

In order that these computations be perfectly valid, it remains to be proved 
that the eigenvalue ,\1 (x) is indeed the dominant one for all values of x. A way 
to obtain this result. would be to show that all three ,\i(x), i = 1, 2, 3 are never 
equal in modulus (actually, all seem to be real). As A1(x) is dominant at x = 0 
(which is also to be proved), it is then dominant everywhere. 

A MAPLE program based on equations (35) and (37) is given in appendix 
B. It produces (among other things) the following result: 

LEMMA 4.5 Let r = a/b. The Lyapunov exponent of the system is given by: 

where 

1 N(r) 
'Y = 16a(a + 1) D(r)' 

N(r) = 16Or10 + 1776r9 + 822Or8 + 21378r7 + 35595r6 + 41566r5 

+35595r4 + 21378r3 + 822Or2 + 1776r + 160 

D(r) = 8r8 + 8Or7 + 321r6 + 69Or5 + 88Or4 + 69Or3 + 321r2 + 80r + 8 . 

A plot of this function is given in figure 2 (for a = 1). Note that D(r) 
and N(r)/r are symmetric polynomials in r, which reflects the fact that 'Y is 
symmetric in ( a, b). The limit of 'Y when r -t oo is 5 / 4. The case a = oo 
actually admits a simpler solution, which we detail at the end of this section. 

To conclude the semi-symmetric case, we give a description of the behavior 
of the RV A(n): 

PROPOSITION 4.6 The distribution of A(n) converges geometrically fast to that 
of A(oo). 

PROOF The Laplace transform of A(n) is: 

A *(n)(u) = 'Pn(u, -u) 

a2b2(a + b)2 Pn(0) - u2Qn(0) + u2 Rn(0) =-----~-----(a2 - u2)(b2 - u2)(a + b)2 - u2) (ab)n-1,\1 (0) 

( 1- 2Qn(O) + 4Rn(O)) 
u Pn(0) u Pn(0) 

With the expression of Pn(0),Qn(0) and Rn(0) in terms of the function </Jn (eq. 
(34)), and knowing that ,\1 (0) is the dominant eigenvalue, one obtains that the 
last term satisfies: 

( ... ) = 1 _ u2 A1 (0) [Q2(O) - (,\2(0) + ,\3(O))Q1 (0) - u2 R2(O)] 
Pi(O)(,\1(O) - ,\2(O))(,\1(O)- ,\a(0)) 

+ O(pn) ' 
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where p = max{l>-2(0)1, i>.3(0)l}/l>.1(0). This proves the theorem. The limiting 
distribution can be computed from the expression above. It does not seem to 
possess a simple expression, so we skip it. □ 

The case a= b 

When a = b, the results of lemma 4.4 should reduce to that of lemma 4.1. 
This is not obvious at first sight, and some algebra is involved to check this 
reduction. It turns out that when a= b, the 3 x 3 matrix M(x) involved in the 
computation of the polynomials Pn, Qn and Rn has a rank equal to 2 for all 
x. This explains why the numerator Nn of lemma 4.4 can be generated with 
a linear recurrence involving 2 x 2 matrices. One checks that this matrix is 
indeed the matrix of (28). 

The case a = oo 

This corresponds to the interesting case where, in a two-processor system, 
computation times are negligible compared to interprocessor communication 
delays. 

PROPOSITION 4.7 For any n 2:: 1, the Laplace transform of the couple (X1 (n), 
· X2(n)) is given by: 

b2n ( 3(s + t) + 4b )n-l 
'Pn(s, t) - ----- ----'---'----- . 

(b+s)(b+t) (s+t+b)(s+t+2b) 2 

One has: 

5n-1 
4b 

The Lyapunov exponent of the system is 5/4. For any n 2:: 1, the distribution 
of ~(n) is independent of n and is: 

P(~(n)::; x) = 1/2 e-bzl{x<O} + (1 - e-b"')/2 l{x:2:0} . 

PROOF 

It is easy to see that the recurrence on 'Pn is now reduced to: 

b(s + t) 
(b + s)(b + t) Jn(s + t + b, -b) 

It then follows that 'Pn is of the form: 'Pn(s, t) = b2n Pn(s + t)/[(b + s + t)(2b + 
s +t)2Jn-l, and that Pn+i(x) = (3x +4b)Pn(x). The result follows. □ 
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4 

We indicate a number of possibilities to extend the computations to other 
models/ ass um pt ions. 

• General Exponential case. The symmetry between An and Bn disappears, 
and Wn(s, t) is not symmetric anymore in (s, t). However, it is still a 
rational function, and it is likely that a polynomial recurrence may be 
used, based on the decomposition of the numerator of Wn isolating s and 
t (as in the general Bernoulli case, see section 5). 

• Other distributions. The possibility to achieve the computations is strong
ly connected to the relative simplicity of the inner integral that appears 
in the definition of An. In the (totally symmetric) Erlang-2 case, poly
nomial terms appear, which lead to an expression of Wn+l in terms of 
the function Jn and of its derivatives. However, the derivatives of Jn 
can be computed from the very formulas of Appendix A without further 
complications. 

• Higher dimensions. It is of course very !imitating to be able to analyze 
only two dimensional systems. In principle, the technique described here 
may be applied to systems with more than two state variables, through 
a quite straightforward induction. However, the iterations of the for
mulas of Appendix A to compute functions like E(exp(-s1X 1 - s2X 2 -
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... snXn)I{X1 > X2 > ... Xn}) becomes quickly problematic. A lot of 
guessing is involved in order to obtain the general form of the solution. 

• (min, + )-systems. The theory above does not assume a priori that ran
dom variables should be positive. Hence, applying the technique to nega
tive RV's and changing signs, one may compute the performance of simple 
linear systems in the (min,+) dioid. 

• Other dynamical systems. The approach of section 2 has been applied 
successfully to dynamic systems described by evolution equations con
tain the min, max and + operators [9]. It actually turns out that the 
Markov chain technique applies to every system with an evolution prop
erty satisfying a certain time-homogeneity condition ( called "I-linearity" 
in [12]). 

• Other models with synchronizations. The technique developed above 
seems to allow the analysis (both in transient and stationary regime) of 
some basic two-node queueing systems with synchronization whose evolu
tion equations involve only addition and maximization ( or minimization, 
cf. a previous remark). Such systems include the Fork/Join queue, with 
evolution equations (on the waiting time): 

w~ = [W~-1 + a;._1 - Tn]+ 

w; = [W;_l + a;_l - Tn]+' 

(solved in [7] in steady state with complicated computations) and the 
round-robin routing model, with evolution equations (for the workload 
at instants of arrival in the system): 

w~ = [W~-1 + u;.an-1 - Tn]+ 

w; = [WL1 + u;an-1 - Tn]+, 

where u; = 1 iff n is odd, and u; + u; = 1. For the last model, qualita
tive results are known (mainly, stochastic comparisons with the Bernoulli 
routing scheme) but hardly any quantitative ones. Moreover, no results 
are known if resequencing is added before exiting the system. 

5 RETURN TO THE DISCRETE CASE 

The case of lattice distributions can be handled in principle with the approach 
of the previous section. The!e are however a few particularities in the analysis of 
discrete distributions. The analysis is similar to the previous one, with Laplace 
transforms replaced by generating functions, and the contour illR replaced by 
the unit circle (see Appendix A). 

Section 2 described how the use of a Markov chain underlying the evolution 
of the system allows the solution of the problem by linear algebra techniques. 
However, if the support of the distributions involved is infinite, the matrices 
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involved are also infinite, and the practical solution of the problem is not evi
dent. The approach which follows allows to handle more difficult cases, such as 
geometric distributions (section 5.3). In sections 5.1 and 5.2, we apply it first 
to a case of finite (Bernoulli) distributions. 

As before, let Fn(x,y) = JP{X1(n) ~ x,X2(n) ~ y}, and let now fn(x,y) = 
JP{X1(n) = x,X2(n) = y}. Set: ()n(s,t) = IE(sXi(n)tX2 (n)). This generating 
function is defined (at least) on the set {isi = itl = l}. We have: 

'°''°' s"'tYFn(x,y) = - 1- - 1- «)n(s,t). ~~ 1-s 1-t 
"' y 

The recurrence on the distributions, viz.: 

l
inf(z,y) linf(z,y) 

Fn+1(x,y) = -oo -oo S(x,y,u,v)dFn(u,v), 

translates now into: 

with: 

1 1 
----«)n+i(s, t) = An(s, t) + Bn(s, t) + Cn(s, t) , 
1-s1-t 

An(s, t) = E E(st)ul{u>v} ~Ez,y~O S(x + u, y + u, u, v)s"'tY) fn(u, v) 

Bn(s, t) = E E(st)ul{u=v} Ez,y~O S(x + u, y + u, u, u)s"'tY) fn(u, v) 

Cn(s, t) = E E(sttl{u<v} Ez,y~O S(x + v, y + v, u, v)s"'tY) fn(u, v) , 

and 

(38) 

S(x,y,u,v) = JP(cr11 ~ x - u,cr12 ~ y- u,cr21 ~ x -v,cr22 ~ y -v). 

According to the results of section 3, and using lemma A.4, it is possible to 
prove that the functions An, Bn and Cn are computed from ()n via contour 
integrals involving some kernel. On the other hand, the explicit evaluation 
of the inner sums often provides a more direct way to actually construct the 
recurrence on ()n• 

5.1 The totally symmetric Bernoulli case 

In this section, it is assumed that the four input sequences are made of Bernoulli 
variables with parameter a= P(u = 1). For convenience, let ii= 1 - a. 

PROPOSITION 5.1 The Lyapunov exponent of the system is given by: 

a(a - 2)(2a3 - a2 - 2a + 2) (2a + 1)(1 - a)4 • (Jg) 
,(a) = 1 + 2a(a - l)(a2 - 3a + 1) = 1 - 1 + 2a(a - l)(a2 - 3a + 1) 

In particular, 1 (1/2) = 6/7 {[10}). The random variable ~(n) converges expo
nentially fast to a ~( oo) given by: 
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1- 2aa 
IP(A(oo) = O) = 1 + 2aa(a2 - 3a + 1)' 

IP(A(oo) = ±1) = a(2 - a)a2 
1 + 2aa(a2 - 3a + 1) 

The rate of convergence is given by: 

1:(a) = 2a(a - l)(a2 - 3a + 1) . 

PROOF In this case, we have: 

L S(x + u, y + u, u, v)s"'tY 
:x,y:2'.0 

= ((1-a)(l-a+al{u>v})+ l~s) ((1-a)(l-a+al{u>v})+ l~t) • 

Using formulas (38), it is possible to prove by induction that the function <I>n 
can be written in the form <I>n(s,t) = (s+t)Pn(st)+Qn(st), where Pn and Qn 
are polynomials. These polynomials obey the linear recurrence: 

(40) 

( 2a(l - a)x a(2 - a)(l - a)2 ) ( Pn(x) ) 
2x((l - a)2 + a2x) (1 - a)4 + a2 (2 - a)2x Qn(x) ' 

with initial conditions Po ( x) = 0 and Qo ( x) = 1. The solution of this recurrence 
using the technique of section 4.1 leads, thanks to MAPLE, to: 

EX1(n) = "(n + /3 (1- (2a(a - l)(a2 - 3a + l)t) , 

with 'Y given in (39), and 

/3 = a(a - 1)2 (a - 2)(2a2 - 2a + 1) . 
(1 + 2a(a - l)(a2 - 3a + 1))2 

Formula (39) follows because the term 1:(a) = 2a(a- l)(a2 -3a+ 1) is always less 
than 1 in modulus. Note that EX1(n) is actually a polynomial in a although 
it may not seem at first glance. Observe also that 1:(a) changes sign at a0 = 
(3 - ,/5)/2. The generating function of the RV A(n) is given by <I>n(s, ;) = 
Pn(l)(s +;) + Qn(l). Given the expressions for Pn and Qn, it turns out that: 

a(2- a)(l -a)2 2 n 

1 2 ( l)( 2 3 ) (1-(2a(a-l)(a -3a+l))) 
+aa- a-a+l 

(2a2 - 2a + 1) + 2a(2 - a)(l - a)2(2a(a - l)(a2 - 3a + l)t 
1 + 2a(a - l)(a2 - 3a + 1) 

from which the result follows. Note that A(n) does not depend on n ~ 1 when 
a= a0 , which means that the system couples with its stationary regime at time 
n = 1. Finally, if a = 1/2, one has: 

IP(b.(n) = ±1) = i_(l - g-n), 
14 

4 3 
IP(b.(n) = 0) = 7 + 7g-n . 

□ 



333 

5.2 The general Bernoulli case 

Let a, b, c and d denote the Bernoulli parameters of the four input sequences. 
It will actually be more convenient to use a = 1 - a, b = 1 - b, c = 1 - c and 
d = 1 - d. We now have: 

L S(x + u, y + u, u, v)s"'tY 

The other sums involved in Bn(s, t) and Cn(s, t) have a similar form. 
The generating function <l?n satisfies the recurrence: 

<l?n+I(s,t) (a+as)(b+bt) An(st,l) 
+ (acs+(l-ac))(bdt+(l-bd)) Bn(st) (41) 
+ (c + cs)(J + dt) Cn(l, st) , 

with initial condition <I?0 (s, t) = 1. Computing the first values of <I?n, one 
quickly realizes that this function must have the form: 

where as usual, Pn, Qn and Rn are polynomials. Moreover, the computations 
of An, Bn and Cn give simply: 

Therefore, ( 41) translates into the linear recurrence for the vector Yn ( x) 
(Pn(x), Qn(x), Rn(x)): Yn+l (x) = M(x)Yn(x) with 

( 
abcd +_xjl - a)(l - bd) x(abx_+ ab) x(cdx_+ cd) ) 

bd( 1 - ac) abx cdx , 
ac( 1 - bd) bax dcx 

with Y0 (x) =Yo= (1,0,0)t. Is it still necessary to tell how to solve this recur
rence? Let us rather derive the Lyapunov exponent, following the reasoning of 
section 4.2. With Y(z, x) = I::=o Yn(x)zn, we have: 

Y(z, x) = [I - zM(x)]Yo 
(1- z,\1(x))(l - z,\2(x))(l - z,\3(x)) 

Let u = (1, 1, 1). From the fact that <l?n(l, 1) = Pn(l) + Qn(l) + Rn(l) = 1, 
and because the matrix M(l)t is stochastic, we have: 

uY(z O) = _l_ = u[I - zM(l)]Yo 
' 1-z (l-z)(l-z,\2(l))(l-z,\3(l))' 

so that u[I-zM(l)]Yo = (l-z,\2(l))(l-z,\3(l)). Now, EX1 (n) = d<I?(s, 1)/dsls=l 
= P~(l) + Q~(l) + R~(l) + Qn(l). Clearly, Qn(l) = o(n), so we just have to 
look at: 
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(Pn + Qn + .R,.)'(1) 

n 8Y n z,\i (1) u[J - zM(l)jYo 
= [z ]u ox (z, 1) = [z ] (1 - z)2(1 - z,\2(1))(1 - z,\3(1)) + 0 (1/(1 - z)) 

= n,\i (1)(1 + o(n)) . 

We can again use theorem 2.2 or theorem 2.3 to compute ,\i (1). A MAPLE 
program based on these formulas eventually gives: 

PROPOSITION 5.2 The Lyapunov exponent of the system is given by: 

'Y = 1 - ~J(bc(l - a)(l ~ J) - (1 - (1 - b)(l - c))2) , 
a 

with 
8 = 1 - 2abc + 2acd - 2abcd - ad - 2bcd + ac + bJ + ab + cd - c - b + 

cb + a2cb - ac2d + 2adb + db2ac - iPbac + ac2bd - a2 

+cbd - b2da + biPc . 

Finally, the generating function of the RV 6.(n) is: 6.~(u) = Pn(l)+uQn(l)+ 
u-1Qn(l), which is to· say that this distribution is (as expected) concentrated 
on {-1, 0, 1 }. The values of the masses are extracted from the generating vector 
Y(z, 1) and are: 

n [I - zM(l)jYo 
Yn(l) = [z ] (1 - z)(l - z,\2(1))(1 - z,\3(1)) · 

The actual computations are left to the reader. When n - oo, this vector 
converges exponentially fast to 

[I - M(l)jYo 
Yoo(l) = (1- ,\2(1))(1- ,\3(1)) . 

The rate of convergence is given by l,\2(1)1, the modulus of the second eigenvalue 
of M(l). 

5.3 The symmetric geometric case 

In this section, it is assumed that the four input sequences have geometric 
distributions with parameter a. Therefore, P(u = n) = (1- a)an. 

L S(x+u,y+u,u,v)s"'t11 = 
:i:,11~0 

Using the symmetry of the problem, this yields: 
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(1 - a)2 

An(s, t) = Cn(s, t) = (1 - as)(l - at)(l - a2s)(l - a2 t) 
((1- a2s)(l - a2t)Jn(st, 1) - ((1- s)(l - a2 t) + (1- t)(l - a2t))Jn(ast, ¼) 

+(1- s)(l - t)Jn(a2 st, al,). 

The analysis is extremely similar to that of the symmetric exponential case. 
One shows by induction that 

<I>n(s, t) = 

1 . (1 -a)4n 
(1- as)(l - at)(l - a2 s)(l - a2t) D(st)n-l (Pn(S t ) + (s + t)Qn(St)) ' 

with D(x) = (1 - ax)(l - a2 x) 2 (1 - a3 x) 2 (1 - a4x) 2 , and the polynomials 
Pn, Qn given by a linear recurrence involving a 2 x 2 matrix too complicated 
to be written here. Symbolic manipulations eventually lead to the following 
result: 

PROPOSITION 5. 3 The Lyapunov exponent of the system is given by the formula: 

n(a) 
'Y = d(a) 

with 

n(a) = a(a13 + lla12 + 32a11 + 77a10 + 137a9 + 218a8 + 273a7 + 289a6 

+244a5 + 175a4 + 99a3 + 50a2 + 18a + 4) 
d(a) = (1 - a)(a + l)(a2 +a+ 1) 

(a10 + 6a9 + 8a8 + 20a7 + 25a6 + 32a5 + 25a4 + 20a3 + 8a2 + 6a + 1). 

It is possible to check that when the parameters a and the time unit 8 are 
chosen in such a way that the geometric distribution approaches the exponential 
distribution, namely: 

8-a- - 1 
1-a - ' 

with 8 --. 0, then the Lyapunov exponent of the system tends to 407 /228. 
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A JOINT DISTRIBUTIONS AND TRANSFORMS 

We state in this appendix a number of formulas useful for computing distribu
tions of maxima ( or minima) of random variables, when their joint distribution 
is known in transformed form: Laplace transform or z-transform (i.e. the gen
erating function). 

We provide formulas both for the continuous and the discrete case. 
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This section is essentially an excerpt of [8], adapted to the computations of 
the paper. Such formulas also appear in the works of J.W. Cohen: see for 
instance [4, p. 564] for the discrete case. The technique relies on the following 
lemma of the complex variable calculus. 

LEMMA A.I Let L be a smooth contour of C, which separates C in two domains 
L + (to the left) and L - (to the right). Let </> be a function defined on L 
satisfying Holder's condition. Assume a function <I>, defined on C\L is analytic 
on L + and L - and admits a limit when z -, t E L both in L + and L - and is 
such that: 

Vt EL,. lim <I>( z) - lim <I>( z) 
z->t,zEL+ z---+t,zEL-

</>( t) . 

If furthermore <l>(z) vanishes when lzl-, oo, then 

'vz EC, <l>(z) = -;- f </>(t) dt . 
221r }L t - Z 

The proof of this result may be found in [5] in the case of a closed contour. 
The proof for a smooth open contour can be found in [8]. Note that the contour 

· has to be smooth at· infinity, that is be sufficiently regular and tend to infinity 
in opposite directions. 

THE CONTINUOUS CASE Let A and B be two real RVs, not necessarily positive 
nor independent. Assume one knows their joint distribution by its Laplace 
transform: 

'v~(x)=O, ~(y)=O. 

Note that this function is defined only on illR x illR since A and B may be 
negative. 

Let 

J(s,t) 

K(s) 

L(s, t) 

These functions are defined on the domains {(s, t)l~(s + t) = 0, ~(s) ~ O}, 
{~(s) = O} and {(s, t)l~(s + t) = 0, ~(t) ~ O}, respectively. They can be 
computed from G, as stated in the following lemma. 

LEMMA A.2 If for any x E illR the function y f--+ G(x + y, -y) admits a limit 
when Jyl -, oo, then: 
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J(s,t) --.- G(s + t + z, -z)-- - -K(s + t) 1 1 dz 1 
2z7r ilR z + t 2 

~(t) < 0, ~(s + t) = 0 

K(x) -2 limlti->oo,R(t}<O 1 1 dz -.- G(x + z, -z)--
2z7r ilR z + t 

~(s) = 0 

L(s, t) 1 1 . dz 1 -.- G(s + t + z, -z)-- - -K(s + t) 
2rn ilR Z + t 2 

~(t) > 0, ~(s + t) = 0 . 

PROOF Fix x E illl. Define the function cp., on the domain C \ illl by: 

( ) _ { - IE(e-"'Ae-y(A-B) l{A-B>O}) if ~(y) > 0 
cp"' y - IE(e-"'Ae-y(A-B) l{A-B<O}) if ~(y) < 0 . 

· One easily checks that 

lim cp.,(z) - lim cp.,(z) = G(x + y, -y) - K(x) '<:/ y E iK 
z->y,R(z)<O z->y,R(z)>O 

The function cp"' (y) vanishes at infinity in all directions other than illl. If 
moreover the mapping y 1--> G(x + y, -y) satisfies Holder's condition on illl and 
admits a limit when JyJ -+ oo, we can apply lemma A.1 to obtain: 

cpx(z) ~ { (G(x + y, -y) - K(x))~ 
2z7r }ilR y - Z 

= ~ { G(x + y, -y)~ - sgn(z) K(x), 
2rn }ilR y - z 

(42) 

for any z E C \ illl, where the sign function is defined below (see lemma A.5). 
This gives the value of L(s, t) = cps+t(-t) and J(s, t) = -cp•+t(-t) for values 
oft in {~(t) > O} and {~(t) < O} respectively. The value of K(x) is obtained 
from ( 42) by taking the limit: by definition, cp., ( -t) vanishes as JtJ -+ oo. 

Note finally that a change of variables gives an alternate formula for L(s, t), 
which makes the symmetry between A and B appear: 

1 1 dz L(s,t) = --.- G(-z,s+t+z)--
~11" m z+s 

for ~(s) < 0 and ~(s + t) = 0. 

This lemma has the following corollary: 

LEMMA A.3 Let S*(s) = IE(smax(A,B)). It is given by: 
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S*(s) lim 
z -+ 0 

lR(z) > o 

--;-- [1 G(s + y, -y)---5!:J!_ + 1 G(-y, s + y)---5!:JL] . 
2rn ilR y - z ilR y - z 

THE DISCRETE CASE Let X and Y be two discrete random variables, and let 
G(x, y) = IE(xx yY) be their joint generating function. 

We are interested in computing the functions: 

A(x,y) 

B(x) 

C(x, y) 

IE(xXyY l{X>Y}) 

IE(xx l{x=Y}) 

IE(xXyYl{X<Y}), 

which are defined on the domains {lxl :'.S 1, lxyl = 1}, {lxl = 1} and {IYI :'.S 
1, lxyl = 1}, respectively. 

LEMMA A.4 Let C be the unit circle of C. We have: 

-- G(- xyz)---l 1 l dz 
2i1r c z' z - l/x 

for lxl < l, lxyl = 1 A(x, y) 

B(x) 

C(x,y) 

l 1 l dz = -.- G(xz, -)- for lxl = l 
2i1r c z z 

-- G(xyz -)---l 1 l dz 
2i1r c ' z z - l/y 

for IYI < l, lxyl = l. 

Consequently, the generating function of max(X, Y): S*(x) = IE(xmax(X,Y)), 
is given, for any lxl = l, by: 

l 1 l dz S*(x) = -.- G(xz, -)-
2i1r c z z 

. 1 1 ( 1 1 ) dz - hm -2 . G(-,tz)+G(tz,-) / . 
l~k-1 Z7f C Z Z Z - l t 

PROOF As in the proof of Lemma A.I, define, for any complex number x such 
that Ix I = 1, the function '1i., by: 

'1.i ( ) _ { IE(x~yY l{x-v:2-:0}) if IYI < 1 
"' Y - - IE(xx yY l{X-Y<o}) if IYI > 1 • 

The function '1.i., vanishes when IYI -+ oo, and satisfies: 

lim '1.i.,(z) - lim '1.i.,(z) 
z--+y,lzl<l z--+y,lzl>l 

Lemma A.I applies again, and gives: 

1 
G ( xy, - ) V y E C. 

y 
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1 1 1 dz \Jl,,(y) = -. G(xz, -)- . 
2rn c z z - y 

This gives the value of C(x, y) = -\Jl(xy, 1/y) for IYI < 1 and lxyl = 1. Ex
changing X and Yin this computation yields the formula for A(x,y). Finally, 
B(x) is obtained as the limit of \Jl,,(y) then y --t 0, whereas the formula for 
S*(x) follows from: S*(x) = A(x, 1) + B(x) + C(l, x). 

To conclude, we state the following lemma, which allows to make actual 
computations based on Lemmas A.2 and A.4. Define the "sign" function on 
C \ ilffi. by: 

1 1 dz sgn(() = -2. --i. 
Z7r iR Z - 's 

LEMMA A.5 The value of the sign function is: 

_ { 1/2 if~(()< 0 
sgn(() - -1/2 if~(()> 0. 

B A MAPLE PROGRAM FOR THE SEMI-SYMMETRIC EXPONENTIAL CASE 

# MAPLE program to compute the Lyapunov exponent of the 
# exponential, semi-symmetric system 
# 

Fract := 1/(a+s)/(b+s)/(a+b+s)/(b+t)/(a+t)/(b+a+t); 

Intgd ·= subs( { s=x+y, t=-y }, Fract) / (y-z); 

t1 := limit( Intgd*(x+y+a), y=-a-x ); 
t2 := limit( Intgd*(x+y+b), y=-b-x ); 
t3 := limit( Intgd*(x+y+a+b), y=-a-b-x ); 

J:=-subs({x=u+v,z=-v}, Na*t1+Nb*t2+Nab*t3); 

JO:=subs({u=x,v=O},J); 
Ja:=subs({u=x+a,v=-a},J); 
Jb:=subs({u=x+b,v=-b},J); 
Jab:=subs({u=x+b+a,v=-b-a},J); 

MO:= (x*(a+b)+y+(a+b)-2)*(2*y+x*(a+b)+2*a*b); 
Ma ·= -(x*b+y+b**2)*(2*y+x*(a+b)); 
Mb := -(x*a+y+a**2)*(2*y+x*(a+b)); 
Mab := y*(2*y+x*(a+b)+2*a*b); 

NN :=PP+ Y*QQ + y~2*RR; 
Na := subs( y=-a*(x+a), NN ); 
Nb := subs( y=-b*(x+b), NN ); 
Nab := subs( y=-(a+b)*(x+(a+b)), NN ); 
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NumNewP := collect(numer(normal(NewP)),y); 
PP1 := collect(coeff(NumNewP,y,O),{PP,QQ,RR}); 
QQ1 := collect(coeff(NumNewP,y,1),{PP,QQ,RR}); 
RR1 .- collect(coeff(NumNewP,y,2),{PP,QQ,RR}); 

B 11 := coeff(PP1,PP,1); B 12 := coeff(PP1,QQ,1); 
B_13 := coeff(PP1,RR,1); B 21 .- coeff(QQ1,PP,1); 
B_22 := coeff(QQ1,QQ,1); B_23 := coeff(QQ1,RR,1); 
B 31 := coeff(RR1,PP,1); B 32 := coeff(RR1,QQ,1); 
B_33 := coeff(RR1,RR,1); 

B := matrix(3,3,[B_11,B_12,B_13,B_21,B_22,B_23,B_31,B_32,B_33]); 

# 
# A procedure to compute recursively P_n(x) 
# 
Pi := proc(n) 
if n=1 then 2*X*(a+b)+(a+b)~2; 
else Pi(n-1)*B_11+Qi(n-1)*B_12+Ri(n-1)*B_13; 
fi; 
end; 

# 
# The computation of the Lyapunov exponent, using the 
# characteristic polynomial of the matrix. 
# 

PolCar := collect(charpoly(B,z),z); 

110 := factor( subs( x=O , B[l,1] ) ); 

corr := 2/a+2/b+2*(1/(a+b)+1/(2*a+b)+1/(a+2*b)+l/2/(a+b)); 

Chi := -simplify(subs({x=O,z=llO},diff(PolCar,x)) / diff(PolCar,z)); 

gamma:= -simplify( Chi/ 110 - corr); 
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A Graphical Representation for Matrices in the (Max,+) 

Algebra 

Jean Mairesse * 

/NRIA-Sophia Antipolis 

B.P. 93, 06902 Sophia Antipo/is Cedex, France 

We study matrices in the (Max,+) algebra. We introduce a new tool for 
describing the deterministic spectral behaviour of matrices of size 3 x 3. It 
consists in a graphical representation of eigenvectors and domains of attrac
tion in the projective space. It appears to be very helpful in understanding 
some of the phenomena occurring in this algebra. 

1 INTRODUCTION 

Many communication or manufacturing networks can be represented by Dis
crete Events Dynamic Systems (DEDS). Recent researches have dealt with the 
problem of finding a unified framework to study DEDS. Petri Networks, and 
more precisely Event Graphs (EG), are an example of such a formalism. They 
model phenomena such as synchronization or blocking. These networks have 
an easy algebraic interpretation in a non conventional algebra. More precisely, 
it is possible to show that a timed Event Graph can be represented as a linear 
recursive equation in the (Max,+) algebra, of the following kind: 

Yn+l = A 0 Yn, 

where Yn+l and Yn are JRJ -valued vectors and A is a matrix of size J x J. 
The matrix-vector product has to be interpreted in the (Max,+) algebra. For a 
timed Event Graph, the dimension J is the number of transitions. The vector 
Yn consists of the dates of the nth firing of the transitions. For more insights 
on all modelling aspects, the reader is referred to [I] or [2]. 

The spectral theory of matrices in the (Max,+) algebra is now well known. 
It can be tracked back to [8] or, for the Russian school, to (10]. One of the main 
differences with the classical spectral theory is that there is a unique eigenvalue 
for irreducible matrices. As a consequence, the main interest and difficulty 
in the (Max,+) algebra is to study eigenvectors associated with the unique 

*Research supported by the Direction des Recherches Etudes et Techniques (DRET) under 
contract n° 91 815. Supported in part by the European Grant BRA-QMIPS of CEC DG 
XIII. 
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eigenvalue. For a timed EG, the eigenvalue is exactly the mean cycle time 
(inverse of the throughput rate). On the other hand, eigenvectors are associated 
with quantities such as number of tokens in a place, waiting times or idle times. 
Multiple eigenvectors will mean multiple regimes for these quantities. 

In this paper, we present the classical spectral results under a new light. 
We develop a tool for describing the spectral behaviour of matrices of size 
3 x 3. It consists in a graphical representation of asymptotic regimes in the 
projective space. This representation enables us to get an intuition of the 
spectral behaviour of larger matrices. It appears also very useful in order to 
understand some phenomena occurring in this algebra, especially in stochastic 
systems. 

The paper is organized as follows. In Section 2, we propose some moti
vating examples and models. Sections 3 and 4 review some basic results on 
the (Max,+) algebra and its spectral theory respectively. In Section 4.3, we 
present also a complete spectral analysis of matrices of size 3 with the help 
of the graphical representation mentioned before. Section 5 is devoted to two 
examples of utilizations of this graphical representation. In the first example, 
we give a "visual" example of a projectively infinite semigroup of matrices. The 

· second one shows how the graphical representation can be used for stochastic 
models. 

2 SOME MOTIVATING MODELS 

We consider systems whose dynamic behaviour is driven by a recursive equation 
of the form: 

Yi(n + 1) (1) 

We allow Aij to be equal to -oo. We say that the matrix A (Aij, i, j = 
1, ... , J) is irreducible if Vi,j 3(i1 = i, i2, ... , in = j) s.t. Aii2 + Ai2 i3 + · · · + 
Ai,,_ 13 > -oo. 

We define the notations: 

1E4 = 1R u { -oo} . 

Vx,y E JE4, x EBy = max(x,y), x@y = x +y. 

With these notations, the basic evolution equation (1) takes a very simple and 
convenient form. In fact, it can be rewritten as: 

y(n + 1) A(n) ® y(n). (2) 

Here y(n) = (y1(n),Y2(n), ... ,YJ(n))' and the matrix-vector product is defined 
in the natural way just by replacing + and x by EB and @ (i.e. (A® y)i = 
M axk(Aik + Yk) = ffik Aik Q9 Yk)-
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In this section we use this matrix notation only for the ease of presentation. 
But in fact, as we will see in a moment, it is more than a simple notation game. 
Many results from classical linear algebra can be transferred to equations like 
(2) which are linear with respect to operations max and +. 

We are going to propose several illustrating examples of such systems. The 
graphical representation introduced in this paper corresponds to deterministic 
and irreducible systems of dimension 3 (J=3). As a consequence the different 
examples we are going to propose will also be deterministic, non-autonomous 
(irreducible) and of dimension 3. For most of the systems to be presented, there 
exist analogous systems corresponding to non-irreducible cases. The techniques 
of this paper can in this case be applied to "irreducible sub-systems". Of course 
larger systems can be considered as well. At last, and in all cases, there exist 
natural stochastic extensions. 

For systems verifying Equation (1), we can consider two kinds of asymptotic 
results. 

• First order limits, on ratios: 

1. lly(k)II 1· yi(k) 
1f --k- ' 1f -k- . 

• Second order limits, on differences: 

These quantities are closely related to the solutions of an eigenvalue problem 
defined in the following way. We want to find non trivial solutions of the 
equation: 

max ( Ai · + y ·) 
l~j~J J J 

or A0y 

>.+Yi, i = 1, ... , J (3) 

(4) 

where A E JRJxJ is a matrix, y is a column vector (the "eigenvector") and>. 
is a real constant ( the "eigenvalue"). For a given matrix A, first order limits 
as defined above are eigenvalues of A. Second order limits can be expressed in 
terms of the eigenvectors of A. In this paper, we focus essentially on second 
order results, i.e. on eigenvectors. 

From a less algebraic point of view, we will see in several examples how to 
interpret first and second order limits respectively. 

2.1 Parallel programs 

We consider a parallel program executed on several identical processors. We 
model it by means of its precedence graph or developed graph. If we consider 
a system of J processors, the graph T has a set of nodes which is J x IN. 
Node (i, n) represents the nth task at processor i. The arcs between nodes 
represent the precedence constraints. There is an arc between node (i, n) and 
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node (j, m) (denoted (i, n) ----+ (j, m)) if the n th task at processor i has to be 
performed in order for the m th task at processor j to be enabled. A task is 
enabled if and only if all the activities of its incoming arcs are completed. 
Activity begins as soon as the task is enabled. Each activity has a duration 
which depends on the processor. In Figure 1, example (A), we have represented 
the task graph of three processors having no communications. Each processor 
is working sequentially and has to complete task n before beginning task n + l. 
In example (B) we have represented a parallel program with synchronizations 
between processors, implying additional arcs for the task graph. 

(A) 

T T T 
T T T 
I I I 

FIGURE 1. Precedence graphs of parallel programs running on three processors 

It is clear that a precedence graph is live (i.e. without deadlock) if and only 
if it is acyclic. Otherwise there would be a cycle of precedence constraints 
implying that a task has to be completed in order to be enabled! 

A precedence graph is irreducible if 

Vi Vj :In :l(i1 = i, ... ,in= j) :l(k1, ... , kn) s.t. 

It is periodic of period d if 

(i,n)----+ (j,m) ==> (i,n + d)----+ (j,m + d). 

From now on, we consider parallel programs whose precedence graphs are 
acyclic, irreducible and periodic. 
We assume first that the period is 1 and that synchronization arcs exist only 
between level n (i.e. nodes (l,n), ... ,(J,n)) and level n+l. We denote by 
Yi(n) the date of completion of task n at processor i, and by Aij the duration 
of the synchronization constraint between nodes (i,n) and (j,n + 1) (it may 
include a transmission time as well as the activity time at processor j). If there 
is no synchronization between (i,n) and (j,n+ 1), we set Aij = -oo. It is now 
obvious that Equation (1) describes the dynamics of the system. 

If the period is 1 without any further restrictions, then it is possible to come 
back to the previous case through a renumbering of nodes and an expansion of 
the dimension of the system in Equation (1). An interesting problem is then to 
find a minimal representation of the system which means precisely a (Max,+) 
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linear system of the form of Equation (1) of minimal dimension. 

If the period of the precedence graph is d > l then the dynamics of the 
system can still be written as a (Max,+) recursive equation of the form of (1). 
But the dimension of the problem is now at least J x d, one level containing at 
least all the nodes of a period of the initial graph. 

First order quantities, i.e. lim Yi(n)/n correspond to the average execution 
time of a task on a processor. From second order quantities, one can compute 
delays between processors, idle times of processors or waiting times of tasks. 
Let us consider one example: 

The real z is the idle time of processor i, i.e. the time during which processor 
i is ready to operate but is waiting for other processors. To have a better idea 
of the vast literature existing on the subject, see [3] and the references there. 

2.2 Manufacturing Model 

Item sen 

Item se 

FIGURE 2. A manufacturing model and its Petri Net representation. 

There are two types of items which have to be assembled together to form a 
part. There is a stock for each kind of item. As we are interested in autonomous 
systems, we assume that these stocks are infinite. Each time a part is completed 
at the assembly line, a request is sent to the storage facilities. New items are 
then sent to the assembly line. We denote: 

• a: operating time at the assembly line. 

• /3i, i = 1, 2: communication time between the assembly line and stock i. 

• 'Yi, i = 1, 2: transportation time between stock i and the assembly line. 
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We have represented in Figure 2 the Event Graph corresponding to this model. 
We consider three daters (Yi, i = 1, 2, 3) associated with this system. The first 
two correspond to the dates at which an item is sent from the stocks. The third 
one corresponds to the dates at which a part is completed at the assembly line. 
The (Max,+) linear system corresponding to this Event Graph is the following 
one: 

y(n + 1) =A© y(n), A= ( ~ ~ ~~ ) , 
'Yl + Cl 'Y2 + Cl Cl 

with the notation c = -oo. For this model, first order quantities correspond 
to the mean cycle time, the inverse of the throughput. From second order 
quantities, one can compute for example the idle time of the assembly line 
between the completion of a task and the beginning of the next one. Let us 
denote it by 6. 

o(n) = Ya(n) - Ya(n - 1) - a. 

Of course much more complicated manufacturing systems can be modelled 
using Event Graphs.of larger dimension. We can mention job-shop models or 

· models using Kanban regulation. A vast literature exists on this topic, see [2] 
or [4]. 

The manufacturing system we have considered can be modelled using an Event 
Graph representation as shown in Figure 2. Event Graphs also called Marked 
Graphs or Decision Free Petri Nets are a special class of Petri Nets. They 
can efficiently model systems with synchronization, fork-join properties and/or 
blocking. On the other hand they can not deal with decision and routing. It 
has been proved in [1] that all Event Graphs can be described by an evolution 
equation of the form of equation (1). 

3 THE (MAX,+) ALGEBRA 

DEFINITION 3.1 ((MAX,+) ALGEBRA) We consider the semi-field (improp
erly called algebra) (JR*, EB, ©), where JR* = .1R U {-oo}. The law EB is "Max" 
and © is the usual addition. We set c = -oo and e = 0. The element c is 
neutral for the operation EB and absorbing for©. The element e is neutral for 
©. The law EB is idempotent, i.e. a EB a = a. (JR*, EB, ©) is an idempotent 
semiring, called a dioid. It is moreover a commutative dioid. We shall write it' 
lRMaz• 

In the rest of the paper, the notations "+,x" will stand for the usual addition 
and multiplication. Nevertheless, we will write ab for a© b whenever there is 
no possible confusion. 

We define the product spaces lR°lta.,, JR·J,,,Xa~· We define the product of a 
vector by a scalar: a E lRMaz, u E lR°lta.,, (a© u)i =a© Ui. 

Matrix product is defined in the following way. Let A, B E JR'f.,/a~, 
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(A 0 B)ij = Maxk(Aik + Bkj) = E9 Aik 0 Bkj. 
k 

Matrix-vector or scalar-matrix products are defined in a similar way. 

We are interested in an eigenvalue problem in JRM ax, similar to the one of the 
traditional linear algebra. We want to find non trivial solutions to the equation: 

A0x=>.0x, 

where A E IRJxJ is an irreducible (see definition 4.2) matrix, x is a column 
vector ( the "eigenvector") and >. is a real constant ( the "eigenvalue"). We also 
define periodic solutions of the eigenvalue problem. 

DEFINITION 3.2 A periodic solution of period dis a set of vectors {x1, ... , xd} 
of IRJ verifying Axi = AXi+l, i = 1, ... , d - 1 and Axd = >.dx1. 

Remark A periodic solution of period d for A implies the existence of d 
eigenvectors for Ad. 

First of all, let us introduce the graphical representation that we are going 
. to use extensively. 

DEFINITION 3. 3 ( P Ri1a,J The projective space IP 1Ri1ax is defined as the 
quotient of JR-fw ax by the parallelism relation: 

u, v E IRJ u ~ v {=::} :la E IRM ax \ { c} such that u = a 0 v . 

Let 1r be the canonical projection of 1Ri1ax into IP 1Ri1ax. 

In the rest of the paper, we will concentrate on aperiodic matrices ( see definition 
4.2). In this case, a matrix A, which is a linear operator of (JR-fnax, ffi, 0 ), can 
be restricted to an operator of (JR/, ffi, 0) (i.e. if u is a vector whose coordinates 
are all different from r::, then Au has the same property). As a consequence, we 
will consider only vectors in IRJ and their projection in IP IRJ, where IP IRJ is 
defined exactly in the same way as IP JR:f.r ax. 

The canonical projection 7r of IRJ into IP IRJ can be interpreted geometrically. 
It is nothing else than the orthogonal projection on the hyperspace orthogonal 
to the vector Il = (1, ... , 1)'. The projective space IPIRJ is isomorphic to JR,J-l _ 
Let us consider a deterministic matrix A E IR{//., and the IRM ax eigenvalue 
problem Ax = >.x. For matrices of size 2 or 3, a graphical representation is 
possible in JR ~ IP JR2 and JR2 ~ IP JR3 respectively. We represent eigenvectors 
and periodic regimes modulo the parallelism relation. Let us illustrate this. 
Figure 3 corresponds to the matrix 
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. 7r( A) 1r(B) IP JR2 
---------~~------,X~----------~ 

-v'2 4 
FIGURE 3. Dimension 2. A scs2-cycl matrix. 

As we will see in a moment, the spectral theory tells us that there is a strip 
( an interval in IP JR2 ) of eigenvectors and no periodic regimes of period greater 
than 1. The line D is the hyperspace orthogonal to the first bisecting line. We 
consider the orthogonal projection of the picture on D. 

From now on, we will consider mostly matrices of size 3 whose spectral 
behaviour is much richer and can be graphically represented in JR2 ~ IP JR3 • 

Let us introduce a distance on IP JR'J,foz which we are going to call the pro
jective distance. 

DEFINITION 3.4 We consider x, y E IP JRJ. Let u, v E JRJ be two representa
tives of x and y respectively, i.e. 7r(u) = x and 7r(v) = y. 

d(x,y) = d(u,v) = E'9(ui -vi) EB E9(vi -ui). 

It is easy to check that d(x,y) does not depend on the representatives u and 
v. It is also easy to check that it is a distance in IP JRJ. It is nothing else than 
the L 00 norm on the projective space IP JRJ. We write either d( x, y) or d( u, v) 
with a little abuse of notation. We have the following property. 
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PROPOSITION 3.1 Let A be an irreducible matrix of size J. Let u, v be two 
vectors of JR:fnax· We have: 

d(Au,Av) '.S d(u,v). 

There is no simple criterion to get a strict inequality. 

Let us represent the unit ball of the projective distance in IP JR3 • 

* 
I 
1B 

FIGURE 4. Unit ball of the projective distance 

The regular hexagon in Figure 4 is the intersection of the unit square (i.e. 
the unit ball of JR3 for the L 00 norm) and the projection plane. The three rep
resented axes are the orthogonal projection of the basis of JR3 • The represented 
points are: 

The practical way of representing a point X of IP JR3 is to choose a vector 
( E JR3 ) in the parallelism class of X and to draw it in the three axes obtained 
by projection of the orthonormal basis of JR3 (it is easy to check that the 
point we obtain does not depend on the representative in the parallelism class). 
The point D of Figure 4 illustrates this, we have drawn two constructions: 
one corresponding to (0.2, 0.6, 0.8) and the other one to (0.8, 1.2, 1.4) = 
0.6 ® (0.2, 0.6, 0.8). 

4 AN ILLUSTRATED SPECTRAL THEORY 

We are now ready to review the lRMax spectral theory of irreducible matrices. 
The results we are going to present are now classical. A complete treatment 
can be found in [2). For the spectral theory of reducible matrices, the reference 
is [6). The analog theory for non finite dimensions is exposed in [5). However, 
the idea of illustrating the spectral behaviour by graphical representations in 
the projective space is new. 
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4- 1 General Presentation 

From now on, we consider only irreducible matrices in JR:f../a~. We recall that 
we want to find non trivial solutions to the equation Ax = .Xx. Let us recall 
some definitions adapted to the lRMax algebra. 

DEFINITION 4.1 The communication graph of a square matrix A is a directed 
graph having a number of nodes equal to the size of A. This graph contains an 
arc from i to j iff Aji -=p c:. The valuation of this arc is Aji. 

DEFINITION 4.2 A square matrix A is irreducible if: "li,j :lm 2: 0 I (Am)ij > 
c: {or equivalently if its (communication) graph is strongly connected). 
A square matrix A is aperiodic if: :lm 2: 0, Vi,j I (Am)ij > c:. 

DEFINITION 4.3 For each circuit ( = {t1, t2, · · ·, t1, tj+l = t1}, we define the 
average weight by: 

p(() = At,t; ® · · · ® _At,t2 ® At2t, , 
J 

(here the division is the conventional one). 

THEOREM 4.1 There is a unique (non c:) eigenvalue, .X. It satisfies the relation 

.X = max p((), 
( 

where ( describes all the circuits of {the communication graph of) A. We call 
also .X the Lyapunov exponent of A. 

There might be several eigenvectors. An eigenvector has all its coordinates 
different from c ( due to the irreducibility assumption). A linear combination 
(in 1Ri£0 x) of eigenvectors is an eigenvector, i.e. if u 1 and u2 are eigenvectors 
and a1, a2 E JR, then ( a1 ® u1) EB ( a2 ® u2) is also an eigenvector. 

In particular, if u is an eigenvector and a E JR, then a® u is also one. This 
was the motivation for the introduction of the projective space IPIR"k:ax (see 
definition 3.3). We will in general study the image by the canonical projection 
( 7f : JRJ -t IP JRJ) of the set of eigenvectors ( or periodic regimes) of a matrix. 

Let us illustrate what the "linear combination of two vectors" means in 
IP 1Ri£ ax. We consider examples of dimension 3. Let u = ( u1, u2, u3 )' and 
v = ( v1, v2, v3)' be two vectors of JR3. Let .X, µ E JR. 

The symbol /\ denotes the minimum of a finite set. We denote by I\ V the 
intermediate value of a set of three values. Let us assume for example that we 
have, 
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i=l,2,3 i=l,2,3 

EB ( Ui - Vi) = U3 - V3 • 

i=l,2,3 

Depending on the value of a = µ - >., there are four possible cases. 

1. If a :'.S: f\(ui - vi), then 7r(u EB av) = 7r(u). 

2. If /\(ui -vi) :'.S: a :'.S: /\ V(u; -v;), then 7r(uEBav) = 7r(av1,u2,u3)'. 

3. If/\ V(ui -vi) :'.S: a :'.S: El,(u; -v;), then 7r(uEBav) = 7r(av1,av2,u3)'. 

4. If El,(ui - Vi) :'.S: a, then 7r(u EB av) = 7r(v). 

This particular example corresponds to the case of points C (7r(u)) and A 
( 7r( v)) in Figure 4. The broken segment between C and A in Figure 4 is the 
set of linear combinations of the two points. 
When two values are equal in { u; - vi, i = 1, 2, 3}, the picture is degenerate. 

We are now ready to understand the form of sets of eigenvectors, knowing 
· that linear combinations of eigenvectors are eigenvectors. We represent (in 

JR2 :::: IP JR3 ) the image by 7T of the set of eigenvectors. 

The picture is exactly the same one as in Figure 4. The points A, B and C are 
the images by 7T of the columns of M which are eigenvectors (easy to check). 
The regular hexagon represented is the convex hull (in IRMax) of these three 
points. It is the image by 7T of the set of eigenvectors of M. 

• : ) . 
-1 

This case corresponds to Figure 5. The points A and B are (the image by 7T 

of) the two first columns of M. The broken segment between them is the set 
of eigenvectors of M. We obtain these eigenvectors as linear combination of A 
and B. 

Let us recall some other definitions adapted to the IRMax algebra. 

DEFINITION 4.4 We normalize a matrix by dividing (in lRMax i.e. by sub
tracting in the conventional algebra) all its entries by its eigenvalue. 

A normalized matrix has e as eigenvalue. The eigenvectors are unchanged. 

The eigenvalue of a matrix A gives the asymptotic growth rate of A k / k 
(see Theorem 4.3 for a more precise statement). As a consequence, we will 
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I 
I.• 

.-: 

FIGURE 5. Set of eigenvectors 

call problems related with the eigenvalue, first order problems. On the other 
hand eigenvectors are related with the problem of computing differences such 
as Ak+lu - Aku. We call them second order problems (see [1] or [9]). In the 
rest of the paper, we will concentrate on second order results. 
Eigenvectors and periodic regimes are invariant by a translation of all the en
tries of a matrix by the same real constant. In the rest of the paper, we will 
write the matrix we want to study in a positive form (i.e. with all terms > e) 
or in a normalized form depending on which one seems more convenient. 

DEFINITION 4.5 For a matrix A, with eigenvalue .X, we define: 

Critical circuit A circuit ( of A is said to be critical if its average weight is 
maximal, i.e. if p(() = A. 

Critical graph The critical graph consists of the nodes and arcs of A belong
ing to a critical circuit. 

Cyclicity The cyclicity of a strongly connected graph (i.e. of an irreducible 
matrix} is the greatest common divisor of the lengths of all the circuits. 
The cyclicity of a general graph is the least common multiple of the cyclic
ities of its strongly connected subgraphs. 

The knowledge of the critical graph of a matrix accounts for much of its spectral 
behaviour. More precisely, to study the spectral behaviour of a matrix A, it is 
enough to know: 

• The number of strongly connected subgraphs (s.c.s.) of its critical 
graph. 

• The cyclicity of its critical graph. 

In the following, a matrix whose critical graph is composed of j s.c.s. and 
whose cyclicity is k will be denoted scsj-cyck. 

The two fundamental theorems that we are going to present now justify the 
previous assertion. For a normalized matrix A of size J, we define: 
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A+= A EEl A2 EEl · · · EEl AJ. 

We check that A+ EEl AJ+l = A+. 

THEOREM 4.2 Let A be a normalized matrix. Every eigenvector of A can be 
written as a linear combination of columns of A+. More accurately, we have: 

1. Column At, i belonging to the critical graph, is an eigenvector. 

2. ?r(At) and ?r(Aj.) are different iff i and j belong to two different s.c.s. 
of the critical graph. 

Let p be the number of s.c.s. of the critical graph of A (p :S J). The pre
vious theorem states that there are p extremal eigenvectors. Then p - 1 is 
the "dimension" of ( the image of) the set of eigenvectors of A in IP JRJ. This 
set is polyhedral. The faces of this set are hyperplanes. These hyperplanes 
have a finite number of possible directions. We consider the natural basis of 
(JRJ,+,x): 

( e1, ... , eJ) with ei = (0, ... , 0, 1, 0, ... , 0)' , 

the term 1 of ei being in the ith place. We choose J - 2 vectors of this basis. 
We take their canonical projection. The hyperplane of JRJ-l ~ IP JRJ defined 
by these J - 2 independent vectors is a possible direction for a face of the set 
of eigenvectors. We conclude that there are cj-2 possible directions for these 
hyperplanes. 

For example in IP JR3, there are CJ = 3 possible directions for the lines 
delimiting the set of eigenvectors which are ?r(l, 0, 0)', ?r(0, 1, 0)' and ?r(0, 0, 1 )'. 
The lines will then be of the form 

An example of this has already been given in Figure 4. 

A corollary of Theorem 4.2 will be of particular use for us: 
An irreducible matrix has a unique eigenvector ( up to a multiplicative ( 0) 
constant) iff its critical graph has a unique s.c.s. 

In JRMax, every irreducible matrix is cyclic in the sense of the next theorem. 

THEOREM 4.3 For an irr~ducible matrix A of size J and whose eigenvalue is 
>.., there exist integers d and M such that: 

Vm ~ M, A m+d = ). d 0 Am , 

(>..d = >..®d = d x >..). Furthermore the smallest d verifying the property is equal 
to the cyclicity of the critical graph of A. From now on, we will call it the 
cyclicity of A. 
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The good interpretation is that there exists an initial transient regime for the 
powers of a matrix A. After the transient regime, the sequence {An} becomes 
periodic (more rigorously, it is the sequence { 1r(An)} which becomes periodic). 

Sometimes, we will be interested only in the stationary regime, we will then 
consider directly AM. On the other hand, we will sometimes consider the 
transient regime of a matrix. 

If d is the cyclicity of A then Ad is of cyclicity one. A cyclicity greater than 
one will provide periodic regimes of period greater than one for the eigenvalue 
problem. 

PROPOSITION 4.1 An irreducible matrix has a unique eigenvector and nope
riodic regimes of period greater than one, ijj its critical graph has a unique 
s.c.s. and its cyclicity is one, i.e. ifj it is a scsl-cycl matrix. 

Another easy consequence of Theorem 4.3 is the following where d(., .) is the 
projective distance and u, v E R/. 

4.2 Change of Basis 

A matrix A of lR:J.t .. ! can be considered as a linear (in a (Max,+) sense) oper
ator on R:f.t .. .,. We want to have a formula of change of basis for the matrix 
associated with a given linear operator. We are only interested in permutations 
of the coordinates and translation of the origin. 

DEFINITION 4.6 A matrix P is called a matrix of permutation if there is one 
and only one term equal to e in each line and column, the other terms being 
equal to e:. Let 9J be the group of permutations of {1, ... , J}. We consider 
u E g J. The matrix of permutation associated with u is P defined by: 

P.,.(i),i = e, P;i = e:, Vj #- u(i). 

LEMMA 4.1 Let A be a J x J matrix and let A be the matrix associated with 
the same endomorphism in a new basis obtained from the original one by a per
mutation u of the coordinates. Matrix P is the permutation matrix associated 
with u and p-l the one associated with u-1. We have 

..4. = p-l ®A®P. 

We consider a matrix A and we note A the matrix associated with the same 
endomorphism in a new basis. We obtain the new basis from the original 
one by a translation of the origin of the projective space. Let u E RJ be (a 
representative of) the new origin written in the old basis. Here is the formula 
of change of basis. 
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LEMMA 4.2 Let A be a J x J matrix. Let u be a column vector of size J. We 
have {note the analogy with the conventional algebra): 

c 

c 
: ) 

UJ 

Proof Let v = ( v1 , • • • , VJ)' be a vector written in the old basis and let 
v = ( v1 , · · · , v J )' be this same vector in the new basis. We have Vi + Ui = Vi. 

We set Av =wand w = (w1 ,···,wJ)1 and (w 1 ,···,WJ)' in the new and the 
old basis respectively. 

(Av)i = (P-1 0 A 0 Pv)i (P-1 0 Av)i 

(P-1w)i = Wi 

■ 

An illustration of such a change of origin is provided by Figure 17. It might 
be interesting to get another intuition on what a change of origin means. We 
present now an interpretation suggested by the modelling of Stochastic Event 
Graphs. Let us consider the communication graph associated with a positive 
and irreducible matrix A E JR-J.f0 ~. We consider that there is a clock associated 
with each node of A. Let u be a vector of JRJ. We interpret Ui as a date of 
occurrence of a first event at node i. Then (Au)1 is interpreted as the date 
of occurrence of the second event at node j. In this framework, a "change of 
origin" is just a change of the origin of time for some or all of the daters. It 
does not modify of course the evolution of the system. 

Let us prove a very useful lemma. This lemma together with the previous 
one enables us to determine in which cases critical terms are greater than non
critical ones. 

LEMMA 4.3 We consider a matrix A, irreducible, of size J, and u an eigen
vector of A. Let P be the matrix of change of the origin associated with u. We 
define A= p-l 0 A 0 P. We have the following property: 

Vi, j E 1, · · ·, J, Aij '.S >. , 

and \;/p, q such that (p, q) belongs to the critical graph, we have Aqp = >., where 
>. is the Lyapunov exponent of A. 

Proof We set e = (e, ... , e)'. 

But using the fact that e is an eigenvector of A (P-1 APe = p-l Au= p-1 >.u = 
>.e) and the definition of the Lyapunov exponent, we get: 
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Ae = (>,, ... , ,\)'. 

Then 'r/i, EI,k Aik = ,\, which proves the first part of the lemma. Let us sup
pose there exist p, q such that (p, q) belongs to the critical graph and Aqp < ,\. 
There is a critical circuit involving the arc (p, q). Using the first part of the 
theorem and Aqp < ,\, we conclude that the mean weight of this critical circuit 
is strictly smaller than ,\, which is a contradiction. ■ 

4.3 Spectral Theory in Dimension 3 

We are now ready to have a closer look at aperiodic matrices of size 3. We are 
going to present an exhaustive inventory of the possible spectral behaviours. 
Using theorems 4.2 and 4.3, we show that there are only six possible cases, 
which can be sorted in four categories. 

• scsl-cycl. 
• scs3-cycl and scsl-cyc3. 
• scs2-cycl and scsl-cyc2. 
• scs2-cyc2. 

We are going to study them one after the other in the simplest case when all 
non-critical terms are equal. Then we will observe that the general behaviour is 
stable under small perturbations of non-critical terms. We will show precisely 
how these perturbations modify the behaviour. By this way, we will have 
described all possible aperiodic matrices of size 3. 

In order for the reader to be convinced that all the cases are treated, we 
propose a classifying algorithm which, given a specific matrix, associates to it 
a paragraph and one or several figures of the paper. 

We consider a matrix A E JR:ffa~. 
Algorithm 

1. Check if A is irreducible and aperiodic. 
2. Normalize matrix A. 
3. Find an eigenvector of A. 
4. Write A in a new basis. 
5. Determine the critical graph of A. 
6. Compute the projective size of A. 
7. Check non critical terms of A. Final classification. 

Let us detail the different stages. 

STAGE 1 Check if A is irreducible and aperiodic. 

In order to do this, an easy way is to consider A the boolean matrix associated 
with A. It is defined in the following way: Aij = r:: if Aij = r::, Aij = e if 

- ~2 - J Aij ~ r::. It is sufficient to consider A, A , ... , A to conclude. 
Matrix A is irreducible if and only if A EB .A2 EB • • • EB A1 = E, where Eis defined 
by Eii = e, 'r/i, j. 
Matrix A is aperiodic if and only if A = E or 'r/k = 2, ... , J .Jk :f. A. 
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STAGE 2 Normalize matrix A. 

Compute the smallest integer, denoted M, such that: 

3d E JN, :3). E JR / Vm 2: M, Am+d = ).d 0 Am. 

The eigenvalue of A is >.. Normalize matrix A. For simplicity, we will keep the 
original notation, i.e. A := A - >.. 

STAGE 3 Find an eigenvector of A. 

Here is a general method, used for example in [5], to compute an eigenvector of 
A. An alternative algorithm, valid for some kind of matrices only, is proposed 
in Section 5, Example 1. 

• Consider an io such that :3k / (Ak)ioio = e. By Theorem 4.1, this condi
tion is verified if and only if i0 belongs to the critical graph of A. 

• Compute: 

u = ffiAkoio, where (oiok = e, (oio)j = c:, j -=I- io. 
k2'.0 

Then u is an eigenvector of A. In the previous formula, it is enough to 
compute the powers of A until J. 

Let us prove rapidly this last assertion. We denote by I the matrix defined by 
Iii = e, Iij = c:, i-=/- j. We have: 

u = EB Akoio = Io;o EB EB Akoio = O;o EB Au. 
k2'.0 k2'.1 

We deduce that Au 2: u. Assume we have Au -=f. u, then we must have 
(Au);0 > u;0 as we clearly have (Au)j = Uj, Vj -=f. io. But as we have 
e EB (Au); 0 = u;0 we see that it is also contradictory to suppose (Au);0 > u;0 • 1111 

STAGE 4 Write A in a new basis. 

Consider the linear operator associated with A. Consider a new basis obtained 
from the original one by a translation of the origin. The new origin is the 
eigenvector of A calculated in the previous stage. Write the operator associated 
with A in this new basis. For simplicity, we keep the notation A for the operator 
in the new basis. By Lemma 4.2, we have: 

( 

U1 

A := p-l AP, where P = : : ) . 
UJ 
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By Lemma 4.3, all critical terms of A are now equal to e and all non-critical 
terms are less than or equal to e. We recall that Aij is a critical term if the 
arc ( i, j) belongs to the critical graph. 

STAGE 5 Determine the critical graph of A. 

Determine the critical graph. It suffices to draw the (communication) graph of 
terms equal to e in A and to keep only the circuits of this graph. 
Compute the number of strongly connected subgraphs (j) and the cyclicity 
(k) of the critical graph. The paragraph corresponding to the general spectral 
behaviour of A is scsj-cyck. 

STAGE 6 Compute the projective size of A. 

Consider AM the stationary version of A as defined previously. We define 
critical columns (resp. lines) as columns (resp. lines) of AM containing a 
critical term. We denote C = {(i,j) I (i,j) belongs to a critical line or a 
critical column }. Set: 

a= /\ Alf. 
( i,j)EC 

We call a the projective size1 of A. If a = 1, we are exactly in the frame of the 
examples and of the figures considered below. If a ::f. 1, the correct figure is 
obtained from the ones drawn below by an homothetic transformation of center 
e = (e, e, e)' and of ratio a. 

STAGE 7 Check non critical terms of A. Final classification. 

Consider the couples (i,j) E C which do not belong to the critical graph. If 
they are all equal to a, then the figures corresponding to matrix A are given in 
the first table. If these couples are not all equal to a, the figures get modified. 
One has now to report to the figures of table 2. 

Remark In the scs2-cycl and scsl-cyc2 cases, the figures correspond to the 
situation where the critical columns are 1 and 2. If this is not the case of matrix 
A, consider a new basis obtained from the original one by a permutation of the 
coordinates (see Lemma 4.1). In the same way, in the scs2-cyc2 case, when the 
cycle of length 2 is not over coordinates (1,2), write A in a new basis obtained 
by permutation of the coordinates. 

Type of A Figure n° Type of A Figure n° 
scs3-cycl 6 scs3-cycl 7 

Table 1. 
scsl-cyc3 8 
scs2-cycl 10 

, Table 2. 
scsl-cyc3 9 
scs2-cycl 11 

scsl-cyc2 10 scsl-cyc2 11 
scs2-cyc2 12 scs2-cyc2 

1 In the scs3-cycl and scs2-cycl cases, it is exactly equal to the projective radius of A. We 
recall that the projective diameter of A is defined by D(A) = supu,vERJ d(Au, Av). 
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Remark If A is scsl-cycl, there is no figure as the spectral behaviour is 
trivial. 

Remark This algorithm is the easiest to work with when dealing with matrices 
of small dimensions. It is not the best one in terms of complexity. A better 
algorithm is obtained by using Karp's algorithm (see [4]) in order to compute 
the eigenvalue in stage 2. One can then obtain all the eigenvectors by computing 
the Kleene's star of the normalized matrix (see theorem 4.2). This can be 
done by using Gauss algorithm (see for example [6]). Both Karp's and Gauss 
algorithms have a complexity O(J3 ), where J is the size of the matrix. 

Let us consider the six possible spectral behaviours one after the other. For 
each case, we are going to draw the set of eigenvectors and periodic regimes, 
in IP JR3 ~ JR2 • 

We will also represent the domains of attraction of the different eigenvectors 
and periodic regimes. For a matrix A, we call domain of attraction of an 
eigenvector ( or of a periodic regime) the set of initial conditions { x0 } such that 

· 1r(Anxo) converges to that eigenvector (or periodic regime). By Theorem 4.3, 
this convergence occurs in finite time. 

• scsl-cycl 

Let A be a scsl-cycl matrix. We denote by v the unique eigenvector of A. 
Proposition 4.1 together with theorem 4.3 gives: 

Vuo E JEe, 1r(Amuo) ~ 1r(v). 

The convergence occurs in finite time (Theorem 4.3). The domain of attraction 
of 1r( v) is IP JR1 and the initial condition u0 is forgotten. This case is of special 
importance for stochastic models (see [9]). 

• scs3-cycl and scsl-cyc3 

If A is a scsl-cyc3 matrix, then A3 is a scs3-cycl matrix (but the converse is 
false!). For example, 

A= , B = A3 = (e. e. e·) 

where (.) stands for -1. We consider first the scs3-cycl case. 
There are three independent eigenvectors and no periodic regime of period 

greater than one (Theorem 4.2). Let us consider more specifically the matrix 
B. B is a normalized matrix and we check that it is stationary (i.e. B2 = 
B). We have represented in Figure 6 the set of eigenvectors and the domains 
of attraction. Theorem 4.2 helps us understand this picture. Here we have 
B+ = B. Then the three columns B 1 , B 2 and B 3 of B are the extremal 
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FIGURE 6. scs3-cycl, domains of attraction. 

eigenvectors. These extremal eigenvectors (or more precisely their image by 1r) 
are represented by a black dot ( • ). The set of eigenvectors is the IRMax convex 
hull of these three eigenvectors. It is filled in light gray. 
If the initial condition xo is in the dark gray zone number i, then the limit value 
(of1r(Bnxo)) is 1r(Bi)- If the initial condition is in one of the white strips, then 
the limit value is the nearest point for the projective distance (and of course 
this limit is attained in one step as B 2 = B). For example, for initial conditions 
uo or u~ (resp. vo, vb) the limit value is u 1 (resp. v1 ). 

We will now consider what happens if we modify the non-critical terms of 
the matrix B. We consider three different examples to illustrate it. 

( e 

) ,D= C -0.6 0~6), C= -0.5 e e 
e 

E= ( 

e -:5) -0.2 e 
-0.2 -0.5 

where (.) = -1. We represent the set of eigenvectors and the limits between 
domains of attraction. 

We can represent these sets very rapidly, using the procedure described at 
the end of Section 3. Let us consider the matrix C first. We represent the 
three columns of C, 1r(C1 ), 1r(C2) and 1r(C3 ). The convex hull of these three 
points is the set of eigenvectors of C (note that C = C 2). For the matrix E, 
the interpretation is the same. 
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1.-· .. · ... 

FIGURE 7. scs3-cycl, three possible forms for the set of eigenvectors. 
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I 
I 

·;J._ 

We consider now the matrix D. The difference with the two previous ex
amples is that D is not stationary. The convex hull of the columns of D, 
7r(D1 ), 7r(D2) and 7r(D3 ), is the image of D (D(JR3 )). It is different from the 
set of eigenvectors which is, here, the interior of this convex hull. Another way 
to obtain the set of eigenvectors is to consider the stationary version of D (i.e. 
D 2 , as we have D 3 = 118) D 2 ). The set of eigenvectors is the convex hull of the 
columns of D2, 7r(DD, 7r(D2) and 7r(D3). 

Now we consider the case of scsl-cyc3 matrices. There is only one eigenvector 
but there are periodic regimes of period 3. The set of periodic regimes of period 
3 of a scsl-cyc3 matrix M is equal to the set of eigenvectors of M 3 • Let us 
consider more specifically the matrix A defined previously. 

A= , (.) = -1. (e. e. e·) 
The previous remark provides us with the set II of periodic regimes of A. To 
go further, we want to characterize, given an initial condition u in the hexagon 
II, the periodic regime { u, Au, A2u }. 

It is easy to check that the unique eigenvector of A is e = (e, e, e)'. We 
consider u E II, u -f. e. Theorem 4.3 shows us that { u, Au, A 2u} is a periodic 
regime. It implies that A 3u = u and d(A3u,e) = d(u,e). By Proposition 3.1, 
we have 

d(A3u,e) :S d(A2u,e) :S d(Au,e) :S d(u,e). 

We conclude that: 

d(A2u,e) = d(Au,e) = d(u,e). 

The points of a periodic regime are at a constant distance (for the projective 
distance) of the unique eigenvector e. The symmetry does the trick as the 
figure constituted by the three points { u, Au, A2u} must be invariant by a 
permutation of the three projective axes. The direction of rotation depends on 
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FIGURE 8. scsl-cyc3, periodic regimes. 

the critical cycle, whether it is (1, 2, 3) or (1, 3, 2). For example A and A2 have 
opposite directions of rotation. 

In Figure 8, we have represented two periodic regimes of A ( the columns of 
A, 1r(Ai), 1r(A2), 1r(A3 ) constitute a third one). The direction of rotation is 
counter-clockwise. We have also represented the domains of attraction. If the 
initial condition is in one of the gray zones then the stationary periodic regime 
is 1r(Ai), 1r(A2) or 1r(A3). If the initial condition is in one of the white strips, 
the limit regime consists of three points on the boundary of the hexagon. We 
have represented an example. It corresponds to initial conditions along one of 
the three large arrows. For example for an initial condition u0 or u~, the limit 
regime is { u1, u2, u3}. More precisely, we have: 

1r(Auo) = 1r(u1), 1r(A2uo) = 1r(u2), 1r(A3 uo) = 1r(u3), 1r(A4 uo) = 1r(u1), ... , 

1r(Au~) = 1r(u3), 1r(A2u~) = 1r(u1), .... 

If the initial condition u belongs to II, the stationary periodic regime is { u, Au, A2u} 
of course. We have also drawn an example of such a regime. 

What happens if we perturb non-critical terms? To describe it, it will be 
useful to define the notion of subdiagonals. 

DEFINITION 4. 7 Let M be a matrix of size J. We call ith subdiagonal of M the 
terms {Mn, Mi+1,2, ... , Mi+J-i,HJ-i, M1,2+J-i, ... , Mi-1,J} = {Mi-Hk,k [J], \lk}. 
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For example, the first subdiagonal is the diagonal of the matrix! For the matrix 
A above, the critical subdiagonal is the second one. If we perturb a non-critical 
term (i.e. a term of the first or third subdiagonal), after a transient regime, 
the whole subdiagonal will be equal to this term. Let us consider an example. 

(A,)5 = 

: ~ ) - (A')'= ( : ; ! ) • 
o: n ,-

with(.)= -1, -1 < a, b1 , b2 < e, b = b1 EB b2 1 . This provides us with specific 
pictures for the sets of periodic regimes. When we increase continuously a 
non-critical term, this set evolves in the same manner as the diaphragm of a 
camera. Let us illustrate it in Figure 9. 

(-~8 e 

) 'G= ( 
-0.5 _:J' F= -0.8 e -0.5 

e -0.8 e 

H=( 
-0.2 e 

) ' (.) = -1. e -0.2 
e -0.2 

FIGURE 9. scsl-cyc3, three possible forms for the set of eigenvectors. 

When the terms of the diagonal become equal toe, then we have a scsl-cycl 
matrix with e = (e, ... , ef as unique eigenvector. If the terms of the diagonal 
are greater thane, then we get a scs3-cycl matrix where we find the same kind 
of pictures as in Figure 6, sets which have now to be interpreted in terms of 
eigenvectors. 

Remark In the cases we have been dealing with so far, domains of attrac
tion had a very easy algebraic characterization. In fact for an initial condition 

1 The size of matrix A is here inf (a, b). 



366 

u the limit value was the "nearest" (for the projective distance) eigenvector or 
periodic regime. This is a general result. It is a consequence of the synchro
nization phenomena occuring in IRM ax. However we will see, in the scsl-cyc2 
case for example, that the "nearest" eigenvector is not always unique which 
complicates the description of domains of attraction. 

• scs2 - cycl and scsl - cyc2. 

In the same way as previously, if A is a scsl-cyc2 matrix then A2 is a scs2-cycl 
matrix, the converse being false. For example, 

( 
. e 

A= ~ 
-2 

e : ) ' (.) = -1. 
-2 

Let us consider first the scs2-cycl case and more precisely the matrix B. The 
general results of spectral theory tell us that there are two extremal eigenvectors 
( the first two columns of B as B+ = B) and no periodic regime of period greater 
than 1. We have already represented the set of eigenvectors of B, in Figure 
5. We will represent it again together with the domains of attraction of the 
different eigenvectors in Figure 10. 

FIGURE 10. scs2-cycl (or scsl-cyc2), domains of attraction. 

There is a symmetry axis for the whole figure ( corresponding to the fact 
that matrix B is unchanged by a permutation of the first two columns). The 
extremal eigenvectors are symbolized by a dot, •· In opposition with the scs3-
cycl case, no eigenvector has a domain of attraction restricted to itself. If the 
initial condition x0 is in the gray zones 1 or 2, the limit value of 1r(Bkx0 ) will 
be B1 or B2 respectively. If it is in zone 3, then the limit value will be M. 
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When the initial condition is in one of the white strips, the limit value is given 
by the arrow. 

The picture remains the same for the matrix A which is scsl-cyc2. There 
is only one eigenvector which is M. The bold "line" between B1 and B2 is 
the set of periodic regime of period 2. Two points of this set belong to the 
same periodic regime if they are "symmetric" with respect to M. For an initial 
condition in zone 3, the limit regime is the eigenvector M. For an initial 
condition in zones 1 or 2, the limit regime is { B1, B2} and so on. 

Remark In general, for an initial condition in zone 3, the limit regime is 
limk 1r(Bk83 ) where 83 = (c:, c:, e)'. It is the third column of the matrix in its 
stationary version but it is not always the eigenvector of the matrix. However, 
by using theorem 4.3, it is possible to prove that 

Some of the possible cases are now investigated. 

We want to analyze what happens if we modify non-critical terms. We have 
to distinguish between modifications of terms belonging to critical columns 
(columns 1 and 2 here) and of terms belonging to non-critical columns. If we 
modify a term belonging to a critical column, the set of eigenvectors ( obtained 
as the convex hull of critical columns) will also be modified. On the other 
hand, it is possible that a modification of a term of the non-critical column 
does not affect the set of eigenvectors but only the domains of attraction. Let 
us illustrate this idea. 

For matrix C, the set of eigenvectors is not modified, but the domains of 
attraction are. The picture of Figure 11 has to be interpreted in the same way 
as previously. The gray zones 1 and 2 are the domains of attraction of C1 

and C2 respectively. If the initial condition u0 is in zone 3, the limit value of 
1r(Bku0 ) will be M. 

For matrix D, the domains of attraction and the set of eigenvectors are 
modified. In fact, the stationary regime of D is: 

-0.5 
e 

0.5 ) 
-0.5 , (.) = -1. 
-0.5 

For matrix D 2 , a term of a critical column has been modified. It is reflected by 
a corresponding modification of the set of eigenvectors. The points represented, 
D1 and n; are the critical columns of matrix D 2 . In this example, zones 1 and 
3 have melted. They constitute the domain of attraction of D 1 . 



368 
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',...,. D' ,,;' 

I .... 2 ..... 

I 
,..· 

FIGURE 11. scs2-cycl, other examples, matrices C and D. 

• scs2-cyc2 

The canonical example of such a matrix is: 

(e. e e··) A= , (.) = -1. 

There are two extremal eigenvectors and also periodic regimes of period 2. If 
a matrix N is scs2-cyc2 then the matrix N 2 is scs3-cycl. Then to find the 
set of eigenvectors and periodic regimes of a scs2-cyc2 matrix N, one only 
has to determine the set of eigenvectors of N 2 (see paragraph scs3-cycl and 
scsl-cyc3). 

Let us represent graphically eigenvectors, periodic regimes of period 2 and 
domains of attraction of matrix A in Figure 12. 

There is a symmetry axis for the whole figure (matrix A is unchanged by a 
permutation of the first two coordinates). The set of eigenvectors (the interval 
[M, A3]) splits the set of periodic regimes in two equal parts. The two points of a 
periodic regime of period 2 are symmetric with respect to the set of eigenvectors. 
The analysis of domains of attraction is analog to the one of cases scs3-cycl 
and scsl-cyc3. If the initial condition belongs to the zones 1, 2 or 3, the 
limit value will be either the periodic regime { A1 , A2 } or A3 . If the initial 
condition belongs to one of the three white strips, the limit regime is a periodic 
regime of period 2, corresponding to the "nearest" point on the hexagon and 
its symmetrical point. 

We can also modify non-critical terms. We will not present examples but the 
behaviour is very close to the one observed in the previous cases. 
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FIGURE 12. scs2-cyc2, domains of attraction. 

4-4 Transient regimes 

We will now take a closer look at transient regimes of matrices. The matrices 
we have been considering so far were chosen in order to be stationary or at least 
to have a very short transient regime. To emphasize the transient behaviour, 
we will, on the other hand, consider matrices with long transient regimes. The 
length of the transient regime is closely related to the "second eigenvalue" of 
the matrix, i.e the second largest circuit weight (see [4]). 

First of all, one has to remark that a matrix can have an arbitrarily long 
transient regime. Let us take an example. 

M= ( e 
-1 

-1 ) 2 ( e -ry , 0 < TJ « 1, M = _1 
-1 ) 

-2 X TJ ' 

-1 ) 2 k ( e 
k ,k<[-]+1,M = l 

- XTJ T/ -
-1 ) 2 
-2 'k ~ l;,l + 1. 

The length of the transient regime is thus [i]- The matrix M is scsl-cycl, 
its unique eigenvector is E = ( e, -1 )'. As we have seen previously, it implies 
that Vu E IRJ, limk1r(Mku) = 1r(e,-l)'. Let us consider the initial condition 
u = (e, 3)'. We have 1r(Mu) = 1r(e, 1 - ry)', 1r(M2u) = 1r(e, 1 - 2 x ry), .... We 
have represented the sequence {1r(Mku)} in the projective space JPJR2 . We 
have also represented the same sequence for three other initial conditions. 

We are now going to present analog figures corresponding to matrices of size 
3. 

First of all we consider the example of scsl-cycl matrices. 
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' ' ,, ----- ' 
,,," ' ,I' .... --- ' 

.... ----- .... 

I ;.,,,. ', t I ' ' ' 

-t-------'---------t--1 ~_,_-'J_,_-_~_,-_~_, --"-~.------r-' ----r-' ~"'~ 

u = 1r(e, 3)' 1r(e, 1 -11)' E = 1r(e, -1)' 

FIGURE 13. Dimension 2, transient regimes. 

FIGURE 14. Dimension 3, scs2-cyc2, transient regimes. 

-2 
-1} -1} 

~1} ) , 0 < 1J «: 1, (.) = -1. 
-2 

Both matrices have the same stationary regime, given by the matrix: 

-2 ~2 ) , (.) = -1. 
-2 -2 

Matrix A is obtained by a small perturbation of the matrix presented in 
paragraph scs2-cyc2 (Figure 12). The transient behaviour reflects it, as the 
figure we obtain is very close to Figure 12. As a comparison, we have also 
represented the matrix B whose behaviour is asymptotically identical. 

Let us comment on the figure corresponding to A a little further. There is a 
symmetry axis for the whole picture. The three points A1 , A2 and A3 are the 
projections of the columns of matrix A. If the initial condition is in zone 1, 
there is convergence in one step to A1 = 1r(e, -1, -1)', the unique eigenvector. 
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If the initial condition is in zone 2 (resp. 3), we have 1r(Axo) = A3 (resp. 
1r(Ax0 ) = A2 ). We have represented the whole sequence {1r(Akxo)} for an 
initial condition x 0 = A3. For an initial condition in one of the three white 
strips, for example let us consider u0 (or u~), then 1r(Au0 ) (or 1r(u~)) is the 
point pointed by the arrow in the picture (it is the symmetric of the "nearest" 
point on the set Im(A)). For initial condition u~, we have also drawn the 
beginning of the sequence {1r(Anu~)}. 

For matrix B, the set of periodic regimes is the same one as A. But the 
domains of attraction are quite modified. It emphasizes the possible influence 
of transient regimes, especially in stochastic models. Here we have drawn the 
sequences {1r(Anu0 )} (or part of them) for several different initial conditions. 
One of them is in zone 2, another one in the white strip between zones 2 and 
3 and the last one is on the symmetry axis. 

We consider now the transient regime of a scs2-cycl matrix. 

( 
e . . ) 

C = : e ~TJ , 0 < r, « 1, (.) = -1. 

I 
._ I 

._ I 
I 

·r 
FIGURE 15. Dimension 3, scs2-cycl, transient regimes. 

The stationary regime of C is the canonical example of the scs2-cycl para
graph (i.e. the same matrix with -ry = -2). We can also view C as a small 
perturbation of the canonical example of scs3-cycl matrix (i.e the same ma
trix with TJ = 0). The figure reflects these remarks. 
The points 0 1 and 0 2 are the projection of the first two columns of the matrix. 
The point D is 1r( e, e, 1 - r, )'. If the initial condition is in zone 1 ( resp. 2) we 
have convergence to 0 1 (resp. 0 2 ) in one step. If it is in the strip between zone 
1 and 2, convergence occurs in one step according to the arrows. The hexagon 
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represented in dotted line is Jm(C) = C(JR3 ). We have represented the whole 
sequence { 71'( Ck x0)} for several initial conditions. 

5 APPLICATIONS 

We are now going to propose examples where the graphical representation 
in the projective space appears to be useful in understanding some (Max,+) 
phenomena. 

5.1 A projectively infinite semigroup of matrices. 

We consider a finite number of matrices A1, ... , Ak E JR:fla~. We denote re
spectively by < A1, ... , Ak > and 71'< A1, ... , Ak > the semigroup generated 
by A1, ... , Ak and its projection. 

< A1, .. ,,Ak >= {(AuN 00 ·Au2 Au1 ),u1, .. ,,uN E {1, ... ,k},N finite}, 

where 71' is here the canonical projection of JR:fJa~ into IP IR:f./a~. The problem 
we are interested in is the finiteness of 71'< A1, ... , Ak >. It is in fact a version 

· of the Burnside problem in the special case of the (Max,+) algebra (see [7]). 

Let us consider the projective semigroup generated by a single and irreducible 
matrix 71'< A >= { 11'(A), 71'(A2), ... }. Theorem 4.3 tells us that 71'< A > is finite. 

Remark It is the finiteness of the projective semigroup and not the finiteness 
of the semigroup which is interesting. Indeed any irreducible matrix A with an 
eigenvalue different from e is such that #{<A >} = Card{< A >} is infinite. 

The next theorem was proved in [7] in a slightly stronger version. 

THEOREM 5.1 Let A1, ... , Ak E Qi;a~. We assume that: 

Vu E {1, ... , k}, V(i,j), (Au)i; >c. 

Then the projective semigroup 11'< A1, ... , Ak > is finite. 

This theorem does not extend to the case of matrices with non rational entries. 
Nice counter-examples can be found using the graphical representation in the 
projective space. 
We consider the semigroup generated by the matrices: 

-r,2 

where(.)= -1, 0 < T/i ~ 1 and T/i <J. (Q. We suppose also that TJi/TJ; <J. (Q, i,j E 
{1,2,3}, i # j. An easy way to show that the semigroup 71'< A1,A2,Aa > 
is infinite is to consider the initial condition e = ( e, e, e )' and to prove that 
TI= 71'(< A1,A2,Aa > ®e) = {11'(Me), ME< A1,A2,A3 >} is infinite. We 
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FIGURE 16. A finitely generated but projectively infinite semigroup of matrices 

obtain a nice illustration of the phenomenon with the help of the graphical 
representation in the projective space. 

The extremal eigenvectors of A1, A2 and A3 are (B, C), (A, C) and (A, B) 
respectively. The picture is analog to the one of Figure 15, with three different 
transient regimes interacting. 

For a point u = (u1,u2,u3)' such that d(u,e) < 1-supi=l,2,3 T/i, where dis 
the projective distance ( def. 3.4), we have: 

Aiu= ( ui ~ T/l ) , A2u = ( u2 ~ T/2 ) , A3u = ( :~ ) · 
¾ ¾ ¾-~ 

It is very easy to prove that II is dense in the unit ball of the projective space 
(the hexagon delimited by A, B and C). In fact let us consider three integers 
N1, N2 and N3 such that: 

sup (Ni x "Ii) - . inf (Ni x "Ii) < 1. 
i=l,2,3 •=l,2,3 

Then it is quite obvious that there exists a matrix M E < A1, A2 , A3 >, M = 
AuN ® · · · ® Au1 with N = Ni + N2 + N3 such that: 

Ni= #{k I Auk = Ai}, i = 1, 2, 3, 

Me= (-Ni x "11, -N2 x "12, -N3 x TJ3) 1 

In fact it is easy to understand, watching Figure 16, that we will obtain this 
formula for Me iff 'efn E {1, ... , N}, 7r(Aun ® · · · ® Au1 e) belongs to the interior 
of the hexagon ( A, B, C). 

We consider an arbitrary point v of the interior of the hexagon (A, B, C). 
As "11,T/2,T/3 are not co-rational, there exists a sequence of integers N(n) and 
a sequence of matrices { Af{n), Af{n) E< A1, ... , Ak >} with the following 
properties. 
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• The length of M(n) is N(n), i.e M(n) = AL~(n) ®···®At). 

• Nt> = #{k I At>= Ai}, i = 1,2,3, 

Remark If we consider another initial condition u # e, we will in general 
obtain a set of reachable points 1r( < A1 , ... , Ak > u) dense in the hexagon II 
and whose intersection with II is empty. Let us now consider a Markov chain 
x(n, x0 ) whose transition probabilities p(., .) verify: 

Yv E IR11ax, p(1r(v), 1r (Aiv)) = Pi, i = 1, 2, 3, Pi > 0, P1 + P2 + p3 = 1. 

We take e as our initial condition. Then II is a set of transient states for the 
Markov chain. After the first and before the second hitting time of the border 
of the hexagon (A, B, C), the Markov chain evolves on a set of transient states 
dense in the interior of (A, B, C) and whose intersection with II is empty. It is 
however possible to show that the chain is positive recurrent. Points A, B or 
C can be used as regenerative points (for example 1r(A;Af u) = A, Yu E JR/, 
when k and k' are sufficiently large). 

5.2 Multiplicity of stationary regimes. 

We consider a stochastic model of product of matrices in the lRMax algebra. 
The model is the following one: 

x(n + 1) A(n)x(n), (5) 

where x(n + 1) and x(n) are JRJ-valued vectors and A(n) is an irreducible 
random matrix of size J x J. The exogenous sequence {A(n), n E JN} is i.i.d. 

The interest for such models has been initiated by the study of Stochastic 
Event Graphs, a class of Stochastic Petri Networks. Many networks with syn
chronization and/or blocking can be modelled this way. Many examples can 
be found in [1] and [2]. 
We are interested in the stationary behaviour of 1rx( n). For a network modelled 
by such a system, we can compute quantities such as queue length, sojourn or 
idle times from the knowledge of 1rx(n). In [9], necessary and sufficient condi
tions to have a unique stationary regime for 1rx( n) are given. 

There is another problem worth considering. What happens for a fixed de
terministic initial condition x 0 , is it possible to get several stationary regimes? 
Another way to state the problem is the following one. For a given network 
with a fixed initial condition and a stochastic dynamic given by equation (5), 
is it possible to obtain several stationary regimes for queue length or sojourn 
time. The answer, rather counter-intuitive, is yes. 

More precisely, for an i.i.d model x( n+ 1) = A( n )x( n) and xo E JRJ, 1rx( n, xo) 
is a Markov chain and this chain can have several classes of recurrence. Let us 
illustrate this. 
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A 

.... ,, 

FIGURE 17. A single initial condition and several stationary regimes. 

We have A(n) = A or B with P(A(O) = A) = p > 0 and P(A(O) = B) = 
1- p > 0. 

-1 
e 

-1 

-1) -1 
e 

In the previous line, we have written matrix B in a form which reflects the fact 
that it is exactly the matrix studied in Figure 6 up to a change of origin (see 
Lemma 4.2). 

On Figure 17, we have materialized the domains of attraction of the matrix 
B. We consider the initial condition x0 = ( 7/, e, e )', where e < 'T/ «: 1. This 
initial condition is in the domain of attraction of B3 . As a consequence, we 
have 1r(Bxo) = B 3 and 1r(ABx0 ) = 1r(ABkx0 ) = 1r(e,e, -2)'. We check that 
1r(Axo) = 1r(e, e - 'T/, -2)'. Both vectors x1 = (e, e, -2)' and x2 = (e, e -TJ, -2)' 
are eigenvectors of both matrices A and B. We conclude that with probability 
p, we have 1rx(n, xo) = 1r(e, e - 'T/, -2)' and with probability 1 - p, we have 
1rx(n,x0 ) = 1r(e,e, -2)'. 
There are two absorbing states for the Markov chain 1rx(n, x0 ). 
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This counter-example would probably not have been found without the help 
of the graphical representation in the projective space. With Figure 17, the 
multiplicity of stationary regimes becomes rather clear. 

6 SOFTWARE 

A C program has been written by Bruno Gaujal, which implements the algo
rithm of Section 4.3. Given a matrix of dimension 3, this program provides the 
graphical representation of eigenvectors, periodic regimes and domains of at
traction (as in Figures 6 to 12). If you are interested in obtaining this program, 
send a request to gaujal@sophia.inria.fr or mairesse@sophia.inria.fr. 
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